WO2017141306A1 - 対基板作業装置 - Google Patents

対基板作業装置 Download PDF

Info

Publication number
WO2017141306A1
WO2017141306A1 PCT/JP2016/054263 JP2016054263W WO2017141306A1 WO 2017141306 A1 WO2017141306 A1 WO 2017141306A1 JP 2016054263 W JP2016054263 W JP 2016054263W WO 2017141306 A1 WO2017141306 A1 WO 2017141306A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tray
storage
tray
flux
electronic component
Prior art date
Application number
PCT/JP2016/054263
Other languages
English (en)
French (fr)
Inventor
和也 松山
芳行 深谷
忠 村瀬
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2017567575A priority Critical patent/JP6691560B2/ja
Priority to PCT/JP2016/054263 priority patent/WO2017141306A1/ja
Publication of WO2017141306A1 publication Critical patent/WO2017141306A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a substrate-to-substrate working device that performs a work on a substrate using components held by a work head, and more particularly to a substrate-to-substrate working device that brings the components into contact with a viscous fluid in a storage tray.
  • the work head includes a work head that holds a component, a storage tray that stores a viscous fluid attached to the component held by the work head, and a control device.
  • the component held on the substrate is brought into contact with the viscous fluid in the storage tray and then mounted on the substrate.
  • Patent Document 1 The invention described in Patent Document 1 is known as an invention relating to such a substrate working apparatus.
  • the electronic component mounting machine described in Patent Document 1 brings the electronic component held by the suction nozzle into contact with the flux made as a viscous fluid in a dish-shaped rotary table (corresponding to the storage tray of the present invention).
  • the flux is attached to the electrode part of the electronic component.
  • the said electronic component mounting machine is comprised so that the electronic component which the flux adhered may be mounted
  • the substrate work apparatus configured as in Patent Document 1
  • work is performed on a substrate using a component (electronic component) under various work conditions.
  • the working conditions include the size of the component (electronic component), the thickness of the viscous fluid in the storage tray, and the like.
  • various storage trays can be used as the substrate working apparatus.
  • the position (hereinafter, dip coordinate position) may need to be changed according to the size of the storage tray. If a change operation of the dip coordinate position occurs every time the type of the storage tray is changed, the work efficiency and productivity in the substrate work apparatus are greatly reduced.
  • the distance between the board to be mounted and the dip coordinate position may become longer.
  • the work efficiency in the work apparatus for the substrate is also improved from the viewpoint of the work related to the one component. And decrease productivity.
  • the present invention has been made in view of the above-described problem, and after contacting a component held by a work head with a viscous fluid in a storage tray, the substrate-to-substrate working apparatus performs work on a substrate using the component. It is an object of the present invention to provide a substrate work apparatus that can use a plurality of types of storage trays without reducing work efficiency.
  • the substrate working apparatus includes a work head that holds a component and a reservoir that stores a viscous fluid attached to the component held by the work head.
  • a substrate work apparatus comprising: a tray; and a control device that performs work using the component on the substrate after contacting the component held by the work head with the viscous fluid in the storage tray.
  • the substrate work apparatus is configured to be able to use a plurality of types of storage trays, and has a positioning unit that positions the storage tray with respect to a predetermined position in the substrate work apparatus.
  • the type of storage tray includes a dip position where the component held by the work head is brought into contact with the viscous fluid in the storage tray, and a position of the positioning portion. Characterized in that it is.
  • the substrate work apparatus is configured to be able to use a plurality of types of storage trays, and the plurality of types of storage trays can store the components held by the work head. Since it is configured to include a dip position in contact with the viscous fluid in the storage tray and the position of the positioning unit, any of a plurality of types of storage trays is used via the positioning unit. Also, the same dip position can be used. Thereby, according to the said board
  • FIG. 7 is a cross-sectional view showing an XX cross section in FIG. 6. It is an enlarged plan view showing a tray rotating device and a second storage tray. It is an enlarged plan view which shows a tray rotation apparatus and a 3rd storage tray.
  • FIG. 1 is a perspective view of an electronic component mounting apparatus 10 according to the present embodiment
  • FIG. 2 is a plan view showing the electronic component mounting apparatus 10 in a state where a cover or the like is removed from a viewpoint from above.
  • the electronic component mounting apparatus 10 is an apparatus for mounting electronic components on a circuit board.
  • the electronic component mounting apparatus 10 has one system base 14 and two mounting machines 16 arranged side by side on the system base 14.
  • the direction in which the mounting machines 16 are arranged is referred to as the X-axis direction
  • the horizontal direction perpendicular to the direction is referred to as the Y-axis direction.
  • Each mounting machine 16 mainly includes a mounting machine main body 20, a transport device 22, a mounting head moving device 24 (hereinafter sometimes abbreviated as “moving device 24”), a mounting head 26, a supply device 28, and a flux unit 30.
  • the mounting machine main body 20 includes a frame portion 32 and a beam portion 34 that is overlaid on the frame portion 32.
  • the conveying device 22 includes two conveyor devices (a conveyor device 40 and a conveyor device 42).
  • the conveyor device 40 and the conveyor device 42 are arranged in the frame portion 32 so as to be parallel to each other and extend in the X-axis direction.
  • the conveyor device 40 and the conveyor device 42 convey the circuit boards supported by the electromagnetic motor 46 (see FIG. 5) in the X-axis direction. Further, the circuit board is fixedly held by a board holding device 48 (see FIG. 5) at a predetermined position.
  • the moving device 24 is an XY robot type moving device, and includes an electromagnetic motor 52 (see FIG. 5) that slides the slider 50 in the X-axis direction and an electromagnetic motor 54 (see FIG. 5) that slides in the Y-axis direction. ing.
  • a mounting head 26 is attached to the slider 50, and the mounting head 26 moves to an arbitrary position on the frame portion 32 by the operation of the electromagnetic motor 52 and the electromagnetic motor 54.
  • the mounting head 26 mounts electronic components on the circuit board.
  • the mounting head 26 has a suction nozzle 62 provided on the lower end surface.
  • the suction nozzle 62 communicates with a positive / negative pressure supply device 66 (see FIG. 5) via a negative pressure air passage and a positive pressure air passage.
  • the suction nozzle 62 sucks and holds the electronic component with a negative pressure, and releases the held electronic component with a positive pressure.
  • the mounting head 26 has a nozzle lifting device 65 (see FIG. 5) that lifts and lowers the suction nozzle 62.
  • the mounting head 26 changes the vertical position of the electronic component to be held by the nozzle lifting device 65.
  • the supply device 28 is a feeder-type supply device, and is disposed at one end of the frame portion 32 in the Y-axis direction.
  • the supply device 28 has a tape feeder 81.
  • the tape feeder 81 accommodates a taped component formed by taping an electronic component in a wound state. Then, the tape feeder 81 sends out the taped parts by the delivery device 82 (see FIG. 5). Thereby, the feeder type supply device 28 supplies the electronic component at the supply position by feeding the taped component.
  • the tape feeder 81 can be attached to and detached from the frame portion 32, and can correspond to replacement of electronic components.
  • the flux unit 30 is disposed next to the supply device 28 so as to be slidable in the Y-axis direction, and includes a storage tray 93 for storing flux applied to the electronic component.
  • FIG. 3 is a perspective view of the flux unit 30 in the present embodiment
  • FIG. 4 is a plan view showing the flux unit 30 from a viewpoint from above.
  • the main body base 83 includes a rectangular bottom plate extending in the Y-axis direction and a pair extending vertically upward from an end portion of the bottom plate in the X-axis direction. And a U-shaped groove extending in the Y-axis direction.
  • a pair of guide rails 84 is disposed on the upper surface of the bottom plate of the main body base 83, and each guide rail 84 extends along the Y-axis direction while being aligned in the X-axis direction.
  • a cable connecting portion 85 is provided at the end in the Y-axis direction.
  • a cable 89 that accommodates various power supply lines, signal lines, and the like is connected to the cable connecting portion 85.
  • the flux unit 30 includes a unit main body 86 having a tray rotating device 90 and a storage tray 93.
  • the unit main body 86 is arranged so as to be movable in the Y-axis direction along the guide rail 84 by an actuator (not shown), and is connected to the cable connecting portion 85 via a cable 89.
  • a syringe holding portion 87 is disposed on one end side in the Y-axis direction of the unit main body portion 86.
  • the syringe holding part 87 is comprised by the clip and the belt, and fixes and hold
  • the syringe 88 accommodates the flux therein, and a liquid feed tube is connected to the lower end portion thereof.
  • a tray rotating device 90 is disposed on the upper surface portion of the unit main body 86.
  • the tray rotating device 90 constitutes a part of the upper surface of the tray rotating device 90, and a stage 91 (see FIG. 7) that is rotatably arranged, and for rotating the stage 91 at an arbitrary rotation amount.
  • the storage tray 93 mounted on the stage 91 can be rotated with an arbitrary amount of rotation in a predetermined direction.
  • the storage tray 93 is configured to include an electromagnetic motor and a rotary encoder.
  • a positioning pin 92 is erected in a vertical direction with respect to the upper surface of the stage 91 at a position serving as the rotation center of the stage 91. As shown in FIG. 7, the positioning pin 92 is fitted into a positioning recess 96 of the storage tray 93 described later, thereby positioning the storage tray 93 at a predetermined position in the tray rotating device 90. That is, the positioning pin 92 functions as a positioning portion in the present invention.
  • the storage tray 93 is a shallow-bottomed tray whose outer shape viewed from above has a circular shape with a predetermined tray outer diameter R as a radius, and is disposed on the stage 91 of the tray rotating device 90. As shown in FIGS. 5 to 9, the storage tray 93 stores the flux supplied from the syringe 88, and a storage portion 94 where the flux film F is formed, and a positioning recess formed on the lower surface of the storage tray 93. 96.
  • the positioning recess 96 is formed on the lower surface of the storage tray 93 by recessing the central portion of the storage tray 93 having a circular shape in a concave shape.
  • the rotation center of the stage 91 and the center of the storage tray 93 can be matched and positioned at a predetermined position in the tray rotating device 90. it can.
  • this position is referred to as a tray rotation center C.
  • the tray rotating device 90 is configured so that a plurality of types of storage trays 93 including the first storage tray 93A, the second storage tray 93B, and the third storage tray 93C can be placed on the stage 91.
  • the storage tray 93 is a general term for a plurality of types of storage trays including the first storage tray 93A to the third storage tray 93C, and each of the plurality of types of storage trays 93 is a circular shape having a tray outer diameter R as a radius. It is configured as a shallow tray that can be used.
  • the specific configuration of the first storage tray 93A to the third storage tray 93C will be described in detail later with reference to the drawings.
  • a discharge nozzle 99 is disposed above the storage portion 94 in the storage tray 93, and is connected to the inside of the syringe 88 via a liquid feeding tube. Therefore, the flux in the syringe 88 is supplied from the discharge nozzle 99 to the storage portion 94 of the storage tray 93, and the flux film F can be formed in the storage portion 94 of the storage tray 93.
  • a plate-like squeegee 97 is arranged along the radial direction of the storage tray 93 at a position above the storage portion 94 and different from the discharge nozzle 99.
  • the squeegee 97 is disposed at a position having a predetermined height from the bottom surface of the storage tray 93. Therefore, when the storage tray 93 is rotated by the tray rotating device 90, the edge of the squeegee 97 extending along the radial direction scrapes the flux film F. That is, the squeegee 97 can adjust the thickness of the flux film F to a desired thickness by interlocking with the rotation operation of the storage tray 93 by the tray rotating device 90.
  • the mounting machine 16 further includes a control device 100 as shown in FIG.
  • the control device 100 includes a controller 102, and the controller 102 includes a CPU, a ROM, a RAM, and the like, and mainly includes a computer.
  • the controller 102 is connected to a plurality of drive circuits 106, and the plurality of drive circuits 106 include an electromagnetic motor 46, an electromagnetic motor 52, an electromagnetic motor 54, a substrate holding device 48, a nozzle lifting / lowering device 65, and a positive / negative pressure supply device 66.
  • the operations of the transport device 22 and the moving device 24 are controlled by the controller 102.
  • the mounting operation can be performed by the mounting head 26 on the circuit board held by the transport device 22 with the above-described configuration. Specifically, the circuit board is transported to the work position according to a command from the controller 102, and is fixedly held by the board holding device 48 at that position. Further, the tape feeder 81 sends out a taped component and supplies an electronic component at a supply position in accordance with a command from the controller 102. Then, the mounting head 26 moves above the electronic component supply position in accordance with a command from the controller 102, and the electronic component is sucked and held by the suction nozzle 62.
  • the mounting head 26 moves to a predetermined position above the storage tray 93 according to a command from the controller 102, and the electronic component is lowered by the nozzle lifting device 65. Thereby, the flux stored in the storage tray 93 can be attached to the electronic component sucked and held by the suction nozzle 62.
  • the coordinate position of the mounting head 26 at this time is referred to as a dip coordinate position D.
  • the mounting head 26 moves from the dip coordinate position D to above the circuit board held by the board holding device 48 in accordance with a command from the controller 102, and holds the electronic component. Is mounted at a predetermined position on the circuit board.
  • the configuration of the first storage tray 93A in the present embodiment will be described in detail with reference to FIGS.
  • the first storage tray 93 ⁇ / b> A is one type of storage tray 93 that can be used for the flux unit 30.
  • the first storage tray 93A is a shallow bottom tray whose outer shape viewed from above is a circular shape having a tray outer diameter R as a radius, and has a storage portion 94, a protrusion 95, and a positioning recess 96. is doing.
  • the protrusion 95 in the first storage tray 93A is formed so as to protrude upward from the bottom plate of the first storage tray 93A at a position that becomes the tray rotation center C inside the storage part 94.
  • the protrusion 95 has a cylindrical shape with the tray rotation center C as the center and a predetermined first dimension LA as the radius. Therefore, the storage portion 94 in the first storage tray 93 ⁇ / b> A has an annular shape due to the presence of the protrusion 95, and is formed with a smaller capacity than the storage tray 93 without the protrusion 95.
  • the flux film F having a predetermined thickness can be formed in the storage portion 94 with a smaller amount of flux than the storage tray 93 without the protrusion 95, which is expensive.
  • the waste of flux can be suppressed.
  • the annular storage portion 94 is attached to the mounting machine 16. It is formed so as to include a dip coordinate position D defined for the same. Therefore, according to the electronic component mounting apparatus 10, the same dip coordinate is used both when the storage tray 93 without the protrusion 95 is used and when the first storage tray 93A (see FIGS. 6 and 7) is used. Position D can be used.
  • the squeegee 97 is also replaced with one corresponding to the radial length of the storage portion 94 of the first storage tray 93A.
  • the second storage tray 93 ⁇ / b> B is one type of storage tray 93 that can be used for the flux unit 30. Similar to the first storage tray 93A, the second storage tray 93B is a shallow tray whose outer shape seen from above forms a circle with the tray outer diameter R as a radius. And a positioning recess 96.
  • the protrusion 95 in the second storage tray 93B protrudes upward from the bottom plate of the second storage tray 93B at a position that becomes the tray rotation center C inside the storage portion 94. Is formed.
  • the protrusion 95 has a columnar shape with the tray rotation center C as the center and a second dimension LB larger than the first dimension LA as a radius. Therefore, the storage part 94 in the second storage tray 93B has an annular shape due to the presence of the protrusion 95, and is formed to have a smaller capacity than the storage tray 93 without the protrusion 95 and the first storage tray 93A.
  • the flux film F of predetermined thickness is formed in the storage part 94 with the amount of flux small compared with the storage tray 93 without the protrusion 95, and the 1st storage tray 93A. And waste of expensive flux can be further suppressed.
  • the second storage tray 93B is particularly useful when applying flux to small electronic components.
  • the annular storage portion 94 is attached to the mounting machine 16. It is formed so as to include a dip coordinate position D defined for the same. Therefore, according to the electronic component mounting apparatus 10, when the storage tray 93 or the first storage tray 93A (see FIGS. 6 and 7) without the protrusion 95 is used, the second storage tray 93B (see FIG. 8) is used. In any case, the same dip coordinate position D can be used.
  • the dip coordinate position D is changed according to the type of the storage tray 93. Therefore, it is possible to improve work efficiency and productivity in the electronic component mounting apparatus 10. Further, when the storage tray 93 or the first storage tray 93A without the projecting portion 95 is replaced with the second storage tray 93B, the dip coordinate position D and the predetermined position on the circuit board held by the board holding device 48 Therefore, it is possible to suppress an increase in the time required for mounting the one electronic component coated with the flux at a predetermined position on the circuit board, so that the work efficiency in the electronic component mounting apparatus 10 can be reduced. And the fall of productivity can be controlled.
  • the squeegee 97 is also replaced with one corresponding to the radial length of the storage portion 94 of the second storage tray 93B.
  • the third storage tray 93C is one type of storage tray 93 that can be used for the flux unit 30.
  • the third storage tray 93C is a shallow tray having a circular shape with the outer diameter R of the tray as the radius when viewed from above. 94, a protrusion 95, and a positioning recess 96.
  • the storage section 94 in the third storage tray 93C includes a storage section 94 (see FIGS. 6 to 8) formed in an annular shape like the first storage tray 93A and the second storage tray 93B. Differently, it is formed as a substantially fan-shaped concave portion corresponding to a part of the ring centered on the tray rotation center C. That is, most of the third storage tray 93C is occupied by the protrusion 95 formed so as to protrude upward from the bottom plate of the third storage tray 93C. Accordingly, the storage portion 94 in the third storage tray 93C is formed to have a smaller capacity than the storage tray 93 without the protrusion 95, the first storage tray 93A, and the second storage tray 93B.
  • the flux film F having a predetermined thickness is stored with a smaller amount of flux than the storage tray 93 without the protrusion 95, the first storage tray 93A, and the second storage tray 93B. It can be formed in the portion 94, and waste of expensive flux can be further suppressed.
  • the third storage tray 93C is particularly useful when applying a flux to a smaller electronic component.
  • the storage portion 94 of the third storage tray 93C is mounted. It is formed as a substantially fan-shaped recess so as to include the dip coordinate position D defined for the machine 16. Therefore, according to the electronic component mounting apparatus 10, when the storage tray 93 without the protrusion 95, the first storage tray 93A (see FIGS. 6 and 7), and the second storage tray 93B (see FIG. 8) are used, In any case where the third storage tray 93C (see FIG. 9) is used, the same dip coordinate position D can be used.
  • the dip coordinates are changed according to the type of the storage tray 93. Since there is no need to perform the operation of changing the position D, the work efficiency and productivity in the electronic component mounting apparatus 10 can be improved. Even when the storage tray 93 without the protrusion 95, the first storage tray 93A or the second storage tray 93B, and the third storage tray 93C are replaced, the dip coordinate position D and the substrate holding device 48 hold the storage tray 93C.
  • each mounting machine 16 includes the transport device 22, the moving device 24, the mounting head 26, the supply device 28, and the flux unit 30. is doing.
  • the mounting machine 16 holds the electronic component supplied by the supply device 28 by the mounting head 26 and brings it into contact with the flux in the storage tray 93 of the flux unit 30.
  • the mounting machine 16 mounts the electronic component on the circuit board transported to a predetermined position by the transport device 22 by holding and moving the electronic component coated with the flux by the mounting head 26. Can do.
  • the flux unit 30 includes a plurality of types of storage including a storage tray 93 without a protrusion 95, a first storage tray 93 ⁇ / b> A, a second storage tray 93 ⁇ / b> B, and a third storage tray 93 ⁇ / b> C.
  • the tray is configured to be available.
  • positioning pins 92 are erected on the upper surface of the stage 91, and the positioning pins 92 are fitted into positioning recesses 96 formed on the lower surface of each storage tray 93.
  • the storage tray 93 is positioned at a predetermined position in the tray rotating device 90 (see FIGS. 6 to 9).
  • the plurality of types of storage trays 93 are dip coordinate positions D and trays defined in the electronic component mounting apparatus 10, regardless of which storage tray 93 is positioned by the positioning pin 92.
  • the rotation center C is included. That is, in the electronic component mounting apparatus 10, even when any of the multiple types of storage trays 93 (for example, the first storage tray 93A to the third storage tray 93C) is positioned using the positioning pins 92, Using the dip coordinate position D defined in the electronic component mounting apparatus 10, it is possible to apply flux to the electronic component. As a result, when changing the type of the storage tray 93 among the plurality of types of storage trays 93, it is not necessary to perform the operation of changing the dip coordinate position D according to the type of the storage tray 93. The work efficiency and productivity can be improved while improving the convenience of the apparatus 10.
  • the distance between the dip coordinate position D and a predetermined position on the circuit board held by the board holding device 48 may be increased. Therefore, it is possible to suppress an increase in the time required for mounting one electronic component coated with a flux at a predetermined position on the circuit board, thereby suppressing a reduction in work efficiency and productivity in the electronic component mounting apparatus 10. can do.
  • the size of the storage portion 94 in the storage tray 93 is different. It is different. Therefore, by using the storage tray 93 of a type corresponding to the size of the electronic component to which the flux is applied, the required thickness of the flux film F, and the like, the amount of flux used for applying the flux can be set to an appropriate amount. Therefore, waste of expensive flux can be suppressed.
  • the plurality of types of storage trays 93 are each configured as a shallow tray in which the outer shape seen from above forms a circular shape having the tray outer diameter R as a radius.
  • the first storage tray 93A to the third storage tray 93C have a storage portion 94 and a protrusion 95, each of which has a size corresponding to the amount of flux stored (that is, the capacity of the storage portion 94). Thus, it protrudes into the storage portion 94 (see FIGS. 6 to 9).
  • the said electronic component mounting apparatus 10 in order to obtain the flux film F of desired thickness by changing the kind of storage tray 93, without changing the position of the dip coordinate position D, in the storage part 94 The amount of flux stored can be adjusted.
  • the flux unit 30 has a tray rotating device 90 and a squeegee 97. Accordingly, by rotating the storage tray 93 by the tray rotating device 90 in a state where the squeegee 97 is in contact with the flux in the storage portion 94 by the electronic component mounting device 10, the thickness of the flux film F is set to a desired thickness. Can be adjusted.
  • the electronic component mounting apparatus 10 and the mounting machine 16 are examples of the substrate-to-board working apparatus in the present invention
  • the flux is an example of the viscous fluid in the present invention.
  • the storage tray 93, the first storage tray 93A, the second storage tray 93B, and the third storage tray 93C are examples of the storage tray in the present invention
  • the control device 100 and the controller 102 are examples of the control device in the present invention.
  • the positioning pin 92 is an example of the positioning part in this invention
  • the storage part 94 is an example of the storage part in this invention.
  • the protrusion 95 is an example of the protrusion in this invention
  • the tray rotation apparatus 90 is an example of the rotation apparatus in this invention.
  • the squeegee 97 is an example of the squeegee in the present invention
  • the dip coordinate position D is an example of the dip position in the present invention
  • the tray rotation center C is an example of the position of the positioning portion in the present invention
  • the tray outer diameter dimension R is an example of a predetermined outer dimension in the present invention.
  • the flux unit 30 is configured to rotate the circular storage tray 93 by the tray rotating device 90, but is not limited to this aspect, and the shape of the storage tray Can be appropriately changed.
  • a shallow tray having a square shape when viewed from above can be used as a storage tray.
  • the protrusion is formed at the end of the storage part opposite to the dip coordinate position.
  • capacitance of the storage part in this case is desirably adjusted with the difference in the dimension of the protrusion extended toward the dip coordinate position from the said reverse side edge part. This is because the dip coordinate position does not change due to the change in the capacity of the storage unit.
  • the thickness of the flux film F in the storage unit 94 is rotated by rotating the storage tray 93 by the tray rotating device 90 in a state where the squeegee is in contact with the flux in the storage unit 94.
  • the present invention is not limited to this mode. If the storage tray 93 and the squeegee 97 can be moved relative to each other while the squeegee is in contact with the flux in the storage unit 94, various methods can be adopted. For example, a configuration in which the squeegee is reciprocated in a predetermined direction in the storage portion of the rectangular storage tray may be employed.
  • the tray rotating device is fitted by fitting the positioning pin 92 formed on the stage 91 of the tray rotating device 90 and the positioning recess 96 formed on the lower surface of each storage tray 93.
  • the position of the storage tray 93 with respect to 90 is positioned at a predetermined position, the present invention is not limited to this mode. If the position of the storage tray 93 in the flux unit 30 can be positioned at a predetermined position, various modes can be adopted.
  • the storage part 94 was formed in the annular
  • the storage portion 94 and the storage tray 93 may be formed in an annular shape by forming a portion corresponding to the protrusion 95 in a cylindrical shape.
  • the flux was mentioned as a viscous fluid which concerns on this invention, it is not limited to this aspect.
  • the viscous fluid according to the present invention for example, silver paste, molten solder, or the like can be used.
  • the work for the circuit board the work for mounting the component coated with the flux as the viscous fluid at the predetermined position on the circuit board is described.
  • various operations can be employed.
  • the operation for transferring the viscous fluid to the circuit board by bringing the component coated with the viscous fluid into contact with a predetermined position on the circuit board may be the counter-board operation according to the present invention.
  • the example in which the electronic component is used as the component according to the present invention has been described, but the embodiment is limited to this aspect as long as it is a component used for work performed on the circuit board. It is not something.
  • the component according to the present invention includes, for example, a transfer pin held by a work head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

電子部品装着装置10において、各装着機16は、搬送装置22と、移動装置24と、装着ヘッド26と、供給装置28と、フラックスユニット30とを有している。装着機16は、装着ヘッド26によって電子部品を保持し、フラックスユニット30の貯留トレイ93内のフラックスに接触させる。その後、装着機16は、フラックスが塗布された電子部品を装着ヘッド26によって、回路基板に対して実装する。フラックスユニット30は、第1貯留トレイ93A、第2貯留トレイ93B、第3貯留トレイ93Cを含む複数種類の貯留トレイを利用可能に構成されており、位置決め凹部96に位置決めピン92を嵌合させることで、各貯留トレイ93を所定位置に位置決めし得る。複数種類の貯留トレイ93は、何れの貯留トレイ93を位置決めした場合でも、規定されたディップ座標位置D及びトレイ回転中心Cを含むように構成されている。

Description

対基板作業装置
 本発明は、作業ヘッドに保持された部品を用いて、基板に対する作業を行う対基板作業装置に関し、特に、貯留トレイ内の粘性流体に前記部品を接触させる対基板作業装置に関する。
 従来、対基板作業装置として、部品を保持する作業ヘッドと、前記作業ヘッドに保持された前記部品に対して付着される粘性流体を貯留する貯留トレイと、制御装置とを有し、前記作業ヘッドに保持された前記部品を、前記貯留トレイ内の前記粘性流体に接触させた後、当該基板に対して装着させるものがある。
 このような対基板作業装置に関する発明として、特許文献1に記載された発明が知られている。特許文献1に記載された電子部品実装機は、皿状の回転テーブル(本発明の貯留トレイに相当)内に粘性流体としてされたフラックスに、吸着ノズルに保持された電子部品を接触させることで、当該電子部品の電極部にフラックスを付着させる。そして、当該電子部品実装機は、吸着ノズルを用いて、フラックスが付着した電子部品を、回路基板上の所定位置に装着するように構成されている。
特開2010-074029号公報
 特許文献1のように構成された対基板作業装置においては、様々な作業条件の下で、部品(電子部品)を用いた基板に対する作業が行われる。作業条件としては、部品(電子部品)のサイズや、貯留トレイ内における粘性流体の厚み等を挙げることができる。この多様な作業条件に適応する為に、対基板作業装置としては、多様な貯留トレイを利用可能であることが望まれている。
 対基板作業装置における所定の取付位置に対して、多様な貯留トレイを取り付け可能に構成した場合、作業ヘッドに保持された部品(電子部品)を貯留トレイ内に貯留された粘性流体に接触させる座標位置(以下、ディップ座標位置)を、貯留トレイのサイズに応じて変更する必要が生じ得る。貯留トレイの種類変更を行う毎に、ディップ座標位置の変更作業が生じると、対基板作業装置における作業効率や生産性を大きく低下させてしまう。
 又、ディップ座標位置の変更によっては、実装対象である基板とディップ座標位置の間の距離が長くなる場合がある。この場合、一の部品に対して粘性流体を付着させた後、基板に対する作業を行うまでの作業時間が増大してしまう為、一の部品に関する作業といった観点においても、対基板作業装置における作業効率や生産性を低下させてしまう。
 本発明は、上記の課題に鑑みてなされたものであり、作業ヘッドに保持された部品を貯留トレイ内の粘性流体に接触させた後、当該部品を用いて基板に対する作業を行う対基板作業装置に関し、作業効率を低下させることなく、複数種類の貯留トレイを利用可能な対基板作業装置を提供することを目的とする。
 上記課題を鑑みてなされた本願に開示される技術に係る対基板作業装置は、部品を保持する作業ヘッドと、前記作業ヘッドに保持された前記部品に対して付着される粘性流体を貯留する貯留トレイと、前記作業ヘッドに保持された前記部品を、前記貯留トレイ内の前記粘性流体に接触させた後、当該部品を用いた作業を基板に対して行う制御装置と、を有する対基板作業装置であって、前記対基板作業装置は、複数種類の貯留トレイを利用可能に構成されると共に、当該対基板作業装置における所定位置に対して前記貯留トレイを位置決めする位置決め部を有し、前記複数種類の貯留トレイは、前記作業ヘッドに保持された前記部品を前記貯留トレイ内の前記粘性流体に接触させるディップ位置と、前記位置決め部の位置とを含むように構成されていることを特徴とする。
 本願に開示される技術によれば、当該対基板作業装置は、複数種類の貯留トレイを利用可能に構成されており、記複数種類の貯留トレイは、前記作業ヘッドに保持された前記部品を前記貯留トレイ内の前記粘性流体に接触させるディップ位置と、前記位置決め部の位置とを含むように構成されている為、複数種類の貯留トレイの何れを、位置決め部を介して利用した場合であっても、同一のディップ位置を利用することができる。これにより、当該対基板作業装置によれば、貯留トレイを変更した場合であっても、ディップ位置の変更に関する作業を必要はなく、もって、作業効率及び生産性を向上させ得る。
本実施形態に係る電子部品装着装置の斜視図である。 本実施形態に係る電子部品装着装置の平面図である。 本実施形態に係るフラックスユニットの斜視図である。 本実施形態に係るフラックスユニットの平面図である。 電子部品装着装置における制御装置のブロック図である。 トレイ回転装置及び第1貯留トレイを示す拡大平面図である。 図6におけるX-X断面を示す断面図である。 トレイ回転装置及び第2貯留トレイを示す拡大平面図である。 トレイ回転装置及び第3貯留トレイを示す拡大平面図である。
 以下、本発明に係る対基板作業装置を、電子部品装着装置10に具体化した一実施形態について図面を参照して説明する。図1は、本実施形態に係る電子部品装着装置10の斜視図であり、図2は、カバー等を外した状態の電子部品装着装置10を上方からの視点で示した平面図である。
 <電子部品装着装置の構成>
 本実施形態に係る電子部品装着装置10は、回路基板に電子部品を実装するための装置である。電子部品装着装置10は、1つのシステムベース14と、そのシステムベース14の上に並んで配設された2つの装着機16とを有している。尚、以下の説明では、装着機16の並ぶ方向をX軸方向と称し、その方向に直角な水平の方向をY軸方向と称する。
 各装着機16は、主に、装着機本体20、搬送装置22、装着ヘッド移動装置24(以下、「移動装置24」と略す場合がある)、装着ヘッド26、供給装置28、フラックスユニット30を備えている。装着機本体20は、フレーム部32と、そのフレーム部32に上架されたビーム部34とによって構成されている。
 搬送装置22は、2つのコンベア装置(コンベア装置40、コンベア装置42)を備えている。コンベア装置40及びコンベア装置42は、互いに平行で、且つ、X軸方向に延びるようにフレーム部32に配設されている。コンベア装置40、コンベア装置42は、電磁モータ46(図5参照)によって、夫々に支持される回路基板をX軸方向に搬送する。又、回路基板は、所定の位置において、基板保持装置48(図5参照)によって固定的に保持される。
 移動装置24は、XYロボット型の移動装置であり、スライダ50をX軸方向にスライドさせる電磁モータ52(図5参照)と、Y軸方向にスライドさせる電磁モータ54(図5参照)とを備えている。スライダ50には、装着ヘッド26が取り付けられており、その装着ヘッド26は、電磁モータ52と電磁モータ54の作動によって、フレーム部32上の任意の位置に移動する。
 装着ヘッド26は、回路基板に対して電子部品を装着するものである。装着ヘッド26は、下端面に設けられた吸着ノズル62を有している。吸着ノズル62は、負圧エア通路及び正圧エア通路を介して、正負圧供給装置66(図5参照)に通じている。吸着ノズル62は、負圧によって電子部品を吸着保持し、保持した電子部品を正圧によって離脱する。又、装着ヘッド26は、吸着ノズル62を昇降させるノズル昇降装置65(図5参照)を有している。そのノズル昇降装置65によって、装着ヘッド26は、保持する電子部品の上下方向の位置を変更する。
 供給装置28は、フィーダ型の供給装置であり、フレーム部32におけるY軸方向の一方側の端部に配設されている。供給装置28は、テープフィーダ81を有している。テープフィーダ81は、電子部品をテーピング化して構成したテープ化部品を巻回させた状態で収容している。そして、テープフィーダ81は、送出装置82(図5参照)によって、テープ化部品を送り出す。これにより、フィーダ型の供給装置28は、テープ化部品の送り出しによって、電子部品を供給位置において供給する。尚、テープフィーダ81は、フレーム部32に対して着脱可能であり、電子部品の交換等に対応することが可能である。
 そして、フラックスユニット30は、供給装置28の隣において、Y軸方向に摺動可能に配設されており、電子部品に塗布されるフラックスを貯留する貯留トレイ93等を有している。ここで、本実施形態におけるフラックスユニット30の構成について、図面を参照しつつ詳細に説明する。図3は、本実施形態におけるフラックスユニット30の斜視図であり、図4は、当該フラックスユニット30を上方からの視点で示した平面図である。
 図3、図4に示すように、当該フラックスユニット30において、本体ベース83は、Y軸方向に延設された長方形の底板と、当該底板のX軸方向の端部から上方に垂直に延びる一対の側板とを備え、Y軸方向に延びるU字形状の溝を構成している。本体ベース83における底板の上面には、一対のガイドレール84が配設されており、各ガイドレール84は、X軸方向に並びつつ、Y軸方向に沿って延設されている。又、本体ベース83の底板上において、Y軸方向の端部には、ケーブル連結部85が設けられている。ケーブル連結部85には、各種の電源線や信号線等を収容するケーブル89が連結されている。
 フラックスユニット30は、トレイ回転装置90や貯留トレイ93を有するユニット本体部86を備えている。当該ユニット本体部86は、アクチュエーター(図示せず)によって、ガイドレール84に沿ってY軸方向に移動可能に配設されており、ケーブル89を介して、ケーブル連結部85に連結されている。
 ユニット本体部86におけるY軸方向一端側には、シリンジ保持部87が配設されている。シリンジ保持部87は、クリップ及びベルトによって構成されており、円筒形状のシリンジ88を固定して保持する。シリンジ88は、フラックスを内部に収容しており、その下端部には、液送管が接続されている。
 ユニット本体部86の上面部分には、トレイ回転装置90が配設されている。トレイ回転装置90は、トレイ回転装置90における上面の一部を構成すると共に、回転可能に配設されたステージ91(図7参照)と、当該ステージ91を任意の回転量で回転駆動させる為の電磁モータ及びロータリ―エンコーダ等を有して構成されており、ステージ91上に載置された貯留トレイ93を、所定方向に任意の回転量をもって回転させ得る。
 ステージ91の回転中心となる位置には、位置決めピン92が、当該ステージ91上面に対して鉛直方向に伸びて立設されている。図7に示すように、位置決めピン92は、後述する貯留トレイ93の位置決め凹部96に嵌合することで、トレイ回転装置90における所定位置に貯留トレイ93を位置決めする。即ち、位置決めピン92は、本発明における位置決め部として機能する。
 貯留トレイ93は、上方から見た外形形状が所定のトレイ外径寸法Rを半径とする円形をなす浅底のトレイであり、トレイ回転装置90のステージ91上に配置される。図5~図9に示すように、当該貯留トレイ93は、シリンジ88から供給されたフラックスを貯留し、フラックス膜Fが形成される貯留部94と、貯留トレイ93の下面に形成された位置決め凹部96とを有している。位置決め凹部96は、貯留トレイ93の下面において、円形を為す貯留トレイ93の中心部分を凹状に窪ませて形成されている。
 貯留トレイ93の位置決め凹部96に対して、位置決めピン92を嵌合させることによって、ステージ91の回転中心と、貯留トレイ93の中心とを一致させ、トレイ回転装置90における所定位置に位置決めすることができる。本実施形態においては、ステージ91の回転中心と、貯留トレイ93の中心が一致する為、この位置をトレイ回転中心Cという。
 そして、本実施形態においては、トレイ回転装置90は、第1貯留トレイ93A、第2貯留トレイ93B、第3貯留トレイ93Cを含む複数種類の貯留トレイ93を、ステージ91上に載置可能に構成されている。尚、貯留トレイ93は、第1貯留トレイ93A~第3貯留トレイ93Cを含む複数種類の貯留トレイの総称とし、複数種類の貯留トレイ93は、何れも、トレイ外径寸法Rを半径とした円形を為す浅底のトレイとして構成されている。そして、第1貯留トレイ93A~第3貯留トレイ93Cの具体的な構成については、後に図面を参照しつつ詳細に説明する。
 貯留トレイ93における貯留部94の上方には、吐出ノズル99が配設されており、液送管を介して、シリンジ88内部と接続されている。従って、貯留トレイ93の貯留部94には、シリンジ88内のフラックスが吐出ノズル99から供給され、貯留トレイ93の貯留部94内に、フラックス膜Fを形成することができる。
 又、貯留部94の上方であって、前記吐出ノズル99と異なる位置には、板状のスキージ97が、貯留トレイ93の径方向に沿って配設されている。当該スキージ97は、貯留トレイ93の底面から所定高さとなる位置に配設されている。従って、トレイ回転装置90により貯留トレイ93を回転させることによって、径方向に沿って伸びるスキージ97の端縁がフラックス膜Fを掻き取る。即ち、スキージ97は、トレイ回転装置90による貯留トレイ93の回転動作と連動させることで、フラックス膜Fの厚みを所望の厚みに調整し得る。
 装着機16は、更に、図5に示すように、制御装置100を備えている。制御装置100は、コントローラ102を有しており、コントローラ102は、CPU、ROM、RAM等を備え、コンピュータを主体とするものである。コントローラ102は、複数の駆動回路106に接続されており、それら複数の駆動回路106は、電磁モータ46、電磁モータ52、電磁モータ54、基板保持装置48、ノズル昇降装置65、正負圧供給装置66、送出装置82、トレイ回転装置90に接続されている。これにより、搬送装置22、移動装置24等の作動が、コントローラ102によって制御される。
 <装着機による装着作業>
 装着機16では、上述した構成によって、搬送装置22に保持された回路基板に対して、装着ヘッド26によって装着作業を行うことが可能とされている。具体的には、コントローラ102の指令により、回路基板が作業位置まで搬送され、その位置において、基板保持装置48によって固定的に保持される。又、テープフィーダ81は、コントローラ102の指令により、テープ化部品を送り出し、電子部品を供給位置において供給する。そして、装着ヘッド26が、コントローラ102の指令により、電子部品の供給位置の上方に移動し、吸着ノズル62によって電子部品を吸着保持する。
 続いて、装着ヘッド26は、コントローラ102の指令により、貯留トレイ93の上方における所定位置に移動し、ノズル昇降装置65によって、電子部品を下降させる。これにより、吸着ノズル62によって吸着保持された電子部品に対して、貯留トレイ93内に貯留されたフラックスを付着させることができる。この時の装着ヘッド26の座標位置を、ディップ座標位置Dという。貯留トレイ93内のフラックスを付着させた後、装着ヘッド26は、コントローラ102の指令により、ディップ座標位置Dから基板保持装置48で保持された回路基板の上方に移動し、保持している電子部品を回路基板上の所定の位置に装着する。
 <第1貯留トレイの構成>
 本実施形態における第1貯留トレイ93Aの構成について、図6、図7を参照しつつ詳細に説明する。第1貯留トレイ93Aは、フラックスユニット30に使用可能な貯留トレイ93の一種類である。当該第1貯留トレイ93Aは、上方から見た外形形状がトレイ外径寸法Rを半径とする円形をなす浅底のトレイであり、貯留部94と、突部95と、位置決め凹部96とを有している。
 第1貯留トレイ93Aにおける突部95は、貯留部94の内部において、トレイ回転中心Cとなる位置に、第1貯留トレイ93Aの底板から上方へ突出するように形成されている。図6、図7に示すように、当該突部95は、トレイ回転中心Cを中心とし、所定の第1寸法LAを半径とする円柱状を為している。従って、第1貯留トレイ93Aにおける貯留部94は、突部95の存在により円環状を為し、突部95の存在しない貯留トレイ93よりも小さな容量に形成される。これにより、第1貯留トレイ93Aによれば、突部95のない貯留トレイ93に比べて少ないフラックスの量で、所定の厚みのフラックス膜Fを貯留部94内に形成することができ、高価なフラックスの浪費を抑えることができる。
 又、図6に示すように、トレイ回転装置90のステージ91上に、位置決めピン92等を用いて、第1貯留トレイ93Aを位置決めした場合に、円環状の貯留部94は、装着機16に対して規定されているディップ座標位置Dを含むように形成されている。従って、当該電子部品装着装置10によれば、突部95のない貯留トレイ93を用いる場合と、第1貯留トレイ93A(図6、図7参照)を用いる場合の何れにおいても、同一のディップ座標位置Dを用いることができる。
 この結果、突部95のない貯留トレイ93と、第1貯留トレイ93Aを交換する場合であっても、貯留トレイ93の種類に応じて、ディップ座標位置Dの変更する作業を行う必要はない為、電子部品装着装置10における作業効率及び生産性を向上させることができる。又、突部95のない貯留トレイ93と、第1貯留トレイ93Aを交換する場合において、ディップ座標位置Dと、基板保持装置48に保持された回路基板上の所定位置との距離が大きくなることもない為、フラックスを塗布した一の電子部品を回路基板上の所定位置に装着する際の所要時間が増大することを抑制でき、もって、電子部品装着装置10における作業効率及び生産性の低下を抑制することができる。
 尚、フラックスユニット30におけるステージ91上に、第1貯留トレイ93Aを載置する場合には、スキージ97も、第1貯留トレイ93Aの貯留部94における径方向の長さに応じたものに交換される。これにより、トレイ回転装置90により第1貯留トレイ93Aを回転させれば、第1貯留トレイ93Aに対応するスキージ97で、貯留部94内のフラックスを掻き取ることができ、フラックス膜Fの厚みを所望の厚みに調整し得る。
 <第2貯留トレイの構成>
 次に、本実施形態における第2貯留トレイ93Bの構成について、図8を参照しつつ詳細に説明する。第2貯留トレイ93Bは、フラックスユニット30に使用可能な貯留トレイ93の一種類である。第2貯留トレイ93Bは、第1貯留トレイ93Aと同様に、上方から見た外形形状がトレイ外径寸法Rを半径とする円形をなす浅底のトレイであり、貯留部94と、突部95と、位置決め凹部96とを有している。
 第2貯留トレイ93Bにおける突部95は、第1貯留トレイ93Aと同様に、貯留部94の内部において、トレイ回転中心Cとなる位置に、第2貯留トレイ93Bの底板から上方へ突出するように形成されている。図8に示すように、当該突部95は、トレイ回転中心Cを中心とし、第1寸法LAよりも大きな第2寸法LBを半径とする円柱状を為している。従って、第2貯留トレイ93Bにおける貯留部94は、突部95の存在により円環状を為し、突部95の存在しない貯留トレイ93や、第1貯留トレイ93Aよりも小さな容量に形成される。
 これにより、第2貯留トレイ93Bによれば、突部95のない貯留トレイ93及び第1貯留トレイ93Aに比べて少ないフラックスの量で、所定の厚みのフラックス膜Fを貯留部94内に形成することができ、高価なフラックスの浪費を更に抑えることができる。第2貯留トレイ93Bは、特に、小型の電子部品に対してフラックスを塗布する際に有用である。
 又、図8に示すように、トレイ回転装置90のステージ91上に、位置決めピン92等を用いて、第2貯留トレイ93Bを位置決めした場合に、円環状の貯留部94は、装着機16に対して規定されているディップ座標位置Dを含むように形成されている。従って、当該電子部品装着装置10によれば、突部95のない貯留トレイ93や第1貯留トレイ93A(図6、図7参照)を用いる場合と、第2貯留トレイ93B(図8参照)を用いる場合の何れにおいても、同一のディップ座標位置Dを用いることができる。
 この結果、突部95のない貯留トレイ93や第1貯留トレイ93Aと、第2貯留トレイ93Bを交換する場合であっても、貯留トレイ93の種類に応じて、ディップ座標位置Dを変更する作業を行う必要はない為、電子部品装着装置10における作業効率及び生産性を向上させることができる。又、突部95のない貯留トレイ93や第1貯留トレイ93Aと、第2貯留トレイ93Bを交換する場合において、ディップ座標位置Dと、基板保持装置48に保持された回路基板上の所定位置との距離が大きくなることもない為、フラックスを塗布した一の電子部品を回路基板上の所定位置に装着する際の所要時間が増大することを抑制でき、もって、電子部品装着装置10における作業効率及び生産性の低下を抑制することができる。
 尚、フラックスユニット30におけるステージ91上に、第2貯留トレイ93Bを載置する場合には、スキージ97も、第2貯留トレイ93Bの貯留部94における径方向の長さに応じたものに交換される。これにより、トレイ回転装置90により第2貯留トレイ93Bを回転させれば、第2貯留トレイ93Bに対応するスキージ97で、貯留部94内のフラックスを掻き取ることができ、フラックス膜Fの厚みを所望の厚みに調整し得る。
 <第3貯留トレイの構成>
 続いて、本実施形態における第3貯留トレイ93Cの構成について、図9を参照しつつ詳細に説明する。第3貯留トレイ93Cは、フラックスユニット30に使用可能な貯留トレイ93の一種類である。第3貯留トレイ93Cは、第1貯留トレイ93A、第2貯留トレイ93Bと同様に、上方から見た外形形状がトレイ外径寸法Rを半径とする円形をなす浅底のトレイであり、貯留部94と、突部95と、位置決め凹部96とを有している。
 図9に示すように、第3貯留トレイ93Cにおける貯留部94は、第1貯留トレイ93A、第2貯留トレイ93Bのように円環状に形成された貯留部94(図6~図8参照)と異なり、トレイ回転中心Cを中心とした円環の一部に相当する略扇形状の凹部として形成されている。即ち、当該第3貯留トレイ93Cにおける大部分は、当該第3貯留トレイ93Cの底板から上方に突出するように形成された突部95によって占められている。従って、第3貯留トレイ93Cにおける貯留部94は、突部95の存在しない貯留トレイ93や、第1貯留トレイ93A及び第2貯留トレイ93Bよりも小さな容量に形成される。
 これにより、第3貯留トレイ93Cによれば、突部95のない貯留トレイ93、第1貯留トレイ93A及び第2貯留トレイ93Bに比べて少ないフラックスの量で、所定の厚みのフラックス膜Fを貯留部94内に形成することができ、高価なフラックスの浪費を更に抑えることができる。第3貯留トレイ93Cは、特に、更に小型の電子部品に対してフラックスを塗布する際に有用である。
 又、図9に示すように、トレイ回転装置90のステージ91上に、位置決めピン92等を用いて、第3貯留トレイ93Cを位置決めした場合に、第3貯留トレイ93Cの貯留部94は、装着機16に対して規定されているディップ座標位置Dを含むように、略扇形状の凹部として形成されている。従って、当該電子部品装着装置10によれば、突部95のない貯留トレイ93、第1貯留トレイ93A(図6、図7参照)、第2貯留トレイ93B(図8参照)を用いる場合と、第3貯留トレイ93C(図9参照)を用いる場合の何れにおいても、同一のディップ座標位置Dを用いることができる。
 この結果、突部95のない貯留トレイ93、第1貯留トレイ93Aや第2貯留トレイ93Bと、第3貯留トレイ93Cを交換する場合であっても、貯留トレイ93の種類に応じて、ディップ座標位置Dの変更する作業を行う必要はない為、電子部品装着装置10における作業効率及び生産性を向上させることができる。そして、突部95のない貯留トレイ93、第1貯留トレイ93Aや第2貯留トレイ93Bと、第3貯留トレイ93Cを交換する場合においても、ディップ座標位置Dと、基板保持装置48に保持された回路基板上の所定位置との距離が大きくなることもない為、フラックスを塗布した一の電子部品を回路基板上の所定位置に装着する際の所要時間が増大することを抑制でき、もって、電子部品装着装置10における作業効率及び生産性の低下を抑制することができる。
 以上説明したように、本実施形態に係る電子部品装着装置10において、各装着機16は、搬送装置22と、移動装置24と、装着ヘッド26と、供給装置28と、フラックスユニット30とを有している。当該装着機16は、供給装置28によって供給された電子部品を装着ヘッド26によって保持し、フラックスユニット30の貯留トレイ93内のフラックスに接触させる。そして、当該装着機16は、フラックスが塗布された電子部品を装着ヘッド26によって保持・移動させることで、搬送装置22によって所定位置に搬送された回路基板に対して、当該電子部品を装着させることができる。
 当該電子部品装着装置10の各装着機16において、フラックスユニット30は、突部95のない貯留トレイ93、第1貯留トレイ93A、第2貯留トレイ93B、第3貯留トレイ93Cを含む複数種類の貯留トレイを利用可能に構成されている。フラックスユニット30のトレイ回転装置90において、ステージ91の上面には、位置決めピン92が立設されており、当該位置決めピン92は、各貯留トレイ93の下面に形成された位置決め凹部96に嵌合することで、貯留トレイ93をトレイ回転装置90における所定位置に位置決めする(図6~図9参照)。
 当該電子部品装着装置10においては、複数種類の貯留トレイ93は、何れの貯留トレイ93を位置決めピン92によって位置決めした場合であっても、電子部品装着装置10に規定されたディップ座標位置D及びトレイ回転中心Cを含むように構成されている。即ち、当該電子部品装着装置10においては、複数種類の貯留トレイ93(例えば、第1貯留トレイ93A~第3貯留トレイ93C)の何れを、位置決めピン92を用いて位置決めした場合であっても、電子部品装着装置10に規定されたディップ座標位置Dを用いて、電子部品に対するフラックスの塗布を行うことができる。この結果、複数種類の貯留トレイ93の内で貯留トレイ93の種類を変更する場合に、貯留トレイ93の種類に応じて、ディップ座標位置Dの変更する作業を行う必要はない為、電子部品装着装置10における利便性を高めつつ、作業効率及び生産性を向上させることができる。
 又、複数種類の貯留トレイ93の内で貯留トレイ93の種類を変更する場合において、ディップ座標位置Dと、基板保持装置48に保持された回路基板上の所定位置との距離が大きくなることもない為、フラックスを塗布した一の電子部品を回路基板上の所定位置に装着する際の所要時間が増大することを抑制でき、もって、電子部品装着装置10における作業効率及び生産性の低下を抑制することができる。
 突部95のない貯留トレイ93(図4参照)、第1貯留トレイ93A~第3貯留トレイ93C(図6~図9参照)からわかるように、貯留トレイ93における貯留部94の大きさが夫々相違している。従って、フラックスを塗布する電子部品のサイズや、要求されるフラックス膜Fの厚み等に応じた種類の貯留トレイ93を用いることで、フラックスの塗布に用いるフラックスの量を適正な量にすることができ、もって、高価なフラックスの浪費を抑制することができる。
 又、本実施形態に係る複数種類の貯留トレイ93は、何れも、上方から見た外形形状がトレイ外径寸法Rを半径とする円形をなす浅底のトレイとして構成されている。第1貯留トレイ93A~第3貯留トレイ93Cは、貯留部94及び突部95を有しており、突部95は、夫々、フラックスの貯留量(即ち、貯留部94の容量)に応じた大きさをもって、貯留部94内に突出形成されている(図6~図9参照)。これにより、当該電子部品装着装置10によれば、貯留トレイ93の種類を変えることで、ディップ座標位置Dの位置を変えることなく、所望の厚みのフラックス膜Fを得る為に、貯留部94におけるフラックスの貯留量を調整することができる。
 そして、当該電子部品装着装置10の各装着機16において、フラックスユニット30は、トレイ回転装置90と、スキージ97とを有している。従って、当該電子部品装着装置10によって、貯留部94内のフラックスにスキージ97を接触させた状態で、トレイ回転装置90によって貯留トレイ93を回転させることで、フラックス膜Fの厚みを所望の厚みに調整することができる。
 尚、上述した実施形態において、電子部品装着装置10、装着機16は、本発明における対基板作業装置の一例であり、フラックスは、本発明における粘性流体の一例である。そして、貯留トレイ93、第1貯留トレイ93A、第2貯留トレイ93B、第3貯留トレイ93Cは、本発明における貯留トレイの一例であり、制御装置100、コントローラ102は、本発明における制御装置の一例である。又、位置決めピン92は、本発明における位置決め部の一例であり、貯留部94は、本発明における貯留部の一例である。そして、突部95は、本発明における突部の一例であり、トレイ回転装置90は、本発明における回転装置の一例である。そして、スキージ97は、本発明におけるスキージの一例であり、ディップ座標位置Dは、本発明におけるディップ位置の一例である。そして、トレイ回転中心Cは、本発明における位置決め部の位置の一例であり、トレイ外径寸法Rは、本発明における所定の外形寸法の一例である。
 以上、実施形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した実施形態においては、フラックスユニット30は、円形の貯留トレイ93を、トレイ回転装置90によって回転させるように構成していたが、この態様に限定されるものではなく、貯留トレイの形状は適宜変更することができる。
 例えば、上方から見た形状が角型を為す浅底のトレイを、貯留トレイとして用いることもできる。この場合、角型の貯留トレイにおける貯留部において、突部は、貯留部におけるディップ座標位置とは逆側の端部に形成される。そして、この場合における貯留部の容量は、当該逆側端部からディップ座標位置に向かって伸びる突部の寸法の相違によって調整されることが望ましい。このように構成すれば、貯留部の容量の変化によって、ディップ座標位置の変化が生じることがない為である。
 又、上述した実施形態においては、貯留部94内のフラックスに対してスキージを接触させた状態で、トレイ回転装置90によって貯留トレイ93を回転させることで、貯留部94内におけるフラックス膜Fの厚みを調整していたが、この態様に限定されるものではない。貯留部94内のフラックスにスキージを接触させた状態で、貯留トレイ93とスキージ97とを相対的に移動させることができれば、様々な方式を採用し得る。例えば、角型の貯留トレイの貯留部内において、スキージを所定方向に往復移動させる構成とすることも可能である。
 又、上述した実施形態においては、トレイ回転装置90のステージ91上に形成された位置決めピン92と、各貯留トレイ93の下面に形成された位置決め凹部96とを嵌合させることによって、トレイ回転装置90に対する貯留トレイ93の位置を、所定位置に位置決めしていたが、この態様に限定されるものではない。フラックスユニット30における貯留トレイ93の位置を所定位置に位置決めすることができれば、種々の態様を採用することができる。
 そして、第1貯留トレイ93A、第2貯留トレイ93Bに示すように、トレイ回転中心Cに円柱状の突部95を形成することで、貯留部94を円環状に形成していたが、この態様に限定されるものではない。例えば、突部95に相当する部分を円筒状に形成することで、貯留部94及び貯留トレイ93を円環状に形成してもよい。
 又、本実施形態においては、本発明に係る粘性流体としてフラックスを挙げていたが、この態様に限定されるものではない。本発明に係る粘性流体としては、例えば、銀ペースト、溶融はんだ等を用いることができる。
 そして、上述した実施形態においては、回路基板に対する作業として、粘性流体としてのフラックスが塗布された部品を、回路基板の所定位置に実装する作業を挙げていたが、粘性流体が塗布された部品を用いて、回路基板に対して行う作業であれば、種々の作業を採用し得る。例えば、粘性流体が塗布された部品を回路基板上の所定位置に接触させることによって、回路基板に粘性流体を転写する作業を、本発明に係る対基板作業としてもよい。又、上述した実施形態においては、電子部品を本発明に係る部品として用いた例を挙げて説明していたが、回路基板に対して行う作業に用いられる部品であれば、この態様に限定されるものではない。本発明に係る部品には、例えば、作業ヘッドに保持された転写ピンも含まれる。
    10  電子部品装着装置
    16  装着機
    22  搬送装置
    24  移動装置
    26  装着ヘッド
    28  供給装置
    30  フラックスユニット
    90  トレイ回転装置
    92  位置決めピン
    93  貯留トレイ
    93A 第1貯留トレイ
    93B 第2貯留トレイ
    93C 第3貯留トレイ
    94  貯留部
    95  突部
    96  位置決め凹部
    97  スキージ
    100 制御装置
    102 コントローラ
    C   トレイ回転中心
    D   ディップ座標位置
    R   トレイ外径寸法

Claims (4)

  1.  部品を保持する作業ヘッドと、
     前記作業ヘッドに保持された前記部品に対して付着される粘性流体を貯留する貯留トレイと、
     前記作業ヘッドに保持された前記部品を、前記貯留トレイ内の前記粘性流体に接触させた後、当該部品を用いた作業を基板に対して行う制御装置と、
    を有する対基板作業装置であって、
     前記対基板作業装置は、
      複数種類の貯留トレイを利用可能に構成されると共に、
      当該対基板作業装置における所定位置に対して前記貯留トレイを位置決めする位置決め部を有し、
     前記複数種類の貯留トレイは、
      前記作業ヘッドに保持された前記部品を前記貯留トレイ内の前記粘性流体に接触させるディップ位置と、前記位置決め部の位置とを含むように構成されている
    ことを特徴とする対基板作業装置。
  2.  前記複数種類の貯留トレイにおいては、前記粘性流体が貯留される貯留部の大きさが、それぞれ相違している
    ことを特徴とする請求項1に記載の対基板作業装置。
  3.  前記複数種類の貯留トレイは、
      共通する所定の外形寸法をもって形成されており、
      前記粘性流体の貯留量に応じた大きさをもって前記貯留部内に突出形成された突部を有している
    ことを特徴とする請求項2に記載の対基板作業装置。
  4.  前記位置決め部によって位置決めされた前記貯留トレイを回転駆動させる回転装置と、
     前記貯留部内に貯留された前記粘性流体に接触し、当該貯留部内における粘性流体の厚みを調整する為のスキージと、
    を有する
    ことを特徴とする請求項1乃至請求項3の何れかに記載の対基板作業装置。
PCT/JP2016/054263 2016-02-15 2016-02-15 対基板作業装置 WO2017141306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017567575A JP6691560B2 (ja) 2016-02-15 2016-02-15 対基板作業装置
PCT/JP2016/054263 WO2017141306A1 (ja) 2016-02-15 2016-02-15 対基板作業装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054263 WO2017141306A1 (ja) 2016-02-15 2016-02-15 対基板作業装置

Publications (1)

Publication Number Publication Date
WO2017141306A1 true WO2017141306A1 (ja) 2017-08-24

Family

ID=59625621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054263 WO2017141306A1 (ja) 2016-02-15 2016-02-15 対基板作業装置

Country Status (2)

Country Link
JP (1) JP6691560B2 (ja)
WO (1) WO2017141306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021130975A1 (ja) * 2019-12-26 2021-07-01

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347775A (ja) * 2005-08-23 2005-12-15 Juki Corp 電子部品搭載機及び搭載方法
JP2007216266A (ja) * 2006-02-17 2007-08-30 Juki Corp フラックス膜形成装置及びフラックス転写装置
JP2008010525A (ja) * 2006-06-28 2008-01-17 Fuji Mach Mfg Co Ltd フラックス転写装置
JP2012076128A (ja) * 2010-10-04 2012-04-19 Fuji Mach Mfg Co Ltd フラックス供給装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347775A (ja) * 2005-08-23 2005-12-15 Juki Corp 電子部品搭載機及び搭載方法
JP2007216266A (ja) * 2006-02-17 2007-08-30 Juki Corp フラックス膜形成装置及びフラックス転写装置
JP2008010525A (ja) * 2006-06-28 2008-01-17 Fuji Mach Mfg Co Ltd フラックス転写装置
JP2012076128A (ja) * 2010-10-04 2012-04-19 Fuji Mach Mfg Co Ltd フラックス供給装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021130975A1 (ja) * 2019-12-26 2021-07-01
WO2021130975A1 (ja) * 2019-12-26 2021-07-01 株式会社Fuji 部品実装機及び転写材転写方法
JP7332720B2 (ja) 2019-12-26 2023-08-23 株式会社Fuji 部品実装機及び転写材転写方法

Also Published As

Publication number Publication date
JP6691560B2 (ja) 2020-04-28
JPWO2017141306A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6022553B2 (ja) ボール搭載方法、および、対基板作業機
JP2013073997A (ja) 電子部品供給装置
JP2008060438A (ja) 電子部品実装装置および電子部品実装方法
JP6001494B2 (ja) バックアップピン、基板支持装置、基板処理装置
WO2018131143A1 (ja) 被実装物作業装置
US9643790B2 (en) Manufacturing work machine
WO2014128913A1 (ja) 部品実装システムおよびそれに用いるバルク部品決定方法
WO2017141306A1 (ja) 対基板作業装置
JP2008251771A (ja) 部品実装装置
CN114271043B (zh) 元件安装机
JP6840866B2 (ja) ワーク作業装置
JP6118813B2 (ja) 対基板作業システムおよび粘性流体供給方法
WO2017138077A1 (ja) 粘性流体供給装置
JP7167252B2 (ja) 作業システム、および情報処理装置
JP6691559B2 (ja) 対基板作業装置
JP2021009863A (ja) 作業機、および部品装着方法
JP2008091733A (ja) 部品実装装置
JP2001274597A (ja) 生産装置及び生産方法並びに部品実装装置及び方法
WO2022014038A1 (ja) 塗布装置および部品装着機
JP2007149825A (ja) フラックス転写装置
JP4985685B2 (ja) 電子部品実装装置
WO2018116397A1 (ja) 作業機、およびはんだ付け方法
JPWO2015059762A1 (ja) 基板作業機
JP4985684B2 (ja) 電子部品実装装置
CN114208406A (zh) 对基板作业机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890449

Country of ref document: EP

Kind code of ref document: A1