WO2017141656A1 - Stirling refrigerator - Google Patents

Stirling refrigerator Download PDF

Info

Publication number
WO2017141656A1
WO2017141656A1 PCT/JP2017/002659 JP2017002659W WO2017141656A1 WO 2017141656 A1 WO2017141656 A1 WO 2017141656A1 JP 2017002659 W JP2017002659 W JP 2017002659W WO 2017141656 A1 WO2017141656 A1 WO 2017141656A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerator
cylinder
support member
displacer
container
Prior art date
Application number
PCT/JP2017/002659
Other languages
French (fr)
Japanese (ja)
Inventor
中野 恭介
善勝 平塚
健太 湯本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2017141656A1 publication Critical patent/WO2017141656A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a Stirling refrigerator.
  • a plurality of laminated metal meshes may be used as a cold storage material for a cryogenic refrigerator such as a Stirling refrigerator. Such cold storage material is packed in a container and attached to a refrigerator.
  • the gap can serve as a working gas passage.
  • the working gas bypasses the cold storage material and flows through the gap, heat exchange between the working gas and the cold storage material is not effectively performed. For this reason, the efficiency of the regenerator is reduced.
  • Such leakage of the working gas can be eliminated by joining the container member and the adjacent structural member by an appropriate method such as brazing and closing the entrance of the gap.
  • advanced techniques may be required to join these members without undesired deformation. This is especially true when high dimensional accuracy is required.
  • the present invention has been made in view of such circumstances, and one of the exemplary purposes of an embodiment of the present invention is a Stirling refrigerator having a seal structure that blocks a working gas flow through a gap between a cold storage material and a container. Is to provide.
  • a Stirling refrigerator includes a cylinder base end and a cylinder front end, a cylinder extending in an axial direction from the cylinder base end to the cylinder front end, and a radially outer side of the cylinder. And a first regenerator support member fixed to the cylinder base end, a container base end and a container front end, and a shaft extending from the container base end to the container front end.
  • regenerator container extending in a direction and a second regenerator support member fixed to the container base end, wherein the regenerator is radially inward of the regenerator container
  • a second assembly that is disposed adjacently and removably attached to the first assembly so as to be axially sandwiched between the first regenerator support member and the second regenerator support member; Cylinder tip And a annular seal member which is sandwiched between the second regenerator supporting member.
  • FIG. 1 is a diagram schematically showing an overall configuration of a Stirling refrigerator 10 according to an embodiment.
  • the Stirling refrigerator 10 includes a compressor 11, a connecting pipe 12, and an expander 13.
  • the compressor 11 is arranged away from the expander 13.
  • the connecting pipe 12 connects the working gas chamber of the compressor 11 to the working gas chamber of the expander 13.
  • the connecting pipe 12 provides a gas flow path through which the working gas flows between the compressor 11 and the expander 13.
  • the working gas is, for example, helium gas.
  • the Stirling refrigerator 10 is, for example, a split type Stirling refrigerator.
  • the compressor 11 generates a pressure vibration of the working gas. This is transmitted to the expander 13 through the connection pipe 12.
  • pressure vibration having a phase difference from the vibration is generated at the same frequency as the pressure vibration of the compressor 11.
  • a reverse Stirling cycle is formed between the compressor 11 and the expander 13. In this way, the expander 13 generates cold.
  • FIG. 2 is a diagram schematically showing the expander 13 shown in FIG.
  • FIG. 2 shows an outline of the internal structure of the expander 13.
  • FIG. 3 is an exploded view of a portion of the expander 13 shown in FIG.
  • the expander 13 includes a first assembly 13a and a second assembly 13b.
  • the first assembly 13 a includes a cylinder 56, an annular seal member 64, a regenerator 38, and a first regenerator support member 37.
  • the second assembly 13 b includes a regenerator container 54, a second regenerator support member 39, and a cooling stage 29.
  • the cylinder 56 includes a cylinder base end 56a, a cylinder front end 56b, and a cylinder inner peripheral surface 56c.
  • the cylinder 56 extends in the axial direction from the cylinder base end 56a to the cylinder front end 56b.
  • the cylinder 56 is made of metal or resin.
  • the regenerator 38 is disposed adjacent to the outside of the cylinder 56 in the radial direction.
  • the regenerator 38 includes a regenerative material laminate, for example, a laminated structure of a wire mesh.
  • the first regenerator support member 37 is fixed to the cylinder base end 56a.
  • the axial length of the cylinder 56 from the first regenerator support member 37 is longer than the axial height of the regenerator 38. Therefore, the cylinder tip 56b protrudes from the regenerator 38 in the axial direction.
  • the regenerator container 54 includes a container proximal end 54a and a container distal end 54b, and extends in the axial direction from the container proximal end 54a to the container distal end 54b.
  • the regenerator container 54 is disposed coaxially with the cylinder 56, and forms an annular or donut-shaped accommodation space for the regenerator 38 with the cylinder 56.
  • the second regenerator support member 39 is fixed to the container base end 54a.
  • the cooling stage 29 is disposed on the opposite side to the regenerator 38 in the axial direction with respect to the second regenerator support member 39 and is fixed to the container base end 54a.
  • the cooling stage 29 has a dome-shaped inner surface.
  • a working gas expansion space 28 is formed between the dome-shaped inner surface of the cooling stage 29 and the second regenerator support member 39.
  • the second assembly 13b is detachably attached to the first assembly 13a.
  • the regenerator 38 is disposed adjacent to the inside of the regenerator container 54 in the radial direction, and the first regenerator support member 37 and the second regenerator support member 39 are disposed. And are held in the axial direction.
  • the expander 13 includes an expander body 20, a displacer 22, and at least one support portion 40.
  • the expander body 20 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner.
  • This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight.
  • the displacer 22 is a movable member configured to reciprocate within the expander body 20.
  • the support unit 40 supports the displacer 22 on the expander body 20 so that the displacer 22 can reciprocate.
  • the expander body 20 includes a first section 24 and a second section 26.
  • the first compartment 24 includes a working gas expansion space 28 formed between the expander body 20 and the displacer 22.
  • a portion of the expander body 20 adjacent to the expansion space 28 is provided with a cooling stage 29 for cooling the object.
  • the second section 26 is configured to support the displacer 22 on the expander body 20 via the elastic member 30.
  • a part of the expander body 20 on the first section 24 side is accommodated in a vacuum container (not shown).
  • the flange 47 separates the vacuum layer inside the vacuum vessel and the atmospheric layer outside the vacuum vessel.
  • the second section 26 is adjacent to the first section 24 in the reciprocating direction of the displacer 22 (indicated by an arrow C in the figure).
  • a seal portion 25 is provided between the second compartment 26 and the first compartment 24, whereby the second compartment 26 is partitioned from the first compartment 24. Therefore, the pressure fluctuation of the working gas in the first section 24 is not transmitted to the second section 26 or does not significantly affect the pressure of the working gas in the second section 26.
  • the second compartment 26 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas sent from the compressor 11.
  • the displacer 22 extends in the cylinder 56 in the axial direction.
  • the displacer 22 is disposed so as to reciprocate in the axial direction along the cylinder 56.
  • the displacer 22 includes a first displacer outer peripheral surface 32a, a second displacer outer peripheral surface 32b, and a displacer step portion 32c.
  • the displacer 22 includes a displacer head 32 accommodated in the first section 24 and a displacer rod 34.
  • the displacer rod 34 is a shaft portion thinner than the displacer head 32.
  • the displacer 22 has a central axis (indicated by the alternate long and short dash line A in the figure) parallel to the reciprocating direction of the displacer, and the displacer head 32 and the displacer rod 34 are provided coaxially with the central axis of the displacer 22.
  • the displacer 22 has an internal space and is filled with the same kind of gas as the working gas.
  • the displacer rod 34 extends from the displacer head 32 through the seal portion 25 to the second section 26.
  • the displacer rod 34 is supported by the expander body 20 in the second section 26 so that the displacer 22 can reciprocate.
  • the seal portion 25 described above may be a rod seal formed between the displacer rod 34 and the expander body 20.
  • the displacer rod 34 also has an internal space like the displacer 22.
  • the displacer rod 34 is connected to the displacer head 32 and communicates with the internal space of the displacer 22.
  • the expander 13 supports the displacer 22 on the expander body 20 so that the displacer 22 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 22.
  • the expander 13 is provided with two support portions 40. These two support portions 40 are provided in the second section 26. In this way, tilting of the displacer 22 with respect to the central axis can be suppressed.
  • the elastic member 30 provided in the support portion 40 is disposed between the displacer rod 34 and the expander body 20 so that an elastic restoring force acts on the displacer 22 when the displacer 22 is displaced from the neutral position. ing.
  • the displacer 22 reciprocates at a natural frequency determined from the spring constant of the elastic member 30, the spring constant caused by the pressure of the working gas, the weight of the displacer 22, and the like.
  • the gas spring action according to the cross-sectional area of the displacer rod 34 also affects the natural frequency.
  • the elastic member 30 includes, for example, a spring mechanism including at least one leaf spring.
  • the leaf spring is a spring called a flexure bearing, and is flexible in the reciprocating direction of the displacer 22 and rigid in the direction perpendicular to the reciprocating direction. Therefore, the displacer 22 is allowed to move in the direction along the central axis by the elastic member 30, but the movement in the direction orthogonal to the displacer 22 is restricted.
  • the displacer rod 34 is fixed to the elastic member 30 via the elastic member mounting portion 51.
  • a vibration system composed of the displacer 22 and the elastic member 30 is configured.
  • This vibration system is configured such that the displacer 22 vibrates at the same frequency as the vibration of the movable member of the compressor 11 and has a phase difference with the vibration.
  • the displacer 22 is driven by the pulsation of the working gas pressure generated by the vibration of the movable member of the compressor 11.
  • a reciprocating motion of the displacer 22 and the movable member of the compressor 11 forms a reverse Stirling cycle between the expansion space 28 and the working gas chamber of the compressor 11.
  • the cooling stage adjacent to the expansion space 28 is cooled, and the Stirling refrigerator 10 can cool the object.
  • the expansion space 28 is formed between the distal end surface of the displacer head 32 and the cooling stage 29.
  • the expansion space 28 is formed on the opposite side in the axial direction from the joint between the displacer head 32 and the displacer rod 34.
  • a gas space 36 connected to the connection pipe 12 is formed between the joint portion and the seal portion 25. The working gas can be circulated between the expansion space 28 and the gas space 36 through a regenerator 38.
  • the first regenerator support member 37 is disposed between the regenerator 38 and the gas space 36, that is, in the normal temperature part of the Stirling refrigerator 10. Similar to the regenerator 38, the first regenerator support member 37 has an annular or donut shape. The first regenerator support member 37 extends outward in the radial direction from the cylinder base end 56a. The first regenerator support member 37 has a working gas flow path, and the working gas flows between the gas space 36 and the regenerator 38 through the first regenerator support member 37.
  • the first regenerator support member 37 includes a first heat exchanger 37a.
  • the first heat exchanger 37a may be, for example, a water-cooled heat exchanger or a heat exchanger that uses a coolant or a refrigerant.
  • the first heat exchanger 37 a cools the working gas supplied from the compressor 11 and realizes heat exchange for releasing the heat to the outside of the expander 13.
  • the first regenerator support member 37 may be formed integrally with the first heat exchanger 37a.
  • the second regenerator support member 39 is arranged between the regenerator 38 and the cooling stage 29, that is, in the low temperature part of the Stirling refrigerator 10. Similar to the regenerator 38, the second regenerator support member 39 has an annular or donut shape. The second regenerator support member 39 extends radially inward from the container base end 54a. The second regenerator support member 39 has a working gas flow path, and the working gas flows between the expansion space 28 and the regenerator 38 through the second regenerator support member 39.
  • the second regenerator support member 39 may be a low temperature heat exchanger.
  • the second regenerator support member 39 is made of metal (for example, oxygen-free copper).
  • the first regenerator support member 37 and the second regenerator support member 39 are provided as a pair of holders for the regenerator 38.
  • the pair of holders sandwich the cold storage material laminate from both axial ends so as to compress and hold the cold storage material laminate in the axial direction.
  • the reason for compressing and holding the regenerator material in this way is to prevent a change in the position of the regenerator material due to the flow of the working gas. In this way, a large number of cool storage material members forming the cool storage material laminate are fixed between the pair of holders.
  • the second regenerator support member 39 includes an annular groove 39a and a support member inner peripheral surface 39b.
  • the annular groove 39a is formed at a position corresponding to the cylinder tip 56b.
  • the cylinder inner peripheral surface 56c has a first inner diameter D1
  • the support member inner peripheral surface 39b has a second inner diameter D2 that is smaller than the first inner diameter D1.
  • the first displacer outer peripheral surface 32a faces the cylinder inner peripheral surface 56c and has a first outer diameter d1.
  • the second displacer outer peripheral surface 32b faces the support member inner peripheral surface 39b and has a second outer diameter d2 that is smaller than the first outer diameter d1.
  • the displacer step portion 32c is formed between the first displacer outer peripheral surface 32a and the second displacer outer peripheral surface 32b. The displacer step portion 32 c helps to reduce the leakage of the working gas that passes through the gap between the displacer head 32 and the cylinder 56.
  • the annular seal member 64 is sandwiched between the cylinder tip 56b and the second regenerator support member 39.
  • the cylinder front end 56 b includes an annular seal member 64, and the cylinder front end 56 b is fitted into the annular groove 39 a together with the annular seal member 64.
  • the annular seal member 64 is attached to the cylinder tip 56b so as to cover the inner surface and the outer surface of the cylinder tip 56b. As shown by the arrows in FIG. 3, the first assembly 13a is inserted into the second assembly 13b, and both are combined.
  • the cylinder tip 56b and the second regenerator support member 39 are not joined by brazing.
  • the annular seal member 64 is made of a resin material.
  • the annular seal member 64 is made of a fluorine resin (for example, polytetrafluoroethylene, PTFE) or polyamide resin sleeve, a polyimide film adhesive tape (for example, Kapton (registered trademark) tape), a heat shrinkable tube, A slipper seal or an O-ring may be used.
  • the annular seal member 64 may be an elastic body.
  • FIG. 4 schematically shows a regenerator 138 of a Stirling refrigerator.
  • the displacer is not shown, and its central axis is indicated by a one-dot chain line.
  • the regenerator 138 is disposed coaxially with the center axis of the displacer.
  • the regenerator 138 includes a regenerator container 152 having a container outer cylinder 154 and a container inner cylinder 156.
  • the container inner cylinder 156 functions as a cylinder for guiding the displacer.
  • a cold storage material laminate 158 is accommodated between the container outer cylinder 154 and the container inner cylinder 156.
  • the cold storage material laminate 158 is formed of a number of wire mesh members 160 laminated in the axial direction. Each wire mesh member 160 extends along a plane perpendicular to the axial direction.
  • a pair of holders 162 is provided at both axial ends of the regenerator material stack 158.
  • the metal mesh member 160 has an annular or donut shape.
  • the holder 162 has an annular or donut shape.
  • the wire mesh member 160 is dimensioned so that the space in the cool storage material container 152 is completely filled and no gap is generated between the cool storage material container 152 and the cool storage material laminate 158.
  • a slight gap may occur between the cold storage material laminate 158 and the cold storage material container 152.
  • An outer gap 164a may be formed between the container outer cylinder 154 and the cool storage material laminate 158, and an inner gap 164b may be generated between the container inner cylinder 156 and the cool storage material stack 158.
  • gaps are caused by manufacturing tolerances of the wire mesh member 160.
  • the gap can serve as a working gas passage. When the working gas flows through the gap, heat exchange between the working gas and the cold storage material is not effectively performed. Therefore, the efficiency of the regenerator 138 will fall. Even with a slight gap, the performance of the regenerator 138 can be significantly reduced.
  • the Stirling refrigerator 10 is provided with an annular seal member 64, and a gap that may be generated between the second regenerator support member 39 and the cylinder 56 is closed. Even if a gap is generated between the regenerator 38 and the cylinder 56, the annular seal member 64 can block the working gas flow there. Therefore, the efficiency reduction of the regenerator 38 can be prevented or alleviated.
  • annular seal member 64 closes a gap that may be generated between the second regenerator support member 39 that is a low-temperature heat exchanger and the cylinder 56. Therefore, the heat exchange efficiency of the low-temperature heat exchanger can be improved.
  • the annular seal member 64 may be provided in the cylinder 56 to prevent the regenerator 38 from coming off. Before the first assembly 13a is attached to the second assembly 13b, the regenerator 38 can be prevented from falling when the first assembly 13a is turned upside down. Assembling workability can be improved.
  • FIG. 5 is a diagram schematically showing an expander 13 according to another embodiment.
  • the annular seal member 64 may be attached to the cylinder tip 56b so as to cover only the outer surface of the cylinder tip 56b.
  • the annular seal member 64 is sandwiched between the cylinder front end 56 b and the second regenerator support member 39. Even in this case, the annular seal member 64 can block the working gas flow in the gap between the regenerator 38 and the cylinder 56.
  • FIG. 6 is a diagram schematically showing an expander 13 according to another embodiment.
  • the annular seal member 64 is similar to the embodiment of FIGS.
  • the second regenerator support member 39 includes an inner peripheral portion 39c that contacts the annular seal member 64 and an outer peripheral portion 39d that is fixed to the container base end 54a.
  • the inner peripheral portion 39c protrudes in the axial direction toward the cooling stage 29 in the expansion space 28 with respect to the outer peripheral portion 39d.
  • Such a shape of the second regenerator support member 39 serves to direct the working gas flow 66 between the second regenerator support member 39 and the expansion space 28 toward the cooling stage 29.
  • FIG. 7 is a diagram schematically showing an expander 13 according to another embodiment.
  • the first heat exchanger 37a may be provided as a first regenerator support member. As illustrated, the first heat exchanger 37a may directly support the regenerator 38. Thus, the 1st regenerator support member 37 shown by FIG. 2 etc. may be abbreviate
  • the second regenerator support member 39 includes a second heat exchanger 41 (for example, the low-temperature heat exchanger described above), and a regenerator presser member 42 sandwiched between the second heat exchanger 41 and the regenerator 38. May be.
  • the second regenerator support member 39 may be configured by a heat exchanger and a pressing member that are separate from each other, similarly to the first regenerator support member 37 illustrated in FIG. 2.
  • the heat exchanger integrated first regenerator support member shown in FIG. 7 can be applied to any of the above-described embodiments.
  • both the first regenerator support member 37 and the second regenerator support member 39 are configured as a heat exchanger integrated type.
  • the heat exchanger separated type second regenerator support member shown in FIG. 7 can be applied to any of the above-described embodiments.
  • both the first regenerator support member 37 and the second regenerator support member 39 are configured as a heat exchanger separation type.
  • the seal structure according to the embodiment may be applied to a Stirling refrigerator that does not include the displacer 22, for example, a Stirling pulse tube refrigerator.
  • the cylinder 56 may be a pulse tube cylinder.
  • the present invention can be used in the field of Stirling refrigerators.

Abstract

This Stirling refrigerator comprises: a first assembly comprising a cylinder 56, a regenerator 38 that is disposed adjacent to the radial outer side of the cylinder 56, and a first regenerator support member 37 that is fixed to the base end of the cylinder 56; a second assembly comprising a regenerator vessel 54 and a second regenerator support member 39 that is fixed to the base end of the vessel, the second assembly being detachably attached to the first assembly so that the regenerator 38 is disposed adjacent to the radial inner side of the regenerator vessel 54 and is interposed between the first regenerator support member 37 and the second regenerator support member 39 in the axial direction; and a annular seal member 64 that is interposed between the leading end of the cylinder 56 and the second regenerator support member 39.

Description

スターリング冷凍機Stirling refrigerator
 本発明は、スターリング冷凍機に関する。 The present invention relates to a Stirling refrigerator.
 スターリング冷凍機などの極低温冷凍機の蓄冷材として、積層された複数枚の金網が使用されることがある。そうした蓄冷材は容器に詰められて冷凍機に装着される。 A plurality of laminated metal meshes may be used as a cold storage material for a cryogenic refrigerator such as a Stirling refrigerator. Such cold storage material is packed in a container and attached to a refrigerator.
特開平8-14684号公報JP-A-8-14684
 製造上の公差によって、僅かな隙間が蓄冷材と容器との間に生じうる。隙間は作動ガスの通路となりうる。作動ガスが蓄冷材を迂回して隙間を流れると、作動ガスと蓄冷材との熱交換が有効に行われない。そのため、蓄冷器の効率が低下してしまうことになる。 Due to manufacturing tolerances, a slight gap can occur between the regenerator and the container. The gap can serve as a working gas passage. When the working gas bypasses the cold storage material and flows through the gap, heat exchange between the working gas and the cold storage material is not effectively performed. For this reason, the efficiency of the regenerator is reduced.
 こうした作動ガスの漏れは、容器部材とその隣接構造部材とをろう付けなどの適切な方法で接合して隙間の出入口を塞ぐことによって、なくすことができる。しかし、これら部材に不所望の変形を与えることなく接合するには高度の技術が必要とされうる。高い寸法精度が求められる場合においてはとりわけ、そうである。また、蓄冷器の組立や分解に手間がかかる。 Such leakage of the working gas can be eliminated by joining the container member and the adjacent structural member by an appropriate method such as brazing and closing the entrance of the gap. However, advanced techniques may be required to join these members without undesired deformation. This is especially true when high dimensional accuracy is required. In addition, it takes time to assemble and disassemble the regenerator.
 本発明はこうした状況に鑑みてなされたものであり、本発明のある態様の例示的な目的のひとつは、蓄冷材と容器との隙間を通る作動ガス流れを遮断するシール構造をもつスターリング冷凍機を提供することにある。 The present invention has been made in view of such circumstances, and one of the exemplary purposes of an embodiment of the present invention is a Stirling refrigerator having a seal structure that blocks a working gas flow through a gap between a cold storage material and a container. Is to provide.
 本発明のある態様によると、スターリング冷凍機は、シリンダ基端およびシリンダ先端を備え前記シリンダ基端から前記シリンダ先端へと軸方向に延在するシリンダと、前記シリンダの径方向外側に隣接配置されている蓄冷器と、前記シリンダ基端に固定されている第1蓄冷器支持部材と、を備える第1組立体と、容器基端および容器先端を備え前記容器基端から前記容器先端へと軸方向に延在する蓄冷器容器と、前記容器基端に固定されている第2蓄冷器支持部材と、を備える第2組立体であって、前記蓄冷器が前記蓄冷器容器の径方向内側に隣接配置されかつ前記第1蓄冷器支持部材と前記第2蓄冷器支持部材とにより軸方向に挟持されるように、前記第1組立体に取り外し可能に取り付けられている第2組立体と、前記シリンダ先端と前記第2蓄冷器支持部材との間に挟み込まれている環状シール部材と、を備える。 According to an aspect of the present invention, a Stirling refrigerator includes a cylinder base end and a cylinder front end, a cylinder extending in an axial direction from the cylinder base end to the cylinder front end, and a radially outer side of the cylinder. And a first regenerator support member fixed to the cylinder base end, a container base end and a container front end, and a shaft extending from the container base end to the container front end. A regenerator container extending in a direction and a second regenerator support member fixed to the container base end, wherein the regenerator is radially inward of the regenerator container A second assembly that is disposed adjacently and removably attached to the first assembly so as to be axially sandwiched between the first regenerator support member and the second regenerator support member; Cylinder tip And a annular seal member which is sandwiched between the second regenerator supporting member.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、蓄冷材と容器との隙間を通る作動ガス流れを遮断するシール構造をもつスターリング冷凍機を提供することができる。 According to the present invention, it is possible to provide a Stirling refrigerator having a seal structure that blocks the working gas flow passing through the gap between the cold storage material and the container.
ある実施形態に係るスターリング冷凍機の全体構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the Stirling refrigerator which concerns on a certain embodiment. ある実施形態に係るスターリング冷凍機の膨張機を概略的に示す図である。It is a figure which shows schematically the expander of the Stirling refrigerator which concerns on a certain embodiment. ある実施形態に係るスターリング冷凍機の膨張機の分解組立図である。It is an exploded view of an expander of a Stirling refrigerator according to an embodiment. あるスターリング冷凍機の蓄冷器を概略的に示す図である。It is a figure which shows roughly the regenerator of a certain Stirling refrigerator. 他の実施形態に係るスターリング冷凍機の膨張機を概略的に示す図である。It is a figure which shows schematically the expander of the Stirling refrigerator which concerns on other embodiment. 他の実施形態に係るスターリング冷凍機の膨張機を概略的に示す図である。It is a figure which shows schematically the expander of the Stirling refrigerator which concerns on other embodiment. 他の実施形態に係るスターリング冷凍機の膨張機を概略的に示す図である。It is a figure which shows schematically the expander of the Stirling refrigerator which concerns on other embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Moreover, the structure described below is an illustration and does not limit the scope of the present invention at all.
 図1は、ある実施形態に係るスターリング冷凍機10の全体構成を概略的に示す図である。スターリング冷凍機10は、圧縮機11、接続管12、及び膨張機13を備える。圧縮機11は膨張機13から離れて配置されている。接続管12は、圧縮機11の作動ガス室を膨張機13の作動ガス室に接続する。接続管12は、圧縮機11と膨張機13との間で作動ガスを流通させるガス流路を提供する。作動ガスは例えばヘリウムガスである。 FIG. 1 is a diagram schematically showing an overall configuration of a Stirling refrigerator 10 according to an embodiment. The Stirling refrigerator 10 includes a compressor 11, a connecting pipe 12, and an expander 13. The compressor 11 is arranged away from the expander 13. The connecting pipe 12 connects the working gas chamber of the compressor 11 to the working gas chamber of the expander 13. The connecting pipe 12 provides a gas flow path through which the working gas flows between the compressor 11 and the expander 13. The working gas is, for example, helium gas.
 スターリング冷凍機10は、例えば、スプリット式のスターリング冷凍機である。この場合、圧縮機11は作動ガスの圧力振動を生成する。これが接続管12を通じて膨張機13に伝達される。膨張機13には圧縮機11の圧力振動と同一の周波数で当該振動と位相差を有する圧力振動が生じる。圧縮機11と膨張機13との間に逆スターリングサイクルが形成される。このようにして、膨張機13は寒冷を発生させる。 The Stirling refrigerator 10 is, for example, a split type Stirling refrigerator. In this case, the compressor 11 generates a pressure vibration of the working gas. This is transmitted to the expander 13 through the connection pipe 12. In the expander 13, pressure vibration having a phase difference from the vibration is generated at the same frequency as the pressure vibration of the compressor 11. A reverse Stirling cycle is formed between the compressor 11 and the expander 13. In this way, the expander 13 generates cold.
 図2は、図1に示す膨張機13を概略的に示す図である。図2には膨張機13の内部構造の概略を示す。図3は、図2に示す膨張機13の一部分の分解組立図である。 FIG. 2 is a diagram schematically showing the expander 13 shown in FIG. FIG. 2 shows an outline of the internal structure of the expander 13. FIG. 3 is an exploded view of a portion of the expander 13 shown in FIG.
 膨張機13は、第1組立体13aおよび第2組立体13bを備える。第1組立体13aは、シリンダ56、環状シール部材64、蓄冷器38、および第1蓄冷器支持部材37を備える。第2組立体13bは、蓄冷器容器54、第2蓄冷器支持部材39、および冷却ステージ29を備える。 The expander 13 includes a first assembly 13a and a second assembly 13b. The first assembly 13 a includes a cylinder 56, an annular seal member 64, a regenerator 38, and a first regenerator support member 37. The second assembly 13 b includes a regenerator container 54, a second regenerator support member 39, and a cooling stage 29.
 シリンダ56は、シリンダ基端56a、シリンダ先端56b、およびシリンダ内周面56cを備える。シリンダ56は、シリンダ基端56aからシリンダ先端56bへと軸方向に延在する。シリンダ56は、金属または樹脂で形成されている。蓄冷器38は、シリンダ56の径方向外側に隣接配置されている。蓄冷器38は、蓄冷材積層体、例えば、金網の積層構造を備える。第1蓄冷器支持部材37は、シリンダ基端56aに固定されている。第1蓄冷器支持部材37からのシリンダ56の軸長は、蓄冷器38の軸方向高さより長い。そのため、シリンダ先端56bは蓄冷器38から軸方向に突き出している。 The cylinder 56 includes a cylinder base end 56a, a cylinder front end 56b, and a cylinder inner peripheral surface 56c. The cylinder 56 extends in the axial direction from the cylinder base end 56a to the cylinder front end 56b. The cylinder 56 is made of metal or resin. The regenerator 38 is disposed adjacent to the outside of the cylinder 56 in the radial direction. The regenerator 38 includes a regenerative material laminate, for example, a laminated structure of a wire mesh. The first regenerator support member 37 is fixed to the cylinder base end 56a. The axial length of the cylinder 56 from the first regenerator support member 37 is longer than the axial height of the regenerator 38. Therefore, the cylinder tip 56b protrudes from the regenerator 38 in the axial direction.
 蓄冷器容器54は、容器基端54aおよび容器先端54bを備え、容器基端54aから容器先端54bへと軸方向に延在する。蓄冷器容器54は、シリンダ56と同軸に配設されており、シリンダ56との間に蓄冷器38のための環状またはドーナツ状収容空間を形成する。第2蓄冷器支持部材39は、容器基端54aに固定されている。冷却ステージ29は、第2蓄冷器支持部材39に対し蓄冷器38と軸方向反対側に配設され容器基端54aに固定されている。冷却ステージ29はドーム状の内面を有する。作動ガスの膨張空間28が冷却ステージ29のドーム状内面と第2蓄冷器支持部材39との間に形成されている。 The regenerator container 54 includes a container proximal end 54a and a container distal end 54b, and extends in the axial direction from the container proximal end 54a to the container distal end 54b. The regenerator container 54 is disposed coaxially with the cylinder 56, and forms an annular or donut-shaped accommodation space for the regenerator 38 with the cylinder 56. The second regenerator support member 39 is fixed to the container base end 54a. The cooling stage 29 is disposed on the opposite side to the regenerator 38 in the axial direction with respect to the second regenerator support member 39 and is fixed to the container base end 54a. The cooling stage 29 has a dome-shaped inner surface. A working gas expansion space 28 is formed between the dome-shaped inner surface of the cooling stage 29 and the second regenerator support member 39.
 第2組立体13bは、第1組立体13aに取り外し可能に取り付けられている。第1組立体13aを第2組立体13bに取り付けることにより、蓄冷器38は、蓄冷器容器54の径方向内側に隣接配置され、かつ第1蓄冷器支持部材37と第2蓄冷器支持部材39とにより軸方向に挟持される。 The second assembly 13b is detachably attached to the first assembly 13a. By attaching the first assembly 13a to the second assembly 13b, the regenerator 38 is disposed adjacent to the inside of the regenerator container 54 in the radial direction, and the first regenerator support member 37 and the second regenerator support member 39 are disposed. And are held in the axial direction.
 また、膨張機13は、膨張機本体20、ディスプレーサ22、及び少なくとも1つの支持部40を備える。 The expander 13 includes an expander body 20, a displacer 22, and at least one support portion 40.
 膨張機本体20は、高圧の作動ガスを気密に保持するよう構成されている圧力容器である。この圧力容器は、内部を気密に保持するよう相互に連結された複数の容器部分から構成されていてもよい。ディスプレーサ22は、膨張機本体20の中で往復移動するよう構成されている可動部材である。支持部40は、ディスプレーサ22の往復移動を可能とするようにディスプレーサ22を膨張機本体20に支持する。 The expander body 20 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner. This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight. The displacer 22 is a movable member configured to reciprocate within the expander body 20. The support unit 40 supports the displacer 22 on the expander body 20 so that the displacer 22 can reciprocate.
 膨張機本体20は、第1区画24及び第2区画26を備える。第1区画24は、膨張機本体20とディスプレーサ22との間に形成される作動ガスの膨張空間28を含む。膨張空間28に隣接する膨張機本体20の部分には、対象物を冷却するための冷却ステージ29が設けられている。第2区画26は、弾性部材30を介してディスプレーサ22を膨張機本体20に支持するよう構成されている。 The expander body 20 includes a first section 24 and a second section 26. The first compartment 24 includes a working gas expansion space 28 formed between the expander body 20 and the displacer 22. A portion of the expander body 20 adjacent to the expansion space 28 is provided with a cooling stage 29 for cooling the object. The second section 26 is configured to support the displacer 22 on the expander body 20 via the elastic member 30.
 膨張機本体20のうち、第1区画24側の一部は、図示しない真空容器に収容される。フランジ47は、真空容器内部の真空層と真空容器外部の大気層とを分離する。 A part of the expander body 20 on the first section 24 side is accommodated in a vacuum container (not shown). The flange 47 separates the vacuum layer inside the vacuum vessel and the atmospheric layer outside the vacuum vessel.
 第2区画26は、ディスプレーサ22の往復移動方向(図において矢印Cで示す)において第1区画24と隣接する。第2区画26と第1区画24との間にはシール部25が設けられており、これにより第2区画26は第1区画24から仕切られている。よって、第1区画24における作動ガスの圧力変動は、第2区画26に伝わらないか、または第2区画26における作動ガスの圧力にあまり影響しない。なお、第2区画26は、圧縮機11から送られる作動ガスの平均圧力と同等の圧力となるように、作動ガスと同種のガスが封入されている。 The second section 26 is adjacent to the first section 24 in the reciprocating direction of the displacer 22 (indicated by an arrow C in the figure). A seal portion 25 is provided between the second compartment 26 and the first compartment 24, whereby the second compartment 26 is partitioned from the first compartment 24. Therefore, the pressure fluctuation of the working gas in the first section 24 is not transmitted to the second section 26 or does not significantly affect the pressure of the working gas in the second section 26. The second compartment 26 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas sent from the compressor 11.
 ディスプレーサ22は、シリンダ56内を軸方向に延在する。ディスプレーサ22は、シリンダ56に沿って軸方向に往復動可能に配設されている。ディスプレーサ22は、第1ディスプレーサ外周面32a、第2ディスプレーサ外周面32b、およびディスプレーサ段部32cを備える。 The displacer 22 extends in the cylinder 56 in the axial direction. The displacer 22 is disposed so as to reciprocate in the axial direction along the cylinder 56. The displacer 22 includes a first displacer outer peripheral surface 32a, a second displacer outer peripheral surface 32b, and a displacer step portion 32c.
 ディスプレーサ22は、第1区画24に収容されているディスプレーサヘッド32と、ディスプレーサロッド34と、を備える。ディスプレーサロッド34は、ディスプレーサヘッド32より細い軸部である。ディスプレーサ22はその往復移動方向に平行である中心軸(図において一点鎖線Aで示す)を有しており、ディスプレーサヘッド32及びディスプレーサロッド34はディスプレーサ22の中心軸に同軸に設けられている。ディスプレーサ22は内部空間を有しており、作動ガスと同種のガスで満たされている。 The displacer 22 includes a displacer head 32 accommodated in the first section 24 and a displacer rod 34. The displacer rod 34 is a shaft portion thinner than the displacer head 32. The displacer 22 has a central axis (indicated by the alternate long and short dash line A in the figure) parallel to the reciprocating direction of the displacer, and the displacer head 32 and the displacer rod 34 are provided coaxially with the central axis of the displacer 22. The displacer 22 has an internal space and is filled with the same kind of gas as the working gas.
 ディスプレーサロッド34は、ディスプレーサヘッド32からシール部25を通って第2区画26へと延在する。ディスプレーサロッド34は、ディスプレーサ22の往復移動を可能とするよう第2区画26において膨張機本体20により支持される。上述のシール部25は例えば、ディスプレーサロッド34と膨張機本体20との間に形成されるロッドシールであってもよい。なお、ディスプレーサロッド34もディスプレーサ22と同様に内部空間を有している。ディスプレーサロッド34はディスプレーサヘッド32と接続しており、ディスプレーサ22の内部空間と連通している。 The displacer rod 34 extends from the displacer head 32 through the seal portion 25 to the second section 26. The displacer rod 34 is supported by the expander body 20 in the second section 26 so that the displacer 22 can reciprocate. For example, the seal portion 25 described above may be a rod seal formed between the displacer rod 34 and the expander body 20. The displacer rod 34 also has an internal space like the displacer 22. The displacer rod 34 is connected to the displacer head 32 and communicates with the internal space of the displacer 22.
 膨張機13は、ディスプレーサ22の往復移動方向における複数の異なる位置で、ディスプレーサ22の往復移動を可能とするようディスプレーサ22を膨張機本体20に支持する。そのために、膨張機13には2つの支持部40が備えられている。これら2つの支持部40は第2区画26に設けられている。このようにして、中心軸に対するディスプレーサ22の傾動を抑制することができる。 The expander 13 supports the displacer 22 on the expander body 20 so that the displacer 22 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 22. For this purpose, the expander 13 is provided with two support portions 40. These two support portions 40 are provided in the second section 26. In this way, tilting of the displacer 22 with respect to the central axis can be suppressed.
 支持部40に設けられている弾性部材30は、ディスプレーサ22が中立位置から変位するときディスプレーサ22に弾性的復元力が作用するように、ディスプレーサロッド34と膨張機本体20との間に配設されている。これにより、ディスプレーサ22は、弾性部材30のバネ定数、作動ガスの圧力に起因するバネ定数、ディスプレーサ22の重量などから定まる固有振動数で往復移動する。例えば、ディスプレーサロッド34の断面積に応じたガスバネ作用も固有振動数に影響する。 The elastic member 30 provided in the support portion 40 is disposed between the displacer rod 34 and the expander body 20 so that an elastic restoring force acts on the displacer 22 when the displacer 22 is displaced from the neutral position. ing. Thereby, the displacer 22 reciprocates at a natural frequency determined from the spring constant of the elastic member 30, the spring constant caused by the pressure of the working gas, the weight of the displacer 22, and the like. For example, the gas spring action according to the cross-sectional area of the displacer rod 34 also affects the natural frequency.
 弾性部材30は例えば、少なくとも1つの板バネを含むバネ機構を備える。板バネはフレクシャベアリングとも呼ばれるバネであり、ディスプレーサ22の往復移動方向に柔軟であり、往復移動方向に垂直な方向に剛である。したがって、弾性部材30により、ディスプレーサ22はその中心軸に沿う方向への移動が許容されているが、それと直交する方向への移動は規制されている。ディスプレーサロッド34は、弾性部材取付部51を介して弾性部材30に固定される。 The elastic member 30 includes, for example, a spring mechanism including at least one leaf spring. The leaf spring is a spring called a flexure bearing, and is flexible in the reciprocating direction of the displacer 22 and rigid in the direction perpendicular to the reciprocating direction. Therefore, the displacer 22 is allowed to move in the direction along the central axis by the elastic member 30, but the movement in the direction orthogonal to the displacer 22 is restricted. The displacer rod 34 is fixed to the elastic member 30 via the elastic member mounting portion 51.
 このようにして、ディスプレーサ22と弾性部材30とからなる振動系が構成されている。この振動系は、圧縮機11の可動部材の振動と同一の周波数で当該振動と位相差を有してディスプレーサ22が振動するよう構成されている。ディスプレーサ22は、圧縮機11の可動部材の振動によって生じる作動ガス圧力の脈動によって駆動される。ディスプレーサ22及び圧縮機11の可動部材の往復動によって膨張空間28と圧縮機11の作動ガス室との間に逆スターリングサイクルが形成される。こうして、膨張空間28に隣接する冷却ステージが冷却され、スターリング冷凍機10は対象物を冷却することができる。 Thus, a vibration system composed of the displacer 22 and the elastic member 30 is configured. This vibration system is configured such that the displacer 22 vibrates at the same frequency as the vibration of the movable member of the compressor 11 and has a phase difference with the vibration. The displacer 22 is driven by the pulsation of the working gas pressure generated by the vibration of the movable member of the compressor 11. A reciprocating motion of the displacer 22 and the movable member of the compressor 11 forms a reverse Stirling cycle between the expansion space 28 and the working gas chamber of the compressor 11. Thus, the cooling stage adjacent to the expansion space 28 is cooled, and the Stirling refrigerator 10 can cool the object.
 膨張空間28は、ディスプレーサヘッド32の先端面と冷却ステージ29との間に形成されている。膨張空間28は、ディスプレーサヘッド32とディスプレーサロッド34との接合部と軸方向反対側に形成されている。この接合部とシール部25との間には、接続管12に接続されるガス空間36が形成されている。膨張空間28とガス空間36との間の作動ガスの流通は蓄冷器38を通じて可能である。 The expansion space 28 is formed between the distal end surface of the displacer head 32 and the cooling stage 29. The expansion space 28 is formed on the opposite side in the axial direction from the joint between the displacer head 32 and the displacer rod 34. A gas space 36 connected to the connection pipe 12 is formed between the joint portion and the seal portion 25. The working gas can be circulated between the expansion space 28 and the gas space 36 through a regenerator 38.
 第1蓄冷器支持部材37は、蓄冷器38とガス空間36の間に、つまりスターリング冷凍機10の常温部に配置されている。第1蓄冷器支持部材37は、蓄冷器38と同様に、環状またはドーナツ状の形状を有する。第1蓄冷器支持部材37は、シリンダ基端56aから径方向外側に向けて延びている。第1蓄冷器支持部材37は作動ガス流路を有しており、ガス空間36と蓄冷器38との間の作動ガスの流通は第1蓄冷器支持部材37を通じてなされる。 The first regenerator support member 37 is disposed between the regenerator 38 and the gas space 36, that is, in the normal temperature part of the Stirling refrigerator 10. Similar to the regenerator 38, the first regenerator support member 37 has an annular or donut shape. The first regenerator support member 37 extends outward in the radial direction from the cylinder base end 56a. The first regenerator support member 37 has a working gas flow path, and the working gas flows between the gas space 36 and the regenerator 38 through the first regenerator support member 37.
 第1蓄冷器支持部材37は、第1熱交換器37aを備える。第1熱交換器37aは、例えば、水冷式熱交換器、または、冷却液または冷媒を用いる熱交換器であってもよい。第1熱交換器37aは、圧縮機11から供給された作動ガスを冷却し、その熱を膨張機13の外部へ放出するための熱交換を実現する。第1蓄冷器支持部材37は第1熱交換器37aと一体に形成されていてもよい。 The first regenerator support member 37 includes a first heat exchanger 37a. The first heat exchanger 37a may be, for example, a water-cooled heat exchanger or a heat exchanger that uses a coolant or a refrigerant. The first heat exchanger 37 a cools the working gas supplied from the compressor 11 and realizes heat exchange for releasing the heat to the outside of the expander 13. The first regenerator support member 37 may be formed integrally with the first heat exchanger 37a.
 第2蓄冷器支持部材39は、蓄冷器38と冷却ステージ29との間に、つまりスターリング冷凍機10の低温部に配置されている。第2蓄冷器支持部材39は、蓄冷器38と同様に、環状またはドーナツ状の形状を有する。第2蓄冷器支持部材39は、容器基端54aから径方向内側に向けて延びている。第2蓄冷器支持部材39は作動ガス流路を有しており、膨張空間28と蓄冷器38との間の作動ガスの流通は第2蓄冷器支持部材39を通じてなされる。第2蓄冷器支持部材39は、低温熱交換器であってもよい。第2蓄冷器支持部材39は、金属(例えば、無酸素銅)で形成されている。 The second regenerator support member 39 is arranged between the regenerator 38 and the cooling stage 29, that is, in the low temperature part of the Stirling refrigerator 10. Similar to the regenerator 38, the second regenerator support member 39 has an annular or donut shape. The second regenerator support member 39 extends radially inward from the container base end 54a. The second regenerator support member 39 has a working gas flow path, and the working gas flows between the expansion space 28 and the regenerator 38 through the second regenerator support member 39. The second regenerator support member 39 may be a low temperature heat exchanger. The second regenerator support member 39 is made of metal (for example, oxygen-free copper).
 第1蓄冷器支持部材37および第2蓄冷器支持部材39は、蓄冷器38のための一対の保持具として設けられている。これら一対の保持具は、蓄冷材積層体を軸方向に圧縮保持するよう蓄冷材積層体をその軸方向両端から挟持する。このように蓄冷材を圧縮保持するのは、作動ガスの流れによる蓄冷材の位置変動を防止するためである。こうして、蓄冷材積層体を形成する多数の蓄冷材部材が一対の保持具の間に固定される。 The first regenerator support member 37 and the second regenerator support member 39 are provided as a pair of holders for the regenerator 38. The pair of holders sandwich the cold storage material laminate from both axial ends so as to compress and hold the cold storage material laminate in the axial direction. The reason for compressing and holding the regenerator material in this way is to prevent a change in the position of the regenerator material due to the flow of the working gas. In this way, a large number of cool storage material members forming the cool storage material laminate are fixed between the pair of holders.
 第2蓄冷器支持部材39は、環状溝39aおよび支持部材内周面39bを備える。環状溝39aは、シリンダ先端56bに対応する位置に形成されている。シリンダ内周面56cは、第1内径D1を有し、支持部材内周面39bは、第1内径D1より小さい第2内径D2を有する。 The second regenerator support member 39 includes an annular groove 39a and a support member inner peripheral surface 39b. The annular groove 39a is formed at a position corresponding to the cylinder tip 56b. The cylinder inner peripheral surface 56c has a first inner diameter D1, and the support member inner peripheral surface 39b has a second inner diameter D2 that is smaller than the first inner diameter D1.
 第1ディスプレーサ外周面32aは、シリンダ内周面56cに面し、第1外径d1を有する。第2ディスプレーサ外周面32bは、支持部材内周面39bに面し、第1外径d1より小さい第2外径d2を有する。ディスプレーサ段部32cは、第1ディスプレーサ外周面32aと第2ディスプレーサ外周面32bとの間に形成されている。ディスプレーサ段部32cは、ディスプレーサヘッド32とシリンダ56との隙間を通る作動ガスの漏れを低減することに役立つ。 The first displacer outer peripheral surface 32a faces the cylinder inner peripheral surface 56c and has a first outer diameter d1. The second displacer outer peripheral surface 32b faces the support member inner peripheral surface 39b and has a second outer diameter d2 that is smaller than the first outer diameter d1. The displacer step portion 32c is formed between the first displacer outer peripheral surface 32a and the second displacer outer peripheral surface 32b. The displacer step portion 32 c helps to reduce the leakage of the working gas that passes through the gap between the displacer head 32 and the cylinder 56.
 環状シール部材64は、シリンダ先端56bと第2蓄冷器支持部材39との間に挟み込まれている。具体的には、シリンダ先端56bが環状シール部材64を備えており、シリンダ先端56bが環状シール部材64とともに環状溝39aに嵌め込まれている。環状シール部材64は、シリンダ先端56bの内面および外面を被覆するようシリンダ先端56bに装着されている。図3に矢印で示すように、第1組立体13aが第2組立体13bに挿入され、両者は合体される。シリンダ先端56bと第2蓄冷器支持部材39とはろう付けによる接合はなされない。 The annular seal member 64 is sandwiched between the cylinder tip 56b and the second regenerator support member 39. Specifically, the cylinder front end 56 b includes an annular seal member 64, and the cylinder front end 56 b is fitted into the annular groove 39 a together with the annular seal member 64. The annular seal member 64 is attached to the cylinder tip 56b so as to cover the inner surface and the outer surface of the cylinder tip 56b. As shown by the arrows in FIG. 3, the first assembly 13a is inserted into the second assembly 13b, and both are combined. The cylinder tip 56b and the second regenerator support member 39 are not joined by brazing.
 環状シール部材64は、樹脂材料で形成されている。例えば、環状シール部材64は、フッ素系樹脂(例えば、ポリテトラフルオロエチレン、PTFE)製またはポリアミド樹脂製のスリーブ、ポリイミドフィルム製の粘着テープ(例えば、カプトン(登録商標)テープ)、熱収縮チューブ、スリッパーシール、または、Oリングであってもよい。環状シール部材64は、弾性体であってもよい。 The annular seal member 64 is made of a resin material. For example, the annular seal member 64 is made of a fluorine resin (for example, polytetrafluoroethylene, PTFE) or polyamide resin sleeve, a polyimide film adhesive tape (for example, Kapton (registered trademark) tape), a heat shrinkable tube, A slipper seal or an O-ring may be used. The annular seal member 64 may be an elastic body.
 図4は、あるスターリング冷凍機の蓄冷器138を概略的に示す。図4においては、ディスプレーサの図示を省略し、その中心軸を一点鎖線で示す。蓄冷器138は、ディスプレーサの中心軸と同軸に配設されている。 FIG. 4 schematically shows a regenerator 138 of a Stirling refrigerator. In FIG. 4, the displacer is not shown, and its central axis is indicated by a one-dot chain line. The regenerator 138 is disposed coaxially with the center axis of the displacer.
 蓄冷器138は、容器外筒154及び容器内筒156を有する蓄冷材容器152を備える。容器内筒156はディスプレーサを案内するシリンダとして機能する。容器外筒154と容器内筒156との間に蓄冷材積層体158が収容されている。蓄冷材積層体158は、軸方向に積層された多数の金網部材160から形成されている。個々の金網部材160は、軸方向に垂直な平面に沿って延在する。蓄冷材積層体158の軸方向両端には一対の保持具162が設けられている。金網部材160は、環状またはドーナツ状の形状を有する。保持具162も同様に、環状またはドーナツ状の形状を有する。 The regenerator 138 includes a regenerator container 152 having a container outer cylinder 154 and a container inner cylinder 156. The container inner cylinder 156 functions as a cylinder for guiding the displacer. A cold storage material laminate 158 is accommodated between the container outer cylinder 154 and the container inner cylinder 156. The cold storage material laminate 158 is formed of a number of wire mesh members 160 laminated in the axial direction. Each wire mesh member 160 extends along a plane perpendicular to the axial direction. A pair of holders 162 is provided at both axial ends of the regenerator material stack 158. The metal mesh member 160 has an annular or donut shape. Similarly, the holder 162 has an annular or donut shape.
 一般に、金網部材160は、蓄冷材容器152の中の空間を完全に埋め、蓄冷材容器152と蓄冷材積層体158との間に隙間が生じないように寸法が定められている。しかし、実際には、図示されるように、蓄冷材積層体158と蓄冷材容器152との間には僅かな隙間が生じうる。容器外筒154と蓄冷材積層体158との間には外側隙間164aが生じ、容器内筒156と蓄冷材積層体158との間には内側隙間164bが生じうる。こうした隙間は、金網部材160の製造上の公差に起因する。隙間は作動ガスの通路となりうる。作動ガスが隙間を流れると、作動ガスと蓄冷材との熱交換が有効に行われない。そのため、蓄冷器138の効率が低下してしまうことになる。僅かな隙間であっても、蓄冷器138の性能は顕著に低下しうる。 Generally, the wire mesh member 160 is dimensioned so that the space in the cool storage material container 152 is completely filled and no gap is generated between the cool storage material container 152 and the cool storage material laminate 158. However, actually, as shown in the drawing, a slight gap may occur between the cold storage material laminate 158 and the cold storage material container 152. An outer gap 164a may be formed between the container outer cylinder 154 and the cool storage material laminate 158, and an inner gap 164b may be generated between the container inner cylinder 156 and the cool storage material stack 158. Such gaps are caused by manufacturing tolerances of the wire mesh member 160. The gap can serve as a working gas passage. When the working gas flows through the gap, heat exchange between the working gas and the cold storage material is not effectively performed. Therefore, the efficiency of the regenerator 138 will fall. Even with a slight gap, the performance of the regenerator 138 can be significantly reduced.
 これに対して、実施形態に係るスターリング冷凍機10には環状シール部材64が設けられ、第2蓄冷器支持部材39とシリンダ56との間に生じうる隙間が塞がれている。たとえ蓄冷器38とシリンダ56との間に隙間が生じたとしても、そこでの作動ガス流れを環状シール部材64が遮断することができる。よって、蓄冷器38の効率低下を防止または緩和することができる。 On the other hand, the Stirling refrigerator 10 according to the embodiment is provided with an annular seal member 64, and a gap that may be generated between the second regenerator support member 39 and the cylinder 56 is closed. Even if a gap is generated between the regenerator 38 and the cylinder 56, the annular seal member 64 can block the working gas flow there. Therefore, the efficiency reduction of the regenerator 38 can be prevented or alleviated.
 また、環状シール部材64は、低温熱交換器である第2蓄冷器支持部材39とシリンダ56との間に生じうる隙間を塞いでいる。そのため、低温熱交換器の熱交換効率を改善することができる。 Further, the annular seal member 64 closes a gap that may be generated between the second regenerator support member 39 that is a low-temperature heat exchanger and the cylinder 56. Therefore, the heat exchange efficiency of the low-temperature heat exchanger can be improved.
 環状シール部材64は、蓄冷器38の抜け止めのためにシリンダ56に設けられていてもよい。第1組立体13aが第2組立体13bに取り付けられる前において、第1組立体13aを逆さにしたときに蓄冷器38が落下するのを防止できる。組立の作業性を向上することができる。 The annular seal member 64 may be provided in the cylinder 56 to prevent the regenerator 38 from coming off. Before the first assembly 13a is attached to the second assembly 13b, the regenerator 38 can be prevented from falling when the first assembly 13a is turned upside down. Assembling workability can be improved.
 図5は、他の実施形態に係る膨張機13を概略的に示す図である。図5に示されるように、環状シール部材64は、シリンダ先端56bの外面のみを被覆するようシリンダ先端56bに装着されていてもよい。環状シール部材64は、シリンダ先端56bと第2蓄冷器支持部材39との間に挟み込まれている。このようにしても、環状シール部材64は、蓄冷器38とシリンダ56との隙間における作動ガス流れを遮断することができる。 FIG. 5 is a diagram schematically showing an expander 13 according to another embodiment. As shown in FIG. 5, the annular seal member 64 may be attached to the cylinder tip 56b so as to cover only the outer surface of the cylinder tip 56b. The annular seal member 64 is sandwiched between the cylinder front end 56 b and the second regenerator support member 39. Even in this case, the annular seal member 64 can block the working gas flow in the gap between the regenerator 38 and the cylinder 56.
 図6は、他の実施形態に係る膨張機13を概略的に示す図である。図示されるように、環状シール部材64については、図2および図3の実施形態と同様である。ただし、第2蓄冷器支持部材39は、環状シール部材64に接触する内周部39cと、容器基端54aに固定されている外周部39dと、を備える。内周部39cは、外周部39dに対し膨張空間28内で冷却ステージ29に向けて軸方向に突き出している。このような第2蓄冷器支持部材39の形状は、第2蓄冷器支持部材39と膨張空間28との間の作動ガス流れ66を冷却ステージ29のほうに向けるのに役立つ。 FIG. 6 is a diagram schematically showing an expander 13 according to another embodiment. As shown, the annular seal member 64 is similar to the embodiment of FIGS. However, the second regenerator support member 39 includes an inner peripheral portion 39c that contacts the annular seal member 64 and an outer peripheral portion 39d that is fixed to the container base end 54a. The inner peripheral portion 39c protrudes in the axial direction toward the cooling stage 29 in the expansion space 28 with respect to the outer peripheral portion 39d. Such a shape of the second regenerator support member 39 serves to direct the working gas flow 66 between the second regenerator support member 39 and the expansion space 28 toward the cooling stage 29.
 図7は、他の実施形態に係る膨張機13を概略的に示す図である。第1熱交換器37aが第1蓄冷器支持部材として設けられてもよい。図示されるように、第1熱交換器37aが蓄冷器38を直接支持してもよい。このように、図2等に示される第1蓄冷器支持部材37が省略されてもよい。 FIG. 7 is a diagram schematically showing an expander 13 according to another embodiment. The first heat exchanger 37a may be provided as a first regenerator support member. As illustrated, the first heat exchanger 37a may directly support the regenerator 38. Thus, the 1st regenerator support member 37 shown by FIG. 2 etc. may be abbreviate | omitted.
 第2蓄冷器支持部材39は、第2熱交換器41(例えば、上述の低温熱交換器)と、第2熱交換器41と蓄冷器38とに挟まれる蓄冷器押さえ部材42と、を備えてもよい。このように、第2蓄冷器支持部材39は、図2に示す第1蓄冷器支持部材37と同様に、互いに別体である熱交換器と押さえ部材で構成されていてもよい。 The second regenerator support member 39 includes a second heat exchanger 41 (for example, the low-temperature heat exchanger described above), and a regenerator presser member 42 sandwiched between the second heat exchanger 41 and the regenerator 38. May be. As described above, the second regenerator support member 39 may be configured by a heat exchanger and a pressing member that are separate from each other, similarly to the first regenerator support member 37 illustrated in FIG. 2.
 図7に示される熱交換器一体型の第1蓄冷器支持部材は、既述の実施形態のいずれかに適用されうる。例えば、図2に示す実施形態に適用される場合には、第1蓄冷器支持部材37および第2蓄冷器支持部材39がともに熱交換器一体型に構成される。また、図7に示される熱交換器分離型の第2蓄冷器支持部材は、既述の実施形態のいずれかに適用されうる。例えば、図2に示す実施形態に適用される場合には、第1蓄冷器支持部材37および第2蓄冷器支持部材39がともに熱交換器分離型に構成される。 The heat exchanger integrated first regenerator support member shown in FIG. 7 can be applied to any of the above-described embodiments. For example, when applied to the embodiment shown in FIG. 2, both the first regenerator support member 37 and the second regenerator support member 39 are configured as a heat exchanger integrated type. Moreover, the heat exchanger separated type second regenerator support member shown in FIG. 7 can be applied to any of the above-described embodiments. For example, when applied to the embodiment shown in FIG. 2, both the first regenerator support member 37 and the second regenerator support member 39 are configured as a heat exchanger separation type.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.
 実施形態に係るシール構造は、ディスプレーサ22を有しないスターリング冷凍機、例えば、スターリング型パルス管冷凍機に適用されてもよい。この場合、上述のシリンダ56は、パルス管のシリンダであってもよい。 The seal structure according to the embodiment may be applied to a Stirling refrigerator that does not include the displacer 22, for example, a Stirling pulse tube refrigerator. In this case, the cylinder 56 may be a pulse tube cylinder.
 10 スターリング冷凍機、 13a 第1組立体、 13b 第2組立体、 22 ディスプレーサ、 25 シール部、 28 膨張空間、 29 冷却ステージ、 32a 第1ディスプレーサ外周面、 32b 第2ディスプレーサ外周面、 32c ディスプレーサ段部、 37 第1蓄冷器支持部材、 37a 第1熱交換器、 38 蓄冷器、 39 第2蓄冷器支持部材、 39a 環状溝、 39b 支持部材内周面、 39c 内周部、 39d 外周部、 40 支持部、 41 第2熱交換器、 54 蓄冷器容器、 54a 容器基端、 54b 容器先端、 56 シリンダ、 56a シリンダ基端、 56b シリンダ先端、 56c シリンダ内周面、 64 環状シール部材。 10 Stirling refrigerator, 13a first assembly, 13b second assembly, 22 displacer, 25 seal part, 28 expansion space, 29 cooling stage, 32a first displacer outer peripheral surface, 32b second displacer outer peripheral surface, 32c displacer step part 37, first regenerator support member, 37a first heat exchanger, 38 regenerator, 39 second regenerator support member, 39a annular groove, 39b support member inner peripheral surface, 39c inner peripheral portion, 39d outer peripheral portion, 40 support Part, 41, second heat exchanger, 54 regenerator container, 54a container proximal end, 54b container distal end, 56 cylinder, 56a cylinder proximal end, 56b cylinder distal end, 56c cylinder inner peripheral surface, 64 annular seal member.
 本発明は、スターリング冷凍機の分野における利用が可能である。 The present invention can be used in the field of Stirling refrigerators.

Claims (7)

  1.  シリンダ基端およびシリンダ先端を備え前記シリンダ基端から前記シリンダ先端へと軸方向に延在するシリンダと、前記シリンダの径方向外側に隣接配置されている蓄冷器と、前記シリンダ基端に固定されている第1蓄冷器支持部材と、を備える第1組立体と、
     容器基端および容器先端を備え前記容器基端から前記容器先端へと軸方向に延在する蓄冷器容器と、前記容器基端に固定されている第2蓄冷器支持部材と、を備える第2組立体であって、前記蓄冷器が前記蓄冷器容器の径方向内側に隣接配置されかつ前記第1蓄冷器支持部材と前記第2蓄冷器支持部材とにより軸方向に挟持されるように、前記第1組立体に取り外し可能に取り付けられている第2組立体と、
     前記シリンダ先端と前記第2蓄冷器支持部材との間に挟み込まれている環状シール部材と、を備えることを特徴とするスターリング冷凍機。
    A cylinder having a cylinder proximal end and a cylinder distal end and extending in the axial direction from the cylinder proximal end to the cylinder distal end; a regenerator disposed adjacent to a radially outer side of the cylinder; and fixed to the cylinder proximal end A first regenerator support member, and a first assembly comprising:
    A second regenerator support member having a container proximal end and a container distal end and extending in the axial direction from the container proximal end to the container distal end; and a second regenerator support member fixed to the container proximal end. An assembly, wherein the regenerator is disposed adjacent to the radially inner side of the regenerator container and is held in the axial direction by the first regenerator support member and the second regenerator support member. A second assembly removably attached to the first assembly;
    A Stirling refrigerator, comprising: an annular seal member sandwiched between the cylinder tip and the second regenerator support member.
  2.  前記シリンダ先端が前記環状シール部材を備えており、前記第2蓄冷器支持部材は環状溝を有し、前記シリンダ先端が前記環状シール部材とともに前記環状溝に嵌め込まれていることを特徴とする請求項1に記載のスターリング冷凍機。 The cylinder tip includes the annular seal member, the second regenerator support member has an annular groove, and the cylinder tip is fitted in the annular groove together with the annular seal member. Item 2. A Stirling refrigerator according to item 1.
  3.  前記環状シール部材は、前記シリンダ先端の内面および外面を被覆するよう前記シリンダ先端に装着されていることを特徴とする請求項1または2に記載のスターリング冷凍機。 The Stirling refrigerator according to claim 1 or 2, wherein the annular seal member is mounted on the tip of the cylinder so as to cover an inner surface and an outer surface of the tip of the cylinder.
  4.  前記第2組立体は、前記第2蓄冷器支持部材に対し前記蓄冷器と軸方向反対側に配設され前記容器基端に固定されている冷却ステージを備え、作動ガスの膨張空間が前記冷却ステージと前記第2蓄冷器支持部材との間に形成されており、
     前記第2蓄冷器支持部材は、前記環状シール部材に接触する内周部と、前記容器基端に固定されている外周部と、を備え、前記内周部が前記外周部に対し前記膨張空間内で前記冷却ステージに向けて軸方向に突き出していることを特徴とする請求項1から3のいずれかに記載のスターリング冷凍機。
    The second assembly includes a cooling stage that is disposed on the opposite side of the regenerator in the axial direction with respect to the second regenerator support member and is fixed to the container base end. Formed between the stage and the second regenerator support member;
    The second regenerator support member includes an inner peripheral portion that contacts the annular seal member and an outer peripheral portion fixed to the container base end, and the inner peripheral portion is in the expansion space with respect to the outer peripheral portion. The Stirling refrigerator according to claim 1, wherein the Stirling refrigerator projects in an axial direction toward the cooling stage.
  5.  前記シリンダ内を軸方向に延在するディスプレーサであって、前記シリンダに沿って軸方向に往復動可能に配設されているディスプレーサをさらに備え、
     前記シリンダは、第1内径を有するシリンダ内周面を備え、前記第2蓄冷器支持部材は、前記第1内径より小さい第2内径を有する支持部材内周面を備え、
     前記ディスプレーサは、前記シリンダ内周面に面し第1外径を有する第1ディスプレーサ外周面と、前記支持部材内周面に面し、前記第1外径より小さい第2外径を有する第2ディスプレーサ外周面と、前記第1ディスプレーサ外周面と前記第2ディスプレーサ外周面との間に形成されているディスプレーサ段部と、を備えることを特徴とする請求項1から4のいずれかに記載のスターリング冷凍機。
    A displacer extending in the axial direction in the cylinder, further comprising a displacer disposed so as to be capable of reciprocating in the axial direction along the cylinder;
    The cylinder includes a cylinder inner peripheral surface having a first inner diameter, and the second regenerator support member includes a support member inner peripheral surface having a second inner diameter smaller than the first inner diameter,
    The displacer has a first displacer outer peripheral surface facing the inner peripheral surface of the cylinder and having a first outer diameter, and a second outer surface facing the inner peripheral surface of the support member and having a second outer diameter smaller than the first outer diameter. The Stirling according to any one of claims 1 to 4, further comprising: a displacer outer peripheral surface, and a displacer step portion formed between the first displacer outer peripheral surface and the second displacer outer peripheral surface. refrigerator.
  6.  前記第1蓄冷器支持部材は、第1熱交換器を備えることを特徴とする請求項1から5のいずれかに記載のスターリング冷凍機。 The Stirling refrigerator according to any one of claims 1 to 5, wherein the first regenerator support member includes a first heat exchanger.
  7.  前記第2蓄冷器支持部材は、第2熱交換器を備えることを特徴とする請求項1から6のいずれかに記載のスターリング冷凍機。 The Stirling refrigerator according to any one of claims 1 to 6, wherein the second regenerator support member includes a second heat exchanger.
PCT/JP2017/002659 2016-02-18 2017-01-26 Stirling refrigerator WO2017141656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028769 2016-02-18
JP2016028769A JP2017146036A (en) 2016-02-18 2016-02-18 Stirling refrigerator

Publications (1)

Publication Number Publication Date
WO2017141656A1 true WO2017141656A1 (en) 2017-08-24

Family

ID=59625036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002659 WO2017141656A1 (en) 2016-02-18 2017-01-26 Stirling refrigerator

Country Status (2)

Country Link
JP (1) JP2017146036A (en)
WO (1) WO2017141656A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323195A (en) * 1993-04-29 1994-11-22 Gold Star Co Ltd Heat-loss preventive device for sterling equipment
JP2004084598A (en) * 2002-08-28 2004-03-18 Sharp Corp Stirling engine
CN1757992A (en) * 2005-10-27 2006-04-12 中国科学院上海技术物理研究所 A kind of annular cold accumulator that is used for sterlin refrigerator
JP2007003130A (en) * 2005-06-24 2007-01-11 Twinbird Corp Stirling cycle engine
JP2015075254A (en) * 2013-10-07 2015-04-20 住友重機械工業株式会社 Stirling type refrigerator and expander
JP2015183962A (en) * 2014-03-25 2015-10-22 住友重機械工業株式会社 Stirling refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323195A (en) * 1993-04-29 1994-11-22 Gold Star Co Ltd Heat-loss preventive device for sterling equipment
JP2004084598A (en) * 2002-08-28 2004-03-18 Sharp Corp Stirling engine
JP2007003130A (en) * 2005-06-24 2007-01-11 Twinbird Corp Stirling cycle engine
CN1757992A (en) * 2005-10-27 2006-04-12 中国科学院上海技术物理研究所 A kind of annular cold accumulator that is used for sterlin refrigerator
JP2015075254A (en) * 2013-10-07 2015-04-20 住友重機械工業株式会社 Stirling type refrigerator and expander
JP2015183962A (en) * 2014-03-25 2015-10-22 住友重機械工業株式会社 Stirling refrigerator

Also Published As

Publication number Publication date
JP2017146036A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP3619965B1 (en) Stirling agency
US5647217A (en) Stirling cycle cryogenic cooler
US20160223228A1 (en) Regenerator and stirling cryocooler
US6889596B2 (en) Compressor cooler and its assembly procedure
US20050120721A1 (en) Cryocooler cold-end assembly apparatus and method
JP2007518909A (en) Cooler piston assembly
WO2017141656A1 (en) Stirling refrigerator
US10393411B2 (en) Stirling cryocooler
JP6275524B2 (en) Stirling refrigerator
JP3667328B2 (en) Stirling agency
US20130074490A1 (en) Stirling cycle engine
JP6184262B2 (en) refrigerator
JP6071917B2 (en) Stirling refrigerator
WO2017073529A1 (en) Regenerator and cryogenic freezer
JP2020525752A (en) Cryocooler with concentric movement mechanism
JP2004162587A (en) Cylinder structure, stirling engine and compressor
JP3752573B2 (en) Drive spring connecting structure in refrigerator
JP2009052866A (en) Cold storage type refrigerator
JP6433318B2 (en) Stirling refrigerator
JP5657479B2 (en) Regenerative refrigerator
JP2785781B2 (en) Stirling refrigerator and method of manufacturing the same
JP2022085122A (en) Pulse tube refrigerator
JPH07845Y2 (en) refrigerator
JP2006220367A (en) Piston for stirling engine
JP2012207830A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752919

Country of ref document: EP

Kind code of ref document: A1