WO2017138628A1 - Voltage adjustment circuit - Google Patents

Voltage adjustment circuit Download PDF

Info

Publication number
WO2017138628A1
WO2017138628A1 PCT/JP2017/004877 JP2017004877W WO2017138628A1 WO 2017138628 A1 WO2017138628 A1 WO 2017138628A1 JP 2017004877 W JP2017004877 W JP 2017004877W WO 2017138628 A1 WO2017138628 A1 WO 2017138628A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
resistor
voltage
unit
switch
Prior art date
Application number
PCT/JP2017/004877
Other languages
French (fr)
Japanese (ja)
Inventor
田野井 聡
哲郎 遠藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2017567006A priority Critical patent/JP6656660B2/en
Publication of WO2017138628A1 publication Critical patent/WO2017138628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a voltage adjustment circuit for a semiconductor integrated circuit.
  • V DD Power supply voltage to be applied
  • FIG. 3 is a diagram showing an application example of the voltage adjustment circuit in the technical field of the present invention
  • FIG. 3A is a basic configuration diagram thereof.
  • the output voltage is adjusted according to the digital control signal, for example, in steps of several steps in a range of ⁇ 10% or ⁇ 20% around a predetermined output voltage value Vout0 .
  • the reference voltage V R is even lower V T content of the MOS transistor M33 than the potential V GN, thus becomes a low voltage to the power supply voltage V DD.
  • the reference voltage V R is very low as about 100 ⁇ 200 mV.
  • the generated reference voltage V R typically is applied to the gate of the MOS transistor in the other circuit blocks, since it is desirable to generally MOS transistors of the other circuit blocks operating in strong inversion region, it is necessary to convert the reference voltage V R to a higher potential.
  • FIG. 4 is a diagram showing a configuration example of the voltage adjustment circuit of Conventional Example 1.
  • the voltage adjustment circuit includes a current control unit Amp, a variable resistance unit TR40, and a resistor RL .
  • the variable resistance unit TR40 has a function of controlling the resistance between the terminals A and B.
  • FIG. 4B shows a configuration example of the variable resistance unit TR40.
  • a plurality of resistors R41 and R42 (both having a resistance value r u ) connected in series are included, and a switch unit S42 (for example, a MOS transistor) is connected in parallel to these resistors.
  • the load current I 0 flows from the V DD to the ground GND through the variable resistance unit TR40 and the resistance RL , and the voltage V x of the node X (terminal B) is equal to the input voltage V IN by the current control unit Amp. It is controlled to become.
  • the output voltage V out is the sum of the voltage V IN and the voltage V AB .
  • the voltage V AB of the variable resistor unit TR40 can be adjusted by appropriately controlling on / off of the switch unit S42 and controlling its resistance value. If the resistance of the switch unit is 0 ⁇ when the switch unit S42 is ON (ideal value), the resistance between the terminals A and B of the variable resistor unit TR40 is ru , and the following equation (1) Is established.
  • Table 1 shows the relationship between the operating state and the resistance value of the variable resistance unit TR40 in Conventional Example 1.
  • the resistance (R AB ) of the variable resistance unit TR40 the case where the resistance of the switch unit S42 is the ideal value (0 ⁇ ) and the case of r N are shown.
  • the voltage V AB and , in turn, the output voltage V out can be adjusted.
  • the voltage adjustment circuit of Conventional Example 1 cannot perform voltage adjustment with sufficiently high accuracy as a problem.
  • the switch unit S42 is ON, the output voltage V out when the on-resistance of the switch section S42 is in the ideal state of 0 ⁇
  • the ON resistance r N of the switch unit S42 is larger causes a voltage drop ⁇ Vs in the switch unit S42 and an error occurs in the output voltage.
  • FIG. 7 is a diagram illustrating a configuration example of the voltage adjustment circuit of Conventional Example 2.
  • a power supply circuit described in Patent Document 2 (the power supply circuit illustrated in FIG. 12 of Patent Document 2) is shown. 13) is applicable.
  • the variable resistance unit TR70 in Conventional Example 2 includes a plurality of resistors R70, R71, R72,... Connected in series between the terminal A and the terminal B, and between each node between these resistors and the terminal C. , A plurality of switch units S70, S71, S72,...
  • the resistance between the terminal A and the terminal B of the variable resistance unit TR70 is constant regardless of the on / off state of the switch unit, and the resistance between the terminal A and the terminal C and the resistance between the terminal C and the terminal B are adjusted by the switch unit.
  • Table 2 shows the relationship between the operating state and the resistance value of the variable resistance unit TR70 in Conventional Example 2.
  • the switch units S70, S71, S72,..., Send of the variable resistance unit TR70 are provided only on the voltage feedback path, not on the current path. Therefore, by using the current control unit Amp having a high input impedance, the voltage drop of the switch units S70, S71, S72,... Can be sufficiently reduced, and the output voltage error due to the switch unit can be suppressed.
  • Table 2 the switch portion of the variable resistor TR70 and S70, S71 and S72, show the case where 0 ⁇ to R70, the resistance value of R71 and R72 was r u.
  • An object of the present invention is to provide a voltage adjustment circuit capable of adjusting the output voltage with high accuracy and quickly stabilizing it in a predetermined time, and having a large number of adjustable gradations and excellent linearity. That is. Furthermore, even when a low reference voltage close to the ground potential GND such as a PTAT voltage is adjusted and output under the condition of low V DD , as described above, high accuracy, a large number of gradations, and good Voltage regulation circuit that exhibits excellent characteristics such as linearity, quickly stabilizes the output voltage in a predetermined time, and enables circuit pattern layout with high area efficiency, making it less susceptible to variations in manufacturing and manufacturing conditions The purpose is to provide.
  • a voltage regulator circuit is connected between a current control unit that receives a reference voltage, a first resistor, an output of the current control unit, and a first resistor.
  • a variable resistance unit, and the variable resistance unit includes a plurality of resistance selection circuits.
  • Each of the resistance selection circuits includes a second resistor connected to an output of the current control unit, a first resistor, and a second resistor.
  • a first switch unit connected between the second resistor and the current control unit, and a second switch unit configured to apply voltage feedback between the second resistor and the current control unit. It is characterized by being turned on and off in conjunction with the switch part.
  • the output voltage error is suppressed to be small and highly accurate voltage adjustment is performed.
  • the output voltage can be linearly adjusted and quickly stabilized in a predetermined time.
  • FIG. 1 is a basic configuration diagram of a voltage regulator circuit according to the present invention.
  • FIG. 2 is a diagram showing an output voltage adjustment flow of the voltage adjustment circuit according to the present invention.
  • FIG. 3 is a diagram showing an application example of the voltage adjustment circuit in the technical field of the present invention.
  • FIG. 4 is a diagram illustrating a configuration example of the voltage adjustment circuit of the first conventional example.
  • FIG. 5 is a diagram showing an equivalent circuit simplified around the variable resistance portion in the voltage adjustment circuit.
  • FIG. 6 is a diagram showing characteristics relating to the output voltage error of Conventional Example 1 and the present invention.
  • FIG. 7 is a diagram illustrating a configuration example of the voltage adjustment circuit of the second conventional example.
  • FIG. 8 is a diagram showing a simplified equivalent circuit centering on the variable resistance portion of Conventional Example 2.
  • FIG. 9 is a diagram showing the relationship between the adjustment state and output voltage by Conventional Example 2 and the switch unit of the present invention.
  • FIG. 10 is a diagram illustrating the configuration of the voltage adjustment circuit according to the first embodiment.
  • FIG. 11 is a diagram showing a configuration of a differential amplifier used in the present invention.
  • FIG. 12 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration example of a logic circuit having a decoding function according to the second embodiment.
  • FIG. 14 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the third embodiment.
  • FIG. 15 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the fifth embodiment.
  • FIG. 17 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the sixth embodiment.
  • FIG. 18 is a diagram illustrating the configuration of the voltage adjustment circuit according to the seventh embodiment.
  • FIG. 19 is a diagram illustrating a circuit configuration employed in the switch unit of the voltage regulator circuit according to the eighth and ninth embodiments.
  • FIG. 20 is a diagram illustrating the vertical MOS transistor employed in the voltage adjustment circuit according to the tenth embodiment.
  • FIG. 1 is a circuit diagram showing a basic configuration of a voltage regulator circuit according to the present invention.
  • the voltage adjustment circuit includes a current control unit Amp, a variable resistance unit TR1, and a first resistance RL .
  • the variable resistance unit TR1 includes a plurality of resistance selection circuits (SEL1, SEL2,...), And each resistance selection circuit SEL1, SEL2,... Is connected to the first resistance RL and forms a current path.
  • Second switch units S1f, S2f,... Connected to the current control unit Amp to form a voltage feedback path
  • second resistors connected to the first and second switch units It is comprised from Rs1, Rs2,.
  • the first and second switch sections in each resistance selection circuit (SEL1, SEL2,...) Are connected to the second resistors Rs1, Rs2,. Further, the second resistors Rs1, Rs2,... Have different resistance values in the respective resistance selection circuits (SEL1, SEL2,).
  • a predetermined resistance selection circuit included in the variable resistance unit TR1 is selected, a switch unit included therein is turned on, and switch units of other resistance selection circuits are turned off.
  • the resistance selection circuit SEL1 is selected, the resistance between the terminal A and the terminal B and the resistance between the terminal A and the terminal C of the variable resistance unit are set to predetermined values determined by the resistance value of the second resistor Rs1. (Here, when the on-resistance of the switch section is set to an ideal state of 0 ⁇ , the resistance value of the second resistor Rs1 is equal). Further, when the resistance selection circuit SEL2 is selected, the resistance between the terminals is determined by the second resistance Rs2.
  • variable resistance part TR1 A load current I 0 flows from the output of the current control unit Amp to the terminal A, the terminal B, and the first resistor RL of the variable resistance unit TR1.
  • the resistance selection circuit having the second resistance having the resistance value Rs is selected, the input impedance of the current control part Amp is sufficiently high, and the current passing through the terminal C is negligible. (This condition can be easily satisfied at the input part of the current control part Amp by using, for example, a MOSFET as the current control part Amp).
  • FIG. 2 is a diagram showing an output voltage adjustment flow of the voltage adjustment circuit according to the present invention.
  • the current control unit Amp works as follows as shown in the flow of FIG. That is, if the input voltage VIN of the current control unit Amp is higher than the feedback voltage V F (V IN > V F ), the current I 0 is increased. Conversely, if the input potential VIN is lower than the feedback potential V F ( V IN ⁇ V F ), the current I 0 is decreased. When the absolute value of the difference between the input potential V IN and the feedback potential V F becomes smaller than a predetermined value (
  • ⁇ predetermined value), the current I 0 becomes stable and the following output voltage V out is obtained. . V out V IN + I 0 Rs Formula (A2) As described above, since the resistance value Rs is adjusted to a desired value by appropriately controlling the variable resistance portion TR1, a desired voltage can be adjusted.
  • FIG. 5 is a diagram showing an equivalent circuit simplified around the variable resistance portion in the voltage adjustment circuit.
  • FIG. 5A is an equivalent circuit diagram simplified around the variable resistance part TR40 in the voltage adjustment circuit of the first conventional example.
  • the switch unit s42 is turned on.
  • r u is a resistance value of the resistors R41 and R42
  • r N is an on-resistance of the switch unit s42
  • I 0 is a current flowing through the resistor RL .
  • the resistance minimum step of adjusting i.e. adjustment resolution becomes r u.
  • the output voltage of this circuit is the center of the adjustment by the voltage drop across the resistor R L is Sadamari rough, further finely adjusted by adjusting in increments of resistance r u of the variable resistor TR40. Therefore, it is designed under the condition of R L > r u and it is necessary to design under the condition of R L > r N in order to roughly determine the output voltage based on the voltage drop of the resistor R L.
  • V out is as follows.
  • the output voltage V o-ideal in an ideal state where the on-resistance of the switch unit s42 is 0 ⁇ is as follows.
  • of the output voltage of the voltage adjustment circuit of Conventional Example 1 is as follows from the equations (1.2) and (1.3).
  • FIG. 5B is an equivalent circuit diagram simplified around the variable resistance portion TR1 of the voltage adjusting circuit according to the present invention.
  • the first and second switch parts S1 and S1f correspond to the switch part in the resistance selection circuit SEL1 shown in FIG. r u is the resistance value of the resistor Rs1, r N is the on-resistance of the first switch unit S1, r N ′ is the on-resistance of the second switch unit S1f, and I 0 is the current flowing through the resistor RL .
  • minimum step i.e. adjustment resolution of resistance adjustment becomes r u.
  • the output voltage is the center of the adjustment by the voltage drop across the resistor R L is Sadamari rough and fine adjustment by further adjusting the resistance of the variable resistor TR1 in increments of resistance r u.
  • R L> r u and R L> r N are designed under conditions of R L> r u and R L> r N.
  • the current I 0 flows so that the potential Vc of the terminal C in the variable resistance unit TR1 becomes equal to the input voltage VIN by the action of the current control unit Amp.
  • the current I 0 flows in from the terminal A of the variable resistance unit TR1, flows through the first resistor Rs1, the first switch unit S1, and the terminal B of the variable resistance unit TR1, and flows to the resistor RL . Therefore, when the potential of the node Z1 between the first and second switch portions S1 and S1f and the resistor Rs1 is V Z1 , the output voltage V out is as follows.
  • the current control unit Amp can realize a sufficiently high input impedance by using, for example, a MOS transistor. That is, the direct current flowing through the switch unit S1f is extremely small and may be regarded as zero. As a result, the voltage drop caused by the on-resistance of the switch section S1f is sufficiently small and can be ignored in considering the output voltage error. Then, the potential V Z1 of the node Z1 becomes equal to the input voltage VIN .
  • the output voltage V out is as follows from the equations (2.1), (2.2), and (2.3). Also in the present invention, in the ideal state where the ON resistance r N of the switch unit S1 is 0 ⁇ , the output voltage (V o-ideal ) is the same as the above equation (1.3). Therefore, the error
  • FIG. 6 is a diagram showing characteristics relating to the normalized output voltage error
  • FIG. 6B shows the dependence characteristics of the output voltage error on the power supply voltage V DD in the conventional example 1 and the present invention.
  • the switch section is assumed to be composed of MOS transistors, and the output voltage error is calculated from the result of circuit simulation.
  • both Conventional Example 1 and the present invention use the same transistor parameters.
  • the value is 1/5 (two types of 10 and 5) of the corresponding first switch units S1, S2,.
  • any output voltage error is normalized by the ideal output voltage value at which the ON resistance of the switch section is 0 ⁇ .
  • the error when the power supply voltage V DD is lowered to 0.6 V or less, the error increases to 2% or more in either case of the aspect ratio 50 or 25.
  • the error is 1% or less even when the power supply voltage V DD is 0.6V.
  • the present invention it is possible to suppress the output error to be smaller than that of the conventional example 1 designed with the same circuit parameters. In particular, when the power supply voltage V DD is lowered, in other words, it is low.
  • the advantage over the conventional example 1 and its effect become significant.
  • the load current because the I 0 is the voltage feedback to the differential amplifier OP1 of the current control unit Amp through the switch unit S42 flows is made, feedback voltage originating from on-resistance of the switch unit S42 An error occurs and the accuracy of the output voltage deteriorates.
  • the present invention the load current I 0 Apart from the first switch section S1 of the path through which the current control unit Amp of the second even on a path current does not flow in the voltage feedback path to the differential amplifier Therefore, the feedback voltage error caused by the on-resistance of the switch unit does not occur. As a result, it is possible to obtain a high-accuracy voltage adjustment circuit with less errors than the conventional example 1 at a particularly low power supply voltage V DD .
  • FIG. 8 is a diagram showing a simplified equivalent circuit centering on the variable resistance portion TR70 of the second conventional example.
  • the resistance R70 of FIG. 7 is a 0 .OMEGA
  • resistance of the resistor R71 and the resistor R72 is assumed to r u.
  • a node between the resistor R71 and the resistor R72 is Z1, and its potential is VZ1 .
  • the load current flowing through the resistor RL is I 0 .
  • three switch units S70, S71, and S72 are mounted. That is, voltage adjustment of three gradations is performed.
  • the on-resistance r N of each switch unit is assumed.
  • FIG. 8A shows a case where the switch unit S70 is turned on and others are turned off
  • FIG. 8B shows a case where the switch unit S71 is turned on and others are turned off
  • c) shows the case where the switch part S72 is on and the others are off.
  • the switch part which is turned off is omitted and not shown.
  • V IN I 0 ⁇ (r u + R L ) Equation (3.4)
  • the output voltage V out I 0 ⁇ (2r u + R L) ⁇ formula (3.5) From the equations (3.4) and (3.5), the following relationship holds in FIG. 8B.
  • FIG. 9 is a diagram showing the relationship between the output voltage and the case where the switch state is turned on / off corresponding to the digital value as the adjustment state by the switch unit in Conventional Example 2 and the present invention.
  • the vertical axis is normalized based on the voltage that is the center of adjustment.
  • FIG. 9 shows the case of a circuit that performs five gradation adjustments (5 steps from ⁇ 2 to 2).
  • the output voltage of Conventional Example 2 changes in a curved shape with respect to the horizontal axis indicating the adjustment state by the switch unit, and linear adjustment is difficult.
  • the deviation from the linearity of the output voltage of Conventional Example 2 is determined by the resistance R L , the resistance ru, or the number of gradations, and it cannot be improved even if the on-resistance of the switch unit is significantly reduced. is required.
  • the second resistor Rs included in the resistor selection circuit of the present invention the resistance value of 0, r u, 2r u, as ..., ON of the switch portion among them If the configuration is such that the resistance value of the second resistor Rs is selected, the following is obtained from the equation (2.5). As described above, in the present invention, the expression (2.4) relating to the load current I 0 is established regardless of the state of the switch section. Therefore, from equation (3.12),
  • FIG. 9 shows the relationship between the adjustment state of the switch unit and the output voltage in the present invention, together with that of Conventional Example 2.
  • the relationship shown in FIG. 9 is that the present invention is capable of adjusting five gradations, that is, includes five resistance selection circuits (SEL0, SEL1,... SEL4), and each resistance selection circuit has a resistance value of 0 ⁇ , ru , It is assumed that 2r u ,.
  • the vertical axis is normalized with reference to the voltage at the center of adjustment, and the states “ ⁇ 2”, “ ⁇ 1”, “0”,... In FIG. Corresponding to 2,. From the relationship shown in FIG. 9, the conventional example 2 cannot be linearly adjusted, but the present invention can adjust the linearity well. Since the deviation from the linearity shown in the conventional example 2 is regarded as an error in adjustment, the present invention enables more accurate adjustment.
  • the resistance of the variable resistor TR1 in the present invention it should be noted that we have to have an integral multiple of the predetermined resistance value r u. That is, in order to make the variable resistance portion TR1 comprises resistance in the present invention with a predetermined resistance value r u, it can be realized by connecting a resistor of the same material and the same shape in series or in parallel. Thereby, a circuit pattern layout with high area efficiency is possible, and it is easy to realize a circuit pattern that is not easily affected by manufacturing variations and manufacturing condition variations. Furthermore, the load current I 0 in the present invention is determined by the input voltage and the resistance, and is a predetermined value that does not depend on the adjustment state of the switch section. Therefore, according to the present invention, a stable output voltage can be obtained in a predetermined time regardless of the adjustment state of the switch unit.
  • FIG. 10 is a diagram showing a configuration of the voltage adjustment circuit according to the first embodiment of the present invention.
  • the first embodiment includes a current control unit Amp, a variable resistor unit TR10, and a first resistor RL, and receives a reference voltage VIN , and an adjusted output voltage V out. Is output.
  • the variable resistance unit TR10 includes a terminal A, a terminal B, and a feedback terminal C. The connection mode is such that the terminal A of the variable resistance unit TR10 is connected to the output of the current control unit Amp and the output V OUT of the voltage adjusting circuit.
  • the terminal B of the variable resistor unit TR10 is connected to one terminal of the resistor RL , and the terminal C of the variable resistor unit TR10 is connected to the feedback input terminal of the current controller Amp. Further, it has a function capable of digitally controlling the resistance between the terminals AB and the resistance between the terminals AC.
  • variable resistor TR10 includes, as constituent elements, resistors R101 (resistance value r u ), R102 (resistance value 2r u ),..., First switch unit S101. , S102,... And second switch units S101f, S102f,..., And a plurality of resistance selection circuits SEL101, SEL102,.
  • one end of the resistor R101 is connected to the terminal A of the variable resistor unit TR10, the other end of the resistor R101 is connected to the terminal d of the first switch unit S101, and the first switch unit S101.
  • Terminal s is connected to the terminal B of the variable resistor section TR10, the other end of the resistor R101 is connected to the terminal d of the second switch section S101f, and the terminal s of the second switch section S101f is connected to the terminal of the variable resistor section TR10. It is connected to the terminal C for feedback.
  • the first switch unit S101 and the second switch unit S101f are controlled in conjunction with each other by the input signal G101.
  • NMOS transistors shown in FIG. 10C are used for the first and second switch sections. Symbols g, d, and s in FIG. 10C correspond to the terminals g, d, and s of each switch unit in FIG.
  • the input reference voltage VIN does not need to be restricted as long as it is between V DD and the ground GND.
  • the input reference voltage VIN is described as being a low voltage close to the ground GND.
  • NMOS transistors are suitable as the first and second switch sections. If it is a PMOS transistor, the transistor does not turn on unless the voltage at the terminal A is higher than the gate voltage by the threshold voltage
  • the current controller Amp is composed of a differential amplifier OP1 and a PMOS transistor P1.
  • the output of the differential amplifier OP1 is connected to the gate of the PMOS transistor P1, and the drain of the PMOS transistor P1 is connected to the output of the current control unit Amp.
  • the differential amplifier OP1 it is desirable to use a sufficiently high input impedance.
  • a known current mirror amplifier is used.
  • a circuit example of the differential amplifier OP1 is shown in FIG.
  • the input reference voltage VIN may be a low voltage close to the ground GND.
  • a differential amplifier having the configuration shown in FIG. 11B can be used.
  • a level shifter is provided for each input pair of the differential amplifier shown in FIG.
  • the PMOS transistors (P113, P114) whose gates are connected to the input terminals (IN), and currents for supplying current to the PMOS transistors (P113, P114)
  • a source composed of sources (IS111, IS112) is used. Even in this circuit configuration, a differential amplifier having a sufficiently high input DC resistance can be obtained.
  • the load current I 0 flows between the terminals AB of the variable resistance unit TR10 and flows to the resistor RL .
  • the load current I 0 being controlled by the differential amplifier OP1 and the MOS transistor P1
  • the voltage VF at the node F and the input reference voltage VIN are equal under the condition that the gain of the differential amplifier OP1 is sufficiently high. Since the input impedance of the differential amplifier OP1 is sufficiently high, almost no current flows through the second switch portions S101f and S102f shown in FIG. 10B, and the voltage drop can be regarded as 0V.
  • the voltage V F at the node F becomes equal to the voltage V Z1 or V Z2 at the node Z101 or Z102 of the switch unit turned on in the resistance selection circuit SEL101 and the resistor connected to the switch unit.
  • the nodes of the resistor R101 and the second switch unit S101f potential V (Z101) is equal to the voltage V F i.e. voltage V iN.
  • the voltage drop r u ⁇ I 0 next to the resistor R101 (resistance value r u), the output voltage V out is the voltage V IN ( V F) and the voltage drop r u ⁇ I 0 of the sum (V IN + r u ⁇ I 0 ).
  • ideal resistance value without the resistance of the switch unit is r u.
  • the switch unit since the state of the voltage adjustment circuit is fed back to the differential amplifier through a path different from the path of the load current I 0 , the difference between the output voltage V out and the input voltage VIN is determined by the switch unit.
  • the voltage drop can be excluded. Note that by appropriately turning on and off the switch portion of the variable resistor portion TR10, the resistance value between the terminals AB and the terminals AC can be controlled, so that the voltage drop can be changed. For example, when the first switch unit S102 and the second switch unit S102f are on and the other switch units are off, between the terminals AB and between the terminals AC of the variable resistor unit TR10 of the first embodiment.
  • the resistance value is 2r u
  • the voltage drop is 2r u ⁇ I 0
  • the output voltage V out is the sum of the voltage V R and the voltage drop 2r u I 0 (V R + 2r u ⁇ I 0 ).
  • the output voltage Vout can be adjusted.
  • Table 3 shows the relationship between the state of the switch part and the resistance of the variable resistance part TR10 in Example 1.
  • Table 3 when the resistance value of the switch portion is r N, and are also described for the resistance of the variable resistor TR10.
  • Each element of the control digital code in Table 3 corresponds to a control signal of each switch unit.
  • the control signals G101 and G102 have the logical values “0” and “1”, respectively, and the first and second switch units S101, S102, and S101f that have the logical value “1”, Control is performed so that S102f is turned on.
  • various resistance values can be selected depending on the state of the switch group controlled by the control digital code.
  • the control signals G101 and G102 relating to the generation of the control digital code are generated and supplied by a processing unit (not shown) for controlling the voltage adjustment circuit.
  • the voltage feedback path to the differential amplifier in which no current flows separately from the first switch unit on the path through which the load current I 0 flows, as in the basic configuration described above. Since the second switch unit is also provided on the top, no feedback voltage error caused by the on-resistance of the switch unit is generated. Therefore, a high-accuracy voltage adjustment circuit with less error than the conventional example 1 can be obtained, a linear adjustment can be performed as compared with the conventional example 2, and an excellent voltage adjustment function can be obtained in which the output voltage is stable for a predetermined time. .
  • the current control unit Amp in the first embodiment can increase the DC resistance of the input sufficiently even when the input reference voltage VIN is a low voltage close to the ground GND. Can be provided.
  • FIG. 12 is a circuit diagram illustrating a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjusting circuit according to the second embodiment of the present invention.
  • the configuration shown in FIG. 12 replaces the variable resistance unit TR10 in the first embodiment shown in FIG. 10B, and in addition to the two resistance selection circuits SEL101 and SEL constituting the variable resistance unit TR10 in the first embodiment.
  • a resistance selection circuit SEL100 including a connection wiring portion S as a resistance of 0 ⁇ is added.
  • the connection wiring portion S is a unit in which a plurality of unit circuits are described as a resistance of 0 ⁇ , and is actually short-circuited with a sufficiently low resistance wiring material such as metal.
  • resistors R101 and R102 shown in FIG. 10 (b), in Example 2, replacing the resistor R121 and R122, has a resistance value with the same resistance value 2r u.
  • the other component part of variable resistance part TR10 in Example 2 is the same structure as Example 1, the same symbol is provided to the same structural member and the description is abbreviate
  • the variable resistor unit has a decoding function for individually or simultaneously turning on / off the switch units in the plurality of resistor selection circuits (SELs 100, 101, and 102) according to the logic state of the control digital code.
  • FIG. 13 is a diagram showing a configuration example of a logic circuit (decoder) having this decoding function.
  • Table 4 shows the truth table
  • Table 5 shows the relationship between the control digital code, the operating state of the variable resistor section, and the resistance value.
  • the second embodiment provides a state in which the switch units of a plurality of resistance selection circuits in the variable resistance unit are simultaneously turned on when the control digital code is in a predetermined state.
  • the decoded output codes G102, G101, and G100 are They are “1”, “1” and “0”, respectively.
  • the first switch units S101 and S102 and the second switch units S101f and S102f of the variable resistance unit shown in FIG. 12 are simultaneously turned on.
  • Example 2 the voltage states of the voltage regulating circuit, the second switch portion S100f on different paths and flowing path load current I 0, is fed back to the differential amplifier via a S101f and S102f Therefore, the error due to the resistance of the switch portion can be reduced as in the first embodiment. Therefore, in the same way as in the first embodiment, the voltage adjustment in the second embodiment can be performed with higher accuracy than in the first conventional example, and the output voltage is linear in a predetermined time as compared with the second conventional example. It provides an excellent voltage regulation function that is stable.
  • the resistors R121 and R122 of the variable resistor portion in the second embodiment are all of the same resistance value except for the connection wiring portion S as a resistance of 0 ⁇ , so that the resistance elements having the same material and the same shape are used. be able to. As a result, a circuit pattern layout with high area efficiency is possible in a semiconductor integrated circuit, and a circuit that is not easily affected by manufacturing variations and manufacturing condition fluctuations can be obtained.
  • FIG. 14 is a circuit diagram showing a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjusting circuit according to the third embodiment of the present invention.
  • the configuration shown in FIG. 14 replaces the variable resistance unit TR10 in the first embodiment shown in FIG. 10B, and the variable resistance unit is configured by two circuit blocks of the circuit block 1 and the circuit block 2. .
  • circuit block 1 Since the circuit block 1 has a configuration similar to that of the variable resistance unit in the second embodiment shown in FIG. 12, differences from the configuration of the second embodiment will be described.
  • a terminal D12 is provided in the variable resistance unit of FIG. 12, and a node R102, a node Z102 of the first switch unit S102 and the second switch unit S102f is connected to the terminal D12.
  • the resistance values of the resistors R121 and R122 are r u, the terminal A in FIG. 12, B and C, respectively corresponding to the terminal A12, B12 and C12.
  • Other parts of the circuit block 1 are the same as those of the variable resistance unit of FIG.
  • the circuit block 2 includes a plurality of resistance selection circuits SEL143 and SEL144.
  • Each of the resistance selection circuits SEL143 and SEL144 includes resistors R143 and R144, first switch units S103 and S104, and second switch units S103f and S104f, respectively. Composed.
  • one end of the resistors R143 and R144 is connected to the terminal A13, and the other end of the resistors R143 and R144 is connected to the first switch units S103 and S104 and the second switch units S103f and S104f.
  • the terminals s of the first switch sections S103 and S104 are connected to the terminal B13, and the terminals s of the second switch sections S103f and S104f are connected to the terminal C13.
  • the circuit block 1 and the circuit block 2 are connected in such a manner that the terminal A13 of the circuit block 2 is connected to the terminal D12 of the circuit block 1, and the terminal A12 of the circuit block 1 becomes the terminal A of the variable resistance unit.
  • the terminal B12 of the circuit block 2 and the terminal B13 of the circuit block 2 become the terminal B of the variable resistance unit, and the terminal C12 of the circuit block 1 and the terminal C13 of the circuit block 2 become the terminal C of the variable resistance unit.
  • Table 6 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 3.
  • the load current I 0 flows only through the circuit block 1 and flows from the circuit block 1 to the circuit block 2 via the terminal D12. Provide a pattern that flows through both.
  • the control digital code [G104, G103, G102, G101, G100] is set to [10000].
  • all the switch units of the circuit block 1 are It is turned off, and the first and second switch sections S104 and S104f of the circuit block 2 are turned on.
  • the load current I 0 passes through the terminal A12 (terminal A), the resistor R122, and the terminal D12 of the circuit block 1, and passes through the terminal A13, the resistor R144, the first switch unit S104, and the terminal B13 (terminal B) of the circuit block 2.
  • the voltage of the node Z104 of the circuit block 2 in this state is fed back to the differential amplifier OP1 via the second switch unit S104f and the terminal C13 (terminal C).
  • the control digital code [G104, G103, G102, G101, G100] is set to [11000].
  • all the switch units of the circuit block 1 are It is turned off and all the switch parts of the circuit block 2 are turned on.
  • the load current I 0 passes through the resistor R122 in the circuit block 1, and passes through both the resistors R143 and R144 (as a parallel circuit) in the circuit block 2.
  • the equivalent resistance between the terminals A-B of the variable resistor in ideal conditions the 1.5r u.
  • the other states (“a” to “c”) are the same as those in the second embodiment (states “a” to “c”) shown in Table 5.
  • Example 3 since the switch portion of the feedback path to the differential amplifier load current I 0 does not flow, as in the previous embodiment, can reduce the error of the output voltage. Further, in any state (“a” to “e”) determined by the control digital code shown in Table 6, the switch part is passed only once in both the load current I 0 path and the feedback path. Since the circuit configuration is adopted, the resistance of the switch portion is not greatly affected unlike the conventional example.
  • a configuration is adopted in which a resistor in a predetermined resistance selection circuit and a node of the switch unit are drawn to a terminal (terminal D12 in FIG. 14) and connected to another circuit block.
  • some of the resistors in the circuit block are used in multiple circuit states. For example, the load current I 0 flows through the resistor R122 in four states of circuit states “b” to “e”.
  • the third embodiment can perform the voltage adjustment with higher accuracy than the conventional example 1 as the same effect as the previous embodiment, and is more linear than the conventional example 2 and
  • the present invention provides an excellent voltage adjustment function that stabilizes the output voltage in a predetermined time.
  • resistances other than the connection wiring portion S shown as a 0 ⁇ resistance element can have the same resistance value, it is advantageous in terms of area efficiency, manufacturing variations, and resistance to manufacturing condition variations.
  • Example 3 has an original effect. That is, by using some of the resistors in the circuit block in common in a plurality of states shown in Table 6, there is an advantage that a desired number of gradations can be realized with a minimum resistance.
  • a resistor connection wiring portion 4r u becomes five (0 .OMEGA and four) ) requires, also, from the viewpoint of suppressing the production variation, when constructed using only the resistance of one resistor value r u, it is necessary to ten resistors.
  • Example 3 In order to adjust the five gradations in Example 3, will be satisfied by the resistance of four resistance values r u, in light of the difficulty of miniaturization of resistance as compared to the switch section of the semiconductor integrated circuit The reduction in the number of resistors is effective for improving the area efficiency.
  • the voltage adjustment circuit according to the fourth embodiment includes a current control unit Amp, a first resistor RL, and a variable resistor unit including a second resistor. These are the same as in the third embodiment. However, the internal configuration of the variable resistance portion is different from that of the third embodiment.
  • FIG. 15 is a circuit diagram showing an internal configuration of a variable resistance portion different from that of the third embodiment as a configuration of the voltage adjusting circuit according to the fourth embodiment of the present invention.
  • the variable resistance unit according to the fourth embodiment includes a first resistance selection circuit SEL201 and a second resistance selection circuit SEL143.
  • the first resistance selection circuit SEL201 includes a second resistor R122, a first switch unit S102, and a second switch unit S102f.
  • One end of the second resistor R122 is connected to the output of the current control unit Amp and the output terminal OUT of the voltage adjustment circuit through the terminal A of the variable resistance unit, as in the third embodiment.
  • a wiring is drawn from a connection point Z102 of the second resistor 122, the first switch unit S102, and the second switch unit S102f, and is connected to the second resistance selection circuit SEL143.
  • the second resistance selection circuit SEL143 includes a second resistor R143, a first switch unit S103, and a second switch unit S103f.
  • One end of the second resistor 143 is connected to the connection point Z102 of the first resistance selection circuit SEL201.
  • the other end of the second resistor R143 is connected to a connection point Z103 which is one end of the first switch unit S103 and one end of the second switch unit S103f.
  • each of the first switch unit S102 of the resistance selection circuit SEL201 and the first switch unit S103 of the resistance selection circuit SEL143 is connected to the terminal B of the variable resistance unit, and the negative overcurrent I0 is It will flow to the resistor RL .
  • one end of each of the second switch unit S102f of the resistance selection circuit SEL201 and the second switch unit S103f of the resistance selection circuit SEL143 is connected to the terminal C of the variable resistance unit, and voltage feedback is performed to the current control unit Amp. Will be.
  • the fourth embodiment provides a simple circuit connection and easy control.
  • Table 7 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 4.
  • the resistance value of the resistor R122 and R143 and r u, and the resistance of each switch unit in the r N As shown in the table, since there is only one resistance selection circuit in which the switch is turned on in each state of the control digital code, a complicated decoding circuit is unnecessary. Further, the number of second resistors constituting the variable resistance unit is equal to the number of states of the control digital code.
  • the load current I0 does not flow through the switch unit on the feedback path to the current control unit Amp, the error of the output voltage can be reduced as in the previous embodiment.
  • the load current I 0 has a circuit configuration that only passes through the switch unit once. Like this, the resistance of the switch part does not have a great influence.
  • the resistor R122 is shared by both the state “a” and the state “b”, for example, as in the third embodiment, the number of resistors can be minimized.
  • the resistance selection circuit configuring the variable resistance section of the fourth embodiment is added to the variable resistance section by adding the number of stages in a cascade in the B terminal direction (that is, the first resistance RL side).
  • the other parts current control unit Amp and first resistor R L ) are the same as those in the third and fourth embodiments.
  • FIG. 16 shows a circuit configuration when the number of stages of the resistance selection circuit is three, and the same components as those in the fourth embodiment shown in FIG.
  • variable resistance unit according to the fifth embodiment is configured by adding one more resistance selection circuit SEL203 to the resistance selection circuits SEL201 and SEL143 that configure the variable resistance unit according to the fourth embodiment.
  • the resistance selection circuit SEL203 includes a resistor R203, which is a second resistor in the voltage adjustment circuit, a first switch unit S203, and a second switch unit S203f.
  • One end of the resistor R203 is connected to the connection point Z103 between the resistor R143 in the resistance selection circuit SEL143 and the first switch unit S103 and the second switch unit S103f, and the other end is a first switch in the resistance selection circuit SEL203. It is connected to one end of the part S203 and a connection point Z203 which is one end of the second switch part S203f.
  • the other end of the first switch unit S203 is connected to the terminal B of the variable resistor unit, and the other end of the second switch unit S203f is connected to the terminal C of the variable resistor unit.
  • Table 8 shows the relationship between the operation state of the variable resistance unit and the resistance value in the fifth embodiment.
  • Table 8 shows the relationship between the operation state of the variable resistance unit and the resistance value in the fifth embodiment.
  • the number of second resistors constituting the variable resistance unit is equal to the number of states of the control digital code.
  • the same effects as the effects shown in the fourth embodiment can be obtained.
  • a resistance selection circuit is added and repeatedly connected to the cascade. In this way, the number of gradations is expanded. That is, a multi-gradation product can be realized by repeating the same circuit connection form. Therefore, this configuration is suitable for integrated circuit designs in which the same pattern is often repeatedly arranged to increase the density.
  • the second resistor in the variable resistor portion of the fifth embodiment may have a different value as necessary.
  • the resistor R122 shown in FIG. 16 may be replaced with a connection wiring portion S that works as a substantially 0 ⁇ resistor.
  • the resistance values R AB (ideal values) between the variable resistor portions AB corresponding to the states “a”, “b”, and “c” shown in Table 8 are “0 ⁇ ”, “r u ”, and “r u ”, respectively. 2r u ”.
  • the value of resistance including a resistance r N switches, each "0 ⁇ + r N", " r u + r N", becomes "2r u + r N".
  • FIG. 17 is a circuit diagram illustrating a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjustment circuit according to the sixth embodiment of the present invention.
  • the configuration shown in FIG. 17 replaces the variable resistance portion TR10 in the first embodiment shown in FIG. 10B, and includes a plurality of variable resistance portions in the third embodiment shown in FIG. It is applied to each of the second variable resistance section and connected as follows. In other words, the terminal A 2 of the second variable resistor unit is connected in common with the terminal A 1 of the first variable resistor unit via the fixed resistor unit, and becomes the terminal A of the entire variable resistor unit.
  • the terminals B 1 and C 1 of the first variable resistance section and the terminals B 2 and C 2 of the second variable resistance section are connected in common to become terminals B and C of the entire variable resistance section.
  • the fixed resistance portion is a resistance of the resistance value r u which was connected in parallel for example, four, to generate a r u / 4 as the combined resistance value.
  • Table 9 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 6.
  • the sixth embodiment provides the nine states “a” to “i” shown in Table 9, among which five of the states “a”, “c”, “e”, “g”, and “i” are provided.
  • the load current I 0 is controlled to flow only through the first variable resistance unit.
  • the control signal control digital code [GB104, GB103, GB102, GB101, GB100]
  • the second variable resistor section is set to all bits “0”, and the first variable The resistance portion is controlled to be the same as each of the five states “a” to “e” shown in Table 6 of the third embodiment.
  • the load current I 0 is controlled to flow through the second variable resistance unit.
  • the control signal control digital code [GA104, GA103, GA102, GA101, GA100]
  • the first variable resistor section is set to all bits “0”
  • the second variable The resistance section is controlled to be the same as each of the four states of circuit states “a” to “d” shown in Table 6 of the third embodiment.
  • variable resistance unit the resistance value between the terminals AB and the terminal AC of the variable resistance unit is set to 0.25 r u by the combination of the first and second control signals shown in Table 9. It can be adjusted in steps. Note that the principle of adjusting the output voltage Vout by adjusting the resistance of the variable resistance unit is the same as that of each of the embodiments described above. In the above, the sixth embodiment, by applying respectively the variable resistor portion in the embodiment 3 in the first and second variable resistor, the resistance value of the entire variable resistor can be adjusted in 0.25 R u increments Although shown as a configuration, it is not limited to this configuration.
  • the first embodiment can be realized by appropriately combining the resistance values obtained from the first and second variable resistor portions without providing the fixed resistor portion, or as the first and second variable resistor portions.
  • the variable resistance unit in the second embodiment it is possible to adjust the resistance value of the entire variable resistance unit with different step values.
  • each of the first and second variable resistance units of the sixth embodiment has the same configuration as that of the previous embodiment, the load current I 0 does not flow through the switch unit on the feedback path. . Therefore, it is possible to stabilize the output voltage quickly and with high accuracy as compared with Conventional Example 1, and provide a voltage adjustment function having excellent linearity as compared with Conventional Example 2. In addition, it is possible to cope with an increase in the number of gradations for voltage adjustment and subdivision of resolution for voltage adjustment.
  • FIG. 18 is a diagram illustrating the configuration of the voltage regulator circuit according to the seventh embodiment of the present invention.
  • 18A is an overall configuration diagram of the seventh embodiment.
  • the variable resistor TR1 in the basic configuration of the voltage regulator circuit according to the present invention shown in FIG. 1 or the first embodiment shown in FIG. instead of the variable resistance part TR10, a variable resistance part TR160 is adopted.
  • the variable resistance unit TR160 is provided with a plurality of terminals B1 and B2 instead of the terminal B shown in FIG. 1 or FIG. 10A, and the terminals B1 and B2 are respectively connected to the first resistors R L1 and R L2. Connect to.
  • FIG. 10A the variable resistance unit TR160 is provided with a plurality of terminals B1 and B2 instead of the terminal B shown in FIG. 1 or FIG. 10A, and the terminals B1 and B2 are respectively connected to the first resistors R L1 and R L2. Connect to.
  • the number of terminal groups related to the terminal B is two, but the number of terminals can be expanded to three or more, and a first resistor is connected to each of them.
  • the configuration of other parts of the voltage adjustment circuit is the same as the basic configuration shown in FIG. 1 or the first embodiment shown in FIG.
  • FIG. 18B is a partial circuit diagram of the variable resistance unit in the seventh embodiment.
  • the first switch section provided for each resistance of the variable resistance section and each connection wiring section is expanded to a switch section group including a plurality of switch sections.
  • the first switch section group is connected to each of the node Z100 of the resistance selection circuit SEL160 and the node Z101 of the resistance selection circuit SEL161.
  • Each terminal d of the first switch unit groups S100a and S100b is connected to the node Z100, and each terminal d of the first switch unit groups S101a and S101b is connected to the node Z101.
  • the terminals s of S100a and S101a of the first switch section group are connected to the terminal B1 of the variable resistance section, and the terminals s of S100b and S101b of the first switch section group are connected to the terminal B2 of the variable resistance section. Each is connected. Then, S100a and S101a of the first switch unit group are controlled by control signals G100a and G101a, and S100b and S101b of the first switch unit group are controlled by control signals G100b and G101b, respectively. When these control signals are “1”, the corresponding switch unit group is turned on.
  • the configuration of the other part of the variable resistance unit is the same as that of the second embodiment shown in FIG. 12 (however, the resistance value of the second resistor is r u ).
  • variable resistance portion TR160 shown in FIG.
  • first, third, and fourth embodiments a plurality of (B1 and B2) terminals B of each variable resistance unit are connected to the first resistor, and a first switch unit is connected to each of the plurality of terminals B (B1 and B2).
  • the first switch section group can be expanded to the circuit configuration of the seventh embodiment. Thereby, it is possible to select a plurality of types of first resistors, and voltage adjustment with the same number of gradations can be performed for each selected first resistor.
  • the relationship between the resistance value of the variable resistance unit and the control signals G100 and G101 does not relate to which of the first resistors R L1 and R L2 is selected.
  • the relationship between the resistance value of the variable resistor section and the output voltage is determined by matching R L in the expressions (4) to (11) in the description of the first embodiment with R L1 or It is equivalent to replacing any of R L2 .
  • the resistance value of the variable resistance unit can be changed by the control signal.
  • Example 7 has the effect shown in previous Example 1, and can change the resistance value of the 1st resistance connected to a variable resistance part in addition. Therefore, as compared with the first embodiment, voltage adjustment with higher flexibility and higher flexibility is possible. Further, when the variable resistor section in the second to fourth embodiments is expanded to have the circuit configuration of the seventh embodiment, in addition to the effects exhibited by each, it is possible to perform more flexible and flexible voltage adjustment.
  • the voltage adjustment circuit according to the eighth embodiment of the present invention includes a switch circuit having the configuration shown in FIG. 19A as the first switch unit and the second switch unit configuring the variable resistor unit described above. Adopted. That is, the switch circuit includes an NMOS transistor N171, a PMOS transistor P171, and an inverter INV. The drain of the NMOS transistor N171 and the source of the PMOS transistor P171 are connected to the terminal d, and the source of the NMOS transistor N171 and the drain of the PMOS transistor P171 are connected to the terminal s.
  • the gate of the NMOS transistor N171 and the input of the inverter INV are connected to the terminal g, and the gate of the PMOS transistor P171 is connected to the output of the inverter INV. Further, the substrate of the NMOS transistor N171 is connected to the ground GND, and the substrate of the PMOS transistor P171 is connected to VDD . Note that the terminals d, s, and g shown in FIG. 19 are connected corresponding to the symbols d, s, and g of the switch portion in each of the embodiments described above.
  • the operation mode of the eighth embodiment will be described.
  • the input reference voltage VIN is a low voltage
  • it is effective to use NMOS transistors for the first switch portion and the second switch portion.
  • the gate-source voltage of the NMOS transistor becomes small.
  • the gate-source voltage decreases to VT or less
  • the NMOS transistor can no longer hold the on state, and circuit operation may be disabled.
  • the PMOS transistor is designed to be turned on instead. Enables stable operation.
  • variable resistor section that constitutes the switch circuit described above as the switch section has the same circuit topology itself, the load current I 0 does not flow through the second switch section for feedback. Absent. Therefore, there is no change in the function and effect exhibited by each of the embodiments described above.
  • the voltage regulator circuit according to the ninth embodiment of the present invention employs the NMOS transistor N172 shown in FIG. 19B as the first switch section and the second switch section that constitute the variable resistor section described above. Is.
  • the drain d, gate g, and source s of the NMOS transistor N172 are connected as described above as the respective terminals of each switch unit, and the substrate of the NMOS transistor N172 is connected to the source s.
  • the source potential of the NMOS transistor N172 to which the input reference voltage VIN is applied is always equal to the substrate potential. Therefore, the input reference voltage V IN is the equivalent resistance of the V T increases the transistor of the transistor is increased by increasing the so-called back bias effect does not occur. As a result, it is possible to perform voltage adjustment over a wider range of the input reference voltage VIN and under a lower VDD condition than when the substrate of the NMOS transistor N172 is connected to the ground GND.
  • the range of the operable input reference voltage VIN and the power supply voltage V DD is slightly narrower than that in the eighth embodiment, but on the other hand, the area efficiency is reduced because the number of constituent elements of each switch unit is small. It will be excellent.
  • the circuit topology itself is the same in the variable resistor portion configured by using the NMOS transistor as a switch portion, the load current I 0 does not flow through the second switch portion for feedback. Absent. Therefore, there is no change in the function and effect exhibited by each of the embodiments described above.
  • the voltage adjustment circuit according to the tenth embodiment of the present invention is a vertical circuit in which a channel is formed in the vertical direction with respect to the surface of the silicon substrate as the first switch unit and the second switch unit constituting the variable resistor unit described above.
  • a type MOS transistor is employed.
  • FIG. 20 shows a vertical MOS transistor employed as Example 10
  • FIG. 20 (a) is a schematic diagram showing the structure of the vertical MOS transistor
  • FIG. 20 (b) shows a vertical MOS transistor. It is sectional drawing.
  • the vertical MOS transistor has a structure in which a channel from the source to the drain is formed in the vertical direction with respect to the surface of the silicon substrate, and the channel is surrounded by the gate electrode through the oxide film SiO 2 . As a result, the center of the channel is completely insulated from the substrate. With this structure, the vertical MOS transistor also does not generate the back bias effect described above. That is, the on-resistance does not increase even when the source potential is increased. Therefore, as in the ninth embodiment, the operation can be performed over a wide range of the input reference voltage VIN and under the condition of the lower power supply voltage V DD .
  • FIG. 20 (c) shows the correspondence between the electrodes of the vertical MOS transistor N180 and the terminals of the switch sections in the variable resistance section of the present invention.
  • the drain, source and gate of the vertical MOS transistor correspond to the terminals d, s and g. Note that the vertical MOS transistor has no substrate electrode.
  • the voltage adjustment circuit employing the tenth embodiment extends over a wide range of the input reference voltage VIN as in the ninth embodiment and is lower. It is possible to adjust the voltage under the condition of the power supply voltage V DD . Further, since the vertical MOS transistor employed as the tenth embodiment has no substrate electrode, unlike the eighth embodiment, a large distance is required between the transistors in order to electrically separate the substrate electrodes of different MOS transistors. It becomes unnecessary to take. Therefore, it is possible to provide a voltage regulator circuit that is more area efficient than the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the polarity of each MOS transistor used in the circuit configuration described above can be switched so that V DD is replaced with ground GND and ground GND is replaced with V DD .

Abstract

With improved integration levels of semiconductor integrated circuits, and advances in lower voltage for power supply voltage in order to reduce power consumption, there is a tendency for there to be a large effect even with small voltage errors. Therefore, in order to stabilize output voltage promptly in a prescribed time, with higher resolution, higher precision, and superior linearity using a voltage adjustment circuit, this voltage adjustment circuit is provided with a current control unit (Amp) that uses reference voltage as an input, a first resistor (RL), and a variable resistor (TR1) connected between the output of the current control unit and the first resistor. The variable resistor is configured from a plurality of resistance selection circuits (SEL1, SEL2, …). Each of the resistance selection circuits is respectively provided with: a second resistor (Rs1, Rs2, …) connected to the output of the current control unit; a first switch (S1, S2, …) connected between the first resistor and the second resistor; and a second switch (S1f, S2f, …) connected between the second resistor and the input of the current control unit, the second switch applying voltage feedback. The first switch and the second switch are linked for turning on and off.

Description

電圧調整回路Voltage adjustment circuit
 本発明は、半導体集積回路の電圧調整回路に関する。 The present invention relates to a voltage adjustment circuit for a semiconductor integrated circuit.
 半導体集積回路においては、所定の動作のために種々の基準電圧が必要とされ、このような基準電圧としては、温度に比例するPTAT(Proportional to Absolute Temperature)電圧などがある。PTAT電圧の場合は、印加される電源電圧(以下、「VDD」と略す場合がある)や製造条件の変動に影響を受けず、所定のパラメータおよび温度のみで決まる電圧であることが望まれる。 In a semiconductor integrated circuit, various reference voltages are required for a predetermined operation. Examples of such a reference voltage include a PTAT (Proportional to Absolute Temperature) voltage that is proportional to temperature. In the case of the PTAT voltage, it is desirable that the voltage is determined only by a predetermined parameter and temperature without being affected by a power supply voltage to be applied (hereinafter, may be abbreviated as “V DD ”) or a change in manufacturing conditions. .
 そこで、電源電圧VDDや製造条件の変動による影響をキャンセルするために、基準電圧発生回路と併せて電圧調整回路が用いられる。図3は、本発明の技術分野における電圧調整回路の応用例を示す図で、図3の(a)は、その基本構成図である。基準電圧発生回路により発生された基準電圧Vは電圧調整回路に入力され、電圧調整回路では、基準電圧である入力電圧VIN(=V)が所定の電圧Voutに調整されて出力される。また、出力電圧の調整は、デジタル制御信号に従い、例えば、所定の出力電圧値Vout0を中心に±10%や±20%といった範囲にて数ステップ刻みで行われる。 Therefore, a voltage adjustment circuit is used in conjunction with the reference voltage generation circuit in order to cancel the influence of fluctuations in the power supply voltage V DD and manufacturing conditions. FIG. 3 is a diagram showing an application example of the voltage adjustment circuit in the technical field of the present invention, and FIG. 3A is a basic configuration diagram thereof. Reference voltage generating circuit reference voltage V R generated by is inputted to the voltage regulator circuit, voltage regulator circuit, the input voltage V IN is a reference voltage (= V R) is output after being adjusted to a predetermined voltage V out The The output voltage is adjusted according to the digital control signal, for example, in steps of several steps in a range of ± 10% or ± 20% around a predetermined output voltage value Vout0 .
 PTAT電圧の場合の基準電圧発生回路としては、図3の(b)に示す回路構成例が知られている(なお、この回路に併せて用いられる初期化回路については省略した)。図3の(b)に示す例では、MOSトランジスタM31とM33が弱反転領域で動作すべく設計され、温度に比例する基準電圧Vが生成される。この基準電圧Vは、以下の理由からVDDの数分の1以下の低い電圧となる。MOSトランジスタM31は弱反転領域であるので、そのゲート電圧VGNは、強反転領域におけるMOSトランジスタのスレッショルド電圧(以下、「V」と記す)より小さい電圧となるように設計される。これにより、基準電圧Vは、電位VGNよりもMOSトランジスタM33のV分さらに低くなり、よって電源電圧VDDに対し低い電圧となる。例えば、最小動作のための電源電圧VDDが1V前後の回路においては、基準電圧Vは100~200mV程度と非常に低くなる。一方、生成された基準電圧Vは、一般に他の回路ブロックにおけるMOSトランジスタのゲートに印加されるが、他の回路ブロックのMOSトランジスタは強反転領域で動作することが一般的に望まれるので、この基準電圧Vをより高い電位に変換する必要がある。即ち、PTAT電圧向けの電圧調整回路においては、低電圧である基準電圧Vが入力電圧VINとして入力され、この入力電圧VIN(=V)より所定の電圧だけ僅かに高くかつ電源電圧VDDや製造条件の変動に左右されにくい電圧Voutを出力することが求められる。 As a reference voltage generation circuit in the case of the PTAT voltage, a circuit configuration example shown in FIG. 3B is known (note that an initialization circuit used together with this circuit is omitted). In the example shown in (b) of FIG. 3, MOS transistors M31 and M33 are designed to operate in the weak inversion region, the reference voltage V R which is proportional to the temperature is generated. The reference voltage V R becomes fraction less low voltage V DD for the following reasons. Since the MOS transistor M31 is in the weak inversion region, its gate voltage V GN is designed to be lower than the threshold voltage (hereinafter referred to as “V T ”) of the MOS transistor in the strong inversion region. Thus, the reference voltage V R is even lower V T content of the MOS transistor M33 than the potential V GN, thus becomes a low voltage to the power supply voltage V DD. For example, in the power supply voltage V DD is 1V around the circuit for the minimum operation, the reference voltage V R is very low as about 100 ~ 200 mV. Meanwhile, the generated reference voltage V R, typically is applied to the gate of the MOS transistor in the other circuit blocks, since it is desirable to generally MOS transistors of the other circuit blocks operating in strong inversion region, it is necessary to convert the reference voltage V R to a higher potential. That is, in the voltage adjustment circuit for PTAT voltage, the reference voltage V R which is a low voltage is input as the input voltage V IN, the input voltage V IN (= V R) than a predetermined voltage slightly higher and the power supply voltage It is required to output a voltage Vout that is less affected by variations in V DD and manufacturing conditions.
 また、近年の半導体集積回路の分野においては、集積度向上や消費電力低減のために低VDD化が進展しており、僅かな電圧の誤差でも大きな影響が出る傾向にある。このため、低VDD化の進展により、より高分解能かつ高精度な電圧Voutの調整が求められている。 In recent years, in the field of semiconductor integrated circuits, low VDD has been developed to improve the degree of integration and reduce power consumption, and even a slight voltage error tends to have a large effect. For this reason, adjustment of the voltage Vout with higher resolution and higher accuracy has been demanded with the progress of low V DD .
 次に、従来技術に係る電圧調整回路について説明する。
 まず、従来例1として、入力基準電圧VINに対し所定の電圧だけ高い電圧を出力する電圧調整回路を例にとる。図4は、従来例1の電圧調整回路の構成例を示す図であり、この電圧調整回路としては、例えば、特許文献1に記載されたボルテージレギュレータが該当する。
 この電圧調整回路は、図4の(a)に示すように、電流制御部Amp、可変抵抗部TR40および抵抗Rより構成される。可変抵抗部TR40は、端子AとBとの間の抵抗を制御する機能を有し、端子Aは電流制御部Ampの出力に、端子Bは抵抗Rと電流制御部Ampの帰還入力に接続される。図4の(b)は、この可変抵抗部TR40の構成例である。直列接続された複数の抵抗R41およびR42(共に、抵抗値r)を含み、これらの抵抗にはスイッチ部S42(例えば、MOSトランジスタ)が並列に接続されている。負荷電流Iは、可変抵抗部TR40および抵抗Rを通ってVDDから接地GNDへと流れ、電流制御部Ampによって、ノードX(端子B)の電圧Vと入力電圧VINとが等しくなるように制御される。その結果、可変抵抗部TR40の電圧降下をVABとすると、出力電圧Voutは電圧VINと電圧VABとの和になる。可変抵抗部TR40の電圧VABは、スイッチ部S42のオンオフを適宜制御してその抵抗値を制御することで調整できる。スイッチ部S42がオンの時、仮にスイッチ部の抵抗が0Ωである理想状態(理想値)であれば、可変抵抗部TR40の端子A-B間の抵抗はrとなり、以下の式(1)が成立する。
  Vout=VIN+VAB=VIN+r・I   ・・・ 式(1)
Next, a voltage adjustment circuit according to the prior art will be described.
First, as Conventional Example 1, a voltage adjustment circuit that outputs a voltage higher than the input reference voltage VIN by a predetermined voltage is taken as an example. FIG. 4 is a diagram showing a configuration example of the voltage adjustment circuit of Conventional Example 1. As this voltage adjustment circuit, for example, a voltage regulator described in Patent Document 1 corresponds.
As shown in FIG. 4A, the voltage adjustment circuit includes a current control unit Amp, a variable resistance unit TR40, and a resistor RL . The variable resistance unit TR40 has a function of controlling the resistance between the terminals A and B. The terminal A is connected to the output of the current control unit Amp, and the terminal B is connected to the resistance RL and the feedback input of the current control unit Amp. Is done. FIG. 4B shows a configuration example of the variable resistance unit TR40. A plurality of resistors R41 and R42 (both having a resistance value r u ) connected in series are included, and a switch unit S42 (for example, a MOS transistor) is connected in parallel to these resistors. The load current I 0 flows from the V DD to the ground GND through the variable resistance unit TR40 and the resistance RL , and the voltage V x of the node X (terminal B) is equal to the input voltage V IN by the current control unit Amp. It is controlled to become. As a result, when the voltage drop of the variable resistance unit TR40 is V AB , the output voltage V out is the sum of the voltage V IN and the voltage V AB . The voltage V AB of the variable resistor unit TR40 can be adjusted by appropriately controlling on / off of the switch unit S42 and controlling its resistance value. If the resistance of the switch unit is 0Ω when the switch unit S42 is ON (ideal value), the resistance between the terminals A and B of the variable resistor unit TR40 is ru , and the following equation (1) Is established.
V out = V IN + V AB = V IN + ru u · I 0 Formula (1)
 表1に、従来例1における可変抵抗部TR40の動作状態と抵抗値との関係を示す。可変抵抗部TR40の抵抗(RAB)については、スイッチ部S42の抵抗が、理想値(0Ω)の場合とrである場合を併記した。
Figure JPOXMLDOC01-appb-T000001
 以上のように、可変抵抗部TR40の抵抗値を制御することで、電圧VAB、延いては出力電圧Voutを調整することができる。
Table 1 shows the relationship between the operating state and the resistance value of the variable resistance unit TR40 in Conventional Example 1. Regarding the resistance (R AB ) of the variable resistance unit TR40, the case where the resistance of the switch unit S42 is the ideal value (0Ω) and the case of r N are shown.
Figure JPOXMLDOC01-appb-T000001
As described above, by controlling the resistance value of the variable resistance unit TR40, the voltage V AB and , in turn, the output voltage V out can be adjusted.
 しかし、従来例1の電圧調整回路は、課題として十分高い精度で電圧調整を行うことができない。その理由は、可変抵抗部TR40におけるスイッチ部が負荷電流Iのパス上にのみ設けられ、負荷電流Iが流れるスイッチ部を介して差動アンプOP1へ電圧帰還がなされることである。
 例えば、スイッチ部S42がオンである場合、スイッチ部S42のオン抵抗が0Ωの理想状態であれば出力電圧Voutは式(1)となるところ、スイッチ部S42のオン抵抗rが大きい場合には、スイッチ部S42に電圧降下ΔVsが生じ、出力電圧に誤差が発生する。動作電源電圧が低くなると、スイッチ部S42のオン抵抗が大きくなるため出力電圧の誤差が増加する(後述するが、図6に示す特性)。このように、従来例1では、特に低電源電圧動作において高精度な出力電圧Voutを得ることが困難であった。なお、従来例1における出力電圧誤差の詳細については、本発明の実施例と比較しつつ後述する。
However, the voltage adjustment circuit of Conventional Example 1 cannot perform voltage adjustment with sufficiently high accuracy as a problem. The reason is that the switch unit in the variable resistance portion TR40 is provided only on the path of the load current I 0, is that the voltage feedback to the differential amplifier OP1 is made via the switching unit load current I 0 flows.
For example, when the switch unit S42 is ON, the output voltage V out when the on-resistance of the switch section S42 is in the ideal state of 0Ω Where the formula (1), when the ON resistance r N of the switch unit S42 is larger Causes a voltage drop ΔVs in the switch unit S42 and an error occurs in the output voltage. When the operating power supply voltage is lowered, the on-resistance of the switch unit S42 is increased, so that an error in the output voltage increases (characteristics shown in FIG. 6 as described later). As described above, in Conventional Example 1, it is difficult to obtain a highly accurate output voltage Vout particularly in the low power supply voltage operation. The details of the output voltage error in Conventional Example 1 will be described later in comparison with the embodiment of the present invention.
 次に、従来例2として、スイッチ部のオン抵抗の影響を受けにくい電圧調整回路について例にとる。図7は、従来例2の電圧調整回路の構成例を示す図であり、この電圧調整回路としては、例えば、特許文献2に記載された電源回路(特許文献2の図12に示される電源回路13)が該当する。
 従来例2における可変抵抗部TR70は、その端子Aと端子Bの間に直列接続された複数の抵抗R70、R71、R72、…を含み、これらの抵抗間の各ノードと端子Cとの間に、複数のスイッチ部S70、S71、S72、…を設け、端子Cを電流制御部Ampの帰還入力に接続している。可変抵抗部TR70の端子Aと端子B間の抵抗は、スイッチ部のオンオフ状態に拘らず一定であり、端子Aと端子C間の抵抗ならびに端子Cと端子B間の抵抗がスイッチ部によって調整される。
Next, as a conventional example 2, a voltage adjustment circuit that is not easily affected by the on-resistance of the switch unit will be described. FIG. 7 is a diagram illustrating a configuration example of the voltage adjustment circuit of Conventional Example 2. As this voltage adjustment circuit, for example, a power supply circuit described in Patent Document 2 (the power supply circuit illustrated in FIG. 12 of Patent Document 2) is shown. 13) is applicable.
The variable resistance unit TR70 in Conventional Example 2 includes a plurality of resistors R70, R71, R72,... Connected in series between the terminal A and the terminal B, and between each node between these resistors and the terminal C. , A plurality of switch units S70, S71, S72,... Are provided, and the terminal C is connected to the feedback input of the current control unit Amp. The resistance between the terminal A and the terminal B of the variable resistance unit TR70 is constant regardless of the on / off state of the switch unit, and the resistance between the terminal A and the terminal C and the resistance between the terminal C and the terminal B are adjusted by the switch unit. The
 表2に、従来例2における可変抵抗部TR70の動作状態と抵抗値との関係を示す。従来例2は、可変抵抗部TR70のスイッチ部S70、S71、S72、…、Sendを、電流パス上ではなく電圧帰還パスにのみ設けている。よって、入力インピーダンスの高い電流制御部Ampを用いることで、スイッチ部S70、S71、S72、…の電圧降下を十分小さくでき、スイッチ部による出力電圧誤差を抑制できる。なお。表2は、可変抵抗部TR70のスイッチ部をS70、S71およびS72とし、R70を0Ω、R71およびR72の抵抗値をrとした場合について示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the relationship between the operating state and the resistance value of the variable resistance unit TR70 in Conventional Example 2. In Conventional Example 2, the switch units S70, S71, S72,..., Send of the variable resistance unit TR70 are provided only on the voltage feedback path, not on the current path. Therefore, by using the current control unit Amp having a high input impedance, the voltage drop of the switch units S70, S71, S72,... Can be sufficiently reduced, and the output voltage error due to the switch unit can be suppressed. Note that. Table 2, the switch portion of the variable resistor TR70 and S70, S71 and S72, show the case where 0Ω to R70, the resistance value of R71 and R72 was r u.
Figure JPOXMLDOC01-appb-T000002
 しかし、従来例2の回路構成では、スイッチ部の状態と出力電圧の増減との関係が非線形となるため、微細な調整が困難である。その理由は、負荷電流Iが、入力電圧VINだけでなく、どのスイッチ部がオンするかによっても変化することにある。一般に、電圧を調整する上で、制御用デジタルコード(図7に示すG70、G71、G72、…)により調整されるスイッチ部の状態と出力電圧とは、線形な関係であることが望ましい。また、半導体集積回路においては、製造のバラツキ低減のためには、抵抗は同一素材、同一形状のもの複数個を直並列に接続して用いる必要がある。 However, in the circuit configuration of Conventional Example 2, since the relationship between the state of the switch unit and the increase / decrease in the output voltage is nonlinear, fine adjustment is difficult. The reason is that the load current I 0 changes not only according to the input voltage VIN but also depending on which switch section is turned on. Generally, in adjusting the voltage, it is desirable that the state of the switch unit adjusted by the control digital code (G70, G71, G72,... Shown in FIG. 7) and the output voltage have a linear relationship. Further, in a semiconductor integrated circuit, it is necessary to connect a plurality of resistors having the same material and the same shape in series and parallel to reduce manufacturing variations.
 ところが、従来例2では、抵抗Rs71、Rs72、…を全て同一の抵抗値とすると以下の問題が生じる。例えば、スイッチ部S70がオンの時、可変抵抗部TR70内の抵抗Rs71、Rs72、…、および抵抗Rに入力電圧VINがかかる。一方、スイッチ部Sendがオンの時は、抵抗Rにのみ入力電圧VINがかかる。このように、従来例2では、スイッチ部のオンオフ状態次第で負荷電流Iが増減することになる。このため、抵抗Rs71、Rs72、…を全て同一抵抗値とすると、制御用デジタルコードにより調整されるスイッチ部の状態と出力電圧との関係は非線形となる(後述するが、図9に示す特性)。即ち、従来例2では、電圧調整の刻みが一定となるような線形な調整が困難であった。なお、この非線形性についての詳細は、本発明の実施例と比較しつつ後述する。 However, in the conventional example 2, if the resistors Rs71, Rs72,. For example, when the switch unit S70 is on, the resistance of the variable resistor TR70 Rs71, Rs72, ..., and the input voltage V IN is applied to the resistor R L. On the other hand, when the switch unit Send is on, the input voltage VIN is applied only to the resistor RL . As described above, in the conventional example 2, the load current I 0 increases or decreases depending on the on / off state of the switch unit. For this reason, if the resistors Rs71, Rs72,... Are all set to the same resistance value, the relationship between the state of the switch section adjusted by the control digital code and the output voltage becomes nonlinear (the characteristics shown in FIG. 9 will be described later). . That is, in the conventional example 2, it is difficult to perform linear adjustment so that the increment of voltage adjustment is constant. Details of this non-linearity will be described later in comparison with an embodiment of the present invention.
 また、従来例2では、前述のとおり調整されるスイッチ部の状態によって負荷電流Iが変化してしまうため、出力電圧が安定するまでの時間もスイッチ部の状態によって変わってしまう。半導体基板上に形成される抵抗Rは、抵抗値が大きく、一般に大きな寄生容量を伴う。このため、従来例2では、抵抗Rの抵抗値が大きい場合、出力電圧が安定するまでの時間が調整されるスイッチ部の状態によって変化し、回路の安定動作を損なうという問題も存在する。 In Conventional Example 2, since the load current I 0 changes depending on the state of the switch unit adjusted as described above, the time until the output voltage stabilizes also changes depending on the state of the switch unit. The resistor RL formed on the semiconductor substrate has a large resistance value and is generally accompanied by a large parasitic capacitance. For this reason, in the conventional example 2, when the resistance value of the resistor RL is large, there is a problem in that the time until the output voltage is stabilized changes depending on the state of the switch unit that is adjusted, and the stable operation of the circuit is impaired.
特開2015-79307号公報Japanese Patent Laying-Open No. 2015-79307 特開2004-319034号公報JP 2004-319034 A
 本発明の目的は、出力電圧を高精度に電圧調整しかつ所定の時間で速やかに安定させることが可能で、また、調整できる階調数も大きく線形性にも優れた電圧調整回路を提供することである。
 更には、低VDDの条件下で、PTAT電圧等のように接地電位GNDに近い低い基準電圧を調整して出力する場合でも、前述のように、高精度で、大きな階調数、良好な線形性等の優れた特性を示しかつ所定の時間で速やかに出力電圧を安定させ、また、面積効率の高い回路パターンレイアウトが可能で、製造バラツキや製造条件の変動の影響を受けにくい電圧調整回路を提供することを目的とする。
An object of the present invention is to provide a voltage adjustment circuit capable of adjusting the output voltage with high accuracy and quickly stabilizing it in a predetermined time, and having a large number of adjustable gradations and excellent linearity. That is.
Furthermore, even when a low reference voltage close to the ground potential GND such as a PTAT voltage is adjusted and output under the condition of low V DD , as described above, high accuracy, a large number of gradations, and good Voltage regulation circuit that exhibits excellent characteristics such as linearity, quickly stabilizes the output voltage in a predetermined time, and enables circuit pattern layout with high area efficiency, making it less susceptible to variations in manufacturing and manufacturing conditions The purpose is to provide.
 前述の課題を解決するために、本発明に係る電圧調整回路は、基準電圧を入力とする電流制御部と、第1の抵抗と、電流制御部の出力および第1の抵抗の間に接続する可変抵抗部とを備え、可変抵抗部は、複数の抵抗選択回路から構成され、抵抗選択回路それぞれは、電流制御部の出力に接続する第2の抵抗と、第1の抵抗および第2の抵抗の間に接続する第1のスイッチ部と、第2の抵抗および電流制御部の入力の間に接続して電圧帰還をかける第2のスイッチ部とを備え、第1のスイッチ部と第2のスイッチ部とを連動してオンオフすることを特徴とする。 In order to solve the above-described problem, a voltage regulator circuit according to the present invention is connected between a current control unit that receives a reference voltage, a first resistor, an output of the current control unit, and a first resistor. A variable resistance unit, and the variable resistance unit includes a plurality of resistance selection circuits. Each of the resistance selection circuits includes a second resistor connected to an output of the current control unit, a first resistor, and a second resistor. A first switch unit connected between the second resistor and the current control unit, and a second switch unit configured to apply voltage feedback between the second resistor and the current control unit. It is characterized by being turned on and off in conjunction with the switch part.
 本発明に係る電圧調整回路によれば、低い電源電圧の条件下で、可変抵抗部が備えるスイッチ部の抵抗や負荷電流が大きい場合でも、出力電圧の誤差を小さく抑え高精度な電圧調整を行うと共に、出力電圧を線形的に調整しかつ所定時間で速やかに安定させることができる。 According to the voltage adjustment circuit of the present invention, even when the resistance of the switch unit included in the variable resistor unit and the load current are large under the condition of a low power supply voltage, the output voltage error is suppressed to be small and highly accurate voltage adjustment is performed. At the same time, the output voltage can be linearly adjusted and quickly stabilized in a predetermined time.
図1は、本発明に係る電圧調整回路の基本構成図である。FIG. 1 is a basic configuration diagram of a voltage regulator circuit according to the present invention. 図2は、本発明に係る電圧調整回路の出力電圧調整フローを示す図である。FIG. 2 is a diagram showing an output voltage adjustment flow of the voltage adjustment circuit according to the present invention. 図3は、本発明の技術分野における電圧調整回路の応用例を示す図である。FIG. 3 is a diagram showing an application example of the voltage adjustment circuit in the technical field of the present invention. 図4は、従来例1の電圧調整回路の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the voltage adjustment circuit of the first conventional example. 図5は、電圧調整回路における可変抵抗部を中心に簡略化した等価回路を示す図である。FIG. 5 is a diagram showing an equivalent circuit simplified around the variable resistance portion in the voltage adjustment circuit. 図6は、従来例1および本発明の出力電圧誤差に関する特性を示す図である。FIG. 6 is a diagram showing characteristics relating to the output voltage error of Conventional Example 1 and the present invention. 図7は、従来例2の電圧調整回路の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the voltage adjustment circuit of the second conventional example. 図8は、従来例2の可変抵抗部を中心に簡略化した等価回路を示す図である。FIG. 8 is a diagram showing a simplified equivalent circuit centering on the variable resistance portion of Conventional Example 2. 図9は、従来例2および本発明のスイッチ部による調整状態と出力電圧との関係を示す図である。FIG. 9 is a diagram showing the relationship between the adjustment state and output voltage by Conventional Example 2 and the switch unit of the present invention. 図10は、実施例1に係る電圧調整回路の構成を示す図である。FIG. 10 is a diagram illustrating the configuration of the voltage adjustment circuit according to the first embodiment. 図11は、本発明に用いる差動アンプの構成を示す図である。FIG. 11 is a diagram showing a configuration of a differential amplifier used in the present invention. 図12は、実施例2に係る電圧調整回路の可変抵抗部の構成を示す図である。FIG. 12 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the second embodiment. 図13は、実施例2に係るデコード機能を有する論理回路の構成例を示す図である。FIG. 13 is a diagram illustrating a configuration example of a logic circuit having a decoding function according to the second embodiment. 図14は、実施例3に係る電圧調整回路の可変抵抗部の構成を示す図である。FIG. 14 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the third embodiment. 図15は、実施例4に係る電圧調整回路の可変抵抗部の構成を示す図である。FIG. 15 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the fourth embodiment. 図16は、実施例5に係る電圧調整回路の可変抵抗部の構成を示す図である。FIG. 16 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the fifth embodiment. 図17は、実施例6に係る電圧調整回路の可変抵抗部の構成を示す図である。FIG. 17 is a diagram illustrating the configuration of the variable resistor portion of the voltage adjustment circuit according to the sixth embodiment. 図18は、実施例7に係る電圧調整回路の構成を示す図である。FIG. 18 is a diagram illustrating the configuration of the voltage adjustment circuit according to the seventh embodiment. 図19は、実施例8および実施例9に係る電圧調整回路のスイッチ部に採用する回路構成を示す図である。FIG. 19 is a diagram illustrating a circuit configuration employed in the switch unit of the voltage regulator circuit according to the eighth and ninth embodiments. 図20は、実施例10に係る電圧調整回路に採用する縦型MOSトランジスタを示す図である。FIG. 20 is a diagram illustrating the vertical MOS transistor employed in the voltage adjustment circuit according to the tenth embodiment.
 図1は、本発明に係る電圧調整回路の基本構成を示す回路図である。電圧調整回路は、電流制御部Amp、可変抵抗部TR1および第1の抵抗Rから構成される。可変抵抗部TR1は、複数の抵抗選択回路(SEL1、SEL2、…)を含み、各抵抗選択回路SEL1、SEL2、…は、第1の抵抗Rに接続され電流パスを形成する第1のスイッチ部S1、S2、…、電流制御部Ampに接続され電圧帰還用パスを形成する第2のスイッチ部S1f、S2f、…、並びに、第1および第2のスイッチ部に接続される第2の抵抗Rs1、Rs2、…から構成される。そして、各抵抗選択回路(SEL1、SEL2、…)における第1および第2のスイッチ部は、第2の抵抗Rs1、Rs2、…とノードZ1、Z2、…で接続される。また、第2の抵抗Rs1、Rs2、…は、各抵抗選択回路(SEL1、SEL2、…)において異なる抵抗値を有する。 FIG. 1 is a circuit diagram showing a basic configuration of a voltage regulator circuit according to the present invention. The voltage adjustment circuit includes a current control unit Amp, a variable resistance unit TR1, and a first resistance RL . The variable resistance unit TR1 includes a plurality of resistance selection circuits (SEL1, SEL2,...), And each resistance selection circuit SEL1, SEL2,... Is connected to the first resistance RL and forms a current path. , Second switch units S1f, S2f,... Connected to the current control unit Amp to form a voltage feedback path, and second resistors connected to the first and second switch units It is comprised from Rs1, Rs2,. The first and second switch sections in each resistance selection circuit (SEL1, SEL2,...) Are connected to the second resistors Rs1, Rs2,. Further, the second resistors Rs1, Rs2,... Have different resistance values in the respective resistance selection circuits (SEL1, SEL2,...).
 次に、本発明に係る電圧調整回路の基本構成における動作態様を説明する。
 まず、可変抵抗部TR1が備える所定の抵抗選択回路が選択され、これに含まれるスイッチ部がオンされると共に、他の抵抗選択回路のスイッチ部はオフされる。例えば、抵抗選択回路SEL1が選択された場合、可変抵抗部の端子Aと端子B間の抵抗および端子Aと端子C間の抵抗は、第2の抵抗Rs1の抵抗値によって定まる所定値に設定される(ここで、スイッチ部のオン抵抗を0Ωの理想状態とすると、第2の抵抗Rs1の抵抗値と等しくなる)。また、抵抗選択回路SEL2が選択された場合には、前述の端子間の抵抗は第2の抵抗Rs2によって定まる。このように、可変抵抗部TR1の状態が適宜制御された上で、電流制御部Ampの動作により出力電圧が調整される。電流制御部Ampの出力から、可変抵抗部TR1の端子A、端子Bおよび第1の抵抗Rへ負荷電流Iが流れる。なお、可変抵抗部TR1では、抵抗値Rsをもつ第2の抵抗を有する抵抗選択回路が選択されているものとし、電流制御部Ampの入力インピーダンスは十分高く、端子Cを通る電流は無視できるほど小さいものとする(この条件は、電流制御部Ampとして例えばMOSFETを用いることで、電流制御部Ampの入力部において容易に満足できる)。
 ここで、抵抗選択回路SEL1が選択されているとすると、ノードZ1の電位VZ1は、電流制御部Ampの帰還電位Vと等しくなるので、出力電圧Voutは以下となる。なお、第2の抵抗Rs1、Rs2、…の抵抗値については、便宜的に「Rs」を用いることとする。
   Vout=VZ1+I=V+IRs     ・・・ 式(A1)
Next, an operation mode in the basic configuration of the voltage regulator circuit according to the present invention will be described.
First, a predetermined resistance selection circuit included in the variable resistance unit TR1 is selected, a switch unit included therein is turned on, and switch units of other resistance selection circuits are turned off. For example, when the resistance selection circuit SEL1 is selected, the resistance between the terminal A and the terminal B and the resistance between the terminal A and the terminal C of the variable resistance unit are set to predetermined values determined by the resistance value of the second resistor Rs1. (Here, when the on-resistance of the switch section is set to an ideal state of 0Ω, the resistance value of the second resistor Rs1 is equal). Further, when the resistance selection circuit SEL2 is selected, the resistance between the terminals is determined by the second resistance Rs2. In this way, the output voltage is adjusted by the operation of the current control unit Amp after the state of the variable resistance unit TR1 is appropriately controlled. A load current I 0 flows from the output of the current control unit Amp to the terminal A, the terminal B, and the first resistor RL of the variable resistance unit TR1. In the variable resistance part TR1, it is assumed that the resistance selection circuit having the second resistance having the resistance value Rs is selected, the input impedance of the current control part Amp is sufficiently high, and the current passing through the terminal C is negligible. (This condition can be easily satisfied at the input part of the current control part Amp by using, for example, a MOSFET as the current control part Amp).
Here, assuming that the resistance selection circuit SEL1 is selected, the potential V Z1 of the node Z1 becomes equal to the feedback potential V F of the current control unit Amp, so the output voltage V out is as follows. Note that “Rs” is used for convenience for the resistance values of the second resistors Rs1, Rs2,.
V out = V Z1 + I 0 R S = V F + I 0 Rs Formula (A1)
 図2は、本発明に係る電圧調整回路の出力電圧調整フローを示す図である。電流制御部Ampは、図2に示すフローのごとく、以下のように働く。即ち、電流制御部Ampの入力電圧VINが帰還電圧Vより高ければ(VIN>V)、電流Iを増大させ、逆に、入力電位VINが帰還電位Vより低ければ(VIN<V)、電流Iを減少させる。入力電位VINと帰還電位Vの差の絶対値が所定値より小さくなれば(|VIN-V|<所定値)、電流Iは安定し、以下の出力電圧Voutが得られる。
   Vout=VIN+IRs     ・・・ 式(A2)
 以上のように、抵抗値Rsは可変抵抗部TR1を適宜に制御して所望の値に調整されることから、所望の電圧調整が可能となる。
FIG. 2 is a diagram showing an output voltage adjustment flow of the voltage adjustment circuit according to the present invention. The current control unit Amp works as follows as shown in the flow of FIG. That is, if the input voltage VIN of the current control unit Amp is higher than the feedback voltage V F (V IN > V F ), the current I 0 is increased. Conversely, if the input potential VIN is lower than the feedback potential V F ( V IN <V F ), the current I 0 is decreased. When the absolute value of the difference between the input potential V IN and the feedback potential V F becomes smaller than a predetermined value (| V IN −V F | <predetermined value), the current I 0 becomes stable and the following output voltage V out is obtained. .
V out = V IN + I 0 Rs Formula (A2)
As described above, since the resistance value Rs is adjusted to a desired value by appropriately controlling the variable resistance portion TR1, a desired voltage can be adjusted.
 次に、本発明に係る電圧調整回路が、従来の公知の電圧調整回路より高精度な電圧調整を可能にすることを、数式を用いて説明する。
 まず、図4に示す従来例1の電圧調整回路における出力電圧誤差について詳述する。
 図5は、電圧調整回路における可変抵抗部を中心に簡略化した等価回路を示す図である。図5の(a)は、従来例1の電圧調整回路における可変抵抗部TR40を中心に簡略化した等価回路図である。ここでは、スイッチ部s42がオンしているものとする。rは抵抗R41およびR42の抵抗値、rはスイッチ部s42のオン抵抗、Iは抵抗Rを流れる電流である。この場合、抵抗調整の最小刻み、即ち調整分解能は、rとなる。この回路の出力電圧は、抵抗Rの電圧降下分により調整の中心が粗く定まり、さらに、可変抵抗部TR40の抵抗値rの刻みで調整することにより微調整する。よって、R>rなる条件下で設計され、また、抵抗Rの電圧降下分により出力電圧を大まかに定めるために、R>rの条件下で設計することが必要である。
Next, the fact that the voltage adjustment circuit according to the present invention enables voltage adjustment with higher accuracy than the conventional known voltage adjustment circuit will be described using mathematical expressions.
First, the output voltage error in the voltage adjustment circuit of Conventional Example 1 shown in FIG. 4 will be described in detail.
FIG. 5 is a diagram showing an equivalent circuit simplified around the variable resistance portion in the voltage adjustment circuit. FIG. 5A is an equivalent circuit diagram simplified around the variable resistance part TR40 in the voltage adjustment circuit of the first conventional example. Here, it is assumed that the switch unit s42 is turned on. r u is a resistance value of the resistors R41 and R42, r N is an on-resistance of the switch unit s42, and I 0 is a current flowing through the resistor RL . In this case, the resistance minimum step of adjusting, i.e. adjustment resolution becomes r u. The output voltage of this circuit is the center of the adjustment by the voltage drop across the resistor R L is Sadamari rough, further finely adjusted by adjusting in increments of resistance r u of the variable resistor TR40. Therefore, it is designed under the condition of R L > r u and it is necessary to design under the condition of R L > r N in order to roughly determine the output voltage based on the voltage drop of the resistor R L.
 ここで、rとrの合成抵抗ruNは以下となる。
Figure JPOXMLDOC01-appb-M000003
 電流制御部Ampを構成する差動アンプOP1の作用により、端子B即ちノードXの電位Vは入力電圧VINと等しくなるので、Voutは以下となる。
Figure JPOXMLDOC01-appb-M000004
Here, the combined resistance r uN of r u and r N is as follows.
Figure JPOXMLDOC01-appb-M000003
By the action of a differential amplifier OP1 constituting a current control unit Amp, since the potential V x of the terminal B or nodes X becomes equal to the input voltage V IN, V out is as follows.
Figure JPOXMLDOC01-appb-M000004
 一方、スイッチ部s42のオン抵抗が0Ωである理想状態での出力電圧Vo-idealは以下となる。
Figure JPOXMLDOC01-appb-M000005
 従来例1の電圧調整回路の出力電圧の誤差|ΔVout|は、式(1.2)と式(1.3)から以下となる。
Figure JPOXMLDOC01-appb-M000006
On the other hand, the output voltage V o-ideal in an ideal state where the on-resistance of the switch unit s42 is 0Ω is as follows.
Figure JPOXMLDOC01-appb-M000005
The error | ΔV out | of the output voltage of the voltage adjustment circuit of Conventional Example 1 is as follows from the equations (1.2) and (1.3).
Figure JPOXMLDOC01-appb-M000006
 よって、理想出力電圧Vo-idealで正規化した正規化出力電圧誤差|Econv|は、式(1.1)、式(1.3)および式(1.4)から以下となる。
Figure JPOXMLDOC01-appb-M000007
Therefore, the normalized output voltage error | E conv | normalized by the ideal output voltage V o-ideal is as follows from the equations (1.1), (1.3), and (1.4).
Figure JPOXMLDOC01-appb-M000007
 次に、図1に示す本発明に係る電圧調整回路の出力電圧誤差について詳述する。ここでは、図1の抵抗選択回路SEL1内のスイッチ部がオンし、他の抵抗選択回路のスイッチ部はオフしているものとする。
 図5の(b)は、本発明に係る電圧調整回路の可変抵抗部TR1を中心に簡略化した等価回路図である。第1および第2のスイッチ部S1およびS1fは、図1に示す抵抗選択回路SEL1内のスイッチ部に相当する。rは抵抗Rs1の抵抗値、rは第1のスイッチ部S1のオン抵抗、r’は第2のスイッチ部S1fのオン抵抗、Iは抵抗Rを流れる電流である。ここで、抵抗調整の最小刻み即ち調整分解能は、rとなる。本発明においても、その出力電圧は、抵抗Rの電圧降下分により調整の中心が粗く定まり、さらに可変抵抗部TR1の抵抗を抵抗値rの刻みで調整することで微調整する。従って実用上、R>rかつR>rなる条件下で設計される。
Next, the output voltage error of the voltage adjustment circuit according to the present invention shown in FIG. 1 will be described in detail. Here, it is assumed that the switch section in the resistance selection circuit SEL1 in FIG. 1 is on and the switch sections of the other resistance selection circuits are off.
FIG. 5B is an equivalent circuit diagram simplified around the variable resistance portion TR1 of the voltage adjusting circuit according to the present invention. The first and second switch parts S1 and S1f correspond to the switch part in the resistance selection circuit SEL1 shown in FIG. r u is the resistance value of the resistor Rs1, r N is the on-resistance of the first switch unit S1, r N ′ is the on-resistance of the second switch unit S1f, and I 0 is the current flowing through the resistor RL . Here, minimum step i.e. adjustment resolution of resistance adjustment becomes r u. In the present invention, the output voltage is the center of the adjustment by the voltage drop across the resistor R L is Sadamari rough and fine adjustment by further adjusting the resistance of the variable resistor TR1 in increments of resistance r u. Thus practically, it is designed under conditions of R L> r u and R L> r N.
 本発明では、電流制御部Ampの作用で、可変抵抗部TR1における端子Cの電位Vcが入力電圧VINと等しくなるように、電流Iが流れる。この電流Iは、可変抵抗部TR1の端子Aより流入し、第1の抵抗Rs1、第1のスイッチ部S1および可変抵抗部TR1の端子Bを通り、抵抗Rへと流れる。従って、第1および第2のスイッチ部S1およびS1fと抵抗Rs1とのノードZ1の電位をVZ1とすると、出力電圧Voutは以下となる。
Figure JPOXMLDOC01-appb-M000008
In the present invention, the current I 0 flows so that the potential Vc of the terminal C in the variable resistance unit TR1 becomes equal to the input voltage VIN by the action of the current control unit Amp. The current I 0 flows in from the terminal A of the variable resistance unit TR1, flows through the first resistor Rs1, the first switch unit S1, and the terminal B of the variable resistance unit TR1, and flows to the resistor RL . Therefore, when the potential of the node Z1 between the first and second switch portions S1 and S1f and the resistor Rs1 is V Z1 , the output voltage V out is as follows.
Figure JPOXMLDOC01-appb-M000008
 一方、電流制御部Ampは、例えばMOSトランジスタを用いることで十分高い入力インピーダンスを実現できる。即ち、スイッチ部S1fを流れる直流電流は極めて小さく、ゼロと見なしてよい。その結果、スイッチ部S1fのオン抵抗により生じる電圧降下も十分小さく、出力電圧誤差を考える上では無視できる。そうすると、ノードZ1の電位VZ1は、入力電圧VINと等しくなる。
Figure JPOXMLDOC01-appb-M000009
On the other hand, the current control unit Amp can realize a sufficiently high input impedance by using, for example, a MOS transistor. That is, the direct current flowing through the switch unit S1f is extremely small and may be regarded as zero. As a result, the voltage drop caused by the on-resistance of the switch section S1f is sufficiently small and can be ignored in considering the output voltage error. Then, the potential V Z1 of the node Z1 becomes equal to the input voltage VIN .
Figure JPOXMLDOC01-appb-M000009
 この電位VZ1(=VIN)は、スイッチ部S1のオン抵抗rと抵抗Rに生じる電圧降下の和でもあるから、
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 この式(2.4)には、抵抗値rが含まれていないことが重要である。即ち、負荷電流Iに関する式(2.4)は、どのスイッチ部がオンになりどの抵抗が選択されるかに拘らず成立する。その効果については、従来例2との比較を以て後述する。
Since this potential V Z1 (= V IN ) is also the sum of the voltage drop generated in the on-resistance r N and the resistance RL of the switch unit S1,
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
The equation (2.4), it is important that the resistance value r u is not included. That is, the equation (2.4) relating to the load current I 0 is established regardless of which switch unit is turned on and which resistor is selected. The effect will be described later by comparison with Conventional Example 2.
 一方、出力電圧Voutは、式(2.1)、式(2.2)および式(2.3)から以下となる。
Figure JPOXMLDOC01-appb-M000012
 本発明においても、スイッチ部S1のオン抵抗rが0Ωである理想状態では、出力電圧(Vo-ideal)は、先の式(1.3)と同じとなる。よって、本発明の出力電圧の誤差|ΔVout|は、
Figure JPOXMLDOC01-appb-M000013
On the other hand, the output voltage V out is as follows from the equations (2.1), (2.2), and (2.3).
Figure JPOXMLDOC01-appb-M000012
Also in the present invention, in the ideal state where the ON resistance r N of the switch unit S1 is 0Ω, the output voltage (V o-ideal ) is the same as the above equation (1.3). Therefore, the error | ΔV out | of the output voltage of the present invention is
Figure JPOXMLDOC01-appb-M000013
 従って、式(1.3)、式(2.6)から、理想出力電圧Vo-idealで正規化した正規化出力電圧誤差|Epro|は以下となる。
Figure JPOXMLDOC01-appb-M000014
Therefore, the normalized output voltage error | E pro | normalized by the ideal output voltage V o-ideal from the equations (1.3) and (2.6) is as follows.
Figure JPOXMLDOC01-appb-M000014
 従来例1の正規化出力電圧誤差|Econv|を示す式(1.5)と、本発明の正規化出力電圧誤差|Epro|を示す式(2.7)とを比べると、各式の第2項のみが異なる。即ち、式(1.5)の第2項は1/(r+r)であるのに対し、式(2.7)の第2項は1/(R+r)である。前述のように、いずれの回路も実用上R>rかつR>rなる条件下で設計されるので、以下が成り立つ。
   1/(r+r)>1/(R+r)   ・・・ 式(2.8)
       |Econv|>|Epro|     ・・・ 式(2.9)
 即ち、本発明の正規化出力電圧誤差|Epro|は、従来例1の正規化出力電圧誤差|Econv|に対して十分小さく抑えることができる。
Comparing the expression (1.5) indicating the normalized output voltage error | E conv | of the conventional example 1 with the expression (2.7) indicating the normalized output voltage error | E pro | Only the second term is different. That is, the second term of the formula (1.5) is 1 / (r u + r N ), whereas the second term of the formula (2.7) is 1 / (R L + r N ). As described above, since any circuit is practically designed under the conditions of R L > r u and R L > r N , the following holds.
1 / (r u + r N )> 1 / (R L + r N ) Expression (2.8)
| E conv |> | E pro | Expression (2.9)
That is, the normalized output voltage error | E pro | of the present invention can be suppressed sufficiently smaller than the normalized output voltage error | E conv | of the first conventional example.
 図6は、従来例1の正規化出力電圧誤差|Econv|および本発明の正規化出力電圧誤差|Epro|に関する特性を示す図である。図6の(a)は、それぞれの誤差が、スイッチ部のオン抵抗rにどう影響されるかを示している。いずれの誤差も、理想条件(r=0)での出力電圧Vo-idealで正規化したもので、先の式(1.5)および式(2.7)を用いて計算している。この計算においては、rは5kΩ、Rは50kΩと仮定した。rがRに対して小さい数kΩ以下の範囲で、本発明における誤差は1%以下に抑えることができ、これは同条件における従来例1と比較して数分の1である。 FIG. 6 is a diagram showing characteristics relating to the normalized output voltage error | E conv | of the conventional example 1 and the normalized output voltage error | E pro | of the present invention. FIG. 6A shows how each error is affected by the on-resistance r N of the switch section. Both errors are normalized by the output voltage V o-ideal under the ideal condition (r N = 0), and are calculated using the previous equations (1.5) and (2.7). . In this calculation, r u is 5 k.OMEGA, R L is assumed to 50kohm. When r N is in a range of several kΩ or less, which is smaller than R L , the error in the present invention can be suppressed to 1% or less, which is a fraction of that of Conventional Example 1 under the same conditions.
 次に、それぞれの回路における出力電圧誤差の電源電圧VDDに対する依存性について述べる。先の式(1.5)および式(2.7)は、電源電圧VDDの項を含んでいない。しかし、実際の回路では、電源電圧VDDが低下するとスイッチ部のオン抵抗が増大するため、出力電圧誤差が増大する。 Next, the dependence of the output voltage error on the power supply voltage V DD in each circuit will be described. The previous equations (1.5) and (2.7) do not include the term of the power supply voltage V DD . However, in an actual circuit, when the power supply voltage V DD decreases, the on-resistance of the switch unit increases, and thus the output voltage error increases.
 図6の(b)に、従来例1と本発明における出力電圧誤差の電源電圧VDDに対する依存性の特性を示す。スイッチ部はMOSトランジスタで構成されるものとし、回路シミュレーションの結果から出力電圧誤差を計算した。回路シミュレーションにおいて、従来例1および本発明は共に、同一のトランジスタ・パラメータを用いている。スイッチ部(従来例1のS42、本発明のS1)に当たるMOSトランジスタの縦横比(ゲート幅W/ゲート長L)は、W/L=50および25の2種類を仮定し、電流制御部Ampは理想モデルとした。なお、本発明の第2のスイッチ部S1f、S2f、…の縦横比(W/L)は、極めて小さくしても誤差の原因にはならない。ここでは、対応する第1のスイッチ部S1、S2、…の1/5の値(10および5の2種類)とした。図6の(b)に示す特性では、いずれの出力電圧誤差も、スイッチ部のオン抵抗が0Ωの理想出力電圧の値で正規化している。 FIG. 6B shows the dependence characteristics of the output voltage error on the power supply voltage V DD in the conventional example 1 and the present invention. The switch section is assumed to be composed of MOS transistors, and the output voltage error is calculated from the result of circuit simulation. In circuit simulation, both Conventional Example 1 and the present invention use the same transistor parameters. The aspect ratio (gate width W / gate length L) of the MOS transistor corresponding to the switch unit (S42 of the conventional example 1 and S1 of the present invention) is assumed to be two types of W / L = 50 and 25, and the current control unit Amp is An ideal model. It should be noted that even if the aspect ratio (W / L) of the second switch portions S1f, S2f,... Of the present invention is extremely small, it does not cause an error. Here, the value is 1/5 (two types of 10 and 5) of the corresponding first switch units S1, S2,. In the characteristics shown in FIG. 6B, any output voltage error is normalized by the ideal output voltage value at which the ON resistance of the switch section is 0Ω.
 従来例1は、電源電圧VDDが0.6V以下まで下がると、縦横比50あるいは25のいずれの場合でも誤差が2%以上に増大する。一方、本発明は、電源電圧VDDが0.6Vでも誤差が1%以下である。このように、本発明によれば、同一回路パラメータで設計された従来例1と比べて、出力誤差を小さく抑えることが可能となり、特に電源電圧VDDが低下していく場合、換言すれば低い電源電圧VDDで動作させる場合、従来例1に対する優位性ならびにその効果が顕著となる。 In the conventional example 1, when the power supply voltage V DD is lowered to 0.6 V or less, the error increases to 2% or more in either case of the aspect ratio 50 or 25. On the other hand, in the present invention, the error is 1% or less even when the power supply voltage V DD is 0.6V. As described above, according to the present invention, it is possible to suppress the output error to be smaller than that of the conventional example 1 designed with the same circuit parameters. In particular, when the power supply voltage V DD is lowered, in other words, it is low. When operating with the power supply voltage V DD , the advantage over the conventional example 1 and its effect become significant.
 以上のごとく、従来例1は、負荷電流Iが流れるスイッチ部S42を介して電流制御部Ampの差動アンプOP1へ電圧帰還がなされるため、スイッチ部S42のオン抵抗を起因とする帰還電圧誤差が生じ、出力電圧の精度が劣化する。一方で、本発明は、負荷電流Iが流れるパス上の第1のスイッチ部S1とは別に、電流制御部Ampの差動アンプへの電圧帰還パスの電流が流れない経路上にも第2のスイッチ部S1fを設けたので、スイッチ部のオン抵抗を起因とする帰還電圧誤差が生じない。その結果、特に低い電源電圧VDDにおいて従来例1よりも誤差の少ない、高精度な電圧調整回路が得られる。 As described above, the conventional example 1, the load current because the I 0 is the voltage feedback to the differential amplifier OP1 of the current control unit Amp through the switch unit S42 flows is made, feedback voltage originating from on-resistance of the switch unit S42 An error occurs and the accuracy of the output voltage deteriorates. On the other hand, the present invention, the load current I 0 Apart from the first switch section S1 of the path through which the current control unit Amp of the second even on a path current does not flow in the voltage feedback path to the differential amplifier Therefore, the feedback voltage error caused by the on-resistance of the switch unit does not occur. As a result, it is possible to obtain a high-accuracy voltage adjustment circuit with less errors than the conventional example 1 at a particularly low power supply voltage V DD .
 次に、本発明が、従来例2の電圧調整回路が抱える出力の非線形性の問題を生じないことを、数式を用いて説明する。
 まず、図7に示す従来例2の電圧調整回路の構成における出力の非線形性について示す。図8は、従来例2の可変抵抗部TR70を中心に簡略化した等価回路を示す図である。図8では、説明を簡単にするために、図7の抵抗R70は0Ωとし、抵抗R71と抵抗R72の抵抗値はrと仮定する。ここで、抵抗R71と抵抗R72とのノードをZ1とし、その電位をVZ1とする。また、抵抗Rを流れる負荷電流をIとする。スイッチ部は、図8ではS70、S71およびS72の3つが実装されているものとする。即ち、3階調の電圧調整が行われる。各スイッチ部のオン抵抗rとする。
Next, the fact that the present invention does not cause the problem of non-linearity of the output that the voltage adjustment circuit of Conventional Example 2 has will be described using mathematical expressions.
First, output nonlinearity in the configuration of the voltage adjustment circuit of the second conventional example shown in FIG. 7 will be described. FIG. 8 is a diagram showing a simplified equivalent circuit centering on the variable resistance portion TR70 of the second conventional example. In Figure 8, for simplicity of explanation, the resistance R70 of FIG. 7 is a 0 .OMEGA, resistance of the resistor R71 and the resistor R72 is assumed to r u. Here, a node between the resistor R71 and the resistor R72 is Z1, and its potential is VZ1 . Further, the load current flowing through the resistor RL is I 0 . In FIG. 8, three switch units S70, S71, and S72 are mounted. That is, voltage adjustment of three gradations is performed. The on-resistance r N of each switch unit is assumed.
 図8の(a)は、スイッチ部S70がオンし他がオフとなっている場合、図8の(b)は、スイッチ部S71がオンし他がオフとなっている場合、図8の(c)は、スイッチ部S72がオンし他がオフとなっている場合、を示す。なお、オフとなっているスイッチ部は省略し図示していない。 8A shows a case where the switch unit S70 is turned on and others are turned off, and FIG. 8B shows a case where the switch unit S71 is turned on and others are turned off. c) shows the case where the switch part S72 is on and the others are off. In addition, the switch part which is turned off is omitted and not shown.
 まず、図8の(a)の状態について説明する。前述のように従来例2の回路構成では、スイッチ部S70~S72は負荷電流Iが流れるパス上にはなく、電流制御部Ampの差動アンプOP1への電圧帰還パス上に設けられている。よって、従来例2は、差動アンプOP1の入力インピーダンスが高い時は、スイッチ部S70~S72による電圧降下の影響を無視でき、端子Aの電位Vは端子Cの電位Vと等しくなる。図8の(a)では、端子Aの電位Vは出力電圧Voutと同一であると共に、電位Vは差動アンプOP1の作用で入力電圧VINと等しくなるから、以下の関係が成り立つ。
         Vout=V=V=VIN   ・・・ 式(3.1)
Figure JPOXMLDOC01-appb-M000015
First, the state of FIG. 8A will be described. In the circuit configuration of a conventional example 2 as described above, the switch section S70 ~ S72 is not on the path through which the load current I 0, is provided on the voltage feedback path to the differential amplifier OP1 of the current control unit Amp . Therefore, in the conventional example 2, when the input impedance of the differential amplifier OP1 is high, the influence of the voltage drop due to the switch units S70 to S72 can be ignored, and the potential V A of the terminal A becomes equal to the potential V C of the terminal C. In FIG. 8A, since the potential V A of the terminal A is the same as the output voltage V out and the potential V C becomes equal to the input voltage VIN due to the action of the differential amplifier OP1, the following relationship is established. .
V out = V A = V C = V IN Formula (3.1)
Figure JPOXMLDOC01-appb-M000015
 次に、図8の(b)の状態について説明する。この場合も、スイッチ部S71による電圧降下の影響を無視でき、ノードZ1の電位VZ1は以下となる。
        VZ1=V=VIN     ・・・ 式(3.3)
        VIN=I・(r+R)     ・・・ 式(3.4)
 また、出力電圧Voutは以下となる。
        Vout=I・(2r+R)   ・・・ 式(3.5)
 この式(3.4)および式(3.5)から、図8の(b)では、以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Next, the state shown in FIG. 8B will be described. Also in this case, the influence of the voltage drop caused by the switch unit S71 can be ignored, and the potential VZ1 of the node Z1 is as follows.
V Z1 = V C = V IN Formula (3.3)
V IN = I 0 · (r u + R L ) Equation (3.4)
In addition, the output voltage V out is as follows.
V out = I 0 · (2r u + R L) ··· formula (3.5)
From the equations (3.4) and (3.5), the following relationship holds in FIG. 8B.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 次いで、図8の(c)の状態について説明する。
        V=VIN=I     ・・・ 式(3.8)
 この状態でも式(3.5)が成り立つので、図8の(c)では、以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Next, the state shown in FIG. 8C will be described.
V B = V IN = I 0 R L (Equation 3.8)
Since the equation (3.5) is established even in this state, the following relationship is established in FIG.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 以上のとおり、従来例2では、式(3.2)、式(3.7)および式(3.10)が示すように、スイッチ部S70~S72の状態により負荷電流Iが変化する。その結果、従来例2は、スイッチ部S70~S72の状態に対して線形的な電圧調整が困難となる。即ち、図8の(a)の出力電圧Vouta、図8の(b)の出力電圧Voutbおよび図8の(c)の出力電圧Voutcの比は、式(3.1)、式(3.6)および式(3.9)から以下となる。
Figure JPOXMLDOC01-appb-M000020
As described above, in the conventional example 2, as indicated by the equations (3.2), (3.7), and (3.10), the load current I 0 varies depending on the states of the switch units S70 to S72. As a result, in Conventional Example 2, it is difficult to perform linear voltage adjustment with respect to the states of the switch units S70 to S72. That is, the ratios of the output voltage Vouta in FIG. 8A, the output voltage Voutb in FIG. 8B, and the output voltage Voutc in FIG. 8C are expressed by the equations (3.1) and (3.6). ) And formula (3.9),
Figure JPOXMLDOC01-appb-M000020
 この式(3.11)から、従来例2は、そのスイッチ部の状態を変えて電圧調整を行う場合にその調整幅を一定にできない。図9は、従来例2および本発明において、スイッチ部による調整状態として、スイッチ状態をデジタル値に対応させてオンオフさせた場合と出力電圧との関係を示す図である。縦軸は、調整の中心となる電圧を基準に正規化している。図9は、5階調の調整(-2~2までの5段階)を行う回路の場合を示し、従来例2については、図7に示すスイッチ部が、5個ある場合(S70、S71、S72、S73およびS74)を示している。図9に示されるように、従来例2の出力電圧は、スイッチ部による調整状態を示す横軸に対して湾曲した形に変化し、線形な調整が困難である。また、従来例2の出力電圧の線形性からの乖離は、抵抗R、抵抗rまたは階調数によって定まるもので、仮にスイッチ部のオン抵抗を大幅に低減させても改善できないことに留意が必要である。 From this equation (3.11), the conventional example 2 cannot make the adjustment range constant when performing voltage adjustment by changing the state of the switch section. FIG. 9 is a diagram showing the relationship between the output voltage and the case where the switch state is turned on / off corresponding to the digital value as the adjustment state by the switch unit in Conventional Example 2 and the present invention. The vertical axis is normalized based on the voltage that is the center of adjustment. FIG. 9 shows the case of a circuit that performs five gradation adjustments (5 steps from −2 to 2). In the conventional example 2, there are five switch parts shown in FIG. 7 (S70, S71, S72, S73 and S74). As shown in FIG. 9, the output voltage of Conventional Example 2 changes in a curved shape with respect to the horizontal axis indicating the adjustment state by the switch unit, and linear adjustment is difficult. In addition, the deviation from the linearity of the output voltage of Conventional Example 2 is determined by the resistance R L , the resistance ru, or the number of gradations, and it cannot be improved even if the on-resistance of the switch unit is significantly reduced. is required.
 次に、本発明では、線形な調整が容易であることを説明する。図1に示す電圧調整回路の基本構成では、例えば抵抗選択回路SEL1が選択されている場合には、電圧帰還のパスに設けた第2のスイッチ部S1fの働きで、スイッチ部と第2の抵抗Rs1とのノードZ1の電位VZ1が入力電圧VINと等しくなる。その結果、複数の抵抗選択回路のいずれの抵抗選択回路のスイッチ部がオンになり、オンとなった抵抗選択回路が備える第2の抵抗が選択されるかに拘らず、負荷電流Iに関する式(2.4)が成立する。
 ここで、本発明における各抵抗選択回路が備える第2の抵抗Rs(総称して、「Rs」と記す)の抵抗値を0、ru、2r、…として、その中からスイッチ部のオンにより第2の抵抗Rsの抵抗値を選択するように構成すると、式(2.5)から以下が得られる。
Figure JPOXMLDOC01-appb-M000021
 前述のように、本発明では、スイッチ部の状態に拘らず負荷電流Iに関する式(2.4)が成立する。よって式(3.12)より、
Figure JPOXMLDOC01-appb-M000022
Next, in the present invention, it will be described that linear adjustment is easy. In the basic configuration of the voltage adjustment circuit shown in FIG. 1, for example, when the resistance selection circuit SEL1 is selected, the switch unit and the second resistor are operated by the second switch unit S1f provided in the voltage feedback path. The potential V Z1 of the node Z1 with Rs1 becomes equal to the input voltage VIN . As a result, the switch unit of any one of the plurality of resistance selection circuits is turned on, and the expression relating to the load current I 0 regardless of whether the second resistance included in the turned-on resistance selection circuit is selected. (2.4) holds.
Here, the second resistor Rs (collectively referred to as "Rs") included in the resistor selection circuit of the present invention the resistance value of 0, r u, 2r u, as ..., ON of the switch portion among them If the configuration is such that the resistance value of the second resistor Rs is selected, the following is obtained from the equation (2.5).
Figure JPOXMLDOC01-appb-M000021
As described above, in the present invention, the expression (2.4) relating to the load current I 0 is established regardless of the state of the switch section. Therefore, from equation (3.12),
Figure JPOXMLDOC01-appb-M000022
 以上のように、本発明に係る電圧調整回路は、電圧の調整幅を一定にできる。即ち、調整用のスイッチ状態をデジタル値に対応させて線形な調整が可能となる。図9には、本発明におけるスイッチ部の調整状態と出力電圧との関係を、従来例2のものと併せて示す。図9に示す関係は、本発明が5階調の調整ができる構成、即ち5つの抵抗選択回路(SEL0、SEL1、…、SEL4)を備え、各抵抗選択回路の抵抗値が0Ω、ru、2r、…であると仮定した場合のものである。縦軸は、調整の中心となる電圧を基準に正規化し、図8の状態「-2」、「-1」、「0」、…が、式(3.13)のn=0、1、2、…に対応する。図9に示す関係から、従来例2は線形的な調整ができていないのに対して、本発明は線形性の良好な調整が可能である。従来例2が示す線形性からの乖離は調整上の誤差とみなされるので、本発明はより高精度な調整が可能となる。 As described above, the voltage adjustment circuit according to the present invention can make the voltage adjustment range constant. That is, linear adjustment is possible by making the adjustment switch state correspond to the digital value. FIG. 9 shows the relationship between the adjustment state of the switch unit and the output voltage in the present invention, together with that of Conventional Example 2. The relationship shown in FIG. 9 is that the present invention is capable of adjusting five gradations, that is, includes five resistance selection circuits (SEL0, SEL1,... SEL4), and each resistance selection circuit has a resistance value of 0Ω, ru , It is assumed that 2r u ,. The vertical axis is normalized with reference to the voltage at the center of adjustment, and the states “−2”, “−1”, “0”,... In FIG. Corresponding to 2,. From the relationship shown in FIG. 9, the conventional example 2 cannot be linearly adjusted, but the present invention can adjust the linearity well. Since the deviation from the linearity shown in the conventional example 2 is regarded as an error in adjustment, the present invention enables more accurate adjustment.
 なお、前述したように、本発明における可変抵抗部TR1の抵抗は、所定の抵抗値rの整数倍の値を持つとしていることに留意が必要である。即ち、本発明における可変抵抗部TR1が備える抵抗を所定の抵抗値rとするために、同一素材および同一形状の抵抗を直列または並列に接続して実現できるのである。これにより、面積効率の高い回路パターンレイアウトが可能で、製造バラツキや製造条件変動の影響を受けにくいものを実現することが容易である。さらに、本発明における負荷電流Iは、入力電圧と抵抗で定まり、スイッチ部の調整状態に依存しない所定のものとなる。従って、本発明は、スイッチ部の調整状態に拘らず所定の時間で安定した出力電圧を得ることが可能である。 As described above, the resistance of the variable resistor TR1 in the present invention, it should be noted that we have to have an integral multiple of the predetermined resistance value r u. That is, in order to make the variable resistance portion TR1 comprises resistance in the present invention with a predetermined resistance value r u, it can be realized by connecting a resistor of the same material and the same shape in series or in parallel. Thereby, a circuit pattern layout with high area efficiency is possible, and it is easy to realize a circuit pattern that is not easily affected by manufacturing variations and manufacturing condition variations. Furthermore, the load current I 0 in the present invention is determined by the input voltage and the resistance, and is a predetermined value that does not depend on the adjustment state of the switch section. Therefore, according to the present invention, a stable output voltage can be obtained in a predetermined time regardless of the adjustment state of the switch unit.
 図10は、本発明に係る電圧調整回路の実施例1の構成を示す図である。実施例1は、図10の(a)に示すように、電流制御部Amp、可変抵抗部TR10および第1の抵抗Rを備え、基準電圧VINを入力し、調整された出力電圧Voutを出力する。可変抵抗部TR10は、端子A、端子Bおよび帰還用の端子Cを備え、その接続態様は、可変抵抗部TR10の端子Aが電流制御部Ampの出力ならびに当該電圧調整回路の出力VOUTに、可変抵抗部TR10の端子Bが抵抗Rの一方の端子に、可変抵抗部TR10の端子Cが電流制御部Ampの帰還入力端子に、それぞれ接続される。また、端子A-B間の抵抗および端子A-C間の抵抗をデジタル制御できる機能を有する。 FIG. 10 is a diagram showing a configuration of the voltage adjustment circuit according to the first embodiment of the present invention. As illustrated in FIG. 10A, the first embodiment includes a current control unit Amp, a variable resistor unit TR10, and a first resistor RL, and receives a reference voltage VIN , and an adjusted output voltage V out. Is output. The variable resistance unit TR10 includes a terminal A, a terminal B, and a feedback terminal C. The connection mode is such that the terminal A of the variable resistance unit TR10 is connected to the output of the current control unit Amp and the output V OUT of the voltage adjusting circuit. The terminal B of the variable resistor unit TR10 is connected to one terminal of the resistor RL , and the terminal C of the variable resistor unit TR10 is connected to the feedback input terminal of the current controller Amp. Further, it has a function capable of digitally controlling the resistance between the terminals AB and the resistance between the terminals AC.
 実施例1における可変抵抗部TR10は、図10の(b)に示すように、構成要素として、抵抗R101(抵抗値r)、R102(抵抗値2r)、…、第1のスイッチ部S101、S102、…および第2のスイッチ部S101f、S102f、…から成る抵抗選択回路SEL101、SEL102、…を複数備える。 As shown in FIG. 10B, the variable resistor TR10 according to the first embodiment includes, as constituent elements, resistors R101 (resistance value r u ), R102 (resistance value 2r u ),..., First switch unit S101. , S102,... And second switch units S101f, S102f,..., And a plurality of resistance selection circuits SEL101, SEL102,.
 一つの抵抗選択回路SEL101内の接続態様は、抵抗R101の一端が当該可変抵抗部TR10の端子Aに、抵抗R101の他端が第1のスイッチ部S101の端子dに、第1のスイッチ部S101の端子sが可変抵抗部TR10の端子Bに接続され、また、抵抗R101の前記他端は第2のスイッチ部S101fの端子dに、第2のスイッチ部S101fの端子sは可変抵抗部TR10の帰還用の端子Cに接続される。また、第1のスイッチ部S101および第2のスイッチ部S101fは入力信号G101によって共通に連動して制御される。第1のスイッチ部S101がオンであれば第2のスイッチ部S101fもオン、第1のスイッチ部S101がオフであれば第2のスイッチ部S101fもオフとなる。第1および第2のスイッチ部には、図10の(c)に示すNMOSトランジスタが用いられる。図10の(c)における各記号g、dおよびsは、図10の(b)の各スイッチ部の端子g、dおよびsに対応する。 In the connection mode in one resistance selection circuit SEL101, one end of the resistor R101 is connected to the terminal A of the variable resistor unit TR10, the other end of the resistor R101 is connected to the terminal d of the first switch unit S101, and the first switch unit S101. Terminal s is connected to the terminal B of the variable resistor section TR10, the other end of the resistor R101 is connected to the terminal d of the second switch section S101f, and the terminal s of the second switch section S101f is connected to the terminal of the variable resistor section TR10. It is connected to the terminal C for feedback. The first switch unit S101 and the second switch unit S101f are controlled in conjunction with each other by the input signal G101. If the first switch unit S101 is on, the second switch unit S101f is also on, and if the first switch unit S101 is off, the second switch unit S101f is also off. NMOS transistors shown in FIG. 10C are used for the first and second switch sections. Symbols g, d, and s in FIG. 10C correspond to the terminals g, d, and s of each switch unit in FIG.
 実施例1において、入力基準電圧VINは、VDDと接地GND間であれば制約の必要はないところ、入力基準電圧VINは接地GNDに近い低い電圧であるとして説明する。この場合には、第1および第2のスイッチ部としてはNMOSトランジスタが好適である。仮に、PMOSトランジスタである場合には、端子Aの電圧がゲート電圧よりスレッショルド電圧|V|分高くしないとオンしない。よって、基準電圧VINが低くかつ端子Aの電圧もまた入力基準電圧VINと同様低く設定する場合には、PMOSトランジスタを用いることは困難となる。 In the first embodiment, the input reference voltage VIN does not need to be restricted as long as it is between V DD and the ground GND. However, the input reference voltage VIN is described as being a low voltage close to the ground GND. In this case, NMOS transistors are suitable as the first and second switch sections. If it is a PMOS transistor, the transistor does not turn on unless the voltage at the terminal A is higher than the gate voltage by the threshold voltage | V T |. Therefore, when the reference voltage VIN is low and the voltage at the terminal A is also set to be as low as the input reference voltage VIN , it is difficult to use a PMOS transistor.
 電流制御部Ampは、差動アンプOP1とPMOSトランジスタP1により構成される。差動アンプOP1の出力がPMOSトランジスタP1のゲートに接続され、PMOSトランジスタP1のドレインが当該電流制御部Ampの出力に接続される。差動アンプOP1としては、入力インピーダンスの十分高いものを用いることが望ましく、例えば、公知のカレントミラーアンプなどが用いられる。その差動アンプOP1の回路例を、図11の(a)に示す。 The current controller Amp is composed of a differential amplifier OP1 and a PMOS transistor P1. The output of the differential amplifier OP1 is connected to the gate of the PMOS transistor P1, and the drain of the PMOS transistor P1 is connected to the output of the current control unit Amp. As the differential amplifier OP1, it is desirable to use a sufficiently high input impedance. For example, a known current mirror amplifier is used. A circuit example of the differential amplifier OP1 is shown in FIG.
 また、本発明の電圧調整回路の適用に当たっては、前述のように、入力基準電圧VINを接地GNDに近い低い電圧とする場合がある。この場合には、図11の(b)に示す構成の差動アンプを用いることができる。回路構成としては、図11の(a)の差動アンプの入力対それぞれにレベルシフタが設けられる。レベルシフタとしては、図11の(b)に示すように、入力端子(IN)にゲートが接続されたPMOSトランジスタ(P113、P114)、および、このPMOSトランジスタ(P113、P114)へ電流を供給する電流源(IS111、IS112)で構成されるものを用いる。この回路構成においても、入力の直流抵抗が十分高い差動アンプが得られる。 In applying the voltage adjustment circuit of the present invention, as described above, the input reference voltage VIN may be a low voltage close to the ground GND. In this case, a differential amplifier having the configuration shown in FIG. 11B can be used. As a circuit configuration, a level shifter is provided for each input pair of the differential amplifier shown in FIG. As the level shifter, as shown in FIG. 11B, the PMOS transistors (P113, P114) whose gates are connected to the input terminals (IN), and currents for supplying current to the PMOS transistors (P113, P114) A source composed of sources (IS111, IS112) is used. Even in this circuit configuration, a differential amplifier having a sufficiently high input DC resistance can be obtained.
 次に、実施例1の動作態様について説明する。
 図10の(a)に示す電圧調整回路では、負荷電流Iが、可変抵抗部TR10の端子A-B間を通り、抵抗Rへと流れる。負荷電流Iは、差動アンプOP1とMOSトランジスタP1により制御される結果、ノードFの電圧Vと入力基準電圧VINは、差動アンプOP1の利得が十分高い条件下では等しくなる。差動アンプOP1の入力インピーダンスは十分高いので、図10の(b)に示す第2のスイッチ部S101f、S102fに流れる電流はほとんど無く、その電圧降下は0Vとみなすことができる。よって、ノードFの電圧Vは、抵抗選択回路SEL101においてオンとなったスイッチ部およびそのスイッチ部に接続される抵抗のノードZ101またはZ102における電圧VZ1またはVZ2と等しくなる。例えば、抵抗選択回路SEL101の第1および第2のスイッチ部S101およびS101fがオンであり、残る抵抗選択回路SEL102のスイッチ部がオフである場合には、抵抗R101および第2のスイッチ部S101fのノード電位VZ101は、電圧V即ち電圧VINに等しくなる。ここで、抵抗R101(抵抗値r)の電圧降下はr・Iとなり、出力電圧Voutは、電圧VIN(=V)と電圧降下r・Iの和(VIN+r・I)となる。この時、可変抵抗部TR10の端子A-B間および端子A-C間における、スイッチ部の抵抗を含まない理想的な抵抗値はrである。
Next, the operation mode of the first embodiment will be described.
In the voltage adjustment circuit shown in FIG. 10A, the load current I 0 flows between the terminals AB of the variable resistance unit TR10 and flows to the resistor RL . As a result of the load current I 0 being controlled by the differential amplifier OP1 and the MOS transistor P1, the voltage VF at the node F and the input reference voltage VIN are equal under the condition that the gain of the differential amplifier OP1 is sufficiently high. Since the input impedance of the differential amplifier OP1 is sufficiently high, almost no current flows through the second switch portions S101f and S102f shown in FIG. 10B, and the voltage drop can be regarded as 0V. Therefore, the voltage V F at the node F becomes equal to the voltage V Z1 or V Z2 at the node Z101 or Z102 of the switch unit turned on in the resistance selection circuit SEL101 and the resistor connected to the switch unit. For example, when the first and second switch units S101 and S101f of the resistance selection circuit SEL101 are on and the switch unit of the remaining resistance selection circuit SEL102 is off, the nodes of the resistor R101 and the second switch unit S101f potential V (Z101) is equal to the voltage V F i.e. voltage V iN. Here, the voltage drop r u · I 0 next to the resistor R101 (resistance value r u), the output voltage V out is the voltage V IN (= V F) and the voltage drop r u · I 0 of the sum (V IN + r u · I 0 ). At this time, between and between terminals A-C terminal A-B of the variable resistor TR10, ideal resistance value without the resistance of the switch unit is r u.
 以上のとおり、実施例1では、負荷電流Iの経路と異なる経路によって電圧調整回路の状態が差動アンプへ帰還されるので、出力電圧Voutおよび入力電圧VINの差分に、スイッチ部による電圧降下分が含まれないようにできる。なお、可変抵抗部TR10のスイッチ部を適宜オンオフすることにより、端子A-B間および端子A-C間の抵抗値を制御できるので、その電圧降下を変えることができる。例えば、第1のスイッチ部S102と第2のスイッチ部S102fがオンであり他のスイッチ部がオフである場合、実施例1の可変抵抗部TR10の端子A-B間および端子A-C間の抵抗値は2rとなり、電圧降下は2r・I、出力電圧Voutは電圧Vおよび電圧降下2rの和(V+2r・I)となる。このように、実施例1により、出力電圧Voutの調整が可能となる。 As described above, in the first embodiment, since the state of the voltage adjustment circuit is fed back to the differential amplifier through a path different from the path of the load current I 0 , the difference between the output voltage V out and the input voltage VIN is determined by the switch unit. The voltage drop can be excluded. Note that by appropriately turning on and off the switch portion of the variable resistor portion TR10, the resistance value between the terminals AB and the terminals AC can be controlled, so that the voltage drop can be changed. For example, when the first switch unit S102 and the second switch unit S102f are on and the other switch units are off, between the terminals AB and between the terminals AC of the variable resistor unit TR10 of the first embodiment. The resistance value is 2r u , the voltage drop is 2r u · I 0 , and the output voltage V out is the sum of the voltage V R and the voltage drop 2r u I 0 (V R + 2r u · I 0 ). As described above, according to the first embodiment, the output voltage Vout can be adjusted.
 表3に、実施例1におけるスイッチ部の状態と可変抵抗部TR10の抵抗との関係を示す。表3には、スイッチ部の抵抗値がrである場合の、可変抵抗部TR10の抵抗についても併せて記載した。表3における制御用デジタルコードの各要素は、各スイッチ部の制御信号に対応する。例えば、状態”a”では、制御信号G101およびG102は、それぞれ論理値”0”および“1”になり、論理値”1”となった第1および第2のスイッチ部S101、S102およびS101f、S102fがオン状態となるように制御される。表3に示すように、可変抵抗部TR10では、制御用デジタルコードで制御されるスイッチ群の状態によって種々の抵抗値が選択できる。なお、この制御用デジタルコードの生成に係る制御信号G101およびG102は、電圧調整回路制御用の処理部(図示せず)等において生成され供給されるものである。
Figure JPOXMLDOC01-appb-T000023
Table 3 shows the relationship between the state of the switch part and the resistance of the variable resistance part TR10 in Example 1. Table 3, when the resistance value of the switch portion is r N, and are also described for the resistance of the variable resistor TR10. Each element of the control digital code in Table 3 corresponds to a control signal of each switch unit. For example, in the state “a”, the control signals G101 and G102 have the logical values “0” and “1”, respectively, and the first and second switch units S101, S102, and S101f that have the logical value “1”, Control is performed so that S102f is turned on. As shown in Table 3, in the variable resistance unit TR10, various resistance values can be selected depending on the state of the switch group controlled by the control digital code. The control signals G101 and G102 relating to the generation of the control digital code are generated and supplied by a processing unit (not shown) for controlling the voltage adjustment circuit.
Figure JPOXMLDOC01-appb-T000023
 以上のように、実施例1は、先に示した基本構成と同様に、負荷電流Iが流れる経路上の第1のスイッチ部とは別に、電流が流れない差動アンプへの電圧帰還パス上にも第2のスイッチ部を設けたので、スイッチ部のオン抵抗を起因とする帰還電圧誤差を発生させない。従って、従来例1より誤差の少ない高精度な電圧調整回路が得られ、従来例2と比べより線形的な調整ができ、かつ出力電圧が所定時間で安定となる優れた電圧調整機能が得られる。また、実施例1における電流制御部Ampは、入力基準電圧VINが接地GNDに近い低い電圧である場合でも、入力の直流抵抗を十分高くできることから、帰還電圧誤差の少ない高精度な電圧調整回路を提供することができる。 As described above, in the first embodiment, the voltage feedback path to the differential amplifier in which no current flows, separately from the first switch unit on the path through which the load current I 0 flows, as in the basic configuration described above. Since the second switch unit is also provided on the top, no feedback voltage error caused by the on-resistance of the switch unit is generated. Therefore, a high-accuracy voltage adjustment circuit with less error than the conventional example 1 can be obtained, a linear adjustment can be performed as compared with the conventional example 2, and an excellent voltage adjustment function can be obtained in which the output voltage is stable for a predetermined time. . In addition, the current control unit Amp in the first embodiment can increase the DC resistance of the input sufficiently even when the input reference voltage VIN is a low voltage close to the ground GND. Can be provided.
 図12は、本発明の実施例2に係る電圧調整回路の構成として、実施例1と相違する回路構成部分である可変抵抗部の構成を示す回路図である。図12に示す構成は、図10の(b)に示す実施例1における可変抵抗部TR10を置き換えるもので、実施例1における可変抵抗部TR10を構成する2つの抵抗選択回路SEL101および102に加えて、0Ωの抵抗としての接続配線部Sを含む抵抗選択回路SEL100を追加したものである。ここで、接続配線部Sは、複数の単位回路を0Ωの抵抗として記述したもので、実際には、メタル等の十分低抵抗な配線材料で短絡されているものである。また、図10(b)に示す抵抗R101およびR102を、実施例2では、抵抗R121およびR122に置き換え、その抵抗値を同一の抵抗値2rとしている。なお、実施例2における可変抵抗部TR10の他の構成部分は、実施例1と同一の構成であるので、同一の構成部材には同じ記号を付与しその説明は略すこととする。 FIG. 12 is a circuit diagram illustrating a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjusting circuit according to the second embodiment of the present invention. The configuration shown in FIG. 12 replaces the variable resistance unit TR10 in the first embodiment shown in FIG. 10B, and in addition to the two resistance selection circuits SEL101 and SEL constituting the variable resistance unit TR10 in the first embodiment. , A resistance selection circuit SEL100 including a connection wiring portion S as a resistance of 0Ω is added. Here, the connection wiring portion S is a unit in which a plurality of unit circuits are described as a resistance of 0Ω, and is actually short-circuited with a sufficiently low resistance wiring material such as metal. Further, the resistors R101 and R102 shown in FIG. 10 (b), in Example 2, replacing the resistor R121 and R122, has a resistance value with the same resistance value 2r u. In addition, since the other component part of variable resistance part TR10 in Example 2 is the same structure as Example 1, the same symbol is provided to the same structural member and the description is abbreviate | omitted.
 実施例2は、可変抵抗部に対して、制御用デジタルコードの論理状態により、複数の抵抗選択回路(SEL100、101および102)におけるスイッチ部を個別または同時にオンオフするためのデコード機能を有する。図13は、このデコード機能を有する論理回路(デコーダ)の構成例を示す図である。表4に、その真理値表を示し、表5に、制御用デジタルコード、可変抵抗部の動作状態および抵抗値の関係を示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
In the second embodiment, the variable resistor unit has a decoding function for individually or simultaneously turning on / off the switch units in the plurality of resistor selection circuits (SELs 100, 101, and 102) according to the logic state of the control digital code. FIG. 13 is a diagram showing a configuration example of a logic circuit (decoder) having this decoding function. Table 4 shows the truth table, and Table 5 shows the relationship between the control digital code, the operating state of the variable resistor section, and the resistance value.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 次に、実施例2の動作態様について説明する。
 実施例2は、制御用デジタルコードが所定の状態である時に、可変抵抗部における複数の抵抗選択回路のスイッチ部が同時にオンする状態を提供する。例えば、表4および表5において、デコード前の入力コードC2およびC1が、それぞれ”1”および”0”である状態”b”の場合には、デコードされた出力コードG102、G101およびG100は、それぞれ”1”、”1”および”0”となる。この入力を受けて、図12に示す可変抵抗部の、第1のスイッチ部S101およびS102と、第2のスイッチ部S101fおよびS102fとが同時にオンする。その結果、負荷電流Iは抵抗R121およびR122の両方を流れ、可変抵抗部の端子A-B間ならびにA-C間の抵抗値は、スイッチ部の抵抗の無い理想的条件でrとなる。これは、共に抵抗値2rである抵抗R121およびR122の並列回路が構成されたことによる。
Next, the operation mode of the second embodiment will be described.
The second embodiment provides a state in which the switch units of a plurality of resistance selection circuits in the variable resistance unit are simultaneously turned on when the control digital code is in a predetermined state. For example, in Tables 4 and 5, when the input codes C2 and C1 before decoding are “1” and “0”, respectively, “b”, the decoded output codes G102, G101, and G100 are They are “1”, “1” and “0”, respectively. In response to this input, the first switch units S101 and S102 and the second switch units S101f and S102f of the variable resistance unit shown in FIG. 12 are simultaneously turned on. As a result, the load current I 0 flows through both resistors R121 and R122, the resistance value between and between A-C terminal A-B of the variable resistor becomes r u ideal conditions no resistance of the switch unit . This is because the parallel circuit of resistors R121 and R122 are both resistance 2r u configured.
 以上のように、実施例2においても、電圧調整回路の電圧状態は、負荷電流Iの流れる経路と異なる経路上の第2のスイッチ部S100f、S101fおよびS102fを介して差動アンプへ帰還されるので、実施例1と同様にスイッチ部の抵抗による誤差を低減できる。よって、実施例2は、実施例1と同様に、従来例1と比べて高い精度で電圧調整を行うことが可能であり、従来例2と比べても線形的でかつ所定時間で出力電圧が安定する優れた電圧調整機能を提供するものである。 As described above, also in Example 2, the voltage states of the voltage regulating circuit, the second switch portion S100f on different paths and flowing path load current I 0, is fed back to the differential amplifier via a S101f and S102f Therefore, the error due to the resistance of the switch portion can be reduced as in the first embodiment. Therefore, in the same way as in the first embodiment, the voltage adjustment in the second embodiment can be performed with higher accuracy than in the first conventional example, and the output voltage is linear in a predetermined time as compared with the second conventional example. It provides an excellent voltage regulation function that is stable.
 また、実施例2における可変抵抗部の抵抗R121およびR122は、0Ωの抵抗としての接続配線部Sを除き、全て同一の抵抗値のものを採用するので、同一材料、同一形状の抵抗素子を使うことができる。これにより、半導体集積回路においては面積効率の高い回路パターンレイアウトが可能となると共に、製造バラツキや製造条件変動の影響を受けにくい回路が得られる。 Further, the resistors R121 and R122 of the variable resistor portion in the second embodiment are all of the same resistance value except for the connection wiring portion S as a resistance of 0Ω, so that the resistance elements having the same material and the same shape are used. be able to. As a result, a circuit pattern layout with high area efficiency is possible in a semiconductor integrated circuit, and a circuit that is not easily affected by manufacturing variations and manufacturing condition fluctuations can be obtained.
 図14は、本発明の実施例3に係る電圧調整回路の構成として、実施例1と相違する回路構成部分である可変抵抗部の構成を示す回路図である。図14に示す構成は、図10の(b)に示す実施例1における可変抵抗部TR10を置き換えるもので、回路ブロック1および回路ブロック2の2つの回路ブロックにより可変抵抗部を構成するものである。 FIG. 14 is a circuit diagram showing a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjusting circuit according to the third embodiment of the present invention. The configuration shown in FIG. 14 replaces the variable resistance unit TR10 in the first embodiment shown in FIG. 10B, and the variable resistance unit is configured by two circuit blocks of the circuit block 1 and the circuit block 2. .
 回路ブロック1は、図12に示す実施例2における可変抵抗部と類似の構成であるので、実施例2の構成との相違点を説明する。回路ブロック1では、図12の可変抵抗部に端子D12を設け、この端子D12に抵抗R122、第1のスイッチ部S102および第2のスイッチ部S102fとのノードZ102を接続する。また、抵抗R121およびR122の抵抗値はrであり、図12の端子A、BおよびCが、それぞれ端子A12、B12およびC12に対応する。回路ブロック1の他の部分は、図12の可変抵抗部と同一である。 Since the circuit block 1 has a configuration similar to that of the variable resistance unit in the second embodiment shown in FIG. 12, differences from the configuration of the second embodiment will be described. In the circuit block 1, a terminal D12 is provided in the variable resistance unit of FIG. 12, and a node R102, a node Z102 of the first switch unit S102 and the second switch unit S102f is connected to the terminal D12. The resistance values of the resistors R121 and R122 are r u, the terminal A in FIG. 12, B and C, respectively corresponding to the terminal A12, B12 and C12. Other parts of the circuit block 1 are the same as those of the variable resistance unit of FIG.
 回路ブロック2は、複数の抵抗選択回路SEL143およびSEL144を備え、各抵抗選択回路SEL143、SEL144は、それぞれ、抵抗R143、R144、第1のスイッチ部S103、S104および第2のスイッチ部S103f、S104fから構成される。回路ブロック2内の接続態様は、抵抗R143、R144の一端が、端子A13に接続され、抵抗R143、R144の他端が、第1のスイッチ部S103、S104および第2のスイッチ部S103f、S104fのそれぞれの端子dに接続され、第1のスイッチ部S103、S104の端子sが、端子B13に接続され、第2のスイッチ部S103f、S104fの端子sが、端子C13に接続される。 The circuit block 2 includes a plurality of resistance selection circuits SEL143 and SEL144. Each of the resistance selection circuits SEL143 and SEL144 includes resistors R143 and R144, first switch units S103 and S104, and second switch units S103f and S104f, respectively. Composed. In the connection mode in the circuit block 2, one end of the resistors R143 and R144 is connected to the terminal A13, and the other end of the resistors R143 and R144 is connected to the first switch units S103 and S104 and the second switch units S103f and S104f. Connected to the respective terminals d, the terminals s of the first switch sections S103 and S104 are connected to the terminal B13, and the terminals s of the second switch sections S103f and S104f are connected to the terminal C13.
 また、回路ブロック1と回路ブロック2との接続態様は、回路ブロック2の端子A13が回路ブロック1の端子D12に接続され、回路ブロック1の端子A12が可変抵抗部の端子Aとなり、回路ブロック1の端子B12と回路ブロック2の端子B13が可変抵抗部の端子Bとなり、回路ブロック1の端子C12と回路ブロック2の端子C13が可変抵抗部の端子Cとなる。 The circuit block 1 and the circuit block 2 are connected in such a manner that the terminal A13 of the circuit block 2 is connected to the terminal D12 of the circuit block 1, and the terminal A12 of the circuit block 1 becomes the terminal A of the variable resistance unit. The terminal B12 of the circuit block 2 and the terminal B13 of the circuit block 2 become the terminal B of the variable resistance unit, and the terminal C12 of the circuit block 1 and the terminal C13 of the circuit block 2 become the terminal C of the variable resistance unit.
 次に、実施例3の動作態様について説明する。
 表6に、実施例3における可変抵抗部の動作状態と抵抗値の関係を示す。実施例3は、制御用デジタルコードの状態に応じて、負荷電流Iが、回路ブロック1のみを流れるパターンと、回路ブロック1から端子D12を介して回路ブロック2へと流れ回路ブロック1および2の双方を流れるパターンを提供する。
Figure JPOXMLDOC01-appb-T000026
Next, the operation mode of the third embodiment will be described.
Table 6 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 3. In the third embodiment, according to the state of the control digital code, the load current I 0 flows only through the circuit block 1 and flows from the circuit block 1 to the circuit block 2 via the terminal D12. Provide a pattern that flows through both.
Figure JPOXMLDOC01-appb-T000026
 例えば、表6に示す状態”e”においては、制御用デジタルコード[G104,G103,G102,G101,G100]が[10000]に設定され、この場合には、回路ブロック1の全てのスイッチ部はオフとなり、回路ブロック2の第1および第2のスイッチ部S104およびS104fがオンとなる。これにより、負荷電流Iは、回路ブロック1の端子A12(端子A)、抵抗R122および端子D12を通り、回路ブロック2の端子A13、抵抗R144、第1のスイッチ部S104および端子B13(端子B)を通る経路で流れる。この結果、理想条件での可変抵抗部の端子A-B間の等価抵抗値は、表6に示す2rとなる。そして、この状態での回路ブロック2のノードZ104の電圧が、第2のスイッチ部S104fおよび端子C13(端子C)を介して差動アンプOP1へ帰還される。 For example, in the state “e” shown in Table 6, the control digital code [G104, G103, G102, G101, G100] is set to [10000]. In this case, all the switch units of the circuit block 1 are It is turned off, and the first and second switch sections S104 and S104f of the circuit block 2 are turned on. As a result, the load current I 0 passes through the terminal A12 (terminal A), the resistor R122, and the terminal D12 of the circuit block 1, and passes through the terminal A13, the resistor R144, the first switch unit S104, and the terminal B13 (terminal B) of the circuit block 2. ). As a result, the equivalent resistance between the terminals A-B of the variable resistor in ideal conditions, the 2r u shown in Table 6. Then, the voltage of the node Z104 of the circuit block 2 in this state is fed back to the differential amplifier OP1 via the second switch unit S104f and the terminal C13 (terminal C).
 また、表6に示す状態”d”においては、制御用デジタルコード[G104,G103,G102,G101,G100]が[11000]に設定され、この場合には、回路ブロック1の全てのスイッチ部はオフとなり、回路ブロック2の全てのスイッチ部がオンとなる。これにより、負荷電流Iは、回路ブロック1では抵抗R122を通り、回路ブロック2では抵抗R143およびR144の両方(並列回路として)を通る。この結果、理想条件での可変抵抗部の端子A-B間の等価抵抗値は、1.5rとなる。
 なお、他の状態(”a”~”c”)については、表5に示す実施例2の場合(状態”a”~”c”)と同様である。ただし、抵抗R121およびR122の抵抗値rであるため、理想条件での可変抵抗部の端子A-B間の等価抵抗値は、状態”a”、”b”、”c”で、それぞれ0、0.5r、r(表5に示す値の1/2)となる。
In the state “d” shown in Table 6, the control digital code [G104, G103, G102, G101, G100] is set to [11000]. In this case, all the switch units of the circuit block 1 are It is turned off and all the switch parts of the circuit block 2 are turned on. As a result, the load current I 0 passes through the resistor R122 in the circuit block 1, and passes through both the resistors R143 and R144 (as a parallel circuit) in the circuit block 2. As a result, the equivalent resistance between the terminals A-B of the variable resistor in ideal conditions, the 1.5r u.
The other states (“a” to “c”) are the same as those in the second embodiment (states “a” to “c”) shown in Table 5. However, since the resistance value r u resistor R121 and R122, the equivalent resistance between the terminals A-B of the variable resistor in ideal conditions, a state "a", "b", "c", respectively 0 , 0.5 r u , r u (1/2 of the values shown in Table 5).
 以上のように、実施例3においても、差動アンプへの帰還経路上のスイッチ部に負荷電流Iは流れないため、先の実施例と同様に、出力電圧の誤差を小さくできる。また、表6に示す制御用デジタルコードで定まるいずれの状態(”a”~”e”)にあっても、負荷電流Iの経路および帰還経路のどちらにおいてもスイッチ部をただ一度通るだけの回路構成としているので、従来例のようにスイッチ部の抵抗が大きく影響することはない。 As described above, also in Example 3, since the switch portion of the feedback path to the differential amplifier load current I 0 does not flow, as in the previous embodiment, can reduce the error of the output voltage. Further, in any state (“a” to “e”) determined by the control digital code shown in Table 6, the switch part is passed only once in both the load current I 0 path and the feedback path. Since the circuit configuration is adopted, the resistance of the switch portion is not greatly affected unlike the conventional example.
 また、実施例3では、所定の抵抗選択回路における抵抗とスイッチ部のノードを端子に引き出して(図14では、端子D12)、別の回路ブロックと接続する形態を採用した。その結果、回路ブロックにおける抵抗のいくつかが複数の回路状態で使用される。例えば、抵抗R122は、回路状態“b”~”e”の4つの状態で負荷電流Iが流れる。 Further, in the third embodiment, a configuration is adopted in which a resistor in a predetermined resistance selection circuit and a node of the switch unit are drawn to a terminal (terminal D12 in FIG. 14) and connected to another circuit block. As a result, some of the resistors in the circuit block are used in multiple circuit states. For example, the load current I 0 flows through the resistor R122 in four states of circuit states “b” to “e”.
 以上のように、実施例3は、先の実施例と同様の効果として、従来例1と比べて高い精度で電圧調整を行うことが可能であり、従来例2と比べても線形的でかつ所定時間で出力電圧が安定する優れた電圧調整機能を提供するものである。また、0Ωの抵抗素子として示す接続配線部S以外の抵抗は同じ抵抗値にできるので、面積効率や、製造バラツキおよび製造条件変動に対する耐性の点でも有利である。 As described above, the third embodiment can perform the voltage adjustment with higher accuracy than the conventional example 1 as the same effect as the previous embodiment, and is more linear than the conventional example 2 and The present invention provides an excellent voltage adjustment function that stabilizes the output voltage in a predetermined time. In addition, since resistances other than the connection wiring portion S shown as a 0Ω resistance element can have the same resistance value, it is advantageous in terms of area efficiency, manufacturing variations, and resistance to manufacturing condition variations.
 さらに、実施例3は、独自の作用効果を奏するものである。即ち、回路ブロック内の抵抗のいくつかを、表6に示す複数の状態で共有して使用することにより、最小限の抵抗で所望の階調数を実現できる利点が得られる。例えば、実施例1により5階調の調整を行う場合には、抵抗値が0、r、2r、3r、4rなる5種類(0Ωと4種類)の抵抗(接続配線部を含む)を必要とし、また、製造バラツキを抑える観点から、一つの抵抗値rの抵抗のみを用いて構成する場合には、10個の抵抗が必要となる。ところが、実施例3では5階調の調整をおこなうために、抵抗値rの抵抗4個で充足することになり、半導体集積回路におけるスイッチ部に比べた抵抗の微細化の困難性に照らすと、抵抗数の低減は面積効率の向上に有効である。 Furthermore, Example 3 has an original effect. That is, by using some of the resistors in the circuit block in common in a plurality of states shown in Table 6, there is an advantage that a desired number of gradations can be realized with a minimum resistance. For example, in the case of adjusting the five gradations by Example 1 includes resistance 0, r u, 2r u, 3r u, a resistor (connection wiring portion 4r u becomes five (0 .OMEGA and four) ) requires, also, from the viewpoint of suppressing the production variation, when constructed using only the resistance of one resistor value r u, it is necessary to ten resistors. However, in order to adjust the five gradations in Example 3, will be satisfied by the resistance of four resistance values r u, in light of the difficulty of miniaturization of resistance as compared to the switch section of the semiconductor integrated circuit The reduction in the number of resistors is effective for improving the area efficiency.
 実施例4に係る電圧調整回路は、実施例3と同様に、電流制御部Ampと、第1の抵抗Rと、第2の抵抗を含む可変抵抗部を備え、これらは実施例3と同様の接続態様であるところ、可変抵抗部の内部構成が実施例3と異なる。図15は、本発明の実施例4に係る電圧調整回路の構成として、実施例3と相違する可変抵抗部の内部構成を示す回路図である。
 実施例4の可変抵抗部は、第1の抵抗選択回路SEL201および第2の抵抗選択回路SEL143を備える。
As in the third embodiment, the voltage adjustment circuit according to the fourth embodiment includes a current control unit Amp, a first resistor RL, and a variable resistor unit including a second resistor. These are the same as in the third embodiment. However, the internal configuration of the variable resistance portion is different from that of the third embodiment. FIG. 15 is a circuit diagram showing an internal configuration of a variable resistance portion different from that of the third embodiment as a configuration of the voltage adjusting circuit according to the fourth embodiment of the present invention.
The variable resistance unit according to the fourth embodiment includes a first resistance selection circuit SEL201 and a second resistance selection circuit SEL143.
 第1の抵抗選択回路SEL201は、第2の抵抗R122と、第1のスイッチ部S102および第2のスイッチ部S102fから構成される。第2の抵抗R122の一端は、可変抵抗部の端子Aを介して、実施例3と同様に、電流制御部Ampの出力および電圧調整回路の出力端子OUTに接続される。第2の抵抗122、第1のスイッチ部S102および第2のスイッチ部S102fの接続点Z102から配線が引き出され、第2の抵抗選択回路SEL143に接続される。 The first resistance selection circuit SEL201 includes a second resistor R122, a first switch unit S102, and a second switch unit S102f. One end of the second resistor R122 is connected to the output of the current control unit Amp and the output terminal OUT of the voltage adjustment circuit through the terminal A of the variable resistance unit, as in the third embodiment. A wiring is drawn from a connection point Z102 of the second resistor 122, the first switch unit S102, and the second switch unit S102f, and is connected to the second resistance selection circuit SEL143.
 第2の抵抗選択回路SEL143は、第2の抵抗R143と、第1のスイッチ部S103および第2のスイッチ部S103fから構成される。第2の抵抗143の一端は、第1の抵抗選択回路SEL201の接続点Z102に接続される。第2の抵抗R143の他端は、第1のスイッチ部S103の一端および第2のスイッチ部S103fの一端である接続点Z103に接続される。 The second resistance selection circuit SEL143 includes a second resistor R143, a first switch unit S103, and a second switch unit S103f. One end of the second resistor 143 is connected to the connection point Z102 of the first resistance selection circuit SEL201. The other end of the second resistor R143 is connected to a connection point Z103 which is one end of the first switch unit S103 and one end of the second switch unit S103f.
 また、抵抗選択回路SEL201の第1のスイッチ部S102および抵抗選択回路SEL143の第1のスイッチ部S103のそれぞれの一端は、可変抵抗部の端子Bに接続され、負過電流Iが第1の抵抗Rに流れることになる。さらに、抵抗選択回路SEL201の第2のスイッチ部S102fおよび抵抗選択回路SEL143の第2のスイッチ部S103fのそれぞれの一端は、可変抵抗部の端子Cに接続され、電流制御部Ampへ電圧帰還がなされることになる。 In addition, one end of each of the first switch unit S102 of the resistance selection circuit SEL201 and the first switch unit S103 of the resistance selection circuit SEL143 is connected to the terminal B of the variable resistance unit, and the negative overcurrent I0 is It will flow to the resistor RL . Further, one end of each of the second switch unit S102f of the resistance selection circuit SEL201 and the second switch unit S103f of the resistance selection circuit SEL143 is connected to the terminal C of the variable resistance unit, and voltage feedback is performed to the current control unit Amp. Will be.
 次に、実施例4の動作態様について説明する。
 実施例4は、回路接続が単純で制御が容易なものを提供する。表7に、実施例4における可変抵抗部の動作状態と抵抗値との関係を示す。なお、表7では、先と同様に、抵抗R122およびR143の抵抗値をrとし、各スイッチ部の抵抗をrとしている。表に示すように、制御用デジタルコードの各状態においてスイッチがONとなる抵抗選択回路はひとつとなるので、複雑なデコード回路が不要である。また、可変抵抗部を構成する第2の抵抗の数は、制御用デジタルコードの状態の数に等しい。
Figure JPOXMLDOC01-appb-T000027
Next, the operation mode of the fourth embodiment will be described.
The fourth embodiment provides a simple circuit connection and easy control. Table 7 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 4. In Table 7, similarly to the above, the resistance value of the resistor R122 and R143 and r u, and the resistance of each switch unit in the r N. As shown in the table, since there is only one resistance selection circuit in which the switch is turned on in each state of the control digital code, a complicated decoding circuit is unnecessary. Further, the number of second resistors constituting the variable resistance unit is equal to the number of states of the control digital code.
Figure JPOXMLDOC01-appb-T000027
 以上のとおり、実施例4においても、電流制御部Ampへの帰還経路上のスイッチ部を負荷電流I0が流れることはないので、先の実施例と同様に出力電圧の誤差を小さくできる。また、表7に示す制御用デジタルコードで定まるいずれの状態(“a”および“b”)にあっても、負荷電流Iはスイッチ部をただ一度通るだけの回路構成であるので、従来例のようにスイッチ部の抵抗が大きく影響することはない。さらに、実施例3と同様に、例えば抵抗R122を状態”a”と状態”b”の両方で共用していることから、抵抗の数を最少にできる。 As described above, also in the fourth embodiment, since the load current I0 does not flow through the switch unit on the feedback path to the current control unit Amp, the error of the output voltage can be reduced as in the previous embodiment. Further, in any state (“a” and “b”) determined by the control digital code shown in Table 7, the load current I 0 has a circuit configuration that only passes through the switch unit once. Like this, the resistance of the switch part does not have a great influence. Furthermore, since the resistor R122 is shared by both the state “a” and the state “b”, for example, as in the third embodiment, the number of resistors can be minimized.
 実施例5に係る電圧調整回路は、実施例4の可変抵抗部を構成する抵抗選択回路を、B端子方向(すなわち、第1の抵抗R側)にカスケードに段数を追加して可変抵抗部を構成し、他の部分(電流制御部Ampおよび第1の抵抗R)は実施例3や4と同様の構成とするものである。図16は、抵抗選択回路の段数を3段にした場合の回路構成を示し、図15に示す実施例4と同様の構成部分については、図15と同じ番号を付与して説明を略す。 In the voltage adjustment circuit according to the fifth embodiment, the resistance selection circuit configuring the variable resistance section of the fourth embodiment is added to the variable resistance section by adding the number of stages in a cascade in the B terminal direction (that is, the first resistance RL side). The other parts (current control unit Amp and first resistor R L ) are the same as those in the third and fourth embodiments. FIG. 16 shows a circuit configuration when the number of stages of the resistance selection circuit is three, and the same components as those in the fourth embodiment shown in FIG.
 実施例5に係る可変抵抗部は、具体的には、実施例4に係る可変抵抗部を構成する抵抗選択回路SEL201およびSEL143に対して、さらに抵抗選択回路SEL203を1段追加して構成される。抵抗選択回路SEL203は、電圧調整回路における第2の抵抗である抵抗R203、第1のスイッチ部S203および第2のスイッチ部S203fから構成される。抵抗R203の一端は、抵抗選択回路SEL143における抵抗R143と第1のスイッチ部S103および第2のスイッチ部S103fとの接続点Z103とに接続され、他端は、抵抗選択回路SEL203における第1のスイッチ部S203の一端および、第2のスイッチ部S203fの一端である接続点Z203に接続される。第1のスイッチ部S203の他端は可変抵抗部の端子Bに、第2のスイッチ部S203fの他端は可変抵抗部の端子Cにそれぞれ接続される。 Specifically, the variable resistance unit according to the fifth embodiment is configured by adding one more resistance selection circuit SEL203 to the resistance selection circuits SEL201 and SEL143 that configure the variable resistance unit according to the fourth embodiment. . The resistance selection circuit SEL203 includes a resistor R203, which is a second resistor in the voltage adjustment circuit, a first switch unit S203, and a second switch unit S203f. One end of the resistor R203 is connected to the connection point Z103 between the resistor R143 in the resistance selection circuit SEL143 and the first switch unit S103 and the second switch unit S103f, and the other end is a first switch in the resistance selection circuit SEL203. It is connected to one end of the part S203 and a connection point Z203 which is one end of the second switch part S203f. The other end of the first switch unit S203 is connected to the terminal B of the variable resistor unit, and the other end of the second switch unit S203f is connected to the terminal C of the variable resistor unit.
 次に、実施例5の動作態様について説明する。
 実施例5は、実施例4の階調数を拡張したものであり、表8に実施例5における可変抵抗部の動作状態と抵抗値との関係を示す。なお、表8では、先と同様に、抵抗R122、R143およびR203の抵抗値をrとし、各スイッチ部の抵抗をrとしている。実施例5も、実施例4と同様に、制御用デジタルコードの各状態でスイッチがONとなる抵抗選択回路は一つとなるので、複雑なデコード回路が不要である。また、可変抵抗部を構成する第2の抵抗の数は、制御用デジタルコードの状態の数に等しい。
Figure JPOXMLDOC01-appb-T000028
Next, the operation mode of the fifth embodiment will be described.
In the fifth embodiment, the number of gradations of the fourth embodiment is expanded, and Table 8 shows the relationship between the operation state of the variable resistance unit and the resistance value in the fifth embodiment. In Table 8, as before, the resistance value of the resistor R122, R143 and R203 and r u, and the resistance of each switch unit in the r N. In the fifth embodiment, as in the fourth embodiment, there is only one resistance selection circuit in which the switch is turned on in each state of the control digital code, so that a complicated decoding circuit is unnecessary. Further, the number of second resistors constituting the variable resistance unit is equal to the number of states of the control digital code.
Figure JPOXMLDOC01-appb-T000028
 また、実施例5も、実施例4で示した作用効果と同様の作用効果が得られるところ、実施例5は、図16に示すとおり、抵抗選択回路を増設し、繰り返しカスケードに接続していくことで階調数の拡張を図るものである。即ち、多階調のものを、同じ回路接続形態を繰り返す形で実現できることとなる。このため、高密度化を図るため、同一パターンを繰り返し配置することの多い集積回路設計には、好適な構成である。 Further, in the fifth embodiment, the same effects as the effects shown in the fourth embodiment can be obtained. In the fifth embodiment, as shown in FIG. 16, a resistance selection circuit is added and repeatedly connected to the cascade. In this way, the number of gradations is expanded. That is, a multi-gradation product can be realized by repeating the same circuit connection form. Therefore, this configuration is suitable for integrated circuit designs in which the same pattern is often repeatedly arranged to increase the density.
 なお、実施例5の可変抵抗部における第2の抵抗は、必要に応じて異なる値をもつものであってもよい。例えば、図16に示す抵抗R122を、実質0Ωの抵抗として働く接続配線部Sに替えてもよい。この場合、表8に示す各状態”a”,”b”,”c”に対応する可変抵抗部AB間の抵抗値RAB(理想値)は、それぞれ”0Ω”,”r”,”2r”になる。また、スイッチの抵抗rを含む抵抗の値は、それぞれ”0Ω+r”,”r+r”,”2r+r”になる。 Note that the second resistor in the variable resistor portion of the fifth embodiment may have a different value as necessary. For example, the resistor R122 shown in FIG. 16 may be replaced with a connection wiring portion S that works as a substantially 0Ω resistor. In this case, the resistance values R AB (ideal values) between the variable resistor portions AB corresponding to the states “a”, “b”, and “c” shown in Table 8 are “0Ω”, “r u ”, and “r u ”, respectively. 2r u ”. The value of resistance including a resistance r N switches, each "0Ω + r N", " r u + r N", becomes "2r u + r N".
 図17は、本発明の実施例6に係る電圧調整回路の構成として、実施例1と相違する回路構成部分である可変抵抗部の構成を示す回路図である。図17に示す構成は、図10の(b)に示す実施例1における可変抵抗部TR10を置き換えるもので、図14に示す実施例3における可変抵抗部を複数備え、それを単位として、第1および第2の可変抵抗部それぞれに適用して、以下のように接続するものである。即ち、第2の可変抵抗部の端子Aは固定抵抗部を介して、第1の可変抵抗部の端子Aと共通に接続され、可変抵抗部全体の端子Aとなる。また、第1の可変抵抗部の端子B、Cおよび第2の可変抵抗部の端子B、Cは、それぞれ共通に接続されて可変抵抗部全体の端子BおよびCとなる。ここで、固定抵抗部は、抵抗値rの抵抗を例えば4つ並列接続したものであり、合成抵抗値としてr/4を生成する。以上の構成により、後述するように、r/4=0.25r刻みで、可変抵抗部の抵抗値を調整することを可能にするものである。 FIG. 17 is a circuit diagram illustrating a configuration of a variable resistance unit, which is a circuit configuration part different from that of the first embodiment, as a configuration of the voltage adjustment circuit according to the sixth embodiment of the present invention. The configuration shown in FIG. 17 replaces the variable resistance portion TR10 in the first embodiment shown in FIG. 10B, and includes a plurality of variable resistance portions in the third embodiment shown in FIG. It is applied to each of the second variable resistance section and connected as follows. In other words, the terminal A 2 of the second variable resistor unit is connected in common with the terminal A 1 of the first variable resistor unit via the fixed resistor unit, and becomes the terminal A of the entire variable resistor unit. Further, the terminals B 1 and C 1 of the first variable resistance section and the terminals B 2 and C 2 of the second variable resistance section are connected in common to become terminals B and C of the entire variable resistance section. Here, the fixed resistance portion is a resistance of the resistance value r u which was connected in parallel for example, four, to generate a r u / 4 as the combined resistance value. With the above configuration, as described later, at r u /4=0.25r u increments, it is to allow to adjust the resistance of the variable resistor.
 次に、実施例6の動作態様について説明する。
 表9に、実施例6における可変抵抗部の動作状態と抵抗値の関係を示す。実施例6は、表9に示す9つの状態”a”~“i”を提供するもので、その内、状態”a”、“c”、“e”、“g”および“i”の5つの状態の場合には、負荷電流Iが第1の可変抵抗部のみを流れるように制御される。これら5つの状態では、第2の可変抵抗部へ入力される制御信号(制御用デジタルコード[GB104,GB103,GB102,GB101,GB100])は、全ビット”0”に設定され、第1の可変抵抗部に対して、実施例3の表6に示す状態”a”~“e”の各5つの状態と同一となるように制御される。
Figure JPOXMLDOC01-appb-T000029
Next, the operation mode of the sixth embodiment will be described.
Table 9 shows the relationship between the operating state of the variable resistance unit and the resistance value in Example 6. The sixth embodiment provides the nine states “a” to “i” shown in Table 9, among which five of the states “a”, “c”, “e”, “g”, and “i” are provided. In the case of one state, the load current I 0 is controlled to flow only through the first variable resistance unit. In these five states, the control signal (control digital code [GB104, GB103, GB102, GB101, GB100]) input to the second variable resistor section is set to all bits “0”, and the first variable The resistance portion is controlled to be the same as each of the five states “a” to “e” shown in Table 6 of the third embodiment.
Figure JPOXMLDOC01-appb-T000029
 また、表9に示す状態”b”、“d”、“f”および“h”の4つの状態の場合には、負荷電流Iが第2の可変抵抗部を流れるように制御される。これら4つの状態では、第1の可変抵抗部へ入力される制御信号(制御用デジタルコード[GA104,GA103,GA102,GA101,GA100])は、全ビット”0”に設定され、第2の可変抵抗部に対して、は実施例3の表6に示す回路状態”a”~“d”の各4つの状態と同一なるように制御される。 In the case of the four states “b”, “d”, “f”, and “h” shown in Table 9, the load current I 0 is controlled to flow through the second variable resistance unit. In these four states, the control signal (control digital code [GA104, GA103, GA102, GA101, GA100]) input to the first variable resistor section is set to all bits “0”, and the second variable The resistance section is controlled to be the same as each of the four states of circuit states “a” to “d” shown in Table 6 of the third embodiment.
 実施例6における可変抵抗部においては、表9に示す第1および第2の制御信号の組み合わせにより、可変抵抗部の端子A-B間および端子A-C間の抵抗値を、0.25r刻みで調整できることになる。なお、可変抵抗部の抵抗を調整することにより、出力電圧Voutが調整される原理については、先に示した各実施例と同じである。
 また、以上では、実施例6を、実施例3における可変抵抗部を第1および第2の可変抵抗部にそれぞれ適用して、可変抵抗部全体の抵抗値を、0.25r刻みで調整できる構成として示したが、この構成に限定されるものではない。例えば、固定抵抗部を設けることなく、第1および第2の可変抵抗部から得られる各抵抗値を適宜に組み合わせることにより、または、第1および第2の可変抵抗部として、先の実施例1または実施例2における可変抵抗部を適用することにより、可変抵抗部全体の抵抗値を異なる刻み値で調整できるようにすることも可能である。
In the variable resistance unit according to the sixth embodiment, the resistance value between the terminals AB and the terminal AC of the variable resistance unit is set to 0.25 r u by the combination of the first and second control signals shown in Table 9. It can be adjusted in steps. Note that the principle of adjusting the output voltage Vout by adjusting the resistance of the variable resistance unit is the same as that of each of the embodiments described above.
In the above, the sixth embodiment, by applying respectively the variable resistor portion in the embodiment 3 in the first and second variable resistor, the resistance value of the entire variable resistor can be adjusted in 0.25 R u increments Although shown as a configuration, it is not limited to this configuration. For example, the first embodiment can be realized by appropriately combining the resistance values obtained from the first and second variable resistor portions without providing the fixed resistor portion, or as the first and second variable resistor portions. Alternatively, by applying the variable resistance unit in the second embodiment, it is possible to adjust the resistance value of the entire variable resistance unit with different step values.
 以上のように、実施例6の第1および第2の可変抵抗部の各々は、先の実施例と同様の構成であるので、帰還経路上のスイッチ部に負荷電流Iが流れることがない。そのため、従来例1と比べて出力電圧を速やかにかつ高精度に安定させることが可能となり、従来例2と比べても線形性の優れた電圧調整機能を提供するものである。また、電圧調整の階調数の増加および電圧調整の分解能の細分化に対応させることができる。 As described above, since each of the first and second variable resistance units of the sixth embodiment has the same configuration as that of the previous embodiment, the load current I 0 does not flow through the switch unit on the feedback path. . Therefore, it is possible to stabilize the output voltage quickly and with high accuracy as compared with Conventional Example 1, and provide a voltage adjustment function having excellent linearity as compared with Conventional Example 2. In addition, it is possible to cope with an increase in the number of gradations for voltage adjustment and subdivision of resolution for voltage adjustment.
 図18は、本発明の実施例7に係る電圧調整回路の構成を示す図である。図18の(a)は、実施例7の全体構成図であり、図1に示す本発明に係る電圧調整回路の基本構成における可変抵抗部TR1または図10の(a)に示す実施例1における可変抵抗部TR10に替えて、可変抵抗部TR160を採用したものである。この可変抵抗部TR160は、図1または図10の(a)に示す端子Bに替えて、端子B1およびB2の複数の端子を設け、端子B1およびB2をそれぞれ第1の抵抗RL1およびRL2に接続する。なお、図18では、端子Bに係る端子群は2つであるが、3つ以上に拡張することも可能であり、それら各々に第1の抵抗を接続することになる。なお、電圧調整回路の他の部分の構成は、図1に示す基本構成、または図10の(a)に示す実施例1と同様である。 FIG. 18 is a diagram illustrating the configuration of the voltage regulator circuit according to the seventh embodiment of the present invention. 18A is an overall configuration diagram of the seventh embodiment. In FIG. 18, the variable resistor TR1 in the basic configuration of the voltage regulator circuit according to the present invention shown in FIG. 1 or the first embodiment shown in FIG. Instead of the variable resistance part TR10, a variable resistance part TR160 is adopted. The variable resistance unit TR160 is provided with a plurality of terminals B1 and B2 instead of the terminal B shown in FIG. 1 or FIG. 10A, and the terminals B1 and B2 are respectively connected to the first resistors R L1 and R L2. Connect to. In FIG. 18, the number of terminal groups related to the terminal B is two, but the number of terminals can be expanded to three or more, and a first resistor is connected to each of them. The configuration of other parts of the voltage adjustment circuit is the same as the basic configuration shown in FIG. 1 or the first embodiment shown in FIG.
 図18の(b)は、実施例7における可変抵抗部の部分的な回路図である。図12に示す実施例2における可変抵抗部の構成との相違点を中心に説明する。実施例7は、可変抵抗部の抵抗や接続配線部ごとに設ける第1のスイッチ部を、複数のスイッチ部から成るスイッチ部群に拡張したものである。
 例えば、図18の(b)に示すように、抵抗選択回路SEL160のノードZ100および抵抗選択回路SEL161のノードZ101の各々に、第1のスイッチ部群を接続する。ノードZ100には、第1のスイッチ部群S100aおよびS100bの各端子dが、ノードZ101には、第1のスイッチ部群S101aおよびS101bの各端子dが、それぞれ接続される。また、第1のスイッチ部群のS100aおよびS101aの各端子sが、可変抵抗部の端子B1に、第1のスイッチ部群のS100bおよびS101bの各端子sが、可変抵抗部の端子B2に、それぞれ接続される。そして、第1のスイッチ部群のS100aおよびS101aは、制御信号G100aおよびG101aにより、第1のスイッチ部群のS100bおよびS101bは、制御信号G100bおよびG101bにより、それぞれ制御される。これらの制御信号が”1”である時に、対応するスイッチ部群はオンとなる。可変抵抗部の他の部分の構成は、図12に示す実施例2と同様である(ただし、第2の抵抗の抵抗値はr)。
FIG. 18B is a partial circuit diagram of the variable resistance unit in the seventh embodiment. The description will focus on the differences from the configuration of the variable resistance portion in the second embodiment shown in FIG. In the seventh embodiment, the first switch section provided for each resistance of the variable resistance section and each connection wiring section is expanded to a switch section group including a plurality of switch sections.
For example, as shown in FIG. 18B, the first switch section group is connected to each of the node Z100 of the resistance selection circuit SEL160 and the node Z101 of the resistance selection circuit SEL161. Each terminal d of the first switch unit groups S100a and S100b is connected to the node Z100, and each terminal d of the first switch unit groups S101a and S101b is connected to the node Z101. Also, the terminals s of S100a and S101a of the first switch section group are connected to the terminal B1 of the variable resistance section, and the terminals s of S100b and S101b of the first switch section group are connected to the terminal B2 of the variable resistance section. Each is connected. Then, S100a and S101a of the first switch unit group are controlled by control signals G100a and G101a, and S100b and S101b of the first switch unit group are controlled by control signals G100b and G101b, respectively. When these control signals are “1”, the corresponding switch unit group is turned on. The configuration of the other part of the variable resistance unit is the same as that of the second embodiment shown in FIG. 12 (however, the resistance value of the second resistor is r u ).
 また、以上の実施例7の回路構成の説明では、図12に示す実施例2における可変抵抗部を拡張して構成する例を示したところ、図18の(a)に示す可変抵抗部TR160に、先の実施例1、3および4における可変抵抗部を適用することも可能である。即ち、それぞれの可変抵抗部の端子Bを複数(B1およびB2)にしてそれぞれに第1の抵抗を接続し、また、複数の端子B(B1およびB2)にそれぞれ接続する第1のスイッチ部を第1のスイッチ部群として、実施例7の回路構成に拡張することができる。これにより、複数種類の第1の抵抗を選択することを可能にし、選択した第1の抵抗ごとに同じ階調数の電圧調整を行うことができる。 Further, in the above description of the circuit configuration of the seventh embodiment, an example in which the variable resistance portion in the second embodiment shown in FIG. 12 is expanded and configured is shown. In the variable resistance portion TR160 shown in FIG. It is also possible to apply the variable resistance portion in the first, third, and fourth embodiments. That is, a plurality of (B1 and B2) terminals B of each variable resistance unit are connected to the first resistor, and a first switch unit is connected to each of the plurality of terminals B (B1 and B2). The first switch section group can be expanded to the circuit configuration of the seventh embodiment. Thereby, it is possible to select a plurality of types of first resistors, and voltage adjustment with the same number of gradations can be performed for each selected first resistor.
 次に、実施例7の動作態様について説明する。
 実施例7では、負荷電流Iが、抵抗RL1またはRL2のいずれかを選択的に流れるように制御される。抵抗RL1が選択される場合は、制御信号G100bおよびG101bは全て”0”に設定され、制御信号G100およびG101と制御信号G100aおよびG101aのそれぞれが同一の論理値に設定される。即ち、G100=G100a、G101=G101aに設定される。他方、抵抗RL2が選択される場合は、制御信号G100aおよびG101aは全て”0”に設定され、制御信号G100およびG101と制御信号G100bおよびG101bのそれぞれが同一の論理値に設定される。即ち、G100=G100b、G101=G101bに設定される。ここで、可変抵抗部の抵抗値と制御信号G100およびG101との関係は、第1の抵抗RL1またはRL2のいずれが選択されるかに関与しない。実施例7は、実施例1の可変抵抗部を先に述べたように拡張したもので、抵抗値と制御信号の関係は表3と同一となる。即ち、G100=0、G101=1およびG102=0であれば、可変抵抗部の抵抗値はrとなる。また、可変抵抗部の抵抗値と出力電圧との関係は、実施例1の説明における式(4)~式(11)のRを、適宜選択された第1の抵抗に合わせてRL1またはRL2のいずれかに置き換えて等価である。このように、実施例7においても、制御信号によって可変抵抗部の抵抗値を変更することができる。
Next, the operation mode of the seventh embodiment will be described.
In the seventh embodiment, the load current I 0 is controlled so as to selectively flow through either the resistor R L1 or R L2 . If the resistance R L1 is selected, the control signal G100b and G101b are all set to "0", respective control signals G100 and G101 and the control signal G100a and G101a are set to the same logic value. That is, G100 = G100a and G101 = G101a are set. On the other hand, when the resistance R L2 is selected, the control signal G100a and G101a are all set to "0", respective control signals G100 and G101 and the control signal G100b and G101b are set to the same logic value. That is, G100 = G100b and G101 = G101b are set. Here, the relationship between the resistance value of the variable resistance unit and the control signals G100 and G101 does not relate to which of the first resistors R L1 and R L2 is selected. In the seventh embodiment, the variable resistance portion of the first embodiment is expanded as described above, and the relationship between the resistance value and the control signal is the same as that in Table 3. That is, if G100 = 0, G101 = 1 and G102 = 0, the resistance value of the variable resistor becomes r u. In addition, the relationship between the resistance value of the variable resistor section and the output voltage is determined by matching R L in the expressions (4) to (11) in the description of the first embodiment with R L1 or It is equivalent to replacing any of R L2 . Thus, also in Example 7, the resistance value of the variable resistance unit can be changed by the control signal.
 以上のように、実施例7においても、帰還経路上の第2のスイッチ部S100f、S101f、…に負荷電流Iが流れることはない。よって、実施例7は、先の実施例1で示した作用効果を奏するもので、加えて、可変抵抗部に接続される第1の抵抗の抵抗値を変更できる。よって、実施例1と比較して、より柔軟で自由度の高い電圧調整が可能となる。また、実施例2~4における可変抵抗部を拡張して実施例7の回路構成とする場合にも、それぞれが奏する効果に加えて、より柔軟で自由度の高い電圧調整が可能になる。 As described above, also in the seventh embodiment, the load current I 0 does not flow through the second switch units S100f, S101f,... On the feedback path. Therefore, Example 7 has the effect shown in previous Example 1, and can change the resistance value of the 1st resistance connected to a variable resistance part in addition. Therefore, as compared with the first embodiment, voltage adjustment with higher flexibility and higher flexibility is possible. Further, when the variable resistor section in the second to fourth embodiments is expanded to have the circuit configuration of the seventh embodiment, in addition to the effects exhibited by each, it is possible to perform more flexible and flexible voltage adjustment.
 本発明の実施例8に係る電圧調整回路は、先に述べた可変抵抗部を構成する第1のスイッチ部および第2のスイッチ部として、図19の(a)に示す構成を有するスイッチ回路を採用するものである。即ち、スイッチ回路は、NMOSトランジスタN171、PMOSトランジスタP171およびインバータINVで構成される。NMOSトランジスタN171のドレインとPMOSトランジスタP171のソースが端子dに、NMOSトランジスタN171のソースとPMOSトランジスタP171のドレインが端子sに、それぞれ接続される。NMOSトランジスタN171のゲートとインバータINVの入力が端子gに、PMOSトランジスタP171のゲートがインバータINVの出力に、それぞれ接続される。また、NMOSトランジスタN171の基板は接地GNDに、PMOSトランジスタP171の基板はVDDに接続される。なお、図19に示す端子d、sおよびgは、先に述べた各実施例におけるスイッチ部の記号d、sおよびgに対応して接続される。 The voltage adjustment circuit according to the eighth embodiment of the present invention includes a switch circuit having the configuration shown in FIG. 19A as the first switch unit and the second switch unit configuring the variable resistor unit described above. Adopted. That is, the switch circuit includes an NMOS transistor N171, a PMOS transistor P171, and an inverter INV. The drain of the NMOS transistor N171 and the source of the PMOS transistor P171 are connected to the terminal d, and the source of the NMOS transistor N171 and the drain of the PMOS transistor P171 are connected to the terminal s. The gate of the NMOS transistor N171 and the input of the inverter INV are connected to the terminal g, and the gate of the PMOS transistor P171 is connected to the output of the inverter INV. Further, the substrate of the NMOS transistor N171 is connected to the ground GND, and the substrate of the PMOS transistor P171 is connected to VDD . Note that the terminals d, s, and g shown in FIG. 19 are connected corresponding to the symbols d, s, and g of the switch portion in each of the embodiments described above.
 次に、実施例8の動作態様について説明する。
 入力基準電圧VINが低い電圧である場合には、第1のスイッチ部および第2のスイッチ部にNMOSトランジスタを用いることは有効である。ところが、プロセス変動や使用温度が高温である等の理由で、入力基準電圧VINが上昇したり、VDDが低下すると、NMOSトランジスタのゲート・ソース電圧が小さくなる。このゲート・ソース電圧がV以下まで小さくなると、NMOSトランジスタはもはやオン状態を保持できずに、回路動作が不可となる場合がある。実施例8は、入力基準電圧VINの上昇やVDDの低下等が発生してNMOSトランジスタがオフする場合でも、代わってPMOSトランジスタがオン状態となるように設計することで、より広い電圧条件で安定した動作を可能にする。
 また、実施例8においても、前述したスイッチ回路をスイッチ部として構成する可変抵抗部は、その回路トポロジー自体は同じであるので、帰還用の第2のスイッチ部に負荷電流Iが流れることはない。従って、前述した各実施例が奏する作用効果に変更はない。
Next, the operation mode of the eighth embodiment will be described.
When the input reference voltage VIN is a low voltage, it is effective to use NMOS transistors for the first switch portion and the second switch portion. However, when the input reference voltage VIN rises or V DD falls due to process fluctuations or a high use temperature, the gate-source voltage of the NMOS transistor becomes small. When the gate-source voltage decreases to VT or less, the NMOS transistor can no longer hold the on state, and circuit operation may be disabled. In the eighth embodiment, even when the input reference voltage VIN is increased or the V DD is decreased and the NMOS transistor is turned off, the PMOS transistor is designed to be turned on instead. Enables stable operation.
Also in the eighth embodiment, since the variable resistor section that constitutes the switch circuit described above as the switch section has the same circuit topology itself, the load current I 0 does not flow through the second switch section for feedback. Absent. Therefore, there is no change in the function and effect exhibited by each of the embodiments described above.
 本発明の実施例9に係る電圧調整回路は、先に述べた可変抵抗部を構成する第1のスイッチ部および第2のスイッチ部として、図19の(b)に示すNMOSトランジスタN172を採用するものである。このNMOSトランジスタN172のドレインd、ゲートgおよびソースsが、各スイッチ部の各端子として前述したように接続され、NMOSトランジスタN172の基板がソースsに接続される。 The voltage regulator circuit according to the ninth embodiment of the present invention employs the NMOS transistor N172 shown in FIG. 19B as the first switch section and the second switch section that constitute the variable resistor section described above. Is. The drain d, gate g, and source s of the NMOS transistor N172 are connected as described above as the respective terminals of each switch unit, and the substrate of the NMOS transistor N172 is connected to the source s.
 実施例9では、入力基準電圧VINが印加されるNMOSトランジスタN172のソース電位は常に基板電位と等しい。よって、入力基準電圧VINが上昇することでトランジスタのVが上昇しトランジスタの等価抵抗が上昇する、いわゆるバックバイアス効果が発生しない。その結果、NMOSトランジスタN172の基板を接地GNDに接続する場合よりも、広い範囲の入力基準電圧VINに亘り、また、より低いVDDの条件下で電圧調整を行うことが可能である。ただし、実施例9では、動作可能な入力基準電圧VINと電源電圧VDDの範囲は、実施例8と比べてやや狭くなるが、反面、各スイッチ部の構成素子数が少ないので面積効率において優れたものとなる。
 また、実施例9においても、前述したNMOSトランジスタをスイッチ部として構成する可変抵抗部は、その回路トポロジー自体は同じであるので、帰還用の第2のスイッチ部に負荷電流Iが流れることはない。従って、前述した各実施例が奏する作用効果に変更はない。
In the ninth embodiment, the source potential of the NMOS transistor N172 to which the input reference voltage VIN is applied is always equal to the substrate potential. Therefore, the input reference voltage V IN is the equivalent resistance of the V T increases the transistor of the transistor is increased by increasing the so-called back bias effect does not occur. As a result, it is possible to perform voltage adjustment over a wider range of the input reference voltage VIN and under a lower VDD condition than when the substrate of the NMOS transistor N172 is connected to the ground GND. However, in the ninth embodiment, the range of the operable input reference voltage VIN and the power supply voltage V DD is slightly narrower than that in the eighth embodiment, but on the other hand, the area efficiency is reduced because the number of constituent elements of each switch unit is small. It will be excellent.
Also in the ninth embodiment, since the circuit topology itself is the same in the variable resistor portion configured by using the NMOS transistor as a switch portion, the load current I 0 does not flow through the second switch portion for feedback. Absent. Therefore, there is no change in the function and effect exhibited by each of the embodiments described above.
 本発明の実施例10に係る電圧調整回路は、先に述べた可変抵抗部を構成する第1のスイッチ部および第2のスイッチ部として、シリコン基板表面に対して縦方向にチャネルを形成した縦型MOSトランジスタを採用したものである。図20は、実施例10として採用する縦型MOSトランジスタを示し、図20の(a)は、縦型MOSトランジスタの構造を示す模式図で、図20の(b)は、縦型MOSトランジスタの断面図である。 The voltage adjustment circuit according to the tenth embodiment of the present invention is a vertical circuit in which a channel is formed in the vertical direction with respect to the surface of the silicon substrate as the first switch unit and the second switch unit constituting the variable resistor unit described above. A type MOS transistor is employed. FIG. 20 shows a vertical MOS transistor employed as Example 10, FIG. 20 (a) is a schematic diagram showing the structure of the vertical MOS transistor, and FIG. 20 (b) shows a vertical MOS transistor. It is sectional drawing.
 縦型MOSトランジスタは、ソースからドレインに至るチャネルがシリコン基板表面に対して縦方向に形成され、チャネルは酸化膜SiOを介してゲート電極に囲まれる構造である。これにより、チャネルの中心は基板から完全に絶縁される構造となる。この構造により、縦型MOSトランジスタもまた、前述したバックバイアス効果を発生させない。即ち、そのソース電位が上昇してもオン抵抗が大きくなることがない。よって、実施例9と同様に広い範囲の入力基準電圧VINに亘り、また、より低い電源電圧VDDの条件下で動作が可能となる。 The vertical MOS transistor has a structure in which a channel from the source to the drain is formed in the vertical direction with respect to the surface of the silicon substrate, and the channel is surrounded by the gate electrode through the oxide film SiO 2 . As a result, the center of the channel is completely insulated from the substrate. With this structure, the vertical MOS transistor also does not generate the back bias effect described above. That is, the on-resistance does not increase even when the source potential is increased. Therefore, as in the ninth embodiment, the operation can be performed over a wide range of the input reference voltage VIN and under the condition of the lower power supply voltage V DD .
 図20の(c)に、縦型MOSトランジスタN180の電極と本発明における可変抵抗部における各スイッチ部の各端子との対応を示す。縦型MOSトランジスタのドレイン、ソースおよびゲートが、端子d、sおよびgに対応する。なお、縦型MOSトランジスタには、基板電極が無い。 FIG. 20 (c) shows the correspondence between the electrodes of the vertical MOS transistor N180 and the terminals of the switch sections in the variable resistance section of the present invention. The drain, source and gate of the vertical MOS transistor correspond to the terminals d, s and g. Note that the vertical MOS transistor has no substrate electrode.
 以上のように、縦型MOSトランジスタはバックバイアス効果を発生させないので、実施例10を採用した電圧調整回路は、実施例9と同様に広い範囲の入力基準電圧VINに亘り、また、より低い電源電圧VDDの条件下で電圧調整を行うことが可能である。また、実施例10として採用する縦型MOSトランジスタには、基板電極が存在しないため、実施例8とは異なり、異なるMOSトランジスタの基板電極同士を電気的に分離するために、トランジスタ間で大きな距離を取るといったことが不要となる。それ故に、先に述べた各実施例よりも面積効率の優れた電圧調整回路を提供することができる。
 また、実施例10においても、縦型MOSトランジスタをスイッチ部として構成する可変抵抗部は、その回路トポロジー自体は同じであるので、帰還用の各スイッチ部に負荷電流Iが流れることはない。従って、前述した各実施例が奏する作用効果に変更はない。
As described above, since the vertical MOS transistor does not generate the back bias effect, the voltage adjustment circuit employing the tenth embodiment extends over a wide range of the input reference voltage VIN as in the ninth embodiment and is lower. It is possible to adjust the voltage under the condition of the power supply voltage V DD . Further, since the vertical MOS transistor employed as the tenth embodiment has no substrate electrode, unlike the eighth embodiment, a large distance is required between the transistors in order to electrically separate the substrate electrodes of different MOS transistors. It becomes unnecessary to take. Therefore, it is possible to provide a voltage regulator circuit that is more area efficient than the above-described embodiments.
Also in the tenth embodiment, since the circuit topology itself is the same for the variable resistor portion configured with the vertical MOS transistor as the switch portion, the load current I 0 does not flow through each switch portion for feedback. Therefore, there is no change in the function and effect exhibited by each of the embodiments described above.
 なお、本発明は、前述した各実施例に限定されるものではなく、様々な変形例も含まれる。例えば、電流制御部Ampを構成するPMOSトランジスタP1と可変抵抗部との間、または、可変抵抗部と第1の抵抗との間に、別途抵抗やダイオードなどを挿入することも可能である。これにより、所望の出力電圧を得るための高精度な電圧調整を図ることが可能となる。また、前述した回路構成に用いる各MOSトランジスタについて、その極性を入れ替えて、VDDを接地GNDに、接地GNDをVDDに入れ替えることも可能である。以上の変形例においても、本発明の重要なポイントである、電流制御部Amp(差動アンプOP1)の入力へ帰還する経路上のスイッチ部に負荷電流が流れない点を変更するものではないので、前述した各実施例が奏する作用効果に変更はない。 Note that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, it is possible to insert a resistor, a diode, or the like between the PMOS transistor P1 constituting the current control unit Amp and the variable resistor unit, or between the variable resistor unit and the first resistor. As a result, it is possible to achieve highly accurate voltage adjustment for obtaining a desired output voltage. In addition, the polarity of each MOS transistor used in the circuit configuration described above can be switched so that V DD is replaced with ground GND and ground GND is replaced with V DD . Also in the above modification, the point that the load current does not flow through the switch part on the path returning to the input of the current control part Amp (differential amplifier OP1), which is an important point of the present invention, is not changed. There is no change in the operational effects of the above-described embodiments.
OP1…差動アンプ
TR1、TR10、TR40、TR70、TR160…可変抵抗部
SEL1、SEL2、SEL100、SEL101、SEL102、SEL143、SEL144、SEL160、SEL161、SEL201、SEL203…抵抗選択回路
S1、S100~S104、S100a、S100b、S101a、S101b、S201~S203…第1のスイッチ部
S1f、S100f~S104f、S203f…第2のスイッチ部
G100~G104、GA100~GA104、GB100~GB104、G100~G100b、G101~G101b、G203…制御信号
OP1... Differential amplifiers TR1, TR10, TR40, TR70, TR160... Variable resistance units SEL1, SEL2, SEL100, SEL101, SEL102, SEL143, SEL144, SEL160, SEL161, SEL201, SEL203. , S100b, S101a, S101b, S201 to S203... First switch unit S1f, S100f to S104f, S203f... Second switch unit G100 to G104, GA100 to GA104, GB100 to GB104, G100 to G100b, G101 to G101b, G203 …Control signal

Claims (13)

  1.  基準電圧を入力とする電流制御部と、第1の抵抗と、前記電流制御部の出力および前記第1の抵抗の間に接続する可変抵抗部とを備え、
     前記可変抵抗部は、並列接続した複数の抵抗選択回路から構成され、
     前記抵抗選択回路それぞれは、前記電流制御部の出力に接続する第2の抵抗と、前記第1の抵抗および前記第2の抵抗の間に接続する第1のスイッチ部と、前記第2の抵抗と前記第1のスイッチ部との接続点および前記電流制御部の入力の間に接続して電圧帰還をかける第2のスイッチ部とを備え、前記第1のスイッチ部と前記第2のスイッチ部とを連動してオンオフする
    ことを特徴とする電圧調整回路。
    A current control unit having a reference voltage as an input; a first resistor; and a variable resistance unit connected between the output of the current control unit and the first resistor,
    The variable resistance unit is composed of a plurality of resistance selection circuits connected in parallel,
    Each of the resistance selection circuits includes a second resistor connected to the output of the current control unit, a first switch unit connected between the first resistor and the second resistor, and the second resistor. And a second switch unit for applying voltage feedback by connecting between a connection point between the first switch unit and the input of the current control unit, the first switch unit and the second switch unit A voltage regulator circuit that is turned on and off in conjunction with.
  2.  請求項1に記載の電圧調整回路であって、
     前記抵抗選択回路それぞれが備える前記第1のスイッチ部および前記第2のスイッチ部に供給される制御信号により、前記第1のスイッチ部と前記第2のスイッチ部とを連動してオンオフすることが制御される
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to claim 1,
    The first switch unit and the second switch unit may be turned on and off in conjunction with a control signal supplied to the first switch unit and the second switch unit included in each of the resistance selection circuits. A voltage regulator circuit that is controlled.
  3.  請求項2に記載の電圧調整回路であって、
     前記制御信号の組み合わせにより、前記抵抗選択回路の少なくとも2以上を同時に機能させる
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to claim 2, wherein
    A voltage regulator circuit that causes at least two of the resistance selection circuits to function simultaneously by a combination of the control signals.
  4.  請求項1~3のいずれか1項に記載の電圧調整回路であって、
     前記可変抵抗部を複数備え、当該一つの可変抵抗部が備える任意の前記抵抗選択回路の前記接続点を、当該他の可変抵抗部が備える前記抵抗選択回路が接続される前記電流制御部の出力に替えて前記第2の抵抗に接続して新たな可変抵抗部として構成する
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to any one of claims 1 to 3,
    An output of the current control unit including the plurality of variable resistance units, and the connection point of the arbitrary resistance selection circuit included in the one variable resistance unit connected to the resistance selection circuit included in the other variable resistance unit Instead of the above, the voltage adjusting circuit is configured as a new variable resistance unit connected to the second resistor.
  5.  請求項4に記載の電圧調整回路であって、
     前記新たな可変抵抗部と前記新たな可変抵抗部に固定抵抗部を直列接続したものとを複数並列に接続するか、または、前記新たな可変抵抗部を複数並列に接続する
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to claim 4, wherein
    A plurality of the new variable resistor units and a series of fixed resistor units connected to the new variable resistor units are connected in parallel, or a plurality of the new variable resistor units are connected in parallel. Voltage adjustment circuit.
  6.  基準電圧を入力とする電流制御部と、並列接続した複数の第1の抵抗と、前記電流制御部の出力および前記複数の第1の抵抗の間に接続する可変抵抗部とを備え、
     前記可変抵抗部は、並列接続した複数の抵抗選択回路から構成され、
     前記抵抗選択回路それぞれは、前記電流制御部の出力に接続する第2の抵抗と、前記複数の第1の抵抗のそれぞれと前記第2の抵抗との間をそれぞれに接続する第1のスイッチ部から成る第1のスイッチ部群と、前記第2の抵抗と前記第1のスイッチ部群との接続点および前記電流制御部の入力の間に接続して電圧帰還をかける第2のスイッチ部とを備え、前記第1のスイッチ部ごとに前記第2のスイッチ部と連動させてオンオフする
    ことを特徴とする電圧調整回路。
    A current control unit that receives a reference voltage; a plurality of first resistors connected in parallel; and a variable resistance unit connected between the output of the current control unit and the plurality of first resistors.
    The variable resistance unit is composed of a plurality of resistance selection circuits connected in parallel,
    Each of the resistance selection circuits includes a second resistor connected to the output of the current control unit, and a first switch unit connecting between each of the plurality of first resistors and the second resistor. A first switch section group comprising: a second switch section for applying voltage feedback by connecting between a connection point between the second resistor and the first switch section group and an input of the current control section; And a voltage adjustment circuit that is turned on and off in conjunction with the second switch section for each of the first switch sections.
  7.  基準電圧を入力とする電流制御部と、第1の抵抗と、前記電流制御部の出力および前記第1の抵抗の間に接続する可変抵抗部とを備え、
     前記可変抵抗部は、並列接続したN+1個(Nは、1以上の整数)の抵抗選択回路から構成され、
     前記抵抗選択回路それぞれは、第2の抵抗と、前記第1の抵抗および前記第2の抵抗の間に接続する第1のスイッチ部と、前記第2の抵抗と前記第1のスイッチ部との接続点および前記電流制御部の入力の間に接続して電圧帰還をかける第2のスイッチ部とを備え、
     第1の抵抗選択回路の前記第2の抵抗を前記電流制御部の出力に接続し、
     第N+1の抵抗選択回路の前記第2の抵抗を、第Nの抵抗選択回路の前記第2の抵抗と前記第1のスイッチ部との接続点に接続し、
     前記第1のスイッチ部と前記第2のスイッチ部とを連動してオンオフする
    ことを特徴とする電圧調整回路。
    A current control unit having a reference voltage as an input; a first resistor; and a variable resistance unit connected between the output of the current control unit and the first resistor,
    The variable resistance unit includes N + 1 (N is an integer of 1 or more) resistance selection circuits connected in parallel.
    Each of the resistance selection circuits includes a second resistor, a first switch unit connected between the first resistor and the second resistor, and a second resistor and the first switch unit. A second switch unit connected between the connection point and the input of the current control unit to apply voltage feedback;
    Connecting the second resistance of the first resistance selection circuit to the output of the current control unit;
    Connecting the second resistance of the (N + 1) th resistance selection circuit to a connection point between the second resistance of the Nth resistance selection circuit and the first switch unit;
    A voltage regulator circuit that turns on and off the first switch unit and the second switch unit in conjunction with each other.
  8.  請求項7に記載の電圧調整回路であって、
     前記抵抗選択回路それぞれが備える前記第1のスイッチ部および前記第2のスイッチ部に供給される制御信号により、前記第1のスイッチ部と前記第2のスイッチ部とを連動してオンオフすることが制御され、前記制御信号の組み合わせにより、前記抵抗選択回路の中から一つを機能させる
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to claim 7, wherein
    The first switch unit and the second switch unit may be turned on and off in conjunction with a control signal supplied to the first switch unit and the second switch unit included in each of the resistance selection circuits. A voltage regulator circuit which is controlled and causes one of the resistance selection circuits to function according to a combination of the control signals.
  9.  請求項1~8のいずれか1項に記載の電圧調整回路であって、
     前記抵抗選択回路それぞれが備える前記第2の抵抗は、互いに異なる抵抗値を有する
    ことを特徴とする電圧調整回路。
    A voltage regulator circuit according to any one of claims 1 to 8,
    The voltage regulator circuit, wherein the second resistors included in each of the resistance selection circuits have different resistance values.
  10.  請求項9に記載の電圧調整回路であって、
     前記第2の抵抗には、0Ω抵抗としての接続配線を含む
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to claim 9, wherein
    The voltage adjusting circuit, wherein the second resistor includes a connection wiring as a 0Ω resistor.
  11.  請求項1~10のいずれか1項に記載の電圧調整回路であって、
     前記第1のスイッチ部および第2のスイッチ部それぞれは、PMOSトランジスタおよびNMOSトランジスタの並列回路から構成され、前記PMOSトランジスタのソースおよび前記NMOSトランジスタのドレインを前記第2の抵抗側に接続し、前記PMOSトランジスタおよび前記NMOSトランジスタの各ゲートに前記オンオフのための信号を入力する
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to any one of claims 1 to 10,
    Each of the first switch unit and the second switch unit is composed of a parallel circuit of a PMOS transistor and an NMOS transistor, and connects the source of the PMOS transistor and the drain of the NMOS transistor to the second resistance side, A voltage adjustment circuit, wherein the on / off signal is input to each gate of the PMOS transistor and the NMOS transistor.
  12.  請求項1~10のいずれか1項に記載の電圧調整回路であって、
     前記第1のスイッチ部および第2のスイッチ部それぞれは、NMOSトランジスタから構成され、前記NMOSトランジスタのドレインを前記第2の抵抗側に接続し、前記NMOSトランジスタの基板を当該NMOSトランジスタのソースに接続し、前記NMOSトランジスタのゲートに前記オンオフのための信号を入力する
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to any one of claims 1 to 10,
    Each of the first switch unit and the second switch unit is composed of an NMOS transistor, the drain of the NMOS transistor is connected to the second resistance side, and the substrate of the NMOS transistor is connected to the source of the NMOS transistor The voltage adjustment circuit is characterized in that the on / off signal is input to the gate of the NMOS transistor.
  13.  請求項1~10のいずれか1項に記載の電圧調整回路であって、
     前記第1のスイッチ部および第2のスイッチ部それぞれは、シリコン基板表面に対して縦方向にチャネルを形成した縦型MOSトランジスタから構成され、前記縦型MOSトランジスタのドレインを前記第2の抵抗側に接続し、前記縦型MOSトランジスタのゲートに前記オンオフのための信号を入力する
    ことを特徴とする電圧調整回路。
    The voltage regulator circuit according to any one of claims 1 to 10,
    Each of the first switch unit and the second switch unit is composed of a vertical MOS transistor in which a channel is formed in the vertical direction with respect to the surface of the silicon substrate, and the drain of the vertical MOS transistor is connected to the second resistance side. And a signal for turning on and off is input to the gate of the vertical MOS transistor.
PCT/JP2017/004877 2016-02-12 2017-02-10 Voltage adjustment circuit WO2017138628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017567006A JP6656660B2 (en) 2016-02-12 2017-02-10 Voltage adjustment circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016025281 2016-02-12
JP2016-025281 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138628A1 true WO2017138628A1 (en) 2017-08-17

Family

ID=59563345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004877 WO2017138628A1 (en) 2016-02-12 2017-02-10 Voltage adjustment circuit

Country Status (2)

Country Link
JP (1) JP6656660B2 (en)
WO (1) WO2017138628A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191360A (en) * 2005-01-06 2006-07-20 Nec Electronics Corp Voltage supply circuit and microphone unit
JP2008070977A (en) * 2006-09-12 2008-03-27 Fujitsu Ltd Power-supply voltage step-down circuit and semiconductor device
JP2015191280A (en) * 2014-03-27 2015-11-02 ラピスセミコンダクタ株式会社 Semiconductor device and current source control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191360A (en) * 2005-01-06 2006-07-20 Nec Electronics Corp Voltage supply circuit and microphone unit
JP2008070977A (en) * 2006-09-12 2008-03-27 Fujitsu Ltd Power-supply voltage step-down circuit and semiconductor device
JP2015191280A (en) * 2014-03-27 2015-11-02 ラピスセミコンダクタ株式会社 Semiconductor device and current source control method

Also Published As

Publication number Publication date
JP6656660B2 (en) 2020-03-04
JPWO2017138628A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US7417415B2 (en) Voltage-controlled current source
JP4901706B2 (en) D / A converter
JP3519361B2 (en) Bandgap reference circuit
JP2006318327A (en) Differential amplification circuit and series regulator
JP2008015925A (en) Reference voltage generation circuit
JP2917877B2 (en) Reference current generation circuit
JP2008182418A (en) Semiconductor integrated circuit
KR101080560B1 (en) Transconductance adjusting circuit
US6472932B2 (en) Transconductor and filter circuit
US10754369B2 (en) Reference current source and semiconductor device
WO2011016153A1 (en) Reference voltage generation circuit
JP5262718B2 (en) Bias circuit
JP2004194124A (en) Hysteresis comparator circuit
US9479172B2 (en) Differential output buffer
JP5884234B2 (en) Reference voltage circuit
JP6656660B2 (en) Voltage adjustment circuit
JP2001094354A (en) Driver circuit and its output stabilizing method
JP4355710B2 (en) MOS type reference voltage generator
JP5782346B2 (en) Reference voltage circuit
JP4695621B2 (en) Semiconductor circuit
CN109582077B (en) Low-power-consumption power supply start-reset circuit and reference signal circuit
JP2015046193A (en) Constant current source circuit
JP2008235974A (en) Constant current control circuit and semiconductor integrated circuit provided with the circuit
JP3094764B2 (en) Reference current generation circuit
JP2022174431A (en) constant current circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750349

Country of ref document: EP

Kind code of ref document: A1