JP2009052866A - Cold storage type refrigerator - Google Patents

Cold storage type refrigerator Download PDF

Info

Publication number
JP2009052866A
JP2009052866A JP2007222579A JP2007222579A JP2009052866A JP 2009052866 A JP2009052866 A JP 2009052866A JP 2007222579 A JP2007222579 A JP 2007222579A JP 2007222579 A JP2007222579 A JP 2007222579A JP 2009052866 A JP2009052866 A JP 2009052866A
Authority
JP
Japan
Prior art keywords
displacer
spring
vibration source
sliding member
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222579A
Other languages
Japanese (ja)
Inventor
Hideki Inagaki
秀城 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007222579A priority Critical patent/JP2009052866A/en
Publication of JP2009052866A publication Critical patent/JP2009052866A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage type refrigerator achieving stable operation for a long period, stable refrigerating capability and high cooling efficiency by improving the operation of a vibration source which causes the reciprocating motion of a displacer provided on the cooling part of the cold storage type refrigerator. <P>SOLUTION: The cold storage type refrigerator 1 comprises the vibration source 40 for causing the reciprocating motion of the displacer 37, a supporting member 43 having a rod 42 and stored in a case 41 of the vibration source 40, first bearings 44, 45 and second bearings 46, 47 having rotatable guides and disposed between each of the faces of the supporting member 43 and each of inner faces 41a, 41b of the case 41, and coil springs 48, 49 disposed between each of the first bearings 44, 45 and each of the second bearings 46, 47. The coil springs 48, 49 are mounted at their ends on cylindrical portions 44b, 45b, 46b, 47b of the bearings 44, 45, 46, 47. The spring force of the coil springs 48, 49 operates on the displacer 37 in the direction of its center axis A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばスターリング冷凍機あるいはパルス管冷凍機など、蓄冷器を使って冷凍を発生する蓄冷型冷凍機に関するものである。   The present invention relates to a regenerative refrigerator that generates refrigeration using a regenerator such as a Stirling refrigerator or a pulse tube refrigerator.

従来技術の蓄冷型冷凍機は、軸方向直線上を往復移動するリニアモータの可動部による作動気体の圧縮吸引を行う圧縮吸引部と、圧縮した作動気体を膨張させ冷凍を発生する冷却部とを有するスターリング冷却機であって、圧縮吸引部は可動部の周囲先端部に設けたばね受け部(材質、絶縁材のポリイミド樹脂)の両側にL形のリング座金(銅材に金メッキ)を嵌め込み、対の圧縮コイルばねをリング座金を介在して対向配置させるとともに、圧縮コイルばねを可動部の可動範囲において圧縮状態が維持され、リニアモータの可動コイルへの通電をリング座金と、圧縮コイルばねとを介して接続させ構成している。また、冷却部は圧縮吸引部における作動気体の送気または吸気によって軸方向直線上を往復移動する可動部の両側のばね受け座に対の圧縮ばねを対向配置させるとともに、圧縮コイルばねを可動部の可動範囲において圧縮状態が維持されるように設けている(例えば、特許文献1)。   A conventional regenerative refrigerator includes a compression suction unit that compresses and sucks working gas by a movable part of a linear motor that reciprocates on an axial straight line, and a cooling unit that expands the compressed working gas and generates refrigeration. The compression suction part has L-shaped ring washers (copper plated with gold) on both sides of a spring receiving part (material, polyimide resin of insulating material) provided at the peripheral tip of the movable part. The compression coil springs are arranged opposite to each other with a ring washer, the compression coil spring is maintained in a compressed state in the movable range of the movable part, and the ring washer and the compression coil spring are energized to energize the movable coil of the linear motor. Connected to each other. The cooling unit has a pair of compression springs opposed to the spring seats on both sides of the movable unit that reciprocally moves on the straight line in the axial direction by supplying or sucking the working gas in the compression and suction unit, and the compression coil spring is moved to the movable unit. (See, for example, Patent Document 1).

また、軸方向直線上を往復移動するリニアモータの可動部と、可動部による作動気体の圧縮吸引部とを備えるスターリング冷却機であって、可動部のピストンの背面端部側の両面に設けたばね受け部と、本体に固定されたばね受け座金および本体の円筒部の先端側底面との間に一対の圧縮コイルばねを配備し、一対の圧縮コイルばねは巻き方向が互いに反対方向に配置される(例えば、特許文献2)。   Also, a Stirling cooler including a movable part of a linear motor that reciprocally moves on an axial straight line and a compression / suction part for working gas by the movable part, provided on both surfaces of the movable part on the back end side of the piston A pair of compression coil springs are disposed between the receiving part, a spring receiving washer fixed to the main body, and a bottom surface of the cylindrical part of the main body, and the pair of compression coil springs are arranged in directions opposite to each other in winding direction ( For example, Patent Document 2).

また、リニアモータで駆動されるピストンを備えた圧縮機であって、ピストン端部の円板の両面に固定結合される第1スプリング固定用支持部材、第2スプリング固定用支持部材と、第1スプリング固定用支持部材に対面するカバーに固定結合される第1スプリング支持用支持部材と、第2スプリング固定用支持部材に対面する内部積層鉄心の端面に固定結合される第2スプリング支持用支持部材と、第1スプリング固定用支持部材と第1スプリング支持用支持部材の間に介在する第1スプリングと、第2スプリング固定用支持部材と第2スプリング支持用支持部材の間に介在する第2スプリングとを備えて構成される。第1スプリング、第2スプリングの一端は、それぞれ第1スプリング支持用支持部材、第2スプリングと第2スプリング支持用支持部材に緩く支持される。第1スプリング、第2スプリングの他端は、第1スプリング固定用支持部材、第2スプリング固定用支持部材の縁部に掛合し固定される。(例えば、特許文献3。)。   Further, the compressor includes a piston driven by a linear motor, and includes a first spring fixing support member, a second spring fixing support member, which are fixedly coupled to both surfaces of a disk at a piston end, A first spring support member fixedly coupled to the cover facing the spring fixing support member, and a second spring support member fixedly coupled to the end surface of the inner laminated core facing the second spring fixing support member A first spring interposed between the first spring fixing support member and the first spring supporting support member, and a second spring interposed between the second spring fixing support member and the second spring supporting support member. And is configured. One ends of the first spring and the second spring are loosely supported by the first spring support member, the second spring, and the second spring support member, respectively. The other ends of the first spring and the second spring are engaged with and fixed to the edges of the first spring fixing support member and the second spring fixing support member. (For example, patent document 3).

また、ピストンヘッドと、リニアモータのアーマチャと、ガイドピストンとをボルトで結合したピストンと、ピストンが摺動するシリンダと、ガイドピストンが摺動するピストンガイドと、シリンダの外側に配備したリニアモータのステータとを備えるリニア圧縮機であって、ガイドピストンの内端面の円筒部と、ピストンガイドの端部に固定したスプリングサポートの円筒部とに、それぞれ一対のスプリングを対向して装着し、スプリングの対向した端面にそれぞれ滑り軸受機能を有するワッシャを介在し、それぞれのスプリングの端部の内径を支持部材の両方の円筒部に装着する(例えば、特許文献4。)。
特開2004−12080号公報 特開2003−185283号公報 特許第3058413号公報 US005727932A
In addition, a piston in which a piston head, a linear motor armature, and a guide piston are coupled with a bolt, a cylinder in which the piston slides, a piston guide in which the guide piston slides, and a linear motor disposed outside the cylinder A linear compressor including a stator, wherein a pair of springs are mounted oppositely to a cylindrical portion of an inner end surface of a guide piston and a cylindrical portion of a spring support fixed to the end portion of the piston guide, A washer having a sliding bearing function is interposed between the opposed end surfaces, and the inner diameters of the end portions of the respective springs are attached to both cylindrical portions of the support member (for example, Patent Document 4).
JP 2004-12080 A JP 2003-185283 A Japanese Patent No. 3058413 US005727932A

しかしながら、特許文献1によれば、冷却部では、可動部の両側のばね受け座に配備した対の圧縮ばねの端面は、ばねの収縮、弛緩よって生じるばねのねじり力(円周方向の力)によりばね受け座の座面を揺動摺動してばね受け座の座面に摺動傷を付け、その際、摩耗粉が発生する。また同様に、圧縮ばねの反対側の端面は、ばね受けスリーブのばね受け座と、本体部のばね受け座のそれぞれの座面を揺動摺動してばね受け座に摺動傷を付け、その際、摩耗粉が発生する。これらの摩耗粉は、各部の摺動部に噛み込み、冷凍機の故障、機械損失の増大よる効率低下、あるいはピストンの振幅減少による冷凍能力の低下を起こす問題がある。   However, according to Patent Document 1, in the cooling unit, the end surfaces of the pair of compression springs arranged on the spring seats on both sides of the movable unit are the torsional force (circumferential force) of the spring generated by the contraction and relaxation of the spring. As a result, the seat surface of the spring seat is slid and slid to cause a scratch on the seat surface of the spring seat, and at this time, wear powder is generated. Similarly, the end face on the opposite side of the compression spring swings and slides on the spring receiving seat of the spring receiving sleeve and the spring receiving seat of the main body to cause a sliding scratch on the spring receiving seat, At that time, abrasion powder is generated. There is a problem that these abrasion powders are caught in sliding portions of each part, causing a failure of the refrigerator, a decrease in efficiency due to an increase in mechanical loss, or a decrease in refrigerating capacity due to a decrease in piston amplitude.

圧縮吸引部では、リニアモータの可動部に配備した圧縮コイルばねの一方の端面が、リニアモータの可動部側のばね受け部の両側に嵌め込んだL形状のリング座金に配備される。L形状のリング座金は、リニアモータのコイルに圧縮コイルばねを介し、通電用のリード線が接続され、リード線の断線防止のため、リング座金は動かないように固定しなければならない。従って、ばねの収縮、弛緩によるねじり力により、前述の冷却部と同じように圧縮コイルばねは、リング座金の座面を揺動摺動してリング座金に摺動傷を付け、その際、摩耗粉が発生する。また、圧縮コイルばねの他方の端面も、本体部に配備した絶縁座に嵌め込まれるL形状の第1リング座金(銅材に金メッキ)に配備される。第1リング座金には、リニアモータのコイルのリード線が接続され、リード線の断線防止のため、第1リング座金は動かないように固定しなければならない。従って、第1リング座金からも同じように摩耗粉が発生する。これらの摩耗粉は、前述と同じように冷凍機の故障、機械損失の増大よる効率低下、あるいはピストンの振幅減少による冷凍能力の低下を起こす問題がある。   In the compression suction portion, one end face of the compression coil spring provided on the movable portion of the linear motor is provided on an L-shaped ring washer fitted on both sides of the spring receiving portion on the movable portion side of the linear motor. In the L-shaped ring washer, a lead wire for energization is connected to the coil of the linear motor via a compression coil spring, and the ring washer must be fixed so as not to move in order to prevent disconnection of the lead wire. Therefore, due to the torsional force due to the contraction and relaxation of the spring, the compression coil spring swings and slides on the ring washer surface in the same manner as the cooling part described above, causing the ring washer to slide and wear. Powder is generated. The other end face of the compression coil spring is also provided on an L-shaped first ring washer (copper material is gold-plated) fitted into an insulating seat provided on the main body. The lead wire of the coil of the linear motor is connected to the first ring washer, and the first ring washer must be fixed so as not to move in order to prevent disconnection of the lead wire. Accordingly, wear powder is generated in the same manner from the first ring washer. As described above, these wear powders have a problem of causing a failure of a refrigerator, a reduction in efficiency due to an increase in mechanical loss, or a reduction in refrigerating capacity due to a decrease in piston amplitude.

また、特許文献2によれば、可動部側のばね受け部は、一対の圧縮コイルばねの対向面側の端面からねじり力を受けるが、一対の圧縮コイルばねは巻き方向が互いに反対方向に配置されているので、互いにねじり力が打消し合い、圧縮コイルばねとばね受け部は互いに相対運動することはなく、摩耗粉は発生しない。しかし、圧縮コイルばねの他方の端面は、圧縮コイルばねのねじり力により、ばね受け部の座面を揺動摺動し、ばね受け部の座面に摺動傷をつける。その際、摩耗粉を発生し、前述と同じ問題がある。   According to Patent Document 2, the spring receiving portion on the movable portion side receives a torsional force from the end surfaces on the opposed surface side of the pair of compression coil springs, but the pair of compression coil springs are arranged in directions opposite to each other in winding direction. Therefore, the torsional forces cancel each other, the compression coil spring and the spring receiving portion do not move relative to each other, and no wear powder is generated. However, the other end surface of the compression coil spring swings and slides on the seat surface of the spring receiving portion due to the torsional force of the compression coil spring, and causes a sliding scratch on the seat surface of the spring receiving portion. At that time, abrasion powder is generated, and there is the same problem as described above.

また、特許文献3によれば、第1スプリング、第2スプリングが収縮、弛緩すると、第1スプリング固定用支持部材、第2スプリング固定用支持部材に掛合固定されている側の
第1スプリング、第2スプリングの端部は、第1スプリング固定用支持部材、第2スプリング固定用支持部材に対し動くことはなく摩耗粉は発生しない。しかし、第1スプリング支持用支持部材、第2スプリング支持用支持部材に緩やかに支持されている第1スプリング、第2スプリングの端部は、各スプリングのねじり力により第1スプリング支持用支持部材、第2スプリング支持用支持部材に対し揺動摺動し、第1スプリング支持用支持部材、第2スプリング支持用支持部材の面に摺動傷をつけ、その際、摩耗粉が発生し、前述と同じ問題がある。
According to Patent Document 3, when the first spring and the second spring contract and relax, the first spring fixing support member, the first spring on the side fixed to the second spring fixing support member, The end portions of the two springs do not move with respect to the first spring fixing support member and the second spring fixing support member, and no abrasion powder is generated. However, the first spring support member, the first spring gently supported by the second spring support member, and the end of the second spring are supported by the torsional force of each spring. The first spring support member and the second spring support member are slidably slid relative to the second spring support member. I have the same problem.

また、特許文献4によれば、支持部材は、ワッシャを介在して一対のスプリングに支持されており、スプリングは曲げ剛性を持っているため、支持部材の質量とスプリングの曲げ剛性とで振動系を形成し、支持部材がピストンの摺動方向に対して直交方向に振れる横振れのおそれがある。横振れにより、スプリングの軸がひねり、ピストンヘッドと、ガイドピストンが摺動面に対しこじりながら摺動するので機械損失の増大とピストンヘッドの振幅減少の問題がある。   According to Patent Document 4, the support member is supported by a pair of springs with a washer interposed therebetween. Since the spring has bending rigidity, the vibration system is determined by the mass of the support member and the bending rigidity of the spring. There is a risk that the support member swings in a direction orthogonal to the sliding direction of the piston. Due to the lateral swing, the spring shaft is twisted, and the piston head and the guide piston slide while sliding against the sliding surface, which causes a problem of an increase in mechanical loss and a decrease in the amplitude of the piston head.

本発明は上記問題点に鑑みてなされたものであり、摩耗粉の発生や機械損失を抑えて蓄冷型冷凍機の冷却部に設けたディスプレイサの往復動を引起す振動源の作動を良好にすることで、長期間、安定した運転ができ、冷凍能力の安定した、冷却効率の高い蓄冷型冷凍機を提供することを目的とする。   The present invention has been made in view of the above-described problems, and suppresses generation of wear powder and mechanical loss, and improves the operation of a vibration source that causes reciprocation of a displacer provided in a cooling unit of a regenerative refrigerator. Thus, an object of the present invention is to provide a regenerative refrigerator that can be stably operated for a long period of time, has a stable refrigeration capacity, and has a high cooling efficiency.

上記課題を解決するため、請求項1に記載の発明は、作動ガスを圧縮する圧縮空間と、圧縮空間で圧縮された作動ガスの熱を放熱する放熱器と、放熱器を往復流動する作動ガスと熱交換する蓄冷器と、蓄冷器で冷却された作動ガスを膨張させるディスプレイサを設けた膨張空間と、ディスプレイサの往復動を引起す振動源と、を備える蓄冷型冷凍機であって、振動源は、ディスプレイサの中心軸上に位置するロッドが貫通するケースと、ケースに収納されロッドを配備した支持部材と、支持部材の両面に配備され回転可能な回転案内を備えた第1摺動部材と、ケースの両方の内面に配備され回転可能な回転案内を備えた第2摺動部材と、第1摺動部材と第2摺動部材との間に配備したコイルバネと、コイルバネに装着されディスプレイサに作用するコイルバネのバネ力の方向を中心軸方向に向ける案内部、とを備える。   In order to solve the above-mentioned problems, the invention described in claim 1 includes a compression space that compresses the working gas, a radiator that radiates heat of the working gas compressed in the compression space, and a working gas that reciprocates and flows through the radiator. A regenerative refrigerator that includes a regenerator that exchanges heat with, a expansion space provided with a displacer that expands the working gas cooled by the regenerator, and a vibration source that causes reciprocation of the displacer, The vibration source includes a case through which a rod positioned on the central axis of the displacer passes, a support member housed in the case and provided with the rod, and a first slide provided with a rotatable guide provided on both sides of the support member and rotatable. A moving member, a second sliding member provided on both inner surfaces of the case and provided with a rotatable guide, a coil spring disposed between the first sliding member and the second sliding member, and a coil spring mounted To the displacer Guide portion for directing the central axis direction of the spring force of the coil spring that includes a city.

また、請求項2に記載の発明は、振動源は、ディスプレイサの背面の対面側に位置する固定部材に配備され、ロッドをディスプレイサの背面に連結する。   According to a second aspect of the present invention, the vibration source is disposed on a fixing member located on the opposite side of the rear face of the displacer, and connects the rod to the rear face of the displacer.

また、請求項3に記載の発明は、振動源は、ディスプレイサに配備され、振動源からロッドが貫通する側に対面する連結部材にロッドを連結する。   According to a third aspect of the present invention, the vibration source is disposed in the displacer, and the rod is connected to a connecting member facing the side through which the rod passes from the vibration source.

また、請求項4に記載の発明は、案内部は、第1摺動部材および第2摺動部材の少なくとも一つに配備する。   According to a fourth aspect of the present invention, the guide portion is disposed on at least one of the first sliding member and the second sliding member.

また、請求項5に記載の発明は、案内部は、第1摺動部材および第2摺動部材の内周に配備される。   According to a fifth aspect of the present invention, the guide portion is disposed on the inner periphery of the first sliding member and the second sliding member.

また、請求項6に記載の発明は、案内部は、円筒である。   In the invention according to claim 6, the guide portion is a cylinder.

請求項1に記載の発明では、ディスプレイサの往復動を引起す振動源は、ケースに収納されロッドを配備した支持部材と、支持部材の両面に配備され回転可能な回転案内を備えた第1摺動部材と、ケースの両方の内面に配備され回転可能な回転案内を備えた第2摺動部材との間にそれぞれコイルバネを配備する。従って、コイルバネの収縮、弛緩よって生じるねじり力がコイルバネの両端に配備した第1摺動部材と第2摺動部材に作用する。コイルバネの端面と第1摺動部材との間の摩擦力は、第1摺動部材と支持部材との間の摩擦力より大きいく、またコイルバネの端面と第2摺動部材との間の摩擦力は、第2摺動部材とケースの内面との間の摩擦力より大きいので、コイルバネの端面は各摺動部材に対し摺動せず、各摺動部材の相手面である支持部材およびケースの内面に対し揺動摺動する。結果、従来技術のコイルバネ端面の摺動面への噛み込みによる摩耗粉の発生はなく、長期間、安定した運転ができ、冷凍能力の安定した、冷却効率の高い蓄冷型冷凍機を提供できる。   According to the first aspect of the present invention, the vibration source that causes the reciprocation of the displacer includes a support member housed in a case and provided with a rod, and a rotation guide provided on both sides of the support member and rotatable. Coil springs are respectively provided between the sliding member and the second sliding member provided on both inner surfaces of the case and provided with a rotatable guide. Accordingly, the torsional force generated by the contraction and relaxation of the coil spring acts on the first sliding member and the second sliding member provided at both ends of the coil spring. The frictional force between the end surface of the coil spring and the first sliding member is greater than the frictional force between the first sliding member and the support member, and the friction between the end surface of the coil spring and the second sliding member. Since the force is larger than the frictional force between the second sliding member and the inner surface of the case, the end surface of the coil spring does not slide with respect to each sliding member, and the supporting member and the case which are the mating surfaces of each sliding member Oscillates and slides on the inner surface. As a result, there is no generation of abrasion powder due to biting of the coil spring end face of the prior art into the sliding surface, and it is possible to provide a regenerative refrigerator with high cooling efficiency, stable operation for a long period of time, stable refrigerating capacity.

また、振動源は、コイルバネに装着されディスプレイサに作用するコイルバネのバネ力(圧縮力)の方向をディスプレイサの中心軸方向に向ける案内部を備えているので、コイルバネの収縮、弛緩によるバネ力はロッドの軸およびディスプレイサの中心軸に作用する。従って、コイルバネの収縮、弛緩のバネ力によるモーメントはディスプレイサとロッドに作用せず、ディスプレイサとロッドはスムーズに往復動し、従来技術のこじりによる機械損失が減少し、ディスプレイサの振幅が増大する。結果、冷凍能力が安定し、冷却効率が高くなる。   In addition, the vibration source includes a guide portion that is attached to the coil spring and directs the direction of the spring force (compression force) of the coil spring acting on the displacer toward the center axis of the displacer. Acts on the axis of the rod and the central axis of the displacer. Therefore, the moment due to the spring force of the coil spring contraction and relaxation does not act on the displacer and the rod, the displacer and the rod reciprocate smoothly, the mechanical loss due to the conventional twisting is reduced, and the displacement of the displacer increases. To do. As a result, the refrigeration capacity is stabilized and the cooling efficiency is increased.

また、請求項2に記載の発明では振動源は、軸がディスプレイサの中心軸上に位置するようにディスプレイサ背面の対面側に位置する固定部材に配備され、ロッドをディスプレイサの背面に連結するので、請求項1と同じように作用し、同じ効果を生じる。   According to the second aspect of the present invention, the vibration source is disposed on a fixing member located on the opposite side of the displacer rear surface so that the shaft is located on the central axis of the displacer, and the rod is connected to the rear surface of the displacer. Therefore, it acts in the same manner as in claim 1 and produces the same effect.

また、請求項3に記載の発明では、振動源は、ディスプレイサに配備され、振動源からロッドが貫通する側に対面する連結部材に軸がディスプレイサの中心軸上に位置するようにロッドを連結するで、請求項1と同じように作用し、同じ効果を生じるとともに、冷却部の軸方向の長さが短くなり、冷却部を小型にできる。   According to a third aspect of the present invention, the vibration source is provided in the displacer, and the rod is arranged so that the shaft is positioned on the central axis of the displacer on the connecting member facing the side through which the rod passes from the vibration source. Since it connects, it acts like Claim 1, produces the same effect, the axial length of a cooling part becomes short, and a cooling part can be reduced in size.

また、請求項4に記載の発明では、案内部は第1摺動部材および第2摺動部材の少なくとも一つに配備されるので、コイルバネの収縮、弛緩によるバネ力はロッドの軸およびディスプレイサの中心軸に作用する。従って、ディスプレイサあるいはロッドには、コイルバネの収縮、弛緩のバネ力よるモーメントが作用せず、ディスプレイサあるいはロッドがスムーズに往復動し、機械損失が減少し、ディスプレイサの振幅が増大する。結果、冷凍能力が安定し、冷却効率が高くなる。   In the invention according to claim 4, since the guide portion is disposed on at least one of the first sliding member and the second sliding member, the spring force due to the contraction and relaxation of the coil spring is not affected by the shaft of the rod and the displacer. Acting on the central axis of Therefore, the moment due to the spring force of contraction or relaxation of the coil spring does not act on the displacer or the rod, and the displacer or the rod reciprocates smoothly, the mechanical loss is reduced, and the amplitude of the displacer is increased. As a result, the refrigeration capacity is stabilized and the cooling efficiency is increased.

また、請求項5に記載の発明では、案内部が第1摺動部材および第2摺動部材の内周に配備され、コイルバネの内径側を案内部の外周面に対し僅かな間隙を持って装着する。コイルバネが収縮するとコイルバネの内径寸法は制約されず拡がることでき、従来技術のコイルバネの軸ひなりは起こらず、ディスプレイサあるいはロッドはスムーズに往復動し、機械損失が減少し、ディスプレイサの振幅が増大する。結果、冷凍能力が安定し、冷却効率が高くなる。   In the invention according to claim 5, the guide portion is arranged on the inner periphery of the first sliding member and the second sliding member, and the inner diameter side of the coil spring is provided with a slight gap with respect to the outer peripheral surface of the guide portion. Installing. When the coil spring contracts, the inner diameter of the coil spring can be expanded without restriction, the axial twist of the conventional coil spring does not occur, the displacer or the rod reciprocates smoothly, the mechanical loss is reduced, and the displacer amplitude is increased. Increase. As a result, the refrigeration capacity is stabilized and the cooling efficiency is increased.

また、請求項6に記載の発明では、案内部は円筒で、形状が単純であるので、第1摺動部材、第2摺動部材のコストが安くなる。   In the invention according to claim 6, since the guide portion is cylindrical and has a simple shape, the cost of the first sliding member and the second sliding member is reduced.

以下に本発明の実施形態を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は、本発明に係わる蓄冷型冷凍機の断面図である。蓄冷型冷凍機1は、圧縮部2と冷却部30とを配管4を介し、それぞれに設けられた流路孔4a、4bに接続して構成し、作動ガスとしてヘリウム(作動ガス)が充填され、スターリング冷凍機1(蓄冷型冷凍機)が形成される。
(Example 1)
FIG. 1 is a sectional view of a regenerative refrigerator according to the present invention. The regenerative refrigerator 1 is configured by connecting the compression unit 2 and the cooling unit 30 to the flow path holes 4a and 4b provided in each through the pipe 4, and is filled with helium (working gas) as the working gas. A Stirling refrigerator 1 (cool storage type refrigerator) is formed.

圧縮部2は、圧縮シリンダ5と、圧縮シリンダ5の外周面に設けた流路孔4aに対し対称位置に固定される一対のリニアモータ10、20の固定子11、21と、圧縮シリンダ5の内周面に摺動可能に配備されるリニアモータ10、20の可動体12、22とから形成される。固定子11、21は、磁性材の外ヨーク11a、21aと、コイル11b、21bを備える。可動体12、22は、磁性材の内ヨーク12a、22aと、永久磁石12b、22bと、圧縮ピストン12c、22cと、調整部材12d、22dとを備える。圧縮ピストン12cと22cの間には第1圧縮空間6(圧縮空間)が形成され、圧縮ピストン12c、22cの第1圧縮空間6の反対側にはそれぞれバッファ空間13、23が形成される。バッファ空間13と23は容積が同じで、またリニアモータ10と20は同一である。   The compression unit 2 includes a compression cylinder 5, stators 11 and 21 of a pair of linear motors 10 and 20 fixed at symmetrical positions with respect to a flow path hole 4 a provided on the outer peripheral surface of the compression cylinder 5, It is formed from movable bodies 12 and 22 of linear motors 10 and 20 that are slidably disposed on the inner peripheral surface. The stators 11 and 21 include outer yokes 11a and 21a made of a magnetic material and coils 11b and 21b. The movable bodies 12 and 22 include inner yokes 12a and 22a of magnetic material, permanent magnets 12b and 22b, compression pistons 12c and 22c, and adjustment members 12d and 22d. A first compression space 6 (compression space) is formed between the compression pistons 12c and 22c, and buffer spaces 13 and 23 are formed on the opposite sides of the compression pistons 12c and 22c to the first compression space 6, respectively. The buffer spaces 13 and 23 have the same volume, and the linear motors 10 and 20 are the same.

冷却部30は、配管4を介在して圧縮部2の圧縮空間6に連通する流路4bと第2圧縮空間31(圧縮空間)に連通する流路4dとが流路4cで合流し、順次、流路4c、放熱器32、蓄冷器33、吸熱器34、流路34a、膨張空間35とが連通して作動空間を形成すると共に、膨張空間35を形成するディスプレイサ37の振動力を引起す振動源40を備える。   In the cooling unit 30, the flow path 4b communicating with the compression space 6 of the compression section 2 via the pipe 4 and the flow path 4d communicating with the second compression space 31 (compression space) are merged in the flow path 4c. The flow path 4c, the radiator 32, the regenerator 33, the heat absorber 34, the flow path 34a, and the expansion space 35 communicate with each other to form a working space and cause a vibration force of the displacer 37 that forms the expansion space 35. A vibration source 40 is provided.

膨張空間35は、シリンダ36と、シリンダ36の内周面を摺動するディスプレイサ37の前面37aと、蓄冷器33を形成する圧力容器38とから形成される。   The expansion space 35 is formed by a cylinder 36, a front surface 37 a of a displacer 37 that slides on the inner peripheral surface of the cylinder 36, and a pressure vessel 38 that forms the regenerator 33.

第2圧縮空間31は、シリンダ36の常温部36aと、ディスプレイサ37の背面37bと、ディスプレイサ37の背面37bの中心に連結される振動源40のロッド42とから形成され、シリンダ36の常温側に設けた多数個の流路孔4dと、リング状の流路4cを通って放熱器32に連通する。   The second compression space 31 is formed by a normal temperature portion 36 a of the cylinder 36, a rear surface 37 b of the displacer 37, and a rod 42 of the vibration source 40 connected to the center of the rear surface 37 b of the displacer 37. A large number of channel holes 4d provided on the side and the ring-shaped channel 4c communicate with the radiator 32.

蓄冷器33は、金網などの蓄冷材エレメント33aを積層して形成され、蓄冷材エレメント33aと蓄冷器33を流動するヘリウムとが熱交換する。放熱器32は、ヘリウムの圧縮熱を外部に排熱する。吸熱器34は圧力容器38の壁を介して被冷却体50が熱接触し冷却される。尚、吸熱器34を配備しない場合は、圧力容器38の低温部38aが吸熱器となる。   The regenerator 33 is formed by stacking regenerator elements 33 a such as a wire mesh, and heat exchange is performed between the regenerator element 33 a and helium flowing through the regenerator 33. The radiator 32 exhausts heat of compression of helium to the outside. The heat absorber 34 is cooled by being brought into thermal contact with the cooled object 50 through the wall of the pressure vessel 38. In addition, when not installing the heat absorber 34, the low temperature part 38a of the pressure vessel 38 becomes a heat absorber.

図2は、図1の振動源40の拡大図である。振動源40は、シリンダ36の常温部36a(固定部材)に配備され、軸が中心軸A上に位置するロッド42を配備した支持部材43を収納するケース41を備え、ケース41の内周面41dの軸は中心軸A上に位置する。   FIG. 2 is an enlarged view of the vibration source 40 of FIG. The vibration source 40 includes a case 41 that is disposed in a normal temperature portion 36a (fixing member) of the cylinder 36 and that houses a support member 43 in which a rod 42 whose axis is located on the central axis A is disposed. The axis 41d is located on the central axis A.

支持部材43は、円板形状の鍔部43cと、鍔部43cの両面中央の円柱部43a、43bとを備え、支持部材43の円柱部43a、43bの軸は、ディスプレイサ37の中心軸A上に位置する。支持部材43は、鍔部43cの両面に樹脂摺動材の第1軸受44、45(第1摺動部材)が配備される。   The support member 43 includes a disc-shaped flange portion 43c and columnar portions 43a and 43b at the center of both surfaces of the flange portion 43c. The axes of the columnar portions 43a and 43b of the support member 43 are the center axis A of the displacer 37. Located on the top. The support member 43 is provided with first bearings 44 and 45 (first sliding member) made of a resin sliding material on both surfaces of the flange portion 43c.

第1軸受44、45は断面がL形状で軸が中心軸A上に位置し、円板部44a、45aと、円板部44a、45aの内周側の円筒部44b、45bとからなり、円筒部44b、45bの内周面44c、45c(回転案内)は、それぞれ支持部材43の円柱部43a、43bの外周面に僅かな間隙を持って篏合し、中心軸A回りにスムーズに回転できる。   The first bearings 44 and 45 are L-shaped in cross section and the axis is located on the central axis A, and are composed of disk parts 44a and 45a and cylindrical parts 44b and 45b on the inner peripheral side of the disk parts 44a and 45a, The inner peripheral surfaces 44c and 45c (rotation guides) of the cylindrical portions 44b and 45b fit with the outer peripheral surfaces of the columnar portions 43a and 43b of the support member 43 with a slight gap, and rotate smoothly around the central axis A. it can.

ケース41の内面41a、41bには、樹脂摺動材の第2軸受46、47(第2摺動部材)が配備される。第2軸受46、47は断面がL形状で軸が中心軸A上に位置し、円板部46a、47aと、円板部46a、47aの内周側の円筒部46b、47bとからなり、円板部46a、47aの外周面46c、47c(回転案内)は、それぞれケース41の内周面41dに僅かな間隙を持って篏合し、中心軸A回りにスムーズに回転できる。   On the inner surfaces 41a and 41b of the case 41, second bearings 46 and 47 (second sliding members) made of a resin sliding material are provided. The second bearings 46 and 47 have an L-shaped cross section and the shaft is located on the central axis A, and are composed of disk portions 46a and 47a and cylindrical portions 46b and 47b on the inner peripheral side of the disk portions 46a and 47a. The outer peripheral surfaces 46c and 47c (rotation guides) of the disk portions 46a and 47a are engaged with the inner peripheral surface 41d of the case 41 with a slight gap, and can rotate smoothly around the central axis A.

第1軸受44と第2軸受46の間には、コイルバネ48が配備され、コイルバネ48の両端の内径は第1軸受44の円筒部44b(案内部)の外周面および第2軸受46の円筒部46b(案内部)の外周面に僅かな間隙を持って装着される。同様に、第1軸受45と第2軸受47の間には、コイルバネ49が配備され、コイルバネ49の両端の内径は第1軸受45の円筒部45b(案内部)の外周面および第2軸受47の円筒部47b(案内部)の外周面に僅かな間隙を持って装着される。このようにして一対のコイルバネ48と49は支持材43を介在し互いに対向配備され、各円筒部44b、45b、46b、47bがコイルバネ48、49の収縮、弛緩によるバネ力を中心軸Aに向ける案内部となる。   A coil spring 48 is provided between the first bearing 44 and the second bearing 46, and the inner diameters of both ends of the coil spring 48 are the outer peripheral surface of the cylindrical portion 44 b (guide portion) of the first bearing 44 and the cylindrical portion of the second bearing 46. 46b (guide part) is mounted on the outer peripheral surface with a slight gap. Similarly, a coil spring 49 is provided between the first bearing 45 and the second bearing 47, and the inner diameters at both ends of the coil spring 49 are the outer peripheral surface of the cylindrical portion 45 b (guide portion) of the first bearing 45 and the second bearing 47. The cylindrical portion 47b (guide portion) is attached to the outer peripheral surface with a slight gap. In this way, the pair of coil springs 48 and 49 are disposed opposite to each other with the support member 43 interposed therebetween, and the cylindrical portions 44b, 45b, 46b, 47b direct the spring force due to contraction and relaxation of the coil springs 48, 49 toward the central axis A. Become a guide.

ケース41の内面41aの中心に設けた孔には、樹脂摺動材のリング41cが挿入固定され、ロッド42がリング41cの内周面に対し微小間隙を持って貫通し、ロッド42の端部はディスプレイサ37の背面37bの中心に連結される。リング41cは、軸受とヘリウムをシールするクリアランスシールの機能を有する。   A ring 41c made of a resin sliding material is inserted and fixed in a hole provided in the center of the inner surface 41a of the case 41, and the rod 42 penetrates the inner peripheral surface of the ring 41c with a small gap, and the end of the rod 42 is inserted. Is connected to the center of the back surface 37b of the displacer 37. The ring 41c functions as a clearance seal that seals the bearing and helium.

尚、前述の説明では、第1軸受44、45の材質は樹脂摺動材であったが、支持器43を樹脂摺動材にし第1軸受44、45を金属にしても良い。   In the above description, the material of the first bearings 44 and 45 is a resin sliding material, but the support 43 may be a resin sliding material and the first bearings 44 and 45 may be metal.

次に、本発明の作用と効果について説明する。   Next, the operation and effect of the present invention will be described.

ディスプレイサ37と、可動体12、22は、後述するように、それぞれバネ・質量の固有の共振周波数を持つ振動系を形成しており、調整質量12、22の質量を増減して可動体12、22の共振周波数をディスプレイサ37の共振周波数に合わせることにより、第1圧縮空間6と第2圧縮空間31を合計した容積に対し膨張空間35の容積は略90度位相が進み、少ない電力で大きな冷凍量が得られ、効率よく冷却ができる。   As will be described later, the displacer 37 and the movable bodies 12 and 22 form a vibration system having a specific resonance frequency of the spring and the mass, respectively, and the mass of the adjustment masses 12 and 22 is increased or decreased. By adjusting the resonance frequency of 22 to the resonance frequency of the displacer 37, the volume of the expansion space 35 is advanced by about 90 degrees with respect to the total volume of the first compression space 6 and the second compression space 31, and with less power. A large amount of refrigeration is obtained and cooling can be performed efficiently.

前述の合わせた共振周波数の電流をリニアモータ10、20に通電すると可動体12、22が往復動し、これに伴いディスプレイサ37が往復動し、コイルバネ48、49はコイルバネ48、49の収縮、弛緩よってバネ力とねじり力が生じる。ここで、バネ力は、コイルバネ48、49の軸方向の圧縮力であり、ねじり力はバネの巻き方向の力(円周方向の力)である。軸方向の圧縮力、即ちバネ力は、前述のディスプレイサ37の往復動を引起す力となり、コイルバネ48、49のねじり力は、それぞれ第1軸受44、45と第2軸受46、47を揺動摺動させる回転力として作用する。   When the linear motors 10 and 20 are energized with the combined resonance frequency current, the movable bodies 12 and 22 reciprocate, and the displacer 37 reciprocates accordingly. The coil springs 48 and 49 contract the coil springs 48 and 49. The relaxation causes spring force and torsional force. Here, the spring force is a compressive force in the axial direction of the coil springs 48 and 49, and the torsional force is a force in the winding direction of the spring (force in the circumferential direction). The axial compressive force, that is, the spring force, causes the reciprocating motion of the displacer 37 described above, and the torsional force of the coil springs 48 and 49 swings the first bearings 44 and 45 and the second bearings 46 and 47, respectively. Acts as a rotational force for sliding.

第1軸受44、45の円筒部44b、45bの内周面は、僅かな間隙を持って支持器43の円柱部43a、43bに篏合しているので第1軸受44、45の回転軸は中心軸Aに合う。また第2軸受46、47の円板部46a、47aの外周面は、ケース41の内周面41dに僅かな間隙を持って篏合しているので第2軸受46、47の中心は中心軸Aに合う。   Since the inner peripheral surfaces of the cylindrical portions 44b and 45b of the first bearings 44 and 45 are engaged with the cylindrical portions 43a and 43b of the support device 43 with a slight gap, the rotation shafts of the first bearings 44 and 45 are Fits the central axis A. Further, since the outer peripheral surfaces of the disk portions 46a and 47a of the second bearings 46 and 47 are engaged with the inner peripheral surface 41d of the case 41 with a slight gap, the centers of the second bearings 46 and 47 are center axes. Fits A.

前述の回転力が作用すると、コイルバネ48の一方の端面と第1軸受44との間の摩擦力は、第1軸受44と支持部材43の鍔部44cとの間の摩擦力より大きいので、コイルバネ48の一方の端面は第1軸受44面上を摺動せず、第1軸受44が支持部材43の鍔部44c面上をディスプレイサ37の中心軸A回りにスムーズに揺動摺動する。同じように、コイルバネ48の他方の端面と第2軸受46との摩擦力は、第2軸受46とケース41の内面41aとの摩擦力より大きいので、コイルバネ48の他方の端面は第2軸受46面上を摺動せず、第2軸受46がケース41の内面41aを中心軸A回りにスムーズに揺動摺動する。また、第1軸受45、第2軸受47は、上述と同じように作用する。従って、各軸受44、45、46、47がスムーズに揺動摺動することで第1軸受44、第2軸受46とコイルバネ48、そして第1軸受45、第2軸受47とコイルバネ49には、従来技術のコイルバネ端面の摺動面への噛み込みによる摩耗粉の発生はなく、長期間、安定した運転ができ、冷凍能力の安定した、冷却効率の高い蓄冷型冷凍機1を提供できる。   When the aforementioned rotational force is applied, the frictional force between one end surface of the coil spring 48 and the first bearing 44 is larger than the frictional force between the first bearing 44 and the flange portion 44c of the support member 43. One end surface of 48 does not slide on the surface of the first bearing 44, and the first bearing 44 swings and slides smoothly around the central axis A of the displacer 37 on the surface of the flange portion 44 c of the support member 43. Similarly, since the frictional force between the other end surface of the coil spring 48 and the second bearing 46 is larger than the frictional force between the second bearing 46 and the inner surface 41a of the case 41, the other end surface of the coil spring 48 is the second bearing 46. The second bearing 46 smoothly swings and slides around the central axis A on the inner surface 41a of the case 41 without sliding on the surface. Further, the first bearing 45 and the second bearing 47 operate in the same manner as described above. Accordingly, each of the bearings 44, 45, 46 and 47 smoothly swings and slides, so that the first bearing 44, the second bearing 46 and the coil spring 48, and the first bearing 45, the second bearing 47 and the coil spring 49 are There is no generation of abrasion powder due to biting of the coil spring end face into the sliding surface of the prior art, and it is possible to provide a regenerative refrigerator 1 having a high cooling efficiency and a stable refrigeration capacity that can be stably operated for a long period of time.

また、コイルバネ48、49の一方の端部の内径は、第1軸受44、45の円筒部44b、45bの外周面に対し僅かな間隙を持って装着され、他方の端部の内径は第2軸受46、47の円筒部46b、47bの外周面に対し僅かな間隙を持って装着される。即ち、各円筒部44b、45b、46b、47bがコイルバネ48、49の収縮、弛緩によるバネ力を中心軸Aに向ける案内部として作用する。従って、コイルバネ48、49の収縮、弛緩によるバネ力の方向は、中心軸A上にあるので、ロッド42あるいはディスプレイサ37に収縮、弛緩のバネ力よるモーメントは作用せず、ロッド42あるいはディスプレイサ37は、スムーズに往復動し、従来技術のこじりながら往復動することはなく、機械損失が減少し、ディスプレイサ37の振幅が増大する。結果、冷凍能力が安定し、冷却効率が高くなる。   The inner diameter of one end of the coil springs 48 and 49 is mounted with a slight gap with respect to the outer peripheral surface of the cylindrical portions 44b and 45b of the first bearings 44 and 45, and the inner diameter of the other end is second. The bearings 46 and 47 are mounted with a slight gap on the outer peripheral surfaces of the cylindrical portions 46b and 47b. That is, each cylindrical portion 44b, 45b, 46b, 47b acts as a guide portion that directs the spring force caused by the contraction and relaxation of the coil springs 48, 49 toward the central axis A. Accordingly, since the direction of the spring force due to the contraction and relaxation of the coil springs 48 and 49 is on the central axis A, the moment due to the contraction and relaxation spring force does not act on the rod 42 or the displacer 37, and the rod 42 or the displacer. 37 reciprocates smoothly, and does not reciprocate with the conventional technique, reducing mechanical loss and increasing the amplitude of the displacer 37. As a result, the refrigeration capacity is stabilized and the cooling efficiency is increased.

円筒部44b、45bと、円筒部46b、47bは、ともに第1軸受44、45および第2軸受46、47の内周に配備されるので、コイルバネ48、49の内径を円筒部44b、45bと円筒部46b、47bの外周面に対し僅かな間隙を持って装着することで、コイルバネ48、49が収縮すると間隙は拡がり、コイルバネ48、49の内径寸法は制約されず拡がることができ、従来技術のコイルバネの軸のひなりは起こらず、ディスプレイサ37あるいはロッド42がスムーズに往復動し、機械損失が減少し、ディスプレイサ37の振幅が増大する。結果、冷凍能力が安定し、冷却効率が高くなる。   Since the cylindrical portions 44b and 45b and the cylindrical portions 46b and 47b are both arranged on the inner circumferences of the first bearings 44 and 45 and the second bearings 46 and 47, the inner diameters of the coil springs 48 and 49 are set to the cylindrical portions 44b and 45b. By mounting with a slight gap on the outer peripheral surfaces of the cylindrical portions 46b and 47b, when the coil springs 48 and 49 are contracted, the gaps are expanded, and the inner diameter dimensions of the coil springs 48 and 49 can be expanded without restriction. As a result, the displacer 37 or the rod 42 reciprocates smoothly, the mechanical loss is reduced, and the amplitude of the displacer 37 is increased. As a result, the refrigeration capacity is stabilized and the cooling efficiency is increased.

また、44b、45b、46b、47bは円筒であるので、形状が単純でコストが安くなる。   Further, since 44b, 45b, 46b, and 47b are cylinders, the shape is simple and the cost is low.

次に、ディスプレイサ37と、可動体12、22のバネ・質量の振動系について説明する。リニアモータ10、20の磁気バネと、圧縮空間6のガスバネと、バッファ空間13、23のガスバネとの合成バネと、可動体12、22の質量とでバネ・質量の固有の共振周波数を持つ振動系を形成し、この共振周波数の電流をリニアモータ10、20に通電すると可動体12、22の往復動のストロークが大きくなり、圧縮空間6で効率よくヘリウムを圧縮する。   Next, the spring / mass vibration system of the displacer 37 and the movable bodies 12 and 22 will be described. A vibration having a specific resonance frequency of the spring and the mass of the magnetic spring of the linear motors 10 and 20, the combined spring of the gas spring of the compression space 6, the gas spring of the buffer spaces 13 and 23, and the mass of the movable bodies 12 and 22. When a system is formed and a current of this resonance frequency is applied to the linear motors 10 and 20, the strokes of the reciprocating motions of the movable bodies 12 and 22 increase, and helium is efficiently compressed in the compression space 6.

可動体12、22の往復動するとヘリウムが同じ周波数の圧力変動を生じ、ディスプレイサ37が同じ周波数で往復動する。即ち、ディスプレイサ37には、ディスプレイサ37の前面37aと背面37bに作用する圧力による力と、ロッド42の下端面に作用する圧力(ケース41内の圧力)による力と、コイルバネ48、49の収縮、弛緩で生じるバネ力の合力が、以下に述べる合計質量の慣性力と釣合い、往復動する。この場合、ディスプレイサ37の前面37aと背面37bの圧力はほぼ等しく、またロッド径は、小さいのでガスバネのバネ定数はコイルバネのバネ定数に比べ十分小さいので、コイルバネ48、49が主体となってディスプレイサ37の往復動の振動を引起す。   When the movable bodies 12 and 22 reciprocate, helium causes pressure fluctuations at the same frequency, and the displacer 37 reciprocates at the same frequency. That is, the displacer 37 has a force due to pressure acting on the front surface 37 a and the back surface 37 b of the displacer 37, a force due to pressure acting on the lower end surface of the rod 42 (pressure in the case 41), and coil springs 48 and 49. The resultant force of the spring force generated by contraction and relaxation balances with the inertial force of the total mass described below and reciprocates. In this case, since the pressures of the front surface 37a and the rear surface 37b of the displacer 37 are substantially equal and the rod diameter is small, the spring constant of the gas spring is sufficiently smaller than the spring constant of the coil spring. The vibration of the reciprocating motion of the support 37 is caused.

ディスプレイサ37は、コイルバネ48、49と、膨張空間35のガスバネと、第2圧縮空間31のガスバネと、ケース41内のガスバネとの合成バネと、ディスプレイサ37の質量、ロッド42の質量、保持器43の質量と、第1軸受44、45の質量とを合計した合計質量とで、バネ・質量の固有の共振周波数を持つ振動系を形成し、この共振周波数でディスプレイサ37の往復動のストロークが大きくなり、膨張空間35で大きな冷凍量を発生する。   The displacer 37 is composed of coil springs 48 and 49, a gas spring in the expansion space 35, a gas spring in the second compression space 31, and a gas spring in the case 41, a mass of the displacer 37, a mass of the rod 42, and a holding force. The total mass of the mass of the device 43 and the mass of the first bearings 44 and 45 forms a vibration system having an inherent resonance frequency of the spring and mass, and the displacer 37 reciprocates at this resonance frequency. The stroke increases and a large amount of refrigeration is generated in the expansion space 35.

蓄冷型冷凍機1は、次のようにして冷凍を発生する。可動体12、22とディスプレイサ背面37bにより圧縮行程で圧縮された第1圧縮空間6と第2圧縮空間31のヘリウムは、放熱器32、蓄冷器33で冷却され、ディスプレイサ前面37aの膨張行程で膨張し、膨張空間35で冷凍を発生する。次いで、ディスプレイサ前面37aの吐出行程(圧縮行程)で膨張空間35から流出するヘリウムは、蓄冷器33で温められ第1圧縮空間6と第2圧縮空間31に戻り、スターリング冷凍機の1サイクルを終了する。   The regenerative refrigerator 1 generates refrigeration as follows. The helium in the first compression space 6 and the second compression space 31 compressed in the compression stroke by the movable bodies 12 and 22 and the displacer back surface 37b is cooled by the radiator 32 and the regenerator 33, and the expansion stroke of the displacer front surface 37a. And the refrigeration is generated in the expansion space 35. Next, the helium flowing out from the expansion space 35 in the discharge stroke (compression stroke) of the displacer front surface 37a is warmed by the regenerator 33 and returned to the first compression space 6 and the second compression space 31, and one cycle of the Stirling refrigerator is performed. finish.

(実施例2)
図3は、本発明に係わる他の蓄冷型冷凍機の断面図である。尚、図3の圧縮部、配管、流路、放熱器、蓄冷器、吸熱器、圧力容器の構成は、図1と同じであるので図1の符号を付す。蓄冷型冷凍機60は、圧縮部2と冷却部70とを配管4を介し、それぞれに設けられる流路孔4a、4bに配管4を接続して構成し、ヘリウム(作動ガス)が充填され、位相調整器として後述するディスプレイサ77を使ったパルス管冷凍機60(蓄冷型冷凍機)を形成する。
(Example 2)
FIG. 3 is a sectional view of another cold storage type refrigerator according to the present invention. In addition, since the structure of the compression part of FIG. 3, piping, a flow path, a heat radiator, a cool storage, a heat absorber, and a pressure vessel is the same as FIG. 1, it attaches | subjects the code | symbol of FIG. The regenerative refrigerator 60 is configured by connecting the compression section 2 and the cooling section 70 via the pipe 4 to the flow path holes 4a and 4b provided in the respective sections, and filled with helium (working gas). A pulse tube refrigerator 60 (cool storage type refrigerator) using a displacer 77 described later as a phase adjuster is formed.

冷却部70は、第1圧縮空間6(圧縮空間)に連通する流路4bと、第2圧縮空間71(圧縮空間)に連通する流路4dとが流路4cで合流し、順次、流路4c、放熱器32、蓄冷器33、吸熱器34、流路34a、膨張空間75とが連通して形成される作動回路と、膨張空間75を形成するディスプレイサ77に隣接して形成されるガスピストン78とからなり、ディスプレイサ77の往復動を引起す振動源80を備える。   In the cooling unit 70, the flow path 4b communicating with the first compression space 6 (compression space) and the flow path 4d communicating with the second compression space 71 (compression space) merge at the flow path 4c. 4 c, radiator 32, regenerator 33, heat absorber 34, flow path 34 a, expansion circuit 75 formed in communication, and gas formed adjacent to displacer 77 that forms expansion space 75. A vibration source 80 that includes the piston 78 and causes the reciprocation of the displacer 77 is provided.

膨張空間75は、シリンダ76と、シリンダ76の内周面を摺動するディスプレイサ77の前面77aの上部に形成される図示一点鎖線のガスピストン78と、蓄冷器33を形成する圧力容器38とから形成される。ディスプレイサ77は、樹脂摺動材のピストン部77cの開口部に樹脂摺動材のキャップ77dがねじ込まれ形成され、図1のディスプレイサ37のように低温側まで伸びず短く、ディスプレイサ77の長さは前面77aの温度が低温と常温の中間の温度になる長さで、ディスプレイサ77はガスピストン78の位相を決める位相調整器として機能する。   The expansion space 75 includes a cylinder 76, a dashed-dotted gas piston 78 formed on the front surface 77 a of the displacer 77 that slides on the inner peripheral surface of the cylinder 76, and a pressure vessel 38 that forms the regenerator 33. Formed from. The displacer 77 is formed by screwing a resin sliding material cap 77d into the opening of the piston portion 77c of the resin sliding material, and is short and does not extend to the low temperature side like the displacer 37 of FIG. The length is such a length that the temperature of the front surface 77a is intermediate between the low temperature and the normal temperature, and the displacer 77 functions as a phase adjuster that determines the phase of the gas piston 78.

第2圧縮空間71(圧縮空間)は、シリンダ76の常温部76aと、ディスプレイサ77の背面77bと、ディスプレイサ77の背面77bの中心に設けた孔77eを通り、振動源80に配備したロッド82とから形成され、シリンダ76の常温側に設けた多数個の流路孔4dと、リング状の流路4cを通って放熱器32に連通する。第1圧縮空間6は、順次、流路孔4a、配管4、流路孔4b、流路4cを通って放熱器32に連通する。   The second compression space 71 (compression space) passes through a hole 77e provided in the center of the room temperature portion 76a of the cylinder 76, the back surface 77b of the displacer 77, and the back surface 77b of the displacer 77, and is a rod disposed in the vibration source 80. 82, and communicates with the radiator 32 through a large number of passage holes 4d provided on the room temperature side of the cylinder 76 and the ring-like passage 4c. The first compression space 6 communicates with the radiator 32 sequentially through the flow path hole 4a, the pipe 4, the flow path hole 4b, and the flow path 4c.

図4は、図3の振動源80の拡大図である。振動源80は、ディスプレイサ77の常温部に配備され、ディスプレイサ77の常温部が振動源80のケース81となる。ケース81は、ロッド82を配備した支持部材83を収納する。   FIG. 4 is an enlarged view of the vibration source 80 of FIG. The vibration source 80 is provided in a normal temperature part of the displacer 77, and the normal temperature part of the displacer 77 becomes a case 81 of the vibration source 80. The case 81 houses a support member 83 provided with a rod 82.

支持部材83は、円板形状の鍔部83cと、鍔部83cの両面中央の円柱部83a、83bを備える。ロッド82の軸と支持部材83の円柱部83a、83bの軸は、ディスプレイサ77の中心軸B上に位置する。支持部材83は、鍔部83cの両面に樹脂摺動材の第1軸受84、85(第1摺動部材)が配備される。   The support member 83 includes a disk-shaped flange portion 83c and cylindrical portions 83a and 83b at the center of both surfaces of the flange portion 83c. The axis of the rod 82 and the axes of the cylindrical portions 83 a and 83 b of the support member 83 are located on the central axis B of the displacer 77. The support member 83 is provided with first bearings 84 and 85 (first sliding member) made of a resin sliding material on both surfaces of the flange 83c.

第1軸受84、85は、軸が中心軸B上に位置し、断面がL形状で、円板部84a、85aと、円板部84a、85aの内周側の円筒部84b、85bからなり、円筒部84b、85bの内周面84c、85c(回転案内)は、それぞれ支持部材83の円柱部83a、83bの外周面に僅かな間隙を持って篏合し、中心軸B回りにスムーズに回転できる。   The first bearings 84 and 85 have an axis located on the central axis B, an L-shaped cross section, and are composed of disk parts 84a and 85a and cylindrical parts 84b and 85b on the inner peripheral side of the disk parts 84a and 85a. The inner peripheral surfaces 84c and 85c (rotational guide) of the cylindrical portions 84b and 85b are fitted with the outer peripheral surfaces of the columnar portions 83a and 83b of the support member 83 with a slight gap, and smoothly around the central axis B. Can rotate.

ケース81は、内周面81dの軸が中心軸B上に位置し、内側両端の内面81a、81bには第2軸受86、87(第2摺動部材)が配備される。第2軸受86、87は、軸が中心軸B上に位置し、断面がL形状で、円板部86a、87aと、円板部86a、87aの内周側の円筒部86b、87bからなり、円板部86a、87aの外周面86c、87c(回転案内)は、ケース81の内周面81dに僅かな間隙を持って篏合し、第2軸受86、87は中心軸B回りにスムーズに回転できる。   In the case 81, the axis of the inner peripheral surface 81d is located on the central axis B, and second bearings 86 and 87 (second sliding members) are provided on the inner surfaces 81a and 81b at both inner ends. The second bearings 86 and 87 have an axis located on the central axis B, an L-shaped cross section, and are composed of disk parts 86a and 87a and cylindrical parts 86b and 87b on the inner peripheral side of the disk parts 86a and 87a. The outer peripheral surfaces 86c and 87c (rotation guide) of the disk portions 86a and 87a are fitted with the inner peripheral surface 81d of the case 81 with a slight gap, and the second bearings 86 and 87 are smoothly around the central axis B. Can be rotated.

第1軸受84と第2軸受86の間には、コイルバネ88が配備され、コイルバネ88の両端の内径は、それぞれ第1軸受84の円筒部84b(案内部)の外周面、第2軸受86の円筒部86b(案内部)の外周面に僅かな間隙を持って装着される。同様に、第1軸受85と第2軸受87の間には、コイルバネ89が配備される。コイルバネ89の両端の内径は、それぞれ第1軸受85の円筒部85b(案内部)の外周面、第2軸受87の円筒部87b(案内部)の外周面に僅かな間隙を持って装着される。このようにして一対のコイルバネ88、89は、支持部材83を介在し互いに対向配備され、各円筒部84b、85b、86b、87bがコイルバネ88、89のバネ力をディスプレイサ77の中心軸Bに向ける案内部となる。   A coil spring 88 is provided between the first bearing 84 and the second bearing 86, and the inner diameters at both ends of the coil spring 88 are respectively the outer peripheral surface of the cylindrical portion 84 b (guide portion) of the first bearing 84 and the second bearing 86. The cylindrical portion 86b (guide portion) is attached to the outer peripheral surface with a slight gap. Similarly, a coil spring 89 is provided between the first bearing 85 and the second bearing 87. The inner diameters of both ends of the coil spring 89 are mounted with a slight gap on the outer peripheral surface of the cylindrical portion 85b (guide portion) of the first bearing 85 and the outer peripheral surface of the cylindrical portion 87b (guide portion) of the second bearing 87, respectively. . In this way, the pair of coil springs 88 and 89 are arranged to face each other with the support member 83 interposed therebetween, and the cylindrical portions 84b, 85b, 86b and 87b apply the spring force of the coil springs 88 and 89 to the central axis B of the displacer 77. It becomes the guide part to turn.

ロッド82は、ディスプレイサ77の背面77bの中心に設けた孔77eに対し微小間隙を持ってケース81から突出し、ロッド82の軸がディスプレイサ77の中心軸Bに位置するようにシリンダ76の常温部76a(連結部材)の内面中心に連結される。孔77eは、軸受とヘリウムをシールするクリアランスシールの機能を有する。   The rod 82 protrudes from the case 81 with a minute gap with respect to a hole 77e provided at the center of the back surface 77b of the displacer 77, and the normal temperature of the cylinder 76 is set so that the axis of the rod 82 is positioned on the central axis B of the displacer 77. It is connected to the inner surface center of the part 76a (connecting member). The hole 77e functions as a clearance seal that seals the bearing and helium.

次に、本発明の作用と効果について説明する。   Next, the operation and effect of the present invention will be described.

振動源80が、図1の振動源40と異なる点の一つは、振動源80をディスプレイサ77に配備したこである。即ち、図1の場合、ケース41がシリンダ36の常温部36に固定されているので、支持部材43と、ロッド42と、ディスプレイサ37とが一体となって往復動するのに対し、図3の場合は、ロッド82をシリンダ76の常温部76aの内面中心に連結するので、コイルバネ88、89の収縮、弛緩によるバネ力は第2軸受86、87を介在してケース81、即ちディスプレイサ77に伝達され、ディスプレイサ77が往復動することである。   One of the differences between the vibration source 80 and the vibration source 40 of FIG. 1 is that the vibration source 80 is provided in the displacer 77. That is, in the case of FIG. 1, since the case 41 is fixed to the normal temperature portion 36 of the cylinder 36, the support member 43, the rod 42, and the displacer 37 reciprocate together, whereas FIG. In this case, since the rod 82 is connected to the center of the inner surface of the normal temperature portion 76a of the cylinder 76, the spring force caused by the contraction and relaxation of the coil springs 88 and 89 is affected by the case 81, that is, the displacer 77 via the second bearings 86 and 87. And the displacer 77 reciprocates.

振動源80の作用は、図1の振動源40の作用と同様で、同じ理由により、長期間、安定した運転ができ、冷凍能力の安定した、冷却効率の高い蓄冷型冷凍機60を提供できる。   The action of the vibration source 80 is the same as the action of the vibration source 40 of FIG. 1, and for the same reason, it is possible to provide a regenerative refrigerator 60 that can operate stably for a long period of time, has a stable refrigeration capacity, and has a high cooling efficiency. .

また、振動源80をディスプレイサ77に配備したこで、冷却部70の長さが短くなり、冷却部70が小型になる。 Further, since the vibration source 80 is provided in the displacer 77, the length of the cooling unit 70 is shortened, and the cooling unit 70 is reduced in size.

また、他の異なる点は、膨張空間75がガスピストン78で形成されることである。即ち、図1の膨張空間35は、固体ピストンであるディスプレイサ37で形成され、ディスプレイサ37の体積はヘリウムの圧力変動に無関係で常に一定であるが、図3の場合は、膨張空間75がガスピストン78で形成されるので、ガスピストン78の質量は一定値で変化しないが、体積はヘリウムの圧力変動に伴い体積が増減する。   Another difference is that the expansion space 75 is formed by the gas piston 78. That is, the expansion space 35 in FIG. 1 is formed by a displacer 37 that is a solid piston, and the volume of the displacer 37 is always constant regardless of the pressure fluctuation of helium. In the case of FIG. Since it is formed by the gas piston 78, the mass of the gas piston 78 does not change at a constant value, but the volume increases or decreases with the pressure fluctuation of helium.

冷凍発生の作用は、ガスピストン78の体積がヘリウムの圧力変動に伴い増減する以外は図1と同じである。また、ディスプレイサ77が低温側まで伸びていないので、図1と同じ圧力振幅を得るにはヘリウムの封入圧力を高くしなければならないが、ディスプレイサ77がシリンダ76の低温側で接触することはなく、膨張空間75でのディスプレイサの接触による摩擦熱の熱損失は発生しない。結果、冷凍能力の安定した、冷却効率の高い蓄冷型冷凍機60を提供できる。   The effect of freezing is the same as in FIG. 1 except that the volume of the gas piston 78 increases or decreases with the pressure fluctuation of helium. Further, since the displacer 77 does not extend to the low temperature side, the helium sealing pressure must be increased in order to obtain the same pressure amplitude as in FIG. 1, but the displacer 77 is in contact with the low temperature side of the cylinder 76. In addition, the heat loss of frictional heat due to the contact of the displacer in the expansion space 75 does not occur. As a result, it is possible to provide a regenerative refrigerator 60 having a stable refrigeration capacity and high cooling efficiency.

尚、ディスプレイサ77の長さを更に短くし、ディスプレイサ77の前面77aがほぼ常温なるようにしても良い。この場合、ディスプレイサ77が振動源80のケース81となる。また、図1のディスプレイサ37の長さを短くして、ガスピストンを形成しても良く、この場合、ディスプレイサ37の前面37aの上にガスピストンが形成され、スターリング冷凍機はパルス管冷凍機となる。   Note that the length of the displacer 77 may be further shortened so that the front surface 77a of the displacer 77 has a substantially normal temperature. In this case, the displacer 77 becomes the case 81 of the vibration source 80. 1 may be formed by shortening the length of the displacer 37. In this case, the gas piston is formed on the front surface 37a of the displacer 37. It becomes a machine.

(実施例3)
図5は、本発明に係わるの蓄冷型冷凍機の振動源の断面を拡大した図で、図1に示される振動源40の他の実施例である。図5において、図1の振動源40と同じ形状の部材は同じ符号を付す。図5の振動源90が図1の振動源40異なる点は、図5の第1(第1摺動部材)94、95と、第2軸受96、97(第2摺動部材)が、それぞれ図1の第1軸受44、45と第2軸受46、47と異なることである。即ち、樹脂摺動材の第1軸受94、95は、軸がディスプレイサ37の中心軸A上に位置し、断面がL形状でそれぞれ円板部94a、95aと、円板部94a、95aの外周側に円筒部94b、95bとを備える。円板部94a、95aの内周面94c、95c(回転案内)は支持部材43の円筒部43a、43bの外周面に対し僅かな間隙を持って篏合し、ディスプレイサ37の中心軸A回りにスムーズに摺動回転できる。同様に、樹脂摺動材の第2軸受96、97は、軸がディスプレイサ37の中心軸A上に位置し、断面がL形状で円板部96a、97aと、円板部96a、97aの外周側に円筒部96b、97bとを備える。円筒部96b、97bの外周面96c、97c(回転案内)がケース41の内周面41dに対し僅かな間隙を持って装着され、ディスプレイサ37の中心軸A回りにスムーズに摺動回転できる。
Example 3
FIG. 5 is an enlarged view of the cross section of the vibration source of the regenerative refrigerator according to the present invention, which is another embodiment of the vibration source 40 shown in FIG. In FIG. 5, members having the same shape as the vibration source 40 of FIG. The vibration source 90 in FIG. 5 differs from the vibration source 40 in FIG. 1 in that the first (first sliding member) 94 and 95 and the second bearings 96 and 97 (second sliding member) in FIG. This is different from the first bearings 44 and 45 and the second bearings 46 and 47 in FIG. 1. In other words, the first bearings 94 and 95 of the resin sliding material have an axis positioned on the central axis A of the displacer 37 and a L-shaped cross section, and the disk portions 94a and 95a and the disk portions 94a and 95a, respectively. Cylindrical portions 94b and 95b are provided on the outer peripheral side. The inner peripheral surfaces 94c and 95c (rotation guides) of the disk portions 94a and 95a are fitted with a slight gap with respect to the outer peripheral surfaces of the cylindrical portions 43a and 43b of the support member 43, and around the center axis A of the displacer 37. Can smoothly slide and rotate. Similarly, the second bearings 96 and 97 of the resin sliding material have an axis positioned on the central axis A of the displacer 37 and an L-shaped cross section, and the disk portions 96a and 97a and the disk portions 96a and 97a. Cylindrical portions 96b and 97b are provided on the outer peripheral side. The outer peripheral surfaces 96c and 97c (rotation guide) of the cylindrical portions 96b and 97b are mounted with a slight gap with respect to the inner peripheral surface 41d of the case 41, and can smoothly slide and rotate around the central axis A of the displacer 37.

第1軸受94の円板部94aと第2軸受96の円板部96aの間にコイルバネ48が配備され、コイルバネ48の両端の外径がそれぞれ第1軸受94の円筒部94b(案内部)の内周面、第2軸受96の円筒部96b(案内部)の内周面に微小隙間を持って装着される。同様に、第1軸受95の円板部95aと第2軸受97の円板部97aの間にコイルバネ49配備され、コイルバネ49の両端の外径が、それぞれ第1軸受95の円筒部95b(案内部)の内周面、第2軸受97の円筒部97b(案内部)の内周面に微小隙間を持って装着される。この場合、各円筒部94b、95b、96b、97bがコイルバネ48、49の収縮、弛緩によるバネ力を中心軸Aに向ける案内部となる。   A coil spring 48 is provided between the disc portion 94a of the first bearing 94 and the disc portion 96a of the second bearing 96, and the outer diameters of both ends of the coil spring 48 are respectively the cylindrical portions 94b (guide portions) of the first bearing 94. The inner circumferential surface and the inner circumferential surface of the cylindrical portion 96b (guide portion) of the second bearing 96 are mounted with a minute gap. Similarly, a coil spring 49 is provided between the disc portion 95a of the first bearing 95 and the disc portion 97a of the second bearing 97, and the outer diameters of both ends of the coil spring 49 are respectively cylindrical portions 95b (guides) of the first bearing 95. Part) and the inner peripheral surface of the cylindrical part 97b (guide part) of the second bearing 97 with a small gap. In this case, the cylindrical portions 94b, 95b, 96b, and 97b serve as guide portions that direct the spring force generated by the contraction and relaxation of the coil springs 48 and 49 toward the central axis A.

第1軸受94、95の円筒部94b、95bと、第2軸受96、97の円筒部96b、97bは、それぞれ円板部94a、95aの外周側と、円板部96a、97a外周側に設けてあり、コイルバネ48、49が収縮すると、コイルバネ48、49と各円筒部94b、95b、96b、97bの間隙は縮まるので、コイルバネ48、49の最大収縮状態で僅かな間隙を確保しなければならない。振動源90の他の作用、効果は、図1の振動源40作用、効果と同様である。   The cylindrical portions 94b and 95b of the first bearings 94 and 95 and the cylindrical portions 96b and 97b of the second bearings 96 and 97 are provided on the outer peripheral side of the disc portions 94a and 95a and on the outer peripheral side of the disc portions 96a and 97a, respectively. When the coil springs 48 and 49 are contracted, the gaps between the coil springs 48 and 49 and the cylindrical portions 94b, 95b, 96b, and 97b are contracted. Therefore, a slight gap must be secured in the maximum contracted state of the coil springs 48 and 49. . Other actions and effects of the vibration source 90 are the same as the actions and effects of the vibration source 40 of FIG.

本発明に係わる第1実施例の蓄冷型冷凍機の断面図である。It is sectional drawing of the cool storage type refrigerator of 1st Example concerning this invention. 図1の振動源の拡大断面図である。It is an expanded sectional view of the vibration source of FIG. 本発明に係わる第2実施例の蓄冷型冷凍機の断面図である。It is sectional drawing of the cool storage type refrigerator of 2nd Example concerning this invention. 図3の振動源の拡大図である。FIG. 4 is an enlarged view of the vibration source of FIG. 3. 本発明に係わる第3実施例の拡大断面図である。It is an expanded sectional view of 3rd Example concerning this invention.

符号の説明Explanation of symbols

1、60 蓄冷型冷凍機
6 第1圧縮空間(圧縮空間)
31、71 第2圧縮空間(圧縮空間)
32 放熱器
33 蓄冷器
35、75 膨張空間
36a 常温部(固定部材)
37、77 ディスプレイサ
37b 背面
40、80、90 振動源
41、81 ケース
43、83 支持部材
42、82 ロッド
48、49、88、89 コイルバネ
44、45、84、85、94、95 第1軸受(第1摺動部材)
44c、45c、84c、85c、94c、95c 内周面(回転案内)
46、47、86、87、96、97 第2軸受(第2摺動部材)
46c、47c、86c、87c、96c、97c 外周面(回転案内)
44b、45b、46b、47b、84b、85b、86b、87b、94b、95b、96b、97b 円筒部(案内部)
76a シリンダの常温部(連結部材)
A、B 中心軸
1, 60 Regenerative refrigerator 6 First compression space (compression space)
31, 71 Second compression space (compression space)
32 radiator 33 regenerator 35, 75 expansion space 36a normal temperature part (fixing member)
37, 77 Displacer 37b Rear surface 40, 80, 90 Vibration source 41, 81 Case 43, 83 Support member 42, 82 Rod 48, 49, 88, 89 Coil spring 44, 45, 84, 85, 94, 95 First bearing ( First sliding member)
44c, 45c, 84c, 85c, 94c, 95c Inner peripheral surface (rotation guide)
46, 47, 86, 87, 96, 97 Second bearing (second sliding member)
46c, 47c, 86c, 87c, 96c, 97c Outer peripheral surface (rotation guide)
44b, 45b, 46b, 47b, 84b, 85b, 86b, 87b, 94b, 95b, 96b, 97b Cylindrical part (guide part)
76a Normal temperature part of cylinder (connecting member)
A, B Center axis

Claims (6)

作動ガスを圧縮する圧縮空間と、
前記圧縮空間で圧縮された前記作動ガスの熱を放熱する放熱器と、
前記放熱器を往復流動する前記作動ガスと熱交換する蓄冷器と、
前記蓄冷器で冷却された前記作動ガスを膨張させるディスプレイサを設けた膨張空間と、
前記ディスプレイサの往復動を引起す振動源と、を備える蓄冷型冷凍機であって、
前記振動源は、前記ディスプレイサの中心軸上に位置するロッドが貫通するケースと、前記ケースに収納され前記ロッドを配備した支持部材と、前記支持部材の両面に配備され回転可能な回転案内を備えた第1摺動部材と、前記ケースの両方の内面に配備され回転可能な回転案内を備えた第2摺動部材と、前記第1摺動部材と前記第2摺動部材との間に配備したコイルバネと、前記コイルバネに装着され前記ディスプレイサに作用する前記コイルバネのバネ力の方向を前記中心軸方向に向ける案内部とを備える、ことを特徴とする蓄冷型冷凍機。
A compression space for compressing the working gas;
A radiator that dissipates heat of the working gas compressed in the compression space;
A regenerator that exchanges heat with the working gas that reciprocates through the radiator;
An expansion space provided with a displacer for expanding the working gas cooled by the regenerator;
A regenerative refrigerator having a vibration source that causes reciprocation of the displacer,
The vibration source includes a case through which a rod positioned on the central axis of the displacer passes, a support member accommodated in the case and provided with the rod, and a rotatable guide provided on both sides of the support member and rotatable. A first sliding member provided; a second sliding member provided with a rotatable guide disposed on both inner surfaces of the case; and between the first sliding member and the second sliding member. A regenerative refrigerator having a deployed coil spring and a guide portion that is attached to the coil spring and that directs the direction of the spring force of the coil spring acting on the displacer in the direction of the central axis.
前記振動源は、前記ディスプレイサの背面の対面側に位置する固定部材に配備され、前記ロッドを前記ディスプレイサの背面に連結する、ことを特徴とする請求項1に記載の蓄冷型冷凍機。 2. The regenerative refrigerator according to claim 1, wherein the vibration source is disposed on a fixing member located on a facing side of the back surface of the displacer and connects the rod to the back surface of the displacer. 前記振動源は、前記ディスプレイサに配備され、前記振動源から前記ロッドが貫通する側に対面する連結部材に前記ロッドを連結する、ことを特徴とする請求項1に記載の蓄冷型冷凍機。 2. The regenerative refrigerator according to claim 1, wherein the vibration source is disposed in the displacer, and the rod is connected to a connecting member facing the side through which the rod passes from the vibration source. 前記案内部は、前記第1摺動部材および前記第2摺動部材の少なくとも一つに配備する、ことを特徴とする請求項1乃至3のいずれか一項に記載の蓄冷型冷凍機。 The regenerative refrigerator according to any one of claims 1 to 3, wherein the guide portion is arranged on at least one of the first sliding member and the second sliding member. 前記案内部は、前記第1摺動部材および前記第2摺動部材の内周に配備される、ことを特徴とする請求項1乃至4のいずれか一項に記載の蓄冷型冷凍機。 The regenerative refrigerator according to any one of claims 1 to 4, wherein the guide portion is disposed on an inner periphery of the first sliding member and the second sliding member. 前記案内部は、円筒である、ことを特徴とする請求項1乃至5のいずれか一項に記載の蓄冷型冷凍機。 The regenerative refrigerator according to any one of claims 1 to 5, wherein the guide portion is a cylinder.
JP2007222579A 2007-08-29 2007-08-29 Cold storage type refrigerator Pending JP2009052866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222579A JP2009052866A (en) 2007-08-29 2007-08-29 Cold storage type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222579A JP2009052866A (en) 2007-08-29 2007-08-29 Cold storage type refrigerator

Publications (1)

Publication Number Publication Date
JP2009052866A true JP2009052866A (en) 2009-03-12

Family

ID=40504094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222579A Pending JP2009052866A (en) 2007-08-29 2007-08-29 Cold storage type refrigerator

Country Status (1)

Country Link
JP (1) JP2009052866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654325A (en) * 2012-05-14 2012-09-05 中国电子科技集团公司第十四研究所 Ball spline supporting Stirling refrigerator
CN109780744A (en) * 2017-11-14 2019-05-21 中国电子科技集团公司第十六研究所 Sterlin refrigerator integrated form Linearkompressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654325A (en) * 2012-05-14 2012-09-05 中国电子科技集团公司第十四研究所 Ball spline supporting Stirling refrigerator
CN109780744A (en) * 2017-11-14 2019-05-21 中国电子科技集团公司第十六研究所 Sterlin refrigerator integrated form Linearkompressor

Similar Documents

Publication Publication Date Title
JP3619965B1 (en) Stirling agency
EP2402607B1 (en) Long life seal and alignment system for small cryocoolers
WO1998001661A1 (en) Combination gas and flexure spring construction for free piston devices
JP2008215440A (en) Plate spring and refrigerator
JP2009236456A (en) Pulse tube-type heat storage engine
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
JP2006275352A (en) Pulse pipe-type heat storage engine
US9127864B2 (en) Regenerative refrigerator
JPH02122164A (en) Gas compressor
JP2009052866A (en) Cold storage type refrigerator
JP2008002452A (en) Linear compressor
US20210010720A1 (en) Cryogenic stirling refrigerator with mechanically driven expander
JP2008190727A (en) Linear motor compressor and stirling refrigerator
JPH04347460A (en) Linear motor compressor
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JPH06264864A (en) Compression device
KR100296296B1 (en) Linear actuator
JP3752573B2 (en) Drive spring connecting structure in refrigerator
JP3588748B2 (en) Cold head for refrigerator
JPH1183220A (en) Linear compressor and stirling refrigerating machine using the same
JP2006308213A (en) Stirling engine
JP3584766B2 (en) Cold head for refrigerator
JP3393071B2 (en) Gas compressor and cold head
KR101503748B1 (en) Cpu cooling apparatus using stirling refrigeration
JP2005172287A (en) Stirling engine