WO2017141307A1 - Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger - Google Patents

Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger Download PDF

Info

Publication number
WO2017141307A1
WO2017141307A1 PCT/JP2016/054264 JP2016054264W WO2017141307A1 WO 2017141307 A1 WO2017141307 A1 WO 2017141307A1 JP 2016054264 W JP2016054264 W JP 2016054264W WO 2017141307 A1 WO2017141307 A1 WO 2017141307A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
tube
small
spiral groove
diameter tube
Prior art date
Application number
PCT/JP2016/054264
Other languages
French (fr)
Japanese (ja)
Inventor
正章 我妻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/054264 priority Critical patent/WO2017141307A1/en
Publication of WO2017141307A1 publication Critical patent/WO2017141307A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled

Definitions

  • the present invention relates to a twisted tube heat exchanger used for, for example, a refrigerator and a water heater, and a method for manufacturing a twisted tube heat exchanger.
  • a large-diameter tube having a spiral groove portion formed in the axial direction on the outer peripheral surface and an outer diameter smaller than the outer diameter of the large-diameter tube, the groove portion of the large-diameter tube And a small-diameter pipe wound around a large-diameter pipe (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and is a twisted tube heat exchanger and a twisted tube heat exchanger that can join a large diameter tube and a small diameter tube without using a flux.
  • An object is to provide a manufacturing method.
  • the torsion tube heat exchanger according to the present invention has a large diameter tube having a spiral groove portion formed in a spiral shape in the axial direction on the surface, an outer diameter that is the same as or smaller than the spiral groove portion, and the spiral groove portion.
  • a small-diameter pipe wound around the large-diameter pipe along the surface of the small-diameter pipe, a metal layer different from the material of the small-diameter pipe and the large-diameter pipe, and facing the spiral groove and the spiral groove of the large-diameter pipe The surface of the small-diameter tube is joined via a metal layer melted by heating in the furnace.
  • the spiral groove portion of the large-diameter tube and the surface of the small-diameter tube facing the spiral groove portion are joined by the metal layer melted by heating in the furnace.
  • the flux is not used for joining the spiral groove portion of the large diameter tube and the surface of the small diameter tube facing the spiral groove portion, the number of steps of applying the flux or removing the flux after metal joining can be reduced. Material costs can also be reduced.
  • FIG. 3 is an enlarged cross-sectional view of the twisted tube heat exchanger of FIG. 2 before melting of the metal layer as seen from the direction of arrow AA. It is sectional drawing which shows the state which metal-joined the large diameter pipe and small diameter pipe of FIG. 4 with the metal layer. It is a fragmentary sectional view of a large diameter pipe and a small diameter pipe before fusion of a metal layer in a twist tube type heat exchanger concerning Embodiment 2 of the present invention.
  • FIG. 1 is an external view showing a twisted tube heat exchanger according to Embodiment 1 of the present invention
  • FIG. 2 is an enlarged external view showing a part of the twisted tube heat exchanger of FIG. 1
  • FIG. 4 is a cross-sectional view of the small-diameter pipe before being wound around the large-diameter pipe
  • FIG. 4 is an enlarged cross-sectional view of the twisted pipe heat exchanger of FIG. 2 as seen from the direction of arrow AA before melting of the metal layer.
  • the twisted tube heat exchanger 1 includes a large-diameter tube 2 bent in a spiral shape and a small-diameter tube 3 wound around the large-diameter tube 2. .
  • the twisted tube heat exchanger 1 is used as a heat exchanger such as a refrigerator or a water heater.
  • the refrigerant flows through the large diameter tube 2 and the small diameter tube 3, and heat exchange is performed between the refrigerant flowing through the large diameter tube 2 and the small diameter tube 3.
  • the twisted tube heat exchanger 1 is used as a water heater, water is caused to flow inside the large diameter tube 2 and a refrigerant is caused to flow inside the small diameter tube 3.
  • the large-diameter pipe 2 is made of, for example, a copper pipe, and has a spiral groove portion 2a formed in a spiral shape in the axial direction on the surface as shown in FIG.
  • the small-diameter tube 3 is made of, for example, a copper tube like the large-diameter tube 2, has an outer diameter that is the same as or smaller than that of the spiral groove 2a, and is wound around the large-diameter tube 2 along the spiral groove 2a. Yes.
  • the small-diameter tube 3 before being wound around the large-diameter tube 2 is a tube having a circular cross section, and a metal layer 4 different from the material of the small-diameter tube 3 and the large-diameter tube 2 is applied to the surface thereof.
  • the metal layer 4 is a coating formed by, for example, galvanizing or spraying zinc on the surface of the small-diameter pipe 3 that is a steel pipe.
  • the small diameter tube 3 By winding this circular small diameter tube 3 around the large diameter tube 2 along the spiral groove portion 2a, the small diameter tube 3 becomes a horizontally long elliptical shape with respect to the spiral groove portion 2a.
  • the small-diameter tube 3 is wound around the large-diameter tube 2 along the spiral groove portion 2a, as shown in FIG. 4, the space between the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a. There is a gap.
  • FIG. 5 is a cross-sectional view showing a state in which the large diameter tube and the small diameter tube of FIG.
  • the zinc metal layer 4 applied to the surface of the small-diameter pipe 3 is formed. Melt. As shown in FIG. 5, the molten metal layer 4 flows into the gap between the spiral groove 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove 2a. The metal layer 4 that flows into the gap joins the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a.
  • the zinc metal layer 4 in which the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a are melted in a furnace in a reducing gas atmosphere. I try to join the metal. Thereby, since flux is not used, the pipe surfaces of the large-diameter pipe 2 and the small-diameter pipe 3 are not contaminated with the flux as in the prior art.
  • the metal layer 4 that metal-joins the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a is zinc, the thermal conductivity is high, and the torsion tube heat exchanger 1 Heat transfer performance is improved.
  • the metal layer 4 is formed of zinc, but instead of this, the metal layer 4 may be formed of tin.
  • the metal layer 4 is formed of tin, no flux is used, so that the tube surfaces of the large diameter tube 2 and the small diameter tube 3 are not contaminated by the flux.
  • the number of steps of applying the flux or removing the flux after metal bonding can be reduced, and the material cost can be reduced.
  • tin has a lower melting point than zinc, the heating temperature when heating in a furnace in a reducing gas atmosphere can be lowered, and the manufacturing cost can be reduced.
  • the metal layer 4 is formed of zinc as described above.
  • the potential of the metal layer 4 is lower than that of the large-diameter pipe 2 and the small-diameter pipe 3 of the copper pipe. You may form with a metal.
  • the metal layer 4 is lower in potential than copper, so that the torsion tube heat exchanger 1 is being used.
  • the metal layer 4 becomes the sacrificial anode of the large-diameter pipe 2 and the small-diameter pipe 3 and corrodes first, thereby preventing perforation due to the corrosion of the large-diameter pipe 2 and the small-diameter pipe 3. it can.
  • FIG. 6 is a partial cross-sectional view of the large-diameter tube and the small-diameter tube before the metal layer is melted in the torsion tube heat exchanger according to Embodiment 2 of the present invention.
  • symbol is attached
  • the large-diameter tube 2 is made of, for example, a copper tube, and has a spiral groove portion 2a formed on the surface in a spiral shape in the axial direction.
  • the small-diameter pipe 3 is made of a copper pipe like the large-diameter pipe 2, has an outer diameter that is the same as or smaller than that of the spiral groove 2a, and is wound around the large-diameter pipe 2 along the spiral groove 2a. .
  • the surface of the large diameter tube 2 is provided with a metal layer 4 different from the material of the large diameter tube 2 and the small diameter tube 3.
  • the metal layer 4 is made of zinc as described above. Instead of zinc, the metal layer 4 may be formed of tin, or the metal layer 4 may be formed of a metal whose potential is lower than that of the large diameter tube 2 and the small diameter tube 3. The metal layer 4 is applied to the small diameter tube 3 before being wound around the large diameter tube 2 as described above.
  • the torsion tube heat exchanger 1 configured as described above, when heating is performed in a reducing gas atmosphere furnace with the small-diameter tube 3 having the metal layer 4 applied to the spiral groove portion 2a of the large-diameter tube 2, The zinc metal layer 4 applied to the surface of the large diameter tube 2 is melted. As shown in FIG. 5, the molten metal layer 4 flows into the gap between the spiral groove 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove 2a. And by the metal layer 4 which flowed in the clearance gap, the spiral groove part 2a of the large diameter pipe 2 and the surface of the small diameter pipe 3 which opposes the spiral groove part 2a are metal-metal bonded.
  • the zinc metal layer 4 applied to the surface of the large-diameter tube 2 is melted in a furnace in a reducing gas atmosphere, and the molten metal layer 4 is melted in the large-diameter tube 2.
  • the large-diameter pipe 2 and the small-diameter pipe 3 are metallically bonded to each other by flowing into the gap between the spiral groove 2a and the surface of the small-diameter pipe 3 facing the spiral groove 2a.
  • the metal layer 4 that metal-joins the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a is zinc, the thermal conductivity is high, and the torsion tube heat exchanger 1 Heat transfer performance is improved.
  • the metal layer 4 applied to the surface of the large-diameter tube 2 is also formed by using a metal whose potential is lower than that of tin or the large-diameter tube 2 and the small-diameter tube 3. It is possible to have the same effect as in the first form.
  • a spiral groove portion 2a that is spiral in the axial direction is formed on the surface of the straight large-diameter pipe 2 by twisting (twisting process).
  • a metal layer 4 different from the material of the large-diameter pipe 2 and the small-diameter pipe 3 is formed on either the surface of the large-diameter pipe 2 and the surface of the small-diameter pipe having the same outer diameter as that of the spiral groove or smaller than the spiral groove.
  • the metal layer 4 may be formed of zinc or tin, or may be formed of a metal whose potential is lower than that of the large diameter tube 2 and the small diameter tube 3.
  • the small diameter pipe 3 is wound around the large diameter pipe 2 along the spiral groove 2a of the large diameter pipe 2 (winding step).
  • the large-diameter pipe 2 and the small-diameter pipe 3 wound around the large-diameter pipe 2 are heated in a reducing gas atmosphere furnace to melt the metal layer 4, and the small-diameter pipe is metal-bonded to the spiral groove 2 a of the large-diameter pipe 2. (Joining process).
  • the twisted tube heat exchanger 1 is manufactured. Since this manufacturing does not use a flux, the surfaces of the large-diameter pipe 2 and the small-diameter pipe 3 are not contaminated with the flux as in the prior art.
  • the material of the large-diameter pipe 2 and the small-diameter pipe 3 is copper, but in addition to this, the large-diameter pipe 2 formed of aluminum, aluminum alloy, stainless steel or the like. Alternatively, a small diameter tube 3 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are a twisted tube-type heat exchanger and a method for manufacturing a twisted tube-type heat exchanger, with which a large-diameter tube and a small-diameter tube can be bonded without the use of flux. The twisted tube-type heat exchanger comprises: a large-diameter tube having a spiral groove that is formed in a spiral shape in the axial direction on the surface of the tube; a small-diameter tube that has an outer diameter which is the same as or smaller than that of the spiral groove, and that is wound around the large-diameter tube along the spiral groove; and a metal layer that is formed on the surface of the small-diameter tube and that is made of a different material than the small-diameter tube and the large-diameter tube. The spiral groove of the large-diameter tube and the surface of the small-diameter tube that faces the spiral groove are bonded via the metal layer that is fused by heating within a furnace.

Description

捩り管形熱交換器及び捩り管形熱交換器の製造方法Twisted tube heat exchanger and manufacturing method of torsion tube heat exchanger
 本発明は、例えば、冷蔵庫、給湯器等に用いられる捩り管形熱交換器及び捩り管形熱交換器の製造方法に関するものである。 The present invention relates to a twisted tube heat exchanger used for, for example, a refrigerator and a water heater, and a method for manufacturing a twisted tube heat exchanger.
 従来の捩り管形熱交換器として、外周面に軸方向に形成された螺旋状の溝部を有する大径管と、この大径管の外径よりも小さい外径からなり、大径管の溝部に沿って大径管に巻き付けられた小径管とを備えたものがある(例えば、特許文献1参照)。 As a conventional torsion tube heat exchanger, a large-diameter tube having a spiral groove portion formed in the axial direction on the outer peripheral surface and an outer diameter smaller than the outer diameter of the large-diameter tube, the groove portion of the large-diameter tube And a small-diameter pipe wound around a large-diameter pipe (see, for example, Patent Document 1).
特開2005-76915号公報JP 2005-76915 A
 前述した従来の捩り管形熱交換器では、大径管の溝部と小径管との金属接合をハンダ付け若しくはロウ付けで行っている。このため、大径管と小径管の接合部分の表面にフラックスが付着し管表面が汚れるという課題があった。 In the conventional twisted tube heat exchanger described above, the metal joint between the groove portion of the large diameter tube and the small diameter tube is performed by soldering or brazing. For this reason, there has been a problem that the flux adheres to the surface of the joining portion of the large diameter tube and the small diameter tube, and the surface of the tube becomes dirty.
 本発明は、前記のような課題を解決するためになされたもので、フラックスを使用することなく、大径管と小径管とを接合できる捩り管形熱交換器及び捩り管形熱交換器の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a twisted tube heat exchanger and a twisted tube heat exchanger that can join a large diameter tube and a small diameter tube without using a flux. An object is to provide a manufacturing method.
 本発明に係る捩り管形熱交換器は、表面に軸方向に螺旋状に形成された螺旋溝部を有する大径管と、螺旋溝部と同じ若しくは螺旋溝部よりも小さい外径を有し、螺旋溝部に沿って大径管に巻き付けられた小径管と、小径管の表面に施され、小径管及び大径管の材質と異なる金属層とを備え、大径管の螺旋溝部と螺旋溝部に対向する小径管の表面とが、炉内の加熱で溶融された金属層を介して接合されている。 The torsion tube heat exchanger according to the present invention has a large diameter tube having a spiral groove portion formed in a spiral shape in the axial direction on the surface, an outer diameter that is the same as or smaller than the spiral groove portion, and the spiral groove portion. A small-diameter pipe wound around the large-diameter pipe along the surface of the small-diameter pipe, a metal layer different from the material of the small-diameter pipe and the large-diameter pipe, and facing the spiral groove and the spiral groove of the large-diameter pipe The surface of the small-diameter tube is joined via a metal layer melted by heating in the furnace.
 本発明によれば、大径管の螺旋溝部と螺旋溝部に対向する小径管の表面とが、炉内の加熱で溶融された金属層で接合されている。これにより、フラックスを使用することがないので、大径管及び小径管の管表面がフラックスで汚れるということがなくなる。 According to the present invention, the spiral groove portion of the large-diameter tube and the surface of the small-diameter tube facing the spiral groove portion are joined by the metal layer melted by heating in the furnace. Thereby, since flux is not used, the pipe surfaces of the large diameter pipe and the small diameter pipe are not contaminated with the flux.
 また、大径管の螺旋溝部と螺旋溝部に対向する小径管の表面との接合にフラックスを使用していないため、フラックスを塗布したり金属接合後のフラックスを除去するという工程数を削減でき、材料コストも低減することができる。 In addition, since the flux is not used for joining the spiral groove portion of the large diameter tube and the surface of the small diameter tube facing the spiral groove portion, the number of steps of applying the flux or removing the flux after metal joining can be reduced. Material costs can also be reduced.
本発明の実施の形態1に係る捩り管形熱交換器を示す外観図である。It is an external view which shows the twisted-tube heat exchanger which concerns on Embodiment 1 of this invention. 図1の捩り管形熱交換器の一部を拡大して示す外観図である。It is an external view which expands and shows a part of twisted tube type heat exchanger of FIG. 図1の大径管に巻き付ける前の小径管の断面図である。It is sectional drawing of the small diameter pipe | tube before winding around the large diameter pipe | tube of FIG. 図2の捩り管形熱交換器を矢視A-A方向から見て示す金属層の溶融前の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the twisted tube heat exchanger of FIG. 2 before melting of the metal layer as seen from the direction of arrow AA. 図4の大径管及び小径管を金属層で金属接合した状態を示す断面図である。It is sectional drawing which shows the state which metal-joined the large diameter pipe and small diameter pipe of FIG. 4 with the metal layer. 本発明の実施の形態2に係る捩り管形熱交換器において金属層の溶融前の大径管及び小径管の部分断面図である。It is a fragmentary sectional view of a large diameter pipe and a small diameter pipe before fusion of a metal layer in a twist tube type heat exchanger concerning Embodiment 2 of the present invention.
実施の形態1.
 図1は本発明の実施の形態1に係る捩り管形熱交換器を示す外観図、図2は図1の捩り管形熱交換器の一部を拡大して示す外観図、図3は図1の大径管に巻き付ける前の小径管の断面図、図4は図2の捩り管形熱交換器を矢視A-A方向から見て示す金属層の溶融前の拡大断面図である。
Embodiment 1 FIG.
1 is an external view showing a twisted tube heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is an enlarged external view showing a part of the twisted tube heat exchanger of FIG. 1, and FIG. 4 is a cross-sectional view of the small-diameter pipe before being wound around the large-diameter pipe, and FIG. 4 is an enlarged cross-sectional view of the twisted pipe heat exchanger of FIG. 2 as seen from the direction of arrow AA before melting of the metal layer.
 本実施の形態1における捩り管形熱交換器1は、図1に示すように、渦巻状に曲げられた大径管2と、大径管2に巻き付けられた小径管3とを備えている。この捩り管形熱交換器1は、例えば冷凍機、給湯器等の熱交換器として用いられている。捩り管形熱交換器1を冷凍機に用いた場合、大径管2と小径管3の内部に冷媒が流され、大径管2と小径管3とを流れる冷媒間で熱交換される。捩り管形熱交換器1を給湯器に用いた場合は、大径管2の内部に水が流され、小径管3の内部に冷媒が流される。 As shown in FIG. 1, the twisted tube heat exchanger 1 according to Embodiment 1 includes a large-diameter tube 2 bent in a spiral shape and a small-diameter tube 3 wound around the large-diameter tube 2. . The twisted tube heat exchanger 1 is used as a heat exchanger such as a refrigerator or a water heater. When the torsion tube heat exchanger 1 is used in a refrigerator, the refrigerant flows through the large diameter tube 2 and the small diameter tube 3, and heat exchange is performed between the refrigerant flowing through the large diameter tube 2 and the small diameter tube 3. When the twisted tube heat exchanger 1 is used as a water heater, water is caused to flow inside the large diameter tube 2 and a refrigerant is caused to flow inside the small diameter tube 3.
 大径管2は、例えば銅管からなり、図2に示すように、表面に軸方向に螺旋状に形成された螺旋溝部2aを有している。小径管3は、例えば大径管2と同様に銅管からなり、螺旋溝部2aと同じ若しくは螺旋溝部2aよりも小さい外径を有し、螺旋溝部2aに沿って大径管2に巻き付けられている。 The large-diameter pipe 2 is made of, for example, a copper pipe, and has a spiral groove portion 2a formed in a spiral shape in the axial direction on the surface as shown in FIG. The small-diameter tube 3 is made of, for example, a copper tube like the large-diameter tube 2, has an outer diameter that is the same as or smaller than that of the spiral groove 2a, and is wound around the large-diameter tube 2 along the spiral groove 2a. Yes.
 大径管2に巻き付ける前の小径管3は、図3に示すように、断面が円形の管で、その表面には小径管3及び大径管2の材質と異なる金属層4が施されている。金属層4は、鋼管である小径管3の表面に例えば亜鉛メッキを施し若しくは亜鉛を溶射して形成された被膜となっている。 As shown in FIG. 3, the small-diameter tube 3 before being wound around the large-diameter tube 2 is a tube having a circular cross section, and a metal layer 4 different from the material of the small-diameter tube 3 and the large-diameter tube 2 is applied to the surface thereof. Yes. The metal layer 4 is a coating formed by, for example, galvanizing or spraying zinc on the surface of the small-diameter pipe 3 that is a steel pipe.
 この円形の小径管3を螺旋溝部2aに沿って大径管2に巻き付けることにより、小径管3は、螺旋溝部2aに対し横長の楕円形状となる。小径管3を螺旋溝部2aに沿わせて大径管2に巻き付けた場合、図4に示すように、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との間に隙間ができている。 By winding this circular small diameter tube 3 around the large diameter tube 2 along the spiral groove portion 2a, the small diameter tube 3 becomes a horizontally long elliptical shape with respect to the spiral groove portion 2a. When the small-diameter tube 3 is wound around the large-diameter tube 2 along the spiral groove portion 2a, as shown in FIG. 4, the space between the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a. There is a gap.
 このように構成された捩り管形熱交換器1において、大径管2と小径管3との金属接合について図5を用いて説明する。図5は図4の大径管及び小径管を金属層で金属接合した状態を示す断面図である。 In the torsion tube heat exchanger 1 configured as described above, metal bonding between the large diameter tube 2 and the small diameter tube 3 will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a state in which the large diameter tube and the small diameter tube of FIG.
 大径管2の螺旋溝部2aに金属層4が施された小径管3を嵌めた状態で、還元ガス雰囲気の炉内で加熱すると、小径管3の表面に施された亜鉛の金属層4が溶融する。溶融した金属層4は、図5に示すように、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との間の隙間に流れ込む。そして、その隙間に流れ込んだ金属層4により、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面とが金属接合される。 When the small-diameter pipe 3 with the metal layer 4 applied to the spiral groove 2a of the large-diameter pipe 2 is heated in a furnace in a reducing gas atmosphere, the zinc metal layer 4 applied to the surface of the small-diameter pipe 3 is formed. Melt. As shown in FIG. 5, the molten metal layer 4 flows into the gap between the spiral groove 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove 2a. The metal layer 4 that flows into the gap joins the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a.
 以上のように本実施の形態1によれば、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面とを、還元ガス雰囲気の炉内で溶融した亜鉛の金属層4で金属接合するようにしている。これにより、フラックスを使用することがないので、従来のようにフラックスで大径管2及び小径管3の管表面が汚れるということがなくなる。 As described above, according to the first embodiment, the zinc metal layer 4 in which the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a are melted in a furnace in a reducing gas atmosphere. I try to join the metal. Thereby, since flux is not used, the pipe surfaces of the large-diameter pipe 2 and the small-diameter pipe 3 are not contaminated with the flux as in the prior art.
 また、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との金属接合にフラックスを使用していないため、フラックスを塗布したり金属接合後のフラックスを除去するという工程数を削減でき、材料コストも低減することができる。 Further, since no flux is used for metal bonding between the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a, a process of applying flux or removing the flux after metal bonding is performed. The number can be reduced and the material cost can be reduced.
 さらに、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面とを金属接合する金属層4が亜鉛であるため、熱伝導率が高く、捩り管形熱交換器1の伝熱性能が向上する。 Furthermore, since the metal layer 4 that metal-joins the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a is zinc, the thermal conductivity is high, and the torsion tube heat exchanger 1 Heat transfer performance is improved.
 なお、本実施の形態1では、金属層4を亜鉛で形成したが、これに代えて、錫で金属層4を形成しても良い。金属層4を錫で形成した場合、フラックスを使用することがないので、フラックスで大径管2及び小径管3の管表面が汚れるということがなくなる。 In the first embodiment, the metal layer 4 is formed of zinc, but instead of this, the metal layer 4 may be formed of tin. When the metal layer 4 is formed of tin, no flux is used, so that the tube surfaces of the large diameter tube 2 and the small diameter tube 3 are not contaminated by the flux.
 また、フラックスを使用することがないので、フラックスを塗布したり金属接合後のフラックスを除去するという工程数を削減でき、材料コストを低減することができる。 Also, since no flux is used, the number of steps of applying the flux or removing the flux after metal bonding can be reduced, and the material cost can be reduced.
 さらに、錫は亜鉛よりも融点が低いため、還元ガス雰囲気の炉内で加熱する際の加熱温度を下げることができ、製造コストを抑えることができる。 Furthermore, since tin has a lower melting point than zinc, the heating temperature when heating in a furnace in a reducing gas atmosphere can be lowered, and the manufacturing cost can be reduced.
 また、本実施の形態1では、前述のように金属層4を亜鉛で形成したことを述べたが、金属層4を、銅管の大径管2及び小径管3よりも電位が卑となる金属で形成しても良い。金属層4を大径管2及び小径管3よりも電位が卑なる金属とすることで、その金属層4は銅よりも電位的に卑となるため、捩り管形熱交換器1の使用中に万一腐食が生じた場合、金属層4が大径管2と小径管3の犠牲陽極となり先に腐食することで、大径管2と小径管3の腐食による穴あきを抑制することができる。 In the first embodiment, it is described that the metal layer 4 is formed of zinc as described above. However, the potential of the metal layer 4 is lower than that of the large-diameter pipe 2 and the small-diameter pipe 3 of the copper pipe. You may form with a metal. By making the metal layer 4 a metal whose potential is lower than that of the large-diameter tube 2 and the small-diameter tube 3, the metal layer 4 is lower in potential than copper, so that the torsion tube heat exchanger 1 is being used. In the unlikely event that corrosion occurs, the metal layer 4 becomes the sacrificial anode of the large-diameter pipe 2 and the small-diameter pipe 3 and corrodes first, thereby preventing perforation due to the corrosion of the large-diameter pipe 2 and the small-diameter pipe 3. it can.
実施の形態2.
 実施の形態1では、小径管3の表面に、小径管3及び大径管2の材質と異なる金属層4を施したが、本実施の形態2は、大径管2の表面に、大径管2及び小径管3の材質と異なる金属層4を施すようにしたものである。
 図6は本発明の実施の形態2に係る捩り管形熱交換器において金属層の溶融前の大径管及び小径管の部分断面図である。なお、実施の形態1と同様の部分には同じ符号を付している。
Embodiment 2. FIG.
In the first embodiment, the metal layer 4 different from the material of the small-diameter pipe 3 and the large-diameter pipe 2 is applied to the surface of the small-diameter pipe 3, but in the second embodiment, the large-diameter pipe 2 has a large diameter on the surface. A metal layer 4 different from the material of the tube 2 and the small diameter tube 3 is applied.
FIG. 6 is a partial cross-sectional view of the large-diameter tube and the small-diameter tube before the metal layer is melted in the torsion tube heat exchanger according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the part similar to Embodiment 1. FIG.
 図6において、大径管2は、例えば銅管からなり、表面に軸方向に螺旋状に形成された螺旋溝部2aを有している。小径管3は、大径管2と同様に銅管からなり、螺旋溝部2aと同じ若しくは螺旋溝部2aよりも小さい外径を有し、螺旋溝部2aに沿って大径管2に巻き付けられている。 In FIG. 6, the large-diameter tube 2 is made of, for example, a copper tube, and has a spiral groove portion 2a formed on the surface in a spiral shape in the axial direction. The small-diameter pipe 3 is made of a copper pipe like the large-diameter pipe 2, has an outer diameter that is the same as or smaller than that of the spiral groove 2a, and is wound around the large-diameter pipe 2 along the spiral groove 2a. .
 大径管2の表面には、大径管2及び小径管3の材質と異なる金属層4が施されている。金属層4は、前述のように亜鉛によって形成されている。なお、亜鉛に代えて、錫で金属層4を形成しても良いし、又は大径管2及び小径管3よりも電位が卑となる金属によって金属層4を形成しても良い。その金属層4は、前述のように大径管2に巻き付ける前の小径管3に施されている。 The surface of the large diameter tube 2 is provided with a metal layer 4 different from the material of the large diameter tube 2 and the small diameter tube 3. The metal layer 4 is made of zinc as described above. Instead of zinc, the metal layer 4 may be formed of tin, or the metal layer 4 may be formed of a metal whose potential is lower than that of the large diameter tube 2 and the small diameter tube 3. The metal layer 4 is applied to the small diameter tube 3 before being wound around the large diameter tube 2 as described above.
 このように構成された捩り管形熱交換器1において、大径管2の螺旋溝部2aに金属層4が施された小径管3を嵌めた状態で、還元ガス雰囲気の炉内で加熱すると、大径管2の表面に施された亜鉛の金属層4が溶融する。溶融した金属層4は、図5に示すように、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との間の隙間に流れ込む。そして、その隙間に流れ込んだ金属層4により、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面とが金属的に金属接合される。 In the torsion tube heat exchanger 1 configured as described above, when heating is performed in a reducing gas atmosphere furnace with the small-diameter tube 3 having the metal layer 4 applied to the spiral groove portion 2a of the large-diameter tube 2, The zinc metal layer 4 applied to the surface of the large diameter tube 2 is melted. As shown in FIG. 5, the molten metal layer 4 flows into the gap between the spiral groove 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove 2a. And by the metal layer 4 which flowed in the clearance gap, the spiral groove part 2a of the large diameter pipe 2 and the surface of the small diameter pipe 3 which opposes the spiral groove part 2a are metal-metal bonded.
 以上のように本実施の形態2によれば、大径管2の表面に施された亜鉛の金属層4を還元ガス雰囲気の炉内で溶融し、溶融した金属層4を大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との間の隙間に流入させて、大径管2と小径管3とを金属的に金属接合させるようにしている。これにより、フラックスを使用することがないので、従来のようにフラックスで大径管2及び小径管3の管表面が汚れるということがなくなる。 As described above, according to the second embodiment, the zinc metal layer 4 applied to the surface of the large-diameter tube 2 is melted in a furnace in a reducing gas atmosphere, and the molten metal layer 4 is melted in the large-diameter tube 2. The large-diameter pipe 2 and the small-diameter pipe 3 are metallically bonded to each other by flowing into the gap between the spiral groove 2a and the surface of the small-diameter pipe 3 facing the spiral groove 2a. Thereby, since flux is not used, the pipe surfaces of the large-diameter pipe 2 and the small-diameter pipe 3 are not contaminated with the flux as in the prior art.
 また、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との金属接合にフラックスを使用していないため、フラックスを塗布したり金属接合後のフラックスを除去するという工程数を削減でき、材料コストも低減することができる。 Further, since no flux is used for metal bonding between the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a, a process of applying flux or removing the flux after metal bonding is performed. The number can be reduced and the material cost can be reduced.
 さらに、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面とを金属接合する金属層4が亜鉛であるため、熱伝導率が高く、捩り管形熱交換器1の伝熱性能が向上する。 Furthermore, since the metal layer 4 that metal-joins the spiral groove portion 2a of the large-diameter tube 2 and the surface of the small-diameter tube 3 facing the spiral groove portion 2a is zinc, the thermal conductivity is high, and the torsion tube heat exchanger 1 Heat transfer performance is improved.
 なお、本実施の形態2においても、大径管2の表面に施される金属層4を、錫若しくは大径管2及び小径管3よりも電位が卑となる金属で形成することで、実施の形態1と同様な効果を有することができる。 In the second embodiment, the metal layer 4 applied to the surface of the large-diameter tube 2 is also formed by using a metal whose potential is lower than that of tin or the large-diameter tube 2 and the small-diameter tube 3. It is possible to have the same effect as in the first form.
 次に、本発明に係る捩り管形熱交換器1の製造工程について一例をあげて説明する。
 (1)直管の大径管2の表面に軸方向に螺旋状の螺旋溝部2aを捩り加工により形成する(捩り工程)。
 (2)大径管2表面及び前記螺旋溝部と同じ若しくは当該螺旋溝部よりも小さい外径を有する小径管の表面の何れかに、大径管2及び小径管3の材質と異なる金属層4を施す(表面処理工程)。この金属層4を、亜鉛若しくは錫の何れかで形成しても良いし、又は大径管2及び小径管3よりも電位が卑となる金属によって形成しても良い。
 (3)小径管3を大径管2の螺旋溝部2aに沿って大径管2に巻き付ける(巻き付け工程)。
 (4)大径管2及び大径管2に巻き付けた小径管3を還元ガス雰囲気の炉内で加熱して金属層4を溶融し、大径管2の螺旋溝部2aに小径管を金属接合させる(接合工程)。
Next, an example is given and demonstrated about the manufacturing process of the twisted tube type heat exchanger 1 which concerns on this invention.
(1) A spiral groove portion 2a that is spiral in the axial direction is formed on the surface of the straight large-diameter pipe 2 by twisting (twisting process).
(2) A metal layer 4 different from the material of the large-diameter pipe 2 and the small-diameter pipe 3 is formed on either the surface of the large-diameter pipe 2 and the surface of the small-diameter pipe having the same outer diameter as that of the spiral groove or smaller than the spiral groove. Apply (surface treatment process). The metal layer 4 may be formed of zinc or tin, or may be formed of a metal whose potential is lower than that of the large diameter tube 2 and the small diameter tube 3.
(3) The small diameter pipe 3 is wound around the large diameter pipe 2 along the spiral groove 2a of the large diameter pipe 2 (winding step).
(4) The large-diameter pipe 2 and the small-diameter pipe 3 wound around the large-diameter pipe 2 are heated in a reducing gas atmosphere furnace to melt the metal layer 4, and the small-diameter pipe is metal-bonded to the spiral groove 2 a of the large-diameter pipe 2. (Joining process).
 以上の(1)~(4)の各工程を経て、捩り管形熱交換器1が製造される。この製造により、フラックスを使用することがないので、従来のようにフラックスで大径管2及び小径管3の管表面が汚れるということがなくなる。 Through the above steps (1) to (4), the twisted tube heat exchanger 1 is manufactured. Since this manufacturing does not use a flux, the surfaces of the large-diameter pipe 2 and the small-diameter pipe 3 are not contaminated with the flux as in the prior art.
 また、大径管2の螺旋溝部2aと螺旋溝部2aに対向する小径管3の表面との金属接合にフラックスを使用していないため、フラックスを塗布したり金属接合後のフラックスを除去するという工程数を削減でき、材料コストも低減することができる。 Further, since no flux is used for metal bonding between the spiral groove portion 2a of the large diameter tube 2 and the surface of the small diameter tube 3 facing the spiral groove portion 2a, a process of applying flux or removing the flux after metal bonding is performed. The number can be reduced and the material cost can be reduced.
 なお、実施の形態1、2では、大径管2と小径管3の材質が銅であることを述べたが、これ以外に、アルミニウム、アルミニウム合金、ステンレス鋼等で形成される大径管2と小径管3を用いても良い。 In the first and second embodiments, it has been described that the material of the large-diameter pipe 2 and the small-diameter pipe 3 is copper, but in addition to this, the large-diameter pipe 2 formed of aluminum, aluminum alloy, stainless steel or the like. Alternatively, a small diameter tube 3 may be used.
 1 捩り管形熱交換器、2 大径管、2a 螺旋溝部、3 小径管、4 金属層。 1 twisted tube heat exchanger, 2 large diameter tube, 2a spiral groove, 3 small diameter tube, 4 metal layer.

Claims (6)

  1.  表面に軸方向に螺旋状に形成された螺旋溝部を有する大径管と、
     前記螺旋溝部と同じ若しくは当該螺旋溝部よりも小さい外径を有し、前記螺旋溝部に沿って前記大径管に巻き付けられた小径管と、
     前記小径管の表面に施され、当該小径管及び前記大径管の材質と異なる金属層と
    を備え、
     前記大径管の螺旋溝部と当該螺旋溝部に対向する前記小径管の表面とが、炉内の加熱で溶融された前記金属層を介して接合されている捩り管形熱交換器。
    A large-diameter tube having a spiral groove formed in a spiral shape in the axial direction on the surface;
    A small-diameter tube having an outer diameter that is the same as or smaller than that of the spiral groove portion, and wound around the large-diameter tube along the spiral groove portion;
    It is applied to the surface of the small diameter tube, and comprises a metal layer different from the material of the small diameter tube and the large diameter tube,
    A torsion tube heat exchanger in which a spiral groove portion of the large-diameter tube and a surface of the small-diameter tube facing the spiral groove portion are joined via the metal layer melted by heating in a furnace.
  2.  表面に軸方向に螺旋状に形成された螺旋溝部を有する大径管と、
     前記螺旋溝部と同じ若しくは当該螺旋溝部よりも小さい外径を有し、前記螺旋溝部に沿って前記大径管に巻き付けられた小径管と、
     前記大径管の表面に施され、当該大径管及び前記小径管の材質と異なる金属層と
    を備え、
     前記大径管の螺旋溝部と当該螺旋溝部に対向する前記小径管の表面とが、炉内の加熱で溶融された前記金属層を介して接合されている捩り管形熱交換器。
    A large-diameter tube having a spiral groove formed in a spiral shape in the axial direction on the surface;
    A small-diameter tube having an outer diameter that is the same as or smaller than that of the spiral groove portion, and wound around the large-diameter tube along the spiral groove portion;
    It is applied to the surface of the large diameter pipe, and comprises a metal layer different from the material of the large diameter pipe and the small diameter pipe,
    A torsion tube heat exchanger in which a spiral groove portion of the large-diameter tube and a surface of the small-diameter tube facing the spiral groove portion are joined via the metal layer melted by heating in a furnace.
  3.  前記金属層は、亜鉛によって形成されている請求項1又は2に記載の捩り管形熱交換器。 The twisted tube heat exchanger according to claim 1 or 2, wherein the metal layer is made of zinc.
  4.  前記金属層は、錫によって形成されている請求項1又は2に記載の捩り管形熱交換器。 The twisted tube heat exchanger according to claim 1 or 2, wherein the metal layer is formed of tin.
  5.  前記金属層は、前記大径管及び前記小径管よりも電位が卑となる金属によって形成されている請求項1又は2に記載の捩り管形熱交換器。 The twisted tube heat exchanger according to claim 1 or 2, wherein the metal layer is formed of a metal having a lower potential than the large diameter tube and the small diameter tube.
  6.  大径管の表面に軸方向に螺旋状の螺旋溝部を捩り加工により形成する捩り工程と、
     前記大径管の表面及び前記螺旋溝部と同じ若しくは当該螺旋溝部よりも小さい外径を有する小径管の表面の何れかに、前記大径管及び前記小径管の材質と異なる金属層を施す表面処理工程と、
     前記小径管を前記大径管の螺旋溝部に沿うように巻き付ける巻き付け工程と、
     前記大径管及び当該大径管に巻き付けた前記小径管を還元ガス雰囲気の炉内で加熱して前記金属層を溶融し、前記大径管の螺旋溝部に前記小径管を接合させる接合工程と
    を有する捩り管形熱交換器の製造方法。
    A twisting process for forming a spiral groove in the axial direction on the surface of the large-diameter tube by twisting;
    Surface treatment for applying a metal layer different from the material of the large-diameter pipe and the small-diameter pipe to either the surface of the large-diameter pipe and the surface of the small-diameter pipe having the same outer diameter as the spiral groove or smaller than the spiral groove Process,
    A winding step of winding the small diameter tube along the spiral groove of the large diameter tube;
    A joining step of heating the large-diameter pipe and the small-diameter pipe wound around the large-diameter pipe in a furnace in a reducing gas atmosphere to melt the metal layer and joining the small-diameter pipe to a spiral groove portion of the large-diameter pipe; The manufacturing method of the twisted tube type heat exchanger which has this.
PCT/JP2016/054264 2016-02-15 2016-02-15 Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger WO2017141307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054264 WO2017141307A1 (en) 2016-02-15 2016-02-15 Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054264 WO2017141307A1 (en) 2016-02-15 2016-02-15 Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger

Publications (1)

Publication Number Publication Date
WO2017141307A1 true WO2017141307A1 (en) 2017-08-24

Family

ID=59625714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054264 WO2017141307A1 (en) 2016-02-15 2016-02-15 Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger

Country Status (1)

Country Link
WO (1) WO2017141307A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238564A (en) * 1994-12-30 1996-09-17 Internatl Business Mach Corp <Ibm> Method for forming metal joint
JPH09174235A (en) * 1995-12-25 1997-07-08 Kanto Yakin Kogyo Kk Method for zinc-brazing metals
JPH11114667A (en) * 1997-10-13 1999-04-27 Toshiba Corp Joining method of metal member and joined body
JP2003161587A (en) * 2001-11-22 2003-06-06 Hoshizaki Electric Co Ltd Joined structure of metallic member
JP2007185709A (en) * 2005-12-12 2007-07-26 Denso Corp Brazing method and brazed structure
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2010091266A (en) * 2004-08-26 2010-04-22 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2015001328A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Torsion pipe type heat exchanger and manufacturing method of torsion pipe type heat exchanger
JP2015081760A (en) * 2013-10-24 2015-04-27 木村化工機株式会社 Heat exchange device
JP2015158339A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Manufacturing method of torsion pipe type heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238564A (en) * 1994-12-30 1996-09-17 Internatl Business Mach Corp <Ibm> Method for forming metal joint
JPH09174235A (en) * 1995-12-25 1997-07-08 Kanto Yakin Kogyo Kk Method for zinc-brazing metals
JPH11114667A (en) * 1997-10-13 1999-04-27 Toshiba Corp Joining method of metal member and joined body
JP2003161587A (en) * 2001-11-22 2003-06-06 Hoshizaki Electric Co Ltd Joined structure of metallic member
JP2010091266A (en) * 2004-08-26 2010-04-22 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2007185709A (en) * 2005-12-12 2007-07-26 Denso Corp Brazing method and brazed structure
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2015001328A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Torsion pipe type heat exchanger and manufacturing method of torsion pipe type heat exchanger
JP2015081760A (en) * 2013-10-24 2015-04-27 木村化工機株式会社 Heat exchange device
JP2015158339A (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Manufacturing method of torsion pipe type heat exchanger

Similar Documents

Publication Publication Date Title
KR100202158B1 (en) Method of joining zinc coated aluminum members
CN104722872B (en) Aluminum alloy heat exchanger
JP5523587B2 (en) A bellows tube with a bellows tube joint, and a method of connecting the bellows tube joint and the bellows tube
JP2017122549A (en) Heat exchanger and method of manufacturing the same
JP2015090266A (en) Heat exchanger and method of producing the same
US10010984B2 (en) Method for the production of a heat exchanger, particularly a sorption heat exchanger
KR20190055467A (en) Pipe and joining method thereof
JP4411114B2 (en) Alloy-coated boiler parts and welding methods for self-fluxing alloy-coated boiler parts
JP4819765B2 (en) Method for manufacturing twisted tube heat exchanger
WO2017018438A1 (en) Heat exchanger and method for producing same
JP2010065916A (en) Heat exchanger and method of manufacturing the same
US2191631A (en) Brazing of thin metal structures
CZ20022580A3 (en) Method for joining steel pipes with aluminium ribs
WO2017141307A1 (en) Twisted tube-type heat exchanger and method for manufacturing twisted tube-type heat exchanger
US3426420A (en) Method of making brazed composite tubing for heat exchangers used in corrosive fluids
JP5896995B2 (en) Method for manufacturing a clad tube and clad tube
JP2006284009A (en) Method of manufacturing twisted tube-type heat exchanger
JP6203079B2 (en) Method for manufacturing twisted tube heat exchanger
JP5903444B2 (en) Heat exchanger manufacturing method and heat exchanger obtained thereby
JP2013533117A5 (en)
WO2016052124A1 (en) Pipe joining method, joint and pipe joining structure
JP5383641B2 (en) Method for manufacturing twisted tube heat exchanger
JP6283198B2 (en) Manufacturing method of heat exchange device
JP5487079B2 (en) Hollow member connecting part and method for producing hollow member
KR20160005403A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP