WO2017141748A1 - Organic el element, lighting device, surface light source and display device - Google Patents

Organic el element, lighting device, surface light source and display device Download PDF

Info

Publication number
WO2017141748A1
WO2017141748A1 PCT/JP2017/004176 JP2017004176W WO2017141748A1 WO 2017141748 A1 WO2017141748 A1 WO 2017141748A1 JP 2017004176 W JP2017004176 W JP 2017004176W WO 2017141748 A1 WO2017141748 A1 WO 2017141748A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
light
uneven
light emitting
Prior art date
Application number
PCT/JP2017/004176
Other languages
French (fr)
Japanese (ja)
Inventor
玲子 吉成
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017141748A1 publication Critical patent/WO2017141748A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Definitions

  • the present invention relates to an organic EL element, an illumination device, a planar light source, and a display device.
  • organic EL element utilizing an organic electroluminescence (EL) phenomenon, which is an electroluminescence phenomenon of an organic material
  • EL organic electroluminescence
  • the organic EL element has advantages such as surface light emission, low-temperature operation, cost reduction, weight reduction, and flexible element fabrication.
  • An organic EL element generally includes an organic EL layer including a light emitting layer containing an organic light emitting material, and an anode and a cathode provided on both surfaces of the organic EL layer, respectively.
  • the organic EL element is composed of an anode made of a transparent conductive material such as ITO (Indium Tin Oxide), which is sequentially formed on a transparent substrate such as a glass substrate, an organic EL layer including a light emitting layer, and a metal.
  • ITO Indium Tin Oxide
  • a cathode is provided.
  • the organic EL element is a bottom emission type element in which light is extracted from the substrate side, or a top emission type element in which a cathode, an organic EL layer, and an anode are sequentially formed on the substrate, and light is extracted from the side opposite to the substrate side. There are elements.
  • the organic EL element has advantages such as low viewing angle dependency, low power consumption, and extremely thin devices, but also has a problem of low light extraction efficiency.
  • the light extraction efficiency is the ratio of the light energy emitted from the light extraction surface (for example, the substrate surface in the case of the bottom emission type) to the atmosphere with respect to the light energy emitted from the light emitting layer. For example, light emitted from the light-emitting layer is emitted in all directions, so that most of the light enters a waveguide mode in which total reflection is repeated at the interface between multiple layers with different refractive indexes. As a result, the light extraction efficiency decreases.
  • Patent Document 1 discloses a light collecting layer including a light collecting structure such as a microlens and a transparent resin that covers the light collecting structure.
  • Patent Document 1 a material having a higher refractive index than the light condensing structure is used as the transparent resin.
  • a condensing layer on a glass substrate, total reflection occurring on the surface of the glass substrate is suppressed, and the light extraction efficiency is improved.
  • Patent Document 2 discloses a method of providing a one-dimensional or two-dimensional periodic fine structure on the surface of a metal layer (cathode).
  • the periodic microstructure functions as a diffraction grating. Thereby, the energy lost as surface plasmons on the cathode surface is extracted as light, and the light extraction efficiency is improved.
  • JP 2003-86353 A Japanese Patent No. 4762542
  • An object of the present invention is to provide an organic EL element having both high light extraction efficiency and high light emission uniformity, as well as an illumination device, a planar light source, and a display device.
  • an organic EL element includes a light-transmitting substrate and a plurality of uneven portions that are light-transmitting and are formed on a surface opposite to the substrate.
  • a structure layer having at least two types of regions of a concavo-convex region made of and a flat region made of a flat portion, a first electrode layer having light transmittance, a functional layer including a light emitting layer, and a second electrode layer, They are stacked in this order.
  • a lighting device, a planar light source, and a display device include at least part of the above-described organic EL element.
  • an organic EL element having both high light extraction efficiency and high light emission uniformity, as well as a lighting device, a planar light source, and a display device can be realized.
  • the organic EL element 10 includes a structural layer 12, a barrier layer 13, a first electrode layer 14, a functional layer 15, and a second layer on one surface side of a light transmissive substrate 11.
  • the electrode layer 16 is laminated in this order.
  • the light transmissive substrate 11 is a substrate of the organic EL element 10 and has light transmittance.
  • the structural layer 12 is light transmissive and formed on the surface on the barrier layer 13 side in the stacking direction (refers to the surface opposite to the surface facing the light transmissive substrate 11 side, and so on). It has an uneven area and a planar area.
  • the barrier layer 13 is light transmissive and prevents moisture and the like from entering.
  • the first electrode layer 14 is light transmissive and serves as an anode.
  • the functional layer 15 includes a light emitting layer.
  • the second electrode layer 16 is a counter electrode of the first electrode layer 14.
  • the light transmittance here means the property (translucency) which is transparent.
  • the light transmission in this specification means having light transmission at least in the wavelength of visible light region.
  • the light transmissive substrate 11, the structural layer 12, the barrier layer 13, and the first electrode layer 14 constitute a light extraction substrate 20.
  • the light extraction substrate 20 has a concavo-convex region 21 and a planar region 22 formed by a plurality of concavo-convex portions 23 formed in the structural layer 12. That is, a plurality of uneven portions 23 are formed in the uneven region 21.
  • the planar area 22 is composed of a planar portion (flat surface).
  • the organic EL element 10 according to this embodiment is provided on the surface opposite to the surface on which the structural layer 12 of the light transmissive substrate 11 is formed (the back surface side of the light transmissive substrate 11).
  • the light extraction lens layer 30 is provided.
  • each part which comprises the organic EL element 10 is demonstrated in detail.
  • the light transmissive substrate 11 may be a plate-like member that transmits in the visible light region, and there is no particular limitation on the type of glass, plastic, or the like.
  • Preferred examples of the light transmissive substrate 11 include a glass plate, a polymer plate, and a resin film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • resin film examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Li, polyether ketone imide, polyamide, fluorocarbon resin, nylon, polymethyl
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • It is a high barrier film having a permeability of 1.0 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1.0 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the water vapor permeability is more preferably 1.0 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • any material having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element 10 may be used.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • stacking order of an inorganic layer and an organic layer It is preferable to laminate
  • the method for forming the barrier film is not particularly limited.
  • a plasma CVD (Chemical Vapor Deposition) method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is used. Those are particularly preferred.
  • a light extraction lens layer 30 is appropriately provided as a light scattering or condensing layer on the surface of the light transmissive substrate 11 opposite to the surface on which the structural layer 12 is formed (the back surface side of the light transmissive substrate 11).
  • the light extraction lens layer 30 includes a light transmissive sheet 31 having light transmissive properties, and a lens layer 32 provided on the surface of the light transmissive sheet 31.
  • the lens layer 32 may be formed by forming the surface of the light transmissive sheet 31 in a microlens array-like structure, or may use a so-called condensing sheet. Thereby, the light extraction lens layer 30 can collect light in a specific direction, for example, in the front direction with respect to the light emitting surface of the element to increase the luminance in the specific direction.
  • Examples of the resin material constituting the light extraction lens layer 30 include low density or high density polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, and ethylene-octene copolymer.
  • Polyolefin resins such as ethylene-norbornene copolymer, ethylene-domon copolymer, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; polyethylene terephthalate, polybutylene terephthalate, polyethylene Polyester resins such as phthalates; nylon-6, nylon-6,6, metaxylenediamine-adipic acid condensation polymers; amide resins such as polymethylmethacrylamide; acrylic resins such as polymethylmethacrylate; polystyrene Styrene-acrylonitrile resins such as styrene-acrylonitrile copolymer, styrene-acrylonitrile-butadiene copolymer, and polyacrylonitrile; Hydrophobized cellulose resins such as cellulose triacetate and cellulose diacetate; polyvinyl chloride, polyvinylidene chloride, polyfluoride Hal
  • the light extraction lens layer 30 may further improve the light scattering effect by adding fine particles to the resin material described above.
  • fine particles contained in the light extraction lens layer 30 inorganic fine particles or organic fine particles can be used.
  • the fine particles include acrylic particles, styrene particles, styrene acrylic particles and cross-linked products thereof, melamine-formalin condensate particles, polyurethane particles, polyester particles, silicone particles, fluorine particles, and copolymers thereof.
  • Clay compound particles such as smectite, kaolinite, talc, silica, titanium oxide, alumina, silica alumina, zirconia, zinc oxide, barium oxide, inorganic oxide particles such as strontium oxide, calcium carbonate, barium carbonate, barium chloride, sulfuric acid Examples thereof include inorganic fine particles such as barium, barium nitrate, barium hydroxide, aluminum hydroxide, strontium carbonate, strontium chloride, strontium sulfate, strontium nitrate, strontium hydroxide, and glass particles.
  • the structural layer 12 is light transmissive and is provided on the surface opposite to the light emitting surface of the light transmissive substrate 11 (the bonding surface of the light extraction lens layer 30 shown in FIG. 1).
  • the structure layer 12 has an uneven region in which a plurality of uneven portions 23 are formed and a planar region including a flat portion on the surface on the first electrode layer 14 side. That is, in the structural layer 12, a part of the surface of the structural layer 12 on the first electrode layer 14 side is at least one uneven region, and the remaining part is a planar region.
  • Each concavo-convex portion 23 is formed so as to have either a concave shape or a convex shape with respect to the plane portion.
  • each concavo-convex portion 23 is formed as a mountain shape (convex shape) or a valley shape (concave shape) with respect to the plane portion.
  • grooved part 23 is not limited to a mountain shape or a trough shape,
  • a cylindrical shape or a cone shape may be a hemisphere.
  • the shape in plan view is not limited to a circle. Further, it is not necessary that the shapes and dimensions of the uneven portions 23 are the same.
  • the shape of the first electrode layer 14 formed on the structural layer 12 becomes the shape of the surface of the structural layer 12.
  • the surface of the second electrode layer 16 on the functional layer 15 side follows the surface shape of the first electrode layer 14. Inverted uneven regions and planar regions in which the uneven portions are also inverted are formed. Plasmon absorption can be suppressed by the inversion uneven region formed on the surface of the second electrode layer 16 on the functional layer 15 side. Further, since a part of the emitted light is reflected by the planar region formed on the second electrode layer 16, the light extraction efficiency is improved.
  • the area ratio of the uneven area to the area of the planar area of the structural layer 12 is preferably in the range of 1/4 to 10/1.
  • the area ratio is smaller than 1 ⁇ 4, the plurality of uneven portions 23 in the uneven region is small, and the optical effect may not be reflected in the light extraction efficiency.
  • the area ratio is larger than 10/1, the planar area is small, the reflectivity of the second electrode is significantly lowered, and the light extraction efficiency may be reduced as a result.
  • the height H of the plurality of uneven portions 23 in the uneven region of the structural layer 12 is preferably 50 nm or more and 800 nm or less.
  • the height H of the plurality of concavo-convex portions 23 is an absolute value of a change in the layer thickness direction with respect to the plane portion. For example, when the concavo-convex portion 23 is formed in a concave shape, it is the distance in the total thickness direction from the flat portion to the concave bottom portion of the concave shape in a side view.
  • the ratio (H / D) of the height H to the width D of the plurality of uneven portions 23 in the uneven region is preferably in the range of 1/5 to 8/5. This is because it is easy to configure each layer on the structural layer 12.
  • the “ratio of the height H to the width D of the concavo-convex portion 23” The ratio of the height H to the width D of the recesses constituting
  • the “ratio of the height H to the width D of the concavo-convex portion 23” The ratio of the height H with respect to the width D of the concavo-convex portion 23”
  • the ratio of the height H with respect to the width D of the convex part to comprise is said.
  • the concave / convex portion 23 has a shape in which the inclined surface is raised or a fine surface to surface
  • the shape of the boundary becomes clear, or the period of the unevenness is fine, and the top part and the groove part are shaped like dots. Therefore, in particular, when a sputtering method or a vapor deposition method is selected as a method for forming at least one of the first electrode layer 14, the functional layer 15, and the second electrode layer 16 on the structural layer 12, the same as the peripheral portion thereof. It is difficult to form a uniform film.
  • region 21 is larger than the width
  • the uneven width can be maintained at about the emission wavelength, and the light emitted from the functional layer 15 travels to the second electrode layer 16 side.
  • the effect of re-radiation by the conversion of the surface plasmon in the second electrode layer 16 can be obtained. That is, if it is smaller than 300 nm, light is confined because it is smaller than the emission wavelength, and if it is larger than 2 ⁇ m, propagation of surface plasmon occurs, and it attenuates without re-emission.
  • a resin is preferable.
  • the resin include low density or high density polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, ethylene-norbornene copolymer, ethylene -Polyolefin resins such as domon copolymer, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; nylon- 6, Nylon-6,6, Metaxylenediamine-Adipic acid condensation polymer; Amide resin such as polymethylmethacrylamide; Acrylic resin such as polymethylmethacrylate; Polystyrene, Styrene-acrylonitrile copolymer Styrene-acrylonitrile
  • fine particles may be added to adjust the refractive index and have a light scattering effect, and particles composed of inorganic fine particles or organic fine particles can be used.
  • the barrier layer 13 is a layer having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element 10, and a surface on the side opposite to the surface on the light transmissive substrate 11 side of the structural layer 12 as necessary. And at least one of them.
  • FIG. 1 illustrates the case where the barrier layer 13 is provided only on the surface of the structural layer 12 opposite to the surface on the light transmissive substrate 11 side.
  • the barrier layer 13 is not essential, but is preferably provided. By providing the barrier layer 13, the adhesion between the structural layer 12 and the first electrode layer 14 is improved.
  • the barrier layer 13 is present between the structural layer 12 and the first electrode layer 14, so that the first electrode layer 14 is not affected by the outgas from the structural layer 12 when the first electrode layer 14 is formed. This is because the film quality of the first electrode layer 14 is improved. By improving the film quality of the first electrode layer 14, initial defects (for example, dark spots) of the organic EL element 10 can be reduced. For this reason, by providing the barrier layer 13, the temporal stability of the organic EL element 10 can be improved.
  • the barrier layer 13 for example, silicon oxide, silicon dioxide, silicon nitride or the like is used.
  • the method for forming the barrier layer 13 is not particularly limited.
  • a polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but it is preferable that a film can be continuously formed by a formation method combined with a transparent electrode to be laminated next.
  • the thickness of the barrier layer 13 is, for example, 2 nm or more and 50 nm or less, preferably 2 nm or more and 20 nm or less. By providing the barrier layer 13, the effect of preventing intrusion of moisture and the like can be obtained.
  • the barrier layer 13 is preferably a relatively thick film. Optically, when the refractive index of the barrier layer 13 is lower than the refractive index of the structural layer 12, a thin film is preferable in order to suppress reduction by total reflection light. However, if it is thinner than 2 nm, it cannot be formed uniformly on the surface of the structural layer 12, which is not preferable.
  • first electrode layer 14 and the second electrode layer 16 will be described.
  • description will be made assuming that the first electrode layer 14 is an anode and the second electrode layer 16 is a cathode. However, actually, it is not limited to these examples.
  • First electrode layer anode
  • a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof is mentioned suitably, for example.
  • conductive oxide such as antimony or fluorine doped (added) tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • Metal such as conductive metal oxide, gold, silver, chromium and nickel, and a mixture or laminate of these metals and conductive metal oxide, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO.
  • a conductive metal oxide is preferable as the material of the anode, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like.
  • the anode may be, for example, (1) a wet method such as a printing method or a coating method, (2) a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or (3) a chemical method such as CVD or plasma CVD method. It can be formed on the substrate in accordance with a method appropriately selected from known methods such as a method in consideration of suitability with the material constituting the anode. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.
  • the patterning for forming the anode may be performed by chemical etching using photolithography or the like, or may be performed by physical etching using a laser or the like. Further, it may be performed by vacuum deposition, sputtering or the like with overlapping masks, or by a lift-off method or a printing method.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually in the range of 10 nm to 1000 nm, preferably in the range of 10 nm to 200 nm.
  • cathode As a material of the cathode which is the second electrode layer 16, for example, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy electroconductive compound, and a mixture thereof are preferably exemplified.
  • cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, Indium, lithium / aluminum mixtures, rare earth metals and the like can be mentioned.
  • a cathode material a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / silver Preference is given to mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like.
  • the cathode can be produced by forming a thin film made of a cathode material by a known method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the functional layer 15 is a layer including a light emitting layer, and is a layer provided between the first electrode layer 14 and the second electrode layer 16.
  • the first electrode layer 14, the functional layer 15, and the second electrode layer 16 can have various laminated structures.
  • the laminated structure of the 1st electrode layer 14, the functional layer 15, and the 2nd electrode layer 16 is demonstrated concretely.
  • the following layer configurations a) to p) are shown.
  • the first electrode layer 14 is an anode
  • the second electrode layer 16 is a cathode. That is, all layers between the anode and the cathode are the functional layer 15.
  • the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other.
  • the configuration of the functional layer 15 and the laminated structure of the first electrode layer 14, the functional layer 15, and the second electrode layer 16 are not limited to the following layer configurations a) to p).
  • Anode / light emitting layer / cathode b) Anode / hole injection layer / light emitting layer / cathode c) Anode / hole injection layer / light emitting layer / electron injection layer / cathode d) Anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) Anode / hole injection layer / emission layer / electron transport layer / electron injection layer / cathode f) Anode / hole transport layer / emission layer / cathode g) Anode / hole transport layer / emission layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode j) anode / hole Injection layer / hole transport layer
  • the light emitting layer is a layer that emits light by recombination of electrons and holes (holes) moving from the electrode, injection layer, or transport layer, and the light emitting portion may be in the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layers is not particularly limited, but is preferably 2 nm or more and 5 ⁇ m or less, more preferably 2 nm or more and 200 nm or less, and particularly preferably 10 nm or more and 20 nm or less. This is because the uniformity of the film and the application of an unnecessary high voltage during light emission are prevented, and the stability of the emission color with respect to the drive current is improved.
  • the light emitting layer is at least one of a blue light emitting layer, a green light emitting layer, and a red light emitting layer.
  • the blue light emitting layer has a light emission maximum wavelength in the range of 430 nm to 480 nm
  • the green light emitting layer has a light emission maximum wavelength in the range of 510 nm to 550 nm
  • the red light emitting layer has a light emission maximum wavelength in the range of 600 nm to 640 nm. It is preferable that it is a monochromatic light emitting layer.
  • the light emitting layer may be a layer formed by laminating these light emitting layers of at least three colors (blue light emitting layer, green light emitting layer, red light emitting layer) to form a white light emitting layer. Further, when a plurality of light emitting layers are stacked, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the light emitting layer of the organic EL element 10 according to this embodiment is preferably a white light emitting layer. That is, this embodiment is particularly effective when the light emitting layer of the organic EL element 10 is a white light emitting layer. Moreover, it is preferable that the illuminating device, planar light source, and display apparatus which concern on this embodiment contain a white light emitting layer. Therefore, it is preferable that the lighting device, the planar light source, and the display device according to the present embodiment have at least a part of the organic EL element 10 whose light emitting layer is a white light emitting layer.
  • the light emitting layer contains a light emitting host compound and a light emitting dopant compound such as a phosphorescent dopant or a fluorescent dopant.
  • Examples of the luminescent host compound include those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative or diaza. And carbazole derivatives.
  • fluorescent dopant compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples thereof include stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the injection layer is a layer provided between the electrode and the organic layer as necessary for lowering the driving voltage and improving the light emission luminance.
  • the injection layer includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • the hole injection layer is provided between the anode and the light emitting layer (for example, the above-described layer configurations b), c), d), e)), or the anode and the hole transport layer. (For example, between the layer configurations j), k), l), and m)) described above.
  • the electron injection layer is provided between the cathode and the light emitting layer (for example, layer configurations (c), g), k), n)), or between the cathode and the electron transport layer (for example, a layer). Provided in configurations e), i), m), and p)).
  • a phthalocyanine buffer layer typified by copper phthalocyanine
  • an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, or a conductive polymer such as polyaniline (emeraldine) or polythiophene
  • the electron injection layer include a metal buffer layer typified by strontium and aluminum, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide.
  • An oxide buffer layer represented by The hole injection layer and the electron injection layer are desirably very thin films, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although depending on the material.
  • the blocking layer is a layer provided as necessary in addition to the basic constituent layer of the organic compound thin film.
  • the blocking layer includes a hole blocking layer and an electron blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the film thicknesses of the hole blocking layer and the electron transport layer are preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 30 nm or less.
  • the hole blocking layer preferably contains the carbazole derivative, carboline derivative or diazacarbazole derivative mentioned as the host compound.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the transport layer is a layer provided as necessary for transporting holes or electrons.
  • the transport layer includes a hole transport layer and an electron transport layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer described above are included in the hole transport layer in a broad sense.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives.
  • the hole transport layer contains one or more of the above-described hole transport materials.
  • the hole transport layer is formed by thinning the above-described hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • limiting in particular about the film thickness of a positive hole transport layer Usually, 5 nm or more and about 5 micrometers or less, Preferably they are 5 nm or more and 200 nm or less.
  • the electron transport layer is made of an electron transport material having a function of transporting electrons.
  • the electron injection layer and hole blocking layer described above are included in the electron transport layer in a broad sense.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport layer is provided adjacent to the cathode side of the light emitting layer.
  • Any electron transport material (also serving as a hole blocking material) used for the electron transport layer may have a function of transmitting electrons injected from the cathode to the light emitting layer. For example, any one of conventionally known compounds can be selected and used.
  • the electron transport material examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a metal complex of an 8-quinolinol derivative such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo- 8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as an electron transporting material.
  • metal-free or metal phthalocyanine, or a material whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used.
  • the distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the electron transporting material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the electron transport layer contains one or more materials among the electron transport materials described above. Further, an electron transport layer having a high n property doped with impurities can also be used.
  • the electron transport layer is formed by thinning the above-described electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the display area of the organic EL element 10 is covered and sealed with a sealing member.
  • the sealing means include a method of bonding the sealing member, the electrode, and the support substrate with an adhesive.
  • the sealing member should just be arrange
  • the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • Examples of the adhesive used for sealing include photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing types such as 2-cyanoacrylates. Mention may be made of adhesives. Moreover, heat
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase.
  • the gap between the sealing member and the display area of the organic EL element 10 can be evacuated.
  • a hygroscopic compound can also be enclosed inside the sealing member. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, etc.
  • sulfates, metal halides, and perchloric acids are preferably anhydrous salts.
  • the organic EL element 10 can be used as a display device, a display, or various light sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include a light source of a sensor.
  • An example of the light source is a planar light source.
  • the use of the organic EL element 10 is not limited to this, it can be effectively used especially as a backlight of a liquid crystal display device and a light source for illumination.
  • the configuration example of the illumination device includes a light transmissive substrate 11, a structural layer 12, a first electrode (anode) 14, a functional layer 15, and a second electrode (cathode) 16 from the light emission side.
  • a hygroscopic member 1202, and a sealing member 1204. 3 is an external connection terminal.
  • the configuration from the light transmissive substrate 11 to the second electrode (cathode) 16 corresponds to the organic EL element 10 described above.
  • the planar light source of this embodiment can also be set as the structure similar to an illuminating device.
  • manufacture of the illuminating device and planar light source of this embodiment can be implemented by adding a well-known process to the manufacturing method of the above-mentioned organic EL element.
  • the anode part of the lighting device or the planar light source may include a driving part such as a silicon driving substrate.
  • the display device has a light transmissive substrate 11, a color filter layer (for example, RGB color filter layer) 102, a structural layer 12, a first electrode (anode) 14 and a function from the display side of the device.
  • a layer 15 and a second electrode (cathode) 16 are included.
  • portions other than the color filter layer 102 correspond to the above-described organic EL element.
  • the display device according to this embodiment can be manufactured by adding a known process to the above-described method for manufacturing an organic EL element.
  • the color filter layer 102 can be formed using any conventionally known method such as a spin coating method or a vapor deposition method.
  • each uneven portion 23 in the uneven region of the structural layer 12 is selected to have a concave shape or a convex shape in each condition, and according to the height H, it becomes a circular peak or valley in plan view.
  • the width D (corresponding to the diameter of the circle) was formed.
  • the uneven portions 23 are randomly arranged, and the average distance L between the uneven portions 23 is determined by measuring images of the uneven portions 23 at 10 positions of the uneven regions using a scanning probe microscope. The value which can be calculated by measuring the interval of any adjacent convex shape or concave shape of 10 or more points and obtaining the average was adopted.
  • Example 1 (Production of light extraction substrate) First, a light extraction substrate in which the light transmissive substrate 11, the structure layer 12, and the light transmissive first electrode layer 14 are laminated in this order is manufactured. As the light-transmitting substrate 11, a washed alkali-free glass plate having a thickness of 0.7 mm and a size of 30 mm ⁇ 40 mm was used.
  • a UV (ultraviolet) curable acrylic resin is formed as a first layer with a film thickness of 2 ⁇ m by a spin coater and heated on a hot plate at 90 ° C. for 2 minutes to form a resin layer. Formed. Subsequently, after laminating the surface of the resin layer coated and formed on the light-transmitting substrate 11 so as to press a film plate having a planar region and a fine concavo-convex pattern region (concavo-convex region), it is 150 mJ / cm 2 with a UV lamp.
  • an ITO layer which is a transparent electrode, is formed on the surface of the structural layer 12 as a light transmissive first electrode layer 14 (anode) by a sputtering method so as to have a thickness of 150 nm, and then patterned. went.
  • a hole transport layer On the surface of the first electrode layer 14, a hole transport layer, a light-emitting layer, and an electron transport layer were laminated as an organic layer of the functional layer 15 by an evaporation method.
  • the hole transport layer was formed with a thickness of 35 nm using 4,4 ′, 4 ′′ -tris (9-carbazole) triphenylamine.
  • the light-emitting layer includes a layer having a thickness of 15 nm using 4,4 ′, 4 ′′ -tris (9-carbazole) triphenylamine doped with a tris (2-phenylpyridinato) iridium (III) complex, and tris ( It was formed with a 15 nm thick layer using 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene doped with 2-phenylpyridinato) iridium (III) complex.
  • the electron transport layer was formed with a thickness of 65 nm using 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene. Furthermore, a lithium fluoride layer (thickness: 1.5 nm) was deposited as an electron injection layer on the surface of the organic layer. Thereby, the functional layer 15 including the light emitting layer was formed. Finally, a metal electrode (aluminum, thickness: 50 nm) was formed on the surface of the functional layer 15 by a vapor deposition method.
  • a prism lens sheet in which a lens surface (lens layer 32) having a hemispherical microlens having a diameter of 5 ⁇ m and a cross prism structure having a vertical angle of 89 degrees with a pitch of 5 ⁇ m is formed on the surface of the PET film (light-transmitting sheet 31).
  • a prism lens sheet was bonded to the light-transmitting substrate 11 through an adhesive to form a light extraction lens layer 30.
  • the prism lens sheet is bonded to the rear surface of the surface of the light transmissive substrate 11 where the structural layer 12 is formed so that the rear surface of the lens surface faces the light transmissive substrate 11, and the lens surface becomes the front surface. I did it. Thereby, as shown in FIG.
  • the structural layer 12, the first electrode layer 14, the functional layer 15, and the second electrode layer 16 are laminated in this order on the surface (one surface) of the light transmissive substrate 11.
  • the organic EL element 10 in which the light extraction lens layer 30 was formed on the other surface was obtained.
  • Example 2 On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H100 nm and a width of D100 nm and having an average distance L of 400 nm is represented by a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 20% / 80%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • Example 3 On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H100 nm and a width of D100 nm and having an average distance L of 400 nm is represented by a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 91% / 9%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • a concave / convex area having a pattern of concave circular peaks with a height of H50 nm and a width of D250 nm and an average distance L between the peaks of 300 nm is a ratio of the total area of the concave / convex areas / plane.
  • the total area ratio was 50% / 50%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • Example 5 On the surface of the structural layer 12, a concave / convex region having a pattern of concave circular ridges having a height of H100 nm and a width of D250 nm and having an average distance L between the ridges of 400 nm, a ratio of the total area of the concavo-convex regions to the total area / plane The total area ratio was 50% / 50%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • FIG. 1 The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • a concave / convex area having a height of H250 nm and a width of D400 nm and having a pattern in which the average distance L between the peaks is 600 nm is a ratio of the total area of the concave / convex area / plane.
  • the total area ratio was 50% / 50%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • Example 7 On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H500 nm and a width of D500 nm and having an average distance L between the peaks of 1000 nm is defined as a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 50% / 50%.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • the shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • a UV curable acrylic resin was formed as a first layer with a film thickness of 2 ⁇ m by a spin coater, and heated on a hot plate at 90 ° C. for 2 minutes to form a resin layer. Thereafter, the light-transmitting substrate 11 on which the resin layer was formed was placed in an N 2 purged box and irradiated with a UV lamp at 150 mJ / cm 2 to form a structural layer 12 with high smoothness. Except this, it carried out similarly to Example 1, and created the organic EL element 10.
  • FIG. 1 a UV curable acrylic resin
  • a current density of 20 mA / cm 2 from a direct current (DC) power source was applied to each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5.
  • the constant radiant current was applied, the total emitted radiant flux was measured with an integrating sphere, and the light extraction efficiency was determined based on the measurement result.
  • the current is increased by increasing the voltage when the above-described constant current is applied to each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5.
  • the case where the value increased was evaluated as “no short” (good), and the case where the current value did not increase even when the voltage was raised was evaluated as “short” (defective).
  • the light extraction efficiency ratio indicates the light extraction efficiency of the organic EL element 10 including the light transmissive substrate 11 in which the first structural layer 12 of Comparative Example 1 has no uneven region and the planar region is 100%.
  • the standard was 1.00.
  • the light extraction efficiencies of Examples 1 to 8 and Comparative Examples 2 to 5 are expressed as relative values to the light extraction efficiency of the organic EL element 10 of Comparative Example 1.
  • the light extraction effect is 1.50 or more.
  • the organic EL elements 10 of Examples 1 to 8 it was confirmed that the light extraction efficiency showed a high value from 1.52 to 1.78. Thus, it was found that the light extraction efficiency was improved in the organic EL elements 10 of Examples 1 to 4 as compared with the organic EL element 10 of Comparative Example 1.
  • the concavo-convex shape formed on the surface of the second electrode layer 16 on the functional layer 15 side by forming the convex portion or the concave portion in the structural layer 12 has a good balance between suppression of plasmon absorption and reflection of light emission.
  • the extraction efficiency is estimated to have improved.
  • the organic EL elements 10 of Examples 1 to 8 were good without any short circuit. This is because the height H with respect to the unevenness width D is not too high, the film quality of the first electrode layer 14 made of the ITO film is uniformly formed, and the organic layer including the light emitting layer is further uniformly formed thereon. It is presumed that a defect in which the second electrode layer 16 and the first electrode layer 14 thereon are partially in contact did not occur.
  • Comparative Example 2 the light extraction efficiency was the same as in Comparative Example 1, and no effect was obtained. Moreover, no short circuit occurred. This is presumed that the effect of improving the light extraction efficiency could not be obtained because the surface layer of the structural layer 12 had few uneven regions and many planar regions. In Comparative Example 3, the light extraction efficiency showed a slightly high value of 1.40. Moreover, no short circuit occurred. This is because the concavo-convex region of the structural layer 12 has a certain effect on the suppression of plasmon absorption and the reflection of light emission. However, since the planar region is small, reflection from the emitted light is small, and as a result, overall It is estimated that the improvement in efficiency is not sufficient.
  • Comparative Example 4 the light extraction efficiency was the same as in Comparative Example 1, and no effect was obtained. Moreover, no short circuit occurred. This is presumed that the effect of improving the light extraction efficiency could not be obtained because the surface layer of the structural layer 12 had few uneven regions and many planar regions. In Comparative Example 5, the light extraction efficiency was lower than in Comparative Example 1, and no effect was obtained. In addition, a current leak occurred from the start of the measurement, and short-circuited after the measurement. This is because the height H of the concavo-convex portion 23 of the concavo-convex region on the surface of the structural layer 12 is very large with respect to the width D, and thus the shape becomes a standing shape.
  • the formation of the deposited film was not progressed, and it was thinner than the peripheral functional layer 15 or was missing. Since the first electrode layer 14 is exposed to the second electrode layer 16 side and a minute bipolar electrode energization region is generated, an excessive current flows, and a short circuit occurs later to cause a light emission failure, and the light emission region is uniform. It is presumed that no carriers (charge carriers) such as electrons or holes flow in the light, resulting in a decrease in luminous efficiency.
  • the organic EL element 10 includes the structural layer 12, the light-transmissive first electrode layer 14, the functional layer 15 including the light-emitting layer, the first layer on the light-transmissive substrate 11. Two electrode layers 16 are laminated in this order. Further, the structure layer 12 is provided with an uneven region and a planar region. Thereby, it turned out that the light extraction efficiency of the organic EL element 10 can be improved, light emission unevenness can be reduced, and light emission quality can be improved.
  • the organic EL device of the present invention can suppress uneven light emission and obtain good stability over time while maintaining good light extraction efficiency. For this reason, the organic EL element of the present invention is suitable for various uses such as a display, a planar light source, and a lighting device that require uniform light emission, and can contribute to energy saving.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are: an organic EL element which has both high light extraction efficiency and high emission uniformity; a lighting device; a surface light source; and a display device. This organic EL element (10) is obtained by sequentially laminating, in the following order: a light-transmitting substrate (11); a structural layer (12) that has at least two micro-regions including a recessed and projected region, which is composed of a plurality of recessed and projected portions (23) formed on a surface that is on the reverse side of the substrate (11)-side surface, and a flat region which is composed of a flat portion; a light-transmitting first electrode layer (14); a functional layer (15) that contains a light emitting layer; and a second electrode layer (16). In this connection, the organic EL element (10) may comprise a barrier layer (13) that is provided between the structural layer (12) and the first electrode layer. The organic EL element (10) may further comprise a light extraction lens layer (30) that is provided on a surface of the substrate (11), said surface being on the reverse side of the surface on which the structural layer (12) is formed.

Description

有機EL素子、並びに照明装置、面状光源及び表示装置Organic EL element, lighting device, planar light source, and display device
 本発明は、有機EL素子、並びに照明装置、面状光源及び表示装置に関する。 The present invention relates to an organic EL element, an illumination device, a planar light source, and a display device.
 近年、照明装置や表示装置等に用いられる次世代発光デバイスとして、有機材料の電界発光現象である有機エレクトロルミネッセンス(EL:Electro Luminescence)現象を利用した発光素子(有機EL素子)が大きな注目を集めている。有機EL素子は、面発光が可能、低温動作が可能、低コスト化が可能、軽量化が可能、フレキシブルな素子作製が可能、等の利点がある。
 有機EL素子は、一般的に、有機発光材料を含有する発光層を含む有機EL層と、有機EL層の両面にそれぞれ設けられた陽極及び陰極を備えている。有機EL層としては、発光層の他、必要に応じて電子輸送層、ホール輸送層等が設けられる。有機EL素子は、ガラス基板等の透明な基板上に順次形成された、ITO(Indium Tin Oxide:酸化インジウム・スズ)等の透明導電材料からなる陽極、発光層を含む有機EL層、金属からなる陰極を備えている。有機EL素子には、基板側から光が取り出されるボトムエミッション型の素子や、基板上に陰極、有機EL層、陽極が順次形成され、基板側とは反対側から光が取り出されるトップエミッション型の素子等がある。
In recent years, a light-emitting element (organic EL element) utilizing an organic electroluminescence (EL) phenomenon, which is an electroluminescence phenomenon of an organic material, has attracted a great deal of attention as a next-generation light-emitting device used in lighting devices, display devices, and the like. ing. The organic EL element has advantages such as surface light emission, low-temperature operation, cost reduction, weight reduction, and flexible element fabrication.
An organic EL element generally includes an organic EL layer including a light emitting layer containing an organic light emitting material, and an anode and a cathode provided on both surfaces of the organic EL layer, respectively. As the organic EL layer, an electron transport layer, a hole transport layer, and the like are provided as necessary in addition to the light emitting layer. The organic EL element is composed of an anode made of a transparent conductive material such as ITO (Indium Tin Oxide), which is sequentially formed on a transparent substrate such as a glass substrate, an organic EL layer including a light emitting layer, and a metal. A cathode is provided. The organic EL element is a bottom emission type element in which light is extracted from the substrate side, or a top emission type element in which a cathode, an organic EL layer, and an anode are sequentially formed on the substrate, and light is extracted from the side opposite to the substrate side. There are elements.
 有機EL素子は、上述の利点の他、視野角依存性が少ない、消費電力が少ない、極めて薄いものができる等の利点がある一方、光取出し効率が低いという問題がある。光取出し効率は、発光層から出射した光エネルギーに対する、光の取出し面(例えばボトムエミッション型の場合は基板面)から大気中に放出される光エネルギーの割合である。例えば発光層からの光は全方向に出射するため、その多くが屈折率の違う複数の層の界面で全反射を繰り返す導波モードとなり、層間を導波するうちに熱に変わったり側面から放出されたりして光取出し効率が低下する。 In addition to the above-described advantages, the organic EL element has advantages such as low viewing angle dependency, low power consumption, and extremely thin devices, but also has a problem of low light extraction efficiency. The light extraction efficiency is the ratio of the light energy emitted from the light extraction surface (for example, the substrate surface in the case of the bottom emission type) to the atmosphere with respect to the light energy emitted from the light emitting layer. For example, light emitted from the light-emitting layer is emitted in all directions, so that most of the light enters a waveguide mode in which total reflection is repeated at the interface between multiple layers with different refractive indexes. As a result, the light extraction efficiency decreases.
 また、有機EL素子では、発光層と金属である陰極との間の距離が近いことから、発光層からの近接場光の一部は陰極の表面で表面プラズモンに変換されて失われることで、光取出し効率が低下する。光取出し効率は、有機EL素子を備えたディスプレイ、照明等の明るさに影響することから、その改善のために種々の方法が検討されている。
 光取出し効率を改善する方法の一つとして、集光性を示す集光層が設けられたガラス基板を用いた有機EL素子がある。例えば、特許文献1には、マイクロレンズ等の集光性構造物と、集光性構造物を覆う透明性樹脂とから成る集光層が開示されている。特許文献1では、透明性樹脂として、集光性構造物よりも屈折率が高い材料が用いられている。特許文献1では、このような集光層をガラス基板上に設けることで、ガラス基板の表面で生じる全反射を抑制し、光取出し効率の向上を図っている。
Further, in the organic EL element, since the distance between the light emitting layer and the cathode that is a metal is short, a part of the near-field light from the light emitting layer is converted to surface plasmon on the surface of the cathode and lost, Light extraction efficiency decreases. Since the light extraction efficiency affects the brightness of a display provided with an organic EL element, illumination, and the like, various methods have been studied for the improvement.
As one method for improving the light extraction efficiency, there is an organic EL element using a glass substrate provided with a light condensing layer exhibiting light condensing properties. For example, Patent Document 1 discloses a light collecting layer including a light collecting structure such as a microlens and a transparent resin that covers the light collecting structure. In Patent Document 1, a material having a higher refractive index than the light condensing structure is used as the transparent resin. In Patent Document 1, by providing such a condensing layer on a glass substrate, total reflection occurring on the surface of the glass substrate is suppressed, and the light extraction efficiency is improved.
 また、光取出し効率を改善する方法の一つとして、表面プラズモン共鳴を利用する方法が提案されている。例えば、特許文献2には、金属層(陰極)の表面に1次元又は2次元の周期的微細構造を設ける方法が開示されている。これらの方法において、周期的微細構造は、回折格子として機能する。これにより、陰極表面で表面プラズモンとして失われていたエネルギーが光として取り出され、光取出し効率が向上する。 Also, as one method for improving the light extraction efficiency, a method using surface plasmon resonance has been proposed. For example, Patent Document 2 discloses a method of providing a one-dimensional or two-dimensional periodic fine structure on the surface of a metal layer (cathode). In these methods, the periodic microstructure functions as a diffraction grating. Thereby, the energy lost as surface plasmons on the cathode surface is extracted as light, and the light extraction efficiency is improved.
特開2003-86353号公報JP 2003-86353 A 特許第4762542号公報Japanese Patent No. 4762542
 しかしながら、上述したような集光層をガラス基板に設けたとしても、集光層とガラス基板との界面で全反射が生じるので、有機EL素子からの光取出し効率が十分に高いとは必ずしもいえない。また、上述したような周期的微細構造を金属層に設ける場合、実際に有機EL素子を製造する上では凹凸構造に起因するリーク電極の発生、積層する各層の不均一による発光むら及び経時安定性の低下の問題もあった。このため、理論上効率の良い周期的な構造を設けたとしても、有機EL素子を安定的に製造することが可能とは限らなかった。一方で、有機EL照明の省電力化やフレキシブル化に向けて、光取出し効率の更に高い有機EL素子が求められている。 However, even if the light condensing layer as described above is provided on the glass substrate, total reflection occurs at the interface between the light condensing layer and the glass substrate, so that the light extraction efficiency from the organic EL element is not necessarily high enough. Absent. In addition, when a periodic fine structure as described above is provided in a metal layer, when actually manufacturing an organic EL element, a leak electrode is generated due to a concavo-convex structure, light emission unevenness due to unevenness of each layer to be laminated, and stability over time There was also a problem of lowering. For this reason, even if a periodic structure that is theoretically efficient is provided, it is not always possible to stably manufacture the organic EL element. On the other hand, organic EL elements with higher light extraction efficiency are required for power saving and flexibility of organic EL lighting.
 本発明の目的は、高い光取出し効率と高い発光均一性の両方を有する有機EL素子、並びに照明装置、面状光源及び表示装置を提供することにある。 An object of the present invention is to provide an organic EL element having both high light extraction efficiency and high light emission uniformity, as well as an illumination device, a planar light source, and a display device.
 上記目的を達成するために、本発明の一態様に係る有機EL素子は、光透過性を有する基板と、光透過性を有し、基板とは反対側の面に形成された複数の凹凸部からなる凹凸領域と平面部からなる平面領域との少なくとも2種類の領域を有する構造層と、光透過性を有する第1電極層と、発光層を含む機能層と、第2電極層と、がこの順に積層されている。
 また、本発明の一態様に係る照明装置、面状光源、及び表示装置は、上述した有機EL素子を少なくとも一部に有する。
In order to achieve the above object, an organic EL element according to one embodiment of the present invention includes a light-transmitting substrate and a plurality of uneven portions that are light-transmitting and are formed on a surface opposite to the substrate. A structure layer having at least two types of regions of a concavo-convex region made of and a flat region made of a flat portion, a first electrode layer having light transmittance, a functional layer including a light emitting layer, and a second electrode layer, They are stacked in this order.
In addition, a lighting device, a planar light source, and a display device according to one embodiment of the present invention include at least part of the above-described organic EL element.
 本発明の一態様によれば、高い光取出し効率と高い発光均一性の両方を有する有機EL素子、並びに照明装置、面状光源及び表示装置を実現することができる。 According to one embodiment of the present invention, an organic EL element having both high light extraction efficiency and high light emission uniformity, as well as a lighting device, a planar light source, and a display device can be realized.
本発明の一実施形態に係る有機EL素子を概略的に示す断面図である。It is sectional drawing which shows schematically the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光取出し基板を概略的に示す平面図である。It is a top view which shows roughly the light extraction board | substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る照明装置を概略的に示す断面図である。It is sectional drawing which shows roughly the illuminating device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る表示装置を概略的に示す断面図である。It is sectional drawing which shows schematically the display apparatus which concerns on one Embodiment of this invention.
 <実施形態>
 以下、本発明の実施形態について図面を参照して説明する。
 なお、本発明は、以下に記載する実施形態に限定されるものではなく、当業者の知識に基づいて設計等の変更を加えることも可能であり、そのような変更が加えられた実施形態も本発明の範囲に含まれるものである。
 図1に示すように、本実施形態に係る有機EL素子10は、光透過性基板11の一方の面側に、構造層12、バリア層13、第1電極層14、機能層15及び第2電極層16がこの順に積層されて構成されている。
<Embodiment>
Embodiments of the present invention will be described below with reference to the drawings.
It should be noted that the present invention is not limited to the embodiments described below, and it is possible to make changes in design and the like based on the knowledge of those skilled in the art, and embodiments in which such changes are added are also possible. It is included in the scope of the present invention.
As shown in FIG. 1, the organic EL element 10 according to this embodiment includes a structural layer 12, a barrier layer 13, a first electrode layer 14, a functional layer 15, and a second layer on one surface side of a light transmissive substrate 11. The electrode layer 16 is laminated in this order.
 光透過性基板11は、有機EL素子10の基板であり、光透過性を有している。構造層12は、光透過性を有し、積層方向においてバリア層13側の面(光透過性基板11側を向く面とは反対側の面を指す。以下同様である。)に形成された凹凸領域と平面領域とを有している。バリア層13は、光透過性を有し、水分等の浸入を妨げる。第1電極層14は、光透過性を有し、陽極となる。機能層15は、発光層を含む。第2電極層16は、第1電極層14の対極となる。なお、ここでいう光透過性とは、透明である性質(透光性)を意味する。例えば、本明細書における光透過性とは、少なくとも可視光領域の波長において光透過性を有することを指す。
 また、図1に示すように、光透過性基板11、構造層12、バリア層13及び第1電極層14は、光取出し基板20を構成する。
The light transmissive substrate 11 is a substrate of the organic EL element 10 and has light transmittance. The structural layer 12 is light transmissive and formed on the surface on the barrier layer 13 side in the stacking direction (refers to the surface opposite to the surface facing the light transmissive substrate 11 side, and so on). It has an uneven area and a planar area. The barrier layer 13 is light transmissive and prevents moisture and the like from entering. The first electrode layer 14 is light transmissive and serves as an anode. The functional layer 15 includes a light emitting layer. The second electrode layer 16 is a counter electrode of the first electrode layer 14. In addition, the light transmittance here means the property (translucency) which is transparent. For example, the light transmission in this specification means having light transmission at least in the wavelength of visible light region.
Further, as shown in FIG. 1, the light transmissive substrate 11, the structural layer 12, the barrier layer 13, and the first electrode layer 14 constitute a light extraction substrate 20.
 図2に示すように、本実施形態に係る光取出し基板20は、構造層12に形成された複数の凹凸部23による凹凸領域21と平面領域22とを有している。すなわち凹凸領域21には、複数の凹凸部23が形成されている。平面領域22は、平面部(平坦な面)からなる。構造層12に凹凸部23が形成されることで、その上の層であるバリア層13及び第1電極層14にも、図1に示すように、凹凸部23に対応する凹凸が形成されている。
 また、図1に示すように、本実施形態に係る有機EL素子10は、光透過性基板11の構造層12の形成面とは反対側の面(光透過性基板11の裏面側)に設けられた光取出しレンズ層30を備える。
 以下、有機EL素子10を構成する各部について詳細に説明する。
As shown in FIG. 2, the light extraction substrate 20 according to the present embodiment has a concavo-convex region 21 and a planar region 22 formed by a plurality of concavo-convex portions 23 formed in the structural layer 12. That is, a plurality of uneven portions 23 are formed in the uneven region 21. The planar area 22 is composed of a planar portion (flat surface). By forming the concavo-convex portion 23 in the structural layer 12, as shown in FIG. 1, the concavo-convex portion corresponding to the concavo-convex portion 23 is also formed in the barrier layer 13 and the first electrode layer 14 which are the upper layers. Yes.
As shown in FIG. 1, the organic EL element 10 according to this embodiment is provided on the surface opposite to the surface on which the structural layer 12 of the light transmissive substrate 11 is formed (the back surface side of the light transmissive substrate 11). The light extraction lens layer 30 is provided.
Hereinafter, each part which comprises the organic EL element 10 is demonstrated in detail.
 〔光透過性基板〕
 光透過性基板11は、可視光領域において透過する板状部材であれば良く、ガラス、プラスチック等の種類には特に限定はない。光透過性基板11として、好ましくはガラス板、ポリマー板、樹脂フィルム等を挙げることができる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
(Light transmissive substrate)
The light transmissive substrate 11 may be a plate-like member that transmits in the visible light region, and there is no particular limitation on the type of glass, plastic, or the like. Preferred examples of the light transmissive substrate 11 include a glass plate, a polymer plate, and a resin film.
Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
 ポリマー板としては、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン(登録商標)、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、シクロオレフィン系樹脂等を挙げられる。
Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Li, polyether ketone imide, polyamide, fluorocarbon resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていても良く、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1.0×10-3cm/(m・24h・atm)以下、水蒸気透過度が1.0×10-3g/(m・24h)以下の高バリア性フィルムであることが好ましく、上記の水蒸気透過度が1.0×10-5g/(m・24h)以下であることが更に好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. It is a high barrier film having a permeability of 1.0 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 1.0 × 10 −3 g / (m 2 · 24 h) or less. The water vapor permeability is more preferably 1.0 × 10 −5 g / (m 2 · 24 h) or less.
 バリア性フィルムを形成する材料としては、有機EL素子10の劣化をもたらす水分や酸素等の浸入を抑制する機能を有する材料であれば良く、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更にバリア性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる有機層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア性フィルムの形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD(Chemical Vapor Deposition)法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
As a material for forming the barrier film, any material having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element 10 may be used. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD (Chemical Vapor Deposition) method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but the atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is used. Those are particularly preferred.
 〔光取出しレンズ層〕
 光透過性基板11の構造層12の形成面とは反対側の面(光透過性基板11の裏面側)には、光散乱あるいは集光層として光取出しレンズ層30が適宜設けられている。光取出しレンズ層30は、光透過性を有する光透過性シート31と、光透過性シート31の表面に設けられたレンズ層32とを備えている。レンズ層32は、光透過性シート31の表面をマイクロレンズアレイ状の構造に形成したものであっても良く、また、いわゆる集光シートを用いても良い。これにより、光取出しレンズ層30によって、特定方向、例えば、素子発光面に対し正面方向に集光して特定方向上の輝度を高めることができる。
[Light extraction lens layer]
A light extraction lens layer 30 is appropriately provided as a light scattering or condensing layer on the surface of the light transmissive substrate 11 opposite to the surface on which the structural layer 12 is formed (the back surface side of the light transmissive substrate 11). The light extraction lens layer 30 includes a light transmissive sheet 31 having light transmissive properties, and a lens layer 32 provided on the surface of the light transmissive sheet 31. The lens layer 32 may be formed by forming the surface of the light transmissive sheet 31 in a microlens array-like structure, or may use a so-called condensing sheet. Thereby, the light extraction lens layer 30 can collect light in a specific direction, for example, in the front direction with respect to the light emitting surface of the element to increase the luminance in the specific direction.
 光取出しレンズ層30を構成する樹脂材料としては、例えば、低密度又は高密度のポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、エチレン-ノルボルネン共重合体、エチレン-ドモン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、アイオノマー樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン-6、ナイロン-6,6、メタキシレンジアミン-アジピン酸縮重合体;ポリメチルメタクリルイミド等のアミド系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体、ポリアクリロニトリル等のスチレン-アクリロニトリル系樹脂;トリ酢酸セルロース、ジ酢酸セルロース等の疎水化セルロース系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のハロゲン含有樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体、セルロース誘導体等の水素結合性樹脂;ポリカーボネート樹脂、ポリサルフォン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリメチレンオキシド樹脂、ポリアリレート樹脂、液晶樹脂等のエンジニアリングプラスチック系樹脂等が挙げられる。 Examples of the resin material constituting the light extraction lens layer 30 include low density or high density polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, and ethylene-octene copolymer. Polyolefin resins such as ethylene-norbornene copolymer, ethylene-domon copolymer, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; polyethylene terephthalate, polybutylene terephthalate, polyethylene Polyester resins such as phthalates; nylon-6, nylon-6,6, metaxylenediamine-adipic acid condensation polymers; amide resins such as polymethylmethacrylamide; acrylic resins such as polymethylmethacrylate; polystyrene Styrene-acrylonitrile resins such as styrene-acrylonitrile copolymer, styrene-acrylonitrile-butadiene copolymer, and polyacrylonitrile; Hydrophobized cellulose resins such as cellulose triacetate and cellulose diacetate; polyvinyl chloride, polyvinylidene chloride, polyfluoride Halogen-containing resins such as vinylidene fluoride and polytetrafluoroethylene; hydrogen-bonding resins such as polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and cellulose derivatives; polycarbonate resins, polysulfone resins, polyethersulfone resins, polyetheretherketone resins And engineering plastic resins such as polyphenylene oxide resin, polymethylene oxide resin, polyarylate resin, and liquid crystal resin.
 光取出しレンズ層30は、上述した樹脂材料に微粒子を添加して、光散乱効果を更に向上させて良い。光取出しレンズ層30に含まれる微粒子としては、無機微粒子又は有機微粒子を使用できる。
 例えば、微粒子としては、アクリル系粒子、スチレン粒子、スチレンアクリル粒子及びその架橋体、メラミン―ホルマリン縮合物の粒子、ポリウレタン系粒子、ポリエステル系粒子、シリコーン系粒子、フッ素系粒子、これらの共重合体、スメクタイト、カオリナイト、タルク等の粘土化合物粒子、シリカ、酸化チタン、アルミナ、シリカアルミナ、ジルコニア、酸化亜鉛、酸化バリウム、酸化ストロンチウム等の無機酸化物粒子、炭酸カルシウム、炭酸バリウム、塩化バリウム、硫酸バリウム、硝酸バリウム、水酸化バリウム、水酸化アルミニウム、炭酸ストロンチウム、塩化ストロンチウム、硫酸ストロンチウム、硝酸ストロンチウム、水酸化ストロンチウム、ガラス粒子等の無機微粒子等を挙げることができる。
The light extraction lens layer 30 may further improve the light scattering effect by adding fine particles to the resin material described above. As the fine particles contained in the light extraction lens layer 30, inorganic fine particles or organic fine particles can be used.
Examples of the fine particles include acrylic particles, styrene particles, styrene acrylic particles and cross-linked products thereof, melamine-formalin condensate particles, polyurethane particles, polyester particles, silicone particles, fluorine particles, and copolymers thereof. , Clay compound particles such as smectite, kaolinite, talc, silica, titanium oxide, alumina, silica alumina, zirconia, zinc oxide, barium oxide, inorganic oxide particles such as strontium oxide, calcium carbonate, barium carbonate, barium chloride, sulfuric acid Examples thereof include inorganic fine particles such as barium, barium nitrate, barium hydroxide, aluminum hydroxide, strontium carbonate, strontium chloride, strontium sulfate, strontium nitrate, strontium hydroxide, and glass particles.
 〔構造層〕
 構造層12は、光透過性を有し、光透過性基板11の光出射面(図1に示す光取出しレンズ層30の貼合面)とは反対側の面に設けられる。構造層12は、第1電極層14側の面に、複数の凹凸部23が形成された凹凸領域と平面部からなる平面領域とを有している。すなわち、構造層12は、構造層12の第1電極層14側の面の一部が少なくとも一つ以上の凹凸領域とされており、残りの部分が平面領域とされている。各凹凸部23は、平面部に対して凹形状か凸形状のいずれかとなるように形成されている。例えば、各凹凸部23は、平面部に対し山状(凸形状)あるいは谷状(凹形状)の形状として形成される。もっとも、凹凸部23の形状は、山状や谷状に限定されず、円柱状や円錐状は半球状などであっても良い。平面視形状も、円形に限定されない。また各凹凸部23の形状や寸法が同一である必要も無い。
(Structural layer)
The structural layer 12 is light transmissive and is provided on the surface opposite to the light emitting surface of the light transmissive substrate 11 (the bonding surface of the light extraction lens layer 30 shown in FIG. 1). The structure layer 12 has an uneven region in which a plurality of uneven portions 23 are formed and a planar region including a flat portion on the surface on the first electrode layer 14 side. That is, in the structural layer 12, a part of the surface of the structural layer 12 on the first electrode layer 14 side is at least one uneven region, and the remaining part is a planar region. Each concavo-convex portion 23 is formed so as to have either a concave shape or a convex shape with respect to the plane portion. For example, each concavo-convex portion 23 is formed as a mountain shape (convex shape) or a valley shape (concave shape) with respect to the plane portion. But the shape of the uneven | corrugated | grooved part 23 is not limited to a mountain shape or a trough shape, A cylindrical shape or a cone shape may be a hemisphere. The shape in plan view is not limited to a circle. Further, it is not necessary that the shapes and dimensions of the uneven portions 23 are the same.
 構造層12の第1電極層14側の面に凹凸領域と平面領域とが形成されることにより、構造層12の上に形成される第1電極層14の形状が構造層12表面の形状に追随する。また、これにより、第1電極層14上に機能層15及び第2電極層16を積層すると、第1電極層14の表面形状に追随して第2電極層16の機能層15側の面にも凹凸が反転した反転凹凸領域及び平面領域が形成される。第2電極層16の機能層15側の面に形成された反転凹凸領域により、プラズモン吸収を抑制することができる。また、第2電極層16に形成された平面領域によって出射光の一部を反射するため、光取出し効率が改善される。 By forming an uneven region and a planar region on the surface of the structural layer 12 on the first electrode layer 14 side, the shape of the first electrode layer 14 formed on the structural layer 12 becomes the shape of the surface of the structural layer 12. Follow. In addition, when the functional layer 15 and the second electrode layer 16 are laminated on the first electrode layer 14, the surface of the second electrode layer 16 on the functional layer 15 side follows the surface shape of the first electrode layer 14. Inverted uneven regions and planar regions in which the uneven portions are also inverted are formed. Plasmon absorption can be suppressed by the inversion uneven region formed on the surface of the second electrode layer 16 on the functional layer 15 side. Further, since a part of the emitted light is reflected by the planar region formed on the second electrode layer 16, the light extraction efficiency is improved.
 構造層12の平面領域の面積に対する凹凸領域の面積比(凹凸領域の面積/平面領域の面積)は、1/4から10/1の範囲であることが好ましい。面積比が1/4より小さい場合は、凹凸領域の複数の凹凸部23が少なく、その光学的な効果が光取出し効率に反映されないおそれがある。また、面積比が10/1より大きい場合は、平面領域が少なく、第2電極の反射率が大幅に低下し、結果光取出し効率が低減するおそれがある。
 また、構造層12の凹凸領域の複数の凹凸部23の高さHは、50nm以上800nm以下であることが好ましい。複数の凹凸部23の高さHが50nmより小さい場合は、凹凸の高さHが小さいため、表面プラズモン共鳴の効果が得られない。複数の凹凸部23の高さHが800nmより大きい場合は、機能層の全体の高さを大きく超えるため、機能層の均一性が著しく低下し、発光むらやショート(短絡)の原因となり、発光不良が発生するおそれがある。複数の凹凸部23の高さHとは、平面部に対する層厚方向の変化の絶対値である。例えば、凹凸部23が凹形状で形成されている場合には、側面視で平面部から凹形状の凹み最下部位置までの総厚方向の距離である。
The area ratio of the uneven area to the area of the planar area of the structural layer 12 (area of the uneven area / area of the planar area) is preferably in the range of 1/4 to 10/1. When the area ratio is smaller than ¼, the plurality of uneven portions 23 in the uneven region is small, and the optical effect may not be reflected in the light extraction efficiency. On the other hand, when the area ratio is larger than 10/1, the planar area is small, the reflectivity of the second electrode is significantly lowered, and the light extraction efficiency may be reduced as a result.
The height H of the plurality of uneven portions 23 in the uneven region of the structural layer 12 is preferably 50 nm or more and 800 nm or less. When the height H of the plurality of uneven portions 23 is smaller than 50 nm, the surface plasmon resonance effect cannot be obtained because the height H of the unevenness is small. When the height H of the plurality of concavo-convex portions 23 is larger than 800 nm, the overall height of the functional layer is greatly exceeded, so that the uniformity of the functional layer is remarkably deteriorated, causing uneven light emission and short-circuiting. Defects may occur. The height H of the plurality of concavo-convex portions 23 is an absolute value of a change in the layer thickness direction with respect to the plane portion. For example, when the concavo-convex portion 23 is formed in a concave shape, it is the distance in the total thickness direction from the flat portion to the concave bottom portion of the concave shape in a side view.
 更に、凹凸領域の複数の凹凸部23の幅Dに対する高さHの比(H/D)は、1/5から8/5の範囲であることが好ましい。構造層12上に各層を構成しやすいためである。ここで、平面領域の平面部に対して凹形状となるように凹凸領域の凹凸部23が形成されている場合、「凹凸部23の幅Dに対する高さHの比」とは、凹凸部23を構成する凹部の幅Dに対する高さHの比をいう。また、平面領域の平面部に対して凸形状となるように凹凸領域の凹凸部23が形成されている場合、「凹凸部23の幅Dに対する高さHの比」とは、凹凸部23を構成する凸部の幅Dに対する高さHの比をいう。 Furthermore, the ratio (H / D) of the height H to the width D of the plurality of uneven portions 23 in the uneven region is preferably in the range of 1/5 to 8/5. This is because it is easy to configure each layer on the structural layer 12. Here, when the concavo-convex portion 23 of the concavo-convex region is formed so as to have a concave shape with respect to the flat portion of the flat region, the “ratio of the height H to the width D of the concavo-convex portion 23” The ratio of the height H to the width D of the recesses constituting In addition, when the concavo-convex portion 23 of the concavo-convex region is formed so as to have a convex shape with respect to the flat portion of the flat region, the “ratio of the height H to the width D of the concavo-convex portion 23” The ratio of the height H with respect to the width D of the convex part to comprise is said.
 凸部の幅Dに対する高さHの比(H/D)が1/5から8/5の範囲外であると、凹凸部23の斜面が切り立つような形状であったり、微細な面と面の境界が明確となるような形状であったり、凹凸の周期が細かく頂部や溝部が点状に近い形状となる。このため、特に、構造層12上に、第1電極層14、機能層15及び第2電極層16の少なくとも1つを形成する方法としてスパッタ法や蒸着法を選択する場合、その周辺部と同様の均一な膜が形成されにくくなる。
 また、凹凸領域21に形成された複数の凹凸部23における、隣り合う凹凸部23の間の距離Lは、凹凸部23の幅Dより大きく、且つ300nm以上2μm以下であることが好ましい。上記範囲内であると、凹凸の幅(隣り合う凹凸部23の間の距離L)を発光波長程度に維持することができ、機能層15から発した光のうち第2電極層16側へ進行した光が、第2電極層16における表面プラズモンの変換による再放射の効果を得ることができる。すなわち、300nmより小さいと、発光波長より小さいために光が閉じ込められ、2μmより大きいと、表面プラズモンの伝播が発生し、再放射をせずに減衰してしまう。
When the ratio of the height H to the width D of the convex portion (H / D) is outside the range of 1/5 to 8/5, the concave / convex portion 23 has a shape in which the inclined surface is raised or a fine surface to surface The shape of the boundary becomes clear, or the period of the unevenness is fine, and the top part and the groove part are shaped like dots. Therefore, in particular, when a sputtering method or a vapor deposition method is selected as a method for forming at least one of the first electrode layer 14, the functional layer 15, and the second electrode layer 16 on the structural layer 12, the same as the peripheral portion thereof. It is difficult to form a uniform film.
Moreover, it is preferable that the distance L between the adjacent uneven | corrugated parts 23 in the some uneven | corrugated | grooved part 23 formed in the uneven | corrugated area | region 21 is larger than the width | variety D of the uneven | corrugated part 23, and is 300 nm or more and 2 micrometers or less. Within the above range, the uneven width (distance L between adjacent uneven portions 23) can be maintained at about the emission wavelength, and the light emitted from the functional layer 15 travels to the second electrode layer 16 side. Thus, the effect of re-radiation by the conversion of the surface plasmon in the second electrode layer 16 can be obtained. That is, if it is smaller than 300 nm, light is confined because it is smaller than the emission wavelength, and if it is larger than 2 μm, propagation of surface plasmon occurs, and it attenuates without re-emission.
 構造層12を構成する材料としては、樹脂が好ましい。樹脂としては、例えば、低密度又は高密度のポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、エチレン-ノルボルネン共重合体、エチレン-ドモン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、アイオノマー樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン-6、ナイロン-6,6、メタキシレンジアミン-アジピン酸縮重合体;ポリメチルメタクリルイミド等のアミド系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体、ポリアクリロニトリル等のスチレン-アクリロニトリル系樹脂;トリ酢酸セルロース、ジ酢酸セルロース等の疎水化セルロース系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のハロゲン含有樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体、セルロース誘導体等の水素結合性樹脂;ポリカーボネート樹脂、ポリサルフォン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリメチレンオキシド樹脂、ポリアリレート樹脂、液晶樹脂等のエンジニアリングプラスチック系樹脂等が挙げられる。 As the material constituting the structural layer 12, a resin is preferable. Examples of the resin include low density or high density polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, ethylene-norbornene copolymer, ethylene -Polyolefin resins such as domon copolymer, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; nylon- 6, Nylon-6,6, Metaxylenediamine-Adipic acid condensation polymer; Amide resin such as polymethylmethacrylamide; Acrylic resin such as polymethylmethacrylate; Polystyrene, Styrene-acrylonitrile copolymer Styrene-acrylonitrile resins such as styrene-acrylonitrile-butadiene copolymer and polyacrylonitrile; Hydrophobized cellulose resins such as cellulose triacetate and cellulose diacetate; Polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene Halogen-containing resins such as polyvinyl alcohol, ethylene-vinyl alcohol copolymers, hydrogen bonding resins such as cellulose derivatives; polycarbonate resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, polyphenylene oxide resins, polymethylene Examples thereof include engineering plastic resins such as oxide resins, polyarylate resins, and liquid crystal resins.
 構造層には、微粒子を添加して、屈折率の調整や光散乱効果を有しても良く、無機微粒子又は有機微粒子からなる粒子を使用できる。例えば、アクリル系粒子、スチレン粒子、スチレンアクリル粒子及びその架橋体、メラミン-ホルマリン縮合物の粒子、ポリウレタン系粒子、ポリエステル系粒子、シリコーン系粒子、フッ素系粒子、これらの共重合体、スメクタイト、カオリナイト、タルク等の粘土化合物粒子、シリカ、酸化チタン、アルミナ、シリカアルミナ、ジルコニア、酸化亜鉛、酸化バリウム、酸化ストロンチウム等の無機酸化物粒子、炭酸カルシウム、炭酸バリウム、塩化バリウム、硫酸バリウム、硝酸バリウム、水酸化バリウム、水酸化アルミニウム、炭酸ストロンチウム、塩化ストロンチウム、硫酸ストロンチウム、硝酸ストロンチウム、水酸化ストロンチウム、ガラス粒子等の無機微粒子等を挙げることができる。 In the structure layer, fine particles may be added to adjust the refractive index and have a light scattering effect, and particles composed of inorganic fine particles or organic fine particles can be used. For example, acrylic particles, styrene particles, styrene acrylic particles and crosslinked products thereof, melamine-formalin condensate particles, polyurethane particles, polyester particles, silicone particles, fluorine particles, copolymers thereof, smectite, kaori Clay compound particles such as knight and talc, inorganic oxide particles such as silica, titanium oxide, alumina, silica alumina, zirconia, zinc oxide, barium oxide, strontium oxide, calcium carbonate, barium carbonate, barium chloride, barium sulfate, barium nitrate And inorganic fine particles such as barium hydroxide, aluminum hydroxide, strontium carbonate, strontium chloride, strontium sulfate, strontium nitrate, strontium hydroxide, and glass particles.
 〔バリア層〕
 バリア層13は、有機EL素子10の劣化をもたらす水分や酸素等の浸入を抑制する機能を有する層であり、必要に応じて構造層12の光透過性基板11側の面と反対側の面との少なくとも一方に設けられる。図1は、バリア層13を構造層12の光透過性基板11側の面とは反対側の面にだけ設けた場合を例示している。バリア層13は必須ではないが、設けられることが好ましい。バリア層13が設けられることにより、構造層12と第1電極層14との密着性が向上する。これは、構造層12と第1電極層14との間にバリア層13があることにより、第1電極層14の成膜時に第1電極層14が構造層12からのアウトガスの影響を受けず、第1電極層14の膜質が向上するためである。第1電極層14の膜質が向上することにより、有機EL素子10の初期の欠陥(例えばダークスポット)を減少させることができる。このため、バリア層13を設けることにより、有機EL素子10の経時安定性を向上させることができる。
[Barrier layer]
The barrier layer 13 is a layer having a function of suppressing intrusion of moisture, oxygen, or the like that causes deterioration of the organic EL element 10, and a surface on the side opposite to the surface on the light transmissive substrate 11 side of the structural layer 12 as necessary. And at least one of them. FIG. 1 illustrates the case where the barrier layer 13 is provided only on the surface of the structural layer 12 opposite to the surface on the light transmissive substrate 11 side. The barrier layer 13 is not essential, but is preferably provided. By providing the barrier layer 13, the adhesion between the structural layer 12 and the first electrode layer 14 is improved. This is because the barrier layer 13 is present between the structural layer 12 and the first electrode layer 14, so that the first electrode layer 14 is not affected by the outgas from the structural layer 12 when the first electrode layer 14 is formed. This is because the film quality of the first electrode layer 14 is improved. By improving the film quality of the first electrode layer 14, initial defects (for example, dark spots) of the organic EL element 10 can be reduced. For this reason, by providing the barrier layer 13, the temporal stability of the organic EL element 10 can be improved.
 バリア層13としては、例えば、酸化珪素、二酸化珪素、窒化珪素等が用いられる。
 バリア層13の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、次に積層する透明電極と合わせた形成方法で連続的に成膜できることが好ましい。
 バリア層13の厚みは、例えば、2nm以上50nm以下であり、好ましくは2nm以上20nm以下である。バリア層13を設けることによる水分等の浸入防止効果を得ることが出来る。バリア層13は比較的厚い膜とすることが好ましい。光学的には、バリア層13の屈折率の方が構造層12の屈折率より低くなる場合は全反射光による低減を抑制するために薄い膜が好ましい。しかしながら、2nmより薄くなると、構造層12の表面に均一に成膜できないために好ましくない。
As the barrier layer 13, for example, silicon oxide, silicon dioxide, silicon nitride or the like is used.
The method for forming the barrier layer 13 is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but it is preferable that a film can be continuously formed by a formation method combined with a transparent electrode to be laminated next.
The thickness of the barrier layer 13 is, for example, 2 nm or more and 50 nm or less, preferably 2 nm or more and 20 nm or less. By providing the barrier layer 13, the effect of preventing intrusion of moisture and the like can be obtained. The barrier layer 13 is preferably a relatively thick film. Optically, when the refractive index of the barrier layer 13 is lower than the refractive index of the structural layer 12, a thin film is preferable in order to suppress reduction by total reflection light. However, if it is thinner than 2 nm, it cannot be formed uniformly on the surface of the structural layer 12, which is not preferable.
 〔電極層〕
 以下、第1電極層14及び第2電極層16について説明する。ここでは、第1電極層14が陽極、第2電極層16が陰極であるものとして説明する。但し、実際には、これらの例に限定されない。
(Electrode layer)
Hereinafter, the first electrode layer 14 and the second electrode layer 16 will be described. Here, description will be made assuming that the first electrode layer 14 is an anode and the second electrode layer 16 is a cathode. However, actually, it is not limited to these examples.
 (第1電極層:陽極)
 第1電極層14である陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料としては、例えば、アンチモンやフッ素等をドープ(添加)した酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、及びこれらとITOとの積層物等が挙げられる。中でも、陽極の材料として導電性金属酸化物が好ましく、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
(First electrode layer: anode)
As a material of the anode which is the 1st electrode layer 14, a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof is mentioned suitably, for example. As an anode material, for example, conductive oxide such as antimony or fluorine doped (added) tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc. Metal such as conductive metal oxide, gold, silver, chromium and nickel, and a mixture or laminate of these metals and conductive metal oxide, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO. Among these, a conductive metal oxide is preferable as the material of the anode, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like.
 陽極は、例えば、(1)印刷方式、コーティング方式等の湿式方式、(2)真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、(3)CVD、プラズマCVD法等の化学的方式等の公知の方法の中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。 The anode may be, for example, (1) a wet method such as a printing method or a coating method, (2) a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or (3) a chemical method such as CVD or plasma CVD method. It can be formed on the substrate in accordance with a method appropriately selected from known methods such as a method in consideration of suitability with the material constituting the anode. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.
 なお、陽極を形成する際のパターニングとしては、フォトリソグラフィー等による化学的エッチングによって行っても良いし、レーザー等による物理的エッチングによって行っても良い。また、マスクを重ねて真空蒸着やスパッタ等をして行っても良いし、リフトオフ法や印刷法によって行っても良い。
 陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に、膜厚は材料にもよるが、通常は、10nm以上1000nm以下の範囲であり、好ましくは10nm以上200nm以下の範囲で選ばれる。
The patterning for forming the anode may be performed by chemical etching using photolithography or the like, or may be performed by physical etching using a laser or the like. Further, it may be performed by vacuum deposition, sputtering or the like with overlapping masks, or by a lift-off method or a printing method.
When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually in the range of 10 nm to 1000 nm, preferably in the range of 10 nm to 200 nm.
 (第2電極層:陰極)
 第2電極層16である陰極の材料としては、例えば、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金電気伝導性化合物及びこれらの混合物が好適に挙げられる。陰極材料としては、例えば、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。中でも、電子注入性及び酸化等に対する耐久性の点から、陰極の材料として、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、蒸着やスパッタリング等の公知の方法により陰極材料からなる薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm以上5μm以下の範囲であり、好ましくは50nm以上200nm以下の範囲で選ばれる。
(Second electrode layer: cathode)
As a material of the cathode which is the second electrode layer 16, for example, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy electroconductive compound, and a mixture thereof are preferably exemplified. Examples of cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, Indium, lithium / aluminum mixtures, rare earth metals and the like can be mentioned. Among them, from the viewpoint of electron injectability and durability against oxidation, etc., as a cathode material, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / silver Preference is given to mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like.
The cathode can be produced by forming a thin film made of a cathode material by a known method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 〔機能層〕
 機能層15は、発光層を含む層であり、第1電極層14と第2電極層16との間に設けられる層である。第1電極層14、機能層15及び第2電極層16は、様々な積層構成とすることができる。
 以下、具体的に第1電極層14、機能層15及び第2電極層16の積層構造について説明する。一例として、以下の層構成a)~p)を示す。ここでは、上記の通り、第1電極層14が陽極、第2電極層16が陰極である。すなわち、陽極と陰極との間の層は全て機能層15である。また、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。なお、機能層15の構成及び第1電極層14、機能層15及び第2電極層16の積層構造は、以下の層構成a)~p)に限定されない。
[Functional layer]
The functional layer 15 is a layer including a light emitting layer, and is a layer provided between the first electrode layer 14 and the second electrode layer 16. The first electrode layer 14, the functional layer 15, and the second electrode layer 16 can have various laminated structures.
Hereinafter, the laminated structure of the 1st electrode layer 14, the functional layer 15, and the 2nd electrode layer 16 is demonstrated concretely. As an example, the following layer configurations a) to p) are shown. Here, as described above, the first electrode layer 14 is an anode, and the second electrode layer 16 is a cathode. That is, all layers between the anode and the cathode are the functional layer 15. The symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other. The configuration of the functional layer 15 and the laminated structure of the first electrode layer 14, the functional layer 15, and the second electrode layer 16 are not limited to the following layer configurations a) to p).
 a)陽極/発光層/陰極
 b)陽極/正孔注入層/発光層/陰極
 c)陽極/正孔注入層/発光層/電子注入層/陰極
 d)陽極/正孔注入層/発光層/電子輸送層/陰極
 e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
 f)陽極/正孔輸送層/発光層/陰極
 g)陽極/正孔輸送層/発光層/電子注入層/陰極
 h)陽極/正孔輸送層/発光層/電子輸送層/陰極
 i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 j)陽極/正孔注入層/正孔輸送層/発光層/陰極
 k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
 l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
 m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 n)陽極/発光層/電子注入層/陰極
 o)陽極/発光層/電子輸送層/陰極
 p)陽極/発光層/電子輸送層/電子注入層/陰極
 以下、機能層15を構成する各層(発光層、注入層、輸送層)について説明する。
a) Anode / light emitting layer / cathode b) Anode / hole injection layer / light emitting layer / cathode c) Anode / hole injection layer / light emitting layer / electron injection layer / cathode d) Anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) Anode / hole injection layer / emission layer / electron transport layer / electron injection layer / cathode f) Anode / hole transport layer / emission layer / cathode g) Anode / hole transport layer / emission layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode j) anode / hole Injection layer / hole transport layer / light emitting layer / cathode k) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode l) anode / hole injection layer / hole transport layer / light emitting layer / Electron transport layer / cathode m) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode n) anode / light emitting layer / electron injection layer / cathode ) Anode / light emitting layer / electron transport layer / cathode p) anode / light emitting layer / electron transport layer / electron injection layer / cathode Hereinafter, each layer (light emitting layer which constitutes the functional layer 15, injection layers, transport layer) will be described.
 (発光層)
 発光層は、電極、注入層、又は輸送層から移動してくる電子と正孔(ホール)とが再結合して発光する層であり、発光する部分は発光層の層内であっても良く、発光層と隣接層との界面であっても良い。
 発光層の膜厚の総和は特に制限はないが、2nm以上5μm以下とすることが好ましく、2nm以上200nm以下とすることがより好ましく、10nm以上20nm以下の範囲とすることが特に好ましい。膜の均質性や発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性が向上するためである。
(Light emitting layer)
The light emitting layer is a layer that emits light by recombination of electrons and holes (holes) moving from the electrode, injection layer, or transport layer, and the light emitting portion may be in the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
The total thickness of the light emitting layers is not particularly limited, but is preferably 2 nm or more and 5 μm or less, more preferably 2 nm or more and 200 nm or less, and particularly preferably 10 nm or more and 20 nm or less. This is because the uniformity of the film and the application of an unnecessary high voltage during light emission are prevented, and the stability of the emission color with respect to the drive current is improved.
 発光層は、青色発光層、緑色発光層及び赤色発光層の少なくとも1層である。有機EL素子10において、青色発光層は発光極大波長が430nm以上480nm以下の範囲、緑色発光層は発光極大波長が510nm以上550nm以下の範囲、赤色発光層は発光極大波長が600nm以上640nm以下の範囲にある単色発光層であることが好ましい。
 また、発光層は、これらの少なくとも3色の発光層(青色発光層、緑色発光層、赤色発光層)を積層して白色発光層とした層であっても良い。更に、複数の発光層を積層する場合には、発光層間に非発光性の中間層が設けられていても良い。
The light emitting layer is at least one of a blue light emitting layer, a green light emitting layer, and a red light emitting layer. In the organic EL element 10, the blue light emitting layer has a light emission maximum wavelength in the range of 430 nm to 480 nm, the green light emitting layer has a light emission maximum wavelength in the range of 510 nm to 550 nm, and the red light emitting layer has a light emission maximum wavelength in the range of 600 nm to 640 nm. It is preferable that it is a monochromatic light emitting layer.
Further, the light emitting layer may be a layer formed by laminating these light emitting layers of at least three colors (blue light emitting layer, green light emitting layer, red light emitting layer) to form a white light emitting layer. Further, when a plurality of light emitting layers are stacked, a non-light emitting intermediate layer may be provided between the light emitting layers.
 本実施形態に係る有機EL素子10の発光層は、白色発光層であることが好ましい。すなわち、本実施形態は、有機EL素子10の発光層が白色発光層である場合において特に有効である。また、本実施形態に係る照明装置、面状光源及び表示装置は、白色発光層を含むことが好ましい。したがって、本実施形態に係る照明装置、面状光源及び表示装置は、発光層が白色発光層である有機EL素子10を少なくとも一部に有することが好ましい。
 発光層は、発光ホスト化合物と、リン光ドーパントや蛍光ドーパント等の発光性ドーパント化合物を含有する。
The light emitting layer of the organic EL element 10 according to this embodiment is preferably a white light emitting layer. That is, this embodiment is particularly effective when the light emitting layer of the organic EL element 10 is a white light emitting layer. Moreover, it is preferable that the illuminating device, planar light source, and display apparatus which concern on this embodiment contain a white light emitting layer. Therefore, it is preferable that the lighting device, the planar light source, and the display device according to the present embodiment have at least a part of the organic EL element 10 whose light emitting layer is a white light emitting layer.
The light emitting layer contains a light emitting host compound and a light emitting dopant compound such as a phosphorescent dopant or a fluorescent dopant.
 発光ホスト化合物としては、例えば、カルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体等が挙げられる。
 蛍光ドーパント化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
Examples of the luminescent host compound include those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative or diaza. And carbazole derivatives.
Examples of fluorescent dopant compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples thereof include stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 (注入層:正孔注入層、電子注入層)
 注入層は、駆動電圧低下や発光輝度向上のために、必要に応じて電極と有機層との間に設けられる層である。注入層には、正孔注入層(陽極バッファー層)と、電子注入層(陰極バッファー層)とがある。
 正孔注入層は、上述したように、陽極と発光層との間に設けられる(例えば、上記の層構成b)、c)、d)、e))か、又は陽極と正孔輸送層との間(例えば、上記の層構成j)、k)、l)、m))に設けられる。
 また、電子注入層は、陰極と発光層との間に設けられる(例えば、層構成(c)、g)、k)、n))か、又は陰極と電子輸送層との間(例えば、層構成e)、i)、m)、p))に設けられる。
(Injection layer: hole injection layer, electron injection layer)
The injection layer is a layer provided between the electrode and the organic layer as necessary for lowering the driving voltage and improving the light emission luminance. The injection layer includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
As described above, the hole injection layer is provided between the anode and the light emitting layer (for example, the above-described layer configurations b), c), d), e)), or the anode and the hole transport layer. (For example, between the layer configurations j), k), l), and m)) described above.
Further, the electron injection layer is provided between the cathode and the light emitting layer (for example, layer configurations (c), g), k), n)), or between the cathode and the electron transport layer (for example, a layer). Provided in configurations e), i), m), and p)).
 正孔注入層としては、例えば、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 電子注入層としては、例えば、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
 正孔注入層、電子注入層は、ごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm以上5μm以下の範囲が好ましい。
As the hole injection layer, for example, a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, or a conductive polymer such as polyaniline (emeraldine) or polythiophene is used. Polymer buffer layer and the like.
Examples of the electron injection layer include a metal buffer layer typified by strontium and aluminum, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide. An oxide buffer layer represented by
The hole injection layer and the electron injection layer are desirably very thin films, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although depending on the material.
 (阻止層:正孔阻止層、電子阻止層)
 阻止層は、有機化合物薄膜の基本構成層の他に必要に応じて設けられる層である。阻止層には、正孔阻止層と、電子阻止層とがある。
 正孔阻止層は、広い意味では電子輸送層の機能を有している。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を、必要に応じて正孔阻止層として用いることができる。
(Blocking layer: hole blocking layer, electron blocking layer)
The blocking layer is a layer provided as necessary in addition to the basic constituent layer of the organic compound thin film. The blocking layer includes a hole blocking layer and an electron blocking layer.
The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
 正孔阻止層、電子輸送層の膜厚は、好ましくは3nm以上100nm以下であり、更に好ましくは5nm以上30nm以下である。
 正孔阻止層は、前述のホスト化合物として挙げたカルバゾール誘導体、またカルボリン誘導体やジアザカルバゾール誘導体を含有することが好ましい。
 一方、電子阻止層は、広い意味では正孔輸送層の機能を有している。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を、必要に応じて電子阻止層として用いることができる。
The film thicknesses of the hole blocking layer and the electron transport layer are preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 30 nm or less.
The hole blocking layer preferably contains the carbazole derivative, carboline derivative or diazacarbazole derivative mentioned as the host compound.
On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
 (輸送層:正孔輸送層、電子輸送層)
 輸送層は、正孔又は電子の輸送のために、必要に応じて設けられる層である。輸送層には、正孔輸送層と、電子輸送層とがある。
 (正孔輸送層)
 正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなる。上述した正孔注入層、電子阻止層は、広い意味で正孔輸送層に含まれる。正孔輸送層は、単層又は複数層設けることができる。
(Transport layer: hole transport layer, electron transport layer)
The transport layer is a layer provided as necessary for transporting holes or electrons. The transport layer includes a hole transport layer and an electron transport layer.
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes. The hole injection layer and the electron blocking layer described above are included in the hole transport layer in a broad sense. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであっても良い。正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送層は、上述した正孔輸送材料のうちの1種又は2種以上の材料を含んでいる。
 正孔輸送層は、上述した正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成される。正孔輸送層の膜厚については特に制限はないが、通常は5nm以上5μm以下程度、好ましくは5nm以上200nm以下である。
The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. Examples of hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives. Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The hole transport layer contains one or more of the above-described hole transport materials.
The hole transport layer is formed by thinning the above-described hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm or more and about 5 micrometers or less, Preferably they are 5 nm or more and 200 nm or less.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する電子輸送材料からなる。上述した電子注入層、正孔阻止層は、広い意味で電子輸送層に含まれる。電子輸送層は、単層又は複数層設けることができる。電子輸送層は、発光層の陰極側に隣接するように設けられる。
 電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していれば良く、このような機能を有していれば従来公知の化合物の中から任意のものを選択して用いることができる。電子輸送材料としては、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更に、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
(Electron transport layer)
The electron transport layer is made of an electron transport material having a function of transporting electrons. The electron injection layer and hole blocking layer described above are included in the electron transport layer in a broad sense. The electron transport layer can be provided as a single layer or a plurality of layers. The electron transport layer is provided adjacent to the cathode side of the light emitting layer.
Any electron transport material (also serving as a hole blocking material) used for the electron transport layer may have a function of transmitting electrons injected from the cathode to the light emitting layer. For example, any one of conventionally known compounds can be selected and used. Examples of the electron transport material include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、電子輸送材料として、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されている材料も好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができる。更に、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。電子輸送層は、上述した電子輸送材料のうちの1種又は2種以上の材料を含んでいる。また、不純物をドープしたn性の高い電子輸送層を用いることもできる。
 電子輸送層は、上述した電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成される。電子輸送層の膜厚については特に制限はないが、通常は5nm以上5μm以下の範囲であり、好ましくは5nm以上200nm以下の範囲で選ばれる。
Further, as an electron transporting material, a metal complex of an 8-quinolinol derivative such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo- 8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metal of these metal complexes A metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as an electron transporting material. In addition, metal-free or metal phthalocyanine, or a material whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used. Further, the distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the electron transporting material. Further, similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material. The electron transport layer contains one or more materials among the electron transport materials described above. Further, an electron transport layer having a high n property doped with impurities can also be used.
The electron transport layer is formed by thinning the above-described electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, it is the range of 5 nm or more and 5 micrometers or less, Preferably it is chosen in the range of 5 nm or more and 200 nm or less.
 〔封止部材〕
 有機EL素子10の表示領域は、封止部材によって覆われ封止されている。封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材は、有機EL素子10の表示領域を覆うように配置されていれば良く、凹板状でも平板状でも良い。また、封止部材は、透明性、電気絶縁性の有無は特に問わない。
 封止部材としては、例えば、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
(Sealing member)
The display area of the organic EL element 10 is covered and sealed with a sealing member. Examples of the sealing means include a method of bonding the sealing member, the electrode, and the support substrate with an adhesive.
The sealing member should just be arrange | positioned so that the display area of the organic EL element 10 may be covered, and may be concave plate shape or flat plate shape. Moreover, the sealing member does not ask | require in particular the presence or absence of transparency and electrical insulation.
Examples of the sealing member include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 封止に用いられる接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子10が熱処理により劣化する場合がある。このため、接着剤としては、室温から80℃までの温度範囲で接着硬化できる材料を用いることが好ましい。また、乾燥剤を分散させた接着剤を用いても良い。封止部分への接着剤の塗布は、市販のディスペンサーを使っても良いし、スクリーン印刷のように印刷しても良い。
Examples of the adhesive used for sealing include photo-curing and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing types such as 2-cyanoacrylates. Mention may be made of adhesives. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
Note that the organic EL element 10 may be deteriorated by heat treatment. For this reason, it is preferable to use a material that can be adhesively cured in a temperature range from room temperature to 80 ° C. as the adhesive. Further, an adhesive in which a desiccant is dispersed may be used. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 封止部材と有機EL素子10の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、封止部材と有機EL素子10の表示領域との間隙を真空とすることも可能である。更に、封止部材の内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物、及び過塩素酸類においては、無水塩が好適に用いられる。
In the gap between the sealing member and the display area of the organic EL element 10, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase. Is preferred. Further, the gap between the sealing member and the display area of the organic EL element 10 can be evacuated. Furthermore, a hygroscopic compound can also be enclosed inside the sealing member.
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.), and sulfates, metal halides, and perchloric acids are preferably anhydrous salts.
 〔用途〕
 本実施形態に係る有機EL素子10は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。光源としては、例えば、面状光源が挙げられる。有機EL素子10の用途はこれに限定されるものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
[Use]
The organic EL element 10 according to the present embodiment can be used as a display device, a display, or various light sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include a light source of a sensor. An example of the light source is a planar light source. Although the use of the organic EL element 10 is not limited to this, it can be effectively used especially as a backlight of a liquid crystal display device and a light source for illumination.
 照明装置の構成例を、図3に示す。この照明装置の構成例は、図3に示すように、光の出射側から、光透過性基板11、構造層12、第1電極(陽極)14、機能層15、第2電極(陰極)16、吸湿部材1202、および封止部材1204を含む。また、図3忠符号112は、外部接続端子である。この構成例において、光透過性基板11から第2電極(陰極)16までの構成が、前述の有機EL素子10に対応する。また、本実施形態の面状光源も、照明装置と同様の構成とすることができる。
 ここで、本実施形態の照明装置および面状光源の製造は、前述の有機EL素子の製造方法に、公知の工程を付加することで実施することができる。なお、照明装置や面状光源の陽極部が、シリコン駆動基板などの駆動部分を含んでいてもよい。
An example of the structure of the lighting device is shown in FIG. As shown in FIG. 3, the configuration example of the illumination device includes a light transmissive substrate 11, a structural layer 12, a first electrode (anode) 14, a functional layer 15, and a second electrode (cathode) 16 from the light emission side. , A hygroscopic member 1202, and a sealing member 1204. 3 is an external connection terminal. In this configuration example, the configuration from the light transmissive substrate 11 to the second electrode (cathode) 16 corresponds to the organic EL element 10 described above. Moreover, the planar light source of this embodiment can also be set as the structure similar to an illuminating device.
Here, manufacture of the illuminating device and planar light source of this embodiment can be implemented by adding a well-known process to the manufacturing method of the above-mentioned organic EL element. The anode part of the lighting device or the planar light source may include a driving part such as a silicon driving substrate.
 次に、本実施形態の表示装置の例を図4に示す。図4に示すように、表示装置は、装置の表示側から、光透過性基板11、カラーフィルター層(たとえば、RGBカラーフィルター層など)102、構造層12、第1電極(陽極)14、機能層15、第2電極(陰極)16を含む。図4の構成例において、カラーフィルター層102以外の部分が、前述の有機EL素子に対応する。
 本実施形態の表示装置の製造は、前述の有機EL素子の製造方法に、公知の工程を付加して実施することができる。たとえば、カラーフィルター層102は、スピンコート法、蒸着法などの、従来から知られている任意の方法を用いて形成することができる。
Next, an example of the display device of this embodiment is shown in FIG. As shown in FIG. 4, the display device has a light transmissive substrate 11, a color filter layer (for example, RGB color filter layer) 102, a structural layer 12, a first electrode (anode) 14 and a function from the display side of the device. A layer 15 and a second electrode (cathode) 16 are included. In the configuration example of FIG. 4, portions other than the color filter layer 102 correspond to the above-described organic EL element.
The display device according to this embodiment can be manufactured by adding a known process to the above-described method for manufacturing an organic EL element. For example, the color filter layer 102 can be formed using any conventionally known method such as a spin coating method or a vapor deposition method.
 上述した実施形態を具体化した実施例を、比較対象としての比較例とともに説明する。
 本実施例では、構造層12の凹凸領域の各凹凸部23は各条件において凹形状か凸形状のいずれかを選択し、高さHに合わせて、平面視円形の山あるいは谷になるように幅D(円の直径に対応)の大きさを形成した。また、それぞれの凹凸部23をランダムに配置し、それぞれの凹凸部23の平均距離Lは走査型プローブ顕微鏡を用いて、凹凸領域の10箇所について凹凸部23の画像を測定した後、凹凸画像中の任意の隣り合う凸形状ないしは凹形状の間隔を10点以上測定し、その平均を求めることにより算出できる値を採用した。
An example embodying the above-described embodiment will be described together with a comparative example as a comparison target.
In the present embodiment, each uneven portion 23 in the uneven region of the structural layer 12 is selected to have a concave shape or a convex shape in each condition, and according to the height H, it becomes a circular peak or valley in plan view. The width D (corresponding to the diameter of the circle) was formed. In addition, the uneven portions 23 are randomly arranged, and the average distance L between the uneven portions 23 is determined by measuring images of the uneven portions 23 at 10 positions of the uneven regions using a scanning probe microscope. The value which can be calculated by measuring the interval of any adjacent convex shape or concave shape of 10 or more points and obtaining the average was adopted.
 <実施例1>
 (光取出し基板の作製)
 まず、光透過性基板11、構造層12及び光透過性を有する第1電極層14がこの順に積層された光取出し基板を作製する。
 光透過性基板11として、厚みが0.7mmで大きさが30mm×40mmの洗浄した無アルカリガラス板を使用した。
<Example 1>
(Production of light extraction substrate)
First, a light extraction substrate in which the light transmissive substrate 11, the structure layer 12, and the light transmissive first electrode layer 14 are laminated in this order is manufactured.
As the light-transmitting substrate 11, a washed alkali-free glass plate having a thickness of 0.7 mm and a size of 30 mm × 40 mm was used.
 この光透過性基板11上に、1層目としてUV(紫外線)硬化型アクリル系樹脂をスピンコーターにより膜厚2μmで成膜し、ホットプレート上にて90℃で2分間加熱して樹脂層を形成した。続いて、光透過性基板11に塗布形成した樹脂層の表面に、平面領域と微細な凹凸パターン領域(凹凸領域)とを有するフィルム板を押し付けるようにラミネートした後、UVランプで150mJ/cm照射し、フィルム板を剥離して表面に複数の凹凸部23と平面部とを有する構造層12を形成した。これにより、構造層12の表面に、高さH100nmかつ幅D100nmの凸状の円形の山でそれぞれの山間の平均距離Lが400nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率(凹凸領域の占める割合)/平面領域の合計の面積の比率(平面領域の占める割合)が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 次に、構造層12の表面に、光透過性を有する第1電極層14(陽極)として、透明電極であるITO層をスパッタ法にて、厚みが150nmとなるよう成膜した後、パターニングを行った。
On this light-transmitting substrate 11, a UV (ultraviolet) curable acrylic resin is formed as a first layer with a film thickness of 2 μm by a spin coater and heated on a hot plate at 90 ° C. for 2 minutes to form a resin layer. Formed. Subsequently, after laminating the surface of the resin layer coated and formed on the light-transmitting substrate 11 so as to press a film plate having a planar region and a fine concavo-convex pattern region (concavo-convex region), it is 150 mJ / cm 2 with a UV lamp. Irradiation was performed, and the film plate was peeled off to form the structural layer 12 having a plurality of uneven portions 23 and a flat portion on the surface. As a result, an uneven area having a convex circular mountain having a height of H100 nm and a width of D100 nm and having an average distance L of 400 nm on the surface of the structural layer 12 is obtained as a total area of the uneven area in the total area. Ratio (ratio occupied by the uneven area) / total area ratio (area occupied by the planar area) of the planar area was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Next, an ITO layer, which is a transparent electrode, is formed on the surface of the structural layer 12 as a light transmissive first electrode layer 14 (anode) by a sputtering method so as to have a thickness of 150 nm, and then patterned. went.
 (有機EL素子の作製)
 第1電極層14の表面に、機能層15の有機層として、正孔輸送層、発光層、電子輸送層をそれぞれ蒸着法で積層した。
 正孔輸送層は、4,4’,4’’-トリス(9-カルバゾール)トリフェニルアミンを用いて、厚み35nmで形成した。発光層は、トリス(2-フェニルピリジナト)イリジウム(III)錯体をドープした4,4’,4’’-トリス(9-カルバゾール)トリフェニルアミンを用いた厚み15nmの層と、トリス(2-フェニルピリジナト)イリジウム(III)錯体をドープした1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンを用いた厚み15nmの層とで形成した。
(Production of organic EL element)
On the surface of the first electrode layer 14, a hole transport layer, a light-emitting layer, and an electron transport layer were laminated as an organic layer of the functional layer 15 by an evaporation method.
The hole transport layer was formed with a thickness of 35 nm using 4,4 ′, 4 ″ -tris (9-carbazole) triphenylamine. The light-emitting layer includes a layer having a thickness of 15 nm using 4,4 ′, 4 ″ -tris (9-carbazole) triphenylamine doped with a tris (2-phenylpyridinato) iridium (III) complex, and tris ( It was formed with a 15 nm thick layer using 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene doped with 2-phenylpyridinato) iridium (III) complex.
 電子輸送層は、1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンを用いて厚み65nmで形成した。
 更に、有機層の表面に、電子注入層としてフッ化リチウム層(厚み:1.5nm)を蒸着した。これにより、発光層を含む機能層15を形成した。
 最後に、機能層15の表面に、金属電極(アルミニウム、厚み:50nm)を蒸着法で形成した。
The electron transport layer was formed with a thickness of 65 nm using 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene.
Furthermore, a lithium fluoride layer (thickness: 1.5 nm) was deposited as an electron injection layer on the surface of the organic layer. Thereby, the functional layer 15 including the light emitting layer was formed.
Finally, a metal electrode (aluminum, thickness: 50 nm) was formed on the surface of the functional layer 15 by a vapor deposition method.
 続いて、PETフィルム(光透過性シート31)の表面に直径5μmの半球形状のマイクロレンズと5μmピッチの頂角89度のクロスプリズム構造からなるレンズ面(レンズ層32)を形成したプリズムレンズシートを、粘着剤を介して光透過性基板11に貼合して、光取出しレンズ層30を形成した。このとき、レンズ面の裏面が光透過性基板11に対向するようにしてプリズムレンズシートを、光透過性基板11の構造層12の形成面の裏面に貼合して、レンズ面が表面となるようにした。
 これにより、図1に示すような、光透過性基板11の表面(一方の面)に構造層12、第1電極層14、機能層15、及び第2電極層16がこの順に積層され、裏面(他方の面)に光取出しレンズ層30が形成された有機EL素子10を得た。
Subsequently, a prism lens sheet in which a lens surface (lens layer 32) having a hemispherical microlens having a diameter of 5 μm and a cross prism structure having a vertical angle of 89 degrees with a pitch of 5 μm is formed on the surface of the PET film (light-transmitting sheet 31). Was bonded to the light-transmitting substrate 11 through an adhesive to form a light extraction lens layer 30. At this time, the prism lens sheet is bonded to the rear surface of the surface of the light transmissive substrate 11 where the structural layer 12 is formed so that the rear surface of the lens surface faces the light transmissive substrate 11, and the lens surface becomes the front surface. I did it.
Thereby, as shown in FIG. 1, the structural layer 12, the first electrode layer 14, the functional layer 15, and the second electrode layer 16 are laminated in this order on the surface (one surface) of the light transmissive substrate 11. The organic EL element 10 in which the light extraction lens layer 30 was formed on the other surface was obtained.
 <実施例2>
 構造層12の表面に、高さH100nmかつ幅D100nmの凸状の円形の山でそれぞれの山間の平均距離Lが400nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が20%/80%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 2>
On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H100 nm and a width of D100 nm and having an average distance L of 400 nm is represented by a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 20% / 80%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例3>
 構造層12の表面に、高さH100nmかつ幅D100nmの凸状の円形の山でそれぞれの山間の平均距離Lが400nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が91%/9%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 3>
On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H100 nm and a width of D100 nm and having an average distance L of 400 nm is represented by a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 91% / 9%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例4>
 構造層12の表面に、高さH50nmかつ幅D250nmの凹状の円形の山でそれぞれの山間の平均距離Lが300nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 4>
On the surface of the structural layer 12, a concave / convex area having a pattern of concave circular peaks with a height of H50 nm and a width of D250 nm and an average distance L between the peaks of 300 nm is a ratio of the total area of the concave / convex areas / plane. The total area ratio was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例5>
 構造層12の表面に、高さH100nmかつ幅D250nmの凹状の円形の山でそれぞれの山間の平均距離Lが400nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 5>
On the surface of the structural layer 12, a concave / convex region having a pattern of concave circular ridges having a height of H100 nm and a width of D250 nm and having an average distance L between the ridges of 400 nm, a ratio of the total area of the concavo-convex regions to the total area / plane The total area ratio was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例6>
 構造層12の表面に、高さH250nmかつ幅D400nmの凹状の円形の山でそれぞれの山間の平均距離Lが600nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 6>
On the surface of the structural layer 12, a concave / convex area having a height of H250 nm and a width of D400 nm and having a pattern in which the average distance L between the peaks is 600 nm is a ratio of the total area of the concave / convex area / plane. The total area ratio was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例7>
 構造層12の表面に、高さH500nmかつ幅D500nmの凸状の円形の山でそれぞれの山間の平均距離Lが1000nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 7>
On the surface of the structural layer 12, an uneven region having a convex circular mountain having a height of H500 nm and a width of D500 nm and having an average distance L between the peaks of 1000 nm is defined as a ratio of the total area of the uneven region to the total area / The total area ratio of the planar regions was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <実施例8>
 構造層12の表面に、高さH800nmかつ幅D500nmの凸状の円形の山でそれぞれの山間の平均距離Lが2000nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が50%/50%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Example 8>
On the surface of the structural layer 12, an uneven region having a pattern of convex circular peaks with a height of H 800 nm and a width of D 500 nm and an average distance L between the peaks of 2000 nm is defined as a ratio of the total area of the uneven regions to the total area / The total area ratio of the planar regions was 50% / 50%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <比較例1>
 光透過性基板11上に、1層目としてUV硬化型アクリル系樹脂をスピンコーターにより膜厚2μmで成膜し、ホットプレート上にて90℃で2分間加熱して樹脂層を形成した。この後、樹脂層を形成した光透過性基板11をNパージしたボックスに入れて、UVランプで150mJ/cm照射して、平滑性の高い構造層12を形成した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Comparative Example 1>
On the light-transmitting substrate 11, a UV curable acrylic resin was formed as a first layer with a film thickness of 2 μm by a spin coater, and heated on a hot plate at 90 ° C. for 2 minutes to form a resin layer. Thereafter, the light-transmitting substrate 11 on which the resin layer was formed was placed in an N 2 purged box and irradiated with a UV lamp at 150 mJ / cm 2 to form a structural layer 12 with high smoothness.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <比較例2>
 構造層12の表面に、高さH100nmかつ幅D600nmの凸状の円形の山でそれぞれの山間の平均距離Lが800nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が15%/85%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Comparative example 2>
On the surface of the structural layer 12, an uneven region having a pattern of convex circular peaks with a height H of 100 nm and a width D of 600 nm and an average distance L between the peaks of 800 nm is defined as a ratio of the total area of the uneven regions to the total area / The total area ratio of the planar areas was 15% / 85%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <比較例3>
 構造層12の表面に、高さH100nmかつ幅D600nmの凸状の円形の山でそれぞれの山間の平均距離Lが800nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が95%/5%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Comparative Example 3>
On the surface of the structural layer 12, an uneven region having a pattern of convex circular peaks with a height H of 100 nm and a width D of 600 nm and an average distance L between the peaks of 800 nm is defined as a ratio of the total area of the uneven regions to the total area / The total area ratio of the planar regions was 95% / 5%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <比較例4>
 構造層12の表面に、高さH30nmかつ幅D180nmの凸状の円形の山でそれぞれの山間の平均距離Lが250nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が15%/85%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Comparative example 4>
On the surface of the structural layer 12, an uneven region having a pattern of convex circular peaks with a height H of 30 nm and a width D of 180 nm and an average distance L between the peaks of 250 nm is defined as a ratio of the total area of the uneven regions to the total area / The total area ratio of the planar areas was 15% / 85%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <比較例5>
 構造層12の表面に、高さH900nmかつ幅D500nmの凸状の円形の山でそれぞれの山間の平均距離Lが2500nmのパターンを有する凹凸領域を、総面積における凹凸領域の合計の面積の比率/平面領域の合計の面積の比率が15%/85%となるように形成した。構造層12の表面の形状は、走査型プローブ顕微鏡にて確認した。
 これ以外は、実施例1と同様にして、有機EL素子10を作成した。
<Comparative Example 5>
On the surface of the structural layer 12, an uneven region having a pattern of convex circular peaks with a height of H900 nm and a width of D500 nm and an average distance L between the peaks of 2500 nm is a ratio of the total area of the uneven regions in the total area / The total area ratio of the planar areas was 15% / 85%. The shape of the surface of the structural layer 12 was confirmed with a scanning probe microscope.
Except this, it carried out similarly to Example 1, and created the organic EL element 10. FIG.
 <評価>
 実施例1~実施例8及び比較例1~比較例5のそれぞれの有機EL素子10について、光取出し効率の測定とショートの確認を行った。以下の表1に、実施例1~実施例8及び比較例1~比較例5のそれぞれの有機EL素子10における構造層12の構成の詳細と、光取出し効率比及びショートの有無の評価の結果を示す。
<Evaluation>
For each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5, the light extraction efficiency was measured and a short circuit was confirmed. Table 1 below shows the details of the structure of the structural layer 12 in each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5, and the results of evaluating the light extraction efficiency ratio and the presence or absence of a short circuit. Indicates.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、光取出し効率の測定にあたっては、実施例1~実施例8及び比較例1~比較例5のそれぞれの有機EL素子10に対して、直流(DC)電源から電流密度が20mA/cmの定電流を流し、出射される全放射束を積分球により計測し、その計測結果に基づいて光取出し効率を求めた。
 また、ショートの確認にあたっては、実施例1~実施例8及び比較例1~比較例5のそれぞれの有機EL素子10に対して上記の定電流を流したときに、電圧を上昇させることで電流値が増加した場合を「ショート無し」(良好)と評価し、電圧を上昇させても電流値が増加しない場合を「ショート有り」(不良)と評価した。
Here, in measuring the light extraction efficiency, a current density of 20 mA / cm 2 from a direct current (DC) power source was applied to each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5. The constant radiant current was applied, the total emitted radiant flux was measured with an integrating sphere, and the light extraction efficiency was determined based on the measurement result.
In confirming the short circuit, the current is increased by increasing the voltage when the above-described constant current is applied to each of the organic EL elements 10 of Examples 1 to 8 and Comparative Examples 1 to 5. The case where the value increased was evaluated as “no short” (good), and the case where the current value did not increase even when the voltage was raised was evaluated as “short” (defective).
 表1において、光取出し効率比は、比較例1の1層目の構造層12に凹凸領域がなく、平面領域が100%である光透過性基板11を備える有機EL素子10の光取出し効率を1.00として基準とした。実施例1~実施例8及び比較例2~比較例5の光取出し効率は、比較例1の有機EL素子10の光取出し効率に対する相対値で表したものである。光取出しの効果は1.50以上を良好とする。
 表1に示すように、実施例1~実施例8の有機EL素子10では、光取出し効率が1.52から1.78と高い値を示していることが確認された。これにより、実施例1~実施例4の有機EL素子10では、比較例1の有機EL素子10に比べて、光取出し効率が向上していることが分かった。
In Table 1, the light extraction efficiency ratio indicates the light extraction efficiency of the organic EL element 10 including the light transmissive substrate 11 in which the first structural layer 12 of Comparative Example 1 has no uneven region and the planar region is 100%. The standard was 1.00. The light extraction efficiencies of Examples 1 to 8 and Comparative Examples 2 to 5 are expressed as relative values to the light extraction efficiency of the organic EL element 10 of Comparative Example 1. The light extraction effect is 1.50 or more.
As shown in Table 1, in the organic EL elements 10 of Examples 1 to 8, it was confirmed that the light extraction efficiency showed a high value from 1.52 to 1.78. Thus, it was found that the light extraction efficiency was improved in the organic EL elements 10 of Examples 1 to 4 as compared with the organic EL element 10 of Comparative Example 1.
 これは、構造層12に凸部又は凹部を形成したことによる第2電極層16の機能層15側の面に形成された凹凸形状によってプラズモン吸収の抑制と発光の反射のバランスとが良好で光取出し効率が向上したと推定される。
 また、実施例1から実施例8の有機EL素子10では、ショートも無く良好であった。
 これは、凹凸の幅Dに対する高さHが高すぎず、ITO膜からなる第1電極層14の膜質が均一に形成され、更にその上に発光層を含む有機層が均一に形成されたために、その上の第2電極層16と第1電極層14が部分的に接する不良が発生しなかったためと推定される。
This is because the concavo-convex shape formed on the surface of the second electrode layer 16 on the functional layer 15 side by forming the convex portion or the concave portion in the structural layer 12 has a good balance between suppression of plasmon absorption and reflection of light emission. The extraction efficiency is estimated to have improved.
In addition, the organic EL elements 10 of Examples 1 to 8 were good without any short circuit.
This is because the height H with respect to the unevenness width D is not too high, the film quality of the first electrode layer 14 made of the ITO film is uniformly formed, and the organic layer including the light emitting layer is further uniformly formed thereon. It is presumed that a defect in which the second electrode layer 16 and the first electrode layer 14 thereon are partially in contact did not occur.
 比較例2では、比較例1と同等の光取出し効率となり効果が得られなかった。また、ショートは発生しなかった。
 これは、構造層12の表面の凹凸領域が少なく、平面領域が多いために、光取出し効率の向上効果は得られなかったと推定される。
 比較例3では、光取出し効率が1.40とやや高い値を示した。また、ショートは発生しなかった。
 これは、構造層12の凹凸領域によって、プラズモン吸収の抑制や発光の反射に関して一定の効果が得られたが、平面領域が少ないために、出射光からの反射が少なく、その結果、全体的な効率の向上が十分で無いと推定される。
In Comparative Example 2, the light extraction efficiency was the same as in Comparative Example 1, and no effect was obtained. Moreover, no short circuit occurred.
This is presumed that the effect of improving the light extraction efficiency could not be obtained because the surface layer of the structural layer 12 had few uneven regions and many planar regions.
In Comparative Example 3, the light extraction efficiency showed a slightly high value of 1.40. Moreover, no short circuit occurred.
This is because the concavo-convex region of the structural layer 12 has a certain effect on the suppression of plasmon absorption and the reflection of light emission. However, since the planar region is small, reflection from the emitted light is small, and as a result, overall It is estimated that the improvement in efficiency is not sufficient.
 比較例4では、比較例1と同等の光取出し効率となり効果が得られなかった。また、ショートは発生しなかった。
 これは、構造層12の表面の凹凸領域が少なく、平面領域が多いために、光取出し効率の向上効果は得られなかったと推定される。
 比較例5では、比較例1より低い光取出し効率となり効果が得られなかった。また、測定の開始から電流のリークが発生し、測定を行った後にショートした。
 これは、構造層12の表面の凹凸領域の凹凸部23の高さHが幅Dに対して非常に大きいために、切り立つ形状となり、一部の頂部で第1電極層14上に機能層15の蒸着膜の形成が進行せず、周辺部の機能層15よりも薄いかあるいは欠損したために。第1電極層14が第2電極層16側に露出した状態となって、微小な両極の通電領域が発生したため、電流が過剰に流れ、後にショートして発光不良となるとともに、発光領域に均一に電子又は正孔等のキャリア(電荷担体)が流れず、結果発光効率が低下したと推定される。
In Comparative Example 4, the light extraction efficiency was the same as in Comparative Example 1, and no effect was obtained. Moreover, no short circuit occurred.
This is presumed that the effect of improving the light extraction efficiency could not be obtained because the surface layer of the structural layer 12 had few uneven regions and many planar regions.
In Comparative Example 5, the light extraction efficiency was lower than in Comparative Example 1, and no effect was obtained. In addition, a current leak occurred from the start of the measurement, and short-circuited after the measurement.
This is because the height H of the concavo-convex portion 23 of the concavo-convex region on the surface of the structural layer 12 is very large with respect to the width D, and thus the shape becomes a standing shape. The formation of the deposited film was not progressed, and it was thinner than the peripheral functional layer 15 or was missing. Since the first electrode layer 14 is exposed to the second electrode layer 16 side and a minute bipolar electrode energization region is generated, an excessive current flows, and a short circuit occurs later to cause a light emission failure, and the light emission region is uniform. It is presumed that no carriers (charge carriers) such as electrons or holes flow in the light, resulting in a decrease in luminous efficiency.
 以上のように、本実施形態に係る有機EL素子10は、光透過性基板11上に、構造層12及び光透過性を有する第1電極層14と、発光層を含む機能層15と、第2電極層16とをこの順で積層されている。また、構造層12には、凹凸領域と平面領域とが設けられている。これにより、有機EL素子10の光取出し効率を向上させ、発光むらを低減して、発光品質を向上させることが可能であることが分かった。 As described above, the organic EL element 10 according to this embodiment includes the structural layer 12, the light-transmissive first electrode layer 14, the functional layer 15 including the light-emitting layer, the first layer on the light-transmissive substrate 11. Two electrode layers 16 are laminated in this order. Further, the structure layer 12 is provided with an uneven region and a planar region. Thereby, it turned out that the light extraction efficiency of the organic EL element 10 can be improved, light emission unevenness can be reduced, and light emission quality can be improved.
 以上、本願が優先権を主張する、日本国特許出願2016-029008号(2016年2月18日出願)の全内容は、参照により本開示の一部をなす。
 また、各実施形態により本発明を説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組合せによって画されうる。
As described above, the entire content of Japanese Patent Application No. 2016-029008 (filed on Feb. 18, 2016), to which the present application claims priority, forms part of the present disclosure by reference.
Further, although the present invention has been described by each embodiment, the scope of the present invention is not limited to the illustrated and described exemplary embodiments, and the same effects as those intended by the present invention are brought about. All embodiments are also included. Further, the scope of the present invention is not limited to the combinations of features of the invention defined by the claims, but can be defined by any desired combination of specific features out of every disclosed feature.
 本発明の有機EL素子は、良好な光取出し効率を維持しつつも、発光むらを抑制し良好な経時安定性を得ることができる。このため、本発明の有機EL素子は、均一な発光が求められるディスプレイ、面状光源、照明装置等の種々の用途に好適であり、省エネルギー化にも貢献できる。 The organic EL device of the present invention can suppress uneven light emission and obtain good stability over time while maintaining good light extraction efficiency. For this reason, the organic EL element of the present invention is suitable for various uses such as a display, a planar light source, and a lighting device that require uniform light emission, and can contribute to energy saving.
 10 有機EL素子
 11 光透過性基板
 12 構造層
 13 バリア層
 14 第1電極層
 15 機能層
 16 第2電極層
 20 光取出し基板
 21 凹凸領域
 22 平面領域
 23 凹凸部
 30 光取出しレンズ層
 31 光透過性シート
 32 レンズ層
  H 高さ
  D 幅
  L 凹凸部間の距離(平均距離)
DESCRIPTION OF SYMBOLS 10 Organic EL element 11 Light transmissive board | substrate 12 Structural layer 13 Barrier layer 14 1st electrode layer 15 Functional layer 16 2nd electrode layer 20 Light extraction board | substrate 21 Uneven region 22 Planar region 23 Uneven portion 30 Light extraction lens layer 31 Light transmittance Sheet 32 Lens layer H Height D Width L Distance between uneven parts (average distance)

Claims (10)

  1.  光透過性を有する基板の一方の面側に構造層、第1電極層、機能層及び第2電極層がこの順に形成され、
     前記構造層は、光透過性を有し、前記基板とは反対側の面に形成された複数の凹凸部からなる凹凸領域と平面部からなる平面領域との少なくとも2種類の領域を有し、
     前記第1電極層は光透過性を有し、
     前記機能層は発光層を含む、
     ことを特徴とする有機EL素子。
    A structural layer, a first electrode layer, a functional layer, and a second electrode layer are formed in this order on one surface side of the substrate having optical transparency,
    The structural layer is light transmissive, and has at least two types of regions, a concavo-convex region composed of a plurality of concavo-convex portions formed on a surface opposite to the substrate and a planar region composed of a flat portion,
    The first electrode layer is light transmissive,
    The functional layer includes a light emitting layer,
    An organic EL device characterized by that.
  2.  前記平面領域の面積に対する前記凹凸領域の面積の面積比である(前記凹凸領域の面積/前記平面領域の面積)は、1/4から10/1であることを特徴とする請求項1に記載の有機EL素子。 2. The area ratio of the area of the uneven area to the area of the planar area (area of the uneven area / area of the planar area) is from 1/4 to 10/1. Organic EL element.
  3.  前記凹凸領域の前記凹凸部の高さは、50nm以上800nm以下であることを特徴とする請求項2に記載の有機EL素子。 3. The organic EL element according to claim 2, wherein the height of the uneven portion of the uneven region is 50 nm or more and 800 nm or less.
  4.  前記凹凸部の幅に対する前記凹凸部の高さの比である(前記凹凸部の高さ/前記凹凸部の幅)は、1/5から8/5であることを特徴とする請求項3に記載の有機EL素子。 The ratio of the height of the uneven portion to the width of the uneven portion (height of the uneven portion / width of the uneven portion) is 1/5 to 8/5. The organic EL element of description.
  5.  前記凹凸領域に形成した複数の前記凹凸部における隣り合う凹凸部の間の距離は、前記凹凸部の幅より大きく、且つ300nm以上2μm以下であることを特徴とする請求項4に記載の有機EL素子。 5. The organic EL according to claim 4, wherein a distance between adjacent uneven portions of the plurality of uneven portions formed in the uneven region is larger than a width of the uneven portion and is not less than 300 nm and not more than 2 μm. element.
  6.  前記構造層と前記第1電極層との間にバリア層を備えることを特徴とする請求項1~請求項5のいずれか1項に記載の有機EL素子。 6. The organic EL device according to claim 1, further comprising a barrier layer between the structural layer and the first electrode layer.
  7.  前記基板における、前記構造層の形成面とは反対側の面に光取出しレンズ層を備えることを特徴とする請求項1~請求項6のいずれか1項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 6, further comprising a light extraction lens layer on a surface of the substrate opposite to a surface on which the structural layer is formed.
  8.  請求項1~請求項7のいずれか1項に記載の有機EL素子を少なくとも一部に有する照明装置。 An illumination device having at least a part of the organic EL element according to any one of claims 1 to 7.
  9.  請求項1~請求項7のいずれか1項に記載の有機EL素子を少なくとも一部に有する面状光源。 A planar light source having at least a part of the organic EL element according to any one of claims 1 to 7.
  10.  請求項1~請求項7のいずれか1項に記載の有機EL素子を少なくとも一部に有する表示装置。 A display device having at least a part of the organic EL element according to any one of claims 1 to 7.
PCT/JP2017/004176 2016-02-18 2017-02-06 Organic el element, lighting device, surface light source and display device WO2017141748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-029008 2016-02-18
JP2016029008A JP2017147146A (en) 2016-02-18 2016-02-18 Organic el element, and lighting system, surface light source and display device

Publications (1)

Publication Number Publication Date
WO2017141748A1 true WO2017141748A1 (en) 2017-08-24

Family

ID=59625044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004176 WO2017141748A1 (en) 2016-02-18 2017-02-06 Organic el element, lighting device, surface light source and display device

Country Status (2)

Country Link
JP (1) JP2017147146A (en)
WO (1) WO2017141748A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140915A (en) * 2007-11-14 2009-06-25 Canon Inc Light-emitting device
US20100157453A1 (en) * 2008-12-09 2010-06-24 Tpo Displays Corp. Display device and electrical apparatus
WO2012147759A1 (en) * 2011-04-27 2012-11-01 Jx日鉱日石エネルギー株式会社 Light extraction transparent substrate for organic electroluminescent element and organic electroluminescent element using same
WO2014057647A1 (en) * 2012-10-11 2014-04-17 パナソニック株式会社 Organic electroluminescence element and lighting device
JP2014096334A (en) * 2012-11-12 2014-05-22 Panasonic Corp Organic electroluminescent element
US20140175399A1 (en) * 2012-12-26 2014-06-26 Samsung Display Co., Ltd. Organic light emitting diode (oled) display and method of manufacturing the same
WO2015104968A1 (en) * 2014-01-10 2015-07-16 Jx日鉱日石エネルギー株式会社 Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
JP2015191787A (en) * 2014-03-28 2015-11-02 旭化成イーマテリアルズ株式会社 Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140915A (en) * 2007-11-14 2009-06-25 Canon Inc Light-emitting device
US20100157453A1 (en) * 2008-12-09 2010-06-24 Tpo Displays Corp. Display device and electrical apparatus
WO2012147759A1 (en) * 2011-04-27 2012-11-01 Jx日鉱日石エネルギー株式会社 Light extraction transparent substrate for organic electroluminescent element and organic electroluminescent element using same
WO2014057647A1 (en) * 2012-10-11 2014-04-17 パナソニック株式会社 Organic electroluminescence element and lighting device
JP2014096334A (en) * 2012-11-12 2014-05-22 Panasonic Corp Organic electroluminescent element
US20140175399A1 (en) * 2012-12-26 2014-06-26 Samsung Display Co., Ltd. Organic light emitting diode (oled) display and method of manufacturing the same
WO2015104968A1 (en) * 2014-01-10 2015-07-16 Jx日鉱日石エネルギー株式会社 Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
JP2015191787A (en) * 2014-03-28 2015-11-02 旭化成イーマテリアルズ株式会社 Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device

Also Published As

Publication number Publication date
JP2017147146A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US7696687B2 (en) Organic electroluminescent display device with nano-porous layer
US20110073897A1 (en) Organic led and manufacturing method thereof
JP2015207545A (en) Oled light emission device and manufacturing method for the same
US9343510B2 (en) Organic light emitting display device
JP5506475B2 (en) Method for manufacturing organic electroluminescent device
JP2017091695A (en) Organic electroluminescent element, lighting system, surface light source, and display device
JP2011108474A (en) Organic electroluminescence element and multi-color display apparatus using the same
CN1668154A (en) Organic electroluminescent element, panel display and portable electronic device
JP2004296219A (en) Light emitting element
WO2016031877A1 (en) Organic electroluminescent element
JP2010055926A (en) Organic electroluminescent element and its manufacturing method
WO2017056684A1 (en) Organic electroluminescence panel and production method therefor
WO2017141748A1 (en) Organic el element, lighting device, surface light source and display device
JP2006286238A (en) Flexible organic el element and its manufacturing method
WO2017213262A1 (en) Organic el element, illumination device using organic el element, planar light source and display device
JP2014225556A (en) Organic electroluminescent element, organic electroluminescent unit, organic electroluminescent device, and display method
WO2009099009A1 (en) Organic el display and manufacturing method of the same
WO2014185228A1 (en) Organic electroluminescence element pattern forming device
JP2010198907A (en) Organic electroluminescent display device
JP2019016478A (en) Organic el element, lighting device including the same, planar light source, and display device
JP6816407B2 (en) An organic EL element, and a lighting device, a planar light source, and a display device including the organic EL element.
WO2018016370A1 (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device
JP2016141044A (en) Flexible substrate and production method of the same
JP2019102299A (en) Organic el element, organic el lighting device, organic el element light source and organic el display device
JP6880681B2 (en) An organic EL element, and a lighting device, a planar light source, and a display device including the organic EL element.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753008

Country of ref document: EP

Kind code of ref document: A1