WO2017139822A1 - Method for operating an internal combustion engine - Google Patents

Method for operating an internal combustion engine Download PDF

Info

Publication number
WO2017139822A1
WO2017139822A1 PCT/AT2017/060030 AT2017060030W WO2017139822A1 WO 2017139822 A1 WO2017139822 A1 WO 2017139822A1 AT 2017060030 W AT2017060030 W AT 2017060030W WO 2017139822 A1 WO2017139822 A1 WO 2017139822A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
internal combustion
exhaust
section
combustion engine
Prior art date
Application number
PCT/AT2017/060030
Other languages
German (de)
French (fr)
Inventor
Hans Felix Seitz
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Publication of WO2017139822A1 publication Critical patent/WO2017139822A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0242Increasing exhaust brake effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating an internal combustion engine with an intake system and an exhaust system, in particular for driving a motor vehicle, wherein a first compressor via a shaft of the exhaust gas and a second compressor is electrically, mechanically or hydraulically driven, wherein the second compressor and the first Compressor are successively flowed through in an intake passage of the intake system of fresh air, wherein in at least one engine braking operation of the internal combustion engine, the second compressor is activated and the flow cross-section in at least one exhaust line of the exhaust system - preferably down to a defined effective residual flow cross section - is reduced.
  • Heavy-duty vehicles are typically equipped with engine braking devices to increase engine braking power when driving downhill.
  • engine braking devices often have a brake flap in the exhaust system, with which the exhaust back pressure and thus the gas exchange work can be increased during engine braking operation.
  • EP 2 634 405 AI an exhaust gas engine brake for an internal combustion engine is known.
  • the braking force is increased by increasing the internal exhaust pressure.
  • the internal combustion engine has an exhaust gas turbocharger whose compressor speed can be increased by an electric motor. Similar arrangements are also known from EP 2 634 403 A1 and EP 0 385 622 AI.
  • JP 2009/228448 A, DE 421 0070 C1, JP H 11 324 692 A, GB 2 499 823 A and JP S 5967537 U disclose internal combustion engines each having an intake and an exhaust system, wherein an exhaust-operated first compressor and an electric, mechanically or hydraulically driven second compressor is arranged in the inlet system, wherein the second compressor and the first compressor are successively flowed through by fresh air. During engine braking operation, the second compressor is activated and the flow cross-section in the exhaust system of the exhaust system is reduced.
  • the object of the invention is to increase the engine braking power in an internal combustion engine.
  • a further increase in the engine braking power can be achieved if, at least during engine braking operation, the drive power for the electrically driven second compressor is provided directly by a generator, preferably the generator, of the internal combustion engine.
  • a combustion chamber decompression mode is advantageously activated, wherein the control time of at least one exhaust valve per cylinder is preferably adjusted in order to carry out the combustion chamber decompression so that the work performed by the internal combustion engine in the compression stroke is left unused for the following cycle.
  • an outlet valve or an additional valve is opened at the end of the compression stroke and thus the pressure built up in the cylinder during the compression stroke is reduced. This allows a further increase in the engine braking torque.
  • an internal combustion engine of the aforementioned type is suitable, in which the second compressor can be activated in at least one engine braking mode of the internal combustion engine, which is preferably bypassable via a compressor bypass line.
  • the second compressor is disposed in the intake manifold of the intake system upstream of the first compressor.
  • the second compressor downstream of the first compressor in the inlet branch.
  • At least one brake valve is arranged in the exhaust system of the exhaust system, preferably downstream of the exhaust gas turbine.
  • the brake valve can be formed in a simple manner by a brake flap.
  • the brake flap it is also possible to use a variable turbine geometry of the exhaust gas turbine for adjusting the flow cross section.
  • FIG. 1 shows an internal combustion engine for carrying out the method according to the invention
  • FIGS. 2 and 3 show a comparison of the engine braking powers for different effective residual cross sections of the brake valve when using the method according to the invention with the engine braking power according to the prior art;
  • FIG. 4 shows the method according to the invention in a block diagram.
  • FIG. 1 shows an internal combustion engine 1 with, for example, six cylinders 2, an inlet system 3 for an inlet flow and an outlet system 4 for an exhaust gas flow. Downstream of an exhaust manifold 5, an exhaust gas turbine 8 of an exhaust gas turbocharger 9 is arranged, the first compressor 10 is arranged in the intake manifold 11 of the intake system 3.
  • Reference numeral 14 denotes an intercooler of the intake system 3 and reference numeral 15 denotes an air filter.
  • a control member 16 is arranged, which is formed in the embodiment shown in FIG. 1 as a downstream of the exhaust gas turbine in the exhaust line 7 arranged brake flap.
  • the control member 16 may be formed by a variable turbine geometry of the exhaust gas turbine 8.
  • the exhaust gas turbine 8 is designed with a bypass valve 6 (wastegate) arranged in a turbine bypass line 5.
  • a bypass valve 6 (wastegate) arranged in a turbine bypass line 5.
  • a second compressor 13 which is operated electrically via an electric motor 12, is arranged in the inlet branch 11.
  • the second compressor 13 arranged downstream of the air filter 15 can be bypassed via a second compressor bypass line 17, in which a check valve 18 is arranged.
  • FIG. 2 shows a characteristic diagram in which the pressure ratios CPR between the first compressor 10 and the second compressor 13 are plotted against the corrected air mass flow q m .
  • reference numeral SO designates an engine braking strategy known from the prior art, in which the pressure increase in the exhaust gas system 7 occurs only over a largely closed brake flap during engine braking operation.
  • sl, S2, S3 and S4 designate engine braking strategies according to the invention, in which the charge pressure in the intake line is increased by means of the electrically driven second compressor 13 and the brake valve 16 is closed with differently sized remaining cross sections , the line S l for the largest residual cross section and S4 stands for the least residual cross section.
  • the residual cross-section at S2 is smaller than at S l
  • the residual cross-section at S3 is smaller than at S2.
  • Deut ⁇ Lich can be seen that the Bremsleistu ng PB is better, the smaller the residual cross-section of the Bremsventi ls 16 in the closed state.
  • the braking valve 16 designed as a brake flap is initially closed, with a small residual flow cross section remaining open and thus establishing a specific gas flow over the brake flap (usually brake lever position "1" in the utility vehicle).
  • the engine brake By activating the combustion chamber decompression, the engine brake is switched on (for example, brake lever position 2). As a next step, the electrically driven second compressor 13 is switched on and it builds boost pressure in egg nlasssystem 3 of the internal combustion engine 1.
  • the boost pressure significantly increases braking power as more air in the combustion chambers is compressed and decompressed.
  • the boost pressure is electrically generated inde pendent ⁇ n from the engine speed and there is a high braking power PB even at low engine speed n.
  • the mass flow q m can be suitably adjusted by the engine: If the residual flow cross section A e ff is made too small, the second compressor 13 can build up high pressure and high braking power PB is reached, but it is not enough air through the internal combustion engine 1 geför ⁇ changed. Since the braking energy is converted into heat, so not enough heat can be dissipated and the engine would thermally overloaded over ⁇ .
  • the second compressor 13 may n ot enough air into the system to promote or ranges due to limited electrical performance of the electrical system, the Map width of the second compressor 13 is not sufficient to cover the required area.
  • the effective Restström ungsquerites A e ff of the brake flap can thereby be approximately determined m it fol ⁇ gender formula:
  • the effective residual flow cross section A e ff can be achieved by a partial targeted opening of the brake flap or by open cross sections in the closed brake flap (for example bores).
  • Fig. 4 the inventive method for achieving the desired high braking performance in a variant by the example of a control over gas temperature T A (for example, the fresh air downstream of the second compressor 13 in the intake system 3 or the exhaust gas in the exhaust system 4) is shown, but it is also the regulation of other limiting parameters such as speed of the electric second compressor 13 or gas pressure in the intake system 3 or exhaust system 4 vorschellbar.
  • the control can be done via sensors and maps in a control loop on the running internal combustion engine 1.
  • a suitable selection of the design parameters such as compressor drive power and opening degree of the brake flap during the design and testing phase of the internal combustion engine 1 can take place and incorporated as a fixed geometry in the engine concept or be stored as maps in the engine control.
  • the first brake stage BS l, the second brake stage BS2 or the third brake stage BS3 switched.
  • the brake valve 16 is closed except for a defined effective residual flow cross-section A e ff.
  • a combustion chamber decompression mode is activated, wherein, for example, at least one exhaust valve per cylinder is opened constantly or cyclically close to the top dead center of the ignition.
  • the second compressor 13 is additionally driven via the electric motor 12.
  • step BS4 it is checked whether the gas temperature T G exceeds a maximum value T G max. If this is the case ("y"), the effective residual flow area Aeff is increased by opening the brake valve 16. If the gas temperature TA is not greater than the defined maximum value TGmax, it is checked in step BS5 whether the desired braking power PB s is reached. If this is not the case ("n"), the drive power of the second compressor 13 is increased.
  • the drive power for the electrically driven second compressor 13 can be generated directly from the alternator of the internal combustion engine 1 during braking operation - the required drive power of the generator increases the braking power of the internal combustion engine 11.

Abstract

The invention relates to a method for operating an internal combustion engine (1) comprising an inlet system (3) and an outlet system (4), in particular for driving a motor vehicle, wherein a first compressor (10) is driven by exhaust gas via a shaft and a second compressor (13) is driven electrically, mechanically or hydraulically, wherein fresh air successively flows through the second compressor (13) and the first compressor (10) in an inlet line (11) of the inlet system (3), wherein the second compressor (13) is activated in at least one motor-braking operation of the internal combustion engine (1) and the flow cross-section is reduced in at least one exhaust gas line (7) of the outlet system (4), preferably up to a defined effective residual flow cross-section (Aeff). The braking power (PB) can be increased if the effective residual flow cross-section (Aeff) is determined according to the following equation: formula (I) where Aeff is effective residual flow cross-section; DVi is the internal valve seat diameter of at least one outlet valve; NValve is the number of outlet valves per cylinder (2); NCyl is the number of cylinders (2) connected to the exhaust gas line (7) having the effective residual flow cross-section (Aeff); C is a factor in the region of 1% and 12%.

Description

Verfahren zum Betreiben einer Brennkraftmaschine  Method for operating an internal combustion engine
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einlasssystem und einem Auslasssystem, insbesondere zum Antrieb eines Kraftfahrzeuges, wobei ein erster Verdichter über eine Welle vom Abgas und ein zweiter Verdichter elektrisch, mechanisch oder hydraulisch angetrieben wird, wobei der zweite Verdichter und der erste Verdichter nacheinander in einem Einlassstrang des Einlasssystems von Frischluft durchströmt werden, wobei in zumindest einem Motorbremsbetrieb der Brennkraftmaschine der zweite Verdichter aktiviert wird und der Strömungsquerschnitt in zumindest einem Abgasstrang des Auslasssystems - vorzugsweise bis auf einen definierten effektiven Restströmungsquerschnitt - verringert wird. The invention relates to a method for operating an internal combustion engine with an intake system and an exhaust system, in particular for driving a motor vehicle, wherein a first compressor via a shaft of the exhaust gas and a second compressor is electrically, mechanically or hydraulically driven, wherein the second compressor and the first Compressor are successively flowed through in an intake passage of the intake system of fresh air, wherein in at least one engine braking operation of the internal combustion engine, the second compressor is activated and the flow cross-section in at least one exhaust line of the exhaust system - preferably down to a defined effective residual flow cross section - is reduced.
Schwerlastkraftfahrzeuge sind typischerweise mit Motorbremseinrichtungen ausgestattet, um die Motorbremsleistung bei Bergabfahrten zu erhöhen. Derartige Motorbremseinrichtungen weisen häufig eine Bremsklappe im Abgassystem auf, mit welchem der Abgasgegendruck und damit die Gaswechselarbeit im Motorbremsbetrieb erhöht werden kann. Heavy-duty vehicles are typically equipped with engine braking devices to increase engine braking power when driving downhill. Such engine braking devices often have a brake flap in the exhaust system, with which the exhaust back pressure and thus the gas exchange work can be increased during engine braking operation.
Aus der EP 2 634 405 AI ist eine Abgas-Motorbremse für eine Brennkraftmaschine bekannt. Dabei wird die Bremskraft durch Erhöhen des internen Abgasdruckes erhöht. Die Brennkraftmaschine weist einen Abgasturbolader auf, dessen Verdichterdrehzahl durch einen Elektromotor erhöht werden kann. Ähnliche Anordnungen sind auch aus der EP 2 634 403 AI und der EP 0 385 622 AI bekannt. From EP 2 634 405 AI an exhaust gas engine brake for an internal combustion engine is known. The braking force is increased by increasing the internal exhaust pressure. The internal combustion engine has an exhaust gas turbocharger whose compressor speed can be increased by an electric motor. Similar arrangements are also known from EP 2 634 403 A1 and EP 0 385 622 AI.
Die Druckschriften JP 2009/228448 A, DE 421 0070 Cl, JP H 11 324 692 A, GB 2 499 823 A und JP S 5967537 U offenbaren Brennkraftmaschinen mit jeweils einem Einlass- und einem Auslasssystem, wobei ein abgasbetriebener erster Verdichter und ein elektrisch, mechanisch oder hydraulisch angetriebener zweiter Verdichter im Einlasssystem angeordnet ist, wobei der zweite Verdichter und der erste Verdichter nacheinander von Frischluft durchströmt werden. Im Motorbremsbetrieb wird der zweite Verdichter aktiviert und der Strömungsquerschnitt im Abgasstrang des Auslasssystems verringert. Publications JP 2009/228448 A, DE 421 0070 C1, JP H 11 324 692 A, GB 2 499 823 A and JP S 5967537 U disclose internal combustion engines each having an intake and an exhaust system, wherein an exhaust-operated first compressor and an electric, mechanically or hydraulically driven second compressor is arranged in the inlet system, wherein the second compressor and the first compressor are successively flowed through by fresh air. During engine braking operation, the second compressor is activated and the flow cross-section in the exhaust system of the exhaust system is reduced.
Aufgabe der Erfindung ist es, die Motorbremsleistung bei einer Brennkraftmaschine zu erhöhen. The object of the invention is to increase the engine braking power in an internal combustion engine.
Erfindungsgemäß erfolgt dies dadurch, dass der effektive Restströmungsquerschnitt nach der folgenden Gleichung bestimmt wird : mit According to the invention, this is done by determining the effective residual flow cross-section according to the following equation: With
Aeff. . . effektiver Restströmungsquerschnitt ARMS. , , effective residual flow cross section
Dvi . . ..innerer Ventilsitzdurchmesser zumindest eines Auslassventils  Dvi. , ..inner valve seat diameter of at least one exhaust valve
Nvaive - . . . Anzahl der Auslassventile pro Zylinder Nvaive -. , , Number of exhaust valves per cylinder
Ncyi . . . . Anzahl der Zylinder, die mit dem den effektiven Restströmungsquerschnitt aufweisenden Abgasstrang verbunden sind  Ncyi. , , , Number of cylinders that are connected to the exhaust line with the effective residual flow cross-section
C ... Faktor im Bereich von 1% und 12% C ... factor in the range of 1% and 12%
Eine weitere Steigerung der Motorbremsleistung lässt sich erzielen, wenn zumindest im Motorbremsbetrieb die Antriebsleistung für den elektrisch angetriebenen zweiten Verdichter direkt von einem Generator, vorzugsweise der Lichtmaschine, der Brennkraftmaschine bereitgestellt wird. A further increase in the engine braking power can be achieved if, at least during engine braking operation, the drive power for the electrically driven second compressor is provided directly by a generator, preferably the generator, of the internal combustion engine.
Im Motorbremsbetrieb der Brennkraftmaschine wird günstigerweise ein Brenn- raumdekompressionsmodus aktiviert, wobei vorzugsweise zur Durchführung der Brennraumdekompression die Steuerzeit zumindest eines Auslassventils pro Zylinder so verstellt wird, dass die von der Brennkraftmaschine im Verdichtungstakt geleistete Arbeit für den folgenden Takt ungenutzt gelassen wird. Dabei wird beispielsweise ein Auslassventil oder ein zusätzliches Ventil am Ende des Verdichtungstaktes geöffnet und damit der - während des Verdichtungstaktes aufgebaute - Druck im Zylinder abgebaut wird. Dies ermöglicht eine weitere Erhöhung des Motorbremsmomentes. In the engine braking operation of the internal combustion engine, a combustion chamber decompression mode is advantageously activated, wherein the control time of at least one exhaust valve per cylinder is preferably adjusted in order to carry out the combustion chamber decompression so that the work performed by the internal combustion engine in the compression stroke is left unused for the following cycle. In this case, for example, an outlet valve or an additional valve is opened at the end of the compression stroke and thus the pressure built up in the cylinder during the compression stroke is reduced. This allows a further increase in the engine braking torque.
Zur Ausübung des erfindungsgemäßen Verfahrens eignet sich eine Brennkraftmaschine der eingangs genannten Art, bei der in zumindest einem Motorbremsbetrieb der Brennkraftmaschine der - vorzugsweise über eine Verdichterumgehungsleitung umgehbare - zweite Verdichter aktivierbar ist. For carrying out the method according to the invention, an internal combustion engine of the aforementioned type is suitable, in which the second compressor can be activated in at least one engine braking mode of the internal combustion engine, which is preferably bypassable via a compressor bypass line.
In einer bevorzugten Ausführung der Erfindung ist der zweite Verdichter im Einlassstrang des Einlasssystems stromaufwärts des ersten Verdichters angeordnet. Alternativ dazu ist es aber auch möglich, den zweiten Verdichter stromabwärts des ersten Verdichters im Einlassstrang anzuordnen. In a preferred embodiment of the invention, the second compressor is disposed in the intake manifold of the intake system upstream of the first compressor. Alternatively, it is also possible to arrange the second compressor downstream of the first compressor in the inlet branch.
Um den Abgasgegendruck im Auslasssystem im Motorbremsbetrieb zu erhöhen, ist es vorteilhaft, wenn im Abgasstrang des Auslasssystems - vorzugsweise stromabwärts der Abgasturbine - zumindest ein Bremsventil angeordnet ist. Das Bremsventil kann dabei in einfacher Weise durch eine Bremsklappe gebildet sein. Alternativ zur Bremsklappe kann auch eine variable Turbinengeometrie der Abgasturbine zur Verstellung des Durchflussquerschnittes verwendet werden. In order to increase the exhaust backpressure in the exhaust system in engine braking operation, it is advantageous if at least one brake valve is arranged in the exhaust system of the exhaust system, preferably downstream of the exhaust gas turbine. The brake valve can be formed in a simple manner by a brake flap. As an alternative to the brake flap, it is also possible to use a variable turbine geometry of the exhaust gas turbine for adjusting the flow cross section.
Die Erfindung wird im Folgenden anhand des in den Figuren dargestellten nicht einschränkenden Ausführungsbeispiels näher erläutert. Darin zeigen : Fig. 1 eine Brennkraftmaschine zur Durchführung des erfindungsgemäßen Verfahrens; The invention will be explained in more detail below with reference to the non-limiting embodiment illustrated in the figures. Show: 1 shows an internal combustion engine for carrying out the method according to the invention;
Fig. 2 und Fig. 3 einen Vergleich der Motorbremsleistungen für verschiedene effektive Restquerschnitte des Bremsventils bei Verwendung des erfindungsgemäßen Verfahren mit der Motorbremsleistung gemäß dem Stand der Technik; und FIGS. 2 and 3 show a comparison of the engine braking powers for different effective residual cross sections of the brake valve when using the method according to the invention with the engine braking power according to the prior art; and
Fig. 4 das erfindungsgemäße Verfahren in einem Blockdiagramm . 4 shows the method according to the invention in a block diagram.
Fig. 1 zeigt eine Brennkraftmaschine 1 mit beispielsweise sechs Zylindern 2, einem Einlasssystem 3 für einen Einlassstrom und einem Auslasssystem 4 für einen Abgasstrom . Stromabwärts eines Abgassammlers 5 ist eine Abgasturbine 8 eines Abgasturboladers 9 angeordnet ist, dessen erster Verdichter 10 im Einlassstrang 11 des Einlasssystems 3 angeordnet ist. 1 shows an internal combustion engine 1 with, for example, six cylinders 2, an inlet system 3 for an inlet flow and an outlet system 4 for an exhaust gas flow. Downstream of an exhaust manifold 5, an exhaust gas turbine 8 of an exhaust gas turbocharger 9 is arranged, the first compressor 10 is arranged in the intake manifold 11 of the intake system 3.
Mit Bezugszeichen 14 ist ein Zwischenkühler des Einlasssystems 3 und mit Bezugszeichen 15 ein Luftfilter bezeichnet. Reference numeral 14 denotes an intercooler of the intake system 3 and reference numeral 15 denotes an air filter.
Zur Erhöhung des Abgasstaudruckes ist im Auslasssystem 4 ein Steuerorgan 16 angeordnet, welches im in Fig. 1 dargestellten Ausführungsbeispiel als eine stromabwärts der Abgasturbine im Abgasstrang 7 angeordnete Bremsklappe gebildet ist. Alternativ dazu kann das Steuerorgan 16 auch durch eine variable Turbinengeometrie der Abgasturbine 8 gebildet sein. To increase the exhaust gas back pressure in the exhaust system 4, a control member 16 is arranged, which is formed in the embodiment shown in FIG. 1 as a downstream of the exhaust gas turbine in the exhaust line 7 arranged brake flap. Alternatively, the control member 16 may be formed by a variable turbine geometry of the exhaust gas turbine 8.
Im Ausführungsbeispiel ist die Abgasturbine 8 mit einem in einer Turbinenumgehungsleitung 5 angeordneten Umgehungsventil 6 (Wastegate) ausgeführt. In the exemplary embodiment, the exhaust gas turbine 8 is designed with a bypass valve 6 (wastegate) arranged in a turbine bypass line 5.
Stromaufwärts des ersten Verdichters 10 ist im Einlassstrang 11 ein elektrisch über einen Elektromotor 12 betriebener zweiter Verdichter 13 angeordnet. Der stromabwärts des Luftfilters 15 angeordnete zweite Verdichter 13 ist über eine zweite Verdichterumgehungsleitung 17, in welcher ein Rückschlagventil 18 angeordnet ist, umgehbar. Upstream of the first compressor 10, a second compressor 13, which is operated electrically via an electric motor 12, is arranged in the inlet branch 11. The second compressor 13 arranged downstream of the air filter 15 can be bypassed via a second compressor bypass line 17, in which a check valve 18 is arranged.
In dem in Fig. 2 dargestellten Diagramm sind für verschiedene Motorbremsstrategien SO, Sl, S2, S3, S4 unterschiedliche Betriebsparameter wie Bremsleistung PB, Mitteldruck BMEP, Bremsmoment TB und Wärmeeintrag Q in den Zylinderkopf über der Motordrehzahl n aufgetragen. Fig. 3 zeigt ein Kennfeld, in welchem die Druckverhältnisse CPR zwischen erstem Verdichter 10 und zweiten Verdichter 13 über dem korrigierten Luftmassestrom qm aufgetragen ist. In Fig. 2 und Fig. 3 ist mit Bezugszeichen SO eine aus dem Stand der Technik bekannte Motorbremsstrategie bezeichnet, bei welchem die Druckerhöhung im Abgasstrang 7 im Motorbremsbetrieb nur über eine großteils geschlossene Bremsklappe erfolgt. Sl, S2, S3 und S4 bezeichnen erfindungsgemäße Motorbremsstrategien, bei der m ittels des elektrisch angetriebenen zweiten Verdichters 13 der Ladedruck im Einlassstrang erhöht wird und das Bremsventil 16 m it unterschiedlich großen Rest¬ querschnitten geschlossen wird, wobei die Linie S l für den größten Restquersch nitt und S4 für den geringsten Restquerschnitt steht. Der Restquerschnitt bei S2 ist kleiner als bei S l, der Restquerschnitt bei S3 ist kleiner als bei S2. Deut¬ lich ist zu erkennen, dass die Bremsleistu ng PB besser wird, je kleiner der Restquerschnitt des Bremsventi ls 16 im geschlossenen Zustand ist. In the diagram shown in FIG. 2, different operating parameters such as braking power PB, medium pressure BMEP, braking torque TB and heat input Q are plotted in the cylinder head over the engine speed n for various engine braking strategies SO, SI, S2, S3, S4. FIG. 3 shows a characteristic diagram in which the pressure ratios CPR between the first compressor 10 and the second compressor 13 are plotted against the corrected air mass flow q m . In FIG. 2 and FIG. 3, reference numeral SO designates an engine braking strategy known from the prior art, in which the pressure increase in the exhaust gas system 7 occurs only over a largely closed brake flap during engine braking operation. sl, S2, S3 and S4 designate engine braking strategies according to the invention, in which the charge pressure in the intake line is increased by means of the electrically driven second compressor 13 and the brake valve 16 is closed with differently sized remaining cross sections , the line S l for the largest residual cross section and S4 stands for the least residual cross section. The residual cross-section at S2 is smaller than at S l, the residual cross-section at S3 is smaller than at S2. Deut ¬ Lich can be seen that the Bremsleistu ng PB is better, the smaller the residual cross-section of the Bremsventi ls 16 in the closed state.
Im Bremsbetrieb wird zunächst das als Bremsklappe ausgeführte Bremsventil 16 geschlossen, wobei ein geringer Restström ungsquerschnitt offen bleibt und sich so ein bestim mter Gasstrom über die Bremsklappe einstellt (üblicherweise Bremshebelstellung " 1 " im N utzfahrzeug) . In braking operation, the braking valve 16 designed as a brake flap is initially closed, with a small residual flow cross section remaining open and thus establishing a specific gas flow over the brake flap (usually brake lever position "1" in the utility vehicle).
Durch die Aktivierung der Brennraum- Dekom pression wird die Motorbremse eingeschaltet (zum Beispiel Bremshebelstel lung 2) . Als nächster Schritt wird der elektrisch angetrieben zweite Verdichter 13 zugeschaltet und es baut sich Ladedruck im Ei nlasssystem 3 der Brennkraftmaschine 1 auf. Durch den Ladedruck wird deutlich mehr Bremsleistung erreicht, da mehr Luft in den Brennräumen verdichtet und de-kom prim iert wird . Der elektrisch erzeugte Ladedruck ist unab¬ hängig von der Motordrehzahl n und es ergibt sich eine hohe Bremsleistung PB bereits bei geringer Motordrehzahl n . By activating the combustion chamber decompression, the engine brake is switched on (for example, brake lever position 2). As a next step, the electrically driven second compressor 13 is switched on and it builds boost pressure in egg nlasssystem 3 of the internal combustion engine 1. The boost pressure significantly increases braking power as more air in the combustion chambers is compressed and decompressed. The boost pressure is electrically generated inde pendent ¬ n from the engine speed and there is a high braking power PB even at low engine speed n.
Da der zweite Verdichter 13 gegen den Restströmungsquerschnitt Aeff in der Bremsklappe fördert, lässt sich der Massenstrom qm durch den Motor geeignet einstellen : Wird der Restströmungsquerschnitt Aeff zu klein ausgeführt, kann der zweite Verdichter 13 zwar hohen Druck aufbauen und hohe Bremsleistung PB wird erreicht, es wird aber zu wenig Luft durch die Brennkraftmaschine 1 geför¬ dert. Da die Bremsenergie in Wärme umgewandelt wird, kann so nicht genügend Wärme abgeführt werden und die Brennkraftmaschine würde therm isch über¬ lastet werden . Since the second compressor 13 promotes the residual flow cross section A e ff in the brake flap, the mass flow q m can be suitably adjusted by the engine: If the residual flow cross section A e ff is made too small, the second compressor 13 can build up high pressure and high braking power PB is reached, but it is not enough air through the internal combustion engine 1 geför ¬ changed. Since the braking energy is converted into heat, so not enough heat can be dissipated and the engine would thermally overloaded over ¬ .
Wird der effektive Restström ungsquerschnitt Aeff in der Bremsklappe zu groß aus¬ geführt oder ist eine zu kleine Bremsklappe in das System integriert, kann der zweite Verdichter 13 aufgrund beschränkter elektrischer Leistung des Bordnetzes n icht genügend Luft in das System fördern bzw. reicht die Kennfeldbreite des zweiten Verdichters 13 n icht aus um den benötigten Bereich abzudecken . Is the effective Restström ungsquerschnitt A e ff in the brake flap led to great from ¬ or too small a brake flap integrated into the system, the second compressor 13 may n ot enough air into the system to promote or ranges due to limited electrical performance of the electrical system, the Map width of the second compressor 13 is not sufficient to cover the required area.
Der effektive Restström ungsquerschnitt Aeff der Bremsklappe kann dabei m it fol¬ gender Formel näherungsweise festgelegt werden : mit The effective Restström ungsquerschnitt A e ff of the brake flap can thereby be approximately determined m it fol ¬ gender formula: With
Aeff. . . effektiver Restströmungsquerschnitt des Bremsventils ARMS. , , effective residual flow cross section of the brake valve
Dvi .... innerer Ventilsitzdurchmesser der Auslassventile  Dvi .... inner valve seat diameter of the exhaust valves
Nvaive - . . . Anzahl der Auslassventile pro Zylinder  Nvaive -. , , Number of exhaust valves per cylinder
Ncyi . . ..Anzahl der Zylinder, die mit dem Bremsventil verbunden sind  Ncyi. , ..Number of cylinders connected to the brake valve
C ... Faktor im Bereich von 1% und 12%  C ... factor in the range of 1% and 12%
Der effektive Restströmungsquerschnitt Aeff kann durch ein teilweises gezieltes Öffnen der Bremsklappe oder durch offene Querschnitte in der geschlossenen Bremsklappe (zum Beispiel Bohrungen) erreicht werden . The effective residual flow cross section A e ff can be achieved by a partial targeted opening of the brake flap or by open cross sections in the closed brake flap (for example bores).
In Abb. 4 ist das erfindungsgemäße Verfahren zur Erreichung der gewünschten hohen Bremsleistung in einer Ausführungsvariante am Beispiel einer Regelung über Gastemperatur TA (beispielsweise der Frischluft stromabwärts des zweiten Verdichters 13 im Einlasssystem 3 oder des Abgases im Auslasssystem 4) dargestellt, es ist aber auch die Regelung über andere limitierende Parameter wie zum Beispiel Drehzahl des elektrischen zweiten Verdichters 13 oder Gasdruck im Einlasssystem 3 oder Auslasssystem 4 vorschellbar. Die Regelung kann über Sensoren und Kennfelder in einem Regelkreis an der laufenden Brennkraftmaschine 1 erfolgen . Alternativ dazu kann eine geeignete Auswahl der Auslegungsparameter wie Verdichter-Antriebsleistung und Öffnungsgrad der Bremsklappe während der Konstruktions- und Erprobungsphase der Brennkraftmaschine 1 erfolgen und als feste Geometrie in das Motorkonzept einfließen bzw. als Kennfelder in der Motorsteuerung hinterlegt werden . In Fig. 4, the inventive method for achieving the desired high braking performance in a variant by the example of a control over gas temperature T A (for example, the fresh air downstream of the second compressor 13 in the intake system 3 or the exhaust gas in the exhaust system 4) is shown, but it is also the regulation of other limiting parameters such as speed of the electric second compressor 13 or gas pressure in the intake system 3 or exhaust system 4 vorschellbar. The control can be done via sensors and maps in a control loop on the running internal combustion engine 1. Alternatively, a suitable selection of the design parameters such as compressor drive power and opening degree of the brake flap during the design and testing phase of the internal combustion engine 1 can take place and incorporated as a fixed geometry in the engine concept or be stored as maps in the engine control.
Abhängig von der gewünschten Bremsleistung wird im in Fig . 4 dargestellten Ausführungsbeispiel die erste Bremsstufe BS l, die zweite Bremsstufe BS2 oder die dritte Bremsstufe BS3 geschalten . In der ersten Bremsstufe BSl ist das Bremsventil 16 bis auf einen definierten effektiven Restströmungsquerschnitt Aeff geschlossen . In der zweiten Bremsstufe BS2 wird ein Brennraumdekompres- sionsmodus aktiviert, wobei beispielsweise zumindest ein Auslassventil pro Zylinder konstant oder zyklisch nahe des oberen Totpunktes der Zündung geöffnet wird . In der dritten Bremsstellung BS3 wird zusätzlich der zweite Verdichter 13 über den Elektromotor 12 angetrieben . Depending on the desired braking power is in in Fig. 4 illustrated embodiment, the first brake stage BS l, the second brake stage BS2 or the third brake stage BS3 switched. In the first braking stage BS1, the brake valve 16 is closed except for a defined effective residual flow cross-section A e ff. In the second brake stage BS2, a combustion chamber decompression mode is activated, wherein, for example, at least one exhaust valve per cylinder is opened constantly or cyclically close to the top dead center of the ignition. In the third braking position BS3, the second compressor 13 is additionally driven via the electric motor 12.
Im Schritt BS4 wird geprüft, ob die Gastemperatur TG einen Maximalwert TGmax überschreitet. Ist dies der Fall ("y") so wird der effektive Restströmungsquerschnitt Aeff durch Öffnen des Bremsventils 16 vergrößert. Ist die Gastemperatur TA nicht größer als der definierte Maximalwert TGmax, so wird im Schritt BS5 geprüft, ob die gewünschte Bremsleistung PBs erreicht wird. Ist dies nicht der Fall („n"), so wird die Antriebsleistung des zweiten Verdichters 13 erhöht. Die Antriebsleistung für den elektrisch angetriebenen zweiten Verdichter 13 kann im Bremsbetrieb direkt von der Lichtmaschine der Brennkraftmaschine 1 erzeugt werden - die benötigte Antriebsleistung der Lichtmaschine erhöht die Bremsleistung der Brennkraftmaschine 11. In step BS4, it is checked whether the gas temperature T G exceeds a maximum value T G max. If this is the case ("y"), the effective residual flow area Aeff is increased by opening the brake valve 16. If the gas temperature TA is not greater than the defined maximum value TGmax, it is checked in step BS5 whether the desired braking power PB s is reached. If this is not the case ("n"), the drive power of the second compressor 13 is increased. The drive power for the electrically driven second compressor 13 can be generated directly from the alternator of the internal combustion engine 1 during braking operation - the required drive power of the generator increases the braking power of the internal combustion engine 11.

Claims

P A T E N T A N S P R Ü C H E P A T E N T A N S P R E C H E
Verfahren zum Betreiben einer Brennkraftmaschine (1) mit einem Einlasssystem (3) und einem Auslasssystem (4), insbesondere zum Antrieb eines Kraftfahrzeuges, wobei ein erster Verdichter (10) über eine Welle vom Abgas und ein zweiter Verdichter (13) elektrisch, mechanisch oder hydraulisch angetrieben wird, wobei der zweite Verdichter (13) und der erste Verdichter (10) nacheinander in einem Einlassstrang (11) des Einlasssystems (3) von Frischluft durchströmt werden, wobei in zumindest einem Motorbremsbetrieb der Brennkraftmaschine (1) der zweite Verdichter (13) aktiviert wird und der Strömungsquerschnitt in zumindest einem Abgasstrang (7) des Auslasssystems (4) - vorzugsweise bis auf einen definierten effektiven Restströmungsquerschnitt (Aeff) -verringert wird, dadurch gekennzeichnet, dass der effektive Restströmungsquerschnitt (Aeff) nach folgender Gleichung bestimmt wird :
Figure imgf000009_0001
mit
Method for operating an internal combustion engine (1) with an intake system (3) and an exhaust system (4), in particular for driving a motor vehicle, wherein a first compressor (10) via a shaft of the exhaust gas and a second compressor (13) electrically, mechanically or is driven hydraulically, wherein the second compressor (13) and the first compressor (10) successively in an intake passage (11) of the intake system (3) are flowed through by fresh air, wherein in at least one engine braking operation of the internal combustion engine (1) of the second compressor (13 ) is activated and the flow cross section in at least one exhaust line (7) of the exhaust system (4) - preferably down to a defined effective residual flow cross-section (Aeff) - is reduced, characterized in that the effective residual flow cross-section (A e ff) is determined according to the following equation :
Figure imgf000009_0001
With
Aeff.. . effektiver Restströmungsquerschnitt  Aeff ... effective residual flow cross section
Dvi.. ..innerer Ventilsitzdurchmesser zumindest eines Auslassventils  Dvi .. ..inner valve seat diameter of at least one exhaust valve
Nvaive- . . . Anzahl der Auslassventile pro Zylinder (2) Nvaive. , , Number of exhaust valves per cylinder (2)
Ncyi. . .. Anzahl der Zylinder (2), die mit dem den effektiven Restströmungsquerschnitt (Aeff) aufweisenden Abgasstrang (7) verbunden sind  Ncyi. , .. Number of cylinders (2), which are connected to the effective residual flow cross-section (Aeff) having exhaust line (7)
C ... Faktor im Bereich von 1% und 12% C ... factor in the range of 1% and 12%
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zumindest im Motorbremsbetrieb die Antriebsleistung für den elektrisch angetriebenen zweiten Verdichter (13) direkt von einem Generator, vorzugsweise der Lichtmaschine, der Brennkraftmaschine (1) bereitgestellt wird. A method according to claim 1, characterized in that at least in the engine braking operation, the drive power for the electrically driven second compressor (13) directly from a generator, preferably the alternator, the internal combustion engine (1) is provided.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Motorbremsbetrieb der Brennkraftmaschine (1) ein Brennraumdekompressions- modus aktiviert wird, wobei vorzugsweise zur Durchführung der Brenn- raumdekompression die Steuerzeit zumindest eines Auslassventils pro Zylinder (2) verstellt wird. A method according to claim 1 or 2, characterized in that engine braking operation of the internal combustion engine (1) a Brennraumdekompressions- mode is activated, preferably for performing the combustion chamber decompression, the control time of at least one exhaust valve per cylinder (2) is adjusted.
Brennkraftmaschine (1) mit einem Einlasssystem (3) und einem Auslasssystem (4), insbesondere zum Antrieb eines Kraftfahrzeuges, mit zumindest einem eine - vorzugsweise über eine Turbinenumgehungsleitung (5) um- gehbare - Abgasturbine (8) und einen von dieser über eine Welle angetriebenen ersten Verdichter (10) aufweisenden Abgasturbolader (9), sowie einen elektrisch, mechanisch oder hydraulisch antreibbaren zweiten Verdichter (13), wobei der zweite Verdichter (13) und der erste Verdichter (10) nacheinander in einem Einlassstrang (11) des Einlasssystems (3) angeordnet sind, wobei in zumindest einem Motorbremsbetrieb der Brennkraftmaschine (1) der - vorzugsweise über eine Verdichterumgehungsleitung (17) umgehbare - zweite Verdichter (13) aktivierbar ist, zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Bremsventil (16) im geschlossen Zustand einen effektiven Restströmungsquerschnitt (Aeff) aufweist wobei vorzugsweise der effektive Restströmungsquerschnitt (Aeff) nach folgender Gleichung dimensioniert ist: Internal combustion engine (1) having an intake system (3) and an exhaust system (4), in particular for driving a motor vehicle, with at least one of them - preferably via a turbine bypass line (5). walkable - exhaust gas turbine (8) and one of these via a shaft driven first compressor (10) having exhaust gas turbocharger (9), and an electrically, mechanically or hydraulically driven second compressor (13), wherein the second compressor (13) and the first compressor (10) are arranged successively in an intake branch (11) of the intake system (3), wherein in at least one engine braking operation of the internal combustion engine (1) - preferably via a compressor bypass line (17) bypassable - second compressor (13) can be activated to perform the Method according to one of claims 1 to 3, characterized in that the brake valve (16) in the closed state has an effective residual flow cross-section (Aeff) wherein preferably the effective residual flow cross-section (Aeff) is dimensioned according to the following equation:
mit With
Aeff. . . effektiver Restströmungsquerschnitt des Bremsventils (16)  ARMS. , , effective residual flow cross section of the brake valve (16)
Dvi . . ..innerer Ventilsitzdurchmesser zumindest eines Auslassventils  Dvi. , ..inner valve seat diameter of at least one exhaust valve
Nvaive - . . . Anzahl der Auslassventile pro Zylinder (2)  Nvaive -. , , Number of exhaust valves per cylinder (2)
Ncyi . . ..Anzahl der Zylinder (2), die mit dem Bremsventil (16) verbunden sind C ... Faktor im Bereich von 1% und 12%  Ncyi. , ..Number of cylinders (2) connected to the brake valve (16) C ... Factor in the range of 1% to 12%
Brennkraftmaschine (1) nach Anspruch 4, dadurch gekennzeichnet, dass der zweite Verdichter (13) im Einlassstrang (11) des Einlasssystems (3) stromaufwärts des ersten Verdichters (10) angeordnet ist. Internal combustion engine (1) according to claim 4, characterized in that the second compressor (13) in the inlet branch (11) of the inlet system (3) upstream of the first compressor (10) is arranged.
Brennkraftmaschine (1) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass im Abgasstrang (7) des Auslasssystems (4) - vorzugsweise stromabwärts der Abgasturbine (8), zumindest ein Bremsventil (16) angeordnet ist. Internal combustion engine (1) according to claim 4 or 5, characterized in that in the exhaust line (7) of the exhaust system (4) - preferably downstream of the exhaust gas turbine (8), at least one brake valve (16) is arranged.
Brennkraftmaschine (1) nach Anspruch 6, dadurch gekennzeichnet, dass das Bremsventil (16) durch eine Bremsklappe gebildetes ist. Internal combustion engine (1) according to claim 6, characterized in that the brake valve (16) is formed by a brake flap.
2017 02 15 2017 02 15
Fu Fu
PCT/AT2017/060030 2016-02-19 2017-02-15 Method for operating an internal combustion engine WO2017139822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50112/2016A AT518258B1 (en) 2016-02-19 2016-02-19 METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE
ATA50112/2016 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017139822A1 true WO2017139822A1 (en) 2017-08-24

Family

ID=58191188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2017/060030 WO2017139822A1 (en) 2016-02-19 2017-02-15 Method for operating an internal combustion engine

Country Status (2)

Country Link
AT (1) AT518258B1 (en)
WO (1) WO2017139822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170030259A1 (en) * 2015-07-31 2017-02-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US20170152800A1 (en) * 2015-11-30 2017-06-01 Hyundai Motor Company Method of controlling engine system equipped with supercharger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008887A1 (en) * 1990-11-13 1992-05-29 Wabco Automotive U.K. Limited Exhaust pressure modulation valve
DE4210070C1 (en) * 1992-03-27 1993-02-25 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Supercharged IC engine - has exhaust powered turbine which drives compressor in air intake upstream from mechanically driven charger
US20100024767A1 (en) * 2008-07-31 2010-02-04 Vincent Meneely Self-contained compression brakecontrol module for compression-release brakesystem of internal combustion engine
JP2012097631A (en) * 2010-11-01 2012-05-24 Isuzu Motors Ltd Engine brake system of internal combustion engine and method of controlling the same
WO2014139500A2 (en) * 2013-03-10 2014-09-18 Kohlhage Automotive GmbH & Co. KG Valve unit, such as exhaust-gas valve flap unit for motor vehicles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967537U (en) * 1982-10-28 1984-05-08 日産ディーゼル工業株式会社 Internal combustion engine supercharging device
JPH02223627A (en) * 1989-02-27 1990-09-06 Isuzu Motors Ltd Energy recovery device of vehicle
JPH11324692A (en) * 1998-05-18 1999-11-26 Komatsu Ltd Controller for mechanical supercharger
JP2009228448A (en) * 2008-03-19 2009-10-08 Mazda Motor Corp Supercharging device of engine
JP5724296B2 (en) * 2010-10-28 2015-05-27 いすゞ自動車株式会社 Engine system
JP2012097604A (en) * 2010-10-29 2012-05-24 Isuzu Motors Ltd Method and device for controlling exhaust brake of internal combustion engine
GB2499823A (en) * 2012-03-01 2013-09-04 Cummins Ltd Turbine-generator and operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008887A1 (en) * 1990-11-13 1992-05-29 Wabco Automotive U.K. Limited Exhaust pressure modulation valve
DE4210070C1 (en) * 1992-03-27 1993-02-25 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Supercharged IC engine - has exhaust powered turbine which drives compressor in air intake upstream from mechanically driven charger
US20100024767A1 (en) * 2008-07-31 2010-02-04 Vincent Meneely Self-contained compression brakecontrol module for compression-release brakesystem of internal combustion engine
JP2012097631A (en) * 2010-11-01 2012-05-24 Isuzu Motors Ltd Engine brake system of internal combustion engine and method of controlling the same
WO2014139500A2 (en) * 2013-03-10 2014-09-18 Kohlhage Automotive GmbH & Co. KG Valve unit, such as exhaust-gas valve flap unit for motor vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170030259A1 (en) * 2015-07-31 2017-02-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10190484B2 (en) * 2015-07-31 2019-01-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US20170152800A1 (en) * 2015-11-30 2017-06-01 Hyundai Motor Company Method of controlling engine system equipped with supercharger
US10174688B2 (en) * 2015-11-30 2019-01-08 Hyundai Motor Company Method of controlling engine system equipped with supercharger

Also Published As

Publication number Publication date
AT518258B1 (en) 2017-09-15
AT518258A4 (en) 2017-09-15

Similar Documents

Publication Publication Date Title
DE102006049144A1 (en) Turbocharger on a variable displacement engine
DE102009013040A1 (en) Internal combustion engine with register charging
WO2008155111A1 (en) Method and device for increasing the engine brake power of a reciprocating piston internal combustion engine of a vehicle, particularly of a diesel engine
EP3146178B1 (en) Four-stroke reciprocating-piston internal combustion engine having an exhaust-gas turbocharger, and operating method for the same
EP1754872B1 (en) Otto engine with variable valve actuation and Atkinson cycle operation
DE102007046656B4 (en) Method for operating an internal combustion engine, internal combustion engine
DE102014116636A1 (en) Method and control device for operating an internal combustion engine
DE10159801A1 (en) Internal combustion engine has additional compressor stage in series or parallel with charger and not driven by exhaust gas flow but with mechanically or electrically driven charger
DE102012023118A1 (en) Internal combustion engine for motor vehicle i.e. passenger car, has positioning device provided with position elements for fluidic blocking and releasing discharge passages between first operating mode and second operating mode
DE102016113779A1 (en) Improvement of cylinder deactivation by an electrically driven compressor
DE102012221403A1 (en) Method for operating a spark-ignited internal combustion engine with an exhaust gas turbocharger
AT518258B1 (en) METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE
AT6341U1 (en) METHOD FOR OPERATING A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
WO2010031561A1 (en) Arrangement for supplying fresh gas to a turbocharged internal combustion engine and method for controlling the arrangement
DE102009060357A1 (en) Method for operating an internal combustion engine having an exhaust gas turbocharger and an internal combustion engine for carrying out the method
DE102004030452A1 (en) Method and device for operating an internal combustion engine
DE102009047929B4 (en) Method for charge pressure control of a two-stage exhaust gas turbocharger for an internal combustion engine
DE102004023590B4 (en) Method for operating an internal combustion engine and internal combustion engine for carrying out the method
DE102015204155B3 (en) Method for torque-neutral switching of operating states of an actuator of an internal combustion engine
DE102004061110B4 (en) Method for operating an internal combustion engine
DE102017100023A1 (en) Charged internal combustion engine
DE102017201732A1 (en) Method for operating an internal combustion engine in overrun mode and internal combustion engine for carrying out such a method
DE102015015890A1 (en) Method for operating an internal combustion engine of a motor vehicle
DE102011057013B4 (en) Internal combustion engine
DE102016200089A1 (en) Selective cylinder activation in an internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17707748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17707748

Country of ref document: EP

Kind code of ref document: A1