WO2017138530A1 - Chemical conversion bath replenishment method - Google Patents

Chemical conversion bath replenishment method Download PDF

Info

Publication number
WO2017138530A1
WO2017138530A1 PCT/JP2017/004414 JP2017004414W WO2017138530A1 WO 2017138530 A1 WO2017138530 A1 WO 2017138530A1 JP 2017004414 W JP2017004414 W JP 2017004414W WO 2017138530 A1 WO2017138530 A1 WO 2017138530A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
aluminum
conversion treatment
treatment bath
bath
Prior art date
Application number
PCT/JP2017/004414
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 神村
真彦 松川
Original Assignee
日本ペイント・サーフケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・サーフケミカルズ株式会社 filed Critical 日本ペイント・サーフケミカルズ株式会社
Priority to KR1020187022919A priority Critical patent/KR20180100220A/en
Priority to US16/076,180 priority patent/US20190136385A1/en
Priority to CN201780010530.6A priority patent/CN108603293A/en
Priority to EP17750252.3A priority patent/EP3415660A4/en
Publication of WO2017138530A1 publication Critical patent/WO2017138530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • This invention relates to the replenishment method to a chemical conversion treatment bath.
  • the chemical conversion treatment of aluminum and their alloys by the treatment bath and treatment method described in Patent Document 1 usually includes a step of continuously conveying an object to be treated to the treatment bath and immersing or spraying the treatment bath in the treatment bath. .
  • the active ingredient in the treatment bath is consumed and the composition of the ingredient in the treatment bath changes.
  • aluminum is etched from the substrate surface by fluorine, so that the relative concentration of aluminum in the treatment bath gradually increases and causes aluminum sludge.
  • the present inventors have found that the ratio between the aluminum ion concentration and the fluorine ion concentration in the chemical conversion treatment bath is within a certain range.
  • the present inventors have found that a chemical conversion film having both corrosion resistance and coating film adhesion can be formed.
  • the present invention maintains the ratio of the aluminum ion concentration and the fluorine ion concentration in the chemical conversion treatment bath within a certain range, so that the corrosion resistance of the chemical conversion film formed even if the aluminum-based metal chemical conversion treatment bath is continuously used. And it aims at providing the replenishment method to the aluminum type metal chemical conversion treatment bath which can maintain coating-film adhesiveness.
  • the present invention is a method for supplying a replenisher to an aluminum-based metal chemical treatment bath, wherein the replenisher includes at least one of a zirconium salt and a titanium salt, and an effective fluoride.
  • the replenisher is replenished so that the ratio of the fluorine ion concentration (mg / L) to the aluminum ion concentration (mg / L) in the aluminum-based metal chemical conversion treatment bath is F / Al of 1.8 to 4.5.
  • a replenishing method for an aluminum-based metal chemical conversion treatment bath is provided.
  • the replenisher further contains at least one selected from the group consisting of phosphoric acid, phosphorous acid, and hydrogen peroxide.
  • the aluminum-based metal chemical conversion treatment bath includes at least one selected from the group consisting of at least one of a zirconium salt and a titanium salt, an effective fluoride, phosphoric acid, condensed phosphoric acid, and a salt thereof, It is preferable to include at least one selected from the group consisting of phosphoric acid, hypophosphorous acid, and salts thereof.
  • replenish the replenisher so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the pH of the chemical conversion bath is within a predetermined range. .
  • the replenisher is replenished so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the electrical conductivity of the chemical conversion bath is within a predetermined range. Is preferred.
  • the aluminum-based metal chemical conversion treatment bath is an aluminum beverage can.
  • the present invention it is possible to provide a replenishment method for an aluminum-based metal chemical conversion treatment bath that can maintain the corrosion resistance and coating film adhesion of the formed chemical conversion coating even if the aluminum-based metal chemical conversion treatment bath is continuously used.
  • the aluminum-based metal chemical conversion treatment bath to which the replenishment method according to the present embodiment is applied is used to form a protective film having good appearance, corrosion resistance, coating film adhesion, and the like on an aluminum substrate made of an aluminum-based metal. .
  • An aluminum-based metal chemical conversion treatment bath (hereinafter sometimes referred to as “chemical conversion treatment bath”) to which the replenishment method according to the present embodiment is applied includes at least one of a zirconium salt and a titanium salt, an effective fluoride, and phosphoric acid. , At least one selected from the group consisting of condensed phosphoric acid and salts thereof (hereinafter sometimes referred to as “phosphoric acid etc.”), and a group consisting of phosphorous acid, hypophosphorous acid, and salts thereof It is obtained by diluting a chemical conversion treatment composition containing at least one selected (hereinafter sometimes referred to as “phosphorous acid etc.”) with an appropriate amount of water.
  • a chemical conversion film having excellent corrosion resistance and the like can be formed on the surface of the aluminum substrate.
  • the effective fluoride contained in the chemical conversion bath etches and separates the oxide film formed on the surface of the aluminum substrate.
  • Phosphorous acid or the like functions as a reducing agent that prevents oxidation of the etched aluminum substrate surface.
  • a double salt is formed by at least one of zirconium salt and titanium salt, effective fluoride, phosphoric acid, etc., phosphorous acid, etc., and a strong chemical conversion film is formed on the surface of the aluminum substrate.
  • zirconium salt No particular limitation is imposed on the zirconium salt contained in the chemical conversion treatment bath according to the present embodiment, for example, zirconium hydrofluoric acid (H 2 ZrF 6) and lithium fluoro zirconate, sodium, potassium, ammonium salts (Li 2 ZrF 6 , Na 2 ZrF 6 , K 2 ZrF 6 , (NH 4 ) 2 ZrF 6 ), zirconium sulfate (Zr (SO 4 ) 2 ), zirconyl sulfate (ZrO (SO 4 )), zirconium nitrate (Zr (NO 3) 4 ), zirconyl nitrate (ZrO (NO 3 ) 2 ), zirconium acetate, zirconium fluoride (ZrF 4 ) and the like. These may be used alone or in combination of two or more.
  • titanium salt No particular limitation is imposed on the titanium salt contained in the chemical conversion treatment bath according to the present embodiment, for example, lithium titanium hydrofluoric acid and fluorotitanic acid, sodium, potassium, ammonium salts (Li 2 TiF 6, Na 2 TiF 6 , K 2 TiF 6 , (NH 4 ) 2 TiF 6 ), titanium sulfate (Ti (SO 4 ) 2 ), titanyl sulfate (TiO (SO 4 )), titanium nitrate (Ti (NO 3 ) 4 ), titanine nitrate ( Examples thereof include TiO (NO 3 ) 2 ) and titanium fluoride (TiF 3 ⁇ TiF 4 ). These may be used alone or in combination of two or more.
  • At least one of the zirconium salt and the titanium salt is preferably contained in the chemical conversion treatment bath according to this embodiment in an amount of 10 ppm or more in terms of metal, more preferably 10 to 500 ppm, and still more preferably 10 to 100 ppm.
  • concentration of at least one of the zirconium salt and the titanium salt in the chemical conversion bath is less than 10 ppm in terms of metal, almost no chemical conversion film is formed.
  • the concentration of at least one of the zirconium salt and the titanium salt is within 500 ppm in terms of the metal. Preferably there is.
  • Effective fluoride refers to fluoride that liberates fluorine ions in the chemical conversion treatment bath. No particular limitation is imposed on the effective fluoride contained in the chemical conversion treatment bath according to the present embodiment, for example, hydrofluoric acid (HF), ammonium fluoride (NH 4 F), ammonium hydrogen fluoride (NH 4 HF 2 ), Sodium fluoride (NaF), sodium hydrogen fluoride (NaHF 2 ) and the like. These may be used alone or in combination of two or more.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • NH 4 HF 2 ammonium hydrogen fluoride
  • NaF sodium fluoride
  • NaHF 2 sodium hydrogen fluoride
  • fluorine ions are liberated from the effective fluoride.
  • the fluorine ion has a function of suppressing precipitation of zirconium phosphate generated in the chemical conversion bath. Furthermore, it has the function to suppress the generation
  • the fluorine ion concentration (mg / L) in the chemical conversion bath according to this embodiment is the ratio of the concentration of aluminum ions (mg / L) eluted in the chemical conversion bath by the chemical conversion reaction, F / Al. Is preferably in the range of 1.8 to 4.5.
  • F / Al is 1.8 or more, the uniformity of the chemical conversion film formed on the surface of the aluminum substrate is improved by sufficiently solubilizing aluminum ions in the chemical conversion treatment bath.
  • F / Al is preferably 1.8 to 2.2.
  • the concentration of aluminum ions can be measured by ICP (inductively coupled plasma emission spectrometer), and the concentration of fluorine ions can be measured by ion chromatography.
  • [Phosphoric acid, etc.] It is not particularly restricted but may be phosphoric acid and its salts contained in the chemical conversion treatment bath according to the present embodiment, for example, H 3 PO 4, (NH 4) H 2 PO 4, NaH 2 PO 4, KH 2 PO 4 , etc. And alkaline earth metal phosphates such as calcium phosphate and magnesium phosphate.
  • alkaline earth metal phosphates such as calcium phosphate and magnesium phosphate.
  • condensed phosphoric acid and its salt contained in the chemical conversion treatment bath which concerns on this embodiment, For example, pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid, ultraphosphoric acid etc. are mentioned.
  • the salt of condensed phosphoric acid include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. These may be used alone or in combination of two or more.
  • Phosphoric acid and the like are preferably contained in the chemical conversion bath according to the present embodiment in an amount of 10 ppm or more, more preferably 10 to 500 ppm, and even more preferably 10 to 100 ppm in terms of phosphoric acid.
  • concentration in the chemical conversion treatment bath of phosphoric acid or the like according to this embodiment is less than 10 ppm in terms of phosphoric acid, boiling water blackening occurs.
  • concentration of phosphoric acid or the like in the chemical conversion bath exceeds 500 ppm in terms of phosphoric acid, boiling water blacking resistance is caused and coating film adhesion is deteriorated.
  • [Phosphorous acid, etc.] Although it does not specifically limit as phosphorous acid, hypophosphorous acid, and these salts contained in the chemical conversion treatment bath which concerns on this embodiment, for example, in addition to phosphorous acid and hypophosphorous acid, as these salts, sodium, examples include alkali metal salts such as potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. These may be used alone or in combination of two or more.
  • Phosphorous acid or the like is preferably contained in the chemical conversion bath according to this embodiment in an amount of 10 ppm or more in terms of phosphorous acid, more preferably 10 to 5000 ppm, and even more preferably 50 to 500 ppm.
  • concentration in the chemical conversion treatment bath such as phosphorous acid according to the present embodiment is less than 10 ppm in terms of phosphorous acid, the uniformity of the chemical conversion film becomes insufficient.
  • concentration of phosphorous acid or the like in the chemical conversion treatment bath is 5000 ppm or more in terms of phosphorous acid, the coating film adhesion is lowered.
  • an antibacterial agent such as ethanol and isopropanol
  • guanidine group-containing compounds such as polyhexamethylenebiguanidine hydrochloride
  • benzimidazoles such as 2- (4-thiazolyl) -benzimidazole and methyl-2-benzimidazole carbamate.
  • Antibacterial agents phenolic antibacterial agents such as p-chloro-m-xylenol and p-chloro-m-cresol, 2,4,5,6-tetrachloroisophthalonitrile, 1,2-dibromo-2,4- Nitryl antibacterial agents such as dicyanobutane, pyridine antibacterial agents such as (2-pyridylthio-1-oxide) sodium and bis (2-pyridylthio-1-oxide) zinc, 2-methyl-4-isothiazolin-3-one , 5-chloro-2-methyl-4-isothiazolin-3-one, etc.
  • isothiazolone antibacterial Benzalkonium chloride, quaternary ammonium salts such as benzethonium chloride, benzoic acid, p- oxyethyl benzoate, sorbic acid, potassium sorbate, sodium dehydroacetate, sodium propionate.
  • surfactants include nonionic surfactants, cationic surfactants, and anionic surfactants.
  • rust inhibitors include tannic acid, imidazoles, triazines, guanines, and hydrazines. , Biguanides and the like.
  • a silane coupling agent, colloidal silica, amines, a phenol-based water-soluble organic compound containing a phenol resin, and the like may be added to the chemical conversion bath.
  • the pH at 25 ° C. of the chemical conversion treatment bath according to the present embodiment is preferably 2 to 4, and more preferably 2.5 to 3.5.
  • the pH of the chemical conversion treatment bath is less than 2, not only etching becomes excessive and it becomes difficult to form a chemical conversion film, but boiling water blackening resistance and coating film adhesion deteriorate.
  • the pH of the chemical conversion bath exceeds 4, the chemical conversion bath becomes cloudy and sludge is generated, and it is difficult to form a chemical conversion film, resulting in a decrease in resistance to boiling water blackening.
  • the treatment target of the chemical conversion treatment bath according to the present embodiment is an aluminum base
  • the aluminum-based metal that is the material of the aluminum base is not particularly limited, but aluminum, aluminum-copper alloy, aluminum-manganese alloy, aluminum-silicon An alloy, an aluminum-magnesium alloy, an aluminum-magnesium-silicon alloy, an aluminum-zinc alloy, an aluminum-zinc-magnesium alloy, and the like can be given.
  • it does not restrict
  • the aluminum-based metal chemical conversion treatment bath according to the present embodiment can preferably chemically convert an aluminum beverage can made of a 3000-based alloy.
  • the chemical conversion treatment bath according to this embodiment a uniform chemical conversion film can be formed on the surface of the aluminum substrate. Therefore, since the corrosion resistance can be maintained even if the chemical conversion film is thinned, the adhesion of the chemical conversion film can be improved. For example, since an aluminum beverage can is subjected to severe drawing after the formation of a chemical conversion film, adhesion of the chemical conversion film is required in addition to corrosion resistance, but the chemical conversion treatment bath according to this embodiment is for such an aluminum beverage can etc. Are also preferably used.
  • the replenisher used in the replenishment method for the aluminum-based metal chemical conversion treatment bath according to the present embodiment includes at least one of a zirconium salt and a titanium salt, and an effective fluoride, and includes phosphoric acid, phosphorous acid, hydrogen peroxide It is preferable to further include at least one selected from the group consisting of:
  • At least one of zirconium salt and titanium salt, effective fluoride, phosphoric acid, and phosphorous acid are components that form a chemical conversion film by forming a double salt. Is consumed.
  • fluorine ions are liberated from the effective fluoride, but fluorine ions are consumed by forming aluminum ions and fluoroaluminum eluted in the chemical conversion bath.
  • phosphorous acid functions as a reducing agent which prevents the oxidation of the surface of the aluminum base material etched by fluorine, it loses its function as a reducing agent when it is oxidized. Therefore, it is necessary for the chemical conversion treatment bath to be used by continuously adding these components to the chemical conversion treatment bath.
  • the zirconium salt contained in the replenisher according to the present embodiment is not particularly limited, and examples thereof include a zirconium salt contained in the chemical conversion treatment bath according to the present embodiment.
  • examples of the titanium salt, effective fluoride, phosphoric acid, and phosphorous acid include effective fluoride, phosphoric acid, phosphorous acid, and the like included in the chemical conversion treatment bath according to the present embodiment.
  • the replenisher according to the present embodiment may contain a pH adjuster. It does not specifically limit as a pH adjuster, General acids and alkalis, such as nitric acid and ammonia, are mentioned.
  • the replenisher according to the present embodiment may contain an antibacterial agent, a surfactant, a rust preventive agent, and the like as necessary, as in the case of the chemical conversion treatment bath.
  • ⁇ Replenishment method> a replenishment method for the aluminum-based metal chemical conversion treatment bath performed using the replenisher according to the present embodiment will be described.
  • the above replenisher is replenished so that the ratio of F / Al is 1.8 to 4.5.
  • the aluminum ion concentration in the chemical conversion treatment bath is increased by etching the aluminum-based metal with fluorine in the chemical conversion treatment bath.
  • An increase in the aluminum ion concentration causes aluminum sludge.
  • aluminum ions are combined with fluorine ions to become fluoroaluminum and are solubilized, aluminum sludge can be prevented by the presence of a sufficient amount of fluorine ions relative to the aluminum ions.
  • fluorine ion concentration in the chemical conversion bath increases, etching with fluorine ions becomes excessive, and formation of the chemical conversion film is hindered.
  • etching by fluorine ions is suppressed by combining aluminum ions and fluorine ions to form fluoroaluminum.
  • the presence of a sufficient amount of aluminum ions relative to fluorine ions suppresses excessive etching by fluorine ions. Therefore, it is important to maintain the ratio between the aluminum ion concentration and the fluorine ion concentration in the chemical conversion bath within the above range.
  • F / Al is 1.8 or more
  • the aluminum ion is sufficiently solubilized in the chemical conversion treatment bath to improve the uniformity of the chemical conversion film formed on the surface of the aluminum substrate, and is preferably 4.5 or less.
  • F / Al is preferably 1.9 to 2.1.
  • the replenisher is replenished so that the pH at 25 ° C. in the chemical conversion bath is 2 to 4.
  • the pH of the chemical conversion bath at 25 ° C. is less than 2, the amount of etching with respect to the aluminum base increases as described above, and the aluminum ion concentration increases.
  • the pH exceeds 4 the permissible dissolved concentration of aluminum ions decreases, so the aluminum ion concentration decreases. Therefore, by maintaining the pH within the above range, the aluminum ion concentration in the chemical conversion bath can be maintained within a certain value, and F / Al can be easily maintained within a preferred range.
  • the measuring method of pH is not specifically limited, A commercially available pH electrode etc. are used.
  • the replenisher according to the present embodiment when added so that the pH is maintained within the above range, the replenisher is consequently maintained so that F / Al is maintained within the range of 1.8 to 4.5. It is preferable to adjust the content and pH of components such as effective fluoride contained.
  • the replenisher is replenished so that the electrical conductivity of the chemical conversion bath at 25 ° C. is 0.5 to 5 mS / cm.
  • the continuous use of the chemical conversion treatment bath consumes zirconium salt, titanium salt, effective fluoride, phosphoric acid, phosphorous acid, etc., which are film forming components in the chemical conversion treatment agent, Ion concentration decreases.
  • the electrical conductivity of the chemical conversion bath decreases. Therefore, by maintaining the electric conductivity within the above range, the concentration of the film forming component in the chemical conversion treatment bath can be maintained within a certain value.
  • the measuring method of electrical conductivity is not specifically limited, A commercially available EC electrode etc. are used.
  • the replenisher according to the present embodiment when added so that the electric conductivity is maintained within the above range, the replenishment is performed so that F / Al is maintained within the range of 1.8 to 4.5 as a result. It is preferable to adjust the content of components such as effective fluoride contained in the agent.
  • the method of replenishing the replenisher according to the present embodiment is not particularly limited, but it is preferable that a small amount is replenished as needed so that the composition of each component in the chemical conversion bath does not change greatly.
  • the pH and electrical conductivity are automatically managed so as to be maintained within a certain value in accordance with the detected value of the pH electrode or EC electrode.
  • the chemical conversion treatment bath to which the replenishment method of the present embodiment is applied can preferably carry out chemical conversion treatment of aluminum beverage cans and the like that require adhesion as well as corrosion resistance of the chemical conversion coating.
  • ⁇ Chemical conversion treatment method> a chemical conversion treatment method for an aluminum-based metal performed using the chemical conversion treatment bath according to the present embodiment will be described.
  • pretreatment of the aluminum substrate is performed.
  • aluminum cans such as beverage cans are manufactured by drawing and so-called drawing and ironing processing (hereinafter referred to as “DI processing”), and aluminum powder or lubricating oil called smut generated in the process is on the surface.
  • DI processing drawing and ironing processing
  • an oxide film is usually formed on the surface of the aluminum base and is passivated. Therefore, it is preferable to remove these smuts and lubricating oil by alkali treatment, acid treatment, etc., and to appropriately etch the surface of the aluminum base.
  • alkali treatment or acid treatment as a pretreatment, a strong chemical conversion film can be formed on the surface of the aluminum substrate.
  • the method of chemical conversion treatment of the aluminum-based metal is not particularly limited, but is performed by immersing an aluminum product or the like to be treated in the chemical conversion treatment bath, or spraying or coating the chemical conversion treatment agent composition in the chemical conversion treatment bath. Is called.
  • the time required for the chemical conversion treatment varies depending on the chemical conversion treatment agent composition, the treatment temperature, and the treatment method for the chemical conversion treatment bath, but is usually 5 to 60 seconds.
  • the temperature of the chemical conversion treatment bath is preferably room temperature to 60 ° C., and more preferably 30 to 50 ° C. If the temperature of the chemical conversion bath is below room temperature (for example, 25 ° C.), the formation rate of the chemical conversion film is slow, and in order to increase the formation rate, the concentration of each component in the treatment bath must be increased. Even economically disadvantageous. On the other hand, when the temperature of the chemical conversion treatment bath exceeds 60 ° C., the treatment bath becomes cloudy and sludge tends to be generated. Moreover, since a great deal of energy is required to maintain the temperature of the chemical conversion bath, it is economically disadvantageous.
  • Example 1 Each component was prepared so that the concentration of zirconium ions, aluminum ions, and fluorine ions was an aqueous solution having the concentrations shown in Table 1, and used as a chemical conversion treatment bath of Example 1.
  • (NH 4 ) 2 ZrF 6 was used as the zirconium ion source, and HF was used as the fluorine ion source.
  • an aluminum can body without a lid obtained by DI processing of an aluminum alloy (A3004) plate is used, and the chemical conversion treatment is performed under the conditions shown in Table 1 for the pH of the chemical conversion treatment bath, the treatment temperature, and the treatment time. Went.
  • pH in Table 1 means pH at 25 ° C.
  • Examples 3, 5, 7, 9> In addition to zirconium ion, aluminum ion, and fluorine ion, each component was prepared so that the concentration of each component of phosphoric acid, phosphorous acid, and hydrogen peroxide (H 2 O 2 ) was the concentration shown in Table 1, Example 3 Chemical conversion treatment baths 5, 7, 9 were used. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • Example 2 The chemical conversion treatment bath of Example 1 was supplemented with 0.1% of replenisher A containing 20 g / L of zirconium ions, 20 g / L of fluorine ions, and 20 g / L of nitric acid to obtain a chemical conversion treatment bath of Example 2.
  • replenisher A containing 20 g / L of zirconium ions, 20 g / L of fluorine ions, and 20 g / L of nitric acid to obtain a chemical conversion treatment bath of Example 2.
  • the amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment.
  • the chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • Example 4 The chemical conversion treatment bath of Example 3 was supplemented with 0.1% of supplementary agent B containing 10 g / L of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, and 20 g / L of nitric acid. A treatment bath was used. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • Example 6 Replenishment agent C containing 0.1 g of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, 10 g / L of phosphorous acid, and 20 g / L of nitric acid is replenished to the chemical conversion treatment bath of Example 5.
  • the chemical conversion treatment bath of Example 6 was obtained.
  • the same thing as Example 1 was used as each component source.
  • the amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment.
  • the chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • Example 8 Replenishment agent D containing 10 g / L of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, 10 g / L of hydrogen peroxide, and 20 g / L of nitric acid is replenished to the chemical conversion treatment bath of Example 7 by 0.1%. Thus, the chemical conversion treatment bath of Example 8 was obtained. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • Example 10 Replenisher containing zirconium ion 10 g / L, fluorine ion 10 g / L, phosphoric acid 10 g / L, phosphorous acid 10 g / L, hydrogen peroxide 10 g / L, nitric acid 20 g / L with respect to the chemical conversion treatment bath of Example 9. E was replenished by 0.1% to obtain a chemical conversion treatment bath of Example 10. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
  • the aluminum can body which is a to-be-processed object of the chemical conversion treatment bath of an Example and a comparative example was pre-processed with the following method.
  • First, the lubricating oil and smut were removed by spraying at 75 ° C. for 60 seconds using a commercially available acidic cleaning agent (Surf Cleaner NHC260 manufactured by Nippon Paint Surf Chemicals Co., Ltd.).
  • spray water washing was performed for 15 seconds with tap water.
  • the chemical conversion treatment agent composition which concerns on the chemical conversion treatment bath of an Example and a comparative example was sprayed on the aluminum can body which is a to-be-processed object on the conditions shown in Table 1, respectively.
  • spray water was washed with tap water for 15 seconds and deionized water for 5 seconds, and then dried at 200 ° C. for 3 minutes to obtain treatment containers for Examples and Comparative Examples used in the following evaluation tests.
  • a 1 mm cross-cut test was performed as a primary adhesion test with reference to the former JIS K 5400.
  • 100 squares having a width of 1 mm were formed on a coating film using a cutter knife, and after sticking an adhesive tape, it was peeled off and the number of squares on which the coating film remained was counted. .
  • Those having a number of squares having a coating film of 100 were evaluated as acceptable, and the others were evaluated as unacceptable. The results are shown in Table 1.

Abstract

The purpose of the present invention is to provide a method for replenishing an aluminum metal chemical conversion bath, the method being capable of maintaining the corrosion resistance and coating film adhesiveness of the chemical conversion coating formed even if the aluminum metal chemical conversion bath is used continuously. Provided is a method for replenishing an aluminum metal chemical conversion bath with a replenishing agent, wherein the replenishing agent comprises a zirconium salt and/or a titanium salt and an effective fluoride, and the replenishing agent is supplied so that the ratio F/Al of the fluorine ion concentration (mg/L) with respect to the aluminum ion concentration (mg/L) in the aluminum metal chemical conversion bath is 1.8-4.5.

Description

化成処理浴への補給方法How to replenish the chemical conversion bath
 本発明は、化成処理浴への補給方法に関する。 This invention relates to the replenishment method to a chemical conversion treatment bath.
 従来、アルミニウム及びアルミニウム合金の表面処理を行うための種々のノンクロメート処理方法が提案されている。
 例えば、リン酸又は縮合リン酸又はそれらの塩の少なくとも1種と、ジルコニウム塩又はチタン塩の少なくとも1種と、有効フッ化物と、亜リン酸、次亜リン酸又はそれらの塩の少なくとも1種と、をそれぞれ所定量含むアルミニウム系金属表面処理浴及び該処理浴を用いた表面処理方法が提案されている(例えば、後述の特許文献1参照)。このような処理浴及び処理方法によれば、アルミニウム及びアルミニウム合金の表面に耐食性と塗膜密着性を両立させた化成皮膜を形成することができる。
Conventionally, various non-chromate treatment methods for surface treatment of aluminum and aluminum alloys have been proposed.
For example, at least one of phosphoric acid or condensed phosphoric acid or a salt thereof, at least one of a zirconium salt or a titanium salt, an effective fluoride, and at least one of phosphorous acid, hypophosphorous acid, or a salt thereof And an aluminum-based metal surface treatment bath each containing a predetermined amount and a surface treatment method using the treatment bath (see, for example, Patent Document 1 described later). According to such a treatment bath and treatment method, a chemical conversion film having both corrosion resistance and coating film adhesion can be formed on the surfaces of aluminum and aluminum alloy.
 特許文献1に記載の処理浴及び処理方法によるアルミニウム及びそれらの合金の化成処理は、通常、被処理物を処理浴に連続的に搬送し、処理浴に浸漬又はスプレー処理等を行う工程を含む。この化成処理を行っていく過程で処理浴中の有効成分が消費されると共に処理浴中の成分の組成が変化する。例えば、化成処理反応の過程において、フッ素によりアルミニウムが基材表面からエッチングされるため、処理浴中のアルミニウムの相対的な濃度は次第に高くなりアルミニウムスラッジの原因となる。 The chemical conversion treatment of aluminum and their alloys by the treatment bath and treatment method described in Patent Document 1 usually includes a step of continuously conveying an object to be treated to the treatment bath and immersing or spraying the treatment bath in the treatment bath. . In the course of this chemical conversion treatment, the active ingredient in the treatment bath is consumed and the composition of the ingredient in the treatment bath changes. For example, in the course of the chemical conversion treatment, aluminum is etched from the substrate surface by fluorine, so that the relative concentration of aluminum in the treatment bath gradually increases and causes aluminum sludge.
 従って、何ら対策を取らずに処理浴を使用し続けると、形成された化成皮膜の耐食性等の効果が得られない場合がある。このため、処理浴に対し、有効成分を含む補給剤を一定間隔で補給することが考えられる。しかし、このような方法では必ずしも処理浴中の有効成分の濃度を一定に保つことができない。例えば、化成処理を行ったアルミニウム及びそれらの合金を加工した後、再度化成処理を行うような場合もある。かかる場合、一度化成処理がされた箇所は反応が進行しないため、消費される有効成分量は相対的に低くなる。即ち、処理時間と有効成分の消費量は必ずしも比例しない。また、前述したように処理浴中の成分の組成変化の問題もある。よって、従来の方法では、処理浴を用い継続して化成処理を行った場合、耐食性等を有する化成皮膜を安定して形成することができなかった。 Therefore, if the treatment bath is continuously used without taking any measures, effects such as the corrosion resistance of the formed chemical conversion film may not be obtained. For this reason, it is possible to replenish the treatment bath with a replenisher containing an active ingredient at regular intervals. However, such a method cannot always keep the concentration of the active ingredient in the treatment bath constant. For example, in some cases, the chemical conversion treatment is performed again after processing the aluminum subjected to chemical conversion treatment and alloys thereof. In such a case, since the reaction does not proceed at the site once subjected to the chemical conversion treatment, the amount of active ingredient consumed is relatively low. That is, the processing time and the consumption amount of the active ingredient are not necessarily proportional. Further, as described above, there is a problem of composition change of components in the treatment bath. Therefore, in the conventional method, when the chemical conversion treatment is continuously performed using the treatment bath, a chemical conversion film having corrosion resistance or the like cannot be stably formed.
特開平09-143752号公報Japanese Patent Laid-Open No. 09-143752
 本発明者らは、化成処理浴中の各成分比率と形成される化成皮膜との関係につき鋭意検討した結果、化成処理浴中のアルミニウムイオン濃度とフッ素イオン濃度の比率が一定範囲内にある場合、耐食性と塗膜密着性を両立させた化成皮膜を形成できることを今回見出した。 As a result of intensive studies on the relationship between each component ratio in the chemical conversion treatment bath and the chemical conversion film to be formed, the present inventors have found that the ratio between the aluminum ion concentration and the fluorine ion concentration in the chemical conversion treatment bath is within a certain range. The present inventors have found that a chemical conversion film having both corrosion resistance and coating film adhesion can be formed.
 従って、本発明は、化成処理浴中のアルミニウムイオン濃度とフッ素イオン濃度の比率を一定範囲内に維持することで、アルミニウム系金属化成処理浴を継続使用しても、形成される化成皮膜の耐食性及び塗膜密着性を維持できる、アルミニウム系金属化成処理浴への補給方法を提供することを目的とする。 Therefore, the present invention maintains the ratio of the aluminum ion concentration and the fluorine ion concentration in the chemical conversion treatment bath within a certain range, so that the corrosion resistance of the chemical conversion film formed even if the aluminum-based metal chemical conversion treatment bath is continuously used. And it aims at providing the replenishment method to the aluminum type metal chemical conversion treatment bath which can maintain coating-film adhesiveness.
 上記の目的を達成するため本発明は、アルミニウム系金属化成処理浴に対する補給剤の補給方法であって、前記補給剤は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、を含み、前記アルミニウム系金属化成処理浴中のアルミニウムイオン濃度(mg/L)に対するフッ素イオン濃度(mg/L)の比、F/Alが1.8~4.5となるように前記補給剤を補給する、アルミニウム系金属化成処理浴に対する補給方法を提供する。 In order to achieve the above object, the present invention is a method for supplying a replenisher to an aluminum-based metal chemical treatment bath, wherein the replenisher includes at least one of a zirconium salt and a titanium salt, and an effective fluoride. The replenisher is replenished so that the ratio of the fluorine ion concentration (mg / L) to the aluminum ion concentration (mg / L) in the aluminum-based metal chemical conversion treatment bath is F / Al of 1.8 to 4.5. A replenishing method for an aluminum-based metal chemical conversion treatment bath is provided.
 また、前記補給剤が、更にリン酸、亜リン酸、過酸化水素からなる群より選ばれる少なくとも1種を含むことが好ましい。 Moreover, it is preferable that the replenisher further contains at least one selected from the group consisting of phosphoric acid, phosphorous acid, and hydrogen peroxide.
 また、前記アルミニウム系金属化成処理浴は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、リン酸、縮合リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種と、亜リン酸、次亜リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種と、を含むことが好ましい。 The aluminum-based metal chemical conversion treatment bath includes at least one selected from the group consisting of at least one of a zirconium salt and a titanium salt, an effective fluoride, phosphoric acid, condensed phosphoric acid, and a salt thereof, It is preferable to include at least one selected from the group consisting of phosphoric acid, hypophosphorous acid, and salts thereof.
 また、前記化成処理浴のpHが所定範囲内となるように前記補給剤を補給することで、前記F/Alが1.8~4.5となるように前記補給剤を補給することが好ましい。 Further, it is preferable to replenish the replenisher so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the pH of the chemical conversion bath is within a predetermined range. .
 また、前記化成処理浴の電気伝導度が所定範囲内となるように前記補給剤を補給することで、前記F/Alが1.8~4.5となるように前記補給剤を補給することが好ましい。 The replenisher is replenished so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the electrical conductivity of the chemical conversion bath is within a predetermined range. Is preferred.
 また、前記アルミニウム系金属化成処理浴は、アルミニウム飲料缶を処理対象とすることが好ましい。 Moreover, it is preferable that the aluminum-based metal chemical conversion treatment bath is an aluminum beverage can.
 本発明によれば、アルミニウム系金属化成処理浴を継続使用しても、形成される化成皮膜の耐食性及び塗膜密着性を維持できる、アルミニウム系金属化成処理浴への補給方法を提供できる。 According to the present invention, it is possible to provide a replenishment method for an aluminum-based metal chemical conversion treatment bath that can maintain the corrosion resistance and coating film adhesion of the formed chemical conversion coating even if the aluminum-based metal chemical conversion treatment bath is continuously used.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本実施形態に係る補給方法が適用されるアルミニウム系金属化成処理浴は、アルミニウム系金属からなるアルミニウム基材に、外観、耐食性、塗膜密着性等が良好な保護皮膜を形成するために用いられる。
Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
The aluminum-based metal chemical conversion treatment bath to which the replenishment method according to the present embodiment is applied is used to form a protective film having good appearance, corrosion resistance, coating film adhesion, and the like on an aluminum substrate made of an aluminum-based metal. .
<化成処理浴>
 本実施形態に係る補給方法が適用されるアルミニウム系金属化成処理浴(以下、「化成処理浴」という場合がある)は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、リン酸、縮合リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種(以下、「リン酸等」という場合がある)と、亜リン酸、次亜リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種(以下、「亜リン酸等」という場合がある)と、を含有する化成処理剤組成物を適量の水によって希釈することによって得られる。
<Chemical conversion treatment bath>
An aluminum-based metal chemical conversion treatment bath (hereinafter sometimes referred to as “chemical conversion treatment bath”) to which the replenishment method according to the present embodiment is applied includes at least one of a zirconium salt and a titanium salt, an effective fluoride, and phosphoric acid. , At least one selected from the group consisting of condensed phosphoric acid and salts thereof (hereinafter sometimes referred to as “phosphoric acid etc.”), and a group consisting of phosphorous acid, hypophosphorous acid, and salts thereof It is obtained by diluting a chemical conversion treatment composition containing at least one selected (hereinafter sometimes referred to as “phosphorous acid etc.”) with an appropriate amount of water.
 本実施形態の化成処理浴によれば、アルミニウム基材表面に防食性等に優れた化成皮膜を形成できる。
 具体的には、まず、化成処理浴中に含まれる有効フッ化物が、アルミニウム基材表面に形成された酸化皮膜をエッチングし離脱させる。また、亜リン酸等は、エッチングされたアルミニウム基材表面の酸化を防止する還元剤として機能する。そして、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、リン酸等と、亜リン酸等とによって複塩が形成され、アルミニウム基材表面に強固な化成皮膜が形成される。
According to the chemical conversion treatment bath of this embodiment, a chemical conversion film having excellent corrosion resistance and the like can be formed on the surface of the aluminum substrate.
Specifically, first, the effective fluoride contained in the chemical conversion bath etches and separates the oxide film formed on the surface of the aluminum substrate. Phosphorous acid or the like functions as a reducing agent that prevents oxidation of the etched aluminum substrate surface. A double salt is formed by at least one of zirconium salt and titanium salt, effective fluoride, phosphoric acid, etc., phosphorous acid, etc., and a strong chemical conversion film is formed on the surface of the aluminum substrate.
[ジルコニウム塩]
 本実施形態に係る化成処理浴中に含まれるジルコニウム塩としては特に限定されないが、例えば、ジルコニウムフッ化水素酸(HZrF)及びフルオロジルコニウム酸のリチウム、ナトリウム、カリウム、アンモニウム塩(LiZrF、NaZrF、KZrF、(NHZrF)、硫酸ジルコニウム(Zr(SO)、硫酸ジルコニル(ZrO(SO))、硝酸ジルコニウム(Zr(NO)、硝酸ジルコニル(ZrO(NO)、酢酸ジルコニウム、フッ化ジルコニウム(ZrF)等が挙げられる。これらは単独でもよく、2種類以上を併用してもよい。
[Zirconium salt]
No particular limitation is imposed on the zirconium salt contained in the chemical conversion treatment bath according to the present embodiment, for example, zirconium hydrofluoric acid (H 2 ZrF 6) and lithium fluoro zirconate, sodium, potassium, ammonium salts (Li 2 ZrF 6 , Na 2 ZrF 6 , K 2 ZrF 6 , (NH 4 ) 2 ZrF 6 ), zirconium sulfate (Zr (SO 4 ) 2 ), zirconyl sulfate (ZrO (SO 4 )), zirconium nitrate (Zr (NO 3) 4 ), zirconyl nitrate (ZrO (NO 3 ) 2 ), zirconium acetate, zirconium fluoride (ZrF 4 ) and the like. These may be used alone or in combination of two or more.
[チタン塩]
 本実施形態に係る化成処理浴中に含まれるチタン塩としては特に限定されないが、例えば、チタンフッ化水素酸及びフルオロチタン酸のリチウム、ナトリウム、カリウム、アンモニウム塩(LiTiF、NaTiF、KTiF、(NHTiF)、硫酸チタン(Ti(SO)、硫酸チタニル(TiO(SO))、硝酸チタン(Ti(NO)、硝酸チタニン(TiO(NO)、フッ化チタン(TiF・TiF)等が挙げられる。これらは単独でもよく、2種類以上を併用してもよい。
[Titanium salt]
No particular limitation is imposed on the titanium salt contained in the chemical conversion treatment bath according to the present embodiment, for example, lithium titanium hydrofluoric acid and fluorotitanic acid, sodium, potassium, ammonium salts (Li 2 TiF 6, Na 2 TiF 6 , K 2 TiF 6 , (NH 4 ) 2 TiF 6 ), titanium sulfate (Ti (SO 4 ) 2 ), titanyl sulfate (TiO (SO 4 )), titanium nitrate (Ti (NO 3 ) 4 ), titanine nitrate ( Examples thereof include TiO (NO 3 ) 2 ) and titanium fluoride (TiF 3 · TiF 4 ). These may be used alone or in combination of two or more.
 ジルコニウム塩及びチタン塩のうち少なくとも一方は、本実施形態に係る化成処理浴中に、金属換算で10ppm以上含まれることが好ましく、より好ましくは10~500ppm、更に好ましくは10~100ppm含まれる。化成処理浴中におけるジルコニウム塩及びチタン塩のうち少なくとも一方の濃度が金属換算で10ppm未満の場合には、ほとんど化成皮膜が形成されない。一方、処理浴中にジルコニウム塩及びチタン塩のうち少なくとも一方を金属換算で500ppm以上添加しても効果が上がらないため、ジルコニウム塩及びチタン塩のうち少なくとも一方の濃度は、金属換算で500ppm以内であることが好ましい。 At least one of the zirconium salt and the titanium salt is preferably contained in the chemical conversion treatment bath according to this embodiment in an amount of 10 ppm or more in terms of metal, more preferably 10 to 500 ppm, and still more preferably 10 to 100 ppm. When the concentration of at least one of the zirconium salt and the titanium salt in the chemical conversion bath is less than 10 ppm in terms of metal, almost no chemical conversion film is formed. On the other hand, since at least one of the zirconium salt and the titanium salt added to the treatment bath in an amount of 500 ppm or more in terms of metal does not improve the effect, the concentration of at least one of the zirconium salt and the titanium salt is within 500 ppm in terms of the metal. Preferably there is.
[有効フッ化物]
 有効フッ化物とは、化成処理浴中でフッ素イオンを遊離するフッ化物をいう。
 本実施形態に係る化成処理浴中に含まれる有効フッ化物としては特に限定されないが、例えば、フッ化水素酸(HF)、フッ化アンモニウム(NHF)、フッ化水素アンモニウム(NHHF)、フッ化ナトリウム(NaF)、フッ化水素ナトリウム(NaHF)等が挙げられる。これらは単独でもよく、2種類以上を併用してもよい。
[Effective fluoride]
Effective fluoride refers to fluoride that liberates fluorine ions in the chemical conversion treatment bath.
No particular limitation is imposed on the effective fluoride contained in the chemical conversion treatment bath according to the present embodiment, for example, hydrofluoric acid (HF), ammonium fluoride (NH 4 F), ammonium hydrogen fluoride (NH 4 HF 2 ), Sodium fluoride (NaF), sodium hydrogen fluoride (NaHF 2 ) and the like. These may be used alone or in combination of two or more.
 本実施形態に係る化成処理浴中において、有効フッ化物からフッ素イオン(F)が遊離される。フッ素イオンは、アルミニウム基材表面の酸化皮膜をエッチングする他に、化成処理浴中において生成するジルコニウムホスフェートの沈殿を抑制する機能を有する。更に、アルミニウム基材の化成処理中に化成処理浴に溶け出したアルミニウムをフルオロアルミニウムとして化成処理浴中に溶解させ、アルミニウムスラッジの発生を抑制する機能を有する。 In the chemical conversion treatment bath according to the present embodiment, fluorine ions (F ) are liberated from the effective fluoride. In addition to etching the oxide film on the surface of the aluminum substrate, the fluorine ion has a function of suppressing precipitation of zirconium phosphate generated in the chemical conversion bath. Furthermore, it has the function to suppress the generation | occurrence | production of aluminum sludge by making the aluminum melt | dissolved in the chemical conversion treatment bath in the chemical conversion treatment bath into the chemical conversion treatment bath as a fluoroaluminum.
 本実施形態に係る化成処理浴中におけるフッ素イオンの濃度(mg/L)は、化成処理反応によって化成処理浴中に溶出してくるアルミニウムイオンの濃度(mg/L)との比、F/Alが1.8~4.5の範囲内であることが好ましい。F/Alが1.8以上であることにより、化成処理浴中においてアルミニウムイオンが十分に可溶化されてアルミニウム基材表面に形成される化成皮膜の均一性が向上する。また、4.5以下であることにより、フッ素イオンによるエッチングが過剰となるのを抑制でき、十分な耐食性を備えた化成皮膜をアルミニウム基材表面に形成できる。F/Alは1.8~2.2であることが好ましい。なお、アルミニウムイオンの濃度はICP(誘導結合プラズマ発光分析装置)により、フッ素イオンの濃度はイオンクロマトグラフにより測定できる。 The fluorine ion concentration (mg / L) in the chemical conversion bath according to this embodiment is the ratio of the concentration of aluminum ions (mg / L) eluted in the chemical conversion bath by the chemical conversion reaction, F / Al. Is preferably in the range of 1.8 to 4.5. When F / Al is 1.8 or more, the uniformity of the chemical conversion film formed on the surface of the aluminum substrate is improved by sufficiently solubilizing aluminum ions in the chemical conversion treatment bath. Moreover, by being 4.5 or less, it can suppress that the etching by a fluorine ion becomes excess, and can form the chemical conversion film provided with sufficient corrosion resistance on the aluminum base-material surface. F / Al is preferably 1.8 to 2.2. The concentration of aluminum ions can be measured by ICP (inductively coupled plasma emission spectrometer), and the concentration of fluorine ions can be measured by ion chromatography.
[リン酸等]
 本実施形態に係る化成処理浴中に含まれるリン酸及びその塩としては特に限定されないが、例えば、HPO、(NH)HPO、NaHPO、KHPO等のリン酸アルカリ金属塩、リン酸カルシウム、リン酸マグネシウム等のリン酸アルカリ土類金属塩等が挙げられる。
 また、本実施形態に係る化成処理浴中に含まれる縮合リン酸及びその塩としては特に限定されないが、縮合リン酸としては、例えば、ピロリン酸、トリポリリン酸、メタリン酸、ウルトラリン酸等が挙げられ、縮合リン酸の塩としては、例えば、ナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩等が挙げられる。これらは単独でもよく、2種類以上を併用してもよい。
[Phosphoric acid, etc.]
It is not particularly restricted but may be phosphoric acid and its salts contained in the chemical conversion treatment bath according to the present embodiment, for example, H 3 PO 4, (NH 4) H 2 PO 4, NaH 2 PO 4, KH 2 PO 4 , etc. And alkaline earth metal phosphates such as calcium phosphate and magnesium phosphate.
Moreover, although it does not specifically limit as condensed phosphoric acid and its salt contained in the chemical conversion treatment bath which concerns on this embodiment, For example, pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid, ultraphosphoric acid etc. are mentioned. Examples of the salt of condensed phosphoric acid include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. These may be used alone or in combination of two or more.
 リン酸等は、本実施形態に係る化成処理浴中に、リン酸換算で10ppm以上含まれることが好ましく、10~500ppm含まれることがより好ましく、10~100ppm含まれることが更に好ましい。本実施形態に係るリン酸等の化成処理浴中の濃度が、リン酸換算で10ppm未満の場合には、耐沸水黒変を生じる。一方、化成処理浴中のリン酸等の濃度が、リン酸換算で500ppmを超える場合、耐沸水黒変を生じると共に塗膜密着性も悪化する。 Phosphoric acid and the like are preferably contained in the chemical conversion bath according to the present embodiment in an amount of 10 ppm or more, more preferably 10 to 500 ppm, and even more preferably 10 to 100 ppm in terms of phosphoric acid. When the concentration in the chemical conversion treatment bath of phosphoric acid or the like according to this embodiment is less than 10 ppm in terms of phosphoric acid, boiling water blackening occurs. On the other hand, when the concentration of phosphoric acid or the like in the chemical conversion bath exceeds 500 ppm in terms of phosphoric acid, boiling water blacking resistance is caused and coating film adhesion is deteriorated.
[亜リン酸等]
 本実施形態に係る化成処理浴中に含まれる亜リン酸、次亜リン酸及びこれらの塩としては特に限定されないが、例えば、亜リン酸、次亜リン酸に加えこれらの塩として、ナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩等が挙げられる。これらは単独でもよく、2種類以上を併用してもよい。
[Phosphorous acid, etc.]
Although it does not specifically limit as phosphorous acid, hypophosphorous acid, and these salts contained in the chemical conversion treatment bath which concerns on this embodiment, For example, in addition to phosphorous acid and hypophosphorous acid, as these salts, sodium, Examples include alkali metal salts such as potassium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. These may be used alone or in combination of two or more.
 亜リン酸等は、本実施形態に係る化成処理浴中に、亜リン酸換算で10ppm以上含まれることが好ましく、10~5000ppm含まれることがより好ましく、50~500ppm含まれることが更に好ましい。本実施形態に係る亜リン酸等の化成処理浴中の濃度が、亜リン酸換算で10ppm未満の場合には、化成皮膜の均一性が不十分となる。一方、化成処理浴中の亜リン酸等の濃度が、亜リン酸換算で5000ppm以上である場合、塗膜密着性が低下する。 Phosphorous acid or the like is preferably contained in the chemical conversion bath according to this embodiment in an amount of 10 ppm or more in terms of phosphorous acid, more preferably 10 to 5000 ppm, and even more preferably 50 to 500 ppm. When the concentration in the chemical conversion treatment bath such as phosphorous acid according to the present embodiment is less than 10 ppm in terms of phosphorous acid, the uniformity of the chemical conversion film becomes insufficient. On the other hand, when the concentration of phosphorous acid or the like in the chemical conversion treatment bath is 5000 ppm or more in terms of phosphorous acid, the coating film adhesion is lowered.
 更に本実施形態の化成処理浴には、必要に応じて抗菌剤、界面活性剤、防錆剤等を添加してもよい。抗菌剤としては、例えば、エタノールやイソプロパノール等のアルコール、ポリヘキサメチレンビグアニジン塩酸塩等のグアニジン基含有化合物、2-(4-チアゾリル)-ベンズイミダゾール、メチル-2-ベンズイミダゾールカルバメート等のベンズイミダゾール系抗菌剤、p-クロロ-m-キシレノール、p-クロロ-m-クレゾール等のフェノール系抗菌剤、2,4,5,6-テトラクロロイソフタロニトリル、1,2-ジブロモ-2,4-ジシアノブタン等の二トリル系抗菌剤、(2-ピリジルチオ-1-オキシド)ナトリウム、ビス(2-ピリジルチオ-1-オキシド)亜鉛等のピリジン系抗菌剤、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン等イソチアゾロン系抗菌剤、塩化ベンザルコニウム、塩化ベンゼトニウム等の4級アンモニウム塩、安息香酸、p-オキシ安息香酸エチル、ソルビン酸、ソルビン酸カリウム、デヒドロ酢酸ナトリウム、プロピオン酸ナトリウム等が挙げられる。
 また、界面活性剤としては、例えば、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤が挙げられ、防錆剤としては、例えば、タンニン酸、イミダゾール類、トリアジン類、グアニン類、ヒドラジン類、ビグアニド等が挙げられる。
 この他にも、密着性向上を目的としてシランカップリング剤、コロイダルシリカ、アミン類、フェノール樹脂を含むフェノール系水溶性有機化合物等を化成処理浴に添加してもよい。
Furthermore, you may add an antibacterial agent, surfactant, a rust preventive agent, etc. to the chemical conversion treatment bath of this embodiment as needed. Examples of the antibacterial agent include alcohols such as ethanol and isopropanol, guanidine group-containing compounds such as polyhexamethylenebiguanidine hydrochloride, and benzimidazoles such as 2- (4-thiazolyl) -benzimidazole and methyl-2-benzimidazole carbamate. Antibacterial agents, phenolic antibacterial agents such as p-chloro-m-xylenol and p-chloro-m-cresol, 2,4,5,6-tetrachloroisophthalonitrile, 1,2-dibromo-2,4- Nitryl antibacterial agents such as dicyanobutane, pyridine antibacterial agents such as (2-pyridylthio-1-oxide) sodium and bis (2-pyridylthio-1-oxide) zinc, 2-methyl-4-isothiazolin-3-one , 5-chloro-2-methyl-4-isothiazolin-3-one, etc. isothiazolone antibacterial , Benzalkonium chloride, quaternary ammonium salts such as benzethonium chloride, benzoic acid, p- oxyethyl benzoate, sorbic acid, potassium sorbate, sodium dehydroacetate, sodium propionate.
Examples of surfactants include nonionic surfactants, cationic surfactants, and anionic surfactants. Examples of rust inhibitors include tannic acid, imidazoles, triazines, guanines, and hydrazines. , Biguanides and the like.
In addition, for the purpose of improving adhesion, a silane coupling agent, colloidal silica, amines, a phenol-based water-soluble organic compound containing a phenol resin, and the like may be added to the chemical conversion bath.
 本実施形態に係る化成処理浴の25℃におけるpHは、2~4であることが好ましく、2.5~3.5であることがより好ましい。化成処理浴のpHが2未満である場合、エッチング過剰となり、化成皮膜の形成が困難となるだけでなく、耐沸水黒変性、塗膜密着性が低下する。一方、化成処理浴のpHが4を超える場合、化成処理浴が白濁しスラッジが発生する上、化成皮膜の形成も困難となり、耐沸水黒変性が低下する。 The pH at 25 ° C. of the chemical conversion treatment bath according to the present embodiment is preferably 2 to 4, and more preferably 2.5 to 3.5. When the pH of the chemical conversion treatment bath is less than 2, not only etching becomes excessive and it becomes difficult to form a chemical conversion film, but boiling water blackening resistance and coating film adhesion deteriorate. On the other hand, when the pH of the chemical conversion bath exceeds 4, the chemical conversion bath becomes cloudy and sludge is generated, and it is difficult to form a chemical conversion film, resulting in a decrease in resistance to boiling water blackening.
 本実施形態に係る化成処理浴の処理対象はアルミニウム基材であり、アルミニウム基材の材質であるアルミニウム系金属としては特に制限されないが、アルミニウム、アルミニウム-銅合金、アルミニウム-マンガン合金、アルミニウム-珪素合金、アルミニウム-マグネシウム合金、アルミニウム-マグネシウム-珪素合金、アルミニウム-亜鉛合金、アルミニウム-亜鉛-マグネシウム合金等を挙げることができる。また、処理対象となるアルミニウム基材の形状については特に制限されず、板、棒、缶等の任意形状の処理対象を化成処理することができる。より具体的には、本実施形態に係るアルミニウム系金属化成処理浴は、特に3000系合金製のアルミニウム飲料缶を好ましく化成処理することができる。 The treatment target of the chemical conversion treatment bath according to the present embodiment is an aluminum base, and the aluminum-based metal that is the material of the aluminum base is not particularly limited, but aluminum, aluminum-copper alloy, aluminum-manganese alloy, aluminum-silicon An alloy, an aluminum-magnesium alloy, an aluminum-magnesium-silicon alloy, an aluminum-zinc alloy, an aluminum-zinc-magnesium alloy, and the like can be given. Moreover, it does not restrict | limit in particular about the shape of the aluminum base material used as a process target, It can carry out a chemical conversion process of the process target of arbitrary shapes, such as a board, a rod, and a can. More specifically, the aluminum-based metal chemical conversion treatment bath according to the present embodiment can preferably chemically convert an aluminum beverage can made of a 3000-based alloy.
 本実施形態に係る化成処理浴によれば、アルミニウム基材表面に均一な化成皮膜を形成できる。よって、化成皮膜を薄膜化しても耐食性を維持できるため、化成皮膜の密着性を向上させることが可能となる。例えば、アルミニウム飲料缶は化成皮膜形成後に厳しい絞り加工を行うため、耐食性に加え化成皮膜の密着性が要求されるが、本実施形態に係る化成処理浴はこのようなアルミニウム飲料缶等に対しても好ましく用いられる。 According to the chemical conversion treatment bath according to this embodiment, a uniform chemical conversion film can be formed on the surface of the aluminum substrate. Therefore, since the corrosion resistance can be maintained even if the chemical conversion film is thinned, the adhesion of the chemical conversion film can be improved. For example, since an aluminum beverage can is subjected to severe drawing after the formation of a chemical conversion film, adhesion of the chemical conversion film is required in addition to corrosion resistance, but the chemical conversion treatment bath according to this embodiment is for such an aluminum beverage can etc. Are also preferably used.
<補給剤>
 本実施形態に係るアルミニウム系金属化成処理浴に対する補給方法に用いられる補給剤は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、を含み、リン酸、亜リン酸、過酸化水素からなる群より選ばれる少なくとも1種を更に含むことが好ましい。
<Replenisher>
The replenisher used in the replenishment method for the aluminum-based metal chemical conversion treatment bath according to the present embodiment includes at least one of a zirconium salt and a titanium salt, and an effective fluoride, and includes phosphoric acid, phosphorous acid, hydrogen peroxide It is preferable to further include at least one selected from the group consisting of:
 ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、リン酸と、亜リン酸と、は、複塩を形成することで化成皮膜を形成する成分であるため、化成皮膜の形成に伴い消費される。また、有効フッ化物からはフッ素イオンが遊離されるが、フッ素イオンは化成処理浴中で溶出したアルミニウムイオンとフルオロアルミニウム等を形成することで消費される。また、亜リン酸はフッ素によりエッチングされたアルミニウム基材表面の酸化を防止する還元剤として機能するため、自身が酸化されることにより還元剤としての機能を失う。
 従って、これらの成分を補給剤に含有させ、化成処理浴に補給することが化成処理浴の継続使用のため必要となる。
At least one of zirconium salt and titanium salt, effective fluoride, phosphoric acid, and phosphorous acid are components that form a chemical conversion film by forming a double salt. Is consumed. In addition, fluorine ions are liberated from the effective fluoride, but fluorine ions are consumed by forming aluminum ions and fluoroaluminum eluted in the chemical conversion bath. Moreover, since phosphorous acid functions as a reducing agent which prevents the oxidation of the surface of the aluminum base material etched by fluorine, it loses its function as a reducing agent when it is oxidized.
Therefore, it is necessary for the chemical conversion treatment bath to be used by continuously adding these components to the chemical conversion treatment bath.
 本実施形態に係る補給剤に含まれるジルコニウム塩としては、特に限定されないが、上記本実施形態に係る化成処理浴中に含まれるジルコニウム塩が挙げられる。同様に、チタン塩、有効フッ化物、リン酸、亜リン酸としても上記本実施形態に係る化成処理浴中に含まれる有効フッ化物、リン酸等、亜リン酸等が挙げられる。 The zirconium salt contained in the replenisher according to the present embodiment is not particularly limited, and examples thereof include a zirconium salt contained in the chemical conversion treatment bath according to the present embodiment. Similarly, examples of the titanium salt, effective fluoride, phosphoric acid, and phosphorous acid include effective fluoride, phosphoric acid, phosphorous acid, and the like included in the chemical conversion treatment bath according to the present embodiment.
 また、本実施形態に係る補給剤には、化成処理浴中のpHを調整するため、pH調整剤が含有されていてもよい。pH調整剤としては、特に限定されず、硝酸、アンモニア等の一般的な酸やアルカリが挙げられる。 Moreover, in order to adjust the pH in the chemical conversion bath, the replenisher according to the present embodiment may contain a pH adjuster. It does not specifically limit as a pH adjuster, General acids and alkalis, such as nitric acid and ammonia, are mentioned.
 また、本実施形態に係る補給剤には、化成処理浴と同様、必要に応じて抗菌剤、界面活性剤、防錆剤等が含まれていてもよい。 Moreover, the replenisher according to the present embodiment may contain an antibacterial agent, a surfactant, a rust preventive agent, and the like as necessary, as in the case of the chemical conversion treatment bath.
<補給方法>
 次に、本実施形態に係る補給剤を用いて行う、アルミニウム系金属化成処理浴に対する補給方法について説明する。
 本実施形態に係る補給方法は、アルミニウム系金属がフッ素によりエッチングされることで化成処理浴中に溶出するアルミニウムイオン濃度(mg/L)と、化成処理浴中のフッ素イオン濃度(mg/L)の比、F/Alが1.8~4.5となるように上記補給剤を補給することにより行う。
<Replenishment method>
Next, a replenishment method for the aluminum-based metal chemical conversion treatment bath performed using the replenisher according to the present embodiment will be described.
In the replenishment method according to the present embodiment, the aluminum ion concentration (mg / L) eluted in the chemical conversion treatment bath by etching the aluminum-based metal with fluorine, and the fluorine ion concentration (mg / L) in the chemical conversion treatment bath. The above replenisher is replenished so that the ratio of F / Al is 1.8 to 4.5.
 化成処理浴中のアルミニウムイオン濃度は、化成処理浴中でアルミニウム系金属がフッ素によりエッチングされることで増大する。アルミニウムイオン濃度が増大するとアルミニウムスラッジの原因となるが、アルミニウムイオンはフッ素イオンと結合してフルオロアルミニウムとなり可溶化するため、アルミニウムイオンに対しフッ素イオンが十分量存在することでアルミニウムスラッジを防止できる。
 また、化成処理浴中のフッ素イオン濃度が増大すると、フッ素イオンによるエッチングが過剰となり、化成皮膜の形成が阻害される。しかしアルミニウムイオンとフッ素イオンが結合しフルオロアルミニウムとなることでフッ素イオンによるエッチングが抑制される。従ってフッ素イオンに対しアルミニウムイオンが十分量存在することでフッ素イオンによる過剰なエッチングが抑制される。
 従って化成処理浴中のアルミニウムイオン濃度とフッ素イオン濃度の比を上記範囲内に維持する事が重要である。F/Alが1.8以上の場合、化成処理浴中においてアルミニウムイオンが十分に可溶化されてアルミニウム基材表面に形成される化成皮膜の均一性が向上するので好ましく、4.5以下であることにより、フッ素イオンによるエッチングが過剰となるのを抑制でき、十分な耐食性を備えた化成皮膜をアルミニウム基材表面に形成できる。F/Alは1.9~2.1であることが好ましい。
The aluminum ion concentration in the chemical conversion treatment bath is increased by etching the aluminum-based metal with fluorine in the chemical conversion treatment bath. An increase in the aluminum ion concentration causes aluminum sludge. However, since aluminum ions are combined with fluorine ions to become fluoroaluminum and are solubilized, aluminum sludge can be prevented by the presence of a sufficient amount of fluorine ions relative to the aluminum ions.
Further, when the fluorine ion concentration in the chemical conversion bath increases, etching with fluorine ions becomes excessive, and formation of the chemical conversion film is hindered. However, etching by fluorine ions is suppressed by combining aluminum ions and fluorine ions to form fluoroaluminum. Accordingly, the presence of a sufficient amount of aluminum ions relative to fluorine ions suppresses excessive etching by fluorine ions.
Therefore, it is important to maintain the ratio between the aluminum ion concentration and the fluorine ion concentration in the chemical conversion bath within the above range. When F / Al is 1.8 or more, the aluminum ion is sufficiently solubilized in the chemical conversion treatment bath to improve the uniformity of the chemical conversion film formed on the surface of the aluminum substrate, and is preferably 4.5 or less. As a result, excessive etching by fluorine ions can be suppressed, and a chemical conversion film having sufficient corrosion resistance can be formed on the surface of the aluminum substrate. F / Al is preferably 1.9 to 2.1.
 本実施形態に係る補給方法は、化成処理浴中の25℃におけるpHが2~4となるように補給剤を補給する。化成処理浴の25℃におけるpHが2未満である場合、上述のようにアルミニウム基材に対するエッチング量が増大し、アルミニウムイオン濃度が増大する。また、同様にpHが4を超える場合、アルミニウムイオンの許容溶存濃度が低下するため、アルミニウムイオン濃度が低下する。従って、pHを上記範囲内に維持することで、化成処理浴中のアルミニウムイオン濃度を一定値内に維持することができ、F/Alを好ましい範囲内に維持しやすい。なお、pHの測定方法は特に限定されず、市販のpH電極等が用いられる。 In the replenishment method according to this embodiment, the replenisher is replenished so that the pH at 25 ° C. in the chemical conversion bath is 2 to 4. When the pH of the chemical conversion bath at 25 ° C. is less than 2, the amount of etching with respect to the aluminum base increases as described above, and the aluminum ion concentration increases. Similarly, when the pH exceeds 4, the permissible dissolved concentration of aluminum ions decreases, so the aluminum ion concentration decreases. Therefore, by maintaining the pH within the above range, the aluminum ion concentration in the chemical conversion bath can be maintained within a certain value, and F / Al can be easily maintained within a preferred range. In addition, the measuring method of pH is not specifically limited, A commercially available pH electrode etc. are used.
 また、pHが上記範囲内に維持されるように本実施形態に係る補給剤を添加すると、結果的にF/Alが1.8~4.5の範囲内に維持されるよう、補給剤に含有される有効フッ化物等の成分の含有量やpHを調整することが好ましい。 Further, when the replenisher according to the present embodiment is added so that the pH is maintained within the above range, the replenisher is consequently maintained so that F / Al is maintained within the range of 1.8 to 4.5. It is preferable to adjust the content and pH of components such as effective fluoride contained.
 また、本実施形態に係る補給方法は、化成処理浴の25℃における電気伝導度が0.5~5mS/cmとなるように補給剤を補給する。
 上述したように、化成処理浴の継続使用により、化成処理剤中の皮膜形成成分であるジルコニウム塩、チタン塩、有効フッ化物、リン酸等、亜リン酸等が消費され、化成処理浴中のイオン濃度が低下する。これに伴い化成処理浴の電気伝導度は低下する。従って、電気伝導度を上記範囲内に維持することで、化成処理浴中の皮膜形成成分の濃度を一定値内に維持することができる。なお、電気伝導度の測定方法は特に限定されず、市販のEC電極等が用いられる。
In the replenishment method according to the present embodiment, the replenisher is replenished so that the electrical conductivity of the chemical conversion bath at 25 ° C. is 0.5 to 5 mS / cm.
As described above, the continuous use of the chemical conversion treatment bath consumes zirconium salt, titanium salt, effective fluoride, phosphoric acid, phosphorous acid, etc., which are film forming components in the chemical conversion treatment agent, Ion concentration decreases. Along with this, the electrical conductivity of the chemical conversion bath decreases. Therefore, by maintaining the electric conductivity within the above range, the concentration of the film forming component in the chemical conversion treatment bath can be maintained within a certain value. In addition, the measuring method of electrical conductivity is not specifically limited, A commercially available EC electrode etc. are used.
 また、電気伝導度が上記範囲内に維持されるように本実施形態に係る補給剤を添加すると、結果的にF/Alが1.8~4.5の範囲内に維持されるよう、補給剤に含有される有効フッ化物等の成分の含有量等を調整することが好ましい。 Further, when the replenisher according to the present embodiment is added so that the electric conductivity is maintained within the above range, the replenishment is performed so that F / Al is maintained within the range of 1.8 to 4.5 as a result. It is preferable to adjust the content of components such as effective fluoride contained in the agent.
 本実施形態に係る補給剤の補給を行う方法としては特に限定されないが、化成処理浴中の各成分の組成が大きく変化しないよう、随時微量補給がされることが好ましい。例えば、上記pH電極やEC電極の検出値に応じて、pHや電気伝導度が一定値内に維持されるよう自動管理されることが好ましい。 The method of replenishing the replenisher according to the present embodiment is not particularly limited, but it is preferable that a small amount is replenished as needed so that the composition of each component in the chemical conversion bath does not change greatly. For example, it is preferable that the pH and electrical conductivity are automatically managed so as to be maintained within a certain value in accordance with the detected value of the pH electrode or EC electrode.
 以上説明した本実施形態の補給方法によれば、化成処理浴を継続使用し化成処理浴中の成分に変化が生じた場合であっても、化成処理浴のF/Alを1.8~4.5に維持することでアルミニウム基材表面に均一な化成皮膜を形成できる。従って本実施形態の補給方法が適用される化成処理浴は、化成皮膜の防食性と共に密着性が要求されるアルミニウム飲料缶等を好ましく化成処理することができる。 According to the replenishment method of the present embodiment described above, even when the chemical conversion bath is continuously used and the components in the chemical conversion bath change, the F / Al of the chemical conversion bath is 1.8-4. .5, a uniform chemical conversion film can be formed on the surface of the aluminum substrate. Therefore, the chemical conversion treatment bath to which the replenishment method of the present embodiment is applied can preferably carry out chemical conversion treatment of aluminum beverage cans and the like that require adhesion as well as corrosion resistance of the chemical conversion coating.
<化成処理方法>
 次に、本実施形態に係る化成処理浴を用いて行うアルミニウム系金属の化成処理方法について説明する。
 化成処理に先立ち、アルミニウム基材の前処理を行う。例えば、飲料缶等のアルミニウム缶は、ドローイング・アンド・アイアニング加工(以下「DI加工」という)と呼ばれる引き抜き加工等によって製造されており、その過程で発生したスマットと呼ばれるアルミニウム粉末や潤滑油が表面に付着している。また、アルミニウム基材表面には通常酸化被膜が形成され不動態化している。従ってアルカリ処理や酸処理等によりこれらのスマットや潤滑油を除去すると共に、アルミニウム基材表面を適度にエッチングすることが好ましい。このようなアルカリ処理や酸処理を前処理として行うことにより、アルミニウム基材表面に強固な化成皮膜を形成できる。
<Chemical conversion treatment method>
Next, a chemical conversion treatment method for an aluminum-based metal performed using the chemical conversion treatment bath according to the present embodiment will be described.
Prior to the chemical conversion treatment, pretreatment of the aluminum substrate is performed. For example, aluminum cans such as beverage cans are manufactured by drawing and so-called drawing and ironing processing (hereinafter referred to as “DI processing”), and aluminum powder or lubricating oil called smut generated in the process is on the surface. Adhering to In addition, an oxide film is usually formed on the surface of the aluminum base and is passivated. Therefore, it is preferable to remove these smuts and lubricating oil by alkali treatment, acid treatment, etc., and to appropriately etch the surface of the aluminum base. By performing such alkali treatment or acid treatment as a pretreatment, a strong chemical conversion film can be formed on the surface of the aluminum substrate.
 アルミニウム系金属の化成処理方法は、特に制限されないが、被処理物であるアルミニウム製品等を化成処理浴中に浸漬、あるいは化成処理浴内の化成処理剤組成物を噴霧又は塗布等することにより行われる。化成処理に要する時間は、化成処理浴に係る化成処理剤組成物、処理温度、処理方法により異なるが、通常5~60秒である。 The method of chemical conversion treatment of the aluminum-based metal is not particularly limited, but is performed by immersing an aluminum product or the like to be treated in the chemical conversion treatment bath, or spraying or coating the chemical conversion treatment agent composition in the chemical conversion treatment bath. Is called. The time required for the chemical conversion treatment varies depending on the chemical conversion treatment agent composition, the treatment temperature, and the treatment method for the chemical conversion treatment bath, but is usually 5 to 60 seconds.
 また、本実施形態に係る化成処理方法において、化成処理浴の温度は、室温~60℃であることが好ましく、30~50℃であることがより好ましい。化成処理浴の温度が室温(例えば25℃)未満の場合、化成皮膜の形成速度が遅く、形成速度を上昇させるためには処理浴中の各成分の濃度を上昇させなければならないため、いずれにしても経済的に不利である。一方、化成処理浴の温度が60℃を超える場合、処理浴が白濁しスラッジが発生しやすくなる。また、化成処理浴の温度維持に多大なエネルギーを要するため、経済的に不利である。 In the chemical conversion treatment method according to this embodiment, the temperature of the chemical conversion treatment bath is preferably room temperature to 60 ° C., and more preferably 30 to 50 ° C. If the temperature of the chemical conversion bath is below room temperature (for example, 25 ° C.), the formation rate of the chemical conversion film is slow, and in order to increase the formation rate, the concentration of each component in the treatment bath must be increased. Even economically disadvantageous. On the other hand, when the temperature of the chemical conversion treatment bath exceeds 60 ° C., the treatment bath becomes cloudy and sludge tends to be generated. Moreover, since a great deal of energy is required to maintain the temperature of the chemical conversion bath, it is economically disadvantageous.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例中、「%」は特に断りのない限り「質量%」を意味する。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, “%” means “% by mass” unless otherwise specified.
<実施例1>
 ジルコニウムイオン、アルミニウムイオン、フッ素イオンの濃度がそれぞれ表1に示す濃度の水溶液となるように各成分を調製し、実施例1の化成処理浴とした。ジルコニウムイオン源としては(NHZrFを用い、フッ素イオン源としてはHFを用いた。被処理物としては、アルミニウム合金(A3004)板をDI加工して得られた蓋なしのアルミニウム缶体を用い、化成処理浴のpH、処理温度、処理時間をそれぞれ表1に示す条件として化成処理を行った。なお、表1中のpHは、25℃におけるpHを意味する。
<Example 1>
Each component was prepared so that the concentration of zirconium ions, aluminum ions, and fluorine ions was an aqueous solution having the concentrations shown in Table 1, and used as a chemical conversion treatment bath of Example 1. (NH 4 ) 2 ZrF 6 was used as the zirconium ion source, and HF was used as the fluorine ion source. As an object to be processed, an aluminum can body without a lid obtained by DI processing of an aluminum alloy (A3004) plate is used, and the chemical conversion treatment is performed under the conditions shown in Table 1 for the pH of the chemical conversion treatment bath, the treatment temperature, and the treatment time. Went. In addition, pH in Table 1 means pH at 25 ° C.
<実施例3、5、7、9>
 ジルコニウムイオン、アルミニウムイオン、フッ素イオンに加え、リン酸、亜リン酸、過酸化水素(H)の各成分濃度が表1に示す濃度となるように各成分を調製し、実施例3、5、7、9の化成処理浴とした。それぞれ処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Examples 3, 5, 7, 9>
In addition to zirconium ion, aluminum ion, and fluorine ion, each component was prepared so that the concentration of each component of phosphoric acid, phosphorous acid, and hydrogen peroxide (H 2 O 2 ) was the concentration shown in Table 1, Example 3 Chemical conversion treatment baths 5, 7, 9 were used. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
<実施例2>
 実施例1の化成処理浴に対し、ジルコニウムイオン20g/L、フッ素イオン20g/L、硝酸20g/Lを含む補給剤Aを0.1%補給し、実施例2の化成処理浴とした。なお、各成分源としては実施例1と同様のものを用いた。上記補給により化成処理浴中の各成分量は表1に示す通りとなった。処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Example 2>
The chemical conversion treatment bath of Example 1 was supplemented with 0.1% of replenisher A containing 20 g / L of zirconium ions, 20 g / L of fluorine ions, and 20 g / L of nitric acid to obtain a chemical conversion treatment bath of Example 2. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
<実施例4>
 実施例3の化成処理浴に対し、ジルコニウムイオン10g/L、フッ素イオン10g/L、リン酸10g/L、硝酸20g/Lを含む補給剤Bを0.1%補給し、実施例4の化成処理浴とした。なお、各成分源としては実施例1と同様のものを用いた。上記補給により化成処理浴中の各成分量は表1に示す通りとなった。処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Example 4>
The chemical conversion treatment bath of Example 3 was supplemented with 0.1% of supplementary agent B containing 10 g / L of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, and 20 g / L of nitric acid. A treatment bath was used. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
<実施例6>
 実施例5の化成処理浴に対し、ジルコニウムイオン10g/L、フッ素イオン10g/L、リン酸10g/L、亜リン酸10g/L、硝酸20g/Lを含む補給剤Cを0.1%補給し、実施例6の化成処理浴とした。なお、各成分源としては実施例1と同様のものを用いた。上記補給により化成処理浴中の各成分量は表1に示す通りとなった。処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Example 6>
Replenishment agent C containing 0.1 g of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, 10 g / L of phosphorous acid, and 20 g / L of nitric acid is replenished to the chemical conversion treatment bath of Example 5. Thus, the chemical conversion treatment bath of Example 6 was obtained. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
<実施例8>
 実施例7の化成処理浴に対し、ジルコニウムイオン10g/L、フッ素イオン10g/L、リン酸10g/L、過酸化水素10g/L、硝酸20g/Lを含む補給剤Dを0.1%補給し、実施例8の化成処理浴とした。なお、各成分源としては実施例1と同様のものを用いた。上記補給により化成処理浴中の各成分量は表1に示す通りとなった。処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Example 8>
Replenishment agent D containing 10 g / L of zirconium ions, 10 g / L of fluorine ions, 10 g / L of phosphoric acid, 10 g / L of hydrogen peroxide, and 20 g / L of nitric acid is replenished to the chemical conversion treatment bath of Example 7 by 0.1%. Thus, the chemical conversion treatment bath of Example 8 was obtained. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
<実施例10>
 実施例9の化成処理浴に対し、ジルコニウムイオン10g/L、フッ素イオン10g/L、リン酸10g/L、亜リン酸10g/L、過酸化水素10g/L、硝酸20g/Lを含む補給剤Eを0.1%補給し、実施例10の化成処理浴とした。なお、各成分源としては実施例1と同様のものを用いた。上記補給により化成処理浴中の各成分量は表1に示す通りとなった。処理条件を表1に示すものとしたこと以外は実施例1と同様の条件で化成処理を行った。
<Example 10>
Replenisher containing zirconium ion 10 g / L, fluorine ion 10 g / L, phosphoric acid 10 g / L, phosphorous acid 10 g / L, hydrogen peroxide 10 g / L, nitric acid 20 g / L with respect to the chemical conversion treatment bath of Example 9. E was replenished by 0.1% to obtain a chemical conversion treatment bath of Example 10. In addition, the same thing as Example 1 was used as each component source. The amount of each component in the chemical conversion bath was as shown in Table 1 by the above replenishment. The chemical conversion treatment was performed under the same conditions as in Example 1 except that the treatment conditions were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例の化成処理浴の被処理物であるアルミニウム缶体に対し、以下の方法で前処理を行った。まず、市販の酸性洗浄剤(日本ペイント・サーフケミカルズ株式会社製、サーフクリーナーNHC260)を用い、75℃で60秒間スプレー処理することで潤滑油とスマットを除去した。次に水道水で15秒間スプレー水洗を行った。
 その後、被処理物であるアルミニウム缶体に実施例及び比較例の化成処理浴に係る化成処理剤組成物をそれぞれ表1に示す条件でスプレーした。次に水道水で15秒間、脱イオン水で5秒間スプレー水洗した後、200℃で3分間乾燥し、以下の評価試験に用いる実施例及び比較例の処理容器とした。
The aluminum can body which is a to-be-processed object of the chemical conversion treatment bath of an Example and a comparative example was pre-processed with the following method. First, the lubricating oil and smut were removed by spraying at 75 ° C. for 60 seconds using a commercially available acidic cleaning agent (Surf Cleaner NHC260 manufactured by Nippon Paint Surf Chemicals Co., Ltd.). Next, spray water washing was performed for 15 seconds with tap water.
Then, the chemical conversion treatment agent composition which concerns on the chemical conversion treatment bath of an Example and a comparative example was sprayed on the aluminum can body which is a to-be-processed object on the conditions shown in Table 1, respectively. Next, spray water was washed with tap water for 15 seconds and deionized water for 5 seconds, and then dried at 200 ° C. for 3 minutes to obtain treatment containers for Examples and Comparative Examples used in the following evaluation tests.
[沸騰水耐食性試験]
 実施例1~10及び比較例1、2の処理容器から切り出した缶底を100℃の沸騰した水道水に30分間浸漬し、缶底外面部の黒変の程度を以下の評価基準に従って目視により評価した。評価結果を表1に示す。評価Aを合格とし、評価B、Cを不合格と判定した。
A:黒変なし
B:わずかに黒変
C:強く黒変
[Boiling water corrosion resistance test]
The can bottoms cut out from the processing containers of Examples 1 to 10 and Comparative Examples 1 and 2 were immersed in boiling tap water at 100 ° C. for 30 minutes, and the degree of blackening of the outer surface of the can bottom was visually observed according to the following evaluation criteria. evaluated. The evaluation results are shown in Table 1. Evaluation A was determined to be acceptable, and evaluations B and C were determined to be unacceptable.
A: No black change B: Slight black change C: Strong black change
 実施例1~10及び比較例1、2の処理容器を乾燥した後に切り出して試験片とし、エポキシアクリル系塗料をバーコーターにより、乾燥膜厚が5μmとなるように塗布した後、250℃の雰囲気で3分間、焼付硬化をして形成した塗膜について以下の塗膜密着性試験を行った。 After the processing containers of Examples 1 to 10 and Comparative Examples 1 and 2 were dried, they were cut out to form test pieces, and an epoxy acrylic paint was applied by a bar coater to a dry film thickness of 5 μm, and then the atmosphere at 250 ° C. The following coating film adhesion test was performed on the coating film formed by baking and curing for 3 minutes.
[1次密着性試験]
 上記により得られた塗膜に対し、1次密着性試験として0T折り曲げ試験を行った。そして、折り曲げ部の浮いた塗膜を粘着テープで除去した後、折り曲げ部両側の剥離幅を測定した。剥離幅0.1mm以内を合格とし、剥離幅0.1mm超を不合格と評価した。結果を表1に示す。
[Primary adhesion test]
The coating film obtained as described above was subjected to a 0T bending test as a primary adhesion test. And after removing the coating film which the bending part floated with the adhesive tape, the peeling width of both sides of a bending part was measured. The peeling width within 0.1 mm was regarded as acceptable, and the peeling width exceeding 0.1 mm was evaluated as unacceptable. The results are shown in Table 1.
 また、同様に1次密着性試験として旧JIS K 5400を参考に1mmの碁盤目試験を行った。碁盤目試験法においては、カッターナイフを用いて、塗膜上に1mm幅で100個の桝目を形成し、粘着テープを貼り付けた後、引き剥がし、塗膜が残った桝目の数を数えた。塗膜が残った桝目の数が100であるものを合格とし、それ以外を不合格と評価した。結果を表1に示す。 Similarly, a 1 mm cross-cut test was performed as a primary adhesion test with reference to the former JIS K 5400. In the cross cut test method, 100 squares having a width of 1 mm were formed on a coating film using a cutter knife, and after sticking an adhesive tape, it was peeled off and the number of squares on which the coating film remained was counted. . Those having a number of squares having a coating film of 100 were evaluated as acceptable, and the others were evaluated as unacceptable. The results are shown in Table 1.
[2次密着性試験]
 上記により得られた塗膜を沸騰水中に30分間浸漬した後の塗膜について、2次密着性試験として上記と同様に1mmの碁盤目試験を行った。塗膜が残った桝目の数が100であるものを合格とし、それ以外を不合格と評価した。結果を表1に示す。
[Secondary adhesion test]
About the coating film after immersing the coating film obtained by the above in boiling water for 30 minutes, the 1 mm cross-cut test was done similarly to the above as a secondary adhesiveness test. Those having a number of squares having a coating film of 100 were evaluated as acceptable, and the others were evaluated as unacceptable. The results are shown in Table 1.
 実施例1~10と、比較例1の比較から、実施例1~10の化成処理浴により処理を行ったアルミニウム基材の方が、比較例1の化成処理浴により処理を行ったアルミニウム基材よりも沸騰水耐食性及び密着性試験の結果に優れることが分かった。この結果から、化成処理浴中のF/Alを4.5以下とすることでアルミニウム基材に耐食性及び密着性の高い化成皮膜を形成できることが確認された。 From the comparison between Examples 1 to 10 and Comparative Example 1, the aluminum substrate treated with the chemical conversion treatment bath of Examples 1 to 10 was treated with the chemical conversion treatment bath of Comparative Example 1. It was found that the results of boiling water corrosion resistance and adhesion test were excellent. From this result, it was confirmed that a chemical conversion film having high corrosion resistance and high adhesiveness can be formed on an aluminum substrate by setting F / Al in the chemical conversion treatment bath to 4.5 or less.
 実施例1~10と、比較例2の比較から、実施例1~10の化成処理浴により処理を行ったアルミニウム基材の方が、比較例2の化成処理浴により処理を行ったアルミニウム基材よりも沸騰水耐食性及び密着性試験の結果に優れることが分かった。この結果から、化成処理浴中のF/Alを1.8以上とすることでアルミニウム基材に耐食性及び密着性の高い化成皮膜を形成できることが確認された。 From the comparison between Examples 1 to 10 and Comparative Example 2, the aluminum substrate treated with the chemical conversion treatment bath of Examples 1 to 10 was treated with the chemical conversion treatment bath of Comparative Example 2. It was found that the results of boiling water corrosion resistance and adhesion test were excellent. From this result, it was confirmed that a chemical conversion film having high corrosion resistance and high adhesiveness can be formed on an aluminum substrate by setting F / Al in the chemical conversion treatment bath to 1.8 or more.
 従って、上記により、化成処理浴中のF/Alを1.8~4.5に維持することで、耐食性の高い化成皮膜を形成できる化成処理浴を維持できることが確認された。 Therefore, it was confirmed from the above that the chemical conversion bath capable of forming a chemical conversion film having high corrosion resistance can be maintained by maintaining F / Al in the chemical conversion bath at 1.8 to 4.5.

Claims (6)

  1.  アルミニウム系金属化成処理浴に対する補給剤の補給方法であって、
     前記補給剤は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、を含み、
     前記アルミニウム系金属化成処理浴中のアルミニウムイオン濃度(mg/L)に対するフッ素イオン濃度(mg/L)の比、F/Alが1.8~4.5となるように前記補給剤を補給する、アルミニウム系金属化成処理浴に対する補給方法。
    A method for supplying a replenisher to an aluminum-based metal chemical conversion treatment bath,
    The replenisher includes at least one of a zirconium salt and a titanium salt, and an effective fluoride,
    The replenisher is replenished so that the ratio of the fluorine ion concentration (mg / L) to the aluminum ion concentration (mg / L) in the aluminum-based metal chemical conversion bath, F / Al is 1.8 to 4.5. , Replenishment method for aluminum-based metal chemical conversion treatment bath.
  2.  前記補給剤が、更にリン酸、亜リン酸、過酸化水素からなる群より選ばれる少なくとも1種を含む、請求項1に記載のアルミニウム系金属化成処理浴に対する補給方法。 The method for replenishing an aluminum-based metal chemical conversion treatment bath according to claim 1, wherein the replenisher further contains at least one selected from the group consisting of phosphoric acid, phosphorous acid, and hydrogen peroxide.
  3.  前記アルミニウム系金属化成処理浴は、ジルコニウム塩及びチタン塩のうち少なくとも一方と、有効フッ化物と、リン酸、縮合リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種と、亜リン酸、次亜リン酸、及びそれらの塩からなる群より選ばれる少なくとも1種と、を含有する、請求項1又は2に記載のアルミニウム系金属化成処理浴に対する補給方法。 The aluminum-based metal chemical conversion treatment bath includes at least one selected from the group consisting of at least one of a zirconium salt and a titanium salt, an effective fluoride, phosphoric acid, condensed phosphoric acid, and salts thereof, and phosphorous acid. And at least one selected from the group consisting of hypophosphorous acid and salts thereof. The replenishing method for an aluminum-based metal chemical conversion treatment bath according to claim 1 or 2.
  4.  前記化成処理浴のpHが所定範囲内となるように前記補給剤を補給することで、前記F/Alが1.8~4.5となるように前記補給剤を補給する請求項1から3いずれかに記載のアルミニウム系金属化成処理浴に対する補給方法。 The replenisher is replenished so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the pH of the chemical conversion bath is within a predetermined range. The replenishment method with respect to the aluminum type metal chemical conversion treatment bath in any one.
  5.  前記化成処理浴の電気伝導度が所定範囲内となるように前記補給剤を補給することで、前記F/Alが1.8~4.5となるように前記補給剤を補給する請求項1から4いずれかに記載のアルミニウム系金属化成処理浴に対する補給方法。 The replenisher is replenished so that the F / Al is 1.8 to 4.5 by replenishing the replenisher so that the electrical conductivity of the chemical conversion bath is within a predetermined range. To 4. The replenishing method for the aluminum-based metal chemical conversion treatment bath according to any one of 4 to 4.
  6.  前記アルミニウム系金属化成処理浴は、アルミニウム飲料缶を処理対象とする、請求項1から5いずれかに記載のアルミニウム系金属化成処理浴に対する補給方法。 The replenishment method for an aluminum-based metal chemical conversion treatment bath according to any one of claims 1 to 5, wherein the aluminum-based metal chemical conversion treatment bath is an aluminum beverage can.
PCT/JP2017/004414 2016-02-10 2017-02-07 Chemical conversion bath replenishment method WO2017138530A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187022919A KR20180100220A (en) 2016-02-10 2017-02-07 Method of spreading to Mars treatment bath
US16/076,180 US20190136385A1 (en) 2016-02-10 2017-02-07 Chemical conversion bath replenishment method
CN201780010530.6A CN108603293A (en) 2016-02-10 2017-02-07 For the replenishing method of chemical conversion treatment bath
EP17750252.3A EP3415660A4 (en) 2016-02-10 2017-02-07 Chemical conversion bath replenishment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023854 2016-02-10
JP2016023854A JP2017141495A (en) 2016-02-10 2016-02-10 Supply method to chemical conversion treatment bath

Publications (1)

Publication Number Publication Date
WO2017138530A1 true WO2017138530A1 (en) 2017-08-17

Family

ID=59563787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004414 WO2017138530A1 (en) 2016-02-10 2017-02-07 Chemical conversion bath replenishment method

Country Status (6)

Country Link
US (1) US20190136385A1 (en)
EP (1) EP3415660A4 (en)
JP (1) JP2017141495A (en)
KR (1) KR20180100220A (en)
CN (1) CN108603293A (en)
WO (1) WO2017138530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521951A (en) * 2019-03-01 2022-04-13 ハウメット エアロスペース インコーポレイテッド Metal substrate treatment methods and articles comprising a phosphonate functionalized layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341574A (en) * 1991-05-18 1992-11-27 Nippon Paint Co Ltd Treatment of zinc phosphate onto metal surface
JP2003155577A (en) * 2001-11-20 2003-05-30 Nippon Paint Co Ltd Surface treatment solution for aluminum or aluminum alloy, and surface treatment method
JP2009034589A (en) * 2007-07-31 2009-02-19 Kobe Steel Ltd Method of manufacturing aluminum based metallic material made-fin material and aluminum based metallic material made-fin material manufactured by the manufacturing method
WO2014192082A1 (en) * 2013-05-28 2014-12-04 日本パーカライジング株式会社 Supplement, surface-treated metal material, and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1098253A (en) * 1976-04-05 1981-03-31 Timm L. Kelly Zirconium/titanium coating solution for aluminum surfaces
US4191596A (en) * 1978-09-06 1980-03-04 Union Carbide Corporation Method and compositions for coating aluminum
US5139586A (en) * 1991-02-11 1992-08-18 Coral International, Inc. Coating composition and method for the treatment of formed metal surfaces
JP2828409B2 (en) * 1994-03-24 1998-11-25 日本パーカライジング株式会社 Surface treatment composition for aluminum-containing metal material and surface treatment method
JP3437023B2 (en) 1995-11-20 2003-08-18 日本ペイント株式会社 Aluminum-based metal surface treatment bath and treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341574A (en) * 1991-05-18 1992-11-27 Nippon Paint Co Ltd Treatment of zinc phosphate onto metal surface
JP2003155577A (en) * 2001-11-20 2003-05-30 Nippon Paint Co Ltd Surface treatment solution for aluminum or aluminum alloy, and surface treatment method
JP2009034589A (en) * 2007-07-31 2009-02-19 Kobe Steel Ltd Method of manufacturing aluminum based metallic material made-fin material and aluminum based metallic material made-fin material manufactured by the manufacturing method
WO2014192082A1 (en) * 2013-05-28 2014-12-04 日本パーカライジング株式会社 Supplement, surface-treated metal material, and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415660A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521951A (en) * 2019-03-01 2022-04-13 ハウメット エアロスペース インコーポレイテッド Metal substrate treatment methods and articles comprising a phosphonate functionalized layer

Also Published As

Publication number Publication date
CN108603293A (en) 2018-09-28
EP3415660A1 (en) 2018-12-19
KR20180100220A (en) 2018-09-07
JP2017141495A (en) 2017-08-17
EP3415660A4 (en) 2019-08-21
US20190136385A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US20080286470A1 (en) Chemical conversion coating agent and surface-treated metal
US7510612B2 (en) Chemical conversion coating agent and surface-treated metal
JP5722350B2 (en) Composition for alkali passivation of zinc surface
EP0774535B1 (en) Surface treatment composition, surface treatment solution and surface treatment method for aluminium and its alloys
JP6281990B2 (en) Improved trivalent chromium-containing composition for aluminum and aluminum alloys
JP5563236B2 (en) Chromium-free chemical conversion treatment solution, chemical conversion treatment method, and chemical conversion treatment article
CN101985750A (en) Treating fluid for preparing zirconium-containing coloring passive film on surface of aluminum alloy and treating method thereof
CA2742002A1 (en) Chemical conversion treatment liquid for metallic material and process for treatment
KR20040058040A (en) Chemical conversion coating agent and surface-treated metal
JP2004533542A5 (en)
US20020174915A1 (en) Chemical conversion reagent for magnesium alloy, surface-treating method, and magnesium alloy substrate
US8486203B2 (en) Conversion coating and anodizing sealer with no chromium
ES2584937T3 (en) Phosphatation with zirconium of metal construction pieces, in particular iron
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
WO2013061705A1 (en) Surface treatment method and coating method for steel material, and method for producing machine component
WO1998017840A1 (en) Low temperature corrosion resistant aluminum and aluminum coating composition
WO2017138530A1 (en) Chemical conversion bath replenishment method
JP5827792B2 (en) Chemically treated iron-based materials
JP2003253459A (en) Surface treating agent, surface treating method, and surface treated product
JP5663684B2 (en) Chromium-free chemical conversion treatment solution, chemical conversion treatment method, and chemical conversion treatment article
US8075709B2 (en) Surface treatment method for aluminum or an aluminum alloy and treating fluid used therefor
JP3765812B2 (en) Chemical conversion solution for aluminum and aluminum alloy
JP6326305B2 (en) Method for surface treatment of metal material
JP2005325403A (en) Surface treatment method for aluminum die-cast material
JP2005281717A (en) Method for forming chemical conversion-treated film of magnesium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022919

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022919

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750252

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750252

Country of ref document: EP

Effective date: 20180910