WO2017140186A1 - 一种波束追踪的方法、装置和计算机存储介质 - Google Patents

一种波束追踪的方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2017140186A1
WO2017140186A1 PCT/CN2017/000054 CN2017000054W WO2017140186A1 WO 2017140186 A1 WO2017140186 A1 WO 2017140186A1 CN 2017000054 W CN2017000054 W CN 2017000054W WO 2017140186 A1 WO2017140186 A1 WO 2017140186A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
awv
tracking
receiving
transmitting
Prior art date
Application number
PCT/CN2017/000054
Other languages
English (en)
French (fr)
Inventor
高波
刁心玺
刘文豪
刘星
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017140186A1 publication Critical patent/WO2017140186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a beam tracking method, apparatus, and computer storage medium.
  • the high frequency band brings more abundant spectrum resources, but the high frequency channel has the disadvantages of large loss of free space propagation path, greater air absorption (especially oxygen absorption) and heavier rain attenuation, which affects the high frequency band.
  • the high-band communication system uses a multi-antenna array and a beamforming scheme to obtain high antenna gain and combat signal transmission loss to ensure link margin by utilizing characteristics of short wavelength in a high frequency band and easy antenna integration.
  • Directional communications introduced by beamforming techniques result in high-band systems being very sensitive to device angular rotation and positional movement compared to existing non-directional communications.
  • the transceiver needs to perform the beam. Tracking ensures that the half-power attenuation lobe of the selected beam covers the optimal transmit and receive directions, ie, maintains beam alignment.
  • the high-band transceiver needs to scan and measure the channel quality (including channel response, received signal power, etc.) of the adjacent beam combination under the current transmission beam, and combine the channel information of all the scanning beams or the current most.
  • the sequence number information of the superior beam combination is fed back to the transmitting end to ensure that the beam combination subsequently used by the high-band transceiver for data transmission effectively covers the optimal physical propagation path and maintains the directional communication link.
  • the system needs to perform beam tracking frequently to ensure the robustness of the directional communication link.
  • the beam tracking algorithm scans adjacent transmit and receive beam combinations of the current transmission path.
  • AP access node
  • eNB base station
  • the adjacent beam combinations to be scanned and tracked by each end user are not the same. Therefore, the beam tracking process needs to be performed by the base station for each user one by one, and beam tracking is performed. Costs increase as the number of users increases, which in turn affects spectrum utilization and reduces system throughput.
  • embodiments of the present invention provide a method, an apparatus, and a computer storage medium for beam tracking.
  • the embodiment of the invention provides a beam tracking method, which is applied to a pilot receiving end, and the method includes:
  • the optimal beam combination tracking detection is performed to obtain an optimal beam combination, including: receiving the best critical path from the time domain according to the channel response matrix obtained by the n-channel estimation, according to the identified key The path detects an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set;
  • the candidate optimal transmit beam set is a set of adjacent beams formed by the current transmit beam corresponding to the pilot receiving end; the candidate optimal receive beam set is the pilot receive end pair. a set of adjacent beams of the current receive beam;
  • the information that the pilot transmitting end broadcasts and transmits an antenna weight vector (AWV, Antenna Weighting Vector) of each of the probe transmit beams used by the tracking pilot is known to the pilot receiving end.
  • the AWV of the probe transmit beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set
  • the AWV of the probe transmission beam is obtained, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • each time the AWV of the probe receiving beam used by the tracking pilot broadcasted by the pilot transmitting end is generated by any one of the following methods:
  • a receive beam AWV generation set the receive beam AWV generating an AWV of the adjacent beam including the current receive beam of the local pilot receiving end in the set; weighting and superimposing all AWVs in the receive beam AWV generation set to obtain The AWV of the received beam is detected, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • the channel response matrix obtained according to the n channel estimations receives the best critical path from the time domain, including:
  • Function representation with serial number Find the maximum value for the variable And output its corresponding serial number ;
  • Column vector 2 norm, representing Signal energy Indicates the relative delay is The column vector of the n-time channel response estimate, the column vector is the channel response matrix First Transposition of the line.
  • detecting an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set according to the identified critical path including:
  • the function representation finds the minimum value by using the sequence number l ⁇ l as a variable. Representing the square of the 2 norm, ⁇ ⁇ represents the ⁇ column vector of the detection matrix ;; ⁇ l is the candidate optimal transmit beam set;
  • the function representation finds the maximum value with the sequence number l ⁇ l as a variable.
  • indicates an absolute value;
  • the function representation finds the minimum with the sequence number k ⁇ k as the variable ⁇ k is an alternative optimal receive beam set;
  • the function representation finds the maximum with the sequence number k ⁇ k as the variable
  • the vec() function indicates the column direction quantization of the matrix
  • u r,i denotes the i-th probe receive beam AWV
  • u t,i denotes the i-th probe transmit beam AWV
  • the receive transmit beam codebook W r is a matrix of n r ⁇ K r , ie Where n r represents the number of antenna elements at the receiving end, K r represents the number of directional beams specified by the received codebook matrix
  • the transmitted transmission beam codebook W t is a matrix of n t ⁇ K t , ie Where n t represents the number of antenna elements at the transmitting end, and K t represents the number of directional beams specified by the transmission codebook matrix, which is known by the protocol or is notified in advance, and the data receiving end knows the W t ; each of the matrix W r and the matrix W t Both represent a preset AWV that produces a directional beam.
  • the method before continuously transmitting the transmitted tracking pilot and performing channel estimation for the n times of receiving the pilot transmitting end, the method further includes:
  • the request message of the request response beam tracking sent by the received pilot transmitting end may also carry the information of the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam.
  • the method before continuously transmitting the transmitted tracking pilot and performing channel estimation for the n times of receiving the pilot transmitting end, the method further includes:
  • the pilot frequency sender sends a request message requesting response beam tracking
  • the information of the current transmit beam corresponding to each pilot receiving end and the information of the adjacent transmit beam of the current transmit beam may also be carried in the acknowledgement response message fed back by the pilot transmitting end.
  • the AWV of the probe transmitting beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot receiving end learns, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information of an AWV of each probe transmitting beam used for tracking the pilot.
  • the embodiment of the invention further provides a beam tracking method, which is applied to a pilot transmitting end, and the method includes:
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used for each tracking pilot is known to the pilot receiving end.
  • the AWV of the probe transmit beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set
  • the AWV of the probe transmission beam is obtained, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • the method before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive broadcasts, the method further includes:
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the method before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive broadcasts, the method further includes:
  • the acknowledgment response is fed back to the pilot receiving end;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the pilot transmitting end broadcasts and transmits a probe transmission wave used by each tracking pilot.
  • the AWV of the bundle is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot receiving end learns, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information of an AWV of each probe transmitting beam used for tracking the pilot.
  • the embodiment of the invention further provides a device for beam tracking, which is applied to a pilot receiving end, and includes:
  • the pilot receiving and estimating module is configured to receive the tracking pilot broadcasted by the pilot transmitting end for n consecutive times and perform channel estimation;
  • the beam tracking detection module is configured to perform optimal beam combination tracking detection based on the result of n times channel estimation, to obtain an optimal beam combination, comprising: receiving a best key from time domain resolution according to a channel response matrix obtained by n channel estimations a path, detecting an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set according to the identified critical path;
  • a feedback module configured to: forward, by the pilot frequency transmitting end, the transmit beam information of the optimal beam combination
  • the candidate optimal transmit beam set is a set of adjacent beams of a current transmit beam corresponding to the pilot receiving end; the candidate optimal receive beam set is a current receive beam corresponding to the pilot receive end. a collection of adjacent beams;
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used for each tracking pilot is known to the pilot receiving end.
  • the AWV of the probe transmit beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set
  • the AWV of the probe transmission beam is obtained, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • each time receiving the probe of the tracking pilot used by the pilot transmitting end broadcast The antenna weight vector AWV of the receive beam is generated by any of the following methods:
  • a receive beam AWV generation set the receive beam AWV generating an AWV of the adjacent beam including the current receive beam of the local pilot receiving end in the set; weighting and superimposing all AWVs in the receive beam AWV generation set to obtain The AWV of the received beam is detected, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • the beam tracking detection module is configured to receive the best critical path from the time domain according to the channel response matrix obtained by the n channel estimation, including:
  • the beam tracking detection module is configured to detect an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set according to the resolved critical path, including:
  • the function representation finds the minimum value by using the sequence number l ⁇ l as a variable. Representing the square of the 2 norm, ⁇ ⁇ represents the ⁇ column vector of the detection matrix ;; ⁇ l is the candidate optimal transmit beam set;
  • the function representation finds the maximum value with the sequence number l ⁇ l as a variable.
  • indicates an absolute value;
  • the function representation finds the minimum with the sequence number k ⁇ k as the variable ⁇ k is an alternative optimal receive beam set;
  • the function representation finds the maximum with the sequence number k ⁇ k as the variable
  • the vec() function represents the column vectorization of the matrix
  • u r,i denotes the i-th probe receive beam AWV
  • u t,i denotes the i-th probe transmit beam AWV
  • the receive transmit beam codebook W r is a matrix of n r ⁇ K r , ie Where n r represents the number of antenna elements at the receiving end, K r represents the number of directional beams specified by the received codebook matrix
  • the transmitted transmission beam codebook W t is a matrix of n t ⁇ K t , ie Where n t represents the number of antenna elements at the transmitting end, and K t represents the number of directional beams specified by the transmission codebook matrix, which is known by the protocol or is notified in advance, and the data receiving end knows the W t ; each of the matrix W r and the matrix W t Both represent a preset AWV that produces a directional beam.
  • the pilot receiving and estimating module is further configured to: before receiving the tracking pilot broadcasted by the pilot transmitting end for n consecutive times and performing channel estimation, if receiving the request for the beam response request sent by the pilot transmitting end Sending a confirmation response to the pilot transmitting end by using a message;
  • the request message of the request response beam tracking sent by the received pilot transmitting end may also carry the information of the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam.
  • the pilot receiving and estimating module is further configured to: before the n-th receiving pilot transmitting end broadcasts the transmitted tracking pilot and performs channel estimation, the pilot frequency transmitting end sends a request message for requesting response beam tracking, and receives An acknowledgement response message fed back by the pilot transmitter;
  • the information of the current transmit beam corresponding to each pilot receiving end and the information of the adjacent transmit beam of the current transmit beam may also be carried in the acknowledgement response message fed back by the pilot transmitting end.
  • the AWV of the probe transmitting beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot receiving end learns, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information of an AWV of each probe transmitting beam used for tracking the pilot.
  • the embodiment of the invention further provides a device for beam tracking, which is applied to a pilot transmitting end, and includes:
  • a pilot transmitting module configured to broadcast a tracking pilot to the one or more pilot receiving ends for n consecutive broadcasts
  • a beam information receiving module configured to receive transmit beam information of an optimal beam combination fed back by the one or more pilot receiving ends;
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used for each tracking pilot is known to the pilot receiving end.
  • the AWV of the probe transmit beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam of the current transmit beam including each pilot receive end in the set;
  • the transmit beam All AWVs in the AWV generation set are weighted and superimposed to obtain an AWV of the probe transmission beam, and the weighting coefficients used by the weighted superposition are generated by a random function or a pseudo-random function.
  • the pilot sending module is further configured to send a request message for requesting response beam tracking to one or more pilot receiving ends before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive times;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the pilot sending module is further configured to: before receiving the tracking pilot for n consecutive broadcasts to the one or more pilot receiving ends, if receiving the request response beam tracking sent by the one or more pilot receiving ends After requesting the message, the acknowledgment response is fed back to the pilot receiving end;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the AWV of the probe transmitting beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot receiving end learns, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information of an AWV of each probe transmitting beam used for tracking the pilot.
  • An embodiment of the present invention further provides a computer storage medium, the computer storage medium comprising a set of instructions, when the instruction is executed, causing at least one processor to perform beam tracking of the pilot receiving end, or performing the foregoing A method of beam tracking at the frequency transmitting end.
  • the high-band base station and the terminal track and detect the expected beam combination from the channel response, and do not need two or two transceivers. Scanning adjacent beam combinations and without feedback of beam alignment information in the intermediate phase of tracking, thereby enabling simultaneous tracking of multi-user beam combinations, enabling The cost of training and the number of users are independent of each other, greatly reducing the cost of tracking.
  • FIG. 1 is a schematic structural diagram of a transceiver in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a multi-user beam tracking scenario
  • FIG. 3 is a flowchart of a method for beam tracking on a base station side according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for beam tracking on a user terminal side according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an apparatus for setting beam tracking on a base station side according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an apparatus for beam tracking set on a user terminal side according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of beam tracking pilot transmission and reception according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an estimated channel response matrix according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a beam combination tracking detection algorithm according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an example of a multi-user beam tracking scenario
  • FIG. 11 is a schematic diagram of an example 2 in a multi-user beam tracking scenario
  • FIG. 1 is a schematic structural diagram of a transceiver according to an embodiment of the present invention.
  • the transmitting end and the receiving end of the system are configured with multiple antenna units, and each antenna unit has a digital keyed phase shifter, and different phase shift amounts are loaded by signals on the respective antenna elements to implement beamforming of the analog end.
  • a single signal stream (such as a single 60 GHz RF signal stream) is loaded into the AWV through a digitally keyed phase shifter, and transmitted from the multi-antenna unit to the high-band physical propagation channel; at the receiving end, by the multi-antenna unit
  • the received RF signal streams are weighted and combined into a single signal stream. After receiving the RF demodulation at the receiving end, the receiver finally obtains a single received signal stream.
  • FIG. 2 is a schematic diagram of a multi-user beam tracking scenario. It is assumed that, at time 0, base station-a/UE-a initiates directional link transmission with UE-b and UE-c, respectively, f a,b (0) and f b,a (0), f a, c (0) and f c, a (0) represent the physical path direction of the minimum path loss between the base station -a / UE-a and UE-b, and between the base station - a / UE-a and UE - c, respectively.
  • beam training needs to be performed between the base station-a/UE-a and the UE-b, the base station-a/UE-a and the UE-c, and the beam is successfully trained from all controllable data transmission beam combinations.
  • a beam c8 of UE-c is used to form a directional link between a base station-a/UE-a and UE-c.
  • the optimal transmission and reception direction between the base station-a/UE-a and UE-b is rotated to f a,b (n) and f b,a at time n ( n), and beyond the effective coverage of beams a2, b2, the optimal transmission and reception direction between base station-a/UE-a and UE-c is rotated to f a,c (n) and f c,a (n) And beyond the effective coverage of beams a11 and c8, and the received signal attenuation exceeds the preset threshold, the system will initiate beam tracking.
  • the data transmission beams a2 and b2 at the previous moment and their adjacent beams constitute a new candidate beam set;
  • the data transmission beams a11 and c8 at the last moment And their adjacent beams (i.e., beams a10, a12, c7, and c9) form a new set of candidate beams.
  • the system selects the new optimal beam combination (a3, b3) between the base station-a/UE-a and the UE-b through the beam tracking algorithm, and the new between the base station-a/UE-a and the UE-c.
  • the optimal beam combination (a12, c7) is used to perform subsequent data transmission.
  • an embodiment of the present invention provides a method for beam tracking, which is applied to a pilot transmitting end, and the method includes:
  • S302. Receive transmit beam information of an optimal beam combination fed back by the one or more pilot receiving ends.
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used by each tracking pilot is known to the pilot receiving end;
  • the pilot receiving end may learn, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information about an AWV of each probe transmitting beam used by the tracking pilot.
  • the AWV of the probe transmission beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set Obtaining an AWV of the probe transmission beam, the weighting coefficient used by the weighted superposition being generated by a random function or a pseudo-random function;
  • the weight element sequence of the AWV generated by the random function or the pseudo-random function includes: a random complex Gaussian sequence, a random complex Bernoulli sequence, a pseudo-random m sequence or a Golay sequence;
  • the optimal beam combination refers to a transceiver beam that can obtain the maximum receiving end SNR in all preset data transmission transceiver beam combinations under the SNR (Signal to Noise Ratio) criterion. Combining; or referring to the maximum receiving end channel capacity criterion, all preset data transmission transceiver beam combinations can obtain the maximum receiving end channel capacity transceiver beam combination;
  • the method before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive broadcasts, the method further includes:
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried;
  • the method before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive broadcasts, the method further includes:
  • the acknowledgment response is fed back to the pilot receiving end;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may be carried.
  • the pilot transmitting end includes: a base station, a user terminal, an access node, or a personal basic Service set center control node;
  • the pilot receiving end includes: a base station, a user terminal, an access node, or a personal basic service set center control node;
  • the antenna weight vector AWV of the probe transmitting beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the antenna weight vector AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • an embodiment of the present invention provides a method for beam tracking, which is applied to a pilot receiving end, and the method includes:
  • S402. Perform optimal beam combination tracking detection based on the result of n times channel estimation, and obtain an optimal beam combination, including: receiving, according to the channel response matrix obtained by n channel estimation, the best critical path from the time domain, according to distinguishing The critical path detects an optimal beam combination from the candidate optimal transmit beam set and the alternate optimal receive beam set;
  • the pilot frequency transmitting end feeds back the transmit beam information of the optimal beam combination.
  • the candidate optimal transmit beam set is a set of adjacent beams of a current transmit beam corresponding to the pilot receiving end; the candidate optimal receive beam set is a current receive beam corresponding to the pilot receive end. a collection of adjacent beams;
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used by each tracking pilot is known to the pilot receiving end;
  • the pilot receiving end may learn, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts information about an AWV of each probe transmitting beam used by the tracking pilot.
  • the AWV of the probe transmission beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating a set in the set AWV of the adjacent beam of the current transmit beam of each pilot receiving end; weighting and superimposing all AWVs in the transmit beam AWV generation set to obtain an AWV of the probe transmit beam, and the weighting coefficients used by the weighted superposition are randomly Function or pseudo-random function generation;
  • the antenna weight vector AWV of the probe receiving beam used by the tracking pilot broadcasted by the pilot transmitting end is generated by any one of the following methods:
  • a receive beam AWV generation set the receive beam AWV generating an AWV of the adjacent beam including the current receive beam of the local pilot receiving end in the set; weighting and superimposing all AWVs in the receive beam AWV generation set to obtain Detecting AWV of the received beam, the weighting coefficient used by the weighted superposition is generated by a random function or a pseudo-random function;
  • the weight element sequence of the AWV generated by the random function or the pseudo-random function includes: a random complex Gaussian sequence, a random complex Bernoulli sequence, a pseudo-random m sequence or a Golay sequence;
  • the optimal beam combination refers to a transceiver beam that can obtain the maximum receiving end SNR in all preset data transmission transceiver beam combinations under the SNR (Signal to Noise Ratio) criterion. Combining; or referring to the maximum receiving end channel capacity criterion, all preset data transmission transceiver beam combinations can obtain the maximum receiving end channel capacity transceiver beam combination;
  • the channel response matrix obtained according to the n channel estimations receives the best critical path from the time domain, including:
  • the function representation finds the minimum value by using the sequence number l ⁇ l as a variable. Representing the square of the 2 norm, ⁇ ⁇ represents the ⁇ column vector of the detection matrix ;; ⁇ l is the candidate optimal transmit beam set;
  • the function representation finds the maximum value with the sequence number l ⁇ l as a variable.
  • indicates an absolute value;
  • the vec() function represents the column vectorization of the matrix
  • the receive transmit beam codebook W r is a matrix of n r ⁇ K r , ie Where n r represents the number of antenna elements at the receiving end, K r represents the number of directional beams specified by the received codebook matrix;
  • the transmitted transmission beam codebook W t is a matrix of n t ⁇ K t , ie Where n t represents the number of antenna elements at the transmitting end, and K t represents the number of directional beams specified by the transmission codebook matrix, which is known by the protocol or is notified in advance, and the data receiving end knows the W t ; each of the matrix W r and the matrix W t Both represent a preset AWV that produces a directional beam;
  • the function means to find the minimum value with the sequence number k ⁇ k as the variable.
  • ⁇ k is an alternative optimal receive beam set;
  • the function representation finds the maximum with the sequence number k ⁇ k as the variable
  • the method further includes: before continuously receiving the tracking pilot broadcasted by the pilot transmitting end and performing channel estimation for n consecutive times, the method further includes:
  • the request message of the request response beam tracking sent by the received pilot transmitting end may further carry the information of the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam;
  • the method further includes: before continuously receiving the tracking pilot broadcasted by the pilot transmitting end and performing channel estimation for n consecutive times, the method further includes:
  • the pilot frequency sender sends a request message requesting response beam tracking
  • the information about the current transmit beam corresponding to each pilot receiving end and the information of the adjacent transmit beam of the current transmit beam may be carried in the received acknowledgment response message fed back by the pilot.
  • the antenna weight vector AWV of the probe transmitting beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the antenna weight vector AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different;
  • the pilot transmitting end includes: a base station, a user terminal, an access node, or a personal basic service set center control node;
  • the pilot receiving end includes: a base station, a user terminal, an access node, or a personal basic service set center control node;
  • a beam tracking device is applied to a pilot receiving end, including:
  • the pilot receiving and estimating module 501 is configured to receive the tracking pilot broadcasted by the pilot transmitting end and perform channel estimation for n consecutive times;
  • the beam tracking detection module 502 is configured to perform optimal beam combination tracking detection based on the result of the n-th channel estimation to obtain an optimal beam combination, including: receiving the best channel from the time domain according to the channel response matrix obtained by the n-channel estimation a critical path, detecting an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set according to the identified critical path;
  • the feedback module 503 is configured to: the pilot frequency transmitting end feeds back the transmit beam information of the optimal beam combination;
  • the candidate optimal transmit beam set is a set of adjacent beams of a current transmit beam corresponding to the pilot receiving end; the candidate optimal receive beam set is a current receive beam corresponding to the pilot receive end. a collection of adjacent beams;
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used by each tracking pilot is known to the pilot receiving end;
  • the pilot receiving end may learn, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts the information of the AWV of the probe transmitting beam used by each tracking pilot.
  • the AWV of the probe transmission beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set
  • the AWV of the probe transmission beam is obtained, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • the antenna weight vector AWV of the probe receiving beam used by the tracking pilot broadcasted by the pilot transmitting end is generated by any one of the following methods:
  • a receive beam AWV generation set the receive beam AWV generating a set of packets Include the AWV of the adjacent beam of the current receiving beam at the receiving end of the pilot; weighting and superimposing all the AWVs in the set of the received beam AWV to obtain the AWV of the detected receiving beam, and the weighting coefficient used by the weighted superposition is determined by a random function Or pseudo-random function generation.
  • the beam tracking detection module 502 is configured to receive the best critical path from the time domain according to the channel response matrix obtained by n channel estimation, including:
  • Function representation with serial number Find the maximum value for the variable And output its corresponding serial number ;
  • Column vector 2 norm, representing Signal energy Indicates the relative delay is The column vector of the n-time channel response estimate, the column vector is the channel response matrix First Transposition of the line.
  • the beam tracking detection module 502 is configured to detect an optimal beam combination from the candidate optimal transmit beam set and the candidate optimal receive beam set according to the identified critical path, including:
  • the function representation finds the minimum value by using the sequence number l ⁇ l as a variable. Representing the square of the 2 norm, ⁇ ⁇ represents the ⁇ column vector of the detection matrix ;; ⁇ l is the candidate optimal transmit beam set;
  • the function representation finds the maximum value with the sequence number l ⁇ l as a variable.
  • indicates an absolute value;
  • the function representation finds the minimum with the sequence number k ⁇ k as the variable ⁇ k is an alternative optimal receive beam set;
  • the function representation finds the maximum with the sequence number k ⁇ k as the variable
  • the vec() function represents the column vectorization of the matrix
  • u r,i denotes the i-th probe receive beam AWV
  • u t,i denotes the i-th probe transmit beam AWV
  • the receive transmit beam codebook W r is a matrix of n r ⁇ K r , ie Where n r represents the number of antenna elements at the receiving end, K r represents the number of directional beams specified by the received codebook matrix
  • the transmitted transmission beam codebook W t is a matrix of n t ⁇ K t , ie Where n t represents the number of antenna elements at the transmitting end, and K t represents the number of directional beams specified by the transmission codebook matrix, which is known by the protocol or is notified in advance, and the data receiving end knows the W t ; each of the matrix W r and the matrix W t Both represent a preset AWV that produces a directional beam.
  • the pilot receiving and estimating module 501 is further configured to: before receiving the tracking pilot broadcasted by the pilot transmitting end for n consecutive times and performing channel estimation, if receiving the request message of the request response beam tracking sent by the pilot transmitting end Transmitting a confirmation response to the pilot transmitting end;
  • the request message of the request response beam tracking sent by the received pilot transmitting end may also carry the information of the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam.
  • the pilot receiving and estimating module 501 is further configured to send the request response beam to the pilot frequency transmitting end before the downlink transmitting pilot broadcasts the transmitted tracking pilot and performs channel estimation for n consecutive times. Tracking the request message, and receiving an acknowledgement response message fed back by the pilot sender;
  • the information of the current transmit beam corresponding to each pilot receiving end and the information of the adjacent transmit beam of the current transmit beam may also be carried in the acknowledgement response message fed back by the pilot transmitting end.
  • the AWV of the probe transmit beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot receiving and estimating module 501, the beam tracking detecting module 502, and the feedback module 503 can be implemented by a processor in a device for beam tracking.
  • the embodiment of the present invention provides a device for beam tracking, which is applied to a pilot transmitting end, and includes:
  • the pilot sending module 601 is configured to broadcast the tracking pilot to the one or more pilot receiving ends for n consecutive times;
  • the beam information receiving module 602 is configured to receive the transmit beam information of the optimal beam combination fed back by the one or more pilot receiving ends;
  • the information that the pilot transmitting end broadcasts the AWV of the probe transmit beam used by each tracking pilot is known to the pilot receiving end;
  • the pilot receiving end may learn, by using a protocol specification or a receiving message, that the pilot transmitting end broadcasts the information of the AWV of the probe transmitting beam used by each tracking pilot.
  • the AWV of the probe transmission beam is generated by any one of the following methods:
  • a transmit beam AWV generation set the transmit beam AWV generating an AWV of the adjacent beam including the current transmit beam of each pilot receiving end in the set; weighting and superimposing all AWVs in the transmit beam AWV generation set
  • the AWV of the probe transmission beam is obtained, and the weighting coefficients used for the weighted superposition are generated by a random function or a pseudo-random function.
  • the pilot sending module 601 is further configured to send a request message for requesting response beam tracking to one or more pilot receiving ends before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive times;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the pilot sending module 601 is further configured to receive a request response beam tracking request sent by one or more pilot receiving ends before transmitting the tracking pilot to the one or more pilot receiving ends for n consecutive times. After the message, the acknowledgment response is fed back to the pilot receiving end;
  • the information about the current transmitting beam corresponding to each pilot receiving end and the information of the adjacent transmitting beam of the current transmitting beam may also be carried.
  • the AWV of the probe transmit beam used by the pilot transmitting end to broadcast and transmit each tracking pilot is different;
  • the AWV of the probe receiving beam used by the pilot receiving end to receive the tracking pilot broadcasted by the pilot transmitting end is different.
  • the pilot sending module 601 and the beam information receiving module 602 can be implemented by a processor in a device for beam tracking.
  • the embodiment of the invention provides a method for beam tracking, which specifically includes the following steps:
  • Step 1 Beam tracking is started, and the number of tracking times i is initialized to 0;
  • Step 2 The transmitting end adjusts the transmit beam to the ith probe transmit beam, and the multiple receive ends adjust the receive beam to the respective ith probe receive beam.
  • Step 3 The transmitting end transmits the beam tracking pilot by using the ith probe transmit beam broadcast, and the multiple receivers receive the beam tracking pilot by using the respective ith probe receive beams, and perform channel estimation.
  • Step 5 If the cumulative tracking number i is less than the threshold ⁇ , return to step 2; if the accumulated tracking number i is equal to the threshold ⁇ , then the process ends.
  • the beam tracking refers to beam training to achieve transmission beam alignment.
  • the transceiver end determines that the current beam combination may no longer be the optimal combination based on the energy attenuation criterion, and the current optimal beam.
  • the probe transmission beam refers to a beam tracking phase, and a probe beam for realizing beam alignment is generated by configuring a specific probe transmission AWV (not required to have directivity); further, in the beam tracking phase, each specific probe transmission beam is Not the same;
  • the probe transmit beam is different from the data transmit beam used in the data transmission phase.
  • the data transmission beam refers to a directional beam that can be used by the transceiver end to obtain a significant antenna gain during the data transmission phase, and is used for data or command transmission;
  • the system can be set according to actual needs.
  • the transmission beam AWV codebook specified by the IEEE 802.15.3c standard.
  • the codebook only requires that the analog phase shifter provide four controllable phases of 0°, 90°, 180°, and 270°.
  • the numerical value of the (i, m) element of the codebook matrix W is expressed as:
  • n-1 0, ...
  • K-1 the codebook number
  • K the number of directional codebooks (the number of controllable beams).
  • the AWV of the detected transmit beam can be generated either by a random or pseudo-random function (such as a random Bernoulli sequence) or by: generating a potential optimal transmit beam between the sender and all receivers. AWV is multiplied by a random weight coefficient and superimposed;
  • the AWV generation method of the specific probe transmission beam can be numerically mapped to ensure that the element value is In the range of valid ranges;
  • the AWV of the specific probe transmit beam i is defined as u t,i ;
  • the detecting the receiving beam refers to a beam tracking phase, and the probe beam for realizing beam alignment is generated by configuring the specific probe receiving AWV (not required to have directivity); In the beam tracking phase, each specific probe receiving beam is different;
  • the AWV of the detected receive beam may be generated by a random or pseudo-random function (for example, a random Bernoulli sequence), or may be generated by constructing a receive beam AWV generation set, and the receive beam AWV generation set includes the present AWV of the adjacent beam of the current receiving beam at the pilot receiving end; weighting and superimposing all AWVs in the set of receiving beam AWV to obtain an AWV of the detecting receiving beam, and the weighting coefficient used by the weighted superposition is determined by a random function or pseudo Random function generation;
  • the AWV generation method of the specific probe receiving beam can be numerically mapped to ensure that the element value is In the range of valid ranges;
  • the AWV of the specific probe receiving beam i is defined as u r,i ; for the jth receiving end, the corresponding AWV is expressed as
  • the AWV of the specific probed receive beam i is defaulted to u r,i when the receiver is not required to be specified.
  • the AWV of the specific probe transmit beam or the specific probe receive beam in the beam tracking phase may be generated by the following generation method:
  • each weight element of the AWV vector under each pilot is generated by a random or pseudo-random function, such as a random complex Gaussian sequence, a random complex Bernoulli sequence, a pseudo-random m sequence, a Golay sequence, etc.;
  • Beam tracking occurs during the data transmission phase (ie, after beam training has been completed), and the system generates a set of AWV vectors under the potentially optimal transmission beam adjacent to the current transmit/receive beam according to the transmit/receive beams currently used in the data transmission phase. ;
  • the set of AWV vectors under the potentially optimal transmission beam adjacent to the current transmit/receive beam is assumed to be
  • R represents the number of potential optimal transmission beams AWV
  • ⁇ m represents the column number of the codebook matrix W in which the AWV is located; then, the ith probe beam AWV u i is:
  • a i,m denotes a random sequence and are independent of each other, such as ⁇ 1 Bernoulli random number or (0,1) normal distribution random number.
  • the elements on u i can be mapped to corresponding values with minimum quantization error criteria.
  • the beam tracking pilot refers to a known auxiliary sequence used by the receiving end for receiving energy measurement and channel estimation under the probe beam combination during beam tracking, for example, m sequence, Golay sequence or long term evolution (LTE, Long Term Evolution) ) The Primary Synchronization Signal (PSS) signal used, etc.
  • m sequence m sequence
  • Golay sequence long term evolution
  • LTE Long Term Evolution
  • PSS Primary Synchronization Signal
  • FIG. 7 is a schematic diagram showing the transmission and reception of beam tracking pilots according to an embodiment of the present invention when a transmitting end device and two receiving end devices are used.
  • the pilots are continuously transmitted, and the training sequence (such as the PN sequence or the Golay sequence) for transmitting the pilots is exactly the same every time, but the AWVs used by the transmitting end are different each time, and the receiving end uses each time.
  • the detection receiving AWV is different.
  • the transmitting end and each receiving end use a specific sounding AWV, or a sounding beam.
  • R r and R t respectively represent the number of potentially optimal transmission beams that are selectable at the receiving end and the transmitting end;
  • the empirical parameter ⁇ is called an NPP coefficient, which determines the effect of beam combining detection. Specifically, as the NPP coefficient ⁇ increases, we can achieve better detection performance, but it will also generate more tracking costs.
  • the channel estimation refers to the estimation of the channel response under the combined action of the physical channel and the array antenna characteristics in the known transmission sequence.
  • the classical algorithms that can be used include least squares (LS), least-squares estimation, and minimum mean square. Error estimate, etc.
  • Figure 8 illustrates the response matrix obtained by tracking the channel estimation after the pilot transmission is completed. Characteristics.
  • the row coordinates of the matrix represent the relative delay, and the column coordinates represent the sequence number of the probe beam combination. For example, the element Expressed in relative delay Channel response when combined with the ith probe beam. It is worth noting that The column vector can represent the time domain channel response under a particular beam combination, but the row vector does not represent the channel spatial response at a particular relative delay. This is because the probe beam may be a non-directional beam.
  • the transmission beam produced by the transmission beam AWV codebooks W r and W t must have a strong directivity.
  • the embodiment of the present invention adopts a beam combination tracking detection algorithm, which is a novel receiver beam tracking method, which includes three parts: critical path selection, transmitter beam tracking and receiver beam tracking; specifically, In a receiving end, the receiving end first discriminates the critical path from the time domain, and then, based on the data transmission beam sequence number of the pre-tracking transceiver, sequentially detects and tracks the optimal transmitting and receiving beam combination from the preset transmission beam AWV codebook;
  • Figure 9 illustrates the implementation flow of the beam combination tracking detection algorithm. Input estimated channel response matrix After that, the relative delay ⁇ of the path with the largest energy is selected from the time domain, and then the transmit beam sequence number is output to the optimal beam tracking of the transmitting end. Finally, the receiving beam beam number is outputted to the receiver for optimal beam tracking.
  • the optimal beam combination refers to a transceiver beam combination that can obtain the maximum receiving end SNR in all preset data transmission transceiver beam combinations under the maximum receiving signal to noise ratio (SNR) criterion; Or, in the maximum receiving end channel capacity criterion, all preset data transmission transceiver beam combinations can obtain the transceiver beam combination of the maximum receiving end channel capacity; wherein, before tracking, the data transmission beam serial number of the transmitting end is l -1
  • Each receiving end independently estimates the channel response under different probe beams AWV to obtain a channel response matrix.
  • L is the maximum extended delay of the channel
  • indicates the number of repeated transmission pilot sequences, which is also the number of probe beam combinations.
  • the receiver obtains the optimal beam combination through the optimal beam combination tracking detection algorithm. with among them, Indicates the transmit beam number, Can be provided to a beam tracking pilot transmitter (eg, a base station), Indicates the receiving beam number, It can be provided to a beam tracking pilot receiver (such as a UE). For any receiver, the beam combination tracking detection is handled in the same way.
  • the row vector with the largest energy is selected, that is, the critical path with the largest energy is selected, wherein the relative delay is used as the indication of the critical path. If ⁇ is used to represent the relative delay corresponding to the critical path, then
  • the function representation finds the smallest value by using the sequence number l ⁇ l as the variable detection matrix. Represents the square of the 2 norm, ⁇ ⁇ represents the ⁇ column vector of the detection matrix ;; The function representation finds the maximum value with the sequence number l ⁇ l as the variable detection matrix.
  • indicates absolute value, detection matrix Is known, the ith i-behavior column vector Vector Vector
  • the vec() function represents the column vectorization of the matrix;
  • the symbol “w” is used to indicate the data transmission beam AWV in the data transmission phase
  • the symbol “u” is used to indicate the probe beam AWV in the beam tracking phase.
  • u r,i represents the ith probe receive beam AWV
  • u t,i represents the ith probe transmit beam AWV
  • the transmit beam AWV is specified by the preset directional beam codebook.
  • the transmission beam codebook is an n ⁇ K matrix, ie W ⁇ n ⁇ K .
  • n represents the number of antenna units
  • K represents the number of directional beams specified by the transmission beam codebook
  • the received transmission beam codebook is a matrix of n r ⁇ K r , ie Where n r represents the number of antenna elements at the receiving end, and K r represents the number of directional beams specified by the received codebook matrix.
  • the transmit transmission beam codebook is a matrix of n t ⁇ K t , ie Where n t represents the number of antenna elements at the transmitting end, and K t represents the number of directional beams specified by the transmitted codebook matrix.
  • Each column of matrix W r and matrix W t represents a preset AWV that produces a directional beam.
  • w r,k denotes the kth column of the received codebook matrix W r
  • w t,l denotes the first column of the transmitted codebook matrix W t .
  • the receiving end knows the AWV of all transmitting data transmission beams and the AWV of all transmitting end detection beams;
  • the optimal beam number of the transmitter is obtained. Search for the optimal beam number at the receiving end. According to the maximum likelihood criterion, the optimal beam number of the receiving end Expressed as follows:
  • the data transmission beam antenna weight vector (AWV) set of the data transmission phase may be different from the probe beam AWV set of the beam tracking phase. If the transmission beam AWV in the data transmission phase is the same as the detection beam AWV in the beam tracking phase, the proposed scheme in this text can still be supported.
  • the low-band system provides the initial transmit/receive beam direction or the potential optimal transmit/receive beam possible set for the high-band system.
  • the high-band system uses this as the initial value, and the beam training scenario can be regarded as A special beam tracking scenario.
  • the embodiment of the invention further provides a beam tracking method, the initiator initiates beam tracking, and the responder responds to beam tracking; the initiator acts as a transmitting end of the beam tracking pilot, and the responder acts as a receiving end of the beam tracking pilot, as shown in FIG. 10 As shown, it specifically includes the following stages:
  • Phase 1 Tracking the start-up phase (corresponding to step 1 below);
  • Phase 2 Synchronization tracking phase (corresponding to step 2, step 3, step 4 and step 5 below);
  • the initiator sends a tracking pilot using a specific probe transmit beam broadcast, and the responder receives the tracking pilot using a specific probe receive beam, respectively;
  • Phase 3 Beam detection phase (corresponding to step 6 below);
  • Each responder utilizes pilots under all probe beam combinations for channel estimation, and then performs optimal beam combination tracking detection to output the received and transmitted sequence numbers of the optimal beam combination;
  • Phase 4 Results feedback phase (corresponding to step 7 below);
  • Each responder sequentially feeds back the transmit beam sequence number of the optimal beam combination to the initiator.
  • the method of beam tracking specifically includes the following steps:
  • Step 1 The initiator periodically initiates beam tracking, and requests each responder to perform beam tracking response, and the tracking number i is initialized to 0;
  • Step 2 In the beam tracking phase, the initiator adjusts the transmit beam to the ith specific probe transmit beam, and each responder adjusts the receive beam to the corresponding ith specific probe receive beam;
  • Step 3 The initiator transmits the beam tracking pilot using the ith specific probe transmit beam broadcast, and the plurality of responders respectively receive the beam tracking pilot using respective ith specific probe receive beams, and perform channel estimation;
  • Step 5 If the cumulative tracking number i is less than the threshold ⁇ , then return to step 2; if the cumulative tracking number i is equal to the threshold ⁇ , then step 6;
  • Step 6 Each responder performs an optimal beam combination tracking detection algorithm based on the results of the respective channel estimations, and outputs the receiving and transmitting sequence numbers of the optimal beam combination;
  • Step 7 Each responder sequentially feeds back the transmit beam sequence number of the optimal beam combination to the initiator;
  • the initiator refers to an initiator device that integrates the antenna array to generate beam tracking of a specific beam by configuring an antenna weight vector AWV; in addition, in cellular communication, the initiator may be a base station or a user equipment (UE). If in a wireless LAN, the initiator can connect
  • the access point (AP) may also be a PBSS (Personnel Basic Service Set) central control node (PBSS Central Point), or an access device;
  • the responder refers to a response device that integrates beam tracking of the antenna array to generate a specific beam by configuring the AWV; in addition, in the cellular communication, the responder may be a base station or a user equipment (UE); In the WLAN, the responding party may be an access point (AP) or a PBSS (Personnel Basic Service Set) central control node (PBSS Central Point), or an access device;
  • AP access point
  • PBSS Central Point Personnel Basic Service Set
  • PBSS Central Point Personnel Basic Service Set
  • the initiator may also carry the current data transmission transmit beam sequence number and the adjacent (potentially optimal) transmit beam sequence number corresponding to each responder;
  • the responder can indicate that the device is participating in beam tracking by feeding back an acknowledgement response signal to the initiator.
  • the embodiment of the invention further provides a beam tracking method, the initiator initiates beam tracking, and the responder responds to beam tracking; the initiator acts as the receiving end of the beam tracking pilot, and the responder acts as the transmitting end of the beam tracking pilot, as shown in FIG. 11 As shown, it specifically includes the following stages:
  • Phase 1 Tracking the start-up phase (corresponding to steps 1 and 2 below);
  • the T initiators sequentially request the same responder to initiate beam tracking
  • the responder broadcasts a confirmation response after receiving a beam tracking request from the T initiators;
  • Phase 2 Synchronization tracking phase (corresponding to step 3, step 4, step 5, step 6 and step 7 below);
  • the responder transmits the tracking pilot using a specific probe transmit beam broadcast, and the initiator separately receives the tracking pilot using the specific probe receive beam;
  • Phase 3 Beam detection phase (corresponding to step 8 below);
  • Each initiator uses the pilots of all probe beam combinations for channel estimation, and then performs optimal beam combination tracking detection, and outputs the received and transmitted sequence numbers of the optimal beam combination;
  • Phase 4 Results feedback phase (corresponding to step 9 below);
  • Each initiator sequentially feeds back the transmit beam sequence number of the optimal beam combination to the responder.
  • the method of beam tracking specifically includes the following steps:
  • Step 1 The T initiators sequentially request the same responder to initiate beam tracking
  • Step 2 The responder broadcasts a confirmation response after receiving the beam tracking request from the T initiators;
  • the broadcast acknowledgement response may carry a current data transmission transmit beam sequence number and an adjacent (potentially optimal) transmit beam sequence number corresponding to each initiator;
  • Step 3 Beam tracking is started, and the number of tracking times i is initialized to 0;
  • Step 4 The responder adjusts the transmit beam to the ith specific probe transmit beam, and each initiator adjusts the receive beam to the corresponding ith specific probe receive beam;
  • Step 5 The responder transmits the beam tracking pilot using the ith specific probe transmit beam broadcast, and the initiator respectively receives the beam tracking pilot using the respective ith specific probe receive beam, and performs channel estimation;
  • Step 7 If the cumulative tracking number i is less than the threshold ⁇ , then return to step 4; if the accumulated tracking number i is equal to the threshold ⁇ , then step 8;
  • Step 8 Each initiator performs an optimal beam combination tracking detection algorithm based on the results of the respective channel estimations, and outputs the receiving and transmitting sequence numbers of the optimal beam combination;
  • Step 9 Each initiator sequentially feeds back the transmit beam sequence number of the optimal beam combination to the common responder.
  • the foregoing embodiment provides a beam tracking method and apparatus.
  • the high-band base station and the terminal track and detect the expected beam combination from the channel response, and do not need the two-two transceiver to scan the adjacent beam combination, and are tracking.
  • the intermediate stage does not require feedback of the beam alignment information, thereby achieving synchronous tracking of the multi-user beam combination, which makes the training cost and the number of users independent, and greatly reduces the tracking cost.
  • an embodiment of the present invention further provides a computer storage medium, the computer storage medium comprising a set of instructions, when executed, causing at least one processor to perform the beam tracking method described above.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented by using a software function module. Formal realization. The invention is not limited to any specific form of combination of hardware and software.
  • a method, a device and a computer storage medium for beam tracking provided by embodiments of the present invention, a high-band base station and a terminal track and detect a desired beam combination from a channel response, and do not require a pair of transceivers to perform adjacent beam combination thereof. Scanning, and feedback of beam alignment information is not needed in the middle stage of tracking, thereby achieving synchronous tracking of multi-user beam combination, which makes the training cost and the number of users independent, and greatly reduces the tracking cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种波束追踪的方法、装置和计算机存储介质,该方法包括:连续n次接收导频发送端广播发送的追踪导频并进行信道估计;基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;向导频发送端反馈所述最优波束组合的发送波束信息。

Description

一种波束追踪的方法、装置和计算机存储介质 技术领域
本发明涉及通信技术领域,尤其涉及的是一种波束追踪的方法、装置和计算机存储介质。
背景技术
随着移动通信技术的急速发展,当今人们信息交流的便捷程度较过去有了翻天覆地的变化,尤其是最近几年智能终端的普及,消费者被带入了一个无线移动互联的时代,对于移动通信容量的需求也正呈现指数倍飞速增长。但是,目前移动通信(2G、3G以及4G)都使用的是小于6GHz的低频段的频谱资源。日益拥塞的频谱资源已经制约了移动通信的发展,无法满足未来移动通信的需求。
为了解决人们通信需求和频谱资源受限的矛盾,工业界和学术界在未来5G移动通讯使用大于6GHz高频段通信达成广泛共识。其中潜在的载波频谱,比如23GHz、28GHz、45GHz和60GHz等。更高的通信频点带来了非常丰富的频谱资源,部分频段甚至可以提供超过500MHz的连续频谱,可以极大扩充无线网络容量。
高频段带来了更为丰富的频谱资源,但是高频段信道具有自由空间传播路径损失较大、空气吸收(特别是氧气吸收)更大、雨衰影响较重等缺点,这都影响了高频段通信系统的覆盖范围、通信鲁棒性以及部署场景。为了解决上述问题,高频段通信系统通过利用高频段波长较短和易于天线集成等特点,使用多天线阵列和波束赋形方案来获取高天线增益和对抗信号传输损耗以确保链路余量。
与现有非定向通信相比,由波束赋形技术引入的定向通信导致了高频段系统对于设备角度旋转和位置移动非常敏感。在大数据量持续传输的过程中,若接收信号能量的累积衰减超过预设门限时,收发机需要执行波束 追踪,确保所选波束的半功率衰减波瓣覆盖最优发送和接收方向,即维护波束对准。
具体而言,在波束追踪过程中,高频段收发机需要扫描测量当前传输波束下所临近波束组合的信道质量(包括信道响应、接收信号功率等),将所有扫描波束组合的信道信息或者当下最优波束组合的序号信息反馈给发送端,以确保高频段收发机随后用于数据传输的波束组合有效覆盖最优物理传播路径,维护定向通信链路。
当终端用户快速移动(特别是手持终端旋转)时,系统需要频繁执行波束追踪,确保定向通信链路的鲁棒性。在当前高频段无线通信系统中,波束追踪算法要在当前传输路径的相邻收发波束组合进行扫描。当接入节点(AP)或者基站(eNB)服务多个终端用户时,各终端用户待扫描追踪的相邻波束组合并不相同,因此,波束追踪过程需要基站面向各个用户逐一进行,波束追踪的花销会随着用户数的增加而增大,进而影响了频谱利用率,降低了系统吞吐率。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种波束追踪的方法、装置和计算机存储介质。
本发明实施例提供了一种波束追踪的方法,应用于导频接收端,该方法包括:
连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
向导频发送端反馈所述最优波束组合的发送波束信息;
其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对 应的当前接收波束的相邻波束构成的集合;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量(AWV,Antenna Weighting Vector)的信息是所述导频接收端已知的。
可选地,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
从n次信道估计获得的信道响应矩阵
Figure PCTCN2017000054-appb-000001
的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所述关键路径的标识;
Figure PCTCN2017000054-appb-000002
其中,
Figure PCTCN2017000054-appb-000003
函数表示以序号
Figure PCTCN2017000054-appb-000004
为变量来寻找具有最大值的
Figure PCTCN2017000054-appb-000005
并输出其对应的序号
Figure PCTCN2017000054-appb-000006
Figure PCTCN2017000054-appb-000007
是列向量
Figure PCTCN2017000054-appb-000008
的2范数,代表
Figure PCTCN2017000054-appb-000009
的信号能量;
Figure PCTCN2017000054-appb-000010
表示相对时延为
Figure PCTCN2017000054-appb-000011
时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
Figure PCTCN2017000054-appb-000012
的第
Figure PCTCN2017000054-appb-000013
行的转置。
可选地,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
根据最大似然准则,获取最优波束组合的发送波束
Figure PCTCN2017000054-appb-000014
所述
Figure PCTCN2017000054-appb-000015
表示如下:
Figure PCTCN2017000054-appb-000016
在获得最优波束组合的发送波束
Figure PCTCN2017000054-appb-000017
后,根据最大似然准则,获取最优波束组合的接收波束
Figure PCTCN2017000054-appb-000018
所述
Figure PCTCN2017000054-appb-000019
表示如下:
Figure PCTCN2017000054-appb-000020
其中,
Figure PCTCN2017000054-appb-000021
函数表示以序号l∈Δl为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000022
Figure PCTCN2017000054-appb-000023
表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
Figure PCTCN2017000054-appb-000024
函数表示以序号l∈Δl为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000025
|·|表示绝对值;
Figure PCTCN2017000054-appb-000026
函数表示以序号k∈Δk为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000027
Δk是备选最优接收波束集合;
Figure PCTCN2017000054-appb-000028
函数表示以序号k∈Δk为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000029
探测矩阵
Figure PCTCN2017000054-appb-000030
是已知的,Θ的第i行为列向量
Figure PCTCN2017000054-appb-000031
矢量
Figure PCTCN2017000054-appb-000032
矢量
Figure PCTCN2017000054-appb-000033
vec()函数表示矩阵的列向 量化;
ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
Figure PCTCN2017000054-appb-000034
其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
Figure PCTCN2017000054-appb-000035
其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。
可选地,在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
接收到导频发送端发送的请求响应波束追踪的请求消息,向所述导频发送端反馈确认响应;
其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
向导频发送端发送请求响应波束追踪的请求消息;
接收所述导频发送端反馈的确认响应消息;
其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
可选地,所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
本发明实施例还提供了一种波束追踪的方法,应用于导频发送端,该方法包括:
向一个或多个导频接收端连续n次广播发送追踪导频;
接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的。
可选地,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
向一个或多个导频接收端发送请求响应波束追踪的请求消息;
其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,向所述导频接收端反馈确认响应;
其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,所述导频发送端广播发送每一个追踪导频使用的探测发送波 束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
可选地,所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
本发明实施例还提供了一种波束追踪的装置,应用于导频接收端,包括:
导频接收及估计模块,配置为连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
波束追踪检测模块,配置为基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
反馈模块,配置为向导频发送端反馈所述最优波束组合的发送波束信息;
其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对应的当前接收波束的相邻波束构成的集合;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的。
可选地,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,每一次接收所述导频发送端广播发送的追踪导频使用的探测 接收波束的天线权重矢量AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,波束追踪检测模块,配置为根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
从n次信道估计获得的信道响应矩阵
Figure PCTCN2017000054-appb-000036
的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所述关键路径的标识;
Figure PCTCN2017000054-appb-000037
Figure PCTCN2017000054-appb-000038
Figure PCTCN2017000054-appb-000039
表示相对时延为
Figure PCTCN2017000054-appb-000040
时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
Figure PCTCN2017000054-appb-000041
的第
Figure PCTCN2017000054-appb-000042
行的转置。
可选地,波束追踪检测模块,配置为根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
根据最大似然准则,获取最优波束组合的发送波束
Figure PCTCN2017000054-appb-000043
所述
Figure PCTCN2017000054-appb-000044
表示如下:
Figure PCTCN2017000054-appb-000045
在获得最优波束组合的发送波束
Figure PCTCN2017000054-appb-000046
后,根据最大似然准则,获取最优波束组合的接收波束
Figure PCTCN2017000054-appb-000047
所述
Figure PCTCN2017000054-appb-000048
表示如下:
Figure PCTCN2017000054-appb-000049
其中,
Figure PCTCN2017000054-appb-000050
函数表示以序号l∈Δl为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000051
Figure PCTCN2017000054-appb-000052
表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
Figure PCTCN2017000054-appb-000053
函数表示以序号l∈Δl为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000054
|·|表示绝对值;
Figure PCTCN2017000054-appb-000055
函数表示以序号k∈Δk为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000056
Δk是备选最优接收波束集合;
Figure PCTCN2017000054-appb-000057
函数表示以序号k∈Δk为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000058
探测矩阵
Figure PCTCN2017000054-appb-000059
是已知的,Θ的第i行为列向量
Figure PCTCN2017000054-appb-000060
矢量
Figure PCTCN2017000054-appb-000061
矢量
Figure PCTCN2017000054-appb-000062
vec()函数表示矩阵的列向量化;
ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
Figure PCTCN2017000054-appb-000063
其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
Figure PCTCN2017000054-appb-000064
其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。
可选地,导频接收及估计模块,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,如果接收到导频发送端发送的请求响应波束追踪的请求消息,则向所述导频发送端反馈确认响应;
其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,导频接收及估计模块,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,向导频发送端发送请求响应波束追踪的请求消息,并接收所述导频发送端反馈的确认响应消息;
其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
可选地,所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
本发明实施例还提供了一种波束追踪的装置,应用于导频发送端,包括:
导频发送模块,配置为向一个或多个导频接收端连续n次广播发送追踪导频;
波束信息接收模块,配置为接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的。
可选地,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束 AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
可选地,导频发送模块,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,向一个或多个导频接收端发送请求响应波束追踪的请求消息;
其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,导频发送模块,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,如果接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,则向所述导频接收端反馈确认响应;
其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
可选地,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
可选地,所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述导频接收端的波束追踪的方法,或者执行上述导频发送端的波束追踪的方法。
与现有技术相比,本发明实施例提供的一种波束追踪的方法、装置和计算机存储介质,高频段基站和终端从信道响应中追踪和检测所期待的波束组合,不需要两两收发机对其相邻波束组合进行扫描,并且在追踪中间阶段无需波束对准信息的反馈,从而实现多用户波束组合的同步追踪,使 得训练花销与用户数相互独立,大幅度降低追踪花销。
附图说明
图1为本发明实施例中收发机结构示意图;
图2为多用户波束追踪场景示意图;
图3为本发明实施例基站侧的波束追踪的方法流程图;
图4为本发明实施例用户终端侧的波束追踪的方法流程图;
图5为本发明实施例设置在基站侧的波束追踪的装置示意图;
图6为本发明实施例设置在用户终端侧的波束追踪的装置示意图;
图7为本发明实施例的波束追踪导频收发示意图;
图8为本发明实施例的估计所得的信道响应矩阵示意图;
图9为本发明实施例的波束组合追踪检测算法示意图;
图10为多用户波束追踪场景下的示例一示意图;
图11为多用户波束追踪场景下的示例二示意图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例的收发机结构示意图。系统发送端和接收端配置多天线单元,每个天线单元拥有一个数字键控移相器,通过各个天线单元上的信号加载不同相移量,实现模拟端的波束赋形(Beamforming)。具体而言,在发送端,单条信号流(比如单条60GHz射频信号流)通过数字键控移相器加载AWV,从多天线单元发送到高频段物理传播信道;在接收端,由多天线单元所接收到的射频信号流被加权合并成单一信号流,经过接收端射频解调,接收机最终获得单条接收信号流。
图2为多用户波束追踪场景示意图。假定,在0时刻下,基站-a/UE-a 分别与UE-b和UE-c之间发起定向链路传输,fa,b(0)与fb,a(0)、fa,c(0)与fc,a(0)分别表示基站-a/UE-a与UE-b之间、基站-a/UE-a与UE-c之间最小路径损耗的物理路径方向。此时,基站-a/UE-a与UE-b、基站-a/UE-a与UE-c之间需要进行波束训练,通过波束训练,系统成功地从所有可控的数据传输波束组合中选择基站-a/UE-a的波束a2和UE-b的波束b2来形成一条基站-a/UE-a与UE-b之间的定向链路,选择基站-a/UE-a的波束a11和UE-c的波束c8来形成一条基站-a/UE-a与UE-c之间的定向链路。
但是,由于基站/UE不可预期的旋转或者位移,在n时刻如果基站-a/UE-a与UE-b之间的最优收发方向旋转到了fa,b(n)与fb,a(n),并且超出了波束a2、b2的有效覆盖范围,基站-a/UE-a与UE-c之间的最优收发方向旋转到了fa,c(n)与fc,a(n),并且超出了波束a11和c8的有效覆盖范围,并且接收信号衰减超过预设门限,则系统将启动波束追踪。
根据先验信息,上一时刻的数据传输波束a2与b2以及他们的相邻波束(即波束a1、a3、b1和b3)构成新的备选波束集合;上一时刻的数据传输波束a11与c8以及他们的相邻波束(即波束a10、a12、c7和c9)构成新的备选波束集合。系统通过波束追踪算法,分别选择出基站-a/UE-a与UE-b之间的新的最优波束组合(a3,b3),基站-a/UE-a与UE-c之间的新的最优波束组合(a12,c7),用于执行后续的数据传输。
如图3所示,本发明实施例提供了一种波束追踪的方法,应用于导频发送端,该方法包括:
S301,向一个或多个导频接收端连续n次广播发送追踪导频;
S302,接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的;
所述导频接收端可以通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息;
其中,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成;
其中,所述由随机函数或者伪随机函数生成的AWV的权重元素序列包括:随机复高斯序列、随机复伯努利序列、伪随机m序列或Golay序列;
其中,所述最优波束组合,是指在最大接收端SNR(Signal to Noise Ratio,信噪比)准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端SNR的收发端波束组合;或者是指,最大接收端信道容量准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端信道容量收发端波束组合;
其中,在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
向一个或多个导频接收端发送请求响应波束追踪的请求消息;
其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息;
其中,在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,向所述导频接收端反馈确认响应;
其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息;
其中,所述导频发送端包括:基站、用户终端、接入节点或个人基本 服务集中心控制节点;
其中,所述导频接收端包括:基站、用户终端、接入节点或个人基本服务集中心控制节点;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV均不同。
如图4所示,本发明实施例提供了一种波束追踪的方法,应用于导频接收端,该方法包括:
S401,连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
S402,基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
S403,向导频发送端反馈所述最优波束组合的发送波束信息;
其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对应的当前接收波束的相邻波束构成的集合;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的;
所述导频接收端可以通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息;
其中,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包 括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成;
其中,每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成;
其中,所述由随机函数或者伪随机函数生成的AWV的权重元素序列包括:随机复高斯序列、随机复伯努利序列、伪随机m序列或Golay序列;
其中,所述最优波束组合,是指在最大接收端SNR(Signal to Noise Ratio,信噪比)准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端SNR的收发端波束组合;或者是指,最大接收端信道容量准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端信道容量收发端波束组合;
其中,根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
从n次信道估计获得的信道响应矩阵
Figure PCTCN2017000054-appb-000065
的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所述关键路径的标识;
Figure PCTCN2017000054-appb-000066
Figure PCTCN2017000054-appb-000067
Figure PCTCN2017000054-appb-000068
表示相对时延为
Figure PCTCN2017000054-appb-000069
时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
Figure PCTCN2017000054-appb-000070
的第
Figure PCTCN2017000054-appb-000071
行的转置。
其中,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
根据最大似然准则,获取最优波束组合的发送波束
Figure PCTCN2017000054-appb-000072
所述
Figure PCTCN2017000054-appb-000073
表示如下:
Figure PCTCN2017000054-appb-000074
其中,
Figure PCTCN2017000054-appb-000075
函数表示以序号l∈Δl为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000076
Figure PCTCN2017000054-appb-000077
表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
Figure PCTCN2017000054-appb-000078
函数表示以序号l∈Δl为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000079
|·|表示绝对值;
探测矩阵
Figure PCTCN2017000054-appb-000080
是已知的,Θ的第i行为列向量
Figure PCTCN2017000054-appb-000081
矢量
Figure PCTCN2017000054-appb-000082
矢量
Figure PCTCN2017000054-appb-000083
vec()函数表示矩阵的列向量化;
其中,ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
Figure PCTCN2017000054-appb-000084
其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
Figure PCTCN2017000054-appb-000085
其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV;
在获得最优波束组合的发送波束
Figure PCTCN2017000054-appb-000086
后,根据最大似然准则,获取最优波束组合的发送波束
Figure PCTCN2017000054-appb-000087
所述
Figure PCTCN2017000054-appb-000088
表示如下:
Figure PCTCN2017000054-appb-000089
其中,
Figure PCTCN2017000054-appb-000090
函数分别表示以序号k∈Δk为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000091
Δk是备选最优接收波束集合;
Figure PCTCN2017000054-appb-000092
函数表示以序号k∈Δk为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000093
其中,在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
接收到导频发送端发送的请求响应波束追踪的请求消息,向所述导频发送端反馈确认响应;
其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息;
其中,在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
向导频发送端发送请求响应波束追踪的请求消息;
接收所述导频发送端反馈的确认响应消息;
其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息;
所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV均不同;
其中,所述导频发送端包括:基站、用户终端、接入节点或个人基本服务集中心控制节点;
其中,所述导频接收端包括:基站、用户终端、接入节点或个人基本服务集中心控制节点;
如图5所示,一种波束追踪的装置,应用于导频接收端,包括:
导频接收及估计模块501,配置为连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
波束追踪检测模块502,配置为基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
反馈模块503,配置为向导频发送端反馈所述最优波束组合的发送波束信息;
其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对应的当前接收波束的相邻波束构成的集合;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的;
所述导频接收端可以通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
其中,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
其中,每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包 括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
其中,波束追踪检测模块502,配置为根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
从n次信道估计获得的信道响应矩阵
Figure PCTCN2017000054-appb-000094
的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所述关键路径的标识;
Figure PCTCN2017000054-appb-000095
其中,
Figure PCTCN2017000054-appb-000096
函数表示以序号
Figure PCTCN2017000054-appb-000097
为变量来寻找具有最大值的
Figure PCTCN2017000054-appb-000098
并输出其对应的序号
Figure PCTCN2017000054-appb-000099
Figure PCTCN2017000054-appb-000100
是列向量
Figure PCTCN2017000054-appb-000101
的2范数,代表
Figure PCTCN2017000054-appb-000102
的信号能量;
Figure PCTCN2017000054-appb-000103
表示相对时延为
Figure PCTCN2017000054-appb-000104
时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
Figure PCTCN2017000054-appb-000105
的第
Figure PCTCN2017000054-appb-000106
行的转置。
其中,波束追踪检测模块502,配置为根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
根据最大似然准则,获取最优波束组合的发送波束
Figure PCTCN2017000054-appb-000107
所述
Figure PCTCN2017000054-appb-000108
表示如下:
Figure PCTCN2017000054-appb-000109
在获得最优波束组合的发送波束
Figure PCTCN2017000054-appb-000110
后,根据最大似然准则,获取最优波束组合的接收波束
Figure PCTCN2017000054-appb-000111
所述
Figure PCTCN2017000054-appb-000112
表示如下:
Figure PCTCN2017000054-appb-000113
其中,
Figure PCTCN2017000054-appb-000114
函数表示以序号l∈Δl为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000115
Figure PCTCN2017000054-appb-000116
表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
Figure PCTCN2017000054-appb-000117
函数表示以序号l∈Δl为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000118
|·|表示绝对值;
Figure PCTCN2017000054-appb-000119
函数表示以序号k∈Δk为变量寻找具有最小值的
Figure PCTCN2017000054-appb-000120
Δk是备选最优接收波束集合;
Figure PCTCN2017000054-appb-000121
函数表示以序号k∈Δk为变量寻找具有最大值的
Figure PCTCN2017000054-appb-000122
探测矩阵
Figure PCTCN2017000054-appb-000123
是已知的,Θ的第i行为列向量
Figure PCTCN2017000054-appb-000124
矢量
Figure PCTCN2017000054-appb-000125
矢量
Figure PCTCN2017000054-appb-000126
vec()函数表示矩阵的列向量化;
ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
Figure PCTCN2017000054-appb-000127
其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
Figure PCTCN2017000054-appb-000128
其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。
其中,导频接收及估计模块501,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,如果接收到导频发送端发送的请求响应波束追踪的请求消息,则向所述导频发送端反馈确认响应;
其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
其中,导频接收及估计模块501,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,向导频发送端发送请求响应波束 追踪的请求消息,并接收所述导频发送端反馈的确认响应消息;
其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
实际应用时,所述导频接收及估计模块501、波束追踪检测模块502、反馈模块503可由波束追踪的装置中的处理器实现。
如图6所示,本发明实施例提供了一种波束追踪的装置,应用于导频发送端,包括:
导频发送模块601,配置为向一个或多个导频接收端连续n次广播发送追踪导频;
波束信息接收模块602,配置为接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息是所述导频接收端已知的;
所述导频接收端可以通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
其中,所述探测发送波束的AWV通过以下方式中的任意一种生成:
a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
其中,导频发送模块601,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,向一个或多个导频接收端发送请求响应波束追踪的请求消息;
其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
其中,导频发送模块601,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,如果接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,则向所述导频接收端反馈确认响应;
其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
实际应用时,所述导频发送模块601、波束信息接收模块602可由波束追踪的装置中的处理器实现。
本发明实施例提供一种波束追踪的方法,具体包括下述步骤:
步骤1:波束追踪启动,追踪次数i初始化为0;
步骤2:发送端将发送波束调整为第i个探测发送波束,多个接收端将接收波束调整为各自的第i个探测接收波束;
步骤3:发送端使用第i个探测发送波束广播发送波束追踪导频,多个接收端使用各自的第i个探测接收波束接收所述波束追踪导频,并执行信道估计;
步骤4:累加追踪次数i=i+1;
步骤5:如果累加追踪次数i小于阈值ξ,则返回步骤2;如果累加追踪次数i等于阈值ξ,则结束。
其中,所述的波束追踪,是指波束训练实现传输波束对准之后,在数据传输阶段,收发端基于能量衰减等准则判定当前波束组合可能已不再是最优组合,而对当前最优波束组合追踪的操作行为;
其中,探测发送波束,是指波束追踪阶段,通过配置特定探测发送AWV生成用于实现波束对准的探测波束(不要求具有定向性);此外,在波束追踪阶段,每个特定探测发送波束均不相同;
所述探测发送波束与数据传输阶段使用的数据传输波束有所区别。数据传输波束,是指在数据传输阶段,收发端已经预设的可以获得显著天线增益的定向波束,用于数据或者指令的传输;
对于数据传输波束,系统可以根据实际的需要进行设定。例如,IEEE802.15.3c标准规定的传输波束AWV码本。该码本只要求模拟移相器可提供0°、90°、180°和270°四种可控相位。具体来讲,码本矩阵W的第(i,m)元素的数值表示为:
Figure PCTCN2017000054-appb-000129
其中,i=0,...,n-1表示天线序号,m=0,...,K-1表示码本序号,K表示定向码本数(即可控波束数)。
探测发送波束的AWV,既可以是由随机或者伪随机函数(例如随机伯努利序列)生成,也可以通过下述方式生成:将发送端与所有接收端之间各个潜在的最优发送波束的AWV乘以随机权重系数后叠加而成;
若系统要求AWV的各个权重元素的取值范围有限制(例如,仅可以取值±1和±j)时,特定探测发送波束的AWV的生成方法可以进行数值映射,以保证所取元素值在有效范围集合中;
其中,特定探测发送波束i的AWV定义为ut,i
其中,探测接收波束,是指波束追踪阶段,通过配置特定探测接收AWV生成用于实现波束对准的探测波束(不要求具有定向性);此外,在 波束追踪阶段,每个特定探测接收波束均不相同;
探测接收波束的AWV,既可以是由随机或者伪随机函数(例如随机伯努利序列)生成,也可以通过下述方式生成:构造接收波束AWV生成集合,所述接收波束AWV生成集合中包括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成;
若系统要求AWV的各个权重元素的取值范围有限制(例如,仅可以取值±1和±j)时,特定探测接收波束的AWV的生成方法可以进行数值映射,以保证所取元素值在有效范围集合中;
其中,特定探测接收波束i的AWV定义为ur,i;对于第j个接收端,相应的AWV表示为
Figure PCTCN2017000054-appb-000130
为了便于讨论,在不需要特别指明接收端时,默认特定探测接收波束i的AWV为ur,i
其中,波束追踪阶段特定探测发送波束或特定探测接收波束的AWV可以采用以下生成方法进行生成:
生成方法1:每个导频下的AWV矢量的各个权重元素是由随机或者伪随机函数生成,例如随机复高斯序列,随机复伯努利序列,伪随机m序列,Golay序列等;
生成方法2:
波束追踪发生在数据传输阶段(即波束训练已经完成之后),系统根据数据传输阶段当前使用的发送/接收波束,生成与当前发送/接收波束相邻的潜在最优的传输波束下的AWV矢量集合;
将所述AWV矢量集合中的各个AWV矢量乘以随机权重系数后叠加生成新的AWV;
其中,与当前发送/接收波束相邻的潜在最优的传输波束下的AWV矢量集合,假设为
Figure PCTCN2017000054-appb-000131
其中R表示潜在最优传输波束AWV的数目,τm表示该AWV所在码本矩阵W的列序号;然后,第i个探测波束AWV ui为:
Figure PCTCN2017000054-appb-000132
其中,ai,m表示随机序列并且两两之间互相独立,例如±1伯努利随机数或者(0,1)正态分布随机数。对于AWV可设定的元素受限的情况下(例如,仅可设定为±1和±1j时),可以对ui上的元素以最小量化误差准则映射成相应的数值。
其中,波束追踪导频,是指用于波束追踪期间探测波束组合下的接收能量测量和信道估计的接收端已知的辅助序列,例如,m序列,Golay序列或者长期演进(LTE,Long Term Evolution)使用的Primary Synchronization Signal(PSS)信号等。
图7说明了在一个发送端设备和两个接收端设备时本发明实施例的波束追踪导频的收发示意。ξ个导频被连续发送,其中每次发送导频的训练序列(例如PN序列或Golay序列等)完全相同,但发送端每次所使用的探测发送AWV均不相同,以及接收端每次使用的探测接收AWV均不相同。换言之,在发送每个特定的追踪导频时,发送端和各个接收端使用特定的探测AWV,或称为探测波束。
根据压缩感知理论,探测波束组合数ξ,即追踪导频数目ξ满足ξ=αlog(RrRt)。其中,Rr和Rt分别表示接收端和发送端可选的潜在最优传输波束的数目;经验参数α称为NPP系数,决定着波束组合检测的效果。具体而言,随着NPP系数α的增加,我们可以获得更好的检测性能,但也会产生更大的追踪花销。
其中,信道估计,是指基于已知发送序列下对于物理信道和阵列天线特征共同作用下的信道响应的估计,可使用的经典算法包括最小二乘(LS,Least-Squared)估计,最小均方误差估计等;
图8说明了追踪导频发送完成后的信道估计所得的响应矩阵
Figure PCTCN2017000054-appb-000133
的特征。矩阵的行坐标表示相对延时,列坐标表示探测波束组合的序号。例如,元 素
Figure PCTCN2017000054-appb-000134
表示在相对延迟
Figure PCTCN2017000054-appb-000135
和第i个探测波束组合时的信道响应。值得注意,
Figure PCTCN2017000054-appb-000136
的列矢量可以表示在特定波束组合下的时域信道响应,但是行矢量却不能表示在特定相对延时下的信道空域响应。这是因为探测波束可能为非定向波束。相反的,为了获得足够高的天线增益和取得数吉比特吞吐率,由传输波束AWV码本Wr和Wt产生的传输波束一定会具有很强的方向性。
其中,本发明实施例采用波束组合追踪检测算法,该算法是一种新型接收端波束追踪方法,包括关键路径选择,发送端波束追踪和接收端波束追踪三个部分组成;具体而言,对任一接收端而言,接收端首先从时域分辨关键路径,然后,基于追踪前收发端数据传输波束序号,依次从预设的传输波束AWV码本中检测追踪最优发送和接收波束组合;
图9说明了波束组合追踪检测算法的实现流程。在输入估计所得的信道响应矩阵
Figure PCTCN2017000054-appb-000137
后,从时域选择出具有最大能量的径的相对时延ω,然后对发送端最优波束追踪输出了发送传输波束序号
Figure PCTCN2017000054-appb-000138
最后对接收端最优波束追踪输出了接收发送波束序号
Figure PCTCN2017000054-appb-000139
所述最优波束组合,是指在最大接收端信噪比(SNR,Signal to Noise Ratio)准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端SNR的收发端波束组合;或者是指,最大接收端信道容量准则下,所有预设的数据传输收发端波束组合中可以获取最大接收端信道容量的收发端波束组合;其中,追踪前发送端数据传输波束序号为l-1;发送端备选最优数据传输波束集合Δl;追踪前接收端数据传输波束序号为k-1;接收端备选最优数据传输波束集合Δk
每个接收端独立估计不同探测波束AWV下的信道响应,获得信道响应矩阵
Figure PCTCN2017000054-appb-000140
其中,L表示信道最大拓展时延,ξ表示重复发送导频序列数目,也是探测波束组合数。接收端通过最优波束组合追踪检测算法获得最优波束组合
Figure PCTCN2017000054-appb-000141
Figure PCTCN2017000054-appb-000142
其中,
Figure PCTCN2017000054-appb-000143
表示发送波束序号,
Figure PCTCN2017000054-appb-000144
可以提供给波束追踪导频发送端(例如基站),
Figure PCTCN2017000054-appb-000145
表示接收波束序号,
Figure PCTCN2017000054-appb-000146
可以提供给波束追踪导频接收端(例如UE)。对于任一接收端,波束组合追踪检测的处理方法相同。
下面对最优波束组合追踪检测算法说明如下:
(1)关键路径选择:
从信道响应矩阵
Figure PCTCN2017000054-appb-000147
的行向量中,选择具有最大能量的行向量,即选择具有最大能量的关键路径,其中相对时延作为关键路径的标示。如果用ω代表关键路径对应的相对时延,则
Figure PCTCN2017000054-appb-000148
其中,
Figure PCTCN2017000054-appb-000149
函数表示以序号
Figure PCTCN2017000054-appb-000150
为变量来寻找具有最大值的
Figure PCTCN2017000054-appb-000151
并输出其对应的
Figure PCTCN2017000054-appb-000152
Figure PCTCN2017000054-appb-000153
是列向量
Figure PCTCN2017000054-appb-000154
的2范数,即
Figure PCTCN2017000054-appb-000155
的信号能量;
Figure PCTCN2017000054-appb-000156
表示相对时延为
Figure PCTCN2017000054-appb-000157
时的ξ次信道响应估计的列向量,并且是信道响应矩阵
Figure PCTCN2017000054-appb-000158
的第
Figure PCTCN2017000054-appb-000159
行的转置。
(2)发送端最优波束追踪:
搜索发送端最优波束序号。根据最大似然准则,发送端最优波束序号
Figure PCTCN2017000054-appb-000160
表示如下:
Figure PCTCN2017000054-appb-000161
其中,
Figure PCTCN2017000054-appb-000162
函数表示以序号l∈△l为变量探测矩阵寻找具有最小值的
Figure PCTCN2017000054-appb-000163
Figure PCTCN2017000054-appb-000164
表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;
Figure PCTCN2017000054-appb-000165
函数表示以序号l∈△l为变量探测矩阵寻找具有最大值的
Figure PCTCN2017000054-appb-000166
|·|表示绝对值,探测矩阵
Figure PCTCN2017000054-appb-000167
是已知的,Θ的第i行为列向量
Figure PCTCN2017000054-appb-000168
矢量
Figure PCTCN2017000054-appb-000169
矢量
Figure PCTCN2017000054-appb-000170
vec()函数表示矩阵的列向量化;
其中,用符号“w”表示数据传输阶段的数据传输波束AWV,用符号“u”表示波束追踪阶段的探测波束AWV。具体而言,ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;传输波束AWV由预设的定向波束码本指定。传输波束码本是一个n×K的矩阵,即W∈□n×K。n表示天 线单元数,K表示传输波束码本指定的定向波束数,并且n≤K。相应地,接收传输波束码本是一个nr×Kr的矩阵,即
Figure PCTCN2017000054-appb-000171
其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数。发送传输波束码本是一个nt×Kt的矩阵,即
Figure PCTCN2017000054-appb-000172
其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数。矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。其中,wr,k表示接收码本矩阵Wr的第k列,wt,l表示发送码本矩阵Wt的第l列。
通过协议规定或者预先告知,接收端已知所有发送端数据传输波束的AWV和所有发送端探测波束的AWV;
(3)接收端最优波束追踪:
依据第二步获得的发送端最优波束序号
Figure PCTCN2017000054-appb-000173
搜索接收端最优波束序号。根据最大似然准则,接收端最优波束序号
Figure PCTCN2017000054-appb-000174
表示如下:
Figure PCTCN2017000054-appb-000175
另外,也可以先进行“接收端最优波束追踪”再进行“发送端最优波束追踪”,从性能的角度看,是等效的,是本算法的另外一种设计方案;
数据传输阶段的数据传输波束天线权重矢量(AWV)集合与波束追踪阶段的探测波束AWV集合可以不同。若数据传输阶段的传输波束AWV与波束追踪阶段的探测波束AWV相同,本文本所提方案依然可以支持。
其中,在高低频辅助组网场景下,低频段系统为高频段系统提供初始的收发波束方向或者潜在最优收发波束可能集合,高频段系统以此为初始值,进行波束训练的场景可视为一种特殊的波束追踪场景。
本发明实施例还提供一种波束追踪的方法,发起方发起波束追踪,响应方响应波束追踪;发起方作为波束追踪导频的发送端,响应方作为波束追踪导频的接收端,如图10所示,具体包括以下几个阶段:
阶段一:追踪启动阶段(对应下述步骤1);
阶段二:同步追踪阶段(对应下述步骤2,步骤3、步骤4和步骤5);
发起方使用特定的探测发送波束广播发送追踪导频,响应方分别使用特定的探测接收波束接收追踪导频;
阶段三:波束检测阶段(对应下述步骤6);
各个响应方利用所有探测波束组合下的导频进行信道估计,然后执行最优波束组合追踪检测,输出最优波束组合的接收和发送序号;
阶段四:结果反馈阶段(对应下述步骤7);
各个响应方依次将最优波束组合的发送波束序号反馈给发起方。
波束追踪的方法,具体包括下述步骤:
步骤1:发起方周期性发起波束追踪,并请求各个响应方进行波束追踪响应,追踪次数i初始化为0;
步骤2:在波束追踪阶段,发起方调整发送波束到第i个特定探测发送波束,每个响应方调整接收波束到相对应的第i个特定探测接收波束;
步骤3:发起方使用第i个特定探测发送波束广播发送波束追踪导频,多个响应方分别使用各自第i个特定探测接收波束接收所述波束追踪导频,并执行信道估计;
步骤4:累加追踪次数i=i+1;
步骤5:如果累加追踪次数i小于阈值ξ,则返回步骤2;如果累加追踪次数i等于阈值ξ,则执行步骤6;
步骤6:各个响应方基于各自ξ次信道估计的结果,执行最优波束组合追踪检测算法,输出最优波束组合的接收和发送序号;
步骤7:各个响应方依次将最优波束组合的发送波束序号反馈给发起方;
所述的发起方,是指集成了天线阵列通过配置天线权重矢量AWV生成特定波束的波束追踪的发起设备;此外,若在蜂窝通信中,发起方可以为基站,也可以为用户设备(UE);若在无线局域网中,发起方可以为接 入节点(Access Point,AP)也可以为PBSS(Personnel Basic Service Set)中心控制节点(PBSS Central Point),或者接入设备;
所述的响应方,是指集成了天线阵列通过配置AWV生成特定波束的波束追踪的响应设备;此外,若在蜂窝通信中,响应方可以为基站,也可以为用户设备(UE);若在无线局域网中,响应方可以为接入节点(Access Point,AP)也可以为PBSS(Personnel Basic Service Set,个人基本服务集)中心控制节点(PBSS Central Point),或者接入设备;
发起方在请求响应方进行波束追踪响应时,还可以携带每一个响应方对应的当前数据传输发送波束序号和相邻(潜在最优)发送波束序号集合;
响应方可以通过向发起方反馈确认应答信号指示本设备参与波束追踪。
本发明实施例还提供一种波束追踪的方法,发起方发起波束追踪,响应方响应波束追踪;发起方作为波束追踪导频的接收端,响应方作为波束追踪导频的发送端,如图11所示,具体包括以下几个阶段:
阶段一:追踪启动阶段(对应下述步骤1和步骤2);
T个发起方依次向同一个响应方请求发起波束追踪;
响应方在收到来自T个发起方的波束追踪请求后,广播确认响应;
阶段二:同步追踪阶段(对应下述步骤3,步骤4,步骤5、步骤6和步骤7);
响应方使用特定的探测发送波束广播发送追踪导频,发起方分别使用特定的探测接收波束接收追踪导频;
阶段三:波束检测阶段(对应下述步骤8);
各个发起方利用所有探测波束组合下的导频进行信道估计,然后执行最优波束组合追踪检测,输出最优波束组合的接收和发送序号;
阶段四:结果反馈阶段(对应下述步骤9);
各个发起方依次将最优波束组合的发送波束序号反馈给响应方。
波束追踪的方法,具体包括下述步骤:
步骤1:T个发起方依次向同一个响应方请求发起波束追踪;
步骤2:响应方在收到来自T个发起方的波束追踪请求后,广播确认响应;
在广播的确认响应中可以携带每一个发起方对应的当前数据传输发送波束序号和相邻(潜在最优)发送波束序号集合;
步骤3:波束追踪启动,追踪次数i初始化为0;
步骤4:响应方调整发送波束到第i个特定探测发送波束,每个发起方调整接收波束到相对应的第i个特定探测接收波束;
步骤5:响应方使用第i个特定探测发送波束广播发送波束追踪导频,发起方分别使用各自第i个特定探测接收波束接收所述波束追踪导频,并执行信道估计;
步骤6:累加追踪次数i=i+1;
步骤7:如果累加追踪次数i小于阈值ξ,则返回步骤4;如果累加追踪次数i等于阈值ξ,则执行步骤8;
步骤8:各个发起方基于各自ξ次信道估计的结果,执行最优波束组合追踪检测算法,输出最优波束组合的接收和发送序号;
步骤9:各个发起方依次将最优波束组合的发送波束序号反馈给共同的响应方。
上述实施例提供的一种波束追踪的方法和装置,高频段基站和终端从信道响应中追踪和检测所期待的波束组合,不需要两两收发机对其相邻波束组合进行扫描,并且在追踪中间阶段无需波束对准信息的反馈,从而实现多用户波束组合的同步追踪,使得训练花销与用户数相互独立,大幅度降低追踪花销。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程 序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。基于此,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的波束追踪的方法。
可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
需要说明的是,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明实施例提供的一种波束追踪的方法、装置和计算机存储介质,高频段基站和终端从信道响应中追踪和检测所期待的波束组合,不需要两两收发机对其相邻波束组合进行扫描,并且在追踪中间阶段无需波束对准信息的反馈,从而实现多用户波束组合的同步追踪,使得训练花销与用户数相互独立,大幅度降低追踪花销。

Claims (31)

  1. 一种波束追踪的方法,应用于导频接收端,该方法包括:
    连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
    基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
    向导频发送端反馈所述最优波束组合的发送波束信息;
    其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对应的当前接收波束的相邻波束构成的集合;
    其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息是所述导频接收端已知的。
  2. 如权利要求1所述的方法,其中:
    所述探测发送波束的AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
    b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  3. 如权利要求1所述的方法,其中:
    每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
    b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包 括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  4. 如权利要求1所述的方法,其中:
    根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
    从n次信道估计获得的信道响应矩阵
    Figure PCTCN2017000054-appb-100001
    的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所述关键路径的标识;
    Figure PCTCN2017000054-appb-100002
    其中,
    Figure PCTCN2017000054-appb-100003
    函数表示以序号
    Figure PCTCN2017000054-appb-100004
    为变量来寻找具有最大值的
    Figure PCTCN2017000054-appb-100005
    并输出其对应的序号
    Figure PCTCN2017000054-appb-100006
    Figure PCTCN2017000054-appb-100007
    是列向量
    Figure PCTCN2017000054-appb-100008
    的2范数,代表
    Figure PCTCN2017000054-appb-100009
    的信号能量;
    Figure PCTCN2017000054-appb-100010
    表示相对时延为
    Figure PCTCN2017000054-appb-100011
    时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
    Figure PCTCN2017000054-appb-100012
    的第
    Figure PCTCN2017000054-appb-100013
    行的转置。
  5. 如权利要求4所述的方法,其中:
    根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
    根据最大似然准则,获取最优波束组合的发送波束
    Figure PCTCN2017000054-appb-100014
    所述
    Figure PCTCN2017000054-appb-100015
    表示如下:
    Figure PCTCN2017000054-appb-100016
    在获得最优波束组合的发送波束
    Figure PCTCN2017000054-appb-100017
    后,根据最大似然准则,获取最优波束组合的接收波束
    Figure PCTCN2017000054-appb-100018
    所述
    Figure PCTCN2017000054-appb-100019
    表示如下:
    Figure PCTCN2017000054-appb-100020
    其中,
    Figure PCTCN2017000054-appb-100021
    函数表示以序号l∈Δl为变量寻找具有最小值的
    Figure PCTCN2017000054-appb-100022
    Figure PCTCN2017000054-appb-100023
    表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
    Figure PCTCN2017000054-appb-100024
    函数表示以序号l∈Δl为变量寻找具有最大值的
    Figure PCTCN2017000054-appb-100025
    |·|表示绝对值;
    Figure PCTCN2017000054-appb-100026
    函数表示以序号k∈Δk为变量寻找具有最小值的
    Figure PCTCN2017000054-appb-100027
    Δk是备选最优接收波束集合;
    Figure PCTCN2017000054-appb-100028
    函数表示以序号k∈Δk为变量寻找具有最大值的
    Figure PCTCN2017000054-appb-100029
    探测矩阵
    Figure PCTCN2017000054-appb-100030
    是已知的,Θ的第i行为列向量
    Figure PCTCN2017000054-appb-100031
    矢量
    Figure PCTCN2017000054-appb-100032
    矢量
    Figure PCTCN2017000054-appb-100033
    vec( )函数表示矩阵的列向量化;
    ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
    Figure PCTCN2017000054-appb-100034
    其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
    Figure PCTCN2017000054-appb-100035
    其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。
  6. 如权利要求1所述的方法,其中:
    在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
    接收到导频发送端发送的请求响应波束追踪的请求消息,向所述导频发送端反馈确认响应;
    其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中 还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  7. 如权利要求1所述的方法,其中:
    在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,还包括:
    向导频发送端发送请求响应波束追踪的请求消息;
    接收所述导频发送端反馈的确认响应消息;
    其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  8. 如权利要求1所述的方法,其中:
    所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV均不同;
    所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV均不同。
  9. 如权利要求1所述的方法,其中:
    所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
  10. 一种波束追踪的方法,应用于导频发送端,该方法包括:
    向一个或多个导频接收端连续n次广播发送追踪导频;
    接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
    其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息是所述导频接收端已知的。
  11. 如权利要求10所述的方法,其中:
    所述探测发送波束的AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个 权重元素;
    b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  12. 如权利要求10所述的方法,其中:
    在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
    向一个或多个导频接收端发送请求响应波束追踪的请求消息;
    其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  13. 如权利要求10所述的方法,其中:
    在向一个或多个导频接收端连续n次广播发送追踪导频前,还包括:
    接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,向所述导频接收端反馈确认响应;
    其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  14. 如权利要求10所述的方法,其中:
    所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
    所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV均不同。
  15. 如权利要求10所述的方法,其中:
    所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息。
  16. 一种波束追踪的装置,应用于导频接收端,包括:
    导频接收及估计模块,配置为连续n次接收导频发送端广播发送的追踪导频并进行信道估计;
    波束追踪检测模块,配置为基于n次信道估计的结果,执行最优波束组合追踪检测,获得最优波束组合,包括:根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合;
    反馈模块,配置为向导频发送端反馈所述最优波束组合的发送波束信息;
    其中,所述备选最优发送波束集合是本导频接收端对应的当前发送波束的相邻波束构成的集合;所述备选最优接收波束集合是本导频接收端对应的当前接收波束的相邻波束构成的集合;
    其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息是所述导频接收端已知的。
  17. 如权利要求16所述的装置,其中:
    所述探测发送波束的天线权重矢量AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
    b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  18. 如权利要求16所述的装置,其中:
    每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的天线权重矢量AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测接收波束的AWV的各个权重元素;
    b)构造接收波束AWV生成集合,所述接收波束AWV生成集合中包 括本导频接收端的当前接收波束的相邻波束的AWV;将所述接收波束AWV生成集合中的所有AWV进行加权叠加后得到探测接收波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  19. 如权利要求16所述的装置,其中:
    波束追踪检测模块,配置为根据n次信道估计获得的信道响应矩阵从时域分辨接收最佳的关键路径,包括:
    从n次信道估计获得的信道响应矩阵
    Figure PCTCN2017000054-appb-100036
    的行向量中,选择具有最大能量的行向量,所述最大能量的行向量对应于关键路径,将相对时延ω最为所
    Figure PCTCN2017000054-appb-100037
    其中,
    Figure PCTCN2017000054-appb-100038
    函数表示以序号
    Figure PCTCN2017000054-appb-100039
    为变量来寻找具有最大值的
    Figure PCTCN2017000054-appb-100040
    并输出其对应的序号
    Figure PCTCN2017000054-appb-100041
    Figure PCTCN2017000054-appb-100042
    是列向量
    Figure PCTCN2017000054-appb-100043
    的2范数,代表
    Figure PCTCN2017000054-appb-100044
    的信号能量;
    Figure PCTCN2017000054-appb-100045
    表示相对时延为
    Figure PCTCN2017000054-appb-100046
    时的n次信道响应估计的列向量,所述列向量是信道响应矩阵
    Figure PCTCN2017000054-appb-100047
    的第
    Figure PCTCN2017000054-appb-100048
    行的转置。
  20. 如权利要求19所述的装置,其中:
    波束追踪检测模块,配置为根据分辨出的关键路径从备选最优发送波束集合和备选最优接收波束集合中检测最优波束组合,包括:
    根据最大似然准则,获取最优波束组合的发送波束
    Figure PCTCN2017000054-appb-100049
    所述
    Figure PCTCN2017000054-appb-100050
    表示如下:
    Figure PCTCN2017000054-appb-100051
    在获得最优波束组合的发送波束
    Figure PCTCN2017000054-appb-100052
    后,根据最大似然准则,获取最优波束组合的接收波束
    Figure PCTCN2017000054-appb-100053
    所述
    Figure PCTCN2017000054-appb-100054
    表示如下:
    Figure PCTCN2017000054-appb-100055
    其中,
    Figure PCTCN2017000054-appb-100056
    函数表示以序号l∈Δl为变量寻找具有最小值的
    Figure PCTCN2017000054-appb-100057
    Figure PCTCN2017000054-appb-100058
    表示2范数的平方,Θχ表示探测矩阵Θ的第χ列向量;Δl是备选最优发送波束集合;
    Figure PCTCN2017000054-appb-100059
    函数表示以序号l∈Δl为变量寻找具有最大值的
    Figure PCTCN2017000054-appb-100060
    |·|表示绝对值;
    Figure PCTCN2017000054-appb-100061
    函数表示以序号k∈Δk为变量寻找具有最小值的
    Figure PCTCN2017000054-appb-100062
    Δk是备选最优接收波束集合;
    Figure PCTCN2017000054-appb-100063
    函数表示以序号k∈Δk为变量寻找具有最大值的
    Figure PCTCN2017000054-appb-100064
    探测矩阵
    Figure PCTCN2017000054-appb-100065
    是已知的,Θ的第i行为列向量
    Figure PCTCN2017000054-appb-100066
    矢量
    Figure PCTCN2017000054-appb-100067
    矢量
    Figure PCTCN2017000054-appb-100068
    vec( )函数表示矩阵的列向量化;
    ur,i表示第i个探测接收波束AWV,ut,i表示第i个探测发送波束AWV;接收传输波束码本Wr是一个nr×Kr的矩阵,即
    Figure PCTCN2017000054-appb-100069
    其中nr表示接收端天线单元数,Kr表示接收码本矩阵指定的定向波束数;发送传输波束码本Wt是一个nt×Kt的矩阵,即
    Figure PCTCN2017000054-appb-100070
    其中nt表示发送端天线单元数,Kt表示发送码本矩阵指定的定向波束数,通过协议规定或者预先告知,数据接收端已知所述Wt;矩阵Wr和矩阵Wt的每一列都表示一个产生定向波束的预设AWV。
  21. 如权利要求16所述的装置,其中:
    导频接收及估计模块,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,如果接收到导频发送端发送的请求响应波束追踪的请求消息,则向所述导频发送端反馈确认响应;
    其中,在接收到的导频发送端发送的请求响应波束追踪的请求消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  22. 如权利要求16所述的装置,其中:
    导频接收及估计模块,还配置为在连续n次接收导频发送端广播发送的追踪导频并进行信道估计前,向导频发送端发送请求响应波束追踪的请求消息,并接收所述导频发送端反馈的确认响应消息;
    其中,在接收到的所述导频发送端反馈的确认响应消息中还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  23. 如权利要求16所述的装置,其中:
    所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV均不同;
    所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
  24. 如权利要求16所述的装置,其中:
    所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息。
  25. 一种波束追踪的装置,应用于导频发送端,包括:
    导频发送模块,配置为向一个或多个导频接收端连续n次广播发送追踪导频;
    波束信息接收模块,配置为接收所述一个或多个导频接收端反馈的最优波束组合的发送波束信息;
    其中,所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV的信息是所述导频接收端已知的。
  26. 如权利要求25所述的装置,其中:
    所述探测发送波束的天线权重矢量AWV通过以下方式中的任意一种生成:
    a)由随机函数或者伪随机函数生成所述探测发送波束的AWV的各个权重元素;
    b)构造发送波束AWV生成集合,所述发送波束AWV生成集合中包括每一个导频接收端的当前发送波束的相邻波束的AWV;将所述发送波束AWV生成集合中的所有AWV进行加权叠加后得到探测发送波束的AWV,所述加权叠加使用的加权系数由随机函数或伪随机函数生成。
  27. 如权利要求25所述的装置,其中:
    导频发送模块,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,向一个或多个导频接收端发送请求响应波束追踪的请求消息;
    其中,在请求一个或多个导频接收端响应波束追踪时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  28. 如权利要求25所述的装置,其中:
    导频发送模块,还配置为在向一个或多个导频接收端连续n次广播发送追踪导频前,如果接收到一个或多个导频接收端发送的请求响应波束追踪的请求消息后,则向所述导频接收端反馈确认响应;
    其中,在向所述导频接收端反馈确认响应时,还可以携带每一个导频接收端对应的当前发送波束的信息以及当前发送波束的相邻发送波束的信息。
  29. 如权利要求25所述的装置,其中:
    所述导频发送端广播发送每一个追踪导频使用的探测发送波束的天线权重矢量AWV均不同;
    所述导频接收端每一次接收所述导频发送端广播发送的追踪导频使用的探测接收波束的AWV均不同。
  30. 如权利要求25所述的装置,其中:
    所述导频接收端通过协议规定或接收消息获知所述导频发送端广播发送每一个追踪导频使用的探测发送波束的AWV的信息。
  31. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求1至9任一项所述的 波束追踪的方法,或者执行如权利要求10至15任一项所述的波束追踪的方法。
PCT/CN2017/000054 2016-02-15 2017-01-03 一种波束追踪的方法、装置和计算机存储介质 WO2017140186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610085964.XA CN107086887A (zh) 2016-02-15 2016-02-15 一种波束追踪的方法和装置
CN201610085964.X 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017140186A1 true WO2017140186A1 (zh) 2017-08-24

Family

ID=59614446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000054 WO2017140186A1 (zh) 2016-02-15 2017-01-03 一种波束追踪的方法、装置和计算机存储介质

Country Status (2)

Country Link
CN (1) CN107086887A (zh)
WO (1) WO2017140186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257281A (zh) * 2021-11-22 2022-03-29 杭州电子科技大学 一种基于扩展卡尔曼滤波的自适应毫米波波束追踪方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586771A (zh) 2017-09-29 2019-04-05 索尼公司 电子设备和通信方法
CN110392004B (zh) * 2018-04-20 2022-05-13 上海华为技术有限公司 一种信道估计方法以及相关装置
CN110429964B (zh) * 2019-06-14 2020-12-29 清华大学 一种基于二维相控天线阵列的快速精确波束跟踪方法
CN111555786B (zh) * 2020-04-24 2022-08-19 深圳清华大学研究院 最优波束对搜索方法、装置、计算机设备及存储介质
CN114449099B (zh) * 2020-11-02 2023-07-28 华为技术有限公司 一种设备方位调整的方法、终端设备和可读存储介质
CN113156220A (zh) * 2020-12-31 2021-07-23 博流智能科技(南京)有限公司 无线电波感测方法及系统
WO2023160119A1 (zh) * 2022-02-23 2023-08-31 华为技术有限公司 一种通信方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017447A (zh) * 2008-01-23 2011-04-13 Lg电子株式会社 用于在多输入多输出系统中发射信号的方法及其设备
CN102468879A (zh) * 2010-10-29 2012-05-23 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN104935366A (zh) * 2015-04-21 2015-09-23 北京航空航天大学 毫米波通信中的波束搜索方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494484B (zh) * 2008-01-24 2013-01-16 中兴通讯股份有限公司 下行波束形成方法
KR20090097754A (ko) * 2008-03-11 2009-09-16 엘지전자 주식회사 무선 통신 네트워크에서의 빔 트래킹 방법
US9225401B2 (en) * 2012-05-22 2015-12-29 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
CN104935367B (zh) * 2015-04-27 2018-03-02 电子科技大学 一种基于信道空间稀疏特性的快速迭代波束成形方法
CN106911371B (zh) * 2015-12-22 2021-11-23 中兴通讯股份有限公司 一种波束训练方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017447A (zh) * 2008-01-23 2011-04-13 Lg电子株式会社 用于在多输入多输出系统中发射信号的方法及其设备
CN102468879A (zh) * 2010-10-29 2012-05-23 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN104935366A (zh) * 2015-04-21 2015-09-23 北京航空航天大学 毫米波通信中的波束搜索方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257281A (zh) * 2021-11-22 2022-03-29 杭州电子科技大学 一种基于扩展卡尔曼滤波的自适应毫米波波束追踪方法

Also Published As

Publication number Publication date
CN107086887A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2017140186A1 (zh) 一种波束追踪的方法、装置和计算机存储介质
JP7404321B2 (ja) 多アンテナmu-mimoシステムのための制御チャネル設計
Barati et al. Initial access in millimeter wave cellular systems
Barati et al. Directional cell discovery in millimeter wave cellular networks
US10972172B2 (en) Method for fast beam sweeping and device discovery in 5G millimeter wave and upper centimeter-wave systems
US10355761B2 (en) Beam administration methods for cellular/wireless networks
Barati et al. Directional initial access for millimeter wave cellular systems
Tsang et al. Coding the beams: Improving beamforming training in mmwave communication system
US7899129B2 (en) Wireless personal area network communication systems, apparatus and methods with fast adaptive beamforming
US9967124B2 (en) Use of basis functions for transmission of broadcast control information in a wireless network
CN106911371B (zh) 一种波束训练方法和装置
Barati et al. Directional cell search for millimeter wave cellular systems
TW201041416A (en) Arrangements for beam refinement in a wireless network
CN114731180A (zh) 用于上升式设备通信的技术
WO2015081847A1 (zh) 干扰抑制方法及装置
TW202139617A (zh) 更新波束成形碼簿的方法及無線通信裝置
JP2008311745A (ja) 送受信装置とその通信方法
JP3559231B2 (ja) 複数ビーム制御適応アンテナ装置及びそれを用いた通信方法
Mavridis et al. Information spatial focusing scheme for UWB wireless communications in smart environments
WO2017101525A1 (zh) 一种波束训练中实现同步的方法及装置
Shao et al. Two-dimensional reduction of beam training overhead in crowded 802.11 ad based networks
TWI624159B (zh) 通道資訊的估測系統及其方法
Yang et al. Fast and reliable initial access with random beamforming for mmWave networks
Nawaz et al. Auxiliary beam pair enabled initial access for mmWave D2D networks
JP7352648B2 (ja) ビーム選択システムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752618

Country of ref document: EP

Kind code of ref document: A1