WO2017139911A1 - 基于机械手和测量臂的焊接系统及其焊接方法 - Google Patents

基于机械手和测量臂的焊接系统及其焊接方法 Download PDF

Info

Publication number
WO2017139911A1
WO2017139911A1 PCT/CN2016/073777 CN2016073777W WO2017139911A1 WO 2017139911 A1 WO2017139911 A1 WO 2017139911A1 CN 2016073777 W CN2016073777 W CN 2016073777W WO 2017139911 A1 WO2017139911 A1 WO 2017139911A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring arm
robot
welding
manipulator
axis
Prior art date
Application number
PCT/CN2016/073777
Other languages
English (en)
French (fr)
Inventor
叶成源
Original Assignee
叶成源
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶成源 filed Critical 叶成源
Priority to PCT/CN2016/073777 priority Critical patent/WO2017139911A1/zh
Priority to CN201680043868.7A priority patent/CN107848055A/zh
Publication of WO2017139911A1 publication Critical patent/WO2017139911A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the invention relates to the field of welding technology, in particular to a welding system based on a manipulator and a measuring arm and a welding method thereof.
  • the remote control input welding is to control the movement of the robot through a plurality of moving buttons corresponding to the movement axis of the manipulator on the operation box, visually measure the robot to reach the designated welding position, and press the input button to complete the input of a welding end point, because the general precision requirement is Around 0.2mm, this input method requires mental concentration, multi-angle visual inspection, and fine adjustment of the position multiple times to accurately align the welding position.
  • the operation is cumbersome, the 6 axes need to operate 12 motion buttons, respectively X+ , X- , Y+ , Y- , Z+ , Z- , R+ , R- , B+ , B- , T+ , T- , X+ , X- , and 3
  • the speed switch is 'high speed', 'high', 'low', some have encoder control buttons, and the operation time is more than 120 minutes at 50 solder joints; and the accuracy is not high, generally ⁇ 1mm range.
  • Importing mechanical drawing input welding is directly introduced into the welding diagram in the manipulator system, and the operation is very fast, but the precision of the fixture is required, the installation precision is high, and the workpiece precision is high, so the use cost is high, adjustment and upgrade are inconvenient, in actual production. Rarely used.
  • the Chinese invention patent discloses a method for automatic surfacing repair of damaged metal parts, which consists of a measuring robot and an arc welding robot, wherein the measuring robot is composed of a structured light sensor and 1#
  • the six-degree-of-freedom robot arm is composed of a welding torch and a 2# six-degree-of-freedom robot arm; its working process is as follows:
  • the technique disclosed in the invention patent uses the measuring robot to collect the welding end point, and then sends the data of the welding end point to the arc welding robot, which is equivalent to the introduction of the mechanical drawing input welding method, and the cost is high, and the measuring robot can measure a relatively small range.
  • the Chinese utility model patent publication number CN 203804382 U discloses a new welding robot, including a Y-axis, Z Axis, control box and X-axis, the X-axis is arranged on the top of the control box, the Y-axis is slidably connected on the X-axis; the Z-axis is slidably connected to the Z-axis via the slider, and Z One end of the drag chain is connected to the shaft, and the other end of the drag chain is connected to the top of the control box.
  • the control block is arranged in the middle of the drag chain, and the legs of the control block are connected in the middle of the Y axis; the Z motor on the left end of the Z axis controls the Z
  • the axis moves to the left and right, the right end face of the Z axis is provided with an A axis, and the one end face of the A axis is connected to R One end of the shaft.
  • the welding gun of the welding robot disclosed in the utility model patent is fixed, the operation is inconvenient in the welding process, and the operation range is small.
  • the invention provides a welding system based on a manipulator and a measuring arm and a welding method thereof, which solves the problems of inconvenient welding operation and small operation range of the existing robot.
  • a welding system based on a manipulator and a measuring arm comprising a manipulator and a measuring arm, the measuring arm is detachably arranged on the manipulator, the manipulator and the measuring arm are both multi-degree-of-freedom manipulators, the manipulator comprises a plurality of modular joints in series, the module
  • the motor joint is connected with a driving mechanism, the driving mechanism is connected to the controller, the bottom of the manipulator is provided with a rotating joint, the rotating joint is fixedly connected to the base of the robot, and the top end of the manipulator is provided with an end joint composed of a modular joint for mounting the welding gun;
  • the bottom of the measuring arm is mounted on the modular joint, the top of the measuring arm is the handle, the top of the handle is provided with a sensor probe for measuring and determining the welding end point, and the side of the handle is provided with an input button for controlling the input welding end point and
  • the moving button for controlling the movement of the measuring arm, the input button and the moving button are electrically connected to the central processor, the central processor
  • the measuring arm comprises a plurality of joints, an encoder is connected to the joint, the encoder and the central processing unit are connected by a data line, a plurality of through holes are arranged in the side wall of the joint, the data lines are arranged in the through holes, the data lines and the through holes One-to-one correspondence, the through holes are aggregated at the connection between the central processing unit and the data line; the central processing unit and the positioning mechanism are connected by a data line.
  • the positioning mechanism measures the angle of each modular joint of the measuring arm, and the positioning mechanism comprises a single chip system, and the single chip system calculates the measuring arm offset according to the angles of the plurality of modular joints.
  • the controller sets the joint of the rotating joint and the robot base as the origin, and sets the direction of the vertical robot base to Z.
  • the controller stores the length, width and height data of the modular joint, the displacement data of the drive mechanism movement and the length data of the welding gun.
  • both the manipulator and the measuring arm use a 3-7 degree of freedom manipulator.
  • a welding method according to the above-described welding system based on a robot and a measuring arm, comprising the following steps:
  • the positioning mechanism sends the offset of the measuring arm to the controller
  • the controller obtains the absolute coordinates of all the welding end points according to the welding torch coordinates at the top of the robot and the received offset of the measuring arm, and obtains the characteristic curves of all the welding end points according to the absolute coordinates;
  • the controller drives the welding torch to weld according to the characteristic curve.
  • setting the directions of the X axis, the Y axis, and the Z axis in the step (1) specifically includes the following steps:
  • the modular joint is set to be perpendicular to each other, and the direction perpendicular to the plane in which the robot base is located is directed to Z.
  • the direction perpendicular to the X and Z axes is set to the Y axis.
  • the characteristic curves are a straight line, an arc, an ellipse, a parabola, a hyperbola, an involute, and a spline.
  • the robot moves by multi-axis linkage.
  • both the manipulator and the measuring arm use a 3-7 degree of freedom manipulator.
  • the invention has the beneficial effects that the measuring arm is mounted on the robot hand, the range that the measuring arm can measure is increased, and the button is reduced to 2
  • the operation is more convenient, and the measuring arm directly sends the coordinate information of the welding end point to the robot, and the coordinates of the welding end point need not be manually determined, and the error is small.
  • FIG. 1 is a schematic structural view of a welding system based on a robot and a measuring arm according to the present invention
  • FIG. 2 is a flow chart of a welding method performed by a welding system of a robot and a measuring arm according to the present invention.
  • the present invention proposes a welding system based on a robot and a measuring arm, including a robot 1 and a measuring arm 2, and a measuring arm 2 Removably placed on the robot 1, the robot 1 and the measuring arm 2 are both multi-degree-of-freedom robots, robot 1 It includes multiple modular joints in series, the modular joints are connected with a drive mechanism, the drive mechanism is connected to the controller, and the bottom of the manipulator 1 is provided with a 360-degree rotating joint 4 , 360 degree rotating joint 4 Fixedly attached to the robot base 5, the top end of the robot 1 is provided with an end joint of a modular joint for mounting the welding torch 3; the bottom of the measuring arm 2 is mounted on the modular joint, the measuring arm 2 The top is the handle, and the top of the handle is provided with a sensor probe 6 for measuring and determining the welding end point, the side of the handle is provided with an input button 8 for controlling the input welding end point and for controlling the measuring arm 2 The moving moving button 7 , the input button 8 and the moving button 7 are both electrical
  • the utility model comprises a plurality of joints, an encoder is connected to the joint, the encoder and the central processor are connected by a data line, a plurality of through holes are arranged in the sidewall of the joint, the data line is arranged in the through hole, and the data line is in one-to-one correspondence with the through hole.
  • the holes are gathered together at the junction of the central processing unit and the data line; the central processing unit is connected to the positioning mechanism via a data line.
  • the positioning mechanism measures the angle of each modular joint of the measuring arm.
  • the positioning mechanism includes a single-chip microcomputer system, and the single-chip microcomputer system calculates the offset of the measuring arm according to the angles of a plurality of modular joints.
  • the positioning mechanism includes a measuring arm 2
  • the encoder in each joint, the encoder corresponding to each joint sends the detected data to the single-chip microcomputer system, and the single-chip microcomputer system calculates the offset and moving direction of the measuring arm 2 based on the received data.
  • the controller sets the connection between the 360 degree swivel joint 4 and the robot base 5 as the origin, and sets the direction of the vertical robot base 5 to Z.
  • the axis the controller stores the length, width and height data of the modular joint, the displacement data of the driving mechanism and the length data of the welding torch 3.
  • Both the robot and the measuring arm use a 3-7 DOF manipulator.
  • the welding system of the present invention can be installed and used by the following steps:
  • the robot moves to the specified position by multi-axis linkage according to the deviation direction of the measuring arm;
  • Multiple welding end points can form characteristic curves such as straight lines, arcs, ellipses, and splines;
  • the measuring arm and the robot are 6 joint degrees of freedom, which are completely controlled by the human hand, and are very convenient to operate, and can be positioned to a designated position within 1 second, and the welding operation of 50 points is taken as an example below.
  • this invention Advantage description Mobile mode Single axis movement Multi-axis linkage Rapid positioning Measuring range Robot range Robot range + measuring arm range Greater measurement range Number of buttons that need to be operated 12+ speed gear switch 2 Simpler operation Operating time 120 minutes 5 minutes Operational accuracy ⁇ 1mm ⁇ 0.15mm Labor intensity Need a high degree of concentration Easy to touch Conventional teaching is to visually weld the welding gun to the weld. Dead angle performance The position of the line of sight cannot be operated Unaffected by sight Reduce dead ends
  • the present invention also provides a welding method according to the above-described welding system based on a robot and a measuring arm, comprising the following steps:
  • the controller obtains the absolute coordinates of all the welding end points according to the welding torch coordinates at the top of the robot and the offset of the receiving measuring arm, and obtains the characteristic curve composed of all the welding end points according to the absolute coordinates; the formation of the characteristic curve can be formed by the controller Specifically, the controller can be a single chip microcomputer.
  • the controller drives the welding torch to weld according to the characteristic curve.
  • the direction of setting the X axis, Y axis and Z axis in step ( 1 ) specifically includes the following steps:
  • the modular joint is set to be perpendicular to each other, and the direction perpendicular to the plane in which the robot base is located is directed to Z.
  • the direction perpendicular to the X and Z axes is set to the Y axis.
  • the characteristic curves are straight lines, arcs, ellipses, parabolas, hyperbolas, involutes, and splines.
  • the robot moves in a multi-axis linkage.
  • both the robot and the measuring arm are 3-7 Degree of freedom robotic arm.
  • multi-axis linkage the movement of the robot is more flexible, the range of motion is wider, and the control is more sensitive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种基于机械手(1)和测量臂(2)的焊接系统及焊接方法,包括机械手(1)和测量臂(2),测量臂(2)可拆卸地设置在机械手(1)上,机械手(1)包括多个串联的模块化关节,模块化关节均连接驱动机构,驱动机构连接控制器,机械手(1)的底部设有一个旋转关节(4),旋转关节(4)固定连接在机械手底座(5)上,机械手(1)的顶端设有用于安装焊枪(3)的末端关节;测量臂(2)的底部安装在模块化关节上,测量臂(2)的顶部为手柄,其顶部设有传感器探头(6),侧面设有输入按钮(8)和移动按钮(7),输入按钮(8)和移动按钮(7)均与中央处理器电连接,测量臂(2)内部设有定位机构,定位机构将测量臂(2)的偏移量发送给控制器。通过将测量臂(2)安装在机械手(1)上,可增加测量臂(2)的测量范围,将按键减少为2个可使操作更加方便,测量臂(2)将焊接端点的坐标信息发送给机械手(1),误差较小。

Description

基于机械手和测量臂的焊接系统及其焊接方法 基于机械手和测量臂的焊接系统及其焊接方法
技术领域
本发明涉及焊接技术领域,特别是指一种基于机械手和测量臂的焊接系统及其焊接方法。
背景技术
目前的机械手焊接方法一般是遥控输入焊接和导入机械图输入焊接。遥控器输入焊接是通过操作盒上面多个与机械手运动轴对应的移动按钮控制机械手移动,目测机械手到达指定焊接位置,按下输入按钮,完成一个焊接端点的输入,由于一般的精度要求是在 0.2mm 左右,这个输入方法需要精神集中,多角度目测,多次细微调节位置才能准确对准焊接位置。有以下不足:操作繁琐, 6 轴要操作 12 个运动按钮,分别是 X+ , X- , Y+ , Y- , Z+ , Z- , R+ , R- , B+ , B- , T+ , T- , X+ , X- ,还有 3 个速度档开关,分别是'高速', '高', '低',有些还有编码器控制按钮,另外,在 50 个焊接点时操作时间超过 120 分钟;而且精度不高,一般在 ± 1mm 范围。
导入机械图输入焊接是在机械手系统里面直接导入焊接图,操作很快,不过要求夹具精度高,安装精度高,工件精度高,所以使用成本很高,调整和升级很不方便,在实际生产中很少用到。
针对上述不足,公开号为 CN101927391A 的中国发明专利公开了一种对破损金属部件进行自动堆焊修复的方法,由测量机器人和弧焊机器人组成,其中测量机器人由结构光传感器和 1# 六自由度机械臂构成,弧焊机器人由焊枪和 2# 六自由度机械臂构成;其工作过程如下:
a 、用测量机器人扫描金属部件,得到金属部件的三维型面数据,三维型面数据为点云数据;
b 、将点云数据与原始 CAD 模型进行比对,提取出破损区域数据;
c 、根据破损区域数据生成修复路径;
d 、控制弧焊机器人修复破损区域数据。
该发明专利公开的技术是采用测量机器人采集焊接端点,然后将焊接端点的数据发送给弧焊机器人,相当于导入机械图输入焊接方法,成本高,而且测量机器人能够测量的范围比较小。
另外,公开号为 CN 203804382 U 的中国实用新型专利公开了新型焊接机械手,包括 Y 轴、 Z 轴、控制箱和 X 轴,控制箱的顶部设有 X 轴, X 轴上滑动连接有 Y 轴; Y 轴通过滑块滑动连接 Z 轴,且 Z 轴上连接拖链的一端,拖链的另一端连接在控制箱的顶部,拖链中部设有控制块,控制块的支脚连接在 Y 轴的中部 ; Z 轴的左端设有 Z 电机从而控制 Z 轴左右运动, Z 轴的右端端面设有 A 轴, A 轴的一侧端面连接 R 轴的一端。该实用新型专利公开的焊接机械手的焊枪是固定的,焊接过程中操作不方便,而且操作范围小。
发明内容
本发明提出一种基于机械手和测量臂的焊接系统及其焊接方法,解决了现有机械手焊接操作不方便和操作范围小的问题。
本发明的技术方案是这样实现的:
一种基于机械手和测量臂的焊接系统,包括机械手和测量臂,测量臂可拆卸地设置在机械手上,机械手和测量臂均采用多自由度机械臂,机械手包括多个串联的模块化关节,模块化关节均连接有驱动机构,驱动机构连接控制器,机械手的底部设有一个旋转关节,旋转关节固定连接在机械手底座上,机械手的顶端设有用于安装焊枪的由模块化关节构成的末端关节;测量臂的底部安装在模块化关节上,测量臂的顶部为手柄,手柄的顶部设有一个用于测量并确定焊接端点的传感器探头,手柄的侧面设有用于控制输入焊接端点的输入按钮和用于控制测量臂移动的移动按钮,输入按钮和移动按钮均与中央处理器电连接,中央处理器设在测量臂的内部;测量臂内部设有用于确定测量臂的偏移量的定位机构,定位机构将测量臂的偏移量发送给控制器,控制器根据测量臂固定在机械手上的坐标和测量臂的偏移量确定焊接端点的绝对坐标。
进一步的,测量臂包括若干关节,关节连接有编码器,编码器与中央处理器通过数据线连接,关节的侧壁内设有若干通孔,数据线设在通孔内,数据线与通孔一一对应,通孔在中央处理器与数据线的连接处聚合在一起;中央处理器与定位机构通过数据线连接。
进一步的,定位机构测量测量臂的每个模块化关节的角度,定位机构包括单片机系统,单片机系统根据若干模块化关节的角度计算出测量臂偏移量。
进一步的,控制器将旋转关节与机械手底座连接处设为原点,将垂直机械手底座的方向设为 Z 轴,控制器存储有模块化关节的长宽高数据、驱动机构移动的位移数据和焊枪的长度数据。
进一步的,机械手和测量臂均采用 3-7 自由度机械臂。
一种根据上述基于机械手和测量臂的焊接系统进行的焊接方法,包括以下步骤:
( 1 )设定 X 轴、 Y 轴和 Z 轴的方向,根据机械手和测量臂的尺寸信息,设定测量臂的原始坐标,原始坐标是测量臂固定在机械手上的坐标;
( 2 )按住移动按钮,移动手柄,将传感器探头移动到焊接位置,传感器探头确定一个焊接端点;
( 3 )按下输入按钮,定位机构将测量臂的偏移量发送给控制器;
( 4 )判断是否存在其他的焊接端点,若是,则进入步骤( 2 ),若否,则进入下一步;
( 5 )控制器根据机械手顶端的焊枪坐标和接收到的测量臂的偏移量得出所有焊接端点的绝对坐标,根据绝对坐标得出所有焊接端点组成的特征曲线;
( 6 )控制器根据特征曲线驱动焊枪进行焊接。
进一步的,步骤( 1 )中设定 X 轴、 Y 轴和 Z 轴的方向具体包括以下步骤:
( 101 )将测量臂与旋转关节与机械手底座连接处设为原点;
( 102 )将模块化关节设置成互相垂直的两部分,与机械手底座所在的平面垂直的一部分指向的方向为 Z 轴,将另一部分指向的方向设为 X 轴;将与 X 轴和 Z 轴垂直的方向设为 Y 轴。
进一步的,特征曲线为直线、圆弧、椭圆、抛物线、双曲线、渐开线和样条曲线。
进一步的,机械手通过多轴联动方式进行移动。
进一步的,机械手和测量臂均采用 3-7 自由度机械臂。
本发明的有益效果在于:将测量臂安装在机械手上,增加了测量臂能够测量的范围,将按键减少为 2 个,操作更加方便,测量臂直接将焊接端点的坐标信息发送给机械手,不需要人工确定焊接端点的坐标,误差较小。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图 1 为本发明基于机械手和测量臂的焊接系统的结构示意图;
图 2 为本发明基于机械手和测量臂的焊接系统进行的焊接方法的流程图。
图中, 1- 机械手; 2- 测量臂; 3- 焊枪; 4-360 度旋转关节; 5- 机械手底座; 6- 传感器探头; 7- 移动按钮; 8- 输入按钮。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图 1 所示,本发明提出了一种基于机械手和测量臂的焊接系统,包括机械手 1 和测量臂 2 ,测量臂 2 可拆卸地设置在机械手 1 上,机械手 1 和测量臂 2 均采用多自由度机械臂,机械手 1 包括多个串联的模块化关节,模块化关节均连接有驱动机构,驱动机构连接控制器,机械手 1 的底部设有一个 360 度旋转关节 4 , 360 度旋转关节 4 固定连接在机械手底座 5 上,机械手 1 的顶端设有用于安装焊枪 3 的由模块化关节构成的末端关节;测量臂 2 的底部安装在模块化关节上,测量臂 2 的顶部为手柄,手柄的顶部设有一个用于测量并确定焊接端点的传感器探头 6 ,手柄的侧面设有用于控制输入焊接端点的输入按钮 8 和用于控制测量臂 2 移动的移动按钮 7 ,输入按钮 8 和移动按钮 7 均与中央处理器电连接,中央处理器设在测量臂 2 的内部;测量臂 2 内部设有用于确定测量臂 2 的偏移量的定位机构,定位机构将测量臂 2 的偏移量发送给控制器,控制器根据测量臂 2 固定在机械手 1 上的坐标和测量臂 2 的偏移量确定焊接端点的绝对坐标。
测量臂 2 包括若干关节,关节连接有编码器,编码器与中央处理器通过数据线连接,关节的侧壁内设有若干通孔,数据线设在通孔内,数据线与通孔一一对应,通孔在中央处理器与数据线的连接处聚合在一起;中央处理器与定位机构通过数据线连接。
定位机构测量测量臂的每个模块化关节的角度,定位机构包括单片机系统,单片机系统根据若干模块化关节的角度计算出测量臂偏移量。具体的,定位机构包括用于测量测量臂 2 的每个关节内的编码器,每个关节对应的编码器将数值均发送检测到的数据至单片机系统,单片机系统根据接收到的数据计算出测量臂 2 的偏移量和移动方向。
控制器将 360 度旋转关节 4 与机械手底座 5 连接处设为原点,将垂直机械手底座 5 的方向设为 Z 轴,控制器存储有模块化关节的长宽高数据、驱动机构移动的位移数据和焊枪 3 的长度数据。
机械手和测量臂均采用 3-7 自由度机械臂。
本发明所涉及的焊接系统,可通过以下步骤进行安装和使用:
1. 将机械手安装在固定位置(即机械手底座5)上;
2. 将测量臂可拆卸地安装在机械手末端关节或者其他模块化关节上;
3. 用户手握测量臂的手柄,牵动测量臂传感器探头6向预定的焊接位置移动;
4. 按下测量臂上的移动按钮7,让机械手快速移动到指定的焊接位置附近;
5. 机械手根据测量臂偏移方向进行多轴联动方式快速移动到指定位置;
6. 放开移动按钮7,机械手停在当前位置;
7. 把传感器探头6直接触碰到焊接位置上;
8. 按下输入按钮8确定该焊接端点的绝对坐标;
9. 多个焊接端点可以组成直线,圆弧,椭圆,样条曲线等特征曲线;
10. 完成曲线后,把测量臂扣紧固定在机械手上,或者卸载测量臂,防止焊接过程中把测量臂甩出,影响焊接。
在本发明的实施例中,测量臂和机械手均为6关节自由度,完全由人手自由控制,操作起来非常方便,可以在1秒内定位到指定位置,下面以50个点的焊接操作为例,具体分析优缺点:
常规示教方法 本发明 优势说明
移动方式 单轴移动 多轴联动 快速定位
测量范围 机械手动作范围 机械手范围 + 测量臂范围 测量范围更大
需要操作的按钮数量 12+ 速度档位开关 2 个 操作更加简单
操作时间 120 分钟 5 分钟
操作精度 ± 1mm ± 0.15mm
劳动强度 需要高度集中精神 轻松触碰 常规示教是靠人眼目测焊枪对准焊缝
死角性能 挡视线的位置无法操作 不受视线影响 减少死角
如图 2 所示,本发明还提出了一种根据上述基于机械手和测量臂的焊接系统进行的焊接方法,包括以下步骤:
( 1 )设定 X 轴、 Y 轴和 Z 轴的方向,根据机械手和测量臂的尺寸信息,设定测量臂的原始坐标,原始坐标是测量臂固定在机械手上的坐标;
( 2 )按住移动按钮 7 ,移动手柄,将传感器探头 6 移动到焊接位置,传感器探头 6 确定一个焊接端点;
( 3 )按下输入按钮 8 ,定位机构将测量臂的偏移量发送给控制器;
( 4 )判断是否存在其他的焊接端点,若是,则进入步骤( 2 ),若否,则进入下一步;
( 5 )控制器根据机械手顶端的焊枪坐标和接收到的测量臂的偏移量得出所有焊接端点的绝对坐标,根据绝对坐标得出所有焊接端点组成的特征曲线;特征曲线的形成可由控制器来形成,具体的,控制器可采用单片机。
( 6 )控制器根据特征曲线驱动焊枪进行焊接。
步骤( 1 )中设定 X 轴、 Y 轴和 Z 轴的方向具体包括以下步骤:
( 101 )将测量臂与 360 度旋转关节与机械手底座连接处设为原点;
( 102 )将模块化关节设置成互相垂直的两部分,与机械手底座所在的平面垂直的一部分指向的方向为 Z 轴,将另一部分指向的方向设为 X 轴;将与 X 轴和 Z 轴垂直的方向设为 Y 轴。
特征曲线为直线、圆弧、椭圆、抛物线、双曲线、渐开线和样条曲线。
机械手通过多轴联动方式进行移动。具体的,机械手和测量臂均采用 3-7 自由度机械臂。通过多轴联动方式,使得机械手的运动更加灵活,活动范围更广,控制更加灵敏。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于机械手和测量臂的焊接系统,包括机械手和测量臂,所述测量臂可拆卸地设置在所述机械手上,所述机械手和测量臂均采用多自由度机械臂,其特征在于:所述机械手包括多个串联的模块化关节,所述模块化关节均连接有驱动机构,所述驱动机构连接控制器,所述机械手的底部设有一个旋转关节,所述旋转关节固定连接在机械手底座上,所述机械手的顶端设有用于安装焊枪的由模块化关节构成的末端关节;所述测量臂的底部安装在所述模块化关节上,所述测量臂的顶部为手柄,所述手柄的顶部设有一个用于测量并确定焊接端点的传感器探头,所述手柄的侧面设有用于控制输入所述焊接端点的输入按钮和用于控制所述测量臂移动的移动按钮,所述输入按钮和所述移动按钮均与中央处理器电连接,所述中央处理器设在所述测量臂的内部;所述测量臂内部设有用于确定所述测量臂的偏移量的定位机构,所述定位机构将所述测量臂的偏移量发送给所述控制器,所述控制器根据所述测量臂固定在所述机械手上的坐标和所述测量臂的偏移量确定所述焊接端点的绝对坐标。
  2. 根据权利要求1所述的基于机械手和测量臂的焊接系统,其特征在于:所述测量臂包括若干关节,所述关节连接有编码器,所述编码器与所述中央处理器通过数据线连接,所述关节的侧壁内设有若干通孔,所述数据线设在所述通孔内,所述数据线与所述通孔一一对应,所述通孔在所述中央处理器与所述数据线的连接处聚合在一起;所述中央处理器与所述定位机构通过数据线连接。
  3. 根据权利要求1所述的基于机械手和测量臂的焊接系统,其特征在于:所述定位机构测量所述测量臂的每个模块化关节的角度,所述定位机构包括单片机系统,所述单片机系统根据若干模块化关节的角度计算出所述测量臂偏移量。
  4. 根据权利要求1所述的基于机械手和测量臂的焊接系统,其特征在于:所述控制器将所述旋转关节与所述机械手底座连接处设为原点,将垂直所述机械手底座的方向设为Z轴,所述控制器存储有所述模块化关节的长宽高数据、所述驱动机构移动的位移数据和所述焊枪的长度数据。
  5. 根据权利要求1所述的基于机械手和测量臂的焊接系统,其特征在于:所述机械手和测量臂均为3-7自由度机械臂。
  6. 一种根据权利要求1所述的基于机械手和测量臂的焊接系统进行的焊接方法,其特征在于,包括以下步骤:
    (1)设定X轴、Y轴和Z轴的方向,根据所述机械手和所述测量臂的尺寸信息,设定所述测量臂的原始坐标,所述原始坐标是所述测量臂固定在所述机械手上的坐标;
    (2)按住所述移动按钮,移动所述手柄,将所述传感器探头移动到焊接位置,所述传感器探头确定一个焊接端点;
    (3)按下所述输入按钮,所述定位机构将所述测量臂的偏移量发送给所述控制器;
    (4)判断是否存在其他的焊接端点,若是,则进入步骤(2),若否,则进入下一步;
    (5)所述控制器根据所述机械手顶端的焊枪坐标和接收到的所述测量臂的偏移量得出所有焊接端点的绝对坐标,根据绝对坐标得出所有焊接端点组成的特征曲线;
    (6)所述控制器根据所述特征曲线驱动所述焊枪进行焊接。
  7. 根据权利要求6所述的基于机械手和测量臂的焊接系统进行的焊接方法,其特征在于:步骤(1)中设定X轴、Y轴和Z轴的方向具体包括以下步骤:
    (101)将所述测量臂与所述旋转关节与所述机械手底座连接处设为原点;
    (102)将所述模块化关节设置成互相垂直的两部分,与所述机械手底座所在的平面垂直的一部分指向的方向为Z轴,将另一部分指向的方向设为X轴;将与X轴和Z轴垂直的方向设为Y轴。
  8. 根据权利要求6所述的基于机械手和测量臂的焊接系统进行的焊接方法,其特征在于:所述特征曲线为直线、圆弧、椭圆、抛物线、双曲线、渐开线和样条曲线。
  9. 根据权利要求6所述的基于机械手和测量臂的焊接系统进行的焊接方法,其特征在于:所述机械手通过多轴联动方式进行移动。
  10. 根据权利要求6所述的基于机械手和测量臂的焊接系统进行的焊接方法,其特征在于:所述机械手和测量臂均采用3-7自由度机械臂。
PCT/CN2016/073777 2016-02-15 2016-02-15 基于机械手和测量臂的焊接系统及其焊接方法 WO2017139911A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/073777 WO2017139911A1 (zh) 2016-02-15 2016-02-15 基于机械手和测量臂的焊接系统及其焊接方法
CN201680043868.7A CN107848055A (zh) 2016-02-15 2016-02-15 基于机械手和测量臂的焊接系统及其焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073777 WO2017139911A1 (zh) 2016-02-15 2016-02-15 基于机械手和测量臂的焊接系统及其焊接方法

Publications (1)

Publication Number Publication Date
WO2017139911A1 true WO2017139911A1 (zh) 2017-08-24

Family

ID=59624767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073777 WO2017139911A1 (zh) 2016-02-15 2016-02-15 基于机械手和测量臂的焊接系统及其焊接方法

Country Status (2)

Country Link
CN (1) CN107848055A (zh)
WO (1) WO2017139911A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108908407A (zh) * 2018-08-20 2018-11-30 安徽理工大学 一种支撑架可调的机械臂
CN114227095A (zh) * 2021-12-28 2022-03-25 安徽省安工机械制造有限公司 一种用于搅拌臂耐磨条焊接的智能机械臂
CN114888500A (zh) * 2022-03-09 2022-08-12 柳州铁道职业技术学院 一种铁路定型组合柜配线自动焊接机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197250A (ja) * 1995-01-30 1996-08-06 Komatsu Ltd 溶接ロボット
US20050103766A1 (en) * 2002-03-04 2005-05-19 Takahisa Iizuka Automatic groove copy welder and welding method
CN101623867A (zh) * 2008-07-11 2010-01-13 中国科学院沈阳自动化研究所 一种使机器人高精度跟踪指定路径的设备和方法
CN101927391A (zh) * 2010-08-27 2010-12-29 大连海事大学 对破损金属部件进行自动堆焊修复的方法
CN102489838A (zh) * 2011-12-15 2012-06-13 上海交通大学 越障全位置自主焊接机器人
CN104175031A (zh) * 2014-08-20 2014-12-03 北京工业大学 一种具有自主纠偏能力的焊接机器人系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102825365B (zh) * 2012-09-12 2015-03-25 湘潭大学 基于电容式传感器的焊缝自动跟踪系统及方法
CN104149089B (zh) * 2014-07-28 2017-03-01 广东工业大学 一种模块化串联式主机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197250A (ja) * 1995-01-30 1996-08-06 Komatsu Ltd 溶接ロボット
US20050103766A1 (en) * 2002-03-04 2005-05-19 Takahisa Iizuka Automatic groove copy welder and welding method
CN101623867A (zh) * 2008-07-11 2010-01-13 中国科学院沈阳自动化研究所 一种使机器人高精度跟踪指定路径的设备和方法
CN101927391A (zh) * 2010-08-27 2010-12-29 大连海事大学 对破损金属部件进行自动堆焊修复的方法
CN102489838A (zh) * 2011-12-15 2012-06-13 上海交通大学 越障全位置自主焊接机器人
CN104175031A (zh) * 2014-08-20 2014-12-03 北京工业大学 一种具有自主纠偏能力的焊接机器人系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108908407A (zh) * 2018-08-20 2018-11-30 安徽理工大学 一种支撑架可调的机械臂
CN114227095A (zh) * 2021-12-28 2022-03-25 安徽省安工机械制造有限公司 一种用于搅拌臂耐磨条焊接的智能机械臂
CN114888500A (zh) * 2022-03-09 2022-08-12 柳州铁道职业技术学院 一种铁路定型组合柜配线自动焊接机器人

Also Published As

Publication number Publication date
CN107848055A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
US11197730B2 (en) Manipulator system
US20130086801A1 (en) Assembling apparatus and production system
WO2017139911A1 (zh) 基于机械手和测量臂的焊接系统及其焊接方法
US20220024043A1 (en) Robot and robot system
JPS61279481A (ja) ロボツトの作業開始点検出制御方法
CN106624509B (zh) 一种高精度机器人自动焊接装置及其工作方法
WO2015099370A1 (ko) 곡면 패널 디스플레이 결함 리페어 장치
CN108638103A (zh) 一种自动抓取及位姿调整的机器人末端执行器及调整方法
CN219978154U (zh) 一种视觉检测旋转组件
CN107442846A (zh) 一种高精度电驱控制式金属软管抗压式切割装置
CN208019761U (zh) 锁螺丝工作平台及其五轴锁螺丝装置
JPH0510606B2 (zh)
CN109175835A (zh) 一种工业机器人焊接生产线
CN205551719U (zh) 制冷管路高频感应自动化焊接系统
JP2017170552A (ja) 位置制御システム
JP2003165078A (ja) 自動教示システム
WO2019039654A1 (ko) 로봇의 교시 장치, 방법 및 시스템
WO2019006698A1 (zh) 机器人的校准系统和校准方法、机器人系统、存储介质
JPH0283183A (ja) 多関節型ロボットの位置設定方法
CN219337464U (zh) 一种平面度检测装置
JP2019119034A (ja) 自動組立装置及びその制御方法
CN109227080A (zh) 一种多功能机械手及回转平台
US20240198534A1 (en) Robot inspection system
CN219266127U (zh) 一种用于多轴联动视觉检测设备的标定块
JPH0510605B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16890146

Country of ref document: EP

Kind code of ref document: A1