WO2017141724A1 - マット材、及び、排気システム - Google Patents

マット材、及び、排気システム Download PDF

Info

Publication number
WO2017141724A1
WO2017141724A1 PCT/JP2017/003899 JP2017003899W WO2017141724A1 WO 2017141724 A1 WO2017141724 A1 WO 2017141724A1 JP 2017003899 W JP2017003899 W JP 2017003899W WO 2017141724 A1 WO2017141724 A1 WO 2017141724A1
Authority
WO
WIPO (PCT)
Prior art keywords
mat
mat material
exhaust gas
fiber
scattering inhibitor
Prior art date
Application number
PCT/JP2017/003899
Other languages
English (en)
French (fr)
Inventor
隆彦 岡部
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to EP17752987.2A priority Critical patent/EP3418443B1/en
Priority to CN201780011323.2A priority patent/CN108699761B/zh
Priority to JP2018500034A priority patent/JP6936783B2/ja
Publication of WO2017141724A1 publication Critical patent/WO2017141724A1/ja
Priority to US16/059,038 priority patent/US20180347430A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/20Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • F01N2330/101Fibrous material, e.g. mineral or metallic wool using binders, e.g. to form a permeable mat, paper or the like
    • F01N2330/102Fibrous material, e.g. mineral or metallic wool using binders, e.g. to form a permeable mat, paper or the like fibrous material being fiber reinforced polymer made of plastic matrix reinforced by fine glass or in the form of a loose mass of filaments or fibers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/12Surface coverings for smell removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a mat member and an exhaust system.
  • an exhaust gas purification device in order to purify harmful substances such as harmful gases contained in exhaust gas discharged from an internal combustion engine such as an engine, an exhaust gas purification device is provided in an exhaust passage of the internal combustion engine.
  • An exhaust gas treatment body for purifying exhaust gas is provided in the exhaust gas purification device, and in order to maintain the temperature in the exhaust gas purification device above the activation temperature of the catalyst, the temperature of the exhaust gas flowing into the exhaust gas purification device Is effective.
  • the exhaust gas flows from the internal combustion engine into the exhaust gas purification device through the exhaust pipe, it is effective to wrap a heat insulating material around the surface of the exhaust pipe in order to keep the temperature of the exhaust gas flowing through the exhaust pipe high.
  • it is also effective to wrap heat insulation around the surface of the exhaust gas purification device and the exhaust gas treatment body, and it is effective to provide heat insulation at various locations in the exhaust system in order to maintain the temperature of the entire exhaust system. is there.
  • Patent Document 1 discloses that a dust generation preventing agent is imparted to the mat material.
  • An object of the present invention is to provide a mat material that generates little odor even when placed in an exhaust system and exposed to high temperature conditions.
  • the mat material of the present invention comprises inorganic fibers and an oily fiber scattering inhibitor attached to the surface of the inorganic fibers. It is a mat material of 05-2.0% by weight, and an odor index measured by an odor sensor for the odor of decomposition gas generated by placing on a hot plate at 500 ° C. is an acrylic resin as a fiber scattering inhibitor. It is characterized by a relative value of 80 or less, with the odor index of the mat material to which 1.0% by weight is attached being 130.
  • the mat material of the present invention is made of inorganic fibers and has an oily fiber scattering inhibitor of 0.05 to 2.0% by weight, which is a sufficient amount for preventing fiber scattering, so that the fiber scattering rate is low. It has become.
  • a low fiber scattering rate is preferable because fiber scattering is suppressed during the manufacture of the mat material, particularly during punching. Further, it is preferable because the mat material is prevented from being scattered during assembly work such as wrapping around the surface of the exhaust pipe, the surface of the exhaust gas treatment body, or the surface of the exhaust gas purification device.
  • the odor index of the decomposition gas generated by placing on a hot plate at 500 ° C. measured by an odor sensor is the odor index of the mat material in which 1.0% by weight of acrylic resin is adhered as a fiber scattering inhibitor. Is a relative value of 80 or less.
  • the mat material of the present invention is designed to fall within a range where the odor index by the odor sensor is low even if the fiber scattering inhibitor is thermally decomposed. Therefore, the odor in the engine room is prevented from becoming severe.
  • the odor index in the present specification is determined by placing a mat material on a hot plate at 500 ° C. using a handy odor monitor OMX-SRM (manufactured by Shinei Technology Co., Ltd.), which is a semiconductor type odor sensor. It is an index that measures the cracked gas generated. Moreover, it is a relative value where the odor index of a mat material to which 1.0% by weight of an acrylic resin (Nipol Lx854E, manufactured by Nippon Zeon Co., Ltd.) is attached as a fiber scattering inhibitor is 130.
  • OMX-SRM manufactured by Shinei Technology Co., Ltd.
  • the fiber scattering inhibitor preferably contains silicone oil. Further, it is preferable to further contain a surfactant.
  • the surface of the mat member preferably has water repellency.
  • Silicone oil has less carbon than synthetic resin, so it is less likely to cause malodor.
  • the silicone oil can be diluted with water and diluted to form an emulsion which can be attached to the mat material. By doing in this way, silicone oil can be made to adhere to a mat material thinly and uniformly.
  • silicone oil since water repellency can be imparted to the surface of the mat member by using silicone oil, it can be expected that the surface of the mat member blocks water such as rainwater from entering and adhering to the exhaust pipe surface.
  • the fiber scattering inhibitor preferably contains a plant-derived component. Further, it is preferable to further contain a surfactant.
  • a plant-derived component can be diluted with water and diluted to be attached to the mat material. By doing in this way, a plant-derived component can be made to adhere to a mat material thinly and uniformly.
  • the fiber scattering inhibitor includes a surfactant made from plant-derived components.
  • Surfactants that use plant-derived components as raw materials themselves function as fiber scattering inhibitors with less malodor generation. Then, due to its surface activity, it can be diluted with water and diluted to an emulsion to adhere to the mat material. By doing in this way, the surfactant which uses a plant-derived component as a raw material can be made to adhere to a mat material thinly and uniformly.
  • the amount of the fiber scattering inhibitor on the back surface portion is smaller than that of the front surface portion, and the back surface side is exhaust gas purification. It is preferable to be disposed on the side of at least one member selected from the group consisting of an apparatus, an exhaust gas treating body and an exhaust pipe. Suppressing the generation of bad odor due to thermal decomposition of the fiber scattering inhibitor by placing the back side where the amount of fiber scattering inhibitor is small on the side of the high temperature components such as the exhaust gas purification device, exhaust gas treatment body and exhaust pipe can do.
  • the mat material of the present invention preferably has needle punch marks. Since the mat material having the needle punch marks has the fibers entangled and fixed by the needling marks, there is no need to provide a binder, and the generation of an odor can be suppressed.
  • inorganic particles are further adhered. If inorganic particles are attached to the mat material, the frictional force between the inorganic fibers is improved, so the warping force of the mat material is improved and the mat material is misaligned when placed between the exhaust pipes as a heat insulating material. Is suppressed. In addition, when the mat material is wound around the exhaust gas treatment body and sandwiched between the metal casing and the exhaust gas treatment body and disposed as a holding sealing material, the holding power of the exhaust gas treatment body is improved. Further, even when the mat material is not disposed between the mat materials, the frictional resistance of the mat material increases due to the adhesion of the inorganic particles, so that the displacement of the mat material is suppressed.
  • the mat material of the present invention is preferably used as a heat insulating material.
  • a heat insulating material it is preferably used in various parts of the exhaust system such as the surface of the exhaust pipe, the surface of the exhaust gas treatment body, the surface of the exhaust gas purification device.
  • the mat material of the present invention is wound around an exhaust gas treatment body, disposed between the exhaust gas treatment body and the metal casing in the exhaust gas purification apparatus, and used as a holding sealing material for holding the exhaust gas treatment body.
  • the exhaust gas treatment body is held by the mat material disposed at the above-mentioned part, and the displacement of the exhaust gas treatment body in the exhaust gas purification device is prevented, and the exhaust gas treatment body is in contact with the metal casing covering the outer periphery and is damaged. This can be prevented.
  • the mat member of the present invention is disposed on the surface of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe in an automobile exhaust system. It is characterized by.
  • the exhaust gas purifying device, the exhaust gas treating body, and the exhaust pipe are members whose surfaces become high in temperature, and when the mat material of the present invention is disposed on the surfaces, a heat insulating effect can be exhibited. And even if the fiber scattering inhibitor contained in the mat member is thermally decomposed by heat from a member that becomes high temperature, the generation of odor is small.
  • the mat member of the present invention is disposed on the inner peripheral side of a heat insulator disposed outside an exhaust manifold in an exhaust system of an automobile.
  • the heat insulator disposed on the outside of the exhaust manifold is a member used for heat insulation, but a further heat insulation effect can be exerted by disposing the mat material of the present invention on the inner peripheral side of the heat insulator.
  • the exhaust manifold is a member whose surface becomes high temperature, if the mat material is disposed at this portion, the fiber scattering inhibitor contained in the mat material may be thermally decomposed. However, the mat material of the present invention generates little odor even when the fiber scattering inhibitor is thermally decomposed.
  • FIG. 1 is a perspective view schematically showing an example of the mat material of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the exhaust system of the present invention.
  • FIG. 3 is a perspective view schematically showing another example of the exhaust system of the present invention.
  • 4 is a cross-sectional view schematically showing a part of the exhaust system of the present invention shown in FIG. Fig.5 (a) is a side view which shows typically an example of the measuring apparatus for measuring the dispersibility of an inorganic fiber
  • FIG.5 (b) is a measuring apparatus for measuring the dispersibility of an inorganic fiber. It is the top view which showed typically an example of the sample support arm part which comprises.
  • the mat member and the exhaust system of the present invention will be specifically described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • the present invention also includes a combination of two or more desirable configurations of the present invention described below.
  • the mat material of the present invention comprises an inorganic fiber and an oily fiber scattering inhibitor attached to the surface of the inorganic fiber, and the amount of the fiber scattering inhibitor is 0.05 to 2.0% by weight. It is a certain mat material, and the odor index measured by an odor sensor for the odor of the decomposition gas generated by placing on a hot plate at 500 ° C. is 1.0% by weight of acrylic resin as a fiber scattering inhibitor.
  • the mat material has a odor index of 130 and a relative value of 80 or less.
  • the inorganic fiber in the mat material of the present invention is not particularly limited, and may be alumina-silica fiber, alumina fiber, silica fiber or the like. Moreover, glass fiber and biosoluble fiber may be sufficient. What is necessary is just to change according to the characteristics requested
  • low crystalline alumina inorganic fibers are preferable, and low crystalline alumina inorganic fibers having a mullite composition are more preferable.
  • inorganic fibers containing a spinel compound are more preferable. Since the highly crystalline alumina is hard and brittle, it is not suitable for work such as wrapping around the surface of the exhaust pipe, the surface of the exhaust gas treatment body, or the surface of the exhaust gas purification device.
  • an alumina fiber containing 85 to 98% by weight of the alumina component and 2 to 15% by weight of the silica component is also preferable.
  • the alumina fiber is thus rich in alumina, the heat resistance of the alumina fiber is improved.
  • the mat material can be obtained by various methods, and for example, can be manufactured by a needling method.
  • a needle mat obtained by subjecting a base mat made of inorganic fibers to needle punching is desirable.
  • the needle punching process refers to inserting and removing fiber entanglement means such as a needle with respect to the base mat.
  • the inorganic fibers constituting the mat material obtained by the needling method have a certain average fiber length.
  • the average fiber length of the inorganic fibers is preferably 1 to 150 mm. More preferably, it is 10 to 80 mm.
  • the average fiber length of the inorganic fibers is less than 1 mm, the fiber length of the inorganic fibers is too short, so that the entanglement between the inorganic fibers becomes insufficient, the winding property is lowered, and the mat material is easily broken.
  • the average fiber length of the inorganic fibers exceeds 150 mm, the fiber length of the inorganic fibers is too long, so that the number of fibers constituting the mat material is reduced, so that the density of the mat material is lowered. As a result, the mat material has a low shear strength.
  • the fiber length is measured using tweezers so that the fiber is not broken from the mat, and the fiber length is measured using an optical microscope.
  • the average fiber length is determined by extracting 300 fibers and measuring the fiber length. If the fibers cannot be pulled out without breaking the fibers from the mat, the mat is degreased, the degreased mat is put into water, and the fibers are collected so as not to break while loosening the fibers.
  • (weight per unit area) basis weight of the mat material is not particularly limited, is preferably a 200 ⁇ 4000g / m 2, and more desirably at 900 ⁇ 3000g / m 2.
  • the thickness of the mat material is preferably 5 to 20 mm.
  • the fiber scattering inhibitor in the mat material of the present invention is oily.
  • the oil form means a form different from a solid binder component such as an acrylic resin.
  • the adhesion amount of the fiber scattering inhibitor can be calculated by heating the mat material at a temperature equal to or lower than the heat resistance temperature of the inorganic fiber and equal to or higher than the heat resistance temperature of the fiber scattering inhibitor to obtain the heating loss. Since the weight reduction after heating the mat material at 600 ° C. for 1 hour using a heating furnace can be regarded as the amount of the fiber scattering inhibitor, the fiber is obtained by dividing this weight reduction by the weight of the mat material before heating.
  • the adhesion amount (% by weight) of the scattering inhibitor can be determined.
  • the adhesion amount of the fiber scattering inhibitor is 0.05 to 2.0% by weight, preferably 0.1 to 1.5% by weight.
  • the fiber scattering inhibitor in the mat material of the present invention preferably contains silicone oil.
  • silicone oils include, but are not limited to, straight silicone oils (dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, etc.), modified silicone oils (amino-modified reactive silicone oils).
  • Epoxy-modified reactive silicone oil Epoxy-modified reactive silicone oil, carboxy-modified reactive silicone oil, carbinol-modified reactive silicone oil, methacryl-modified reactive silicone oil, mercapto-modified reactive silicone oil, phenol-modified reactive silicone oil, Polyether-modified non-reactive silicone oil, methylstyryl-modified non-reactive silicone oil, alkyl-modified non-reactive silicone oil, higher fatty acid ester modification Non-reactive silicone oil, and non-reactive silicone oil was fluorine-modified, etc.).
  • the fiber scattering inhibitor in the mat material of the present invention preferably further contains a surfactant in addition to the silicone oil.
  • Silicone oil is usually insoluble in water, but by using a surfactant, it can be diluted with water and diluted to adhere to the mat material.
  • the surfactant is not particularly limited as long as it has an action of dispersing (emulsifying) silicone oil in water.
  • Anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants However, it is preferable to use a nonionic surfactant.
  • sorbitan fatty acid ester or polyoxyalkylene sorbitan fatty acid ester for example, polysorbate 20, polysorbate 60, polysorbate 65, polysorbate 80, etc.
  • the ratio of the silicone oil contained in the fiber scattering inhibitor in the mat material of the present invention is preferably 60% by weight or more, more preferably 80% by weight or more, and 99% by weight or less. preferable.
  • the fiber scattering inhibitor in the mat material of the present invention preferably contains a plant-derived component.
  • a plant-derived component In recent years, awareness of global environmental protection has increased, and the use of plant-derived materials is preferred compared to petroleum-derived materials from the viewpoint of carbon neutrality.
  • plant-derived oil it is preferable to contain plant-derived oil.
  • the plant-derived oil was selected from the group consisting of castor oil, rapeseed oil, sesame oil, canola oil, corn oil, coconut oil, palm oil, sunflower oil, camellia oil, soybean oil, cottonseed oil, peanut oil, and olive oil It is preferable that there is at least one. Among these, castor oil is more preferable.
  • the fiber scattering inhibitor in the mat material of the present invention preferably further contains a surfactant in addition to the plant-derived component.
  • plant-derived oil is usually insoluble in water, it can be diluted with water and diluted with water by using a surfactant to adhere to the mat material.
  • the surfactant is not particularly limited as long as it has an action of dispersing (emulsifying) a plant-derived component in water, and is an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant. Any of the agents can be used, but it is preferable to use a nonionic surfactant.
  • sorbitan fatty acid ester or polyoxyalkylene sorbitan fatty acid ester for example, polysorbate 20, polysorbate 60, polysorbate 65, polysorbate 80, etc.
  • plant-derived components other than plant-derived oils include polylactic acid.
  • a biodegradable resin such as polylactic acid dispersed in water with a surfactant to form an oil can also be used as an oily fiber scattering inhibitor.
  • examples of products available as an oily fiber scattering inhibitor in which polylactic acid is dispersed in water include Randy PL-1000 and Randy PL-3000 manufactured by Miyoshi Oil & Fat Co., Ltd.
  • the proportion of the plant-derived component contained in the fiber scattering inhibitor in the mat material of the present invention is preferably 60% by weight or more, more preferably 80% by weight or more, and 99% by weight or less. Is preferred.
  • the fiber scattering inhibitor in the mat material of the present invention preferably contains a surfactant made from plant-derived components.
  • Surfactants made from plant-derived ingredients include coconut oil fatty acid polyglyceryl, coconut fatty acid sorbitan, sucrose fatty acid ester, coconut oil fatty acid amide propyl betaine, palm kernel oil fatty acid amide propyl betaine, coconut oil fatty acid monoethanolamide, coconut Oil fatty acid diethanolamide, polyoxyethylene hydrogenated castor oil, polyoxyethylene coconut oil fatty acid monoethanolamide, polyoxyethylene coconut oil fatty acid diethanolamide, polyoxyethylene coconut oil fatty acid amide, polyoxyethylene sorbitan monolaurate derived from coconut oil ( Polysorbate 20), polyoxyethylene sorbitan monopalmitate derived from palm oil (polysorbate 40), polyoxyethylene sorbitan monostearate derived from palm oil (polysorbate 60) It is at least one selected from the group consisting of polyoxyethylene sorbitan tristearate derived from coconut oil (pol
  • the mat material of the present invention has an odor index measured by an odor sensor for the odor of decomposition gas generated by placing on a hot plate at 500 ° C., and 1.0% by weight of acrylic resin is attached as a fiber scattering inhibitor.
  • the mat material has a odor index of 130 and a relative value of 80 or less.
  • the definition and measurement method of the odor index are as described above.
  • the odor index of the mat material of the present invention is preferably 65 or less, and more preferably 55 or less.
  • the surface of the mat material preferably has water repellency.
  • the degree of water repellency it is preferable that the water droplets are not absorbed inside the mat material when the water droplets are dropped on the surface of the mat material with a dropper.
  • the contact angle between the water droplet and the surface of the mat member is more preferably 30 to 150 °.
  • the mat material of the present invention has a fiber scattering inhibitor of the back surface portion compared to the front surface portion when the mat material is divided into the surface portion, the middle portion, and the back surface portion in the thickness direction. It is preferable that the back side is disposed on the side of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe.
  • the adhesion amount of the fiber scattering inhibitor at each part of the front surface portion, the intermediate portion, and the back surface portion can be obtained by the same method as the method of obtaining the adhesion amount of the fiber scattering inhibitor on the entire mat material. What is necessary is just to calculate by calculating
  • inorganic particles adhere to the mat material of the present invention.
  • the inorganic particles include alumina, silica, zirconia and the like. These particles are preferably derived from an inorganic sol dispersion solution (alumina sol, silica sol, zirconia sol, etc.). If inorganic particles are attached to the mat material, the frictional force between the inorganic fibers is improved, so the warping force of the mat material is improved and the mat material is misaligned when placed between the exhaust pipes as a heat insulating material. Is suppressed.
  • the holding power of the exhaust gas treatment body is improved.
  • the frictional resistance of the mat material increases due to the adhesion of the inorganic particles, so that the displacement of the mat material is suppressed.
  • the mat material of the present invention is preferably used as a heat insulating material.
  • a heat insulating material it is preferably used in various parts of the exhaust system such as the surface of the exhaust pipe, the surface of the exhaust gas treatment body, the surface of the exhaust gas purification device.
  • the mat material of the present invention is wound around an exhaust gas treatment body, disposed between the exhaust gas treatment body and the metal casing in the exhaust gas purification apparatus, and used as a holding sealing material for holding the exhaust gas treatment body.
  • the exhaust gas treatment body is held by the mat material disposed at the above-mentioned part, and the displacement of the exhaust gas treatment body in the exhaust gas purification device is prevented, and the exhaust gas treatment body is in contact with the metal casing covering the outer periphery and is damaged. This can be prevented.
  • the mat member of the present invention is preferably a mat having a substantially rectangular shape in plan view and a flat plate shape having a predetermined length in the longitudinal direction, width and thickness.
  • a convex portion is formed on the first end portion which is one end portion of the end portions on the length direction side of the mat, and the second end portion which is the other end portion. It is preferable that a concave portion is formed at the end portion.
  • the convex part and the concave part of the mat have a shape that fits to each other when the mat member is wound around the exhaust gas purification device, the exhaust gas treatment body, or the exhaust pipe having a cylindrical outer periphery.
  • substantially rectangular in plan view is a concept including a convex portion and a concave portion.
  • the substantially rectangular shape in plan view includes a shape whose corners have an angle other than 90 °.
  • the mat material of the present invention may have a shape in which no convex portions and concave portions are formed.
  • FIG. 1 is a perspective view schematically showing an example of the mat material of the present invention.
  • a mat member 10 shown in FIG. 1 has a predetermined length in the longitudinal direction (hereinafter, indicated by an arrow L in FIG. 1), a width (indicated by an arrow W in FIG. 1), and a thickness (in FIG. 1, an arrow T).
  • a flat mat having a substantially rectangular shape in plan view.
  • a convex portion 11 is formed at a first end which is one end portion of end portions on the length direction side of the mat, and a second end portion which is the other end portion.
  • a recess 12 is formed on the surface.
  • the convex portion 11 and the concave portion 12 of the mat are shaped so as to be fitted to each other when the mat member is wound around the exhaust gas purification device, the exhaust gas treatment body, and the exhaust pipe having a cylindrical outer periphery.
  • a mat containing inorganic fibers is produced.
  • the mat can be obtained by various methods.
  • the mat can be produced by a needling method.
  • the needling method for example, it can be produced by the following method. That is, first, an inorganic fiber precursor having an average fiber diameter of 3 to 10 ⁇ m is produced by spinning a spinning mixture using, for example, a basic aluminum chloride aqueous solution and silica sol as raw materials. Subsequently, the inorganic fiber precursor is compressed to produce a continuous sheet-like material having a predetermined size, and the preparation of the mat is completed by performing a baking treatment. At this time, a needle punching process may be performed before the baking process.
  • the mat Since the mat is obtained as one large sheet-like member, it is cut into the shape of a mat material.
  • the mat can be cut with a Thomson blade, a guillotine blade, a laser, a water jet, or the like.
  • the above cutting method may be used as appropriate depending on the situation, but a Thomson blade or a guillotine blade is preferable if mass processing is important, and a laser or a water jet is preferable if cutting accuracy is important.
  • the mat material of the present invention can be obtained by applying a fiber scattering inhibitor to the cut mat.
  • the fiber scattering inhibitor is preferably applied uniformly in a thin state by being dispersed in water. Therefore, the fiber scattering inhibitor is preferably a mixture of a silicone oil and a surfactant so as to be easily dispersed in water, and is a mixture of a plant-derived component (plant-derived oil or the like) and a surfactant. Is also preferable. Moreover, it is preferable that it is surfactant itself which uses a plant-derived component as a raw material.
  • the concentration of the fiber scattering inhibitor in the dispersion thinned by dispersing the fiber scattering inhibitor in water is preferably 0.1 to 10% by weight, and more preferably 0.3 to 3% by weight.
  • a resin component may be added to the dispersion obtained by dispersing the fiber scattering inhibitor in water and diluting it.
  • the hardness of the inorganic fiber can be adjusted to an appropriate state by adding a resin component.
  • a water-soluble polymer such as polycarboxylic acid
  • the proportion of the resin component in the fiber scattering inhibitor is preferably 10 to 60% by weight. When the resin component exceeds 60% by weight, the odor index tends to be high.
  • the mat material of the present invention can be obtained by immersing the mat in a dispersion obtained by dispersing a fiber scattering inhibitor in water, and then pulling it up, drying it, and applying the fiber scattering inhibitor to the mat.
  • the drying temperature is preferably 100 to 180 ° C.
  • the drying time is preferably 1 to 30 minutes. Drying may be performed by ventilation drying in a drying furnace, or may be performed by placing a mat on a heated hot plate.
  • the mat in order to make the adhesion amount of the fiber scattering inhibitor different between the front surface portion and the back surface portion of the mat material, after the mat is immersed in the dispersion liquid and the fiber scattering inhibitor is applied, it is applied to one side of the mat.
  • a method of further applying a fiber scattering inhibitor by spraying a method of bringing only one side of the mat into contact with a dispersion having a high concentration of the fiber scattering inhibitor, and the like.
  • the amount of the fiber scattering inhibitor applied to the front surface portion and the back surface portion of the mat material can be made different by performing hot air drying in which a hot air is applied to one surface of the mat material at a wind speed of 2 m / second or more in a heating furnace. be able to.
  • the mat material When producing a mat material to which inorganic particles are adhered, it is preferable to immerse the mat in an inorganic sol dispersion solution containing inorganic particles.
  • the inorganic sol dispersion solution include silica sol, alumina sol, zirconia sol and the like.
  • the timing for attaching the inorganic particles is not particularly limited.
  • the mat material may be produced by immersing the mat in the inorganic sol dispersion solution and drying, and then applying and drying the fiber scattering inhibitor, or mixing the fiber scattering inhibitor and the inorganic sol dispersion solution to disperse the dispersion. And the mat may be immersed in the dispersion.
  • a method for producing a mat material having a water repellency on the surface of the mat material a method of applying silicone oil to a mat containing inorganic fibers can be mentioned.
  • silicone oil is used as a fiber scatter inhibitor, water repellency is exhibited by applying silicone oil to the mat material at room temperature, and water repellency is achieved by heat treatment after applying silicone oil to the mat material. It may be demonstrated.
  • dimethylpolysiloxane is used as the silicone oil, it exhibits water repellency because the methyl group, which is a hydrophobic group, faces the surface. In this case, the higher the heat treatment temperature, the higher the water repellency because the methyl group is completely directed to the surface.
  • the temperature at which the heat treatment is performed is preferably 200 to 450 ° C., more preferably 300 to 400 ° C.
  • An example of a silicone oil that exhibits water repellency when applied at room temperature is KM-742T manufactured by Shin-Etsu Chemical Co., Ltd.
  • KM-7750 manufactured by Shin-Etsu Chemical Co., Ltd. is an example of a silicone oil that does not exhibit water repellency even when applied at room temperature, but exhibits water repellency when heat-treated at 300 ° C. .
  • the invention of the following method for producing a water-repellent mat material can be considered.
  • a method for producing a water repellent mat material, Giving a fiber scattering inhibitor to a mat containing inorganic fibers A method for producing a water-repellent mat material, characterized by performing a heat treatment at 200 to 450 ° C.
  • the mat member of the present invention is disposed on the surface of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe in an automobile exhaust system. It is characterized by.
  • the exhaust system of the present invention includes an exhaust gas purification device, and the exhaust gas treatment body is accommodated in a cylindrical metal casing.
  • An inflow side exhaust pipe and an outflow side exhaust pipe are respectively connected to the metal casing.
  • a holding sealing material is wound around the exhaust gas treating body, and the holding sealing material is disposed between the exhaust gas treating body and the metal casing.
  • the holding sealing material is a mat containing inorganic fibers.
  • the shape of the holding sealing material is a substantially rectangular shape having a concave portion and a convex portion, and when the holding sealing material is wound around the exhaust gas treatment body, the concave portion and the convex portion of the holding sealing material are just fitted to each other. It is desirable that The mat material of the present invention may be used as a holding sealing material.
  • the exhaust gas treatment body is a ceramic honeycomb structure such as a porous ceramic, and is used as a catalyst carrier.
  • the catalyst carrier the exhaust gas flows into the through-holes in which both the exhaust gas inflow side end surface and the exhaust gas outflow side end surface are opened, and the exhaust gas is purified by the action of the catalyst carried on the partition walls separating the through holes.
  • the exhaust gas treating body may be a DPF (diesel particulate filter) in which either end of the through hole is alternately sealed.
  • the material constituting the exhaust gas treating body is not particularly limited, and non-oxides such as silicon carbide and silicon nitride, and oxides such as cordierite and aluminum titanate can be used.
  • the mat material of the present invention is disposed on the surface of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe.
  • the surface of the exhaust gas purification device is the surface of the metal casing.
  • the mat member is wound around the metal casing, the exhaust gas treatment body, and the exhaust pipe.
  • the mat material of the present invention wound around the surface of the exhaust gas treatment body inside the exhaust gas purification apparatus functions as a holding seal material
  • the mat material of the present invention wound around the surface of the metal casing of the exhaust gas purification apparatus functions as a heat insulating material. It may be an exhaust system. Further, the mat member of the present invention may be disposed in both the inflow side exhaust pipe and the outflow side exhaust pipe, or may be disposed in only one of them.
  • the mat material of the present invention when the mat material of the present invention is divided into the front surface portion, the middle portion, and the back surface portion in the thickness direction, it is a mat that has a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion, It is preferable that the back surface side be disposed on the surface of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe.
  • FIG. 2 is a cross-sectional view schematically showing an example of the exhaust system of the present invention.
  • An exhaust system 1 shown in FIG. 2 includes an exhaust gas purification device 100, and an exhaust gas treatment body 120 is accommodated in a cylindrical metal casing 130.
  • An inflow side exhaust pipe 140 and an outflow side exhaust pipe 150 are respectively connected to the metal casing 130.
  • An arrow G indicates the direction in which the exhaust gas flows.
  • a holding sealing material 110 is wound around the exhaust gas processing body 120, and the holding sealing material 110 is disposed between the exhaust gas processing body 120 and the metal casing 130.
  • the holding sealing material 110 is a mat containing inorganic fibers.
  • the shape of the holding sealing material 110 is a substantially rectangular shape having a concave portion and a convex portion, and when the holding sealing material 110 is wound around the exhaust gas treatment body 120, the concave portion and the convex portion of the holding sealing material 110 are exactly the same. It is designed to fit.
  • the holding sealing material 110 may be the mat material of the present invention.
  • the exhaust gas treating body 120 is a ceramic honeycomb structure such as a porous ceramic, and is used as a catalyst carrier.
  • the catalyst carrier the exhaust gas flows into the through hole 125 having both the exhaust gas inflow side end surface 120a and the exhaust gas outflow side end surface 120b open, and the exhaust gas is purified by the action of the catalyst supported on the partition wall 126 separating the through hole 125.
  • the mat member 10 is wound around the surface of the exhaust gas purification device 100 (the surface of the metal casing 130), the surface of the inflow side exhaust pipe 140, and the surface of the outflow side exhaust pipe 150. ing.
  • Another aspect of the exhaust system of the present invention is characterized in that the mat member of the present invention is disposed on the inner peripheral side of a heat insulator disposed outside an exhaust manifold in an exhaust system of an automobile.
  • An exhaust manifold is attached to the side of the automobile engine.
  • the exhaust manifold has a function of collecting exhaust gas from each cylinder and further sending the exhaust gas to the exhaust gas purification device.
  • the exhaust manifold is partially covered with a heat insulator.
  • High-temperature exhaust gas flows through the exhaust manifold in the exhaust system of an automobile, but it is preferable to flow to the downstream exhaust gas treatment body while the temperature of the exhaust gas is high because the catalyst efficiency in the exhaust gas treatment body is improved. Therefore, it is preferable to insulate the exhaust manifold.
  • the heat insulator is a plate-like member made of metal or the like, and a part thereof is fixed to the exhaust manifold by bolts or the like, but there is a space between the heat insulator and the exhaust manifold.
  • the mat material of the present invention is disposed on the inner peripheral side of the heat insulator, that is, on the exhaust manifold side.
  • the mat member of the present invention is preferably fixed to the inner peripheral surface of the heat insulator by fixing means such as an adhesive, bolts and nuts, rivets, staples, caulking, stud pins, eyelets and the like.
  • the mat material of the present invention disposed on the inner peripheral side of the heat insulator does not necessarily wrap around the tube, so there is no need to form a concave portion or a convex portion, and the outer shape conforms to the shape of the inner peripheral surface of the heat insulator. It may have a processed shape. Further, since the inner peripheral surface of the heat insulator is not usually a simple flat surface, it is also preferable to arrange the mat material without any gap on the inner peripheral surface of the heat insulator by combining a plurality of mat materials.
  • the mat material of the present invention is divided into the front surface portion, the middle portion, and the back surface portion in the thickness direction, it is a mat that has a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion, It is preferable that the back surface side be disposed on the exhaust manifold side.
  • FIG. 3 is a perspective view schematically showing another example of the exhaust system of the present invention
  • FIG. 4 is a cross-sectional view schematically showing a part of the exhaust system of the present invention shown in FIG.
  • an exhaust manifold 210 is attached to the side surface of the automobile engine 200.
  • the exhaust manifold 210 is covered with a heat insulator 220 at a part of its outer peripheral surface.
  • a part of the heat insulator 220 is fixed to the exhaust manifold 210 by bolts 230, but a space exists between the heat insulator 220 and the exhaust manifold 210.
  • the mat member 10 of the present invention is disposed on the inner peripheral side of the heat insulator 220, that is, on the exhaust manifold 210 side. In FIG. 4, the mat member 10 is also fixed by bolts 230.
  • the mat material of the present invention is made of inorganic fibers, and 0.05 to 2.0% by weight of an oily fiber scattering inhibitor, which is a sufficient amount for preventing fiber scattering, adheres to the mat material.
  • the rate is low.
  • a low fiber scattering rate is preferable because fiber scattering is suppressed during the manufacture of the mat material, particularly during punching.
  • the mat material is prevented from being scattered during assembly work such as wrapping around the surface of the exhaust pipe, the surface of the exhaust gas treatment body, or the surface of the exhaust gas purification device. Further, the odor in the engine room is prevented from becoming severe.
  • the mat member of the present invention is disposed on the surface of at least one member selected from the group consisting of an exhaust gas purification device, an exhaust gas treatment body, and an exhaust pipe, so that heat insulation is provided. The effect can be demonstrated. And even if the fiber scattering inhibitor contained in the mat member is thermally decomposed by heat from a member that becomes high temperature, the generation of odor is small.
  • the mat material of the present invention is disposed on the inner peripheral side of the heat insulator disposed outside the exhaust manifold in the exhaust system of the automobile, a further heat insulating effect is provided. It can be demonstrated. Further, since the exhaust manifold is a member whose surface becomes high temperature, if the mat material is disposed at this portion, the fiber scattering inhibitor contained in the mat material may be thermally decomposed. However, the mat material of the present invention generates little odor even when the fiber scattering inhibitor is thermally decomposed.
  • Example 1 (Preparation of mat) As a mat made of an inorganic fiber, a mat made of needle-punched alumina fiber mat (weight per unit area 1050 g / m 2 ) of 20 cm ⁇ 20 cm was prepared.
  • silicone oil As a fiber scatter inhibitor, silicone oil (KM-7750: manufactured by Shin-Etsu Chemical Co., Ltd.) is mixed with water to prepare a dispersion having a fiber scatter inhibitor concentration of 0.5% by weight. The mat was dipped in. The mat was immersed so that the amount of the fiber scattering inhibitor after drying was 0.5% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • Example 2 The same mat as in Example 1 was prepared, and as a fiber scattering inhibitor, silicone oil (KM-742T: manufactured by Shin-Etsu Chemical Co., Ltd.) was dispersed in water, and the concentration of the fiber scattering inhibitor was 0.5% by weight.
  • silicone oil KM-742T: manufactured by Shin-Etsu Chemical Co., Ltd.
  • An emulsion was prepared and a mat was immersed in the emulsion. The mat was immersed so that the amount of the fiber scattering inhibitor after drying was 0.5% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • Example 3 The same mat as in Example 1 was prepared, and a silicone oil (KF-96: manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a fiber scattering inhibitor, and a surfactant [Rheodor TW-O120V: manufactured by Kao Corporation: polyoxyethylene oleate] Sorbitan (polysorbate 80)] and an emulsion dispersed in water were prepared. Then, a dispersion was prepared in which the concentration of the fiber scattering inhibitor containing silicone oil and surfactant was mixed with water to 0.6% by weight, and the mat was immersed in this dispersion. The mat was immersed so that the amount of the fiber scattering inhibitor after drying was 0.6% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • a silicone oil KF-96: manufactured by Shin-Etsu Chemical Co., Ltd.
  • a surfactant [Rheodor TW-O120V: manufactured by Ka
  • Example 4 The same mat as in Example 1 was prepared, and castor oil was mixed with a surfactant [Reodol TW-O120V: manufactured by Kao Corporation: polyoxyethylene sorbitan oleate (polysorbate 80)] as a fiber scattering inhibitor.
  • a dispersed emulsion was prepared. Then, a dispersion was prepared by mixing with water so that the concentration of the fiber scattering inhibitor containing castor oil and surfactant was 0.5% by weight, and the mat was immersed in this dispersion. The mat was immersed so that the amount of the fiber scattering inhibitor after drying was 0.5% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • Example 5 The same mat as in Example 1 was prepared, and a dispersion liquid was prepared by mixing silicone oil (KM-7750: manufactured by Shin-Etsu Chemical Co., Ltd.) with water as a fiber scattering inhibitor. Further, the dispersion liquid was water-soluble. Polymer (polycarboxylic acid) was mixed. Then, a dispersion was prepared by mixing with water so that the concentration of the fiber scattering inhibitor was 0.3% by weight and the concentration of the water-soluble polymer was 0.3% by weight, and the mat was immersed in this dispersion. The mat was so immersed that the amount of the fiber scattering inhibitor after drying was 0.3% by weight and the amount of the water-soluble polymer was 0.3% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • silicone oil KM-7750: manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 6 A mat member was manufactured in the same manner as in Example 1 except that the hot plate drying in Example 1 was changed to a method of performing hot air drying at a wind speed of 2 m / second or more in a heating furnace set at 150 ° C. When the front surface portion, the intermediate portion, and the back surface portion were divided into three equal parts, a mat material having a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion was obtained. The odor measurement was performed by placing the back surface on a hot plate heated to 500 ° C.
  • Example 7 A mat member was produced in the same manner as in Example 2 except that the hot plate drying in Example 2 was changed to a method of performing hot air drying at a wind speed of 2 m / second or more in a heating furnace set at 150 ° C.
  • a mat material having a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion was obtained.
  • the odor measurement was performed by placing the back surface on a hot plate heated to 500 ° C.
  • Example 8 A mat member was produced in the same manner as in Example 3 except that the hot plate drying in Example 3 was changed to a method of performing hot air drying at a wind speed of 2 m / second or more in a heating furnace set at 150 ° C.
  • a mat material having a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion was obtained.
  • the odor measurement was performed by placing the back surface on a hot plate heated to 500 ° C.
  • Example 9 A mat member was produced in the same manner as in Example 4 except that the hot plate drying in Example 4 was changed to a method of performing hot air drying at a wind speed of 2 m / second or more in a heating furnace set at 150 ° C.
  • a mat material having a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion was obtained.
  • the odor measurement was performed by placing the back surface on a hot plate heated to 500 ° C.
  • Example 10 A mat member was manufactured in the same manner as in Example 5 except that the hot plate drying in Example 5 was changed to a method of performing hot air drying at a wind speed of 2 m / second or more in a heating furnace set at 150 ° C.
  • a mat material having a smaller amount of fiber scattering inhibitor on the back surface portion than the front surface portion was obtained.
  • the odor measurement was performed by placing the back surface on a hot plate heated to 500 ° C.
  • Example 1 The same mat as that of Example 1 was prepared, and an acrylic resin emulsion latex (Nipol Lx854E, manufactured by Nippon Zeon Co., Ltd.) was prepared as a fiber scattering inhibitor. The mat was immersed so that the amount of the fiber scattering inhibitor after drying was 1.0% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • an acrylic resin emulsion latex Nipol Lx854E, manufactured by Nippon Zeon Co., Ltd.
  • Comparative Example 2 In Comparative Example 1, the concentration of the acrylic resin emulsion latex was adjusted, and the mat was so immersed that the amount of the fiber scattering inhibitor after drying was 0.5% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • Comparative Example 3 In Comparative Example 1, the concentration of the acrylic resin emulsion latex was adjusted, and the mat was so immersed that the amount of the fiber scattering inhibitor after drying was 0.1% by weight. Further, the mat was placed on a hot plate heated to 150 ° C. and dried by hot plate to produce a mat material.
  • Example 4 In Example 1, no fiber scattering inhibitor was applied to the prepared mat, and this was used as a mat material.
  • Fig.5 (a) is a side view which shows typically an example of the measuring apparatus for measuring the scattering property of inorganic fiber.
  • the test apparatus 300 is connected to the upper ends of the two support columns 360 provided vertically on the base 350 so that the sample support arm 370 can rotate within a predetermined range. Has been.
  • FIG.5 (b) is the top view which showed typically an example of the sample support arm part which comprises the measuring apparatus for measuring the scattering property of inorganic fiber.
  • the other end of the sample support arm 370 is fixed by a sample fixing member 380 that connects the ends of the sample support arm 370 to each other.
  • the sample support arm 370 is locked by a predetermined locking mechanism, and the scattering test sample 310 is fixed to the sample fixing member 380 with the clip 320.
  • the sample support arm 370 is unlocked, the sample support arm 370 and the scattering test sample 310 start dropping in the direction toward the base 350 to which the column 360 is fixed, and the sample support arm 370 and the column 360 are moved.
  • the direction is changed so as to rotate around the connection portion, and the sample support arm 370 collides with the vertical wall member 390 when the sample support arm 370 and the column 360 become parallel to each other.
  • Fiber scattering rate (% by weight) (weight of scattering test sample before test ⁇ weight of scattering test sample after test) / (weight of scattering test sample before test) ⁇ 100
  • the mat material manufactured in each Example and Comparative Example was cut into 25 mm ⁇ 25 mm, placed on a hot plate heated to 500 ° C., and a handy odor monitor OMX-SRM (manufactured by Shinei Technology Co., Ltd.) which is a semiconductor type odor sensor. ), The gas suction nozzle part was placed on the mat approximately 10 to 20 cm above, and the odor index of the cracked gas was measured.
  • the odor index of the mat material of each Example and Comparative Example is shown as a relative value with the odor index of the cracked gas of Comparative Example 1 as 130.
  • the contact angle was measured for the following mat materials.
  • Sample 1 Matt material manufactured in Example 1
  • Sample 2 Matt material manufactured in Example 1 and heat treated at 300 ° C. for 10 minutes
  • Sample 3 Measurement of mat material contact angle manufactured in Example 2 was performed using a contact angle meter according to the wettability test method of the JIS R 3257 substrate glass surface.
  • the silicone oil used in the production of the mat material of Example 1 is a silicone oil that exhibits water repellency when heat-treated at 300 ° C.
  • the silicone oil used in the production of the mat material in Example 2 is: It can be said that it is a silicone oil that exhibits water repellency when applied at room temperature.
  • the mat material of each Example had a low fiber scattering rate and a low odor index.
  • the mat material of Comparative Example 1 had a high odor index although the fiber scattering rate was low.
  • the mat materials of Comparative Examples 2 and 3 had a high fiber scattering rate and a high odor index.
  • the mat material of Comparative Example 4 had a high fiber scattering rate because the fiber scattering inhibitor was not applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

無機繊維と、上記無機繊維の表面に付着されたオイル状の繊維飛散抑制剤とからなり、上記繊維飛散抑制剤の付着量が0.05~2.0重量%であるマット材であって、500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下であることを特徴とするマット材。

Description

マット材、及び、排気システム
本発明は、マット材、及び、排気システムに関する。
従来、エンジン等の内燃機関から排出された排ガス中に含まれる有害ガス等の有害物質を浄化するため、内燃機関の排気通路には、排ガス浄化装置が設けられている。
排ガス浄化装置内には排ガスを浄化するための排ガス処理体が設けられていて、排ガス浄化装置内の温度を触媒の活性化温度以上に維持するためには、排ガス浄化装置に流入する排ガスの温度を高く保つことが有効である。
排ガスは内燃機関から排気管を通って排ガス浄化装置に流入するので、排気管内を流通する排ガスの温度を高く保つために排気管の表面に断熱材を巻くことが有効である。また、排気管に限らず、排ガス浄化装置の表面や排ガス処理体に断熱材を巻くことも有効であり、排気システム全体の温度を保つために排気システムの各所に断熱材を設けることが有効である。
断熱材として、無機繊維製のマット材が知られており、特許文献1にはマット材に粉塵発生防止剤を付与することが開示されている。
特開平6-240580号公報
排気システム内における排気管、排ガス処理体や排ガス浄化装置の表面の温度は高温になる。そのため、マット材に含まれる成分のうち耐熱性が低い成分については、熱分解してエンジンルーム内等に飛散して悪臭を発生するという懸念がある。
特に、マット材にアクリル樹脂等の合成樹脂系のバインダを粉塵発生防止剤として付与した場合には、エンジンルーム内に悪臭が発生するという問題が顕著であった。
本発明は、排気システム内に配置して高温条件下に曝された場合でも、臭気の発生が少ないマット材を提供することを目的とする。
上記目的を達成するための、本発明のマット材は、無機繊維と、上記無機繊維の表面に付着されたオイル状の繊維飛散抑制剤とからなり、上記繊維飛散抑制剤の付着量が0.05~2.0重量%であるマット材であって、500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下であることを特徴とする。
本発明のマット材は、無機繊維からなり、繊維飛散防止に充分な量である0.05~2.0重量%のオイル状の繊維飛散抑制剤が付着しているので、繊維飛散率が低くなっている。繊維飛散率が低いと、マット材の製造、特に打ち抜き加工時に繊維飛散が抑制されるので好ましい。また、マット材を排気管の表面、排ガス処理体の表面、排ガス浄化装置の表面に巻きつける等の組み付け作業時の繊維飛散が抑制されるので好ましい。
また、500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下である。
本発明のマット材は繊維飛散抑制剤が熱分解したとしてもにおいセンサーによる臭気指数が低い範囲に収まるようになっている。そのため、エンジンルーム内の臭気が酷くなることが防止される。
なお、本明細書における臭気指数は、においセンサーとして半導体式のにおいセンサーであるハンディにおいモニターOMX-SRM(神栄テクノロジー株式会社製)を用いて、マット材を500℃の熱板上に載置して発生する分解ガスを測定した指数である。また、繊維飛散抑制剤としてアクリル樹脂(Nipol Lx854E、日本ゼオン株式会社製)を1.0重量%付着させたマット材の臭気指数を130とした相対値である。
本発明のマット材においては、上記繊維飛散抑制剤が、シリコーンオイルを含むことが好ましい。
また、さらに界面活性剤を含むことが好ましい。
また、マット材の表面が撥水性を有することが好ましい。
シリコーンオイルは合成樹脂に比べて炭素分が少ないので悪臭が発生しにくい。
また、界面活性剤を使用することによって、シリコーンオイルを水で希釈して薄めてエマルジョンにしてマット材に付着させることができる。このようにすることでシリコーンオイルを薄く均一にマット材に付着させることができる。
さらに、シリコーンオイルを用いるとマット材の表面に撥水性を付与することができるので、雨水等の水が排気管表面に侵入、付着することをマット材の表面で遮断することも期待できる。
本発明のマット材においては、上記繊維飛散抑制剤が、植物由来成分を含むことが好ましい。
また、さらに界面活性剤を含むことが好ましい。
植物由来成分が熱分解して発生するにおいは人にとって不快なにおいではない場合が多い。そのため、合成樹脂に比べて悪臭の発生が抑制されるといえる。
また、界面活性剤を使用することによって、植物由来成分を水で希釈して薄めてエマルジョンにしてマット材に付着させることができる。このようにすることで植物由来成分を薄く均一にマット材に付着させることができる。
本発明のマット材においては、上記繊維飛散抑制剤が、植物由来成分を原料とする界面活性剤を含むことが好ましい。
植物由来成分を原料とする界面活性剤は、それ自体が悪臭の発生の少ない繊維飛散抑制剤として機能する。そして、その界面活性能により、水で希釈して薄めてエマルジョンにしてマット材に付着させることができる。このようにすることで植物由来成分を原料とする界面活性剤を薄く均一にマット材に付着させることができる。
本発明のマット材においては、厚さ方向に表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少なく、裏面部側が排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の側に配置されることが好ましい。
繊維飛散抑制剤の付着量が少ない裏面部側を、排ガス浄化装置、排ガス処理体及び排気管といった高温になる部材の側に配置することによって、繊維飛散抑制剤の熱分解による悪臭の発生を抑制することができる。
本発明のマット材は、ニードルパンチ痕を有することが好ましい。ニードルパンチ痕を有するマット材は、ニードリング痕により繊維同士が絡み合って固定されているためバインダの付与の必要がなく、においの発生を抑制することができる。
本発明のマット材では、さらに無機粒子が付着していることが好ましい。
マット材に無機粒子が付着していると、無機繊維間の摩擦力が向上するためマット材の反り力が向上し、排気管に挟まれて断熱材として配置された場合にマット材の位置ずれが抑制される。
また、マット材が排ガス処理体に巻き付けられて金属ケーシングと排ガス処理体の間に挟まれて保持シール材として配置された場合には排ガス処理体の保持力が向上する。
また、マット材が何かに挟まれて配置されていない場合であっても無機粒子の付着によりマット材の摩擦抵抗が増加するためマット材の位置ずれが抑制される。
本発明のマット材は断熱材として使用されることが好ましい。
断熱材として使用される場合、排気管の表面、排ガス処理体の表面、排ガス浄化装置の表面等の排気システムの各所に使用されることが好ましい。
本発明のマット材は排ガス処理体に巻き付けられて、排ガス浄化装置内で排ガス処理体と金属ケーシングとの間に配設され、排ガス処理体を保持する保持シール材として使用されることが好ましい。
マット材が上記部位に配設されることで排ガス処理体を保持し、排ガス浄化装置内における排ガス処理体の位置ずれを防止するとともに排ガス処理体がその外周を覆う金属ケーシングと接触して破損することを防止することができる。
本発明の排気システムの一の態様は、自動車の排気系における、排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に、本発明のマット材が配置されてなることを特徴とする。
排ガス浄化装置、排ガス処理体及び排気管はその表面が高温になる部材であり、その表面に本発明のマット材が配置された場合は断熱効果を発揮することができる。そして、高温になる部材からの熱によりマット材に含まれる繊維飛散抑制剤が熱分解したとしても、臭気の発生が少ない。
本発明の排気システムの別の態様は、自動車の排気系におけるエキゾーストマニホールドの外側に配設するヒートインシュレータの内周側に、本発明のマット材が配置されてなることを特徴とする。
エキゾーストマニホールドの外側に配設されるヒートインシュレータは断熱のために用いられる部材であるが、ヒートインシュレータの内周側に本発明のマット材を配置することによってさらなる断熱効果を発揮することができる。また、エキゾーストマニホールドはその表面が高温になる部材であるので、この部位にマット材が配置されるとマット材に含まれる繊維飛散抑制剤が熱分解することがある。しかし、本発明のマット材は繊維飛散抑制剤が熱分解したとしても、臭気の発生が少ない。
図1は、本発明のマット材の一例を模式的に示した斜視図である。 図2は、本発明の排気システムの一例を模式的に示す断面図である。 図3は、本発明の排気システムの別の一例を模式的に示す斜視図である。 図4は、図3に示す本発明の排気システムの一部を模式的に示す断面図である。 図5(a)は、無機繊維の飛散性を測定するための測定装置の一例を模式的に示す側面図であり、図5(b)は、無機繊維の飛散性を測定するための測定装置を構成するサンプル支持アーム部の一例を模式的に示した平面図である。
(発明の詳細な説明)
以下、本発明のマット材及び排気システムについて具体的に説明する。しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
本発明のマット材は、無機繊維と、上記無機繊維の表面に付着されたオイル状の繊維飛散抑制剤とからなり、上記繊維飛散抑制剤の付着量が0.05~2.0重量%であるマット材であって、500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下であることを特徴とする。
本発明のマット材における無機繊維は、特に限定されず、アルミナ-シリカ繊維、アルミナ繊維、シリカ繊維等であってもよい。また、ガラス繊維や生体溶解性繊維であってもよい。耐熱性や耐風蝕性等、マット材に要求される特性等に応じて変更すればよく、各国の環境規制に適合できるような太径繊維や繊維長のものを使用するのが好ましい。
この中でも、低結晶性アルミナ質の無機繊維が好ましく、ムライト組成の低結晶性アルミナ質の無機繊維がより好ましい。加えて、スピネル型化合物を含む無機繊維がさらに好ましい。高結晶性アルミナ質であると、硬く脆いため、排気管の表面、排ガス処理体の表面、排ガス浄化装置の表面に巻きつける等の作業に不向きである。
また、アルミナ成分を85~98重量%及びシリカ成分を2~15重量%含むアルミナ繊維であることも好ましい。アルミナ繊維がこのようにアルミナリッチであると、アルミナ繊維の耐熱性が向上する。
マット材は、種々の方法により得ることができるが、例えば、ニードリング法により製造することができる。
特に、無機繊維からなる素地マットに対してニードルパンチング処理を施して得られるニードルマットであることが望ましい。ニードルパンチング処理とは、ニードル等の繊維交絡手段を素地マットに対して抜き差しすることをいう。
交絡構造を呈するために、ニードリング法により得られるマット材を構成する無機繊維はある程度の平均繊維長を有しており、例えば、無機繊維の平均繊維長は、1~150mmであることが好ましく、10~80mmであることがより好ましい。
無機繊維の平均繊維長が1mm未満であると、無機繊維の繊維長が短すぎるため、無機繊維同士の交絡が不充分となり、巻き付け性が低下し、マット材が割れやすくなる。また、無機繊維の平均繊維長が150mmを超えると、無機繊維の繊維長が長すぎるため、マット材を構成する繊維本数が減少するため、マット材の緻密性が低下する。その結果、マット材のせん断強度が低くなる。
繊維長の測定は、ピンセットを使用して、マットから繊維が破断しないように抜き取り、光学顕微鏡を使用して繊維長を測定する。ここでは、繊維300本を抜き取り、繊維長を計測した平均を平均繊維長とする。マットから繊維を破断せずに抜き取れない場合、マットを脱脂処理して、脱脂済みマットを水の中へ投入し、繊維同士の絡みをほぐしながら繊維破断しないように採取すると良い。
また、マット材の目付量(単位面積当たりの重量)は、特に限定されないが、200~4000g/mであることが望ましく、900~3000g/mであることがより望ましい。
また、マット材の厚みは5~20mmであることが望ましい。
本発明のマット材における繊維飛散抑制剤は、オイル状である。本明細書においてオイル状とは、アクリル樹脂等の固形のバインダ成分とは異なる形態であることを意味している。繊維飛散抑制剤を平板に滴下して平板を直角に傾けた際に繊維飛散抑制剤が平板上を流れる程度の流動性を少なくとも有する液体であることが好ましい。
繊維飛散抑制剤の付着量は、マット材を無機繊維の耐熱温度以下、かつ、繊維飛散抑制剤の耐熱温度以上の温度で加熱して加熱減量を求めることにより算出することができる。
マット材を加熱炉を用いて600℃、1時間加熱したのちの重量減少量が繊維飛散抑制剤の付着量とみなせるので、この重量減少量を加熱前のマット材の重量で除すことによって繊維飛散抑制剤の付着量(重量%)を求めることができる。
繊維飛散抑制剤の付着量は0.05~2.0重量%であり、0.1~1.5重量%であることが好ましい。
本発明のマット材における繊維飛散抑制剤は、シリコーンオイルを含むことが好ましい。
シリコーンオイルとしては特に限定されるものではないが、その例としては、ストレートシリコーンオイル(ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等)、変性シリコーンオイル(アミノ変性した反応性シリコーンオイル、エポキシ変性した反応性シリコーンオイル、カルボキシ変性した反応性シリコーンオイル、カルビノール変性した反応性シリコーンオイル、メタクリル変性した反応性シリコーンオイル、メルカプト変性した反応性シリコーンオイル、フェノール変性した反応性シリコーンオイル、ポリエーテル変性した非反応性シリコーンオイル、メチルスチリル変性した非反応性シリコーンオイル、アルキル変性した非反応性シリコーンオイル、高級脂肪酸エステル変性した非反応性シリコーンオイル、フッ素変性した非反応性シリコーンオイル等)が挙げられる。
本発明のマット材における繊維飛散抑制剤は、シリコーンオイルに加えてさらに界面活性剤を含むことが好ましい。シリコーンオイルは通常は水に不溶であるが、界面活性剤を用いることにより水で希釈して薄めてエマルジョンにしてマット材に付着させることができる。
界面活性剤としては、シリコーンオイルを水に分散(乳化)させる作用のあるものであれば特に限定されず、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれを使用することもできるが、ノニオン性界面活性剤を使用することが好ましい。ノニオン性界面活性剤の中でもソルビタン脂肪酸エステル又はポリオキシアルキレンソルビタン脂肪酸エステル(例えば、ポリソルベート20、ポリソルベート60、ポリソルベート65、ポリソルベート80等)を使用することがより好ましい。
また、本発明のマット材における繊維飛散抑制剤中に含まれるシリコーンオイルの割合が60重量%以上であることが好ましく、80重量%以上であることがより好ましく、99重量%以下であることが好ましい。
本発明のマット材における繊維飛散抑制剤は、植物由来成分を含むことが好ましい。近年、地球環境保護の意識が高まっており、カーボンニュートラルの観点から石油由来材料に比べて、植物由来材料の使用が好ましい。
特に、植物由来オイルを含むことが好ましい。
植物由来オイルとしては、ヒマシ油、ナタネ油、ゴマ油、キャノーラ油、コーン油、ココナッツオイル、パーム油、ヒマワリ油、ツバキ油、大豆油、綿実油、ピーナッツ油、及びオリーブオイルからなる群から選択された少なくとも1種であることが好ましい。これらの中ではヒマシ油がより好ましい。
本発明のマット材における繊維飛散抑制剤は、植物由来成分に加えてさらに界面活性剤を含むことが好ましい。特に、植物由来オイルは通常は水に不溶であるが、界面活性剤を用いることにより水で希釈して薄めてエマルジョンにしてマット材に付着させることができる。
界面活性剤としては、植物由来成分を水に分散(乳化)させる作用のあるものであれば特に限定されず、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれを使用することもできるが、ノニオン性界面活性剤を使用することが好ましい。ノニオン性界面活性剤の中でもソルビタン脂肪酸エステル又はポリオキシアルキレンソルビタン脂肪酸エステル(例えば、ポリソルベート20、ポリソルベート60、ポリソルベート65、ポリソルベート80等)を使用することがより好ましい。
植物由来オイル以外の植物由来成分としては、ポリ乳酸が挙げられる。
ポリ乳酸のような生分解性樹脂を界面活性剤によって水に分散させてオイル状にしたものも、オイル状の繊維飛散抑制剤として使用することができる。ポリ乳酸を水に分散させたオイル状の繊維飛散抑制剤で入手可能な製品としては、ミヨシ油脂株式会社製 ランディPL-1000、ランディPL-3000等が挙げられる。
また、本発明のマット材における繊維飛散抑制剤中に含まれる植物由来成分の割合が60重量%以上であることが好ましく、80重量%以上であることがより好ましく、99重量%以下であることが好ましい。
本発明のマット材における繊維飛散抑制剤は、植物由来成分を原料とする界面活性剤を含むことが好ましい。
植物由来成分を原料とする界面活性剤としては、ヤシ油脂肪酸ポリグリセリル、ヤシ脂肪酸ソルビタン、ショ糖脂肪酸エステル、ヤシ油脂肪酸アミドプロピルベタイン、パーム核油脂肪酸アミドプロピルベタイン、ヤシ油脂肪酸モノエタノールアミド、ヤシ油脂肪酸ジエタノールアミド、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンヤシ油脂肪酸モノエタノールアミド、ポリオキシエチレンヤシ油脂肪酸ジエタノールアミド、ポリオキシエチレンヤシ油脂肪酸アミド、ヤシ油由来のモノラウリン酸ポリオキシエチレンソルビタン(ポリソルベート20)、ヤシ油由来のモノパルミチン酸ポリオキシエチレンソルビタン(ポリソルベート40)、ヤシ油由来のモノステアリン酸ポリオキシエチレンソルビタン(ポリソルベート60)、ヤシ油由来のトリステアリン酸ポリオキシエチレンソルビタン(ポリソルベート65)、ヤシ油由来のオレイン酸ポリオキシエチレンソルビタン(ポリソルベート80)、及び、大豆由来のレシチンからなる群から選択された少なくとも1種であることが好ましい。
本発明のマット材は、500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下であることを特徴とする。
臭気指数の定義及び測定方法は上述のとおりである。
本発明のマット材の臭気指数は、65以下であることが好ましく、55以下であることがより好ましい。
本発明のマット材は、マット材の表面が撥水性を有することが好ましい。
撥水性の程度として、マット材の表面上にスポイトで水滴を滴下した際、マット材内部に水滴が吸収されないことが好ましい。また、マット材の表面上にスポイトで水滴を滴下した際、水滴とマット材表面の接触角が30~150°であることがより好ましい。
本発明のマット材は、繊維飛散抑制剤の付着量について、マット材を厚さ方向に表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少なく、裏面部側が排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の側に配置されることが好ましい。
表面部、中間部、裏面部の各部位における繊維飛散抑制剤の付着量は、マット材全体の繊維飛散抑制剤の付着量を求める方法と同じ方法で求めることができる。マットを厚さ方向に3等分した後に各部位について加熱して加熱減量を求めることにより算出すればよい。
本発明のマット材には無機粒子が付着していることが好ましい。
無機粒子としては、アルミナ、シリカ、ジルコニア等の粒子が挙げられる。これらの粒子は無機ゾル分散溶液(アルミナゾル、シリカゾル、ジルコニアゾル等)に由来することが好ましい。
マット材に無機粒子が付着していると、無機繊維間の摩擦力が向上するためマット材の反り力が向上し、排気管に挟まれて断熱材として配置された場合にマット材の位置ずれが抑制される。
また、マット材が排ガス処理体に巻き付けられて金属ケーシングと排ガス処理体の間に挟まれて保持シール材として配置された場合には排ガス処理体の保持力が向上する。
また、マット材が何かに挟まれて配置されていない場合であっても無機粒子の付着によりマット材の摩擦抵抗が増加するためマット材の位置ずれが抑制される。
本発明のマット材は、断熱材として使用されることが好ましい。
断熱材として使用される場合、排気管の表面、排ガス処理体の表面、排ガス浄化装置の表面等の排気システムの各所に使用されることが好ましい。
本発明のマット材は排ガス処理体に巻き付けられて、排ガス浄化装置内で排ガス処理体と金属ケーシングとの間に配設され、排ガス処理体を保持する保持シール材として使用されることが好ましい。
マット材が上記部位に配設されることで排ガス処理体を保持し、排ガス浄化装置内における排ガス処理体の位置ずれを防止するとともに排ガス処理体がその外周を覆う金属ケーシングと接触して破損することを防止することができる。
以下、本発明のマット材の形状の一例について説明する。
本発明のマット材は、所定の長手方向の長さ、幅及び厚さを有する平面視略矩形かつ平板形状のマットであることが好ましい。
本発明のマット材の一例では、マットの長さ方向側の端部のうち、一方の端部である第1の端部には凸部が形成されており、他方の端部である第2の端部には凹部が形成されていることが好ましい。マットの凸部及び凹部は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっていることが好ましい。
なお、「平面視略矩形」とは、凸部及び凹部を含む概念である。また、平面視略矩形には、角部が90°以外の角度を有する形状も含まれる。
また、本発明のマット材は凸部及び凹部が形成されていない形状であってもよい。
図1は、本発明のマット材の一例を模式的に示した斜視図である。
図1に示すマット材10は、所定の長手方向の長さ(以下、図1中、矢印Lで示す)、幅(図1中、矢印Wで示す)及び厚さ(図1中、矢印Tで示す)を有する平面視略矩形かつ平板形状のマットである。
マット材10では、マットの長さ方向側の端部のうち、一方の端部である第1の端部には凸部11が形成されており、他方の端部である第2の端部には凹部12が形成されている。マットの凸部11及び凹部12は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっている。
以下、本発明のマット材を製造する方法の一例について説明する。
まず、無機繊維を含むマットを作製する。マットは、種々の方法により得ることができるが、例えば、ニードリング法により製造することができる。
ニードリング法の場合、例えば、以下の方法により製造することができる。すなわち、まず、例えば、塩基性塩化アルミニウム水溶液とシリカゾル等とを原料とする紡糸用混合物をブローイング法により紡糸して3~10μmの平均繊維径を有する無機繊維前駆体を作製する。続いて、上記無機繊維前駆体を圧縮して所定の大きさの連続したシート状物を作製し、焼成処理を施すことによりマットの準備が完了する。このとき、焼成処理前にニードルパンチング処理を行っても良い。
上記マットは1枚の大きなシート状の部材として得られるので、これをマット材の形状に裁断する。マットの裁断は、トムソン刃、ギロチン刃、レーザー、ウォータジェット等により行うことができる。適宜、状況に応じて上記裁断方法を用いればよいが、大量加工を重視するのではあればトムソン刃やギロチン刃が好ましく、裁断精度を重視するのであればレーザーやウォータジェットが好ましい。
さらに、裁断されたマットに対して繊維飛散抑制剤の付与を行うことによって、本発明のマット材を得ることができる。
繊維飛散抑制剤は、水に分散させて薄めた状態で均一に付与させることが好ましい。そのため、繊維飛散抑制剤は、水に分散しやすくなるようにシリコーンオイルと界面活性剤との混合物であることが好ましく、植物由来成分(植物由来オイル等)と界面活性剤との混合物であることも好ましい。また、植物由来成分を原料とする界面活性剤そのものであることが好ましい。
繊維飛散抑制剤を水に分散させて薄めた分散液中における繊維飛散抑制剤の濃度は0.1~10重量%であることが好ましく、0.3~3重量%であることがより好ましい。
また、繊維飛散抑制剤を水に分散させて薄めた分散液中には、樹脂成分を加えてもよい。繊維飛散抑制剤をマットに付与した際に無機繊維が柔らかくなり過ぎる場合には樹脂成分を加えることで無機繊維の硬さを適切な状態に調整することができる。
樹脂成分としてはポリカルボン酸等の水溶性高分子を使用することが好ましい。また、繊維飛散抑制剤中における樹脂成分の割合は、10~60重量%であることが好ましい。
樹脂成分が60重量%を超えると臭気指数が高くなりやすい。
繊維飛散抑制剤を水に分散させて薄めた分散液中にマットを浸漬し、引き上げた後に乾燥してマットに対して繊維飛散抑制剤を付与することにより本発明のマット材が得られる。
乾燥温度は100~180℃、乾燥時間は1~30分であることが好ましい。
乾燥は乾燥炉内で通気乾燥により行ってもよく、加熱した熱板上にマットを載置することにより行ってもよい。
また、マット材の表面部と裏面部で繊維飛散抑制剤の付着量が異なるようにするためには、上記分散液にマットを浸漬させて繊維飛散抑制剤を付与した後、マットの片面側に対してスプレーによりさらに繊維飛散抑制剤を付与する方法や、マットの片面側のみを繊維飛散抑制剤の濃度の高い分散液に接触させる方法等が挙げられる。
また、加熱炉内でマット材の一方の面に風速2m以上/秒で熱風を当てる熱風乾燥を行うことによってもマット材の表面部と裏面部で繊維飛散抑制剤の付着量が異なるようにすることができる。
無機粒子が付着したマット材を製造する場合、無機粒子を含む無機ゾル分散溶液にマットを浸漬することが好ましい。無機ゾル分散溶液としては、シリカゾル、アルミナゾル、ジルコニアゾル等が挙げられる。
無機粒子を付着させるタイミングは特に限定されるものではない。
無機ゾル分散溶液へマットを浸漬、乾燥後、繊維飛散抑制剤の付与及び乾燥を行ってマット材の製造を行ってもよく、また、繊維飛散抑制剤と無機ゾル分散溶液を混合して分散液を作製しその分散液にマットを浸漬させてもよい。
マット材表面が撥水性を有するマット材を製造する方法として、無機繊維を含むマットにシリコーンオイルを付与する方法が挙げられる。
繊維飛散抑制剤としてシリコーンオイルを使用した場合に、常温でシリコーンオイルをマット材に付与することで撥水性が発揮される場合と、シリコーンオイルをマット材に付与した後に熱処理することによって撥水性が発揮される場合がある。
シリコーンオイルとしてジメチルポリシロキサンを使用した場合、疎水基であるメチル基が表面に向くために撥水性を示す。この場合、熱処理温度が高いほどメチル基が完全に表面に向くため撥水性が高くなる。
熱処理を行う場合の温度は200~450℃であることが好ましく、300~400℃であることがより好ましい。
常温で付与した場合に撥水性が発揮されるシリコーンオイルの例として、信越化学工業株式会社製のKM-742Tが挙げられる。また、常温で付与しても撥水性は発揮されないが、300℃での熱処理を行った場合に撥水性が発揮されるシリコーンオイルの例として、信越化学工業株式会社製のKM-7750が挙げられる。
上記を踏まえると、以下のような撥水性マット材の製造方法の発明が考えられる。
撥水性マット材の製造方法であって、
無機繊維を含むマットに繊維飛散抑制剤を付与し、
200~450℃で熱処理を行うことを特徴とする撥水性マット材の製造方法。
以下、本発明のマット材を用いた本発明の排気システムについて説明する。
本発明の排気システムの一の態様は、自動車の排気系における、排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に、本発明のマット材が配置されてなることを特徴とする。
本発明の排気システムは、排ガス浄化装置を備えており、排ガス処理体が筒状の金属ケーシングに収容されている。
金属ケーシングには流入側の排気管及び流出側の排気管がそれぞれ接続されている。
排ガス浄化装置の内部においては、排ガス処理体の周囲には保持シール材が巻きつけられており、保持シール材は排ガス処理体と金属ケーシングの間に配設されている。
保持シール材は無機繊維を含むマットである。保持シール材の形状は、凹部と凸部を有する平面略矩形状であり、排ガス処理体の周囲に保持シール材を巻きつけた際に保持シール材の凹部と凸部がちょうど互いに嵌合するようになっていることが望ましい。
保持シール材として本発明のマット材を使用してもよい。
排ガス処理体は、多孔質セラミック等のセラミック質のハニカム構造体であり、触媒担体として使用される。触媒担体においては、排ガス流入側端面及び排ガス流出側端面がともに開口した貫通孔に排ガスが流入し、貫通孔を隔てる隔壁に担持させた触媒の作用により排ガスが浄化される。
また、排ガス処理体は貫通孔のいずれかの端部が交互に封止されてなるDPF(ディーゼルパティキュレートフィルター)であってもよい。
排ガス処理体を構成する素材は特に限定されないが、炭化ケイ素質及び窒化ケイ素質等の非酸化物、並びに、コージェライト及びチタン酸アルミニウム等の酸化物を用いることができる。
本発明のマット材は、排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に配置される。排ガス浄化装置の表面はすなわち金属ケーシングの表面である。金属ケーシング、排ガス処理体及び排気管が筒状である場合、マット材は金属ケーシング、排ガス処理体及び排気管に巻き付けられて配置される。
排ガス浄化装置内部の排ガス処理体の表面に巻き付けられた本発明のマット材が保持シール材として働き、排ガス浄化装置の金属ケーシングの表面に巻き付けられた本発明のマット材が断熱材として働くような排気システムであってもよい。
また、本発明のマット材は流入側の排気管及び流出側の排気管の両方に配置されていてもよいし、どちらか一方にのみ配置されていてもよい。
また、本発明のマット材が、厚さ方向に表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマットであって、裏面部側が排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に配置されることが好ましい。
図2は、本発明の排気システムの一例を模式的に示す断面図である。
図2に示す排気システム1は、排ガス浄化装置100を備えており、排ガス処理体120が筒状の金属ケーシング130に収容されている。
金属ケーシング130には流入側排気管140及び流出側排気管150がそれぞれ接続されている。矢印Gは排ガスの流れる向きを示している。
排ガス浄化装置100の内部においては、排ガス処理体120の周囲には保持シール材110が巻きつけられており、保持シール材110は排ガス処理体120と金属ケーシング130の間に配設されている。
保持シール材110は無機繊維を含むマットである。保持シール材110の形状は、凹部と凸部を有する平面略矩形状であり、排ガス処理体120の周囲に保持シール材110を巻きつけた際に保持シール材110の凹部と凸部がちょうど互いに嵌合するようになっている。この保持シール材110が本発明のマット材であってもよい。
排ガス処理体120は、多孔質セラミック等のセラミック質のハニカム構造体であり、触媒担体として使用される。触媒担体においては、排ガス流入側端面120a及び排ガス流出側端面120bがともに開口した貫通孔125に排ガスが流入し、貫通孔125を隔てる隔壁126に担持させた触媒の作用により排ガスが浄化される。
図2に示す排気システム1においては、マット材10は、排ガス浄化装置100の表面(金属ケーシング130の表面)、流入側排気管140の表面及び流出側排気管150の表面に巻き付けられて配置されている。
本発明の排気システムの別の態様は、自動車の排気系におけるエキゾーストマニホールドの外側に配設するヒートインシュレータの内周側に、本発明のマット材が配置されてなることを特徴とする。
自動車エンジンの側面には、エキゾーストマニホールドが取り付けられている。
エキゾーストマニホールドは、各気筒からの排ガスを集合させ、さらに、排ガス浄化装置に排ガスを送る機能を有する。そして、エキゾーストマニホールドは、その外周面の一部がヒートインシュレータにより覆われている。
自動車の排気系におけるエキゾーストマニホールドには高温の排ガスが流れるが、この排ガスの温度が高いままで下流の排ガス処理体に流れると、排ガス処理体における触媒効率が向上するため好ましい。そのため、エキゾーストマニホールドを断熱することが好ましい。
ヒートインシュレータは金属等からなる板状の部材であり、ボルト等により一部がエキゾーストマニホールドに固定されているが、ヒートインシュレータとエキゾーストマニホールドとの間には空間が存在する。
ヒートインシュレータの内周側、すなわちエキゾーストマニホールド側に、本発明のマット材が配置される。本発明のマット材はヒートインシュレータの内周面に接着剤、ボルト及びナット、リベット、ステープル、かしめ、スタッドピン、ハトメ等の固定手段により固定されていることが好ましい。ヒートインシュレータの内周側に配置される本発明のマット材は、管に巻きつけるわけではないので凹部や凸部が形成されている必要はなく、ヒートインシュレータの内周面の形状に合わせて外形加工を行った形状であってもよい。
また、ヒートインシュレータの内周面は通常は単純な平面ではないので、複数枚のマット材を組み合わせることによってヒートインシュレータの内周面に隙間なくマット材を配置するようにすることも好ましい。
また、本発明のマット材が、厚さ方向に表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマットであって、裏面部側がエキゾーストマニホールド側に配置されることが好ましい。
図3は、本発明の排気システムの別の一例を模式的に示す斜視図であり、図4は、図3に示す本発明の排気システムの一部を模式的に示す断面図である。
図3に示すように、排気システム2において、自動車エンジン200の側面には、エキゾーストマニホールド210が取り付けられている。そして、エキゾーストマニホールド210は、その外周面の一部がヒートインシュレータ220により覆われている。
そして、図4に示すように、ヒートインシュレータ220はボルト230により一部がエキゾーストマニホールド210に固定されているが、ヒートインシュレータ220とエキゾーストマニホールド210との間には空間が存在する。
ヒートインシュレータ220の内周側、すなわちエキゾーストマニホールド210側に、本発明のマット材10が配置される。図4ではマット材10もボルト230により合わせて固定されている。
以下、本発明のマット材及び排気システムの作用効果について説明する。
(1)本発明のマット材は、無機繊維からなり、繊維飛散防止に充分な量である0.05~2.0重量%のオイル状の繊維飛散抑制剤が付着しているので、繊維飛散率が低くなっている。繊維飛散率が低いと、マット材の製造、特に打ち抜き加工時に繊維飛散が抑制されるので好ましい。また、マット材を排気管の表面、排ガス処理体の表面、排ガス浄化装置の表面に巻きつける等の組み付け作業時の繊維飛散が抑制されるので好ましい。
また、エンジンルーム内の臭気が酷くなることが防止される。
(2)本発明の排気システムの一の態様では、排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に本発明のマット材が配置されているので断熱効果を発揮することができる。そして、高温になる部材からの熱によりマット材に含まれる繊維飛散抑制剤が熱分解したとしても、臭気の発生が少ない。
(3)本発明の排気システムの別の態様では、自動車の排気系におけるエキゾーストマニホールドの外側に配設するヒートインシュレータの内周側に、本発明のマット材が配置されているのでさらなる断熱効果を発揮することができる。また、エキゾーストマニホールドはその表面が高温になる部材であるので、この部位にマット材が配置されるとマット材に含まれる繊維飛散抑制剤が熱分解することがある。しかし、本発明のマット材は繊維飛散抑制剤が熱分解したとしても、臭気の発生が少ない。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
(マットの準備)
無機繊維からなるマットとして、ニードルパンチされたアルミナ繊維製のマット(目付量1050g/m)を20cm×20cmとしたマットを準備した。
(繊維飛散抑制剤の付与)
繊維飛散抑制剤として、シリコーンオイル(KM-7750:信越化学工業株式会社製)を水と混合して繊維飛散抑制剤の濃度が0.5重量%となる分散液を調製し、この分散液中にマットを浸漬した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が0.5重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(実施例2)
実施例1と同じマットを準備し、繊維飛散抑制剤として、シリコーンオイル(KM-742T:信越化学工業株式会社製)を水に分散させて、繊維飛散抑制剤の濃度が0.5重量%となるエマルジョンを調製し、このエマルジョン中にマットを浸漬した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が0.5重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(実施例3)
実施例1と同じマットを準備し、繊維飛散抑制剤として、シリコーンオイル(KF-96:信越化学工業株式会社製)を界面活性剤[レオドール TW-O120V:花王株式会社製:オレイン酸ポリオキシエチレンソルビタン(ポリソルベート80)]と混合して水に分散させたエマルジョンを準備した。
そして、水と混合してシリコーンオイルと界面活性剤を含む繊維飛散抑制剤の濃度が0.6重量%となる分散液を調製し、この分散液中にマットを浸漬した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が0.6重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(実施例4)
実施例1と同じマットを準備し、繊維飛散抑制剤として、ヒマシ油を界面活性剤[レオドール TW-O120V:花王株式会社製:オレイン酸ポリオキシエチレンソルビタン(ポリソルベート80)]と混合して水に分散させたエマルジョンを準備した。
そして、水と混合してヒマシ油と界面活性剤を含む繊維飛散抑制剤の濃度が0.5重量%となる分散液を調製し、この分散液中にマットを浸漬した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が0.5重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(実施例5)
実施例1と同じマットを準備し、繊維飛散抑制剤として、シリコーンオイル(KM-7750:信越化学工業株式会社製)を水と混合して分散液を調製し、さらに、上記分散液に水溶性高分子(ポリカルボン酸)を混合した。
そして、水と混合して繊維飛散抑制剤の濃度が0.3重量%、水溶性高分子の濃度が0.3重量%となる分散液を調製し、この分散液中にマットを浸漬した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が0.3重量%、水溶性高分子の付着量が0.3重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(実施例6)
実施例1における熱板乾燥を、150℃に設定した加熱炉内で風速2m以上/秒の熱風乾燥を行う方法に変更した他は実施例1と同様にしてマット材を製造した。
表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマット材を得た。そして臭気測定は、裏面部を500℃に加熱した熱板上に載置して測定した。
(実施例7)
実施例2における熱板乾燥を、150℃に設定した加熱炉内で風速2m以上/秒の熱風乾燥を行う方法に変更した他は実施例2と同様にしてマット材を製造した。
表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマット材を得た。そして臭気測定は、裏面部を500℃に加熱した熱板上に載置して測定した。
(実施例8)
実施例3における熱板乾燥を、150℃に設定した加熱炉内で風速2m以上/秒の熱風乾燥を行う方法に変更した他は実施例3と同様にしてマット材を製造した。
表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマット材を得た。そして臭気測定は、裏面部を500℃に加熱した熱板上に載置して測定した。
(実施例9)
実施例4における熱板乾燥を、150℃に設定した加熱炉内で風速2m以上/秒の熱風乾燥を行う方法に変更した他は実施例4と同様にしてマット材を製造した。
表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマット材を得た。そして臭気測定は、裏面部を500℃に加熱した熱板上に載置して測定した。
(実施例10)
実施例5における熱板乾燥を、150℃に設定した加熱炉内で風速2m以上/秒の熱風乾燥を行う方法に変更した他は実施例5と同様にしてマット材を製造した。
表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少ないマット材を得た。そして臭気測定は、裏面部を500℃に加熱した熱板上に載置して測定した。
(比較例1)
実施例1と同じマットを準備し、繊維飛散抑制剤として、アクリル樹脂エマルジョンラテックス(Nipol Lx854E、日本ゼオン株式会社製)を準備した。
マットの浸漬は、乾燥後の繊維飛散抑制剤の付着量が1.0重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(比較例2)
比較例1において、アクリル樹脂エマルジョンラテックスの濃度を調整して、マットの浸漬を、乾燥後の繊維飛散抑制剤の付着量が0.5重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(比較例3)
比較例1において、アクリル樹脂エマルジョンラテックスの濃度を調整して、マットの浸漬を、乾燥後の繊維飛散抑制剤の付着量が0.1重量%となるように行った。
さらに150℃に加熱した熱板上にマットを載置して熱板乾燥を行い、マット材を製造した。
(比較例4)
実施例1において、準備したマットに繊維飛散抑制剤を付与せず、これをマット材とした。
(繊維飛散率の評価)
無機繊維の飛散性については、以下の手順によって測定した。
まず、各実施例及び各比較例で製造したマット材を100mm×100mmに切り出し、飛散性試験用サンプル310とする。この飛散性試験用サンプルについて、図5(a)及び図5(b)に示す測定装置を用いて、無機繊維の飛散率を測定することができる。
図5(a)は、無機繊維の飛散性を測定するための測定装置の一例を模式的に示す側面図である。図5(a)に示すように、試験装置300は、基台350上に垂直に設けられた2本の支柱360の上端部にサンプル支持アーム370が所定の範囲内で回転可能となるよう接続されている。さらに、2本の支柱360間には、上記サンプル支持アームと衝突可能な位置に、垂直壁部材390が固定されている。
また、図5(b)は、無機繊維の飛散性を測定するための測定装置を構成するサンプル支持アーム部の一例を模式的に示した平面図である。図5(b)に示すように、サンプル支持アーム370のもう一方の端部はサンプル支持アーム370の端部同士を接続するサンプル固定部材380によって固定されている。サンプル支持アーム370の端部に接続されるサンプル固定部材380から支柱360方向に一定距離離れた位置には、もう一本のサンプル固定部材380が存在し、2本のサンプル支持アーム370は、少なくとも2箇所でサンプル固定部材380によって接続されている。
サンプル支持アーム370と支柱360との角度が90°となる位置で、サンプル支持アーム370を所定のロック機構によりロックし、飛散性試験用サンプル310をクリップ320でサンプル固定部材380に固定する。サンプル支持アーム370のロックを解除すると、サンプル支持アーム370と飛散性試験用サンプル310は支柱360を固定している基台350に向かう方向に落下を開始し、サンプル支持アーム370と支柱360との接続部を中心に回転するように向きを変え、サンプル支持アーム370と支柱360とが平行となる時点で、サンプル支持アーム370が垂直壁部材390に衝突する。この衝突により、飛散性試験用サンプル310を構成する無機繊維の一部が破断し、飛散する。そのため、衝突前後の飛散性試験用サンプル310の重量を計測し、以下の式を用いて、繊維飛散率を求めることができる。:
繊維飛散率(重量%)=(試験前の飛散性試験用サンプルの重量-試験後の飛散性試験用サンプルの重量)/(試験前の飛散性試験用サンプルの重量)×100
(臭気の評価)
各実施例及び比較例で製造したマット材を25mm×25mmに切り出し、500℃に加熱した熱板上に載置し、半導体式のにおいセンサーであるハンディにおいモニターOMX-SRM(神栄テクノロジー株式会社製)を用いて、ガス吸引ノズル部をマット上の約10~20cm程度上部に配置し、分解ガスの臭気指数を測定した。
各実施例及び比較例のマット材の臭気指数を、比較例1の分解ガスの臭気指数を130として、相対値で示した。
上記評価結果をまとめて表1に示した。
Figure JPOXMLDOC01-appb-T000001
(撥水性の評価)
以下のマット材につき、接触角を測定した。
(試料1)実施例1で製造したマット材
(試料2)実施例1で製造したマット材を300℃、10分熱処理したマット材
(試料3)実施例2で製造したマット材
接触角の測定は、JIS R 3257 基板ガラス表面のぬれ性試験方法に準じた接触角計を用いて行った。
その結果、試料1のマット材では水滴がマット内部に吸収され、試料2のマット材の接触角は105°、試料3のマット材の接触角は95°となった。
実施例1のマット材の製造に使用したシリコーンオイルは300℃での熱処理を行った場合に撥水性が発揮されるシリコーンオイルであり、実施例2のマット材の製造に使用したシリコーンオイルは、常温で付与した場合に撥水性が発揮されるシリコーンオイルであるといえる。
各実施例のマット材は、繊維飛散率が低く、かつ、臭気指数も低くなっていた。それに対し、比較例1のマット材は繊維飛散率は低いものの臭気指数が高くなっていた。比較例2及び3のマット材は繊維飛散率が高く、臭気指数も高くなっていた。比較例4のマット材は繊維飛散抑制剤が付与されていないため繊維飛散率が高くなっていた。
1,2 排気システム
10 マット材
100 排ガス浄化装置
110 保持シール材
120 排ガス処理体
130 金属ケーシング
200 自動車エンジン
210 エキゾーストマニホールド
220 ヒートインシュレータ
 

Claims (14)

  1. 無機繊維と、
    前記無機繊維の表面に付着されたオイル状の繊維飛散抑制剤とからなり、
    前記繊維飛散抑制剤の付着量が0.05~2.0重量%であるマット材であって、
    500℃の熱板上に載置して発生する分解ガスの臭気をにおいセンサーにより測定した臭気指数が、繊維飛散抑制剤としてアクリル樹脂を1.0重量%付着させたマット材の臭気指数を130とした相対値として80以下であることを特徴とするマット材。
  2. 前記繊維飛散抑制剤が、シリコーンオイルを含む請求項1に記載のマット材。
  3. 前記繊維飛散抑制剤が、さらに界面活性剤を含む請求項2に記載のマット材。
  4. マット材の表面が撥水性を有する請求項2又は3に記載のマット材。
  5. 前記繊維飛散抑制剤が、植物由来成分を含む請求項1に記載のマット材。
  6. 前記繊維飛散抑制剤が、さらに界面活性剤を含む請求項5に記載のマット材。
  7. 前記繊維飛散抑制剤が、植物由来成分を原料とする界面活性剤を含む請求項1に記載のマット材。
  8. 厚さ方向に表面部、中間部、裏面部と3等分した際、表面部に比べて裏面部の繊維飛散抑制剤の付着量が少なく、裏面部側が排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の側に配置される請求項1~7のいずれかに記載のマット材。
  9. ニードルパンチ痕を有する請求項1~8のいずれかに記載のマット材。
  10. さらに無機粒子が付着している請求項1~9のいずれかに記載のマット材。
  11. 断熱材として使用される請求項1~10のいずれかに記載のマット材。
  12. 排ガス処理体に巻き付けられて、排ガス浄化装置内で排ガス処理体と金属ケーシングとの間に配設され、排ガス処理体を保持する保持シール材として使用される請求項1~10のいずれかに記載のマット材。
  13. 自動車の排気系における、排ガス浄化装置、排ガス処理体及び排気管からなる群から選択される少なくとも一つの部材の表面に、請求項1~12のいずれかに記載のマット材が配置されてなることを特徴とする排気システム。
  14. 自動車の排気系におけるエキゾーストマニホールドの外側に配設するヒートインシュレータの内周側に、請求項1~11のいずれかに記載のマット材が配置されてなることを特徴とする排気システム。
     
PCT/JP2017/003899 2016-02-16 2017-02-03 マット材、及び、排気システム WO2017141724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17752987.2A EP3418443B1 (en) 2016-02-16 2017-02-03 Mat material and exhaust system
CN201780011323.2A CN108699761B (zh) 2016-02-16 2017-02-03 垫材和排气系统
JP2018500034A JP6936783B2 (ja) 2016-02-16 2017-02-03 マット材、及び、排気システム
US16/059,038 US20180347430A1 (en) 2016-02-16 2018-08-09 Mat material and exhaust system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016027390 2016-02-16
JP2016-027390 2016-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/059,038 Continuation US20180347430A1 (en) 2016-02-16 2018-08-09 Mat material and exhaust system

Publications (1)

Publication Number Publication Date
WO2017141724A1 true WO2017141724A1 (ja) 2017-08-24

Family

ID=59625025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003899 WO2017141724A1 (ja) 2016-02-16 2017-02-03 マット材、及び、排気システム

Country Status (5)

Country Link
US (1) US20180347430A1 (ja)
EP (1) EP3418443B1 (ja)
JP (1) JP6936783B2 (ja)
CN (1) CN108699761B (ja)
WO (1) WO2017141724A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116076A (ja) * 2017-12-27 2019-07-18 イビデン株式会社 多層マット及び多層マットの製造方法
JP2020097901A (ja) * 2018-12-17 2020-06-25 イビデン株式会社 保持シール材及び保持シール材の製造方法
WO2021049274A1 (ja) * 2019-09-10 2021-03-18 イビデン株式会社 マット材、排ガス浄化装置、マット材付き排気管及び排気システム
JP2021046646A (ja) * 2019-09-10 2021-03-25 イビデン株式会社 マット材、排ガス浄化装置、マット材付き排気管及び排気システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115988A (ja) * 1984-11-12 1986-06-03 Mitsubishi Chem Ind Ltd 撥水剤組成物
JPH03249281A (ja) * 1990-02-23 1991-11-07 Toray Dow Corning Silicone Co Ltd 繊維用撥水剤
JPH06240580A (ja) 1993-02-16 1994-08-30 Denki Kagaku Kogyo Kk アルミナ繊維成形体及び無機質繊維成形体の粉塵発生抑制方法
JPH06287864A (ja) * 1993-04-02 1994-10-11 Toshiba Monofrax Co Ltd 無機質繊維成形体
JPH06294071A (ja) * 1993-04-08 1994-10-21 Chubu Kogyo Kk 無機繊維の皮膚刺激及び飛散の防止方法
JP2000212876A (ja) * 1999-01-20 2000-08-02 Kanebo Ltd 耐久撥水ガラス繊維製品及びその製造方法
JP2000320327A (ja) * 1999-05-10 2000-11-21 Sanwa Packing Kogyo Co Ltd 熱交換機能を有するヒートインシュレータ及びそれを用いる内燃機関の排気系における熱利用装置
JP2011208344A (ja) * 2010-03-09 2011-10-20 Mitsubishi Plastics Inc 軽量無機繊維成形体、及びその製造方法
WO2015038366A1 (en) * 2013-09-12 2015-03-19 3M Innovative Properties Company Use of a lubricant in a mounting mat, method for making such a mat and mounting mat
WO2015059881A1 (ja) * 2013-10-21 2015-04-30 ニチアス株式会社 無機繊維マット及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2161592A1 (en) * 1994-11-03 1996-05-04 David P. Aschenbeck Method for manufacturing mineral fibers
JP3225926B2 (ja) * 1998-07-14 2001-11-05 日本電気株式会社 電子メール送受信方法及びそのシステム並びにプログラムを記録した機械読み取り可能な記録媒体
JP4730495B2 (ja) * 2001-05-25 2011-07-20 イビデン株式会社 触媒コンバータ用保持シール材及びその製造方法、触媒コンバータ
WO2012021270A2 (en) * 2010-08-13 2012-02-16 Unifrax I Llc Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
US9759112B2 (en) * 2011-08-05 2017-09-12 Nichias Corporation Retainer for gas processing device, gas processing device, and manufacturing methods therefor
KR101291964B1 (ko) * 2011-11-16 2013-08-09 이비덴 가부시키가이샤 유지 시일재, 그 제조 방법 및 배기 가스 정화 장치
JP6411721B2 (ja) * 2013-09-24 2018-10-24 イビデン株式会社 保持シール材の製造方法
CN104446306B (zh) * 2014-11-17 2016-08-17 广州大学 一种亚微米无机晶须气凝胶隔热复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115988A (ja) * 1984-11-12 1986-06-03 Mitsubishi Chem Ind Ltd 撥水剤組成物
JPH03249281A (ja) * 1990-02-23 1991-11-07 Toray Dow Corning Silicone Co Ltd 繊維用撥水剤
JPH06240580A (ja) 1993-02-16 1994-08-30 Denki Kagaku Kogyo Kk アルミナ繊維成形体及び無機質繊維成形体の粉塵発生抑制方法
JPH06287864A (ja) * 1993-04-02 1994-10-11 Toshiba Monofrax Co Ltd 無機質繊維成形体
JPH06294071A (ja) * 1993-04-08 1994-10-21 Chubu Kogyo Kk 無機繊維の皮膚刺激及び飛散の防止方法
JP2000212876A (ja) * 1999-01-20 2000-08-02 Kanebo Ltd 耐久撥水ガラス繊維製品及びその製造方法
JP2000320327A (ja) * 1999-05-10 2000-11-21 Sanwa Packing Kogyo Co Ltd 熱交換機能を有するヒートインシュレータ及びそれを用いる内燃機関の排気系における熱利用装置
JP2011208344A (ja) * 2010-03-09 2011-10-20 Mitsubishi Plastics Inc 軽量無機繊維成形体、及びその製造方法
WO2015038366A1 (en) * 2013-09-12 2015-03-19 3M Innovative Properties Company Use of a lubricant in a mounting mat, method for making such a mat and mounting mat
WO2015059881A1 (ja) * 2013-10-21 2015-04-30 ニチアス株式会社 無機繊維マット及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116076A (ja) * 2017-12-27 2019-07-18 イビデン株式会社 多層マット及び多層マットの製造方法
JP7216475B2 (ja) 2017-12-27 2023-02-01 イビデン株式会社 多層マット及び多層マットの製造方法
JP2020097901A (ja) * 2018-12-17 2020-06-25 イビデン株式会社 保持シール材及び保持シール材の製造方法
WO2021049274A1 (ja) * 2019-09-10 2021-03-18 イビデン株式会社 マット材、排ガス浄化装置、マット材付き排気管及び排気システム
JP2021046646A (ja) * 2019-09-10 2021-03-25 イビデン株式会社 マット材、排ガス浄化装置、マット材付き排気管及び排気システム

Also Published As

Publication number Publication date
EP3418443B1 (en) 2020-11-25
JP6936783B2 (ja) 2021-09-22
US20180347430A1 (en) 2018-12-06
CN108699761A (zh) 2018-10-23
EP3418443A1 (en) 2018-12-26
CN108699761B (zh) 2021-05-14
EP3418443A4 (en) 2019-08-07
JPWO2017141724A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6756488B2 (ja) マット材、及び、排気システム
WO2017141724A1 (ja) マット材、及び、排気システム
KR101695993B1 (ko) 고강도 생체가용성 무기섬유 단열매트
KR100976917B1 (ko) 매트 재료, 배기 가스 처리 장치 및 머플러
EP2985435B1 (en) Holding seal member, method for producing holding seal member, and exhaust gas purification device
KR20070091649A (ko) 장착 매트 및 장착 매트를 사용하는 오염 제어 장치
JP2007127112A (ja) 保持シール材および排気ガス処理装置
JP2009079319A (ja) 無機繊維マット、保持シール材、吸音材及び無機繊維マットの製造方法
KR20120074284A (ko) 다층 매트 및 배기 가스 처리 장치
HUE027312T2 (en) Mounting insert with flange flange protection and exhaust washer cleaning tool
EP3051185B1 (en) Method for producing a holding sealing material
EP3051187B1 (en) Holding seal material, production method for holding seal material, production method for exhaust gas purification device, and exhaust gas purification device
JP2007031886A (ja) 保持シール材および排気ガス浄化装置
JP4688614B2 (ja) 保持シール材および排気ガス浄化装置
JP2007092553A (ja) 排気ガス処理体用の保持シール材及びそれを用いた排気ガス浄化装置
EP3051186B1 (en) Production method for holding seal material
US20050115215A1 (en) Sealing material, method for sealing honeycomb structure and sealed honeycomb structure
JP2014034968A (ja) 排ガス浄化装置の製造方法及び排ガス浄化装置
JP6966855B2 (ja) マット材
JP6161485B2 (ja) 保持シール材、保持シール材の製造方法、排ガス浄化装置の製造方法、及び、排ガス浄化装置
JP2015214906A (ja) 保持シール材、保持シール材の製造方法及び排ガス浄化装置
JP7430099B2 (ja) マット材、排ガス浄化装置及びマット材の製造方法
JP6310779B2 (ja) 保持シール材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500034

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017752987

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017752987

Country of ref document: EP

Effective date: 20180917