WO2017138677A1 - 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법 - Google Patents

폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법 Download PDF

Info

Publication number
WO2017138677A1
WO2017138677A1 PCT/KR2016/003938 KR2016003938W WO2017138677A1 WO 2017138677 A1 WO2017138677 A1 WO 2017138677A1 KR 2016003938 W KR2016003938 W KR 2016003938W WO 2017138677 A1 WO2017138677 A1 WO 2017138677A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
heat exchanger
flow rate
turbine
recuperator
Prior art date
Application number
PCT/KR2016/003938
Other languages
English (en)
French (fr)
Inventor
황정호
이응찬
강승규
박상신
정철래
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160015476A external-priority patent/KR101898324B1/ko
Priority claimed from KR1020160015475A external-priority patent/KR20170094580A/ko
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Publication of WO2017138677A1 publication Critical patent/WO2017138677A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure

Definitions

  • the present invention relates to a waste heat recovery power generation system and a flow rate control method of the power generation system, and more particularly, by adjusting the amount of branching of the working fluid to adjust the waste heat recovery amount to change the temperature and flow rate of the waste heat source without changing the flow rate of the entire system.
  • the present invention relates to a waste heat recovery power generation system and a flow rate control method for the power generation system.
  • Supercritical carbon dioxide has a gas-like viscosity at a density similar to that of a liquid state, which can minimize the size of the device and minimize the power consumption required for fluid compression and circulation.
  • the critical point is 31.4 degrees Celsius, 72.8 atm, the critical point is 373.95 degrees Celsius, it is much lower than the water of 217.7 atmospheres has the advantage of easy handling.
  • This supercritical carbon dioxide power generation system shows a net power generation efficiency of about 45% when operated at 550 degrees Celsius. There are possible advantages.
  • a supercritical carbon dioxide power generation system In the case of applying a plurality of heat sources whose temperature or flow rate of the waste heat source varies, the system configuration is complicated and effective heat is difficult to use. Therefore, a supercritical carbon dioxide power generation system generally has one heater as a heat source. Therefore, there is a problem in that the system configuration is limited and the use of an effective heat source is difficult. In addition, there is a problem that it is difficult to effectively cope with variations in temperature and flow rate of the waste heat source.
  • An object of the present invention is to provide a waste heat recovery power generation system and a flow rate control method of a power generation system that can cope with temperature and flow rate fluctuations of a waste heat source without changing the flow rate of the entire system by adjusting the amount of waste heat recovery by adjusting the amount of branching of the working fluid.
  • the waste heat recovery power generation system of the present invention includes a compressor for compressing a working fluid, a plurality of heat exchangers for recovering waste heat from waste heat gas supplied from a waste heat source and heating the working fluid, and the working fluid heated through the heat exchanger. And a recuperator for heat-exchanging the working fluid passing through the turbine and the working fluid passing through the compressor to cool the working fluid passing through the turbine, the rear end of the compressor. And the flow rate of the working fluid passing through the compressor is branched.
  • the heat exchanger includes a first heat exchanger and a second heat exchanger, wherein the first heat exchanger is provided at a low temperature side of the discharge end side from which the waste heat gas is discharged, and the second heat exchanger is a high temperature side of the inlet end from which the waste heat gas is introduced. It is characterized by being provided on the side.
  • the flow rate of the working fluid branched from the rear end of the compressor is transferred to the first heat exchanger and the recuperator, and the working fluid passed through the recuperator is transferred to the second heat exchanger.
  • a mixer provided at the front of the second heat exchanger for flow rate mixing of the working fluid, and a separator provided at the rear end of the compressor for flow rate divergence of the working fluid, and heating through the first heat exchanger.
  • the flow rate of the working fluid is combined with the flow rate of the working fluid passing through the recuperator at the front end of the second heat exchanger.
  • a generator connected to the turbine to generate electric power, and a gearbox provided between the turbine and the generator to convert the output of the turbine to correspond to the output frequency of the generator and to transmit the power box to the generator;
  • the turbine and the compressor are connected coaxially, characterized in that the compressor and the generator is driven by the turbine.
  • the recuperator includes a first recuperator and a second recuperator, and the second recuperator includes a high temperature side recuperator into which the working fluid passing through the turbine flows, and the first recuperator is And a low temperature side recuperator into which the working fluid passing through the second recuperator flows.
  • the recuperator to which the working fluid branched from the compressor rear end is transported is the first recuperator, and the flow rate of the working fluid heated through the first heat exchanger is determined at the front end of the second heat exchanger. And a flow rate of the working fluid passing through the two recuperators.
  • the mixer provided at the front end of the second heat exchanger is a first mixer, further comprising a second mixer between the first and second recuperators, wherein the first mixer and the second heat exchanger. It is further provided between the second separator for dividing the flow rate of the working fluid passed through the first mixer to the second heat exchanger or the turbine.
  • the turbine includes a first turbine supplied with the working fluid by the second separator, and a second turbine supplied with the working fluid by the second heat exchanger and connected in parallel with the first turbine.
  • the temperature of the working fluid sent to the first turbine is relatively lower than the temperature of the working fluid sent to the second turbine.
  • the working fluid passing through the first turbine enters the second mixer, and the working fluid passing through the second turbine passes through the first turbine in the second mixer via the second recuperator. And mixed with the working fluid and sent to the first recuperator.
  • the front end of the compressor and the front end of the first heat exchanger is provided with a flow meter, between the first separator and the first recuperator, the discharge end of the first heat exchanger, the discharge end of the second heat exchanger
  • Each of the flow control valves for adjusting the flow rate of the working fluid is provided, characterized in that it further comprises a storage tank for additionally supplying the working fluid.
  • a flow rate control method for a waste heat recovery power generation system including the configuration of claim 1, wherein the flow rate control valve provided at the discharge end of the first heat exchanger is controlled according to a final outlet temperature of the first heat exchanger. By adjusting the flow rate of the working fluid to correspond to the final outlet temperature of the first heat exchanger.
  • the flow rate regulating valve provided at the discharge end of the first heat exchanger is opened to increase the flow rate of the working fluid to increase the flow rate of the first heat exchanger.
  • the flow control valve provided at the discharge end of the first heat exchanger is closed to increase the flow rate of the working fluid. Blocking to maintain a constant final outlet temperature of the first heat exchanger.
  • the flow meter measures the flow rate of the working fluid and closes the flow regulating valve at the rear end of the first heat exchanger to measure the working fluid.
  • the flow rate of the first heat exchanger is kept constant by blocking the flow rate of the first heat exchanger, and the flow rate regulating valve provided between the first separator and the first recuperator is opened to increase the flow rate of the working fluid. It is characterized by.
  • the flow rate meter measures the flow rate of the working fluid, and then closes the flow control valve at the rear end of the first heat exchanger to close the working fluid.
  • the flow rate of the first heat exchanger is kept constant by closing the flow rate of the first heat exchanger, and the flow rate control valve provided between the first separator and the first recuperator is closed to reduce the flow rate of the working fluid. It is characterized by.
  • the working fluid mixed in the first mixer is blocked by the flow rate of the working fluid sent from the second separator to the second heat exchanger to the first turbine. It is characterized in that only the supply.
  • the working fluid mixed in the first mixer is cut off by blocking the flow rate of the working fluid sent from the second separator to the first turbine is supplied only to the second turbine. do.
  • the flow of the working fluid sent from the first separator to the first heat exchanger is cut off and the working fluid passing through the compressor is characterized in that it is supplied only to the first recuperator.
  • the working fluid passing through the second recuperator is branched to the second heat exchanger and the first turbine via the second separator.
  • the working fluid passing through the second recuperator by cutting off the flow rate of the working fluid sent from the second separator to the first turbine is supplied to the second heat exchanger via the second separator and then to the second heat exchanger. It is characterized by being sent to the turbine.
  • the waste heat recovery power generation system and the flow rate control method of the power generation system by controlling the amount of heat exchanger of the waste heat recovery heater by adjusting the amount of branching of the working fluid branched from the compressor rear end waste heat source without changing the flow rate of the entire system It can cope with the temperature and the flow rate fluctuation of. This allows the system to operate near the design point, keeping the performance of the entire power generation system constant.
  • FIG. 1 is a schematic diagram showing a waste heat recovery power generation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a waste heat recovery power generation system according to another embodiment of the present invention.
  • FIG. 3 is a graph showing an example of the turbine inlet temperature and the system output according to the waste heat recovery power generation system of FIG.
  • FIG. 4 is a graph showing a temperature distribution in a high temperature waste heat recovery heater according to the waste heat recovery power generation system of FIG.
  • FIG. 5 is a graph showing a temperature distribution in a low temperature waste heat recovery heater according to the waste heat recovery power generation system of FIG.
  • FIG. 6 is a schematic diagram showing a waste heat recovery power generation system according to another embodiment of the present invention.
  • FIG. 8 is a pressure-enthalpy diagram in the waste heat recovery power generation system of FIG.
  • FIG. 9 is a schematic diagram showing a low temperature side turbine single mode according to the waste heat recovery power generation system of FIG.
  • FIG. 10 is a schematic diagram showing a high temperature side turbine drive single mode according to the waste heat recovery power generation system of FIG.
  • FIG. 11 is a schematic diagram illustrating an example of driving at the time of failure of the low-temperature waste heat recovery heater according to the waste heat recovery power generation system of FIG. 6;
  • FIG. 12 is a schematic diagram illustrating another driving example when the low temperature side waste heat recovery heater is broken according to the waste heat recovery power generation system of FIG. 6.
  • the supercritical carbon dioxide generation system forms a close cycle that does not discharge carbon dioxide used for power generation to the outside, and uses supercritical carbon dioxide as a working fluid.
  • the supercritical carbon dioxide power generation system is a carbon dioxide working fluid, it is possible to use the exhaust gas emitted from a thermal power plant, etc., so it can be used not only in a single power generation system but also in a hybrid power generation system with a thermal power generation system.
  • the working fluid of the supercritical carbon dioxide power generation system may separate carbon dioxide from the exhaust gas and supply a separate carbon dioxide.
  • the carbon dioxide in the cycle is a high temperature, high pressure supercritical state, and the supercritical carbon dioxide fluid drives the turbine.
  • the turbine is connected to a generator or pump, which generates power by the turbine connected to the generator and drives the pump using the turbine connected to the pump.
  • the carbon dioxide passing through the turbine is cooled through a heat exchanger, and the cooled working fluid is fed back to the compressor to circulate in the cycle.
  • a plurality of turbines or heat exchangers may be provided.
  • each heat exchanger is effectively arranged according to conditions such as the inlet / outlet temperature, capacity, and number of the heat source to operate the same or less number of recuperators than the number of heat sources.
  • the supercritical carbon dioxide power generation system includes not only a system in which all of the working fluid flowing in a cycle is in a supercritical state, but also a system in which most of the working fluid is in a supercritical state and the rest is in a subcritical state. Used in the sense.
  • carbon dioxide is used as a working fluid, where carbon dioxide is, in a chemical sense, pure carbon dioxide, and in general, one or more fluids are mixed as additives in carbon dioxide and carbon dioxide in which impurities are somewhat contained. It is also used to include the fluid in its state.
  • FIG. 1 is a schematic diagram showing a waste heat recovery power generation system according to an embodiment of the present invention.
  • the supercritical carbon dioxide power generation system uses carbon dioxide as a working fluid, and compresses the working fluid with a compressor 100 and a working fluid passed through the compressor 100.
  • a recuperator 200 and a plurality of heat sources 300 that exchange heat with the turbine 400, which is driven by the heated working fluid through the recuperator 200 and the heat source 300, and the turbine 400. It may be configured to include a generator 450 driven by, and a cooler 500 for cooling the working fluid flowing into the compressor (100).
  • Each of the components of the present invention is connected by a transfer tube (streams 1 to 12 of FIGS. 1 to 4) through which the working fluid flows, and unless specifically mentioned, it should be understood that the working fluid flows along the transfer tube.
  • a transfer tube (streams 1 to 12 of FIGS. 1 to 4) through which the working fluid flows, and unless specifically mentioned, it should be understood that the working fluid flows along the transfer tube.
  • the compressor 100 is driven by the turbine 400 to be described later, and serves to send the cooled low-temperature working fluid to the recuperator 200 through the cooler 500 (stream 4) (streams 5 and 8). .
  • the rear end of the compressor 100 is provided with a separator (S) for distributing the flow rate of the working fluid passed through the compressor (100).
  • the separator S serves to branch the flow rate passing through the compressor 100 to one of the heat sources 300 to be described later and the recuperator 200 to be described later (streams 6 and 8).
  • a portion of the flow rate of the working fluid is branched to the heat source 300 for recovering waste heat (stream 6) at the rear end of the compressor 100, which is the lowest temperature in the power generation system, and used for heat exchange to maintain the maximum amount of waste heat absorption (flow rate of the working fluid). Dispensing and flow control will be described later).
  • the recuperator 200 expands through the turbine 400 while the fluid flows through the recuperator 200 via a working fluid cooled from high temperature to medium temperature (stream 2) and a compressor 100 to be described later. 8) Heat exchange.
  • the recuperator 200 is installed on the transfer pipe branched by the separator S, and is disposed between the discharge end of the turbine 400 and the inlet end of the cooler 500 (stream 3).
  • the working fluid that has passed through the compressor 100 in the recuperator 200 is primarily heated by the working fluid that has passed through the turbine 400.
  • the working fluid first cooled by the heat exchanger in the recuperator 200 is sent to the cooler 500, secondly cooled (stream 3) and then to the compressor 100 (stream 4).
  • the working fluid primarily heated by heat exchange in the recuperator 200 is supplied to a heat source 300 to be described later.
  • the heat source 300 may include a constrained heat source in which the discharge condition of the discharged gas is defined and a general heat source in which the discharge condition of the discharged gas is not determined.
  • the first heat exchanger 310 is configured as a limited heat source and the second heat exchanger 330 is configured as a general heat source for convenience.
  • the second heat exchanger 330 is disposed closer to the waste heat source 10, and the first heat exchanger 310 is disposed relatively far from the waste heat source than the second heat exchanger 330.
  • the first heat exchanger 310 uses a gas having waste heat (hereinafter, referred to as waste heat gas) as a heat source, such as exhaust gas of another power generation cycle, but is a heat source having a discharge restriction condition when discharging waste heat gas (C).
  • waste heat gas a gas having waste heat
  • the discharge restriction condition is a temperature condition, and the temperature of the waste heat gas flowing into the first heat exchanger 310 is relatively lower than the temperature of the waste heat gas flowing into the second heat exchanger 330 which will be described later. This is because the distance from the waste heat source is relatively far.
  • the first heat exchanger 310 heats the working fluid flowing through the compressor 100 into the first heat exchanger 310 (stream 6) with heat of waste heat gas.
  • the waste heat gas deprived of heat from the first heat exchanger 310 is cooled to a temperature that meets the discharge regulation condition and exits the first heat exchanger 310 (C).
  • the extent to which waste heat can be absorbed depends on how much flow rate of the cooling fluid is sent to the first heat exchanger 310.
  • the working fluid heated through the first heat exchanger 310 is mixed with the primarily heated working fluid through the recuperator 200 at the rear end of the recuperator 200 (stream 7) and the first heat exchanger Supplied to 310 (stream 10).
  • the second heat exchanger 330 serves to heat the working fluid by heat-exchanging the waste heat gas and the working fluid, and is a heat source having no discharge restriction condition.
  • the temperature of the waste heat gas flowing into the second heat exchanger 330 (A) is relatively higher than the temperature of the waste heat gas flowing into the first heat exchanger 310. This is because the second heat exchanger 330 is disposed at a relatively close distance to the waste heat source.
  • the flow rate of the working fluid mixed with the working fluid passed through the recuperator 200 and the working fluid heated in the first heat exchanger 310 is introduced into the second heat exchanger 330.
  • a mixer M is installed between the first heat exchanger 310 and the second heat exchanger 330 to mix the working fluid.
  • the mixer M is provided at the confluence of streams 9 and 10.
  • the second heat exchanger 330 heats this mixed flow of working fluid.
  • the working fluid heated in the second heat exchanger 330 is supplied to the turbine 400 (stream 1).
  • the flow rate flowing into the second heat exchanger 330 is a flow rate in which two streams branched from the rear end of the first compressor 100 are added again, the flow rate of the entire power generation system flows into the second heat exchanger 330. It is. Therefore, the flow rate flowing into the turbine 400 corresponds to the total flow rate, and even if the flow rate of the working fluid is branched at the rear end of the compressor 100, the total flow rate flowing into the turbine 400 may remain the same.
  • the turbine 400 is driven by a working fluid and serves to generate power by driving the generator 450. As the working fluid expands while passing through the turbine 400, the turbine 400 also serves as an expander.
  • the turbine 400 and the compressor 100 may be coaxially designed so that the turbine 400 may simultaneously drive the generator 450 and the compressor 100. Can be.
  • the turbine 400 should rotate at a rotational speed corresponding to the output frequency of the generator 450, but cannot rotate at a rotational speed corresponding to the output frequency of the generator 450 when coaxially designing with the compressor 100. Therefore, by providing a gear box, a torque converter 430, etc. between the turbine 400 and the generator 450, the output of the turbine 400 can be converted and supplied to correspond to the output frequency of the generator 450.
  • FIG. 3 is a graph illustrating an example of a turbine inlet temperature and a system output according to the waste heat recovery power generation system of FIG. 1
  • FIG. 4 is a graph showing a temperature distribution in a high temperature side waste heat recovery heater according to the waste heat recovery power generation system of FIG. 1.
  • 5 is a graph illustrating a temperature distribution in a low temperature waste heat recovery heater according to the waste heat recovery power generation system of FIG. 1.
  • the waste heat recovery power generation system includes an inlet (stream 4) of the compressor 100 and an inlet end of the first heat exchanger 310, which is a low temperature side heat source.
  • Each flowmeter can be installed in stream 6).
  • Stream 8 can be fitted with a flow control valve.
  • the flow control valve installed in stream 7 measures the temperature of the final outlet (C stream) of the heat source and is opened and closed to maximize the heat absorption according to the result. That is, when the temperature of the C stream is higher than the temperature of the discharge regulation condition, the flow control valve of the seventh stream is controlled to open, thereby lowering the temperature of the C stream by increasing the flow rate of the working fluid delivered to the first heat exchanger 310. . On the contrary, when the temperature of the C stream is lower than the temperature of the discharge regulation condition, the flow control valve is controlled to close to block the working fluid transferred to the first heat exchanger 310 to maintain a constant temperature of the C stream. By this process, the temperature of C stream can be kept constant.
  • the pressure of the valve may be adjusted to prevent the flow of the working fluid of the nineth stream from the recuperator 200 to the mixer M to flow back to the seventh stream.
  • the amount of heat supplied from the heat source is increased may occur when the flow rate of the entire system is required.
  • the flow control valve in stream 7 keeps the temperature of C stream constant.
  • the flow control valve installed in stream 8 can be opened to increase the flow rate of the entire power generation system.
  • the flow rate of the insufficient working fluid is provided with a separate working fluid storage tank and supplies the working fluid into the power generation system by the insufficient flow rate from the storage tank.
  • the amount of heat supplied from the heat source may be insufficient to reduce the flow rate of the entire system.
  • the flow control valve in stream 7 keeps the temperature of C stream constant.
  • the flow control valve installed in stream 8 can be closed to reduce the flow rate of the entire power generation system.
  • the bypass valve V1 is provided between the inlet and the outlet of the turbine 400, and the bypass valve V1 is preferably connected to the storage tank 600 through a separate transfer pipe 11.
  • the bypass valve V1 is operated, the working fluid passing through the second heat exchanger 330 is recovered to the storage tank 600 through a separate transfer pipe 11 without being sent to the turbine 400.
  • the flow rate of the cooler 500 may be adjusted to keep the temperature at the inlet of the compressor 100 constant.
  • the temperature difference between the waste heat gas and the working fluid in the second heat exchanger 330 may have a distribution as shown in FIG. 4, in the first heat exchanger 310.
  • the temperature difference between the waste heat gas and the working fluid may exhibit a distribution as shown in FIG. 5.
  • the present invention can increase the overall efficiency of the system as the temperature of the working fluid between the first heat exchanger 310 and the second heat exchanger 330 decreases.
  • having a temperature difference of about 10 degrees may be an optimal design point.
  • FIG. 2 is a schematic diagram showing a waste heat recovery power generation system according to another embodiment of the present invention.
  • the waste heat recovery power generation system includes a first recuperator 200a into which a flow rate branched through a separator S at a rear end of a compressor 100a is introduced, A second recuperator 200b into which the flow rate passing through the first recuperator 200a flows may be provided.
  • the working fluid passing through the compressor 100a is branched from the separator S and sent to the first heat exchanger 310a or the first recuperator 200a.
  • the working fluid sent to the first heat exchanger 310a is heat-exchanged with the waste heat gas, firstly heated and then supplied to the mixer M (stream 8), and sent to the first recuperator 200a.
  • the working fluid is heat-exchanged with the working fluid which has passed through the turbine 400a and the second recuperator 200b, is first heated, and is sent to the second recuperator 200b (stream 10). .
  • the secondly heated working fluid in the second recuperator 200b is sent to mixer M (stream 11).
  • the working fluids of streams 8 and 11 are mixed and then sent to the second heat exchanger 330a (stream 12), and the high temperature heated by heat exchange with waste heat gas in the second heat exchanger 330a.
  • the working fluid of is supplied to the turbine 400a.
  • the working fluid which has passed through the turbine 400a and is in an expanded and mesophilic state, is first cooled through the second recuperator 200b and the first recuperator 200a (streams 2 and 3). .
  • the cooled working fluid is sent to cooler 500 (stream 4), cooled to low temperature and then fed back to compressor 100a.
  • the second recuperator 200b since the working fluid passing through the turbine 400a first passes through the second recuperator 200b, the second recuperator 200b becomes a high temperature side recuperator, and the first recuperator 200a It becomes a low temperature side recuperator.
  • the waste heat recovery power generation system controls the amount of heat exchange of the waste heat recovery heater by adjusting the amount of branching of the working fluid branched from the rear of the compressor, thereby changing the temperature of the waste heat source without changing the flow rate of the entire system. It can respond to flow rate fluctuations. This allows the system to operate near the design point, keeping the performance of the entire power generation system constant.
  • the waste heat recovery power generation system of the present invention may be configured in the form of a plurality of turbines (the detailed description of the same configuration as the above-described embodiments will be omitted).
  • FIG. 6 is a schematic diagram showing a waste heat recovery power generation system according to another embodiment of the present invention
  • Figure 7 is a pressure-enthalpy diagram according to the power generation system when using a conventional single turbine
  • Figure 8 is pressure in the waste heat recovery power generation system of Figure 6 -Enthalpy diagram.
  • the dual waste heat recovery power generation system includes a compressor 1000 for compressing a working fluid and a plurality of recuperators for exchanging heat with the working fluid passing through the compressor 1000.
  • a compressor 1000 for compressing a working fluid
  • a plurality of recuperators for exchanging heat with the working fluid passing through the compressor 1000.
  • the recuperator 2000 includes a first recuperator 2100 and a second recuperator 2300, and the turbine 4000 is a low temperature side first turbine 4100 to which a relatively low temperature working fluid is supplied. And the high temperature side second turbine 4300 to which a relatively high temperature working fluid is supplied.
  • the first turbine 4100 and the second turbine 4300 are installed in parallel with each other.
  • the second turbine 4000 is connected to the generator and serves to generate power by driving the generator.
  • the second turbine 4300 is connected to the compressor 1000 and serves to drive the compressor 1000.
  • the mixer installed between the first heat exchanger 3100 and the second heat exchanger 3300 is the first mixer M1 and is installed between the first recuperator 2100 and the second recuperator 2300.
  • the mixer which becomes is a 2nd mixer M2.
  • the working fluid through the first turbine 4100 and the second recuperator 2300 (stream 3 ′) and the working fluid via the second turbine 4300 (stream 13 ′) are mixed.
  • the mixed working fluid is sent to the first recuperator 2100 (stream 4 ').
  • the rear end of the compressor 1000 is provided with a first separator S1 for distributing the flow rate of the working fluid passing through the compressor 1000 to the first heat exchanger 3100 and the first recuperator 2100, respectively.
  • a second separator S2 is provided between the first mixer M1 and the second heat exchanger 3300 to exchange the flow rate of the working fluid mixed in the first mixer M1 with the second heat exchanger 3300. Branches to the first turbine 4100.
  • Flow meters for measuring the flow rate may be installed at the inlet 6 'stream of the compressor 1000 and the inlet 8' stream of the first heat exchanger 3100, which is a low temperature side heat source.
  • a flow regulating valve may be installed between the razors 2100 (14 'stream).
  • the flow control valve installed in the 9 'stream measures the temperature of the final outlet (C stream) of the heat source and opens and closes to maximize the heat absorption according to the result. That is, if the temperature of the C stream is higher than the discharge regulation condition, the flow control valve of the 9 'stream is controlled to open, thereby lowering the temperature of the C stream by increasing the flow rate of the working fluid delivered to the first heat exchanger 3100. . On the contrary, when the temperature of the C stream is lower than the temperature of the discharge regulation condition, the flow control valve is controlled to close to block the working fluid transferred to the first heat exchanger 3100 to maintain a constant temperature of the C stream. By this process, the temperature of C stream can be kept constant.
  • the flow control valve is installed in the 9 'stream to regulate the pressure of the valve to prevent the 16' stream of working fluid from the second recuperator 2300 towards the first mixer M1 to flow back into the 9 'stream. can do.
  • the amount of heat supplied from the heat source is increased may occur when the flow rate of the entire system is required.
  • the flow control valve in the 9 'stream keeps the temperature of the C stream constant.
  • a flow control valve installed in the 14 'stream can be opened to increase the flow rate of the entire power generation system.
  • the low flow rate of the working fluid has a separate working fluid storage tank (not shown), and supplies the working fluid into the power generation system by the low flow rate from the storage tank.
  • the amount of heat supplied from the heat source may be insufficient to reduce the flow rate of the entire system.
  • the flow control valve in the 9' stream keeps the temperature of the C stream constant.
  • the flow control valve installed in the 14 'stream can be closed to reduce the flow rate of the entire power generation system.
  • a bypass valve is provided between the inlet and the outlet of the turbine 4000, and the bypass valve may be connected to the storage tank through a separate transfer pipe. When the bypass valve is operated, the working fluid passing through the second heat exchanger 3300 may be returned to the storage tank through a separate transfer pipe without being sent to the second turbine 4300.
  • the flow rate of the cooler 5000 may be adjusted to keep the temperature at the inlet of the compressor 1000 constant.
  • FIG. 9 is a schematic diagram illustrating a low temperature side turbine single mode according to the waste heat recovery power generation system of FIG. 6.
  • the working fluid mixed in the first mixer M1 is blocked by blocking the flow of the working fluid from the second separator S2 to the 11th stream. It can only be supplied to one turbine 4100.
  • FIG. 10 is a schematic diagram showing the high temperature side turbine driving single mode according to the waste heat recovery power generation system of FIG. 6.
  • the working fluid mixed in the first mixer M1 is blocked by blocking the flow rate of the working fluid from the second separator S2 to the 12th stream. It can only be supplied to two turbines 4300. In this case, the second mixer M2 is not driven, and the working fluid passing through the second turbine 4300 is sequentially cooled after passing through the second recuperator 2300 and the first recuperator 210. Is sent to the cooler 5000.
  • FIG. 11 is a schematic diagram illustrating an example of driving during failure of the low-temperature side waste heat recovery heater according to the waste heat recovery power generation system of FIG. 6.
  • the working fluid passing through the compressor 1000 is blocked only by the 14th stream by blocking the working fluid from the first separator S1 to the 8th stream.
  • the system may be operated so that only the second heat exchanger 3300 is supplied to be driven.
  • the first mixer M1 is not driven, and the working fluid passing through the second recuperator 2300 passes through the second separator S2 to the second heat exchanger 3300 and the first turbine 4100. It is supplied branched.
  • FIG. 12 is a schematic diagram illustrating another driving example when the low temperature side waste heat recovery heater is broken according to the waste heat recovery power generation system of FIG. 6.
  • the system may be operated by driving only the second turbine 4300 without driving the first turbine 4100. That is, by shutting off the working fluid from the first separator S1 to the eighth stream, the working fluid passing through the compressor 1000 is supplied only to the fourteenth stream so that only the second heat exchanger 3300 may be driven.
  • the first mixer M1 is not driven, and the second turbine S100 may not be driven by blocking the working fluid going to the 12th stream in the second separator S2. Therefore, the working fluid having passed through the second recuperator 2300 is supplied to the second heat exchanger 3300 via the first mixer M1 and the second separator S2 and then sent to the high temperature side second turbine 4300. Lose.
  • the second mixer M2 Since the first turbine 4100 is in a stopped state, the second mixer M2 is not driven, and the working fluid that has passed through the second turbine 4300 is the second recuperator 2300 and the first recuperator 2100. After cooling through sequentially, it is sent to the cooler (5000).
  • the waste heat recovery power generation system can operate the system near a design point, thereby maintaining constant performance of the entire power generation system, and by providing two parallel turbines, one turbine When compared to using the system efficiency and the output of the entire turbine is improved.
  • the present invention relates to a waste heat recovery power generation system and a flow rate control method of the power generation system that can cope with temperature and flow rate fluctuations of the waste heat source by changing the amount of waste heat recovery by adjusting the amount of branching of the working fluid.

Abstract

본 발명은 폐열 회수 발전 시스템에 관한 것으로, 작동 유체를 압축시키는 압축기와, 폐열원에서 공급되는 폐열 기체로부터 폐열을 회수하여 상기 작동 유체를 가열하는 복수의 열교환기와, 상기 열교환기를 통과해 가열된 상기 작동 유체에 의해 구동되는 터빈과, 상기 터빈을 통과한 상기 작동 유체와 상기 압축기를 통과한 상기 작동 유체를 열교환하여 상기 터빈을 통과한 상기 작동 유체를 냉각시키는 리큐퍼레이터를 포함하며, 상기 압축기의 후단에서 상기 압축기를 통과한 상기 작동 유체의 유량이 분기되는 것을 특징으로 한다.

Description

폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법
본 발명은 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법에 관한 것으로, 더욱 상세하게는 작동 유체의 분기량을 조절하여 폐열 회수량을 조절함으로써 전체 시스템의 유량 변경 없이 폐열원의 온도와 유량 변동에 대응할 수 있는 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법에 관한 것이다.
국제적으로 효율적인 전력 생산에 대한 필요성이 점차 커지고 있고, 공해물질 발생을 줄이기 위한 움직임이 점차 활발해짐에 따라 공해물질의 발생을 줄이면서 전력 생산량을 높이기 위해 여러 가지 노력을 기울이고 있다. 그러한 노력의 하나로 일본특허공개 제2012-145092호에 개시된 바와 같이 초임계 이산화탄소를 작동 유체로 사용하는 초임계 이산화탄소 발전 시스템(Power generation system using Supercritical CO2)에 대한 연구 개발이 활성화되고 있다.
초임계 상태의 이산화탄소는 액체 상태와 유사한 밀도에 기체와 비슷한 점성을 동시에 가지므로 기기의 소형화와 더불어, 유체의 압축 및 순환에 필요한 전력소모를 최소화할 수 있다. 동시에 임계점이 섭씨 31.4도, 72.8기압으로, 임계점이 섭씨 373.95도, 217.7기압인 물보다 매우 낮아서 다루기가 용이한 장점이 있다. 이러한 초임계 이산화탄소 발전 시스템은 섭씨 550도에서 운전할 경우 약 45% 수준의 순발전효율을 보이며, 기존 스팀 사이클의 발전효율 대비 20% 이상의 발전효율 향상과 함께 터보기기를 수십 분의 1 수준으로 축소가 가능한 장점이 있다.
폐열원의 온도나 유량이 변동하는 복수의 열원을 적용할 경우, 시스템 구성이 복잡해지고 효과적인 열 이용이 어렵기 때문에 일반적으로 초임계 이산화탄소 발전 시스템은 열원인 히터가 1개인 경우가 대부분이다. 따라서 시스템 구성이 한정적이고 효과적인 열원의 이용이 어려운 문제가 있다. 또한, 폐열원의 온도와 유량의 변동에 효과적으로 대응하기 어려운 문제가 있다.
본 발명의 목적은 작동 유체의 분기량을 조절하여 폐열 회수량을 조절함으로써 전체 시스템의 유량 변경 없이 폐열원의 온도와 유량 변동에 대응할 수 있는 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법을 제공하는 것이다.
본 발명의 폐열 회수 발전 시스템은, 작동 유체를 압축시키는 압축기와, 폐열원에서 공급되는 폐열 기체로부터 폐열을 회수하여 상기 작동 유체를 가열하는 복수의 열교환기와, 상기 열교환기를 통과해 가열된 상기 작동 유체에 의해 구동되는 터빈과, 상기 터빈을 통과한 상기 작동 유체와 상기 압축기를 통과한 상기 작동 유체를 열교환하여 상기 터빈을 통과한 상기 작동 유체를 냉각시키는 리큐퍼레이터를 포함하며, 상기 압축기의 후단에서 상기 압축기를 통과한 상기 작동 유체의 유량이 분기되는 것을 특징으로 한다.
상기 열교환기는 제1 열교환기 및 제2 열교환기를 포함하고, 상기 제1 열교환기는 상기 폐열 기체가 배출되는 배출단 쪽인 저온측에 구비되고, 상기 제2 열교환기는 상기 폐열 기체가 유입되는 유입단 쪽인 고온측에 구비되는 것을 특징으로 한다.
상기 압축기의 후단에서 분기된 상기 작동 유체의 유량은 상기 제1 열교환기와 상기 리큐퍼레이터로 각각 이송되고, 상기 리큐퍼레이터를 거친 상기 작동 유체는 상기 제2 열교환기로 이송되는 것을 특징으로 한다.
상기 작동 유체의 유량 혼합을 위해 상기 제2 열교환기의 전단에 구비되는 믹서와, 상기 작동 유체의 유량 분기를 위해 상기 압축기의 후단에 구비되는 세퍼레이터를 더 포함하고, 상기 제1 열교환기를 통과해 가열된 상기 작동 유체의 유량은 상기 제2 열교환기의 전단에서 상기 리큐퍼레이터를 통과한 상기 작동 유체의 유량과 합쳐지는 것을 특징으로 한다.
상기 터빈에 연결되어 전력을 발생시키는 발전기와, 상기 터빈과 상기 발전기의 사이에 구비되어 상기 터빈의 출력을 상기 발전기의 출력 주파수에 대응하도록 전환하여 상기 발전기에 전달하는 기어박스를 더 포함하고, 상기 터빈과 상기 압축기는 동축으로 연결되어 상기 터빈에 의해 상기 압축기 및 발전기가 구동되는 것을 특징으로 한다.
상기 리큐퍼레이터는 제1 리큐퍼레이터 및 제2 리큐퍼레이터를 포함하고, 상기 제2 리큐퍼레이터는 상기 터빈을 통과한 상기 작동 유체가 유입되는 고온측 복열기, 상기 제1 리큐퍼레이터는 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체가 유입되는 저온측 복열기인 것을 특징으로 한다.
상기 압축기 후단에서 분기된 상기 작동 유체가 이송되는 상기 리큐퍼레이터는 상기 제1 리큐퍼레이터이며, 상기 제1 열교환기를 통과해 가열된 상기 작동 유체의 유량은 상기 제2 열교환기의 전단에서 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체의 유량과 합쳐지는 것을 특징으로 한다.
상기 제2 열교환기의 전단에 구비되는 상기 믹서는 제1 믹서이고, 상기 제1 리큐퍼레이터 및 제2 리큐퍼레이터의 사이에 제2 믹서를 더 포함하며, 상기 제1 믹서와 상기 제2 열교환기의 사이에 구비되어 상기 제2 열교환기 또는 상기 터빈으로 상기 제1 믹서를 통과한 상기 작동 유체의 유량을 분기하는 제2 세퍼레이터를 더 포함 한다.
상기 터빈은 상기 제2 세퍼레이터에 의해 상기 작동 유체를 공급받는 제1 터빈과, 상기 제2 열교환기에 의해 상기 작동 유체를 공급받되 상기 제1 터빈과 병렬로 연결되는 제2 터빈을 포함하며, 상기 제1 터빈으로 보내지는 상기 작동 유체의 온도가 상기 제2 터빈으로 보내지는 상기 작동 유체의 온도보다 상대적으로 낮은 것을 특징으로 한다.
상기 제1 터빈을 통과한 상기 작동 유체가 상기 제2 믹서로 유입되며, 상기 제2 터빈을 통과한 상기 작동 유체는 상기 제2 리큐퍼레이터를 거쳐 상기 제2 믹서에서 상기 제1 터빈을 통과한 상기 작동 유체와 혼합된 후 상기 제1 리큐퍼레이터로 보내지는 것을 특징으로 한다.
상기 압축기의 전단 및 상기 제1 열교환기의 전단에는 유량 측정기가 구비되고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이, 상기 제1 열교환기의 배출단, 제2 열교환기의 배출단에는 상기 작동 유체의 유량을 조절하는 유량 조절 밸브가 각각 구비되고, 상기 작동 유체를 추가 공급하는 저장 탱크를 더 포함하는 것을 특징으로 한다.
제1항 내지 제12항의 구성을 포함하는 폐열 회수 발전 시스템의 유량 제어 방법에 있어서, 상기 제1 열교환기의 최종 출구 온도에 따라 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 제어하여 상기 작동 유체의 유량을 조절해 상기 제1 열교환기의 최종 출구 온도에 대응하는 것을 특징으로 한다.
상기 제1 열교환기의 최종 출구 온도가 미리 설정된 배출 규제 조건 온도보다 높으면 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 개방해 상기 작동 유체의 유량을 증가시켜 상기 제1 열교환기의 최종 출구 온도를 감소시키고, 상기 제1 열교환기의 최종 출구 온도가 미리 설정된 배출 규제 조건 온도보다 낮으면 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하는 것을 특징으로 한다.
상기 폐열원에서 공급되는 열량이 증가해 상기 작동 유체의 유량 증가가 필요한 경우, 상기 유량 측정기에서 상기 작동 유체의 유량을 측정한 후 상기 제1 열교환기 후단의 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이에 구비된 상기 유량 조절 밸브를 개방해 상기 작동 유체의 유량을 증가시키는 것을 특징으로 한다.
상기 폐열원에서 공급되는 열량이 감소해 상기 작동 유체의 유량 감소가 필요한 경우, 상기 유량 측정기에서 상기 작동 유체의 유량을 측정한 후 상기 제1 열교환기 후단의 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이에 구비된 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 감소시키는 것을 특징으로 한다.
상기 제1 열교환기 및 상기 제2 터빈의 이상 시, 상기 제2 세퍼레이터에서 상기 제2 열교환기로 보내지는 상기 작동 유체의 유량을 차단해 상기 제1 믹서에서 혼합된 상기 작동 유체가 상기 제1 터빈으로만 공급되는 것을 특징으로 한다.
상기 제1 터빈의 이상 시, 상기 제2 세퍼레이터에서 상기 제1 터빈으로 보내지는 상기 작동 유체의 유량을 차단해 상기 제1 믹서에서 혼합된 상기 작동 유체가 상기 제2 터빈으로만 공급되는 것을 특징으로 한다.
상기 제1 열교환기의 이상 시 상기 제1 세퍼레이터에서 상기 제1 열교환기로 보내지는 상기 작동 유체의 유량을 차단해 상기 압축기를 통과한 작동 유체가 상기 제1 리큐퍼레이터로만 공급되는 것을 특징으로 한다.
상기 제2 리큐퍼레이터를 통과한 상기 작동 유체는 상기 제2 세퍼레이터를 거쳐 상기 제2 열교환기 및 제1 터빈으로 분기되는 것을 특징으로 한다.
상기 제2 세퍼레이터에서 상기 제1 터빈으로 보내지는 상기 작동 유체의 유량을 차단해 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체는 상기 제2 세퍼레이터를 거쳐 상기 제2 열교환기로 공급된 뒤 상기 제2 터빈으로 보내지는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법은 압축기 후단에서 분기되는 작동 유체의 분기량을 조절하여 폐열 회수 히터의 열교환량을 조절함으로써 전체 시스템의 유량 변경 없이 폐열원의 온도와 유량 변동에 대응할 수 있다. 이에 따라 시스템을 설계점 근처에서 운전 가능하므로 전체 발전 시스템의 성능을 일정하게 유지할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도,
도 2는 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도,
도 3은 도 1의 폐열 회수 발전 시스템에 따른 터빈 입구 온도와 시스템 출력의 일 예를 도시한 그래프,
도 4는 도 1의 폐열 회수 발전 시스템에 따른 고온측 폐열 회수 히터에서의 온도 분포를 나타난 그래프,
도 5는 도 1의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터에서의 온도 분포를 나타낸 그래프,
도 6은 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도,
도 7은 종래의 단일 터빈 사용 시 발전 시스템에 따른 압력-엔탈피 다이어그램,
도 8은 도 6의 폐열 회수 발전 시스템에 압력-엔탈피 다이어그램,
도 9는 도 6의 폐열 회수 발전 시스템에 따른 저온측 터빈 단독 모드를 도시한 모식도,
도 10은 도 6의 폐열 회수 발전 시스템에 따른 고온측 터빈 구동 단독 모드를 도시한 모식도,
도 11은 도 6의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터의 고장 시 구동 예를 도시한 모식도,
도 12는 도 6의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터의 고장 시 다른 구동 예를 도시한 모식도이다.
이하에서는 도면을 참조하여, 본 발명의 일 실시 예에 따른 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템에 대해 상세히 설명하기로 한다.
일반적으로 초임계 이산화탄소 발전 시스템은 발전에 사용된 이산화탄소를 외부로 배출하지 않는 폐사이클(close cycle)을 이루며, 작동 유체로 초임계 상태의 이산화탄소를 이용한다.
초임계 이산화탄소 발전 시스템은 작동 유체가 이산화탄소이므로 화력 발전소 등에서 배출되는 배기 가스를 이용할 수 있어 단독 발전 시스템뿐만 아니라 화력 발전 시스템과의 하이브리드 발전 시스템에도 사용될 수 있다. 초임계 이산화탄소 발전 시스템의 작동 유체는 배기 가스로부터 이산화탄소를 분리하여 공급할 수도 있고, 별도의 이산화탄소를 공급할 수도 있다.
사이클 내의 이산화탄소는 고온고압의 초임계 상태이며, 초임계 이산화탄소 유체가 터빈을 구동시킨다. 터빈에는 발전기 또는 펌프가 연결되며, 발전기에 연결된 터빈에 의해 전력을 생산하고 펌프에 연결된 터빈을 이용해 펌프를 구동한다. 터빈을 통과한 이산화탄소는 열교환기를 거치면서 냉각되며, 냉각된 작동 유체는 다시 압축기로 공급되어 사이클 내를 순환한다. 터빈이나 열교환기는 복수 개가 구비될 수 있다.
본 발명에서는 열원으로 폐열 기체를 이용하는 복수의 히터가 구비되고, 열원의 입출구 온도, 용량, 개수 등의 조건에 따라 각 열교환기를 효과적으로 배치함으로써 열원의 개수 대비 동일하거나 적은 수의 리큐퍼레이터를 운용하는 초임계 이산화탄소 발전 시스템을 제안한다.
본 발명의 다양한 실시 예에 따른 초임계 이산화탄소 발전 시스템이란 사이클 내에서 유동하는 작동 유체 모두가 초임계 상태인 시스템뿐만 아니라, 작동 유체의 대부분이 초임계 상태이고 나머지는 아임계 상태인 시스템도 포함하는 의미로 사용된다.
또한, 본 발명의 다양한 실시 예에서 작동 유체로 이산화탄소가 사용되는데, 여기서 이산화탄소란, 화학적인 의미에서 순수한 이산화탄소, 일반적인 관점에서 불순물이 다소 포함되어 있는 상태의 이산화탄소 및 이산화탄소에 한가지 이상의 유체가 첨가물로서 혼합되어 있는 상태의 유체까지도 포함하는 의미로 사용된다.
도 1은 본 발명의 일 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 초임계 이산화탄소 발전 시스템은 이산화탄소를 작동 유체로 사용하며, 작동 유체를 압축시키는 압축기(100)와, 압축기(100)를 통과한 작동 유체와 열교환하는 리큐퍼레이터(200) 및 복수의 열원(300)과, 리큐퍼레이터(200) 및 열원(300)을 통과하며 가열된 작동 유체에 의해 구동되는 터빈(400)과, 터빈(400)에 의해 구동되는 발전기(450), 그리고 압축기(100)로 유입되는 작동 유체를 냉각시키는 쿨러(500)를 포함하여 구성될 수 있다.
본 발명의 각 구성들은 작동 유체가 흐르는 이송관(도 1 내지 4의 stream 1 내지 12)에 의해 연결되며, 특별히 언급하지 않더라도 작동 유체는 이송관을 따라 유동하는 것으로 이해되어야 한다. 다만, 복수 개의 구성들이 일체화 되어 있는 경우, 일체화된 구성 내에 사실상 이송관의 역할을 하는 부품 내지 영역이 있을 것이므로, 이 경우에도 당연히 작동 유체는 이송관을 따라 유동하는 것으로 이해되어야 한다. 별도의 기능을 하는 유로의 경우 추가로 설명하기로 한다.
압축기(100)는 후술할 터빈(400)에 의해 구동되며, 쿨러(500)를 거쳐(stream 4) 냉각된 저온의 작동 유체를 리큐퍼레이터(200)로 보내는 역할을 한다(stream 5, 8). 압축기(100)의 후단에는 압축기(100)를 통과한 작동 유체의 유량을 분배하기 위한 세퍼레이터(S)가 구비된다.
세퍼레이터(S)는 압축기(100)를 통과한 유량을 후술할 열원(300) 중 하나와 후술할 리큐퍼레이터(200)로 분기하는 역할을 한다(stream 6, 8). 발전 시스템에서 가장 저온인 압축기(100) 후단에서 작동 유체의 유량 일부를 분기해 폐열을 회수하는 열원(300)으로 보내(stream 6) 열교환에 사용함으로써 폐열 흡수량을 최대한 유지할 수 있다(작동 유체의 유량 분배 및 유량 제어에 관해서는 후술하기로 함).
리큐퍼레이터(200)는 터빈(400)을 통과해 팽창되면서 고온에서 중온으로 냉각된 작동 유체와(stream 2) 후술할 압축기(100)를 거쳐 리큐퍼레이터(200)를 통과하는 작동 유체(stream 8)를 열교환하는 역할을 한다. 리큐퍼레이터(200)는 세퍼레이터(S)에 의해 분기된 이송관 상에 설치되되, 터빈(400)의 배출단과 쿨러(500)의 유입단 사이(stream 3)에 배치된다. 리큐퍼레이터(200)에서 압축기(100)를 거친 작동 유체는 터빈(400)을 통과한 작동 유체에 의해 1차로 가열된다.
리큐퍼레이터(200)에서 열교환에 의해 1차로 냉각된 작동 유체는 쿨러(500)로 보내져 2차로 냉각된 후(stream 3) 압축기(100)로 보내진다(stream 4). 리큐퍼레이터(200)에서 열교환에 의해 1차로 가열된 작동 유체는 후술할 열원(300)으로 공급된다.
열원(300)은 배출되는 기체의 배출 조건이 정해져 있는 제한 열원(constrained heat source)과 배출되는 기체의 배출 조건이 정해져 있지 않은 일반 열원으로 구성될 수 있다. 본 명세서에서는 편의상 제1 열교환기(310)가 제한 열원으로 구성되고, 제2 열교환기(330)가 일반 열원으로 구성된 것을 예로 하여 설명한다.
제2 열교환기(330)는 폐열원(10)에 가까운 쪽에 배치되고, 제1 열교환기(310)는 폐열원으로부터 제2 열교환기(330)에 비해 상대적으로 먼 쪽에 배치된다.
제1 열교환기(310)는 타 발전 사이클의 배기 가스와 같이 폐열을 갖는 기체(이하 폐열 기체)를 열원으로 사용하되, 폐열 기체의 배출 시(C) 배출 규제 조건을 갖는 열원이다. 배출 규제 조건은 온도 조건이며, 제1 열교환기(310)로 유입되는 폐열 기체의 온도는 후술할 제2 열교환기(330)로 유입되는 폐열 기체의 온도보다 상대적으로 낮다. 이는 폐열원과의 거리가 상대적으로 멀기 때문이다.
제1 열교환기(310)는 폐열 기체의 열로 압축기(100)를 통과해 제1 열교환기(310)로 유입되는(stream 6) 작동 유체를 가열한다. 제1 열교환기(310)에서 열을 빼앗긴 폐열 기체는 배출 규제 조건에 맞는 온도로 냉각되어 제1 열교환기(310)를 빠져나간다(C). 제1 열교환기(310)로 냉각 유체의 유량을 얼만큼 보내느냐에 따라 폐열을 흡수할 수 있는 정도가 달라진다. 제1 열교환기(310)를 통과해 가열된 작동 유체는 리큐퍼레이터(200)의 후단에서 리큐퍼레이터(200)를 통과해 1차로 가열된 작동 유체와 혼합되어(stream 7) 제1 열교환기(310)로 공급된다(stream 10).
제2 열교환기(330)는 폐열 기체와 작동 유체를 열교환하여 작동 유체를 가열하는 역할을 하며, 배출 규제 조건이 없는 열원이다. 제2 열교환기(330)로 유입(A)되는 폐열 기체의 온도는 제1 열교환기(310)로 유입되는 폐열 기체의 온도보다 상대적으로 높다. 이는 제2 열교환기(330)가 폐열원과 상대적으로 가까운 거리에 배치되기 때문이다.
제2 열교환기(330)로는 리큐퍼레이터(200)를 통과한 작동 유체 및 제1 열교환기(310)에서 가열된 작동 유체가 혼합된 작동 유체의 유량이 유입된다. 작동 유체의 혼합을 위해 제1 열교환기(310)와 제2 열교환기(330)의 사이에는 믹서(M)가 설치된다. 믹서(M)는 9번 stream과 10번 stream의 합류점에 구비된다. 제2 열교환기(330)는 이 혼합된 유량의 작동 유체를 가열한다. 제2 열교환기(330)에서 가열된 작동 유체는 터빈(400)으로 공급된다(stream 1).
제2 열교환기(330)로 유입되는 유량이 최초 압축기(100)의 후단에서 분기된 두 개의 스트림(stream)이 다시 더해진 유량이므로, 발전 시스템 전체의 유량이 제2 열교환기(330)로 유입되는 셈이다. 따라서 터빈(400)으로 유입되는 유량은 전체 유량에 해당하며, 압축기(100) 후단에서 작동 유체의 유량을 분기하더라도 터빈(400)으로 유입되는 전체 유량은 변하지 않고 동일하게 유지될 수 있다.
터빈(400)은 작동 유체에 의해 구동되며, 발전기(450)를 구동시킴으로써 전력을 생산하는 역할을 한다. 터빈(400)을 통과하면서 작동 유체가 팽창되므로 터빈(400)은 팽창기(expander)의 역할도 하게 된다.
또한, 터빈(400)과 압축기(100)의 속도를 동일하게 설계하면 터빈(400)과 압축기(100)를 동축으로 설계하여 터빈(400)이 발전기(450) 및 압축기(100)를 동시에 구동시킬 수 있다. 이때, 터빈(400)은 발전기(450)의 출력 주파수에 대응하는 회전수로 회전해야 하나 압축기(100)와 동축 설계 시 발전기(450)의 출력 주파수에 대응하는 회전수로 회전할 수 없다. 따라서 터빈(400)과 발전기(450)의 사이에 기어 박스나 토크 컨버터(430) 등을 구비함으로써 터빈(400)의 출력을 발전기(450)의 출력 주파수에 대응하도록 변환하여 공급할 수 있다.
전술한 구성을 갖는 본 발명의 일 실시 예에 따른 폐열 회수 발전 시스템에 있어서, 작동 유체의 유량을 제어하여 폐열원의 온도 및 유량 변화에 대응하는 방법에 대해 설명하기로 한다.
도 3은 도 1의 폐열 회수 발전 시스템에 따른 터빈 입구 온도와 시스템 출력의 일 예를 도시한 그래프, 도 4는 도 1의 폐열 회수 발전 시스템에 따른 고온측 폐열 회수 히터에서의 온도 분포를 나타난 그래프, 도 5는 도 1의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터에서의 온도 분포를 나타낸 그래프이다.
먼저 도 1에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 폐열 회수 발전 시스템은 압축기(100)의 입구(4번 stream)와, 저온측 열원인 제1 열교환기(310)의 유입단(6번 stream)에 유량을 측정하기 위한 유량 측정기를 각각 설치할 수 있다.
또한, 저온측 제1 열교환기(310)와 고온측 제2 열교환기(330)의 사이 중 믹서(M)의 전단(7번 stream), 그리고 세퍼레이터(S)와 리큐퍼레이터(200)의 사이(8번 stream)에는 유량 조절 밸브가 설치될 수 있다.
7번 stream에 설치되는 유량 조절 밸브는 열원의 최종 출구(C stream)의 온도를 측정해 그 결과에 따라 열흡수가 최대가 되도록 개폐된다. 즉, C stream의 온도가 배출 규제 조건의 온도 보다 높으면 7번 stream의 유량 조절 밸브가 개방되도록 제어되어 제1 열교환기(310)로 이송되는 작동 유체의 유량을 증가시킴으로써 C stream의 온도를 낮춰준다. 반대로 C stream의 온도가 배출 규제 조건의 온도 보다 낮으면 유량 조절 밸브가 폐쇄되도록 제어되어 제1 열교환기(310)로 이송되는 작동 유체를 차단함으로써 C stream의 온도를 일정하게 유지해준다. 이러한 과정에 의해 C stream의 온도를 일정하게 유지할 수 있다.
또한, 유량 조절 밸브가 7번 stream에 설치됨으로써 밸브의 압력을 조절해 리큐퍼레이터(200)에서 믹서(M)를 향하는 9번 stream의 작동 유체가 7번 stream으로 역류되는 것을 방지할 수 있다.
한편, 열원에서 공급되는 열량이 늘어나 시스템 전체의 유량 증가가 필요한 경우가 발생할 수 있다.
이 경우에는 4번과 6번 stream의 작동 유체의 유량을 측정한 후 7번 stream의 유량 조절 밸브는 C stream의 온도를 일정하게 유지하도록 한다. 동시에 8번 stream에 설치된 유량 조절 밸브를 열어 전체 발전 시스템의 유량을 증가시킬 수 있다. 부족한 작동 유체의 유량은 별도의 작동 유체 저장 탱크()를 구비하고, 저장 탱크로부터 부족한 유량만큼 발전 시스템 내로 작동 유체를 공급하게 된다.
반대로 열원에서 공급되는 열량이 부족하여 시스템 전체의 유량 감소가 필요한 경우가 발생할 수 있다.
이 경우에는 6번 stream의 작동 유체의 유량을 측정한 후 7번 stream의 유량 조절 밸브는 C stream의 온도를 일정하게 유지하도록 한다. 동시에 8번 stream에 설치된 유량 조절 밸브를 닫아 전체 발전 시스템의 유량을 감소시킬 수 있다. 이를 위해 터빈(400)의 입구와 출구 사이에 바이패스 밸브(V1)가 구비되고, 바이패스 밸브(V1)는 별도의 이송관(11)을 통해 저장 탱크(600)와 연결되는 것이 바람직하다. 바이패스 밸브(V1)가 작동되면 제2 열교환기(330)를 거친 작동 유체가 터빈(400) 쪽으로 보내지지 않고 별도의 이송관(11)을 통해 저장 탱크(600)로 회수된다.
전술한 작동 유체의 유량 조절과 관련하여, 압축기(100) 입구의 온도를 일정하게 유지하기 위해 쿨러(500)의 유량을 조절할 수도 있다.
전술한 유량 조절 방법에 따라 작동 유체의 유량을 조절함에 있어, 시스템의 출력과 온도 관계를 간단히 설명하면 다음과 같다.
도 3에 도시된 바와 같이, 시스템에 주어지는 열량이 일정하면(C stream의 온도가 일정하게 유지될 때), 시스템의 설계 시 전체 유량이 증가할 때 터빈(400) 입구의 온도가 낮아지고, 전체 유량이 감소할 때 터빈(400) 입구의 온도가 높아진다. 이러한 상관 관계에 따라 전체 시스템이 낼 수 있는 최대 출력은 열원의 특성에 따라 다르기는 하지만 최적의 설계점이 존재하게 된다(예를 들어, 열원의 온도가 섭씨 490도라면 약 섭씨 370도 전후로 최적 설계점이 됨).
일반적으로 터빈(400) 입구의 온도가 높아지면 시스템 전체의 출력이 증가하지만, 초임계 이산화탄소 발전 사이클의 특성 상 터빈(400) 입구의 온도가 낮더라도 유량을 증가시키는 것이 시스템의 출력 증가에 유리한 최적 설계점이 있다.
열원의 특성에 따라 다르기는 하나, 예를 들어 제2 열교환기(330)에서 폐열 기체와 작동 유체의 온도 차이는 도 4에 도시된 바와 같은 분포를 보일 수 있으며, 제1 열교환기(310)에서 폐열 기체와 작동 유체의 온도 차이는 도 5에 도시된 바와 같은 분포를 보일 수 있다.
이러한 상관관계를 고려할 때, 본 발명은 제1 열교환기(310)와 제2 열교환기(330) 사이의 작동 유체의 온도가 작아질수록 시스템의 전체 효율을 증가시킬 수 있다. 예를 들어, 본 발명에서는 약 10도의 온도 차이를 갖는 것이 최적 설계점이 될 수 있다.
이상에서는 한 개의 리큐퍼레이터를 활용한 발전 시스템에 대해 설명하였으며, 이하에서는 복수의 리큐퍼레이터를 활용한 발전 시스템에 대해 설명하기로 한다(편의상 전술한 실시 예와 동일한 구성에 대해서는 상세한 설명을 생략하기로 한다). 도 2는 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도이다.
도 2에 도시된 바와 같이, 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템은 압축기(100a) 후단의 세퍼레이터(S)를 통해 분기된 유량이 유입되는 제1 리큐퍼레이터(200a)와, 제1 리큐퍼레이터(200a)를 통과한 유량이 유입되는 제2 리큐퍼레이터(200b)를 구비할 수 있다.
압축기(100a)를 통과한 작동 유체는 세퍼레이터(S)에서 분기되어 제1 열교환기(310a) 또는 제1 리큐퍼레이터(200a)로 보내진다.
제1 열교환기(310a)로 보내진(7번 stream) 작동 유체는 폐열 기체와 열교환해 1차로 가열된 뒤 믹서(M)로 공급되고(8번 stream), 제1 리큐퍼레이터(200a)로 보내진(9번 stream) 작동 유체는 터빈(400a) 및 제2 리큐퍼레이터(200b)를 통과한 작동 유체와 열교환해 1차로 가열된 뒤 제2 리큐퍼레이터(200b)로 보내진다(10번 stream). 제2 리큐퍼레이터(200b)에서 2차로 가열된 작동 유체는 믹서(M)로 보내진다(11번 stream). 믹서(M)에서 8번 및 11번 stream의 작동 유체가 혼합된 뒤 제2 열교환기(330a)로 보내지고(12번 stream), 제2 열교환기(330a)에서 폐열 기체와 열교환해 가열된 고온의 작동 유체는 터빈(400a)으로 공급된다.
터빈(400a)을 통과하며 팽창 및 중온 상태가 된 작동 유체는 제2 리큐퍼레이터(200b) 및 제1 리큐퍼레이터(200a)를 순차적으로 거치면서 1차로 냉각된다(2번 및 3번 stream). 냉각된 작동 유체는 쿨러(500)로 보내져(4번 stream) 저온으로 냉각된 뒤 다시 압축기(100a)로 공급된다.
이와 같이, 터빈(400a)을 통과한 작동 유체가 제2 리큐퍼레이터(200b)를 먼저 거치므로 제2 리큐퍼레이터(200b)는 고온측 복열기가 되며, 제1 리큐퍼레이터(200a)는 저온측 복열기가 된다.
이렇게 복수의 리큐퍼레이터를 적용하는 경우, 고온측과 저온측 복열기에 각기 다른 소재를 사용할 수 있어 제작 단가가 감소되는 효과가 있다.
전술한 바와 같이, 본 발명의 실시 예들에 따른 폐열 회수 발전 시스템은 압축기 후단에서 분기되는 작동 유체의 분기량을 조절하여 폐열 회수 히터의 열교환량을 조절함으로써 전체 시스템의 유량 변경 없이 폐열원의 온도와 유량 변동에 대응할 수 있다. 이에 따라 시스템을 설계점 근처에서 운전 가능하므로 전체 발전 시스템의 성능을 일정하게 유지할 수 있다.
한편, 본 발명의 폐열 회수 발전 시스템은 복수의 터빈이 구비되는 형태로 구성될 수도 있다(전술한 실시 예들과 동일한 구성에 대해서는 상세한 설명을 생략하기로 함).
도 6은 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템을 도시한 모식도, 도 7은 종래의 단일 터빈 사용 시 발전 시스템에 따른 압력-엔탈피 다이어그램, 도 8은 도 6의 폐열 회수 발전 시스템에 압력-엔탈피 다이어그램이다.
도 6에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 이중 폐열 회수 발전 시스템은 작동 유체를 압축시키는 압축기(1000)와, 압축기(1000)를 통과한 작동 유체와 열교환하는 복수의 리큐퍼레이터(2000) 및 복수의 열원(3000)과, 리큐퍼레이터(2000) 및 열원(3000)을 통과하며 가열된 작동 유체에 의해 구동되는 복수의 터빈(4000)과, 터빈(4000)에 의해 구동되는 발전기(4500), 그리고 압축기(1000)로 유입되는 작동 유체를 냉각시키는 쿨러(5000)를 포함하여 구성될 수 있다.
리큐퍼레이터(2000)는 제1 리큐퍼레이터(2100)와 제2 리큐퍼레이터(2300)로 구성되고, 터빈(4000)은 상대적으로 저온의 작동 유체가 공급되는 저온측 제1 터빈(4100)과, 상대적으로 고온의 작동 유체가 공급되는 고온측 제2 터빈(4300)으로 구성될 수 있다. 제1 터빈(4100)과 제2 터빈(4300)은 상호 병렬로 설치된다. 제2 터빈(4000)은 도면에 도시하지는 않았으나, 발전기와 연결되어 발전기를 구동시킴으로써 전력을 생산하는 역할을 한다. 제2 터빈(4300)은 도면에 도시하지는 않았으나, 압축기(1000)와 연결되어 압축기(1000)를 구동시키는 역할을 한다.
제1 열교환기(3100)와 제2 열교환기(3300)의 사이에 설치된 믹서는 제1 믹서(M1)이고, 제1 리큐퍼레이터(2100)와 제2 리큐퍼레이터(2300)의 사이에 설치되는 믹서는 제2 믹서(M2)이다. 제2 믹서(M2)에서는 제1 터빈(4100) 및 제2 리큐퍼레이터(2300)를 거친 작동 유체와(stream 3') 제2 터빈(4300)을 거친 작동 유체(stream 13')가 혼합되며, 혼합된 작동 유체는 제1 리큐퍼레이터(2100)로 보내진다(stream 4').
압축기(1000)의 후단에는 압축기(1000)를 통과한 작동 유체의 유량을 제1 열교환기(3100)와 제1 리큐퍼레이터(2100)로 각각 분배하기 위한 제1 세퍼레이터(S1)가 구비된다. 또한, 제1 믹서(M1)와 제2 열교환기(3300)의 사이에는 제2 세퍼레이터(S2)가 구비되어 제1 믹서(M1)에서 혼합된 작동 유체의 유량을 제2 열교환기(3300)와 제1 터빈(4100)으로 분기한다.
이러한 구성을 갖는 본 발명의 다른 실시 예에 따른 폐열 회수 발전 시스템에 있어서, 작동 유체의 유량을 제어하여 폐열원의 온도 및 유량 변화에 대응하는 방법을 간단히 설명하면 다음과 같다.
압축기(1000)의 입구(6' stream)와, 저온측 열원인 제1 열교환기(3100)의 유입단(8' stream)에 유량을 측정하기 위한 유량 측정기를 각각 설치할 수 있다.
또한, 저온측 제1 열교환기(3100)와 고온측 제2 열교환기(3300)의 사이 중 제1 믹서(M1)의 전단(9' stream), 그리고 제1 세퍼레이터(S1)와 제1 리큐퍼레이터(2100)의 사이(14' stream)에는 유량 조절 밸브가 설치될 수 있다.
9' stream에 설치되는 유량 조절 밸브는 열원의 최종 출구(C stream)의 온도를 측정해 그 결과에 따라 열흡수가 최대가 되도록 개폐된다. 즉, C stream의 온도가 배출 규제 조건의 온도 보다 높으면 9' stream의 유량 조절 밸브가 개방되도록 제어되어 제1 열교환기(3100)로 이송되는 작동 유체의 유량을 증가시킴으로써 C stream의 온도를 낮춰준다. 반대로 C stream의 온도가 배출 규제 조건의 온도 보다 낮으면 유량 조절 밸브가 폐쇄되도록 제어되어 제1 열교환기(3100)로 이송되는 작동 유체를 차단함으로써 C stream의 온도를 일정하게 유지해준다. 이러한 과정에 의해 C stream의 온도를 일정하게 유지할 수 있다.
또한, 유량 조절 밸브가 9' stream에 설치됨으로써 밸브의 압력을 조절해 제2 리큐퍼레이터(2300)에서 제1 믹서(M1)를 향하는 16' stream의 작동 유체가 9' stream으로 역류되는 것을 방지할 수 있다.
한편, 열원에서 공급되는 열량이 늘어나 시스템 전체의 유량 증가가 필요한 경우가 발생할 수 있다.
이 경우에는 6'와 8' stream의 작동 유체의 유량을 측정한 후 9' stream의 유량 조절 밸브는 C stream의 온도를 일정하게 유지하도록 한다. 동시에 14' stream에 설치된 유량 조절 밸브를 열어 전체 발전 시스템의 유량을 증가시킬 수 있다. 부족한 작동 유체의 유량은 별도의 작동 유체 저장 탱크(미도시)를 구비하고, 저장 탱크로부터 부족한 유량만큼 발전 시스템 내로 작동 유체를 공급하게 된다.
반대로 열원에서 공급되는 열량이 부족하여 시스템 전체의 유량 감소가 필요한 경우가 발생할 수 있다.
이 경우에는 8' stream의 작동 유체의 유량을 측정한 후 9' stream의 유량 조절 밸브는 C stream의 온도를 일정하게 유지하도록 한다. 동시에 14' stream에 설치된 유량 조절 밸브를 닫아 전체 발전 시스템의 유량을 감소시킬 수 있다. 이를 위해 도면에 도시하지는 않았으나 터빈(4000)의 입구와 출구 사이에 바이패스 밸브가 구비되고, 바이패스 밸브는 별도의 이송관을 통해 저장 탱크와 연결될 수 있다. 바이패스 밸브가 작동되면 제2 열교환기(3300)를 거친 작동 유체가 제2 터빈(4300) 쪽으로 보내지지 않고 별도의 이송관을 통해 저장 탱크로 회수될 수 있다.
전술한 작동 유체의 유량 조절과 관련하여, 압축기(1000) 입구의 온도를 일정하게 유지하기 위해 쿨러(5000)의 유량을 조절할 수도 있다.
본 실시 예에 있어서, 시스템 구성 요소의 이상이나 비상 상황 시 작동 유체의 유량을 제어하여 발전 시스템을 운용하는 예에 대해 설명하기로 한다.
도 9는 도 6의 폐열 회수 발전 시스템에 따른 저온측 터빈 단독 모드를 도시한 모식도이다.
도 9에 도시된 바와 같이, 제1 터빈(4100)의 단독 구동 시 제2 세퍼레이터(S2)에서 11번 stream으로 가는 작동 유체의 유량을 차단시킴으로써 제1 믹서(M1)에서 혼합된 작동 유체가 제1 터빈(4100)으로만 공급될 수 있다.
반대로 도 10은 도 6의 폐열 회수 발전 시스템에 따른 고온측 터빈 구동 단독 모드를 도시한 모식도이다.
도 10에 도시된 바와 같이, 제2 터빈(4300)의 단독 구동 시 제2 세퍼레이터(S2)에서 12번 stream으로 가는 작동 유체의 유량을 차단시킴으로써 제1 믹서(M1)에서 혼합된 작동 유체가 제2 터빈(4300)으로만 공급될 수 있다. 이때, 제2 믹서(M2)는 구동되지 않으며, 제2 터빈(4300)을 통과한 작동 유체는 제2 리큐퍼레이터(2300) 및 제1 리큐퍼레이터(210)를 순차적으로 통과해 냉각된 후 쿨러(5000)로 보내진다.
도 11은 도 6의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터의 고장 시 구동 예를 도시한 모식도이다.
도 11에 도시된 바와 같이, 제1 열교환기(3100)의 고장 시 제1 세퍼레이터(S1)에서 8번 stream으로 가는 작동 유체를 차단함으로써 압축기(1000)를 통과한 작동 유체가 14번 stream으로만 공급되어 제2 열교환기(3300)만 구동될 수 있도록 시스템을 운용할 수 있다. 이때, 제1 믹서(M1)는 구동되지 않으며, 제2 리큐퍼레이터(2300)를 통과한 작동 유체는 제2 세퍼레이터(S2)를 거쳐 제2 열교환기(3300) 및 제1 터빈(4100)으로 분기되어 공급된다.
도 12는 도 6의 폐열 회수 발전 시스템에 따른 저온측 폐열 회수 히터의 고장 시 다른 구동 예를 도시한 모식도이다.
도 12에 도시된 바와 같이, 제1 열교환기(3100)의 고장 시 제1 터빈(4100)도 구동하지 않고 제2 터빈(4300)만 구동하여 시스템을 운용할 수 있다. 즉, 제1 세퍼레이터(S1)에서 8번 stream으로 가는 작동 유체를 차단함으로써 압축기(1000)를 통과한 작동 유체가 14번 stream으로만 공급되어 제2 열교환기(3300)만 구동될 수 있도록 한다. 이때, 제1 믹서(M1)는 구동되지 않으며, 제2 세퍼레이터(S2)에서는 12번 stream으로 가는 작동 유체를 차단함으로써 제1 터빈(4100) 역시 구동되지 않도록 할 수 있다. 따라서 제2 리큐퍼레이터(2300)를 거친 작동 유체는 제1 믹서(M1) 및 제2 세퍼레이터(S2)를 거쳐 제2 열교환기(3300)로 공급된 뒤 고온측 제2 터빈(4300)으로 보내진다. 제1 터빈(4100)의 구동 중지 상태이므로 제2 믹서(M2) 역시 구동하지 않으며, 제2 터빈(4300)을 거친 작동 유체는 제2 리큐퍼레이터(2300) 및 제1 리큐퍼레이터(2100)를 순차적으로 거쳐 냉각된 뒤 쿨러(5000)로 보내진다.
전술한 바와 같이, 본 발명의 실시 예들에 따른 폐열 회수 발전 시스템은 시스템을 설계점 근처에서 운전 가능하므로 전체 발전 시스템의 성능을 일정하게 유지할 수 있을 뿐만 아니라, 두 개의 병렬 터빈을 구비함으로써 하나의 터빈을 사용할 때보다 시스템 효율 및 전체 터빈의 출력이 향상되는 효과가 있다.
앞에서 설명되고 도면에 도시된 본 발명의 일 실시 예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 권리범위는 청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경이 통상의 지식을 가진 자에게 자명한 것인 한, 본 발명의 권리범위에 속하게 될 것이다.
본 발명은 작동 유체의 분기량을 조절하여 폐열 회수량을 조절함으로써 전체 시스템의 유량 변경 없이 폐열원의 온도와 유량 변동에 대응할 수 있는 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법에 관한 것이다.

Claims (20)

  1. 작동 유체를 압축시키는 압축기와,
    폐열원에서 공급되는 폐열 기체로부터 폐열을 회수하여 상기 작동 유체를 가열하는 복수의 열교환기와,
    상기 열교환기를 통과해 가열된 상기 작동 유체에 의해 구동되는 터빈과,
    상기 터빈을 통과한 상기 작동 유체와 상기 압축기를 통과한 상기 작동 유체를 열교환하여 상기 터빈을 통과한 상기 작동 유체를 냉각시키는 리큐퍼레이터를 포함하며,
    상기 압축기의 후단에서 상기 압축기를 통과한 상기 작동 유체의 유량이 분기되는 것을 특징으로 하는 폐열 회수 발전 시스템.
  2. 제1항에 있어서,
    상기 열교환기는 제1 열교환기 및 제2 열교환기를 포함하고, 상기 제1 열교환기는 상기 폐열 기체가 배출되는 배출단 쪽인 저온측에 구비되고, 상기 제2 열교환기는 상기 폐열 기체가 유입되는 유입단 쪽인 고온측에 구비되는 것을 특징으로 하는 폐열 회수 발전 시스템.
  3. 제3항에 있어서,
    상기 압축기의 후단에서 분기된 상기 작동 유체의 유량은 상기 제1 열교환기와 상기 리큐퍼레이터로 각각 이송되고, 상기 리큐퍼레이터를 거친 상기 작동 유체는 상기 제2 열교환기로 이송되는 것을 특징으로 하는 폐열 회수 발전 시스템.
  4. 제3항에 있어서,
    상기 작동 유체의 유량 혼합을 위해 상기 제2 열교환기의 전단에 구비되는 믹서와, 상기 작동 유체의 유량 분기를 위해 상기 압축기의 후단에 구비되는 세퍼레이터를 더 포함하고,
    상기 제1 열교환기를 통과해 가열된 상기 작동 유체의 유량은 상기 제2 열교환기의 전단에서 상기 리큐퍼레이터를 통과한 상기 작동 유체의 유량과 합쳐지는 것을 특징으로 하는 폐열 회수 발전 시스템.
  5. 제1항에 있어서,
    상기 터빈에 연결되어 전력을 발생시키는 발전기와, 상기 터빈과 상기 발전기의 사이에 구비되어 상기 터빈의 출력을 상기 발전기의 출력 주파수에 대응하도록 전환하여 상기 발전기에 전달하는 기어박스를 더 포함하고, 상기 터빈과 상기 압축기는 동축으로 연결되어 상기 터빈에 의해 상기 압축기 및 발전기가 구동되는 것을 특징으로 하는 폐열 회수 발전 시스템.
  6. 제4항에 있어서,
    상기 리큐퍼레이터는 제1 리큐퍼레이터 및 제2 리큐퍼레이터를 포함하고, 상기 제2 리큐퍼레이터는 상기 터빈을 통과한 상기 작동 유체가 유입되는 고온측 복열기, 상기 제1 리큐퍼레이터는 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체가 유입되는 저온측 복열기인 것을 특징으로 하는 폐열 회수 발전 시스템.
  7. 제6항에 있어서,
    상기 압축기 후단에서 분기된 상기 작동 유체가 이송되는 상기 리큐퍼레이터는 상기 제1 리큐퍼레이터이며, 상기 제1 열교환기를 통과해 가열된 상기 작동 유체의 유량은 상기 제2 열교환기의 전단에서 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체의 유량과 합쳐지는 것을 특징으로 하는 폐열 회수 발전 시스템.
  8. 제7항에 있어서,
    상기 제2 열교환기의 전단에 구비되는 상기 믹서는 제1 믹서이고, 상기 제1 리큐퍼레이터 및 제2 리큐퍼레이터의 사이에 제2 믹서를 더 포함하며, 상기 제1 믹서와 상기 제2 열교환기의 사이에 구비되어 상기 제2 열교환기 또는 상기 터빈으로 상기 제1 믹서를 통과한 상기 작동 유체의 유량을 분기하는 제2 세퍼레이터를 더 포함하는 폐열 회수 발전 시스템.
  9. 제8항에 있어서,
    상기 터빈은 상기 제2 세퍼레이터에 의해 상기 작동 유체를 공급받는 제1 터빈과, 상기 제2 열교환기에 의해 상기 작동 유체를 공급받되 상기 제1 터빈과 병렬로 연결되는 제2 터빈을 포함하며, 상기 제1 터빈으로 보내지는 상기 작동 유체의 온도가 상기 제2 터빈으로 보내지는 상기 작동 유체의 온도보다 상대적으로 낮은 것을 특징으로 하는 폐열 회수 발전 시스템.
  10. 제9항에 있어서,
    상기 제1 터빈을 통과한 상기 작동 유체가 상기 제2 믹서로 유입되며, 상기 제2 터빈을 통과한 상기 작동 유체는 상기 제2 리큐퍼레이터를 거쳐 상기 제2 믹서에서 상기 제1 터빈을 통과한 상기 작동 유체와 혼합된 후 상기 제1 리큐퍼레이터로 보내지는 것을 특징으로 하는 폐열 회수 발전 시스템.
  11. 제10항에 있어서,
    상기 압축기의 전단 및 상기 제1 열교환기의 전단에는 유량 측정기가 구비되고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이, 상기 제1 열교환기의 배출단, 제2 열교환기의 배출단에는 상기 작동 유체의 유량을 조절하는 유량 조절 밸브가 각각 구비되고, 상기 작동 유체를 추가 공급하는 저장 탱크를 더 포함하는 것을 특징으로 하는 폐열 회수 발전 시스템.
  12. 제1항 내지 제12항의 구성을 포함하는 폐열 회수 발전 시스템의 유량 제어 방법에 있어서,
    상기 제1 열교환기의 최종 출구 온도에 따라 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 제어하여 상기 작동 유체의 유량을 조절해 상기 제1 열교환기의 최종 출구 온도에 대응하는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  13. 제12항에 있어서,
    상기 제1 열교환기의 최종 출구 온도가 미리 설정된 배출 규제 조건 온도보다 높으면 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 개방해 상기 작동 유체의 유량을 증가시켜 상기 제1 열교환기의 최종 출구 온도를 감소시키고, 상기 제1 열교환기의 최종 출구 온도가 미리 설정된 배출 규제 조건 온도보다 낮으면 상기 제1 열교환기의 배출단에 구비된 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  14. 제12항에 있어서,
    상기 폐열원에서 공급되는 열량이 증가해 상기 작동 유체의 유량 증가가 필요한 경우, 상기 유량 측정기에서 상기 작동 유체의 유량을 측정한 후 상기 제1 열교환기 후단의 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이에 구비된 상기 유량 조절 밸브를 개방해 상기 작동 유체의 유량을 증가시키는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  15. 제12항에 있어서,
    상기 폐열원에서 공급되는 열량이 감소해 상기 작동 유체의 유량 감소가 필요한 경우, 상기 유량 측정기에서 상기 작동 유체의 유량을 측정한 후 상기 제1 열교환기 후단의 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 차단시켜 상기 제1 열교환기의 최종 출구 온도를 일정하게 유지하고, 상기 제1 세퍼레이터와 상기 제1 리큐퍼레이터의 사이에 구비된 상기 유량 조절 밸브를 폐쇄해 상기 작동 유체의 유량을 감소시키는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  16. 제12항에 있어서,
    상기 제1 열교환기 및 상기 제2 터빈의 이상 시, 상기 제2 세퍼레이터에서 상기 제2 열교환기로 보내지는 상기 작동 유체의 유량을 차단해 상기 제1 믹서에서 혼합된 상기 작동 유체가 상기 제1 터빈으로만 공급되는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  17. 제16항에 있어서,
    상기 제1 터빈의 이상 시, 상기 제2 세퍼레이터에서 상기 제1 터빈으로 보내지는 상기 작동 유체의 유량을 차단해 상기 제1 믹서에서 혼합된 상기 작동 유체가 상기 제2 터빈으로만 공급되는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  18. 제17항에 있어서,
    상기 제1 열교환기의 이상 시 상기 제1 세퍼레이터에서 상기 제1 열교환기로 보내지는 상기 작동 유체의 유량을 차단해 상기 압축기를 통과한 작동 유체가 상기 제1 리큐퍼레이터로만 공급되는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  19. 제18항에 있어서,
    상기 제2 리큐퍼레이터를 통과한 상기 작동 유체는 상기 제2 세퍼레이터를 거쳐 상기 제2 열교환기 및 제1 터빈으로 분기되는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
  20. 제19항에 있어서,
    상기 제2 세퍼레이터에서 상기 제1 터빈으로 보내지는 상기 작동 유체의 유량을 차단해 상기 제2 리큐퍼레이터를 통과한 상기 작동 유체는 상기 제2 세퍼레이터를 거쳐 상기 제2 열교환기로 공급된 뒤 상기 제2 터빈으로 보내지는 것을 특징으로 하는 폐열 회수 발전 시스템의 유량 제어 방법.
PCT/KR2016/003938 2016-02-11 2016-04-15 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법 WO2017138677A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160015476A KR101898324B1 (ko) 2016-02-11 2016-02-11 이중 폐열 회수 발전 시스템, 그리고 발전 시스템의 유량 제어 및 운용 방법
KR10-2016-0015475 2016-02-11
KR10-2016-0015476 2016-02-11
KR1020160015475A KR20170094580A (ko) 2016-02-11 2016-02-11 폐열 회수 발전 시스템

Publications (1)

Publication Number Publication Date
WO2017138677A1 true WO2017138677A1 (ko) 2017-08-17

Family

ID=59561314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003938 WO2017138677A1 (ko) 2016-02-11 2016-04-15 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법

Country Status (2)

Country Link
US (1) US10907509B2 (ko)
WO (1) WO2017138677A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947877B1 (ko) * 2016-11-24 2019-02-13 두산중공업 주식회사 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2018105841A1 (ko) * 2016-12-06 2018-06-14 두산중공업 주식회사 직렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2018131760A1 (ko) * 2017-01-16 2018-07-19 두산중공업 주식회사 복합 초임계 이산화탄소 발전 시스템
KR102023003B1 (ko) * 2017-10-16 2019-11-04 두산중공업 주식회사 압력차 발전을 이용한 복합 발전 시스템
WO2020181137A1 (en) 2019-03-06 2020-09-10 Industrom Power, Llc Intercooled cascade cycle waste heat recovery system
US11898451B2 (en) 2019-03-06 2024-02-13 Industrom Power LLC Compact axial turbine for high density working fluid
WO2021151109A1 (en) * 2020-01-20 2021-07-29 Mark Christopher Benson Liquid flooded closed cycle
WO2022214945A1 (en) * 2021-04-09 2022-10-13 Indian Institute Of Science A system and a method for generating mechanical power using super critical carbon dioxide
CN114278407A (zh) * 2021-12-21 2022-04-05 西安交通大学 适用于二氧化碳储能系统的压缩机与透平同轴结构及响应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066398A (ja) * 1996-08-22 1998-03-06 Fuji Electric Co Ltd 発電プラントの制御システム
JP2011185165A (ja) * 2010-03-09 2011-09-22 Hitachi-Ge Nuclear Energy Ltd 発電プラント
JP2015025423A (ja) * 2013-07-26 2015-02-05 株式会社東芝 二酸化炭素循環発電システムおよび二酸化炭素循環発電方法
US20150345341A1 (en) * 2012-10-12 2015-12-03 Echogen Power Systems, Llc Heat Engine System with a Supercritical Working Fluid and Processes Thereof
KR101575511B1 (ko) * 2014-08-01 2015-12-08 현대중공업 주식회사 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997076B2 (en) * 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
JP2012145092A (ja) 2011-01-12 2012-08-02 Shintaro Ishiyama 超臨界二酸化炭素(co2)圧縮用遠心ブロア(コンプレッサー)、超臨界co2ガスタービンならびに発電機を備えた超臨界co2ガスタービン発電技術
US9341084B2 (en) * 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
KR20160028999A (ko) * 2013-03-04 2016-03-14 에코진 파워 시스템스, 엘엘씨 큰 네트 파워 초임계 이산화탄소 회로를 구비한 열 엔진 시스템
BR112015022707A2 (pt) 2013-03-13 2017-08-22 Echogen Power Systems Llc Sistema de bomba de carga para fornecer um fluido de trabalho para rolamentos em um circuito de fluido de trabalho supercrítico

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066398A (ja) * 1996-08-22 1998-03-06 Fuji Electric Co Ltd 発電プラントの制御システム
JP2011185165A (ja) * 2010-03-09 2011-09-22 Hitachi-Ge Nuclear Energy Ltd 発電プラント
US20150345341A1 (en) * 2012-10-12 2015-12-03 Echogen Power Systems, Llc Heat Engine System with a Supercritical Working Fluid and Processes Thereof
JP2015025423A (ja) * 2013-07-26 2015-02-05 株式会社東芝 二酸化炭素循環発電システムおよび二酸化炭素循環発電方法
KR101575511B1 (ko) * 2014-08-01 2015-12-08 현대중공업 주식회사 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박

Also Published As

Publication number Publication date
US20170234266A1 (en) 2017-08-17
US10907509B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2017138677A1 (ko) 폐열 회수 발전 시스템 및 발전 시스템의 유량 제어 방법
WO2018097450A1 (ko) 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2016178470A1 (ko) 초임계 이산화탄소 발전 시스템
WO2017065430A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2018131760A1 (ko) 복합 초임계 이산화탄소 발전 시스템
KR101638287B1 (ko) 초임계 이산화탄소 발전 시스템
CN206458511U (zh) 一种背压纯凝双模式热力系统及乏汽余热利用系统
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
KR101674804B1 (ko) 초임계 이산화탄소 발전 시스템
WO2016182150A1 (ko) 이젝터 냉동 사이클을 이용한 발전 시스템
WO2017069457A1 (ko) 초임계 이산화탄소 발전 시스템
WO2003074854A1 (fr) Equipement de turbine, equipement de generation de puissance composite et procede de fonctionnement de la turbine
KR101898324B1 (ko) 이중 폐열 회수 발전 시스템, 그리고 발전 시스템의 유량 제어 및 운용 방법
WO2018105841A1 (ko) 직렬 복열 방식의 초임계 이산화탄소 발전 시스템
CN212770412U (zh) 一种热泵干燥机组
WO2017138720A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2017138719A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
KR101812919B1 (ko) 복합 초임계 이산화탄소 발전 시스템
KR20170094580A (ko) 폐열 회수 발전 시스템
WO2017122948A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2018225923A1 (ko) 복합 발전장치
CN107387259B (zh) 制热系统、制冷系统及冷热电三联供系统
WO2019013420A1 (ko) 스팀의 생성과 발전이 연계된 엔진 시스템
CN201688713U (zh) 烧结余热发电烟气温度调节装置
WO2021054586A1 (ko) 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889984

Country of ref document: EP

Kind code of ref document: A1