WO2017138643A1 - ルテニウム酸化物およびルテニウム酸化物の製造方法 - Google Patents

ルテニウム酸化物およびルテニウム酸化物の製造方法 Download PDF

Info

Publication number
WO2017138643A1
WO2017138643A1 PCT/JP2017/004948 JP2017004948W WO2017138643A1 WO 2017138643 A1 WO2017138643 A1 WO 2017138643A1 JP 2017004948 W JP2017004948 W JP 2017004948W WO 2017138643 A1 WO2017138643 A1 WO 2017138643A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium oxide
general formula
thermal expansion
temperature
oxide according
Prior art date
Application number
PCT/JP2017/004948
Other languages
English (en)
French (fr)
Inventor
竹中康司
岡本佳比古
篠田翼
井上徳大
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017567013A priority Critical patent/JPWO2017138643A1/ja
Priority to US16/075,841 priority patent/US10676371B2/en
Publication of WO2017138643A1 publication Critical patent/WO2017138643A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Definitions

  • the present disclosure relates to an oxygen-deficient ruthenium oxide, a ruthenium oxide having a negative thermal expansion coefficient, and a method for producing the same.
  • the present invention also relates to a thermal expansion inhibitor for suppressing thermal expansion due to temperature rise, a negative thermal expansion material containing ruthenium oxide, a zero thermal expansion material, and a low thermal expansion material.
  • Patent Document 1 discloses a negative linear expansion coefficient of ⁇ 1 ⁇ 10 ⁇ 6 / ° C. to ⁇ 12 ⁇ 10 ⁇ 6 / ° C. in a temperature range of ⁇ 40 ° C. to 100 ° C.
  • the use of ceramics or glass ceramics is described.
  • ceramics or glass ceramics ceramics or glass ceramics having ⁇ -quartz solid solution or ⁇ -eucryptite solid solution as a main crystal, or tungstate phosphate or tungstic acid containing at least one of Zr and Hf Polycrystalline ceramics having a salt as a main crystal are mentioned.
  • negative thermal expansion materials known so far have drawbacks such as a low degree of negative thermal expansion and a narrow operating temperature range of negative thermal expansion, and their applications are extremely limited. Therefore, various conditions are necessary when the conventional negative thermal expansion material is actually used, the application range is narrow, and it cannot be said that it is sufficient as a thermal expansion inhibitor.
  • Non-Patent Documents 1 to 5 it has been reported from a precise structural analysis of Ca 2 RuO 4 that when the temperature decreases from 127 ° C. to ⁇ 173 ° C., the volume change total amount ⁇ V / V expands by about 1% (Non-patent Document 3). .
  • the total volume change ⁇ V / V is expressed as (Vmin ⁇ Vmax) / Vmax, where Tmin is a temperature range showing negative thermal expansion, Tmin is a volume at Tmin, and Vmax is a volume at Tmax. Amount.
  • Ca 2 Ru 0.933 Cr 0.067 O 4 in which a part of Ru is substituted with Cr volume expansion due to successive transitional temperature decrease of a total ⁇ V / V to 0.9%
  • Ca 2 Ru 0.90 Mn 0.10 O 4 has a negative thermal expansion of ⁇ 10 ⁇ 10 ⁇ 6 / ° C. ( ⁇ V / V to 0.8%) in the temperature range of ⁇ 143 ° C. to 127 ° C. (Non-Patent Document 5) ) Has been reported.
  • This disclosure provides a newly discovered ruthenium oxide.
  • the object is to solve the above-mentioned problems, and to provide a compound exhibiting a larger negative thermal expansion than conventional materials and a method for producing the same.
  • Another object of the present invention is to provide a thermal expansion inhibitor, a negative thermal expansion material, and a low thermal expansion material using the compound.
  • the present inventors have surprisingly found that a negative heat having a very large volume change ⁇ V / V is obtained by reductive heat treatment of Ca 2 RuO 4.
  • the present inventors have found that an expansion characteristic can be obtained and have completed the present disclosure. Specifically, it was achieved by the following means.
  • the present disclosure is a ruthenium oxide represented by the following general formula (1).
  • General formula (1) Ca 2-x R x Ru 1- y My O 4 + z
  • R is at least one element selected from alkaline earth metals or rare earth elements
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, (At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3, and ⁇ 1 ⁇ z ⁇ 0.02.
  • the ruthenium oxide of the present disclosure is represented by a general formula Ca 2 ⁇ x R x Ru 1 ⁇ y M y O 4 + z , an oxygen content z (value of z in the general formula), a volume change total amount ⁇ V / V A new substance identified by at least one of the properties (to be described later), in particular negative thermal expansion.
  • R is at least one element selected from alkaline earth metals or rare earth elements
  • M is selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ga. At least one element, and 0 ⁇ x ⁇ 0.2 and 0 ⁇ y ⁇ 0.3.
  • the ruthenium oxide of the present disclosure is a Mott insulator exhibiting a metal-insulator transition, and the negative thermal expansion of the ruthenium oxide of the present disclosure is achieved by making the volume change due to the phase transition continuous with respect to temperature.
  • the phase transition type negative thermal expansion realized see FIG. 1).
  • the crystal structure of the ruthenium oxide of the present disclosure is preferably a layered perovskite crystal structure.
  • any of orthorhombic (tetragonal), tetragonal, monoclinic, and trigonal systems may be used, but orthorhombic systems are preferred.
  • R in the general formula may be at least one element selected from alkaline earth metals or rare earth elements.
  • the temperature range showing negative thermal expansion, the total volume change ⁇ V / V, and the thermal expansion coefficient can be controlled by the element type of R and R content x (value of x in the general formula).
  • R is preferably at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm. More preferred is at least one element of Sr and Ba, and even more preferred is Sr. From the general knowledge of oxide synthesis, for example, if Ca 2-x Sr x RuO 4 + z can be produced as in the examples, other alkaline earth elements such as Ba having similar chemical properties, and rare earth elements are also included.
  • the gist of the present disclosure is that the total volume change and the operating temperature range regarding negative thermal expansion can be controlled by substituting the Ca site with another metal species, and R is limited to one element. Absent.
  • the R content x is 0 ⁇ x ⁇ 0.2. Within this range, the degree of negative thermal expansion is large, and the temperature range showing negative thermal expansion, the volume change total amount ⁇ V / V, and the thermal expansion coefficient are controlled to a range suitable for industrial use such as a thermal expansion inhibitor. be able to.
  • M in the general formula may be at least one element selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ga.
  • the temperature range showing negative thermal expansion, the total volume change ⁇ V / V, and the thermal expansion coefficient can be controlled by the element type of M and the M content y (value of y in the general formula).
  • M is preferably at least one element of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, and more preferably at least one element of Cr, Mn, Fe, and Cu. is there.
  • M content y is 0 ⁇ y ⁇ 0.3. Within this range, the degree of negative thermal expansion is large, and the temperature range showing negative thermal expansion, the volume change total amount ⁇ V / V, and the thermal expansion coefficient are controlled to a range suitable for industrial use such as a thermal expansion inhibitor. be able to.
  • Another ruthenium oxide of the present disclosure is represented by the general formula Ca 2-x R x Ru 1-y1-y2 Sn y1 M y2 O 4 + z , and is specified by the Sn content y1 (value of y1 in the general formula) New materials, particularly those exhibiting negative thermal expansion.
  • R and M are the same elements as described above. That is, R is at least one element selected from alkaline earth metals or rare earth elements, and M is selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ga. At least one element.
  • the other ruthenium oxide of the present disclosure can be specified by the Sn content y1 and can be specified without depending on the oxygen content z and the volume change total amount ⁇ V / V described later. In addition to the amount y1, the oxygen content z and the total volume change ⁇ V / V are not prevented from being specified.
  • the R content x is in the same range as above, 0 ⁇ x ⁇ 0.2, more preferably 0 ⁇ x ⁇ 0.15, and even more preferably 0 ⁇ x ⁇ 0.1, most preferably 0 ⁇ x ⁇ 0.07.
  • x 0 can also be set.
  • the Sn content y1 is 0 ⁇ y1 ⁇ 0.5. So far, ruthenium oxide containing Sn is a new substance with no reported examples regardless of the value of the oxygen content z. Further, as is apparent from the present disclosure, within this range, the degree of negative thermal expansion is large, the temperature range showing negative thermal expansion, the volume change total amount ⁇ V / V, the thermal expansion coefficient, the thermal expansion inhibitor, etc. It can be controlled within a range suitable for industrial use. In particular, Sn is less expensive than Ru, and the other ruthenium oxide of the present disclosure can realize negative thermal expansion even if a part of the Ru site is replaced with Sn at a large ratio. Materials can be realized and there are significant industrial advantages.
  • the temperature range showing negative thermal expansion can be made wider, and in particular, the maximum temperature Tmax showing negative thermal expansion can be made higher.
  • a more preferable range of y1 is 0 ⁇ y1 ⁇ 0.45, more preferably 0 ⁇ y1 ⁇ 0.4, and most preferably 0 ⁇ y1 ⁇ 0.3.
  • the total y1 + y2 of the Sn content y1 and the M content y2 is 0 ⁇ y1 + y2 ⁇ 0.6.
  • the degree of negative thermal expansion is large, and the temperature range showing negative thermal expansion, the volume change total amount ⁇ V / V, and the thermal expansion coefficient are controlled to a range suitable for industrial use such as a thermal expansion inhibitor. be able to. More desirably, 0 ⁇ y1 + y2 ⁇ 0.5, further desirably 0 ⁇ y1 + y2 ⁇ 0.4, and most desirably 0 ⁇ y1 + y2 ⁇ 0.35.
  • a desirable range of the oxygen content z is ⁇ 0.5 ⁇ z ⁇ 0.02, more desirably ⁇ 0.4 ⁇ z ⁇ 0.03, and further desirably ⁇ 0.4 ⁇ z ⁇ . ⁇ 0.05, and most desirably ⁇ 0.35 ⁇ z ⁇ 0.05.
  • the oxygen content z of the ruthenium oxide may not be sufficiently evaluated.
  • the ruthenium oxide of the present disclosure can be specified by the volume change total amount ⁇ V / V.
  • the oxygen content z may be ⁇ 1 ⁇ z ⁇ 1. That's fine. Desirably ⁇ 0.5 ⁇ z ⁇ 0.2, more desirably ⁇ 0.4 ⁇ z ⁇ 0.1, even more desirably ⁇ 0.35 ⁇ z ⁇ 0.05, and most desirably. -0.3 ⁇ z ⁇ 0.01.
  • Total volume change ⁇ V / V The total volume change ⁇ V / V is an amount defined as follows.
  • the temperature range showing negative thermal expansion is from Tmin to Tmax (Tmin ⁇ Tmax), and the volumes at Tmin and Tmax are Vmin and Vmax, respectively. That is, Tmin is the minimum temperature that exhibits negative thermal expansion, and Tmax is the maximum temperature that exhibits negative thermal expansion.
  • the total volume change ⁇ V / V is an amount defined by (Vmin ⁇ Vmax) / Vmax (see FIG. 1).
  • This total volume change ⁇ V / V is an index for evaluating the degree of negative thermal expansion. The reason for evaluating the degree of negative thermal expansion by such an amount will be described below.
  • phase transition type negative thermal expansion (see FIG. 1).
  • phase transition type negative thermal expansion there is a relationship of ⁇ V / V ⁇ 3
  • the total volume change ⁇ V / V is a value larger than 1%.
  • a ruthenium oxide exhibiting such a large total volume change ⁇ V / V has not been known so far and is a novel substance.
  • the reason why the total volume change ⁇ V / V is larger than that of the conventional ruthenium oxide is unknown. Crystal defects due to oxygen deficiency may be affected, but the possibility of other factors cannot be denied.
  • the total volume change ⁇ V / V is preferably as large as possible, preferably 2% or more, more preferably 3% or more, still more preferably 4% or more, most preferably. 6% or more.
  • the upper limit of the total volume change ⁇ V / V is not particularly limited, and may be within a range conceivable for a normal substance. However, since the crystal structure may become unstable if the total volume change ⁇ V / V is extremely large, the total volume change ⁇ V / V is preferably 30% or less, more preferably 20% or less, Preferably it is 16% or less.
  • Linear expansion coefficient The thermal expansion of a solid material is generally evaluated by linear thermal expansion.
  • L (T) is the sample length at temperature T
  • L0 is the sample length at the reference temperature.
  • the ruthenium oxide of the present disclosure is generally orthorhombic, and the physical properties including thermal expansion depend on the crystal orientation.
  • a polycrystalline body in which powder crystals are sintered is used for the measurement.
  • the obtained linear thermal expansion is averaged in the crystal orientation dependency, and the body heat It is equal to one third of the expansion.
  • the ruthenium oxide of the present disclosure desirably has a linear expansion coefficient ⁇ of ⁇ 20 ⁇ 10 ⁇ 6 / ° C. or less.
  • the linear expansion coefficient ⁇ is an average value of the linear expansion coefficient ⁇ in a temperature range showing negative thermal expansion. If the linear expansion coefficient ⁇ is ⁇ 20 ⁇ 10 ⁇ 6 / ° C. or less, the industrial use range of the ruthenium oxide of the present disclosure is wide, and the utility value is high as a thermal expansion inhibitor. More desirable is ⁇ 30 ⁇ 10 ⁇ 6 / ° C. or less, and further desirably ⁇ 60 ⁇ 10 ⁇ 6 / ° C. or less.
  • the phase transition type negative thermal expansion material such as the ruthenium oxide of the present disclosure has a narrow temperature range that exhibits negative thermal expansion when the linear expansion coefficient ⁇ decreases (when the negative absolute value increases).
  • the coefficient ⁇ can be reduced.
  • the lower limit of the linear expansion coefficient ⁇ is not particularly limited, but it should be noted that the lower limit may be limited in relation to the desired negative thermal expansion temperature range.
  • the ruthenium oxide of the present disclosure exhibits a large negative thermal expansion over a very wide temperature range. It is desirable that the temperature range exhibiting negative thermal expansion covers a range of 100 ° C. or higher from the viewpoint of the wide range of industrial use. It is possible to adjust thermal expansion by selecting an appropriate ruthenium oxide of the present disclosure even in a member used in a high temperature environment, a device in which a plurality of components are joined, and the like. Further, the thermal expansion of a material that can be cooled to ⁇ 100 ° C. or lower can be suppressed, and the thermal expansion of a component such as a refrigerator can be adjusted.
  • the linear expansion coefficient can be a large negative thermal expansion of ⁇ 20 ⁇ 10 ⁇ 6 / ° C. or less.
  • the temperature range showing negative thermal expansion is generally a range including room temperature (27 ° C.), but the upper limit of the temperature range is set to room temperature depending on the R content x and the M content y. The following control is also possible. In particular, by replacing a part of the Ru site with Sn, negative thermal expansion can be realized in a wider temperature range, and the maximum temperature Tmax showing the negative thermal expansion can be made higher.
  • the temperature range showing negative thermal expansion (corresponding to Tmax ⁇ Tmin, where Tmax> Tmin) is 200 ° C. or higher, more preferably 300 ° C. or higher, and most preferably 400 ° C. or higher.
  • Temperature range There is no particular upper limit of the temperature range showing negative thermal expansion.
  • the ruthenium oxide of the present disclosure is a phase transition type negative thermal expansion material, the negative linear expansion coefficient and the temperature range showing the negative thermal expansion are in a trade-off relationship. For this reason, if the temperature range showing negative thermal expansion is too wide, the linear expansion coefficient increases (the absolute value of the negative linear expansion coefficient decreases). Therefore, the temperature range showing negative thermal expansion is desirably 1000 ° C. or less, more desirably 800 ° C. or less, and further desirably 700 ° C. or less.
  • the ruthenium oxide of the present disclosure can be obtained by “reductive heat treatment” of a ruthenium oxide produced by a conventional method.
  • the reductive heat treatment refers to heat treatment at a temperature higher than 1100 ° C. and lower than 1400 ° C. in an atmosphere containing oxygen and an oxygen partial pressure of 0.3 atm or less.
  • This reductive heat treatment causes a larger negative thermal expansion than conventional ruthenium oxide is unclear, but it is thought that this reductive heat treatment acts in the direction in which oxygen separates from the crystals and becomes crystal defects.
  • the crystal defects may be involved in the development of large negative thermal expansion. Of course, it does not exclude the possibility of other factors.
  • the oxygen partial pressure may be 0.3 atm or less, more desirably 0.25 atm or less, and further desirably 0.22 atm or less.
  • the oxygen partial pressure is preferably 0.05 atm or higher, more preferably 0.1 atm or higher, and still more preferably 0.15 atm or higher.
  • the value of the total pressure is not particularly limited as long as the oxygen partial pressure is in the above range, but it is preferably 0.5 to 2.0 atm from the viewpoint of ease of production.
  • the gas other than oxygen is an inert gas such as nitrogen or a rare gas.
  • air or a mixed gas of argon and oxygen can be used as the atmosphere of the reductive heat treatment of the present disclosure.
  • the ruthenium oxide subjected to reductive heat treatment is produced by a conventionally known method.
  • a solid phase reaction method for example, a solid phase reaction method, a liquid phase growth method, a melt growth method, a vapor phase growth method, a vacuum film formation method, and the like.
  • the vacuum film forming method include molecular beam epitaxy (MBE), laser ablation, and sputtering.
  • MBE molecular beam epitaxy
  • laser ablation laser ablation
  • sputtering it is preferable to prepare by a solid phase reaction method from the viewpoint of industrial mass productivity.
  • the heat treatment for firing in the solid phase reaction method may also serve as a reductive heat treatment.
  • the manufacturing process can be simplified.
  • an oxide or carbonate of R such as CaCO 3 or La 2 O 3 (R is the same element as R in the general formula of the ruthenium oxide of the present disclosure), RuO 2 , eg, Cr 2 O 3 and other oxides of M (M is the same element as M in the general formula of the ruthenium oxide of the present disclosure), and a mixed powder obtained by mixing a powder of Sn oxide such as SnO 2 in a predetermined molar ratio as a raw material Can be used.
  • R is the same element as R in the general formula of the ruthenium oxide of the present disclosure
  • RuO 2 eg, Cr 2 O 3 and other oxides of M
  • M is the same element as M in the general formula of the ruthenium oxide of the present disclosure
  • the temperature should be higher than 1100 ° C. and lower than 1400 ° C.
  • the temperature is 1400 ° C. or higher, another phase of ruthenium oxide such as CaRuO 3 is generated, which is not desirable.
  • the temperature is 1100 ° C. or lower, the reaction does not proceed and a large negative thermal expansion does not appear, which is not desirable.
  • a more desirable temperature range is 1200 ° C. or higher and 1390 ° C. or lower, and further desirably 1250 ° C. or higher and 1380 ° C. or lower.
  • the ruthenium oxide of the present disclosure can be used as a thermal expansion inhibitor for offsetting and suppressing thermal expansion of a material exhibiting positive thermal expansion.
  • ruthenium oxide of the present disclosure As a thermal expansion inhibitor, that is, by mixing it with a material that exhibits positive thermal expansion, a negative thermal expansion material that exhibits negative thermal expansion in a specific temperature range is manufactured. can do. Similarly, a zero thermal expansion material that does not expand positively or negatively in a specific temperature range can be produced. Similarly, a low thermal expansion material in which a ruthenium oxide of the present disclosure is added to a material having a large positive thermal expansion to be reduced to a predetermined positive linear expansion coefficient can be produced.
  • quartz SiO 2 ( ⁇ ⁇ 0.5 ⁇ 10 ⁇ 6 / ° C.), silicon Si ( ⁇ ⁇ 3 ⁇ 10 ⁇ 6 / ° C.), silicon carbide SiC ( ⁇ ⁇ 5 ⁇ 10 ⁇ 6 / ° C.), etc. have low heat.
  • intumescent material Known as intumescent material.
  • the low thermal expansion in the present disclosure means the level of thermal expansion of these materials or lower.
  • the type of the base material is not particularly defined as long as it does not depart from the spirit of the present disclosure. It can be applied to widely known materials such as glass, resin, ceramic, metal, and alloy.
  • the ruthenium oxide of the present disclosure can be used in a powder state, the ruthenium oxide can be preferably used for a ceramic that can be baked and hardened into an arbitrary shape.
  • ruthenium oxide having a negative volume expansion larger than that of a conventional ruthenium oxide it is possible to realize a ruthenium oxide having a negative volume expansion larger than that of a conventional ruthenium oxide.
  • Conventionally known negative thermal expansion ruthenium oxide has a total volume change of at most 1% and none exceeds 1%.
  • the present disclosure provides a ruthenium oxide having a total volume change of more than 1%.
  • the total volume change can be 6% or more.
  • the ruthenium oxide of the present disclosure can have a linear expansion coefficient smaller than ⁇ 20 ⁇ 10 ⁇ 6 / ° C., for example, smaller than ⁇ 100 ⁇ 10 ⁇ 6 / ° C.
  • ruthenium oxide can be widely used as an industrial thermal expansion inhibitor.
  • thermal expansion can be suppressed even for materials having a large thermal expansion, such as resins and organic substances.
  • the ruthenium oxide of the present disclosure can achieve negative thermal expansion over a very wide temperature range.
  • negative thermal expansion having a linear expansion coefficient smaller than ⁇ 20 ⁇ 10 ⁇ 6 / ° C. over a wide temperature range of 400 ° C. or higher can be realized.
  • negative thermal expansion can be realized over a wider temperature range (for example, 500 ° C. or more), and the maximum temperature Tmax showing the negative thermal expansion can be increased. it can. Thereby, it becomes possible to suppress thermal expansion also about the material which may be heated above 400 degreeC, for example.
  • the ruthenium oxide of the present disclosure can be used in a powder state. Therefore, it can be baked and hardened like a ceramic to have an arbitrary shape. It is also easy to mix with raw materials.
  • the ruthenium oxide of the present disclosure can be made of an environmentally friendly material, and thus is preferable in terms of the environment.
  • the cost can be reduced.
  • the above-mentioned method is performed by replacing CaCO 3 in the starting material with SrCO 3 only in a predetermined molar ratio. Obtained according to
  • the temperature at the time of heating / firing was also fired at, for example, 1400 ° C.
  • a ruthenium oxide of another phase such as CaRuO 3 was formed, and a single-phase sample could not be obtained.
  • firing was performed at 1100 ° C., a single-phase sample was not obtained because part of the raw material powder remained unreacted.
  • Table 1 below summarizes the measurement results.
  • the chemical formula of the previous stage from the 1st to the 10th stage is Example 1.
  • the chemical formula of the latter stage of the 11th to 13th stages is Example 2 described later.
  • 2 to 7 are graphs showing the linear thermal expansion of the samples of the examples.
  • the linear thermal expansion is a value based on 500K.
  • the column of the figure in Table 1 shows a graph of the corresponding linear thermal expansion in FIGS.
  • FIG. 2 shows a sample represented by the general formula Ca 2 RuO 4 + z
  • FIGS. 3 to 6 show the M element species of the sample represented by the general formula Ca 2 Ru 1-y M y O 4 + z
  • FIG. 7 shows a case where the value of x of the sample represented by the general formula Ca 2-x Sr x RuO 4 + z is changed.
  • Table 2 shows characteristic values of typical conventional negative thermal expansion materials.
  • the linear expansion coefficient ⁇ shows an average value for materials whose crystal system exhibits anisotropy.
  • the characteristic values in Table 2 were referred to the following documents. Reference * 1 T. A. Mary et al., Science 272, 90-92 (1996). * 2 A. E. Phillips et al., Angew. Chem. Int. Ed. 47, 1396-1399 (2008). * 3 K. Takenaka and H. Takagi, Appl. Phys. Lett. 87, 261902 (2005). * 4 J. Chen et al., Appl. Phys. Lett. 89, 101914 (2006). * 5 I. Yamada et al., Angew.
  • Tmin and Tmax indicated by * in Table 1 mean that negative thermal expansion was exhibited even at the lower limit ( ⁇ 183 ° C.) or the upper limit (227 ° C.) of the measurement temperature. However, it is easy to imagine that it will show negative thermal expansion.
  • the ruthenium oxide of the present disclosure exhibits a very large volume change amount ⁇ V / V compared to the conventional negative thermal expansion material.
  • the temperature range ⁇ T showing negative thermal expansion is also a temperature range equal to or wider than that of the conventional negative thermal expansion material, and the linear expansion coefficient ⁇ is equal to or smaller than the conventional negative thermal expansion. It is. Therefore, it can be said that the ruthenium oxide of the present disclosure has a higher degree of negative thermal expansion than the conventional negative thermal expansion material, and has high industrial utility value.
  • ruthenium oxide Ca 2 RuO 4 + z was produced by the following method.
  • ruthenium oxide Ca 2 RuO 4 + z (hereinafter referred to as ruthenium oxide of Example 1-1) was obtained by the method of reductive heat treatment described in (1) Preparation of ruthenium oxide.
  • the sintered body obtained by this reductive heat treatment was further heated at a temperature of 500 ° C. to 550 ° C. for 40 to 60 hours in an atmosphere of oxygen of 4 to 5 atm. This treatment is hereinafter referred to as “high pressure oxygen treatment”.
  • the ruthenium oxide thus obtained is referred to as the ruthenium oxide of Comparative Example 1.
  • the negative thermal expansion was not shown or even if it was shown, it was extremely suppressed.
  • Example 1-2 The ruthenium oxide Ca 2 RuO 4 + z of Comparative Example 1 subjected to the high-pressure oxygen treatment was further heated at a temperature of 1250 ° C. to 1370 ° C. for 40 to 60 hours in a mixed gas stream of argon 0.8 atm / oxygen 0.2 atm. As a result, a ruthenium oxide was obtained. This ruthenium oxide is referred to as Example 1-2.
  • FIG. 12 is a graph showing the linear thermal expansion of the ruthenium oxides of Examples 1-1 and 1-2 and Comparative Example 1. As shown in FIG. 12, it was found that when the high-pressure oxygen treatment was applied to the ruthenium oxide of Example 1-1 that exhibited a large negative thermal expansion by reductive heat treatment, the large negative thermal expansion was remarkably suppressed. Further, it was found that when the ruthenium oxide of Comparative Example 1 in which a large negative thermal expansion was lost by the high-pressure oxygen treatment was subjected to reductive heat treatment again, the large negative thermal expansion before the high-pressure oxygen treatment was restored. As a result, it was found that reductive heat treatment is essential for the development of large negative thermal expansion of ruthenium oxide.
  • z of the ruthenium oxide of Example 1 is considered to be ⁇ 0.23 to ⁇ 0.08, and is a substance having an unknown oxygen content z. So far, it has been reported that “oxygen excess (z> 0) can be realized but oxygen deficiency (z ⁇ 0) is not easy to achieve” (for example, F. Nakamura et al., Sci. Rep. 3 2536 (2103)), which was a general recognition prior to the filing of the present application. In general, it is technically difficult to evaluate the oxygen content of the oxide, and it should be taken into consideration that the numerical value obtained includes experimental errors. Therefore, it should be noted that the above measured numerical values may contain experimental errors.
  • Example 2 The measurement results for the ruthenium oxide of Example 2 are shown in Table 1 above shown in Example 1.
  • Table 1 the chemical formula of the 11th to 13th stages is Example 2.
  • the meaning of * in Table 1 is the same as described above, and the values of Tmin and Tmax indicated by * in Table 1 indicate negative thermal expansion even at the measurement temperature lower limit ( ⁇ 183 ° C.) or upper limit (427 ° C.). It can be easily imagined that even if this temperature is exceeded, negative thermal expansion will actually be exhibited.
  • a graph of linear thermal expansion is shown in FIG. From Table 1 and FIG. 8, it can be seen that the ruthenium oxide of Example 2 exhibits a very large volume change ⁇ V / V compared to the conventional negative thermal expansion material, similarly to the ruthenium oxide of Example 1. It was.
  • the temperature range ⁇ T showing negative thermal expansion is also a temperature range equal to or wider than that of the conventional negative thermal expansion material, and the linear expansion coefficient ⁇ is equal to or smaller than the conventional negative thermal expansion. Met. Therefore, it can be said that the ruthenium oxide of Example 2 also has a higher degree of negative thermal expansion than the conventional negative thermal expansion material.
  • the ruthenium oxide of Example 2 represented by the general formula Ca 2 Ru 1-y Sn y O 4 + z in which a part of the Ru site is substituted with Sn has a wide temperature range ⁇ T exhibiting negative thermal expansion. Moreover, since the maximum temperature Tmax showing negative thermal expansion is also high, it is excellent in terms of industrial use as a thermal expansion inhibitor. Further, Sn is cheaper than Ru, and is industrially superior in that the cost of the material can be reduced.
  • Example 2 In the same manner as in Example 1, a ruthenium oxide represented by the general formula Ca 2 Ru 0.88 Fe 0.12 O 3.83 was produced. Then, the ruthenium oxide was mixed and dispersed in Al to produce a composite material having an Al volume ratio of 70%. Similarly, a ruthenium oxide represented by the general formula Ca 2 Ru 0.92 Fe 0.08 O 3.82 is prepared, and the ruthenium oxide is mixed and dispersed in Al and Cu, respectively. A composite material having a volume ratio of 70% and a composite material having a volume ratio of Cu of 70% were manufactured. About each produced ruthenium oxide and each composite material, it carried out similarly to Example 1, and measured linear thermal expansion. 9 to 11 show graphs of linear thermal expansion.
  • each of the produced ruthenium oxides shows negative thermal expansion
  • the composite material mixed with Al and Cu that shows positive thermal expansion also shows positive thermal expansion. It was found that the thermal expansion was suppressed compared to Cu, and the linear thermal expansion coefficient was reduced. Thus, it was found that the linear thermal expansion coefficient can be reduced by mixing the ruthenium oxide of the present disclosure with Al or Cu, and it can be used as a thermal expansion inhibitor. And it was shown that a negative thermal expansion material, a zero thermal expansion material, and a low thermal expansion material are realizable by mixing the ruthenium oxide of this indication.
  • the present disclosure includes ruthenium oxides, thermal expansion inhibitors, negative thermal expansion materials, zero thermal expansion materials, low thermal expansion materials, and ruthenium oxide manufacturing methods described in the following items.
  • Ruthenium oxide represented by the following general formula (1).
  • R is at least one element selected from alkaline earth metals or rare earth elements
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, (At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3, and ⁇ 1 ⁇ z ⁇ 0.02.)
  • R is at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm
  • M is Ti, V, Cr, Mn, Fe, Co, Ni,
  • R is at least one element selected from alkaline earth metals or rare earth elements, and M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, (At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3, ⁇ 1 ⁇ z ⁇ 1) [Item 6]
  • R is at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm
  • M is Ti, V, Cr, Mn, Fe, Co, Ni, 6.
  • Item 6 is characterized in that, in the general formula (2), R is at least one element of Sr and Ba, and M is at least one element of Cr, Mn, Fe, and Cu.
  • Ruthenium oxide represented by the following general formula (3).
  • R is at least one element selected from alkaline earth metals or rare earth elements, and M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y1 ⁇ 0.5, 0 ⁇ y2 ⁇ 0.2, 0 ⁇ y1 + y2 ⁇ 0.6, ⁇ 1 ⁇ z ⁇ 1.
  • R is at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm, and M is Ti, V, Cr, Mn, Fe, Co, Ni, Item 10.
  • Item 9 is characterized in that, in the general formula (3), R is at least one element of Sr and Ba, and M is at least one element of Cr, Mn, Fe, and Cu. Ruthenium oxide.
  • the negative thermal expansion is exhibited from the temperature Tmin to the temperature Tmax (Tmin ⁇ Tmax), and the volume change total amount ⁇ V / V that is the volume increase rate at the temperature Tmin with respect to the volume at the temperature Tmax is greater than 1%.
  • Item 16 Item 16.
  • a thermal expansion inhibitor comprising the ruthenium oxide according to any one of items 1 to 16.
  • [Item 18] A negative thermal expansion material comprising the ruthenium oxide according to any one of items 1 to 16.
  • [Item 19] A zero thermal expansion material comprising the ruthenium oxide according to any one of items 1 to 16.
  • [Item 20] A low thermal expansion material comprising the ruthenium oxide according to any one of Items 1 to 16.
  • [Item 21] A reductive heat treatment step of heat treating a ruthenium oxide represented by the following general formula (4) at a temperature higher than 1100 ° C. and lower than 1400 ° C. in an atmosphere containing oxygen and having an oxygen partial pressure of 0.3 atm or less.
  • a process for producing a ruthenium oxide comprising: General formula (4) Ca 2-x R x Ru 1- y My O 4 + z
  • R is at least one element selected from alkaline earth metals or rare earth elements, and M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, (At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.3, ⁇ 1 ⁇ z ⁇ 1) [Item 22]
  • R is at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm
  • M is Ti, V, Cr, Mn, Fe, Co, Ni, Item 22.
  • Item 23 Item 21.
  • R is at least one element of Sr and Ba
  • M is at least one element of Cr, Mn, Fe, and Cu.
  • Item 24 Item 22.
  • a process for producing a ruthenium oxide comprising: General formula (5) Ca 2-x R x Ru 1-y1-y2 Sn y1 My2O 4 + z
  • R is at least one element selected from alkaline earth metals or rare earth elements, and M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, At least one element selected from Ga, 0 ⁇ x ⁇ 0.2, 0 ⁇ y1 ⁇ 0.5, 0 ⁇ y2 ⁇ 0.2, 0 ⁇ y1 + y2 ⁇ 0.6, ⁇ 1 ⁇ z ⁇ 1.
  • R is at least one element of Sr, Ba, Y, La, Ce, Pr, Nd, and Sm
  • M is Ti, V, Cr, Mn, Fe, Co, Ni, 26.
  • Ruthenium oxide is produced in the firing step by the solid phase reaction method, 29.
  • a composite material comprising the ruthenium oxide according to any one of items 1 to 16 and Al or Cu.
  • the ruthenium oxide of the present disclosure can be used as a thermal expansion inhibitor that counteracts and suppresses thermal expansion exhibited by normal materials. Further, a negative thermal expansion material that negatively expands in a specific temperature range can be produced. In addition, zero thermal expansion materials can be made that do not expand either positively or negatively over a specific temperature range.
  • precision optical parts and machine parts that dislike changes in shape and dimensions due to temperature, process equipment and tools, temperature compensation materials for fiber gratings, printed circuit boards, sealing materials for electronic parts, thermal switches, refrigerator parts It can be used for satellite parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

【課題】大きな負熱膨張を示すルテニウム化合物を提供すること。 【解決手段】本開示のルテニウム酸化物は、一般式(1)Ca2-xRu1-y4+z(一般式(1)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<-0.02である。)により表される。

Description

ルテニウム酸化物およびルテニウム酸化物の製造方法
 本開示は、酸素欠損したルテニウム酸化物ならびに負の熱膨張係数を有したルテニウム酸化物およびそれらの製造方法に関する。また、温度上昇による熱膨張を抑制するための熱膨張抑制剤、ならびにルテニウム酸化物を含む負熱膨張材料、ゼロ熱膨張材料、低熱膨張材料に関する。
 一般的に、物質は温度上昇に伴って熱膨張することが知られている。そのため、温度変化が起こるデバイス(たとえば電子機器や精密機器)に使用する部品については、その熱膨張によって種々の問題が起こる。
 そこで、これまでに、各種の温度による熱膨張抑制法が検討されており、正の熱膨張材料と負の熱膨張材料を組み合わせる方法などがある。
 負の熱膨張材料としては、例えば、特許文献1には、-40℃~100℃の温度範囲において-1×10-6/℃~-12×10-6/℃の負の線膨張係数を有するセラミックスあるいはガラスセラミックスを採用することが記載されている。そして、このようなセラミックスあるいはガラスセラミックスとして、β-石英固溶体またはβ-ユークリプタイト固溶体を主結晶とするセラミックスあるいはガラスセラミックス、またはZrおよびHfの少なくともいずれかを含むリン酸タングステン酸塩またはタングステン酸塩を主結晶とする多結晶体セラミックスが挙げられている。
 また、特許文献2には、例えばMnZn1-xGeN(x=0.3~0.5)で表される逆ペロブスカイト型マンガン窒化物が、51℃から104℃の温度範囲において-30×10-6/℃の負の線膨張係数を示すことが記載されている。そして、これらの窒化物を含む種々の低熱膨張材料や負の熱膨張材料、また、これらの窒化物を用いた種々の熱膨張抑制方法が挙げられている。
 しかしながら、これまでに知られている負熱膨張材料は、負熱膨張の度合いが小さい、負熱膨張の動作温度域が狭い、などの欠点があり、その用途が極めて限定されていた。したがって、従来の負熱膨張材料を実際に使用する際には種々の条件が必要であり、適用範囲が狭く、熱膨張抑制剤として充分と言えるものではない。
 また、これまでに、化学式CaRuOで表される層状ペロブスカイト型結晶構造を有したルテニウム酸化物が、およそ90℃で、高温の金属(高温L相)から低温の絶縁体(低温S相)へ相転移する際に、低温相の方が高温相より体積が大きくなることが知られていた(非特許文献1~5)。例えば、CaRuOの精密な構造解析から、127℃から-173℃への温度低下で体積変化総量ΔV/Vとしておよそ1%の膨張をすることが報じられている(非特許文献3)。ここで、体積変化総量ΔV/Vは、負熱膨張を示す温度範囲をTminからTmaxとし、Tminにおける体積をVmin、Tmaxにおける体積をVmaxとしたときに、(Vmin-Vmax)/Vmaxで表される量である。Ruの一部をCrで置換したCaRu0.933Cr0.067では合計ΔV/V~0.9%の逐次転移的な温度低下による体積膨張(非特許文献4)が、またCaRu0.90Mn0.10では-143℃~127℃の温度範囲で-10×10-6/℃(ΔV/V~0.8%)の負熱膨張(非特許論文5)が報告されている。
 しかし、これらの現象は、鋭い1次の相転移でおおむね転移幅が1℃以内と狭い、1%を超える体積変化総量を示すような大きな負熱膨張はない、などの理由で、工業的な熱膨張抑制剤として優れた機能を有するとは言えないものであった。
特開2003-146693号公報 国際公開第2006/011590号
S. Nakatsuji, S. Ikeda, and Y. Maeno, J. Phys. Soc. Jpn. 66, 1868-1871 (1997). M. Braden et al., Phys. Rev. B 58, 847-861 (1998). O. Friedt et al., Phys. Rev. B 63, 174432 (2001). T. F. Qi et al., Phys. Rev. Lett. 105, 177203 (2010). T. F. Qi et al., Phys. Rev. B 85, 165143 (2012).
 本開示は、新規に発見されたルテニウム酸化物を提供するものである。特に、上記課題を解決することを目的としたものであって、従来の材料より大きな負熱膨張を示す化合物、およびその製造方法を提供することである。また、その化合物を用いた熱膨張抑制剤、負熱膨張材料、低熱膨張材料を提供することである。
 本発明者らは、負の熱膨張を有した化合物について鋭意検討した結果、驚くべきことに、CaRuOを還元的熱処理することにより、非常に大きな体積変化総量ΔV/Vを有する負熱膨張の特性が得られることを見出し、本開示を完成するに至った。具体的には、以下の手段により達成された。
 本開示は、下記一般式(1)で表されるルテニウム酸化物である。
一般式(1)
Ca2-xRu1-y4+z
(一般式(1)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<-0.02である。)
 上述のように、本開示によれば、従来の材料より大きな負熱膨張を示す。
本開示のルテニウム酸化物の概念を示した図である。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。 本開示のルテニウム酸化物の線熱膨張を示したグラフである。
[本開示のルテニウム酸化物の構造]
 本開示のルテニウム酸化物は、一般式Ca2-xRu1-y4+zで表され、酸素含有量z(一般式中のzの値)、体積変化総量ΔV/V(その定義は後述する)のうち少なくとも1つの特性によって特定される新規物質、特に負熱膨張を示すものである。ここで、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3である。
 本開示のルテニウム酸化物は、金属-絶縁体転移を示すモット絶縁体であり、本開示のルテニウム酸化物の負熱膨張は、その相転移による体積変化を温度に対して連続的にすることで実現された相転移型負熱膨張である(図1参照)。
 本開示のルテニウム酸化物の結晶構造は、層状ペロフスカイト型結晶構造であることが好ましい。そして、斜方晶系(直方晶系)、正方晶系、単斜晶系、三方晶系のいずれであってもよいが、斜方晶系が好ましい。
 なお、構成元素比に通常想定される範囲のゆらぎがあったとしても、本開示の趣旨を逸脱しない範囲においては、本開示のルテニウム酸化物に含まれるものである。たとえば、CaRuO3.9において、Ca:Ruが2.01:0.99であったとしても、本開示のルテニウム酸化物に含まれる。
[一般式中のRについて]
 一般式におけるRは、アルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であればよい。Rの元素種やR含有量x(一般式中のxの値)によって、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数の制御が可能である。Rとして好ましいのは、Sr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素である。より好ましいのは、Sr、Baの少なくとも1種の元素であり、さらに好ましいのはSrである。酸化物合成の一般的知見より、例えば、実施例にあるようにCa2-xSrRuO4+zができるなら、化学的性質の似ているBaなど他のアルカリ土類元素、希土類元素も複数種、Caサイトに容易に固溶するであろうことは予見できる。本開示の趣旨は、Caサイトを別の金属種で置換することで、負熱膨張に関する体積変化総量や動作温度域を制御できるということであり、Rとして1種の元素に限定されることはない。
 R含有量xは、0≦x<0.2である。この範囲であれば、負熱膨張の度合いが大きく、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数を熱膨張抑制剤など工業的な利用に適した範囲に制御することができる。より望ましいR含有量xは0≦x≦0.15、さらに望ましくは0≦x≦0.1、最も望ましくは0≦x≦0.07である。もちろん、x=0とすることもできる。
[一般式中のMについて]
 一般式におけるMは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であればよい。Mの元素種やM含有量y(一般式中のyの値)によって、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数の制御が可能である。Mとして好ましいのは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素であり、さらに好ましいのはCr、Mn、Fe、Cuの少なくとも1種の元素である。酸化物合成の一般的知見より、例えば、実施例にあるようにCaRu1-yCr4+zとCaRu1-yMn4+zができるなら、CaRu1-y1-y2Cry1Mny24+zが容易に合成できることは予見でき、また、実施例でMとしてCr、Mn、Fe、Cuができているなら、化学的性質の似ているTiなど他の遷移金属も複数種、Ruサイトに容易に固溶するであろうことは予見できる。本開示の趣旨は、Ruサイトを別の金属種で置換することで、負熱膨張に関する体積変化総量や動作温度域などを制御できるということであり、Mとして1種の元素に限定されることはない。
 M含有量yは、0≦y<0.3である。この範囲であれば、負熱膨張の度合いが大きく、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数を熱膨張抑制剤など工業的な利用に適した範囲に制御することができる。より望ましいR含有量yは0≦y≦0.2、さらに望ましくは0≦y≦0.13、最も望ましくは0≦y≦0.1である。もちろん、y=0とすることもできる。
[本開示の他のルテニウム酸化物]
 本開示のもう1つのルテニウム酸化物は、一般式Ca2-xRu1-y1-y2Sny1y24+zで表され、Sn含有量y1(一般式中のy1の値)によって特定される新規物質、特に負熱膨張を示すものである。ここで、RおよびMは上記と同様の元素である。つまり、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素である。また、0≦x<0.2、0<y1<0.5、0≦y2≦0.2、0<y1+y2≦0.6、-1<z<1である。なお、本開示のもう1つのルテニウム酸化物は、Snの含有量y1によって特定可能であり、後述の酸素含有量zや体積変化総量ΔV/Vによらずとも特定可能であるが、Snの含有量y1に加えて、酸素含有量zや体積変化総量ΔV/Vによって特定することを妨げるものではない。
 本開示のもう1つのルテニウム酸化物において、R含有量xについては、上記と同様の範囲であり、0≦x<0.2、より望ましくは0≦x≦0.15、さらに望ましくは0≦x≦0.1、最も望ましくは0≦x≦0.07である。もちろん、x=0とすることもできる。
 本開示のもう1つのルテニウム酸化物において、Sn含有量y1については、0<y1<0.5である。これまでSnを含むルテニウム酸化物は、酸素含有量zの値によらず報告例がなく、新規物質である。また、本開示で明らかにするところでは、この範囲であれば、負熱膨張の度合いが大きく、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数を熱膨張抑制剤など工業的な利用に適した範囲に制御することができる。特に、SnはRuに比べて安価であり、本開示のもう1つのルテニウム酸化物では、Ruサイトの一部を大きな割合でSnに置き換えても負熱膨張を実現できるため、安価な負熱膨張材料などを実現することができ、工業的に大きなメリットがある。また、RuサイトをSnで置き換えることにより、負熱膨張を示す温度範囲をより広くすることができ、特に負熱膨張を示す最大温度Tmaxをより高くすることができる。より望ましいy1の範囲は、0<y1≦0.45、さらに望ましくは0<y1≦0.4、最も望ましくは0<y1≦0.3である。
 また、本開示のもう1つのルテニウム酸化物において、Sn含有量y1とM含有量y2との合計y1+y2については、0<y1+y2≦0.6である。この範囲であれば、負熱膨張の度合いが大きく、負熱膨張を示す温度範囲や、体積変化総量ΔV/V、熱膨張係数を熱膨張抑制剤など工業的な利用に適した範囲に制御することができる。より望ましくは、0<y1+y2≦0.5、さらに望ましくは0<y1+y2≦0.4、最も望ましくは0<y1+y2≦0.35である。ここで、y1とy2の合計だけでなく、M含有量y2自体についても望ましい値があり、y2は0≦y2≦0.2である。より望ましくは0≦y2≦0.13、最も望ましくは0≦y2≦0.1である。もちろん、y2=0とすることもできる。
[酸素含有量z]
 酸素含有量zによって本開示のルテニウム酸化物を特定する場合、酸素含有量zは-1<z<-0.02である。これまで「酸素過剰(z>0)は実現できるが、酸素欠損(z<0)を実現するのは容易でない」と報告されており(例えば、F. Nakamura et al., Sci. Rep. 3, 2536 (2103))、これが本願出願以前の一般的な認識であった。つまり、酸素含有量zが-1<z<-0.02のルテニウム酸化物は従来知られておらず、新規な物質である。酸素含有量zがこの範囲であれば、体積変化総量ΔV/Vの大きな負熱膨張のルテニウム酸化物を実現することができる。また、広い温度範囲で負熱膨張を実現することもでき、大きな負の線膨張係数を実現することもできる。望ましい酸素含有量zの範囲は、-0.5<z<-0.02であり、より望ましくは-0.4<z<-0.03であり、さらに望ましくは-0.4<z<-0.05であり、最も望ましくは-0.35<z<-0.05である。
 なお、一般的に、酸化物の酸素含有量を評価することは技術的に難しく、酸素含有量を測定できたとしても、その数値には実験誤差が含まれる。そのため、ルテニウム酸化物の酸素含有量zを十分に評価できない場合もある。しかしその場合であっても、体積変化総量ΔV/Vによって本開示のルテニウム酸化物を特定することは可能である。
 酸素含有量z以外によって本開示のルテニウム酸化物を特定する場合、すなわち、体積変化総量ΔV/Vによって本開示のルテニウム酸化物を特定する場合、酸素含有量zは-1<z<1であればよい。望ましくは-0.5<z<0.2であり、より望ましくは-0.4<z<0.1であり、さらに望ましくは-0.35<z<0.05であり、最も望ましくは-0.3<z<0.01である。
[体積変化総量ΔV/V]
 体積変化総量ΔV/Vは、以下のようにして定義される量である。負熱膨張を示す温度範囲がTminからTmax(Tmin<Tmax)であり、Tmin、Tmaxにおける体積をそれぞれVmin、Vmaxとする。つまり、Tminは負熱膨張を示す最小温度であり、Tmaxは負熱膨張を示す最大温度である。このとき、体積変化総量ΔV/Vは、(Vmin-Vmax)/Vmaxで定義される量である(図1参照)。この体積変化総量ΔV/Vは、負熱膨張の度合いを評価する指標である。このような量によって負熱膨張の度合いを評価する理由を以下に説明する。
 本開示であるルテニウム酸化物の負熱膨張は、相転移にともなう体積変化を、元素置換、結晶欠陥、結晶構造の乱れなどを導入することによって、温度に対して連続的にして実現された、「相転移型」負熱膨張である(図1参照)。このような相転移型負熱膨張では、線熱膨張における傾きαと動作温度幅ΔT、体積変化総量ΔV/Vの間に、粗くいえば、ΔV/V~3|α|ΔTの関係がある(負熱膨張を示す温度域で必ずしもαが一定値とは限らないため、厳密に成り立つわけではない)。ここで、線膨張係数は、等方的な物質の場合、あるいは粉末結晶が焼結された多結晶体の場合に測定された線熱膨張についてのものであり、体積の熱膨張に関する体膨張係数βと、α=(1/3)βの関係にあるものとする。したがって、負熱膨張の度合いと動作温度幅はトレード・オフの関係があり、一般に、動作温度を広くとれば負の傾きは小さくなり、負の傾きを大きくとれば動作温度は狭まる。ゆえに、このような相転移型負熱膨張材料では、その熱膨張抑制能(負熱膨張の度合い)を評価する指標として、線膨張係数αだけでは十分でなく、合わせて体積変化総量ΔV/Vも評価する必要がある。
 体積変化総量ΔV/Vによって本開示のルテニウム酸化物を特定する場合、体積変化総量ΔV/Vは、1%よりも大きい値である。このような大きな体積変化総量ΔV/Vを示すルテニウム酸化物は従来知られておらず、新規な物質である。従来のルテニウム酸化物に比べて大きな体積変化総量ΔV/Vを示す理由は不明である。酸素の欠乏による結晶欠陥が影響している可能性があるが、他の要素が原因である可能性も否定できない。
 熱膨張抑制剤としての工業的な利用の観点から、体積変化総量ΔV/Vは大きいほど好ましく、好ましいのは2%以上、より好ましいのは3%以上、さらに好ましくは4%以上、最も好ましくは6%以上である。体積変化総量ΔV/Vの上限については特に限定されるものではなく、通常の物質において考えられる範囲内であればよい。ただし、極端に体積変化総量ΔV/Vが大きくなると、結晶構造が不安定になるおそれがあるため、体積変化総量ΔV/Vは30%以下とすることが好ましく、より好ましくは20%以下、さらに好ましくは16%以下である。
[線膨張係数]
 固体材料の熱膨張は一般に線熱膨張で評価される。温度Tにおける線熱膨張は、温度Tでの試料長さをL(T)、基準温度の試料長さをL0としたとき、(L(T)-L0)/L0=ΔL/L0で定義される。結晶方位に異方性がない、等方的な物質の場合、あるいは粉末結晶が焼結された多結晶体の場合、線熱膨張は、温度による体積変化の指標である体熱膨張(V(T)-V0)/V0=ΔV/V0(Vは体積)と、ΔL/L0=(1/3)ΔV/V0の関係がある。本開示のルテニウム酸化物は一般に斜方晶であり、熱膨張を含む物理的性質に結晶方位依存性がある。本出願における実施例ならびに比較例では全て、粉末結晶が焼結された多結晶体を測定に用いており、その結果、得られた線熱膨張は、結晶方位依存性が平均化され、体熱膨張の3分の1に等しいものである。
 線膨張係数αは線熱膨張の温度微分であり、α=d(ΔL/L0)/dTと定義される。同様に、体膨張係数βは、β=d(ΔV/V0)/dTと定義される。等方的な物質の場合、あるいは粉末結晶が焼結された多結晶体の場合、α=(1/3)βの関係にあり、本出願ではその関係にある。
 本開示のルテニウム酸化物は、線膨張係数αが-20×10-6/℃以下であることが望ましい。ここでの線膨張係数αは、負熱膨張を示す温度範囲における線膨張係数αの平均値である。線膨張係数αが-20×10-6/℃以下であれば、本開示のルテニウム酸化物の工業的な利用範囲が広く、熱膨張抑制剤などとして利用価値が高い。より望ましいのは-30×10-6/℃以下であり、さらに望ましくは-60×10-6/℃以下である。一般に、本開示のルテニウム酸化物のような相転移型負熱膨張材料は、線膨張係数αが小さくなると(負の絶対値が大きくなると)負熱膨張を示す温度範囲が狭くなり、いくらでも線膨張係数αを小さくすることが可能である。線膨張係数αの下限は特に限定されるものではないが、所望の負熱膨張温度範囲との関係で下限が限定される場合があることには留意する。
[負熱膨張を示す温度範囲]
 本開示のルテニウム酸化物は、非常に広い温度範囲において大きな負熱膨張を示す。工業的な利用範囲の広さなどの点から、負の熱膨張を示す温度範囲は100℃以上の範囲にわたることが望ましい。高温環境で使用する部材や、複数の部品を接合したデバイスなどにおいても、適当な本開示のルテニウム酸化物を選択することで、熱膨張の調整をすることが可能となる。また、-100℃以下に冷却されることのある材料についても、熱膨張を抑制することができ、たとえば冷凍機などの部品について熱膨張の調整が可能となる。また、これらの温度範囲において、線膨張係数は-20×10-6/℃以下の大きな負熱膨張とすることができる。また、本開示のルテニウム酸化物では、一般には、負熱膨張を示す温度範囲は、室温(27℃)を含む範囲であるが、R含有量xやM含有量yによって温度範囲の上限を室温以下に制御することも可能である。特に、Ruサイトの一部をSnで置換することで、より広い温度範囲において負熱膨張を実現することができ、負熱膨張を示す最大温度Tmaxをより高くすることができる。
 負の熱膨張を示す温度範囲(Tmax-Tminに相当する。ここで、Tmax>Tmin)としてより望ましいのは200℃以上の範囲、さらに望ましくは300℃以上の温度範囲、最も望ましくは400℃以上の温度範囲である。また、負熱膨張を示す温度範囲の上限は特にない。しかし上述のように、本開示のルテニウム酸化物は相転移型負熱膨張材料であるため、負の線膨張係数と、負の熱膨張を示す温度範囲はトレード・オフの関係にある。そのため、負熱膨張を示す温度範囲が広すぎると、線膨張係数が大きくなってしまう(負の線膨張係数の絶対値が小さくなる)。したがって、負熱膨張を示す温度範囲は1000℃以下とすることが望ましく、より望ましくは800℃以下、さらに望ましくは700℃以下である。
[本開示のルテニウム酸化物の具体例]
 以下、本開示のルテニウム酸化物として好ましい具体的な一般式を挙げる。もちろん、本開示はこれらに限定されるものでないことは言うまでもない。
 CaRuO3.7~3.979、CaRu0.85~0.95Mn0.05~0.153.7~3.979、CaRu0.87~0.97Fe0.03~0.133.7~3.979、CaRu0.85~0.95Cu0.05~0.153.7~3.979、CaRu0.8~1.0Cr0~0.23.7~3.979、Ca1.85~2Sr0~0.15RuO3.7~3.979、CaRu0.55~0.97Sn0.03~0.453.7~4.05
[製造方法]
 本開示のルテニウム酸化物は、従来の方法によって作製されたルテニウム酸化物を「還元的熱処理」することによって得られる。ここで還元的熱処理とは、酸素を含み、酸素分圧0.3気圧以下の雰囲気下で、1100℃より大きく1400℃よりも小さい温度で熱処理することをいう。この還元的熱処理によって従来のルテニウム酸化物よりも大きな負熱膨張が発現する理由は不明であるが、この還元的熱処理は酸素が結晶から離脱して結晶欠陥となる方向に作用していると考えられ、その結晶欠陥が大きな負熱膨張の発現に関与している可能性がある。もちろん、他の要因による可能性を排除するものではない。
 還元的熱処理において、酸素分圧は0.3気圧以下であればよいが、より望ましくは0.25気圧以下、さらに望ましくは0.22気圧以下である。また、酸素分圧は0.05気圧以上が望ましく、より望ましくは0.1気圧以上、さらに望ましくは0.15気圧以上である。また、酸素分圧が上記範囲であれば全圧の値は特に問わないが、作製の容易さなどの点から0.5~2.0気圧とすることが好ましい。また、酸素以外に含むガスは、窒素、希ガスなどの不活性ガスであることが望ましい。たとえば、本開示の還元的熱処理の雰囲気として空気や、アルゴンと酸素の混合ガス、を用いることができる。
 還元的熱処理を行うルテニウム酸化物は、従来知られた方法で作製されたものである。たとえば、固相反応法、液相成長方法、融液成長法、気相成長方法、真空成膜法などである。真空成膜法は、たとえば分子線エピタキシー法(MBE)、レーザーアブレーション法、スパッタ法などである。中でも工業的な量産性などの点から固相反応法によって作製することが好ましい。固相反応法によって作製する場合、その固相反応法における焼成のための熱処理が、還元的熱処理を兼ねるようにしてもよい。製造工程を簡略化することができる。固相反応法では、例えばCaCOやLaなどRの酸化物や炭酸塩(Rは本開示のルテニウム酸化物の一般式中のRと同様の元素)、RuO、例えばCrなどMの酸化物(Mは本開示のルテニウム酸化物の一般式中のMと同様の元素)、SnOなどのSnの酸化物の粉末を所定のモル比で混合した混合粉末を原料として用いることができる。
 還元的熱処理において、温度は1100℃より大きく1400℃よりも小さければよい。1400℃以上では、CaRuOなど別の相のルテニウム酸化物が生成してしまい望ましくない。また、1100℃以下では反応が進まず、大きな負熱膨張が発現せず望ましくない。より望ましい温度範囲は1200℃以上1390℃以下、さらに望ましくは1250℃以上1380℃以下である。
[熱膨張抑制剤]
 本開示のルテニウム酸化物は、正の熱膨張を示す材料の熱膨張を相殺して抑制するための熱膨張抑制剤として利用できる。
[負熱膨張材料、低熱膨張材料、ゼロ熱膨張材料]
 本開示のルテニウム酸化物を熱膨張抑制剤として利用することにより、つまり、正の熱膨張を示す材料に混合するなどして、特定の温度範囲において負の熱膨張を示す負熱膨張材料を作製することができる。また、同様にして、特定の温度範囲において正にも負にも膨張しないゼロ熱膨張材料を作製することができる。また、同様にして、正の熱膨張の大きな材料について、本開示のルテニウム酸化物を添加して所定の正の線膨張係数まで低下させた低熱膨張材料を作製することができる。例えば、石英SiO(α~0.5×10-6/℃)、シリコンSi(α~3×10-6/℃)、シリコンカーバイドSiC(α~5×10-6/℃)などが低熱膨張材料として知られる。本願開示における低熱膨張とはこれらの材料の熱膨張の水準、あるいはそれ以下を意味する。
 本開示のルテニウム酸化物を用いて負熱膨張材料、低熱膨張材料、またはゼロ熱膨張材料を作製する場合、その母材の種類は本開示の趣旨を逸脱しない範囲に限り特に定めるものではなく、ガラス、樹脂、セラミック、金属、合金など、広く公知の材料に適用することができる。特に本開示のルテニウム酸化物は、粉末状態で利用することができるため、セラミックのように任意の形状に焼き固めることができるものにも好ましく採用することができる。
 本開示のルテニウム酸化物の効果をまとめると以下の通りである。
 第1に、本開示によれば、体積変化総量が従来のルテニウム酸化物よりも大きな負熱膨張のルテニウム酸化物を実現することができる。従来知られている負熱膨張のルテニウム酸化物は、体積変化総量が高々1%であり、1%を超えるものはなかったが、本開示は、体積変化総量が1%を超えるルテニウム酸化物を実現することができ、たとえば体積変化総量を6%以上とすることも可能である。また、本開示のルテニウム酸化物は線膨張係数を-20×10-6/℃より小さくすることが可能であり、たとえば-100×10-6/℃より小さくすることも可能である。この結果、ルテニウム酸化物を工業的な熱膨張抑制剤として広く利用することが可能となる。とりわけ、樹脂、有機物等の熱膨張の大きな材料に対しても熱膨張を抑制することが可能となる。
 第2に、本開示のルテニウム酸化物は、非常に広い温度範囲で負熱膨張を実現することができる。たとえば、400℃以上の広い温度範囲にわたって線膨張係数が-20×10-6/℃よりも小さな負熱膨張を実現することができる。特に、Ruサイトの一部をSnで置換することで、より広い温度範囲(たとえば500℃以上)にわたって負熱膨張を実現することができ、負熱膨張を示す最大温度Tmaxをより高くすることができる。これにより、たとえば400℃以上に加熱されることのある材料についても、熱膨張を抑制することが可能となる。その結果、高温環境で使用する部材や、複数の部品を接合したデバイスなどにおいても、適当な熱膨張抑制剤を選択することで、熱膨張の調整をすることが可能となる。また、-100℃以下に冷却されることのある材料についても、熱膨張を抑制することができる。その結果、たとえば冷凍機などの部品について熱膨張の調整が可能となる。
 第3に、本開示のルテニウム酸化物は、粉末の状態で利用することができる。そのため、セラミックのように焼き固めて任意の形状とすることができる。また、原材料に混合するのも容易である。
 第4に、本開示のルテニウム酸化物は、環境にやさしい素材で構成することができるため、環境面においても好ましい。また、Ruサイトの一部をより安価なSnで置換することができるので、低コスト化を図ることができる。
 以下、本開示の具体的な実施例について図を参照に説明するが、本開示は実施例に限定されるものではない。以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本開示の趣旨を逸脱しない限り、適宜変更することができる。
(1)ルテニウム酸化物の作製
 CaRu1-y4+z(MはCr、Mn、FeまたはCu、以下同じ)を、CaCO、RuO、Cr、Mn、Fe、CuOの粉末を原料とした固相反応法で得た。まず、原料粉をCa:Ru:M=2:1-y:yのモル比になるように秤量・攪拌した後、大気中もしくはアルゴン0.8気圧/酸素0.2気圧の混合ガス気流中、1000℃~1100℃の温度で12~24時間加熱・焼成した。
 こうして得られた粉末を攪拌した後、錠剤型に押し固めて、アルゴン0.8気圧/酸素0.2気圧の混合ガス気流中、1250℃~1370℃の温度で40~60時間加熱・焼成して焼結し、一般式CaRu1-y4+zで表されるルテニウム酸化物を得た。この熱処理を以下「還元的熱処理」と呼ぶ。
 また、CaRu1-y4+zにおいて、Caの一部をSrで置換したルテニウム酸化物は、出発原料のうちCaCOを、所定のモル比のみSrCOに置き換えて、上述の方法に従って得た。
 上記の試料作製において、原料は全て純度99.9%以上、粒径1~50μmの粉末であった。作製した試料は粉末X線回折(デバイ・シェラー法)により評価し、単相、室温で斜方晶であることを確認した。
 なお、加熱・焼成時の温度を、例えば1400℃として焼成も行ったが、この場合は例えばCaRuOなど、他の相のルテニウム酸化物ができるなどして、単相の試料が得られなかった。同様に、例えば1100℃でも焼成したが、原料粉の一部が未反応のまま残るなどして、やはり単相の試料は得られなかった。
(2)ルテニウム酸化物の線熱膨張
 上記作製した実施例1-1の試料について、体積変化総量ΔV/V、線膨張係数α、負熱膨張を示す温度範囲ΔT、負熱膨張を示す最小温度Tmin、最大温度Tmaxをそれぞれ測定した。ルテニウム酸化物の線熱膨張は、レーザー干渉熱膨張計(アルバック社製、LIX-2)を用いて、-183℃~227℃の温度範囲で測定した。また、体積変化総量ΔV/V、線膨張係数α、ΔT、Tmin、Tmaxは、線熱膨張の測定結果から求めた。線膨張係数αは、負の線熱膨張を示す温度領域において代表的な値を示している。
 下記表1は、測定結果をまとめたものである。表1中、1~10段目までの前段の化学式が実施例1である。なお、11~13段目の後段の化学式は後述する実施例2である。また、図2~7は、実施例の試料の線熱膨張を示したグラフである。線熱膨張は、500Kを基準とした値である。また、表1における図の欄は、図2~7のうち対応する線熱膨張のグラフを示している。図2は、一般式CaRuO4+zで表される試料であり、図3~6は、一般式CaRu1-y4+zで表される試料のMの元素種や、yの値を変えたものであり、図7は、一般式Ca2-xSrRuO4+zで表される試料のxの値を変えたものである。
 また、比較のため、従来の代表的な負熱膨張材料の特性値を表2に示す。表2において、材料の結晶系が異方性を示すものについては、線膨張係数αは平均値を示す。表2の特性値は、下記文献を参照した。
 
文献
*1 T. A. Mary et al., Science 272, 90-92 (1996).
*2 A. E. Phillips et al., Angew. Chem. Int. Ed. 47, 1396-1399 (2008).
*3 K. Takenaka and H. Takagi, Appl. Phys. Lett. 87, 261902 (2005).
*4 J. Chen et al., Appl. Phys. Lett. 89, 101914 (2006).
*5 I. Yamada et al., Angew. Chem. Int. Ed. 50, 6579-6582 (2011).
*6 M. Azuma et al., Nature Commun. 2, 347 (2011).
*7 R. J. Huang et al., J. Am. Chem. Soc. 135, 11469-11472 (2013).
*8 Y. Y. Zhao et al., J. Am. Chem. Soc. 137, 1746-1749 (2015).
Figure JPOXMLDOC01-appb-T000001
 
 
 なお、表1において*で示したTmin、Tmaxの数値は、測定温度下限(-183℃)もしくは上限(227℃)においても負熱膨張を示したことを意味し、実際にはこの温度を超えても負熱膨張を示すであろうことは容易に想像できる。
Figure JPOXMLDOC01-appb-T000002
 
 
 表1、表2を比較すると、本開示のルテニウム酸化物は、従来の負熱膨張材料に比べて非常に大きな体積変化総量ΔV/Vを示すことがわかる。また、負熱膨張を示す温度範囲ΔTも、従来の負熱膨張材料と同等かそれ以上に広い温度範囲であり、線膨張係数αについても、従来の負熱膨張と同等かそれよりも小さな値である。したがって、本開示のルテニウム酸化物は、従来の負熱膨張材料に比べて負熱膨張の度合いが大きいと言え、工業的な利用価値の高いものである。
 また、表1および図2~7から、一般式Ca2-xRu1-y4+zにおけるR含有量x、Mの元素種、M含有量yによって、体積変化総量ΔV/V、線膨張係数α、ΔT、Tmin、Tmaxの制御が可能であることがわかった。図3~5から、M=Mn、Fe、CuではM含有量が増加すると、Tmaxが増加し、線膨張係数αが大きくなる(負の絶対値が小さくなる)傾向にあることがわかった。また、図6、7から、R=Sr、M=Crでは、R含有量xやM含有量yが増加すると、Tmaxが減少し、線膨張係数αも大きくなる(負の絶対値が小さくなる)傾向にあることがわかった。体積変化総量ΔV/VやΔT、Tminは、測定範囲を超えているため定かではないが、おそらくM含有量yが増加すると減少していく傾向にあると推察される。
(3)還元的熱処理の評価
 還元的熱処理が、本開示の大きな負熱膨張の発現に寄与していることを確認するため、以下の実験を行った。
 比較例1として、以下の方法によってルテニウム酸化物CaRuO4+zを作製した。まず、上記の(1)ルテニウム酸化物の作製において述べた還元的熱処理による方法により、ルテニウム酸化物CaRuO4+z(以下、実施例1-1のルテニウム酸化物)を得た。この還元的熱処理で得た焼結体をさらに酸素4~5気圧の雰囲気中、500℃~550℃の温度で40~60時間加熱した。この処理を、以下「高圧酸素処理」と呼ぶ。これにより得られたルテニウム酸化物を比較例1のルテニウム酸化物とする。比較例1のルテニウム酸化物について、線熱膨張を測定した結果、負熱膨張を示さないか、示したとしても極めて抑制されたものであった。
 高圧酸素処理を施した比較例1のルテニウム酸化物CaRuO4+zを、さらにアルゴン0.8気圧/酸素0.2気圧の混合ガス気流中、1250℃~1370℃の温度で40~60時間加熱して、ルテニウム酸化物を得た。このルテニウム酸化物を実施例1-2とする。
 図12は、実施例1-1、1-2、比較例1のルテニウム酸化物について、線熱膨張を示したグラフである。図12のように、還元的熱処理によって大きな負熱膨張が発現した実施例1-1のルテニウム酸化物について、高圧酸素処理すると、大きな負熱膨張が著しく抑制されてしまうことがわかった。また、高圧酸素処理によって大きな負熱膨張が失われた比較例1のルテニウム酸化物について、再度還元的熱処理を施すと、高圧酸素処理を施す前の大きな負熱膨張が復活することがわかった。この結果、還元的熱処理がルテニウム酸化物の大きな負熱膨張の発現に本質的なものであることがわかった。
(4)酸素含有量zの評価
 ルテニウム酸化物CaRu1-y4+zの酸素含有量については、これまでにzの値が-0.01(1)≦z≦0.07(1)、つまり誤差を最大限考慮して-0.02≦z≦0.08と報告されてきた(非特許文献2)。比較例1における高圧酸素処理したルテニウム酸化物は十分に酸素を含んでいるとみなせ、zが0.07に近い。上述した高圧酸素処理により、試料重量が1~2%増加していることを精密電子天秤(メトラートレド社製、XP56)により確認した。この重量変化はzに換算して0.15~0.30の増加に相当する。したがって、実施例1のルテニウム酸化物のzは、-0.23~-0.08であると考えられ、公知でない酸素含有量zを持った物質である。これまで「酸素過剰(z>0)は実現できるが、酸素欠損(z<0)を実現するのは容易でない」と報告されており(例えば、F. Nakamura et al., Sci. Rep. 3, 2536 (2103))、これが本願出願以前の一般的な認識であった。なお、一般に、酸化物の酸素含有量を評価することは技術的に難しく、得られる数値に実験誤差が含まれる点も考慮されるべきである。したがって、上記の測定数値も実験誤差を内包している可能性があることに留意する。
 CaRu1-ySn4+zを、CaCO、RuO、SnOの粉末を原料とした固相反応法で得た。まず、原料粉をCa:Ru:Sn=2:1-y:yのモル比になるように秤量・攪拌した後、大気中もしくはアルゴン0.8気圧/酸素0.2気圧の混合ガス気流中、1000℃~1100℃の温度で12~24時間加熱・焼成した。
 こうして得られた粉末を攪拌した後、錠剤型に押し固めて、アルゴン0.8気圧/酸素0.2気圧の混合ガス気流中、1250℃~1370℃の温度で40~60時間加熱・焼成して焼結し、一般式CaRu1-ySn4+zで表されるルテニウム酸化物を得た。
 得られた一般式CaRu1-ySn4+zで表されるルテニウム酸化物について、実施例1と同様にして線熱膨張を測定し、その測定結果から、体積変化総量ΔV/V、線膨張係数α、ΔT、Tmin、Tmaxを求めた。ただし、一部の測定で線熱膨張測定の上限温度を427℃まで拡張している。
 実施例2のルテニウム酸化物についての測定結果を、実施例1で示した上記表1に示す。表1中、11~13段目の後段の化学式が実施例2である。なお、表1における*の意味は前述と同じであり、表1において*で示したTmin、Tmaxの数値は、測定温度下限(-183℃)もしくは上限(427℃)においても負熱膨張を示したことを意味し、実際にはこの温度を超えても負熱膨張を示すであろうことは容易に想像できる。また、線熱膨張のグラフを図8に示す。表1および図8から、実施例2のルテニウム酸化物は、実施例1のルテニウム酸化物と同様に、従来の負熱膨張材料に比べて非常に大きな体積変化総量ΔV/Vを示すことがわかった。また、負熱膨張を示す温度範囲ΔTも、従来の負熱膨張材料と同等かそれ以上に広い温度範囲であり、線膨張係数αについても、従来の負熱膨張と同等かそれよりも小さな値であった。したがって、実施例2のルテニウム酸化物もまた、従来の負熱膨張材料に比べて負熱膨張の度合いが大きいと言える。
特に、Ruサイトの一部をSnで置換することで、負熱膨張を示す温度範囲ΔTが非常に広く、負熱膨張を示す最大温度Tmaxも非常に高くなることがわかった。たとえば、Sn含有量yが0.3でΔTは535℃、Tmaxは少なくとも427℃であり、負熱膨張を高温領域まで拡張することができた。これは工業的な利用の点で非常に有意義である。
 また、表1および図8から、Snの含有量yが大きいほど、線熱膨張係数が大きくなり(線膨張係数は負なので絶対値は小さくなり)、負熱膨張を示す温度範囲ΔTが広くなり、負熱膨張を示す最大温度Tmaxも高くなる傾向があることがわかった。したがって、Snの含有量yによって線膨張係数、ΔT、Tmaxの制御が可能であることがわかった。
 以上のように、Ruサイトの一部をSnで置換した一般式CaRu1-ySn4+zで表される実施例2のルテニウム酸化物は、負熱膨張を示す温度範囲ΔTが広く、負熱膨張を示す最大温度Tmaxも高いため、熱膨張抑制剤などへの工業的な利用の点で優れている。また、SnはRuよりも安価であり、材料の低コスト化を図ることができる点でも工業的に優れている。
実施例1と同様にして、一般式CaRu0.88Fe0.123.83で表されるルテニウム酸化物を作製した。そして、そのルテニウム酸化物をAlに混合して分散させ、Alの体積比が70%の複合材料を作製した。また、同様にして、一般式CaRu0.92Fe0.083.82で表されるルテニウム酸化物を作製し、そのルテニウム酸化物をAl、Cuにそれぞれ混合して分散させ、Alの体積比が70%の複合材料と、Cuの体積比が70%の複合材料を作製した。作製した各ルテニウム酸化物、各複合材料について、実施例1と同様にして線熱膨張を測定した。図9~11に線熱膨張のグラフを示す。
 図9~11のように、作製した各ルテニウム酸化物は負熱膨張を示すことがわかり、それを正熱膨張を示すAl、Cuに混合した複合材料は、同じく正熱膨張を示すものの、Al、Cuに比べて熱膨張が抑制されており、線熱膨張係数が低減されていることがわかった。このように、AlやCuに本開示のルテニウム酸化物を混合することで、線熱膨張係数を低減できることがわかり、熱膨張抑制剤として利用できることがわかった。そして、本開示のルテニウム酸化物を混合することで負熱膨張材料、ゼロ熱膨張材料、低熱膨張材料も実現可能であることが示された。
以上に述べたとおり、本開示は以下の項目に記載のルテニウム酸化物、熱膨張抑制剤、負熱膨張材料、ゼロ熱膨張材料、低熱膨張材料、およびルテニウム酸化物の製造方法を含む。
〔項目1〕
下記一般式(1)で表されるルテニウム酸化物。
一般式(1)
Ca2-xRxRu1-yMyO4+z
(一般式(1)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<-0.02である。)
〔項目2〕
 前記一般式(1)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする項目1に記載のルテニウム酸化物。
〔項目3〕
 前記一般式(1)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする項目1に記載のルテニウム酸化物。
〔項目4〕
 前記一般式(1)中、x=y=0であることを特徴とする項目1に記載のルテニウム酸化物。
〔項目5〕
 下記一般式(2)で表され、温度Tminから温度Tmax(Tmin<Tmax)にわたって負熱膨張を示し、温度Tmaxでの体積に対する温度Tminでの体積の増加割合である体積変化総量ΔV/Vが、1%よりも大きい、ことを特徴とするルテニウム酸化物。
一般式(2)
Ca2-xRu1-y4+z
(一般式(2)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<1である。)
〔項目6〕
 前記一般式(2)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする項目5に記載のルテニウム酸化物。
〔項目7〕
 前記一般式(2)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする項目5に記載のルテニウム酸化物。
〔項目8〕
 前記一般式(2)中、x=y=0であることを特徴とする項目5に記載のルテニウム酸化物。
〔項目9〕
 下記一般式(3)で表されるルテニウム酸化物。
一般式(3)
Ca2-xRu1-y1-y2Sny1y24+z
(一般式(3)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0<y1<0.5、0≦y2≦0.2、0<y1+y2≦0.6、-1<z<1である。)
〔項目10〕
 前記一般式(3)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする項目9に記載のルテニウム酸化物。
〔項目11〕
 前記一般式(3)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする項目9に記載のルテニウム酸化物。
〔項目12〕
 前記一般式(3)中、x=y2=0であることを特徴とする項目9に記載のルテニウム酸化物。
〔項目13〕
 温度Tminから温度Tmax(Tmin<Tmax)にわたって負熱膨張を示し、温度Tmaxでの体積に対する温度Tminでの体積の増加割合である体積変化総量ΔV/Vが、1%よりも大きい、ことを特徴とする項目1ないし項目4、項目9ないし項目12のいずれかに記載のルテニウム酸化物。
〔項目14〕
 線膨張係数が-20×10-6/℃以下であることを特徴とする項目1ないし項目13のいずれかに記載のルテニウム酸化物。
〔項目15〕
 100℃以上の温度範囲にわたって負熱膨張を示すことを特徴とする項目1ないし項目14のいずれかに記載のルテニウム酸化物。
〔項目16〕
 層状ペロブスカイト型結晶構造を有することを特徴とする項目1ないし項目15のいずれかに記載のルテニウム酸化物。
〔項目17〕
 項目1ないし項目16のいずれかに記載のルテニウム酸化物を含むことを特徴とする熱膨張抑制剤。
〔項目18〕
 項目1ないし項目16のいずれかに記載のルテニウム酸化物を含むことを特徴とする負熱膨張材料。
〔項目19〕
 項目1ないし項目16のいずれかに記載のルテニウム酸化物を含むことを特徴とするゼロ熱膨張材料。
〔項目20〕
 項目1ないし項目16のいずれかに記載のルテニウム酸化物を含むことを特徴とする低熱膨張材料。
〔項目21〕
 下記一般式(4)で表されるルテニウム酸化物を、酸素を含み、酸素分圧0.3気圧以下の雰囲気下で、1100℃より大きく1400℃よりも小さい温度で熱処理する還元的熱処理工程を含む、ことを特徴とするルテニウム酸化物の製造方法。
一般式(4)
Ca2-xRu1-y4+z
(一般式(4)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<1である。)
〔項目22〕
 前記一般式(4)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする項目21に記載のルテニウム酸化物の製造方法。
〔項目23〕
 前記一般式(4)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする項目21に記載のルテニウム酸化物の製造方法。
〔項目24〕
 前記一般式(4)中、x=y=0であることを特徴とする項目21に記載のルテニウム酸化物の製造方法。
〔項目25〕
 下記一般式(5)で表されるルテニウム酸化物を、酸素を含み、酸素分圧0.3気圧以下の雰囲気下で、1100℃より大きく1400℃よりも小さい温度で熱処理する還元的熱処理工程を含む、ことを特徴とするルテニウム酸化物の製造方法。
一般式(5)
Ca2-xRu1-y1-y2Sny1y24+z
(一般式(5)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0<y1<0.5、0≦y2≦0.2、0<y1+y2≦0.6、-1<z<1である。)
〔項目26〕
 前記一般式(5)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする項目25に記載のルテニウム酸化物の製造方法。
〔項目27〕
 前記一般式(5)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする項目25に記載のルテニウム酸化物の製造方法。
〔項目28〕
 前記一般式(5)中、x=y2=0であることを特徴とする項目25に記載のルテニウム酸化物の製造方法。
〔項目29〕
 ルテニウム酸化物は、固相反応法による焼成工程で生成し、
 前記焼成工程は、前記還元的熱処理工程を兼ねる、ことを特徴とする項目21ないし項目28のいずれかに記載のルテニウム酸化物の製造方法。
〔項目30〕
 ルテニウム酸化物は、固相反応法による焼成工程で生成し、
 前記焼成工程の後、前記還元的熱処理工程を行う、ことを特徴とする項目21ないし項目28のいずれかに記載のルテニウム酸化物の製造方法。
〔項目31〕
 項目1ないし項目16のいずれかに記載のルテニウム酸化物と、AlまたはCuと、を含むことを特徴とする複合材料。
 本開示のルテニウム酸化物は、通常材料が示す熱膨張を相殺して抑制する熱膨張抑制剤として利用することができる。また、特定の温度範囲において負熱膨張する、負の熱膨張材料を作製することができる。さらに、特定の温度範囲においては、正にも負にも膨張しない、ゼロ熱膨張材料をも作製できる。
 具体的には、温度による形状や寸法の変化を嫌う精密光学部品や機械部品、プロセス機器・工具、ファイバーグレーティングの温度補償材、プリント回路基板、電子部品の封止材、熱スイッチ、冷凍機部品、人工衛星部品などに利用することができる。
 

Claims (30)

  1.  下記一般式(1)で表されるルテニウム酸化物。
    一般式(1)
    Ca2-xRu1-y4+z
    (一般式(1)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<-0.02である。)
  2.  前記一般式(1)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする請求項1に記載のルテニウム酸化物。
  3.  前記一般式(1)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする請求項1に記載のルテニウム酸化物。
  4.  前記一般式(1)中、x=y=0であることを特徴とする請求項1に記載のルテニウム酸化物。
  5.  下記一般式(2)で表され、温度Tminから温度Tmax(Tmin<Tmax)にわたって負熱膨張を示し、温度Tmaxでの体積に対する温度Tminでの体積の増加割合である体積変化総量ΔV/Vが、1%よりも大きい、ことを特徴とするルテニウム酸化物。
    一般式(2)
    Ca2-xRu1-y4+z
    (一般式(2)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<1である。)
  6.  前記一般式(2)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする請求項5に記載のルテニウム酸化物。
  7.  前記一般式(2)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする請求項5に記載のルテニウム酸化物。
  8.  前記一般式(2)中、x=y=0であることを特徴とする請求項5に記載のルテニウム酸化物。
  9.  下記一般式(3)で表されるルテニウム酸化物。
    一般式(3)
    Ca2-xRu1-y1-y2Sny1y24+z
    (一般式(3)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0<y1<0.5、0≦y2≦0.2、0<y1+y2≦0.6、-1<z<1である。)
  10.  前記一般式(3)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする請求項9に記載のルテニウム酸化物。
  11.  前記一般式(3)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする請求項9に記載のルテニウム酸化物。
  12.  前記一般式(3)中、x=y2=0であることを特徴とする請求項9に記載のルテニウム酸化物。
  13.  温度Tminから温度Tmax(Tmin<Tmax)にわたって負熱膨張を示し、温度Tmaxでの体積に対する温度Tminでの体積の増加割合である体積変化総量ΔV/Vが、1%よりも大きい、ことを特徴とする請求項1ないし請求項4、請求項9ないし請求項12のいずれか1項に記載のルテニウム酸化物。
  14.  線膨張係数が-20×10-6/℃以下であることを特徴とする請求項1ないし請求項13のいずれか1項に記載のルテニウム酸化物。
  15.  100℃以上の温度範囲にわたって負熱膨張を示すことを特徴とする請求項1ないし請求項14のいずれか1項に記載のルテニウム酸化物。
  16.  層状ペロブスカイト型結晶構造を有することを特徴とする請求項1ないし請求項15のいずれか1項に記載のルテニウム酸化物。
  17.  請求項1ないし請求項16のいずれか1項に記載のルテニウム酸化物を含むことを特徴とする熱膨張抑制剤。
  18.  請求項1ないし請求項16のいずれか1項に記載のルテニウム酸化物を含むことを特徴とする負熱膨張材料。
  19.  請求項1ないし請求項16のいずれか1項に記載のルテニウム酸化物を含むことを特徴とするゼロ熱膨張材料。
  20.  請求項1ないし請求項16のいずれか1項に記載のルテニウム酸化物を含むことを特徴とする低熱膨張材料。
  21.  下記一般式(4)で表されるルテニウム酸化物を、酸素を含み、酸素分圧0.3気圧以下の雰囲気下で、1100℃より大きく1400℃よりも小さい温度で熱処理する還元的熱処理工程を含む、ことを特徴とするルテニウム酸化物の製造方法。
    一般式(4)
    Ca2-xRu1-y4+z
    (一般式(4)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0≦y<0.3、-1<z<1である。)
  22.  前記一般式(4)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする請求項21に記載のルテニウム酸化物の製造方法。
  23.  前記一般式(4)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする請求項21に記載のルテニウム酸化物の製造方法。
  24.  前記一般式(4)中、x=y=0であることを特徴とする請求項21に記載のルテニウム酸化物の製造方法。
  25.  下記一般式(5)で表されるルテニウム酸化物を、酸素を含み、酸素分圧0.3気圧以下の雰囲気下で、1100℃より大きく1400℃よりも小さい温度で熱処理する還元的熱処理工程を含む、ことを特徴とするルテニウム酸化物の製造方法。
    一般式(5)
    Ca2-xRu1-y1-y2Sny1y24+z
    (一般式(5)中、Rはアルカリ土類金属または希土類元素から選ばれる少なくとも1種の元素であり、MはSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Gaの中から選ばれる少なくとも1種の元素であり、0≦x<0.2、0<y1<0.5、0≦y2≦0.2、0<y1+y2≦0.6、-1<z<1である。)
  26.  前記一般式(5)中、RはSr、Ba、Y、La、Ce、Pr、Nd、Smの少なくとも1種の元素であり、MはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも1種の元素である、ことを特徴とする請求項25に記載のルテニウム酸化物の製造方法。
  27.  前記一般式(5)中、RはSr、Baの少なくとも1種の元素であり、MはCr、Mn、Fe、Cuの少なくとも1種の元素である、ことを特徴とする請求項25に記載のルテニウム酸化物の製造方法。
  28.  前記一般式(5)中、x=y2=0であることを特徴とする請求項25に記載のルテニウム酸化物の製造方法。
  29.  ルテニウム酸化物は、固相反応法による焼成工程で生成し、
     前記焼成工程は、前記還元的熱処理工程を兼ねる、ことを特徴とする請求項21ないし請求項28のいずれか1項に記載のルテニウム酸化物の製造方法。
  30.  ルテニウム酸化物は、固相反応法による焼成工程で生成し、
     前記焼成工程の後、前記還元的熱処理工程を行う、ことを特徴とする請求項21ないし請求項28に記載のルテニウム酸化物の製造方法。
     
     
     
PCT/JP2017/004948 2016-02-12 2017-02-10 ルテニウム酸化物およびルテニウム酸化物の製造方法 WO2017138643A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017567013A JPWO2017138643A1 (ja) 2016-02-12 2017-02-10 ルテニウム酸化物およびルテニウム酸化物の製造方法
US16/075,841 US10676371B2 (en) 2016-02-12 2017-02-10 Ruthenium oxide having a negative thermal expansion coefficient, and useable as a thermal expansion inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016024783 2016-02-12
JP2016-024783 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138643A1 true WO2017138643A1 (ja) 2017-08-17

Family

ID=59563818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004948 WO2017138643A1 (ja) 2016-02-12 2017-02-10 ルテニウム酸化物およびルテニウム酸化物の製造方法

Country Status (3)

Country Link
US (1) US10676371B2 (ja)
JP (1) JPWO2017138643A1 (ja)
WO (1) WO2017138643A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123897A1 (ja) * 2016-12-27 2018-07-05 国立大学法人名古屋大学 複合材料
JP2022038906A (ja) * 2020-08-27 2022-03-10 日本特殊陶業株式会社 保持装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101153A1 (ja) * 2009-03-04 2010-09-10 国立大学法人京都大学 Aサイト秩序型ペロブスカイト酸化物
JP2015221749A (ja) * 2010-08-12 2015-12-10 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146693A (ja) 2001-11-09 2003-05-21 Nippon Electric Glass Co Ltd 光通信デバイス用基材、その製造方法及びそれを用いた光通信デバイス
CN101023147B (zh) 2004-07-30 2010-05-12 独立行政法人理化学研究所 热膨胀抑制剂、零热膨胀材料、负热膨胀材料、热膨胀抑制方法和热膨胀抑制剂的制造方法
US20080124265A1 (en) * 2006-10-16 2008-05-29 Gur Turgut M Catalytic oxide anodes for high temperature fuel cells
JP5781824B2 (ja) 2010-08-12 2015-09-24 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101153A1 (ja) * 2009-03-04 2010-09-10 国立大学法人京都大学 Aサイト秩序型ペロブスカイト酸化物
JP2015221749A (ja) * 2010-08-12 2015-12-10 キヤノン株式会社 熱膨張抑制部材および対熱膨張性部材

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
O. FRIEDT ET AL.: "Structural and magnetic aspects of the metal-insulator transition in Ca2-xSrxRu04", PHYSICAL REVIEW B CONDENSED MATTER AND MATERIALS PHYSICS, vol. 63, no. 17, 12 April 2001 (2001-04-12), pages 174432.1 - 174432.10, XP055408248 *
SATORU NAKATSUJI ET AL.: "Synthesis and Single-Crystal Growth of Ca2-xSrxRuO4", JOURNAL OF SOLID STATE CHEMISTRY, vol. 156, no. 1, January 2001 (2001-01-01), pages 26 - 31, XP055408241 *
T. F. QI ET AL.: "Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1-xMxO4 (M=Mn and Fe)", PHYSICAL REVIEW B CONDENSED MATTER AND MATERIALS PHYSICS, vol. 85, no. 16, April 2012 (2012-04-01), pages 165143.1 - 165143.6, XP055408254 *
T. F. QI ET AL.: "Negative Volume Thermal Expansion Via Orbital and Magnetic Orders in Ca2Ru1-xCrxO4 (0<x<0.13", PHYSICAL PEVIEW LETTERS, vol. 105, no. 17, 22 October 2010 (2010-10-22), pages 177203, XP055408249 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123897A1 (ja) * 2016-12-27 2018-07-05 国立大学法人名古屋大学 複合材料
JP2022038906A (ja) * 2020-08-27 2022-03-10 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
US20190031528A1 (en) 2019-01-31
US10676371B2 (en) 2020-06-09
JPWO2017138643A1 (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5099478B2 (ja) 熱膨張抑制剤、ゼロ熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
Švarcová et al. Structural instability of cubic perovskite BaxSr1− xCo1− yFeyO3− δ
Pei et al. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics
EP2418923B1 (en) Thermal expansion suppressing member and anti-thermally-expansive member
CN112119038B (zh) 负热膨胀材料及其制造方法
Vittayakorn et al. Effect of BiAlO3 modification on the stability of antiferroelectric phase in PbZrO3 ceramics prepared by conventional solid state reaction
Kurata et al. Semiconducting–Insulating Transition for Highly Donor‐Dopod Barium Titanate Ceramics
WO2017138643A1 (ja) ルテニウム酸化物およびルテニウム酸化物の製造方法
Chen et al. Piezoelectric and dielectric properties of 0.995 K0. 48Na0. 48Li0. 04Nb (1− x) SbxO3–0.005 BiAlO3 lead-free piezoelectric ceramics
EP3392889A1 (en) Polycrystalline dielectric thin film and capacitor element
WO2018123897A1 (ja) 複合材料
EP3412793A1 (en) Polycrystalline dielectric thin film and capacitive element
US9269880B2 (en) High ZT bismuth-doped perovskite thermoelectrics
Bai et al. Reduced leakage current and excellent thermal stability in lead-free BiFeO3–BaTiO3-based piezoelectric ceramics
Ramesh et al. Dielectric properties of lead indium niobate ceramics synthesized by conventional solid state reaction method
Sukkha et al. Antiferroelectric–ferroelectric phase transition in lead zinc niobate modified lead zirconate ceramics: crystal studies, microstructure, thermal and electrical properties
KR101925789B1 (ko) Knn계 단결정 세라믹 제조 방법 및 이에 의해 제조된 knn계 단결정 세라믹
Zhou et al. Dielectric properties and relaxation of Bi 0· 5 Na 0· 5 TiO 3-BaNb 2 O 6 lead-free ceramics
JPWO2005047206A1 (ja) 負又は低い熱膨張係数を示す材料及びその製造方法
JP2007326768A (ja) Kfを含有するチタン酸バリウム系圧電体またはその製造方法
KR102143817B1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
Fraygola et al. Piezoelectric softening by Nb substitution in (Ba, Pb) ZrO3 ceramics
Fang et al. Synthesis and characterization of pseudo-ternary Pb (Fe 1/2 Nb 1/2) O 3-PbZrO 3-PbTiO 3 ferroelectric ceramics via a B-site oxide mixing route
Pakawanit et al. Characterization of 0.93 Pb (Zn1/3Nb2/3) O3–0.07 BaTiO3 ceramics derived from a novel Zn3Nb2O8 B-site precursor
KR20190052797A (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567013

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750364

Country of ref document: EP

Kind code of ref document: A1