WO2017140136A1 - 基于mim高灵敏度spp太赫兹探测器 - Google Patents

基于mim高灵敏度spp太赫兹探测器 Download PDF

Info

Publication number
WO2017140136A1
WO2017140136A1 PCT/CN2016/106593 CN2016106593W WO2017140136A1 WO 2017140136 A1 WO2017140136 A1 WO 2017140136A1 CN 2016106593 W CN2016106593 W CN 2016106593W WO 2017140136 A1 WO2017140136 A1 WO 2017140136A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz wave
terahertz
mim
waveguide
spp
Prior art date
Application number
PCT/CN2016/106593
Other languages
English (en)
French (fr)
Inventor
欧阳征标
陈治良
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US16/485,015 priority Critical patent/US11099060B2/en
Publication of WO2017140136A1 publication Critical patent/WO2017140136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • G01J1/0209Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4295Photometry, e.g. photographic exposure meter using electric radiation detectors using a physical effect not covered by other subgroups of G01J1/42
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/58Radiation pyrometry, e.g. infrared or optical thermometry using absorption; using extinction effect

Definitions

  • the invention relates to a high sensitivity, nanometer scale terahertz wave detector, in particular to a conductor-insulator-conductor (MIM) based high sensitivity SPP terahertz wave detector.
  • MIM conductor-insulator-conductor
  • Waveguides based on surface plasmons can break through the limits of diffraction limits and achieve nanoscale optical information processing and transmission.
  • the surface plasmon is a surface electromagnetic wave propagating on the metal surface formed by the free electron coupling of the electromagnetic wave and the metal surface when the electromagnetic wave is incident on the interface between the metal and the medium.
  • many devices based on surface plasmon structures such as filters, circulators, logic gates, optical switches, etc., have been proposed. These devices are relatively simple in structure and are very convenient for optical path integration.
  • terahertz wave detectors such as thermal effect detectors, thermistor detectors, liquid helium cooled Si or Ge thermal radiation meters, superconducting mixing techniques, and the use of phonon and electron scattering cooling mechanisms.
  • thermal electron radiometers that perform intensity detection on terahertz waves. The frequency is based on the coherent electromagnetic pulse between the far infrared and the microwave as the detection source, and then the photoconductive sampling or free space electro-optic extraction is used.
  • the terahertz time-domain spectroscopy technique for directly recording the amplitude time waveform of the terahertz radiation electric field can measure both the amplitude of the terahertz wave and the phase information.
  • the MIM high sensitivity SPP terahertz wave detector of the invention comprises a rectangular cavity, a terahertz wave absorption cavity, a silver block, a vertical waveguide, a horizontal waveguide, a terahertz probe light, three metal films, and a terahertz detection.
  • Light a horizontal signal light and a photodetector; the rectangular cavity is located at an input end of the terahertz probe wave; the terahertz wave absorption cavity is connected to the vertical waveguide; and the moving silver block is disposed on the vertical waveguide Internally, it is movable; the vertical waveguide is connected to the horizontal waveguide; and the terahertz probe light is located at the upper end of the rectangular cavity.
  • the shape of the terahertz wave absorption cavity is a rectangle, a circle, a polygon, an ellipse, a combination of a rectangle and a circle, a combination of a rectangle and a polygon, a combination of a rectangle and an ellipse, a combination of a circle and a polygon, a circle and A combination of ellipse, a combination of polygons and ellipses, or a deformation of these shapes.
  • the material in the terahertz wave absorption cavity is a substance having a high thermal expansion coefficient; the substance in the rectangular cavity is a high transmittance substance.
  • the high expansion coefficient substance is alcohol or mercury
  • the high transmittance substance is It is silicon, germanium or gallium arsenide.
  • the horizontal waveguide and the vertical waveguide are waveguides of an MIM structure that are in contact with a metal film at a lower end.
  • the metal is gold or silver; the insulator is a transparent substance.
  • the metal is silver.
  • the transparent substance is air, silicon dioxide or silicon.
  • the signal light has an operating wavelength of 780 nm, a terahertz wave has a wavelength of 3 ⁇ m, and the terahertz wave has a intensity of 1.2 nW to 4.2 nW.
  • the photodetector is located at an output port of the horizontal waveguide; the material of the photodetector is silicon.
  • Figure 1 is a schematic illustration of a two-dimensional structure of a first embodiment of a terahertz detector of the present invention.
  • Rectangular cavity 1 Terahertz wave absorption cavity 2
  • Silver block 3 Vertical waveguide 4
  • Horizontal waveguide 5 Metal mold 6
  • Metal mold 7 Metal mold 8 Terahertz probe light 100
  • FIG. 2 is a schematic view of the three-dimensional structure shown in FIG. 1.
  • FIG 3 is a schematic view showing the two-dimensional structure of a second embodiment of the terahertz detector of the present invention.
  • FIG. 4 is a schematic view of the three-dimensional structure shown in FIG. 1.
  • Figure 5 is a graph showing the relationship between signal light transmittance and terahertz wave input power.
  • Fig. 6 is a view showing a light field distribution of a signal light having a terahertz wave input power of 1.2 nW according to Embodiment 1 of the present invention.
  • Fig. 7 is a view showing a light field distribution of a signal light having a terahertz wave input power of 1.8 nW according to Embodiment 1 of the present invention.
  • Fig. 8 is a view showing a light field distribution of a signal light having a terahertz wave input power of 2.4 nW according to Embodiment 1 of the present invention.
  • Fig. 9 is a view showing a light field distribution of a signal light having a terahertz wave input power of 3.0 nW according to Embodiment 1 of the present invention.
  • Fig. 10 is a view showing a light field distribution of a signal light having a terahertz wave input power of 3.6 nW according to Embodiment 1 of the present invention.
  • Fig. 11 is a view showing a light distribution of a signal light having a terahertz wave input power of 4.2 nW in the first embodiment of the present invention.
  • Figure 12 is a diagram showing the distribution of a signal light field of a terahertz wave input power of 1.2 nW in the second embodiment of the present invention.
  • Figure 13 is a diagram showing the distribution of signal light field of a terahertz wave input power of 1.8 nW according to Embodiment 2 of the present invention.
  • Fig. 14 is a view showing a light distribution of a signal light having a terahertz wave input power of 2.4 nW according to the second embodiment of the present invention.
  • Figure 15 is a diagram showing the distribution of a signal light field of a terahertz wave input power of 3.0 nW in the second embodiment of the present invention.
  • Figure 16 is a diagram showing the distribution of a signal light field of a terahertz wave input power of 3.6 nW in the second embodiment of the present invention.
  • Figure 17 is a diagram showing the distribution of a signal light field of a terahertz wave input power of 4.2 nW in the second embodiment of the present invention.
  • the MIM high-sensitivity SPP terahertz wave detector consists of a rectangular cavity 1, a terahertz wave absorption cavity 2, a silver block 3, and a vertical a straight waveguide 4, a horizontal waveguide 5, metal films 6, 7, 8, a terahertz probe light 100, a horizontally propagating signal light 200 (surface plasmon SPP) and a photodetector 300; a rectangular cavity 1 is located
  • the input end of the terahertz detection wave has a width l of 175 nm and a range of 150 nm to 500 nm.
  • the material in the rectangular cavity 1 is a high transmittance material, and the high transmittance material is silicon, germanium or gallium arsenide, and high transmittance.
  • the material is silicon; the terahertz wave absorption cavity 2 is connected to the vertical waveguide 4, the terahertz wave absorption cavity 2 is a circular cavity, the radius is R, and the material in the terahertz wave absorption cavity 2 is high for the terahertz wave.
  • the absorption coefficient is a high thermal expansion coefficient, the high expansion coefficient is alcohol or mercury, and the high expansion coefficient is alcohol;
  • the silver block 3 is disposed in the vertical waveguide 4 and can be moved, and the length m of the moving silver block 3 is 125nm, its value range is 80nm-150nm, shift
  • the distance s of the moving silver block 3 from the horizontal waveguide 5 is 0 nm - 150 nm, which is determined by the position of the moving silver block 3, and the moving silver block 3 is moved downward to change the distance of the horizontal waveguide 5, and the transmittance of the signal light also follows The change occurs, the output power of the signal light is in one-to-one correspondence with the power of the input terahertz wave;
  • the vertical waveguide 4 is connected to the horizontal waveguide 5, the horizontal waveguide 5 and the vertical waveguide 4 are waveguides of the MIM structure, and the MIM is a metal-insulator - Metal waveguide structure.
  • the vertical waveguide 4 is located at the upper end of the horizontal waveguide 5; within the horizontal waveguide 5
  • the medium is air, the width d is 50 nm, and the value ranges from 30 nm to 100 nm; the distance c of the lower edge of the horizontal waveguide 5 from the edge of the metal film 6 is greater than 150 nm; the width b of the vertical waveguide 4 is 35 nm, and the value range is 30nm-60nm, length M is 250nm, its value ranges from 200nm or more, the distance a from the left edge of the vertical waveguide 4 to the left edge of the metal film 7 is 400nm, and its value ranges from 350nm to 450nm; terahertz detection light 100 Located at the upper end of the rectangular cavity 1; the photodetector 300 is made of a silicon material which is located at the output port of the horizontal waveguide 5.
  • the alcohol in the terahertz wave absorption chamber 2 is heated by the probe wave to cause the expansion to push the moving silver block 3 to move toward the horizontal waveguide 5 to change the length of the air segment in the vertical waveguide 4, thereby changing the transmittance of the signal light, and finally
  • the intensity information of the terahertz wave is transmitted to the signal light.
  • the signal light is 780 nm
  • the terahertz wave wavelength is 3 ⁇ m
  • the terahertz wave direction is parallel to the vertical waveguide axis and perpendicular to the horizontal waveguide axis, or parallel to the horizontal waveguide axis and perpendicular to the vertical waveguide axis, or perpendicular to the vertical waveguide axis and perpendicular to Horizontal waveguide axis.
  • the transmittance of the signal light can be obtained, and the light intensity of the probe light can be obtained according to the relationship between the transmittance and the detected light intensity.
  • the terahertz wave is not introduced into the absorption chamber 2, under the action of the external atmospheric pressure, the moving silver block 3 will return to the initial pressure balance position to facilitate the next detection.
  • the terahertz wave absorption chamber 2 absorbs the terahertz wave according to Beer-lambert's law.
  • the absorption coefficient is defined as follows: a monochromatic laser with an intensity of I 0 and a frequency of ⁇ passes through an absorption medium of length l and is emitted. The intensity of the end is I,
  • is defined as the absorption coefficient.
  • the formula shows that the absorption of terahertz wave energy by alcohol solution is related to the length of light in the alcohol medium. In order to make the energy of terahertz wave absorb as much as possible, it is necessary to increase the wave. The irradiation distance in the alcohol finally determines the incident end of the terahertz wave at the upper end of the rectangular cavity 1. When the terahertz wave is incident on the alcohol region, the alcohol absorbs the energy of the terahertz wave, the temperature rises and the volume becomes larger, and then the moving silver block 3 is pushed to move, thereby changing the transmittance of the signal light.
  • the MIM high-sensitivity SPP terahertz wave detector consists of a rectangular cavity 1, a terahertz wave absorption cavity 2, a silver block 3, and a vertical a straight waveguide 4, a horizontal waveguide 5, metal films 6, 7, 8, a terahertz probe light 100, a horizontally propagating signal light 200 (surface plasmon SPP) and a photodetector 300; a rectangular cavity 1 is located
  • the input end of the terahertz detection wave has a width l of 175 nm and a range of 150 nm to 500 nm.
  • the material in the rectangular cavity 1 is a high transmittance material, and the high transmittance material is silicon, germanium or gallium arsenide, and high transmittance.
  • the substance is made of silicon.
  • the terahertz wave absorption cavity 2 and the vertical waveguide 4 are connected, and the terahertz absorption cavity 2 adopts a regular hexagonal cavity whose side length is r, the cross-sectional area of the terahertz absorption cavity 2 is 502655 nm 2 , and the terahertz wave absorption cavity 2
  • the substance is a substance having a high absorption coefficient for a terahertz wave and a high coefficient of thermal expansion, the substance having a high expansion coefficient is alcohol or mercury, the substance having a high expansion coefficient is alcohol, and the silver block 3 is disposed in the vertical waveguide 4, and
  • the length m of the moving silver block 3 is 125 nm, and the value ranges from 80 nm to 150 nm, and the distance s of the moving
  • the output power of the signal light is in one-to-one correspondence with the power of the input terahertz wave.
  • the vertical waveguide 4 is connected to the horizontal waveguide 5, the horizontal waveguide 5 and the vertical waveguide 4 are waveguides of the MIM structure, and the MIM is a metal-insulator-metal waveguide structure.
  • the vertical waveguide 4 is located at the upper end of the horizontal waveguide 5; the medium in the horizontal waveguide 5 is air, the width d is 50 nm, and the value ranges from 30 nm to 100 nm; the distance c of the lower edge of the horizontal waveguide 5 from the edge of the metal film 6 is greater than 150 nm.
  • the vertical waveguide 4 has a width b of 35 nm, a value ranging from 30 nm to 60 nm, a length M of 250 nm, and a value range of 200 nm or more, and a distance a from the left edge of the vertical waveguide 4 to the left edge of the metal film 7 is 400 nm, which ranges from 350 nm to 450 nm; terahertz probe light 100 is located at the upper end of the rectangular cavity 1; photodetector 300 is made of silicon material, which is located at the output port of the horizontal waveguide 5.
  • the alcohol in the terahertz wave absorption chamber 2 is heated by the probe wave to cause the expansion to push the moving silver block 3 to move toward the horizontal waveguide 5 to change the length of the air segment in the vertical waveguide 4, thereby changing the transmittance of the signal light, and finally
  • the intensity information of the terahertz wave is transmitted to the signal light;
  • the signal light is 780 nm
  • the terahertz wave wavelength is 3 ⁇ m
  • the terahertz wave direction is parallel to the vertical waveguide axis and perpendicular to the horizontal waveguide axis, or parallel to the horizontal waveguide axis and perpendicular to the vertical waveguide
  • the axis, or perpendicular to the vertical waveguide axis is perpendicular to the horizontal waveguide axis.
  • the transmittance of the signal light can be obtained, and then according to the transmittance and the detection light.
  • the relationship between the intensities gives the intensity of the detected light.
  • the terahertz wave is not introduced into the absorption chamber 2, under the action of the external atmospheric pressure, the moving silver block 3 will return to the initial pressure balance position to facilitate the next detection.
  • the relationship between the signal light transmittance and the input power of the terahertz wave can be simulated. As shown in Fig. 5, the time for setting the terahertz wave into the absorption cavity is 1 ms.
  • the terahertz wave heats the material in the absorption chamber 2 for 1 ms.
  • the shape of the absorption chamber 2 is a circular cavity and a polygonal cavity, since the terahertz wave is reflected multiple times in the absorption cavity 2, alcohol The absorption is set to be completely absorbed.
  • the intensity of the signal light can be obtained, and combined with the relationship between the output intensity of the signal light and the intensity of the terahertz wave, the intensity of the terahertz wave can be finally obtained.
  • the terahertz detector When the terahertz detector absorbs terahertz light for 1 ms, the intensity of the terahertz wave is 0.6nW-6nW; the terahertz detector can change the absorption time by changing the absorption time in the absorption chamber 2. Range, thereby widening the range of detection intensity.
  • the terahertz detector absorbs the terahertz wave in the terahertz wave absorption cavity 2 for gms, and the terahertz detection power range is (0.6/g) nW-(6/g)nW, where g is a scale factor of not less than 1. .
  • the incident terahertz intensity is 1.2 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 6.
  • the incident terahertz intensity is 1.8 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 7.
  • the incident terahertz intensity is 2.4 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 8.
  • the incident terahertz intensity is 3.0 nW.
  • the numerical simulation can obtain the light field distribution diagram as shown in Fig. 9.
  • the incident terahertz intensity is 3.6 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 10.
  • the incident terahertz intensity is 4.2 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 11.
  • the incident terahertz intensity is 1.2 nW.
  • the numerical simulation can obtain the light field distribution map as shown in Fig. 12.
  • the incident terahertz intensity is 1.8 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 13.
  • the incident terahertz intensity is 2.4 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 14.
  • the incident terahertz intensity is 3.0 nW.
  • the numerical simulation can obtain the light field distribution map as shown in Fig. 15.
  • the incident terahertz intensity is 3.6 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 16.
  • the incident terahertz intensity is 4.2 nW.
  • numerical simulation using two-dimensional structure numerical simulation can obtain the light field distribution diagram shown in Fig. 17.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于MIM高灵敏度SPP太赫兹波探测器,由一个矩形腔(1)、一个太赫兹波吸收腔(2)、银块(3)、一个竖直波导(4)、一个水平波导(5)、三个金属模(6,7,8)、一个太赫兹探测光(100)、一个水平参考光(200)和一个光电探测器(300)组成;矩形腔位于太赫兹探测波的输入端;太赫兹波吸收腔和竖直波导相连接;银块设置于竖直波导内,可以移动;竖直波导和水平波导相连接;太赫兹探测光位于矩形腔的上端。这种太赫兹波探测器结构紧凑,体积小,灵敏度高,便于集成。

Description

基于MIM高灵敏度SPP太赫兹探测器 技术领域
本发明涉及一种高灵敏度,纳米尺度的太赫兹波探测器,尤其涉及一种基于导体-绝缘体-导体(MIM)的高灵敏度SPP太赫兹波探测器。
背景技术
近年来,人们对电磁波谱之中各个波段的研究都有了长足的进展,而唯独在太赫兹波段(0.1THz-10THz),人们的研究还欠缺。太赫兹波充满着我们日常生活的空间,然而高效、微型太赫兹波探测器和太赫兹源等技术难题是造成这部分波段研究和很少利用的主要原因。
基于表面等离子激元的波导却能突破衍射极限的限制,实现纳米尺度的光信息处理和传输。表面等离子激元是当电磁波入射到金属与介质分界面时,电磁波和金属表面的自由电子耦合形成的一种在金属表面传播的表面电磁波。根据表面等离子激元的性质,人们已经提出了很多基于表面等离子体结构的器件,例如滤波器、环形器、逻辑门、光开关等。这些器件在结构上都比较简单,非常便于光路集成。
目前在太赫兹波探测器的研究上已经取得进展,如热效应探测器、热敏电阻探测器、液氦冷却Si或者Ge热辐射测量仪、超导混频技术以及利用声子和电子散射冷却机制发展起来的热电子辐射计,这些技术可以对太赫兹波进行强度探测。利用频率基于远红外和微波之间的相干电磁脉冲作为探测源,再用光电导取样或自由空间的电光取 样方法直接记录太赫兹辐射电场的振幅时间波形的太赫兹时域光谱技术既可以测得太赫兹波的振幅也可以得到相位信息。虽然这些技术各有所长,但是体积都过大,对工作环境的要求相当苛刻,价格昂贵,不利于实际应用。
发明内容
本发明的目的是克服现有技术的不足,提供一种便于集成的MIM结构的高灵敏度SPP太赫兹探测器。
本发明的目的通过下述技术方案予以实现。
本发明MIM高灵敏度SPP太赫兹波探测器由一个矩形腔、一个太赫兹波吸收腔、银块、一个竖直波导、一个水平波导、一个太赫兹探测光、三个金属膜、一个太赫兹探测光、一个水平信号光和一个光电探测器组成;所述矩形腔位于太赫兹探测波的输入端;所述太赫兹波吸收腔和竖直波导相连接;所述移动银块设置于竖直波导内,可以移动;所述竖直波导和水平波导相连接;所述太赫兹探测光位于矩形腔的上端。
所述太赫兹波吸收腔的形状为矩形、圆形、多边形、椭圆形、矩形与圆形的组合、矩形与多边形的组合、矩形与椭圆形的组合、圆形与多边形的组合、圆形与椭圆形的组合、多边形与椭圆形的组合或者这些形状的变形。
所述太赫兹波吸收腔内的物质为高热膨胀系数的物质;所述矩形腔内的物质为高透射率的物质。
所述高膨胀系数的物质为酒精或者水银,所述高透射率的物质为 为硅、锗或者砷化镓。
所述水平波导和所述竖直波导为MIM结构的波导,其与下端的金属膜接触。
所述金属为金或银;所述绝缘体为透明物质。
所述金属为银。
所述透明物质为空气、二氧化硅或者硅。
所述信号光的工作波长为780nm,太赫兹波的波长为3μm;所述太赫兹波强度为1.2nW~4.2nW。
所述光电探测器位于水平波导的输出端口;所述光电探测器的材料为硅。
本发明的有益效果是:
(1)结构紧凑,体积小,非常便于集成;(2)灵敏度高,太赫兹探测的灵敏度达到nW量级。
附图说明
图1是本发明太赫兹探测器第一种实施方式的二维结构示意图。
图中:矩形腔1  太赫兹波吸收腔2  银块3  竖直波导4  水平波导5  金属模6  金属模7  金属模8  太赫兹探测光100  水平传播的信号光200  光电探测器300
图2是图1所示的三维结构示意图。
图3是本发明太赫兹探测器第二种实施方式的二维结构示意图。
图4是图1所示的三维结构示意图。
图5是信号光透过率与太赫兹波输入功率的关系图。
图6是本发明实施例1的太赫兹波输入功率为1.2nW的信号光光场分布图。
图7是本发明实施例1的太赫兹波输入功率为1.8nW的信号光光场分布图。
图8是本发明实施例1的太赫兹波输入功率为2.4nW的信号光光场分布图。
图9是本发明实施例1的太赫兹波输入功率为3.0nW的信号光光场分布图。
图10是本发明实施例1的太赫兹波输入功率为3.6nW的信号光光场分布图。
图11是本发明的实施例1的太赫兹波输入功率为4.2nW的信号光光场分布图。
图12是本发明实施例2的太赫兹波输入功率为1.2nW的信号光光场分布图。
图13是本发明实施例2的太赫兹波输入功率为1.8nW的信号光光场分布图。
图14是本发明的实施例2的太赫兹波输入功率为2.4nW的信号光光场分布图。
图15是本发明实施例2的太赫兹波输入功率为3.0nW的信号光光场分布图。
图16是本发明实施例2的太赫兹波输入功率为3.6nW的信号光光场分布图。
图17是本发明实施例2的太赫兹波输入功率为4.2nW的信号光光场分布图。
具体实施方式
下面结合附图及实施例对本发明作进一步的描述:
如图1和2所示(图2中省略了结构上面的封装介质),MIM高灵敏度SPP太赫兹波探测器是由一个矩形腔1,一个太赫兹波吸收腔2,银块3,一个竖直波导4,一个水平波导5,金属膜6、7、8,一个太赫兹探测光100,一个水平传播的信号光200(表面等离子激元SPP)和一个光电探测器300组成;矩形腔1位于太赫兹探测波的输入端,宽度l为175nm,其范围为150nm-500nm,矩形腔1内的物质为高透射率的物质,高透射率的物质为硅、锗或者砷化镓,高透射率的物质采用硅;太赫兹波吸收腔2和竖直波导4相连接,太赫兹波吸收腔2采用圆形腔,半径为R,太赫兹波吸收腔2内的物质为对太赫兹波具有高吸收系数,且为高热膨胀系数,高膨胀系数的物质为酒精或者水银,高膨胀系数的物质采用酒精;银块3设置于竖直波导4内,且可以移动,移动银块3的长度m为125nm,其取值范围为80nm-150nm,移动银块3距离水平波导5的距离s为0nm-150nm,由移动银块3的位置确定,移动银块3往下移动使其得到水平波导5距离发生变化,信号光的透过率也随之发生变化,信号光的输出功率与输入太赫兹波的功率一一对应;竖直波导4和水平波导5相连接,水平波导5和竖直波导4为MIM结构的波导,MIM为金属-绝缘体-金属波导结构。竖直波导4位于水平波导5的上端;水平波导5内的 介质为空气,其宽度d为50nm,取值范围为30nm-100nm;水平波导5的下边缘距离金属膜6边缘的距离c大于150nm;竖直波导4的宽度b为35nm,其取值范围为30nm-60nm,长度M为250nm,其取值范围为200nm以上,竖直波导4的左边缘到金属膜7左边缘的距离a为400nm,其取值范围为350nm-450nm;太赫兹探测光100位于矩形腔1的上端;光电探测器300采用硅材料,其位于水平波导5的输出端口。
通过探测波来加热太赫兹波吸收腔2内的酒精,使其膨胀推动移动银块3向水平波导5移动来改变竖直波导4内空气段的长度,从而改变信号光的透射率,最终将太赫兹波的强度信息传递给信号光。信号光为780nm,太赫兹波波长为3μm,太赫兹波方向平行于垂直波导轴且垂直于水平波导轴,或平行于水平波导轴且垂直于垂直波导轴,或垂直于垂直波导轴且垂直于水平波导轴。根据硅光探测器300测得信号光的光强可以得到信号光的透过率,再根据透过率和探测光强度之间的关系即可得到探测光的光强。当太赫兹波不在通入吸收腔2时,在外界大气压的作用下,移动银块3又将回到初始压力平衡的位置,方便下一次探测。
太赫兹波吸收腔2内的酒精对太赫兹波吸收遵循Beer-lambert定律,吸收系数的定义如下:强度为I0、频率为μ的单色激光,通过长度为l的吸收介质后,在出射端的光强为I,
I=I0e-κl
则κ就定义为吸收系数,公式可以看出酒精溶液对太赫兹波能量的吸收量与光在酒精介质中的长度有关,为了使太赫兹波的能量尽可能被酒精吸收,就必须增加波在酒精内的照射距离,最终确定太赫兹波的入射端在矩形腔1的上端。当太赫兹波入射到酒精区域,酒精吸收太赫兹波的能量,温度升高体积变大,然后推动移动银块3移动,从而改变信号光的透过率。
酒精的比热容是C=2.4×103J/kg·℃,体积膨胀系数为αethanol=1.1×10-3/℃,在室温(20℃)时密度为ρ=0.789g/cm3。银的线膨胀系数为αAg=19.5×10-6/℃,相比于酒精的膨胀系数,在相同温度变化下,银的膨胀可以忽略不计。
如图3和4所示(图4中省略了结构上面的封装介质),MIM高灵敏度SPP太赫兹波探测器是由一个矩形腔1,一个太赫兹波吸收腔2,银块3,一个竖直波导4,一个水平波导5,金属膜6、7、8,一个太赫兹探测光100,一个水平传播的信号光200(表面等离子激元SPP)和一个光电探测器300组成;矩形腔1位于太赫兹探测波的输入端,宽度l为175nm,其范围为150nm-500nm,矩形腔1内的物质为高透射率的物质,高透射率的物质为硅、锗或者砷化镓,高透射率的物质采用硅。太赫兹波吸收腔2和竖直波导4相连接,太赫兹吸收腔2采用正六边形腔,其边长为r,太赫兹吸收腔2的截面积为502655nm2,太赫兹波吸收腔2内的物质为对太赫兹波具有高吸收系 数,且为高热膨胀系数的物质,高膨胀系数的物质为酒精或者水银,高膨胀系数的物质采用酒精;银块3设置于竖直波导4内,且可以移动,移动银块3的长度m为125nm,其取值范围为80nm-150nm,移动银块3距离水平波导5的距离s为0nm-150nm,由移动银块3的位置确定;移动银块3往下移动使其得到水平波导5距离发生变化,信号光的透过率也随之发生变化,信号光的输出功率与输入太赫兹波的功率一一对应。竖直波导4和水平波导5相连接,水平波导5和竖直波导4为MIM结构的波导,MIM为金属-绝缘体-金属波导结构。竖直波导4位于水平波导5的上端;水平波导5内的介质为空气,其宽度d为50nm,取值范围为30nm-100nm;水平波导5的下边缘距离金属膜6边缘的距离c大于150nm;竖直波导4的宽度b为35nm,其取值范围为30nm-60nm,长度M为250nm,其取值范围为200nm以上,竖直波导4的左边缘到金属膜7左边缘的距离a为400nm,其取值范围为350nm-450nm;太赫兹探测光100位于矩形腔1的上端;光电探测器300采用硅材料,其位于水平波导5的输出端口。
通过探测波来加热太赫兹波吸收腔2内的酒精,使其膨胀推动移动银块3向水平波导5移动来改变竖直波导4内空气段的长度,从而改变信号光的透射率,最终将太赫兹波的强度信息传递给信号光;信号光为780nm,太赫兹波波长为3μm,太赫兹波方向平行于垂直波导轴且垂直于水平波导轴,或平行于水平波导轴且垂直于垂直波导轴,或垂直于垂直波导轴且垂直于水平波导轴。根据硅光探测器300测得信号光的光强可以得到信号光的透过率,再根据透过率和探测光 强度之间的关系即可得到探测光的光强。当太赫兹波不在通入吸收腔2时,在外界大气压的作用下,移动银块3又将回到初始压力平衡的位置,方便下一次探测。根据酒精的参数以及结构的参数可以仿真计算出信号光透过率与太赫兹波输入功率之间的关系图,如图5所示,设定太赫兹波入射到吸收腔内的时间为1ms,即太赫兹波对吸收腔2内的物质加热时间为1ms,对于吸收腔2的形状为圆形腔和多边形腔而言,由于太赫兹波在吸收腔2内会多次反射,所以酒精对其的吸收设为完全吸收。根据硅光探测器300伏安特性即可得到信号光的强度,再结合信号光的输出强度和太赫兹波强度的关系曲线,最终可得出太赫兹波的强度。太赫兹探测器在吸收腔2吸收太赫兹光的时间为1ms时,探测太赫兹波的强度范围为0.6nW-6nW;太赫兹探测器在改变吸收腔2内的吸收时间即可改变探测强度的范围,从而拓宽探测强度的范围。太赫兹探测器在太赫兹波吸收腔2吸收太赫兹波的时间为gms,太赫兹的探测功率范围为(0.6/g)nW-(6/g)nW,其中g为不小于1的比例系数。
实施例1
本实施例中,入射太赫兹强度为1.2nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图6所示的光场分布图。
实施例2
本实施例中,入射太赫兹强度为1.8nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图7所示的光场分布图。
实施例3
本实施例中,入射太赫兹强度为2.4nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图8所示的光场分布图。
实施例4
本实施例中,入射太赫兹强度为3.0nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图9所示的光场分布图。
实施例5
本实施例中,入射太赫兹强度为3.6nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图10所示的光场分布图。
实施例6
本实施例中,入射太赫兹强度为4.2nW。采用图1和图2结构,利用二维结构数值验证,数值模拟可得到如图11所示的光场分布图。
实施例7
本实施例中,入射太赫兹强度为1.2nW。采用图3和图4结构,利用二维结构数值验证,数值模拟可得到如图12所示的光场分布图。
实施例8
本实施例中,入射太赫兹强度为1.8nW。采用图3和图4结构,利用二维结构数值验证,数值模拟可得到如图13所示的光场分布图。
实施例9
本实施例中,入射太赫兹强度为2.4nW。采用图3和图4结构,利用二维结构数值验证,数值模拟可得到如图14所示的光场分布图。
实施例10
本实施例中,入射太赫兹强度为3.0nW。采用图3和图4结构, 利用二维结构数值验证,数值模拟可得到如图15所示的光场分布图。
实施例11
本实施例中,入射太赫兹强度为3.6nW。采用图3和图4结构,利用二维结构数值验证,数值模拟可得到如图16所示的光场分布图。
实施例12
本实施例中,入射太赫兹强度为4.2nW。采用图3和图4结构,利用二维结构数值验证,数值模拟可得到如图17所示的光场分布图。
以上之详细描述仅为清楚理解本发明,而不应将其看作是对本发明不必要的限制,因此对本发明的任何改动对本领域中的技术熟练的人是显而易见的。

Claims (10)

  1. 一种基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:它由一个矩形腔、一个太赫兹波吸收腔、银块、一个竖直波导、一个水平波导、三个金属膜、一个太赫兹探测光、一个水平参考光和一个光电探测器组成;所述矩形腔位于太赫兹探测波的输入端;所述太赫兹波吸收腔和竖直波导相连接;所述银块设置于竖直波导内,可以移动;所述竖直波导和水平波导相连接;所述太赫兹探测光位于矩形腔的上端。
  2. 按照权利要求1所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述太赫兹波吸收腔的形状为矩形、圆形、多边形、椭圆形、矩形与圆形的组合、矩形与多边形的组合、矩形与椭圆形的组合、圆形与多边形的组合、圆形与椭圆形的组合、多边形与椭圆形的组合或者这些形状的变形。
  3. 按照权利要求1所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述太赫兹波吸收腔内的物质为高膨胀系数的物质;所述矩形腔内的物质为高透射率的物质。
  4. 按照权利要求3所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述高膨胀系数的物质为酒精或者水银;所述高透射率的物质为硅、锗或者砷化镓。
  5. 按照权利要求1所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述MIM为金属-绝缘体-金属波导结构,所述水平波导和所述竖直波导为MIM结构的波导。
  6. 按照权利要求6所述的基于MIM高灵敏度SPP太赫兹波探测 器,其特征在于:所述金属为金或者银;所述绝缘体为透明物质。
  7. 按照权利要6所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述金属为银。
  8. 按照权利要求6所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述透明物质为空气、二氧化硅或者硅。
  9. 按照权利要求1所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述参考光的工作波长为780nm,所述太赫兹波的波长为3μm;所述太赫兹波强度为1.2nW~4.2nW。
  10. 按照权利要求1所述的基于MIM高灵敏度SPP太赫兹波探测器,其特征在于:所述光电探测器位于水平波导的输出端口;所述光电探测器的材料为硅。
PCT/CN2016/106593 2016-02-15 2016-11-21 基于mim高灵敏度spp太赫兹探测器 WO2017140136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/485,015 US11099060B2 (en) 2016-02-15 2016-11-21 Metal-insulator-metal high-sensitivity surface plasmon polariton terahertz wave detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610085878.9 2016-02-15
CN201610085878.9A CN105737975B (zh) 2016-02-15 2016-02-15 基于mim高灵敏度spp太赫兹探测器

Publications (1)

Publication Number Publication Date
WO2017140136A1 true WO2017140136A1 (zh) 2017-08-24

Family

ID=56245953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106593 WO2017140136A1 (zh) 2016-02-15 2016-11-21 基于mim高灵敏度spp太赫兹探测器

Country Status (3)

Country Link
US (1) US11099060B2 (zh)
CN (1) CN105737975B (zh)
WO (1) WO2017140136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784128A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737975B (zh) * 2016-02-15 2021-04-30 欧阳征标 基于mim高灵敏度spp太赫兹探测器
CN106373968A (zh) * 2016-11-14 2017-02-01 郭玮 一种含碳素材料的光电转化装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038213A (zh) * 2007-04-13 2007-09-19 北京工业大学 双腔平衡式气动室温红外探测器
CN103398776A (zh) * 2013-08-20 2013-11-20 西北核技术研究所 一种过模大功率脉冲太赫兹功率探测器
CN103855228A (zh) * 2014-02-21 2014-06-11 上海大学 一种基于光学天线的太赫兹探测器件
WO2014114447A1 (de) * 2013-01-22 2014-07-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Detektor für infrarot- und/oder thz-strahlung
CN203760501U (zh) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN基等离子激元探测器
CN104048768A (zh) * 2014-06-23 2014-09-17 山东科技大学 基于金属线栅的法布里-珀罗THz波长测量仪及测量方法
CN204116640U (zh) * 2014-10-08 2015-01-21 江南大学 基于矩形环共振腔与入射波导接桥的表面等离子体滤波器
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN105070996A (zh) * 2015-07-29 2015-11-18 常熟浙瑞亘光电技术有限公司 基于磁等离子激元单向腔的四端口太赫兹波环行器
CN105572798A (zh) * 2016-02-15 2016-05-11 欧阳征标 基于mim高灵敏度spp温度光开关
CN105572797A (zh) * 2016-02-15 2016-05-11 欧阳征标 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
CN105737975A (zh) * 2016-02-15 2016-07-06 欧阳征标 基于mim高灵敏度spp太赫兹探测器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464273A (en) * 1968-04-08 1969-09-02 Micromeritics Instr Corp Surface area apparatus and method
JPS6283728A (ja) * 1985-10-09 1987-04-17 Hitachi Ltd 時分割駆動光スイツチアレイ
CN1996682A (zh) * 2006-08-31 2007-07-11 欧阳征标 二维光子晶体微谐振腔
CN101582381B (zh) * 2008-05-14 2011-01-26 鸿富锦精密工业(深圳)有限公司 薄膜晶体管及其阵列的制备方法
CN102539339B (zh) * 2012-01-06 2014-02-12 中国科学院物理研究所 一种太赫兹波探测器
CN102902130A (zh) * 2012-09-27 2013-01-30 中国计量学院 高速太赫兹波调制装置及其方法
US9523152B2 (en) * 2013-09-06 2016-12-20 Massachusetts Institute Of Technology Metallic dielectric photonic crystals and methods of fabrication
CN103743498A (zh) * 2014-01-13 2014-04-23 南京工程学院 一种基于光强调制原理的光纤温度传感器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038213A (zh) * 2007-04-13 2007-09-19 北京工业大学 双腔平衡式气动室温红外探测器
WO2014114447A1 (de) * 2013-01-22 2014-07-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Detektor für infrarot- und/oder thz-strahlung
CN103398776A (zh) * 2013-08-20 2013-11-20 西北核技术研究所 一种过模大功率脉冲太赫兹功率探测器
CN103855228A (zh) * 2014-02-21 2014-06-11 上海大学 一种基于光学天线的太赫兹探测器件
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN203760501U (zh) * 2014-03-31 2014-08-06 中国电子科技集团公司第十三研究所 GaN基等离子激元探测器
CN104048768A (zh) * 2014-06-23 2014-09-17 山东科技大学 基于金属线栅的法布里-珀罗THz波长测量仪及测量方法
CN204116640U (zh) * 2014-10-08 2015-01-21 江南大学 基于矩形环共振腔与入射波导接桥的表面等离子体滤波器
CN105070996A (zh) * 2015-07-29 2015-11-18 常熟浙瑞亘光电技术有限公司 基于磁等离子激元单向腔的四端口太赫兹波环行器
CN105572798A (zh) * 2016-02-15 2016-05-11 欧阳征标 基于mim高灵敏度spp温度光开关
CN105572797A (zh) * 2016-02-15 2016-05-11 欧阳征标 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
CN105737975A (zh) * 2016-02-15 2016-07-06 欧阳征标 基于mim高灵敏度spp太赫兹探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784128A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法
CN114784128B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种基于蝶形天线结构的拓扑增强型碲化锑太赫兹光电探测器及其制备方法

Also Published As

Publication number Publication date
CN105737975A (zh) 2016-07-06
US11099060B2 (en) 2021-08-24
US20200041334A1 (en) 2020-02-06
CN105737975B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2017140149A1 (zh) 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
US10983047B2 (en) Imaging devices including dielectric metamaterial absorbers and related methods
Withayachumnankul et al. Plasmonic resonance toward terahertz perfect absorbers
He et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition
WO2017140136A1 (zh) 基于mim高灵敏度spp太赫兹探测器
Wang et al. Vanadium oxide microbolometer with gold black absorbing layer
CN105606533A (zh) 气体传感器
WO2017140146A1 (zh) 基于内置液囊和光谱谷点的高分辨率温度传感器
Barzegar-Parizi et al. Dynamically switchable sub-THz absorber using VO 2 metamaterial suitable in optoelectronic applications
CN105891609A (zh) 一种热机械式电磁辐射探测器
CN105606250B (zh) 基于内置液囊和固定波长的高分辨温度传感器
CN105571742B (zh) 基于外置液囊和固定波长的超高分辨温度传感器
CN106129167B (zh) 一种石墨烯太赫兹探测器及其制备方法
WO2017140137A1 (zh) 基于mim高灵敏度spp温度光开关
Safaei et al. Multi-spectral frequency selective mid-infrared microbolometers
WO2017140148A1 (zh) 基于外置液囊和光谱谷点的超高分辨率温度传感器
Wu et al. Broadband tunable absorption based on phase change materials
CN105371992A (zh) 温度传感器响应一致性标定测试系统及方法
Zhang et al. Multi-Angle method to retrieve infrared spectral properties of a high-transparency material at high temperatures
CN205176417U (zh) 一种宽带的中红外调制器
Luo et al. Whispering-gallery mode resonance-assisted plasmonic sensing and switching in subwavelength nanostructures
Qian et al. Zero-power light-actuated micromechanical relay
CN103605207B (zh) 一种基于偶氮苯材料的光控回音壁模式产生系统
CN107478249A (zh) 可实现Fano共振的扇形纳米传感器
CN105137619A (zh) 一种宽带的中红外调制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.12.18)

122 Ep: pct application non-entry in european phase

Ref document number: 16890362

Country of ref document: EP

Kind code of ref document: A1