WO2017138326A1 - 樹脂組成物及びそれを備えた半導体デバイス - Google Patents
樹脂組成物及びそれを備えた半導体デバイス Download PDFInfo
- Publication number
- WO2017138326A1 WO2017138326A1 PCT/JP2017/001887 JP2017001887W WO2017138326A1 WO 2017138326 A1 WO2017138326 A1 WO 2017138326A1 JP 2017001887 W JP2017001887 W JP 2017001887W WO 2017138326 A1 WO2017138326 A1 WO 2017138326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- resin composition
- powder
- semiconductor device
- heat
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
Definitions
- the present invention generally relates to a resin composition used for electronic and electrical equipment and a semiconductor device including the same, and more particularly to a resin composition used for a heat radiation paste and a die attach paste and a semiconductor device including the same.
- thermosetting resin composition described in Patent Document 1 is provided.
- This thermosetting resin composition includes plate-type silver fine particles, silver powder having an average particle diameter of 0.5 to 30 ⁇ m, and a thermosetting resin, and the total amount of silver fine particles and silver powder is 100 parts by mass. In some cases, 1 to 20 parts by mass of thermosetting resin is blended.
- a heat conduction path is formed by heating and curing a thermosetting resin composition to 100 ° C. or higher.
- the silver powder does not melt, but only the plate-type silver fine particles melt and stick to the silver powder. Therefore, contact resistance is generated, the formation of the heat conduction path is insufficient, and the strength of the heat conduction path is insufficient. That is, such a heat conduction path is easily disconnected due to expansion and contraction accompanying a temperature change, and high heat conductivity cannot be obtained.
- the plate-type particles have anisotropy in heat conduction due to this shape.
- the heat radiation paste is sandwiched between the heat radiation member and the cooling member and spread.
- the plate-type particles lie in the horizontal direction, the heat conduction in the thickness direction is reduced as compared with the surface direction.
- plate-type particles are bulky, their viscosity is higher than spherical particles with the same filling amount. If the viscosity is large, problems such as inability to extrude from the dispenser during molding occur, which is not preferable. As a result, the plate-type particles cannot be highly filled.
- the present invention has been made in view of the above points, and includes a resin composition capable of suppressing contact thermal resistance and obtaining high thermal conductivity by forming a heat conduction path between particles having no interface, and the resin composition.
- An object of the present invention is to provide a semiconductor device.
- the resin composition according to the present invention is: A first powder that is an aggregate of metal nanoparticles; A second powder that is an aggregate of metal microparticles; A polymer compound and The metal nanoparticles are composed of a first metal,
- the metal microparticle has a core and a metal coat layer that covers the core, The core is made of a second metal;
- the metal coat layer is made of a third metal, The first metal and the third metal are made of the same material.
- the average particle size of the first powder is preferably within a range of 10 to 1000 nm.
- the average particle size of the second powder is preferably in the range of 1 to 100 ⁇ m.
- the first metal and the third metal are silver.
- the second metal is either copper or nickel.
- the polymer compound is any one of silicone gel, silicone rubber, and silicone oil.
- the volume ratio of the first powder to the total volume of the first powder and the second powder is preferably in the range of 5 to 50% by volume.
- the volume ratio of the total volume of the first powder and the second powder in the total volume of the resin composition is in the range of 10 to 80% by volume.
- the semiconductor device is A reaction product of the resin composition; A first member; A second member, A reaction product of the resin composition is interposed between the first member and the second member,
- the first member and the second member are any one of a substrate, a semiconductor component, and a cooling body.
- a third member The reaction product of the resin composition is interposed between the first member or the second member and the third member, It is preferable that the third member is any one of a substrate, a semiconductor component, and a cooling body.
- the semiconductor component includes a power semiconductor.
- the cooling body includes at least one of a heat sink and a heat lid.
- the metal nanoparticle and the metal coating layer of the metal microparticle are melted to form a heat conduction path between the particles without an interface, so that the thermal resistance at the particle interface can be removed, and high heat Conductivity can be obtained.
- FIG. 1A is a schematic cross-sectional view showing a state before heating of the resin composition according to the embodiment of the present invention
- FIG. 1B is a schematic cross-sectional view showing a state after heating of the resin composition same as above.
- FIG. 2A is a schematic cross-sectional view of the semiconductor device according to the first embodiment
- FIG. 2B is a schematic cross-sectional view showing a modification of the semiconductor device according to the first embodiment.
- FIG. 3A is a schematic cross-sectional view of a semiconductor device according to the second embodiment
- FIG. 3B is a schematic cross-sectional view showing a modification of the semiconductor device according to the second embodiment.
- the resin composition 100 of the present embodiment contains the first powder 10, the second powder 20, and the polymer compound 3.
- the resin composition 100 may be solventless, but may further contain a solvent.
- FIG. 1A schematically shows a state before heating the resin composition 100
- FIG. 1B schematically shows a state after the resin composition 100 is heated.
- the first powder 10 is an aggregate of metal nanoparticles 1. Actually, the first powder 10 is composed of countless metal nanoparticles 1.
- the metal nanoparticle 1 is a particle of nanometer order (nanosize).
- the metal nanoparticle 1 is comprised with the 1st metal.
- the melting point of the metal nanoparticle 1 composed of the first metal is compared with the melting point of the bulk metal composed of the first metal, the metal nanoparticle 1 is compared with the bulk metal due to the so-called nanosize effect. As a result, the melting point is lowered.
- the melting point of the metal nanoparticles 1 is preferably in the range of 100 to 300 ° C., more preferably in the range of 120 to 200 ° C.
- the melting point of the metal nanoparticles 1 and the melting point of the first powder 10 are the same.
- the average particle size of the first powder 10 is preferably in the range of 10 to 1000 nm, more preferably in the range of 10 to 500 nm.
- an average particle diameter means what is measured by the laser diffraction scattering method, and the following is also the same.
- the average particle diameter of the 1st powder 10 is 10 nm or more, it can suppress that the bulk density of the 1st powder 10 becomes high, and can realize high filling.
- the average particle diameter of the first powder 10 is 1000 nm or less, the melting point of the first powder 10 can be further lowered due to the nanosize effect.
- the second powder 20 is an aggregate of metal microparticles 2. Actually, the second powder 20 is composed of countless metal microparticles 2.
- the metal microparticle 2 is a particle of the order (microsize) from submicron to micrometer. Thus, the metal microparticle 2 is larger than the metal nanoparticle 1.
- the metal microparticle 2 has a core 22 and a metal coat layer 23.
- the core 22 is in the form of particles and is made of a second metal.
- the metal coat layer 23 is made of a third metal.
- the metal coat layer 23 covers the core 22.
- the metal coat layer 23 preferably covers the entire surface of the core 22, but a part of the surface of the core 22 may not be covered with the metal coat layer 23.
- the coating of the core 22 with the metal coat layer 23 can be performed by, for example, powder plating.
- the melting point of the metal coat layer 23 composed of the third metal is compared with the melting point of the bulk metal composed of the third metal, the present inventors have found that a phenomenon similar to the nanosize effect occurs. I found it. That is, the melting point of the metal coat layer 23 falls compared to the melting point of the bulk metal. The metal coat layer 23 melts at such a melting point.
- the melting point of the metal coat layer 23 is preferably in the range of 100 to 300 ° C., more preferably in the range of 120 to 200 ° C.
- the melting point of the metal nanoparticles 1 and the melting point of the metal coating layer 23 of the metal microparticles 2 are preferably the same.
- the core 22 of the metal microparticle 2 may not be melted.
- the thickness of the metal coat layer 23 is preferably in the range of 1 to 200 nm, and more preferably in the range of 10 to 100 nm.
- the metal coat layer 23 Since the metal coat layer 23 has a thickness of 1 nm or more, the contact area becomes sufficiently high when the metal coat layer 23 is melted to form metal bonds with the metal nanoparticles 1, so The portion 40 can be formed firmly, and the thermal conductivity of the joint portion 40 can be increased. When the thickness of the metal coat layer 23 is 200 nm or less, the melting point of the metal coat layer 23 can be further lowered.
- the average particle diameter of the second powder 20 is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 10 to 50 ⁇ m.
- the average particle diameter of the second powder 20 is 1 ⁇ m or more, the viscosity of the resin composition 100 can be prevented from becoming too large, and the thermal conductivity can be improved.
- the resin composition 100 can be interposed in a narrow gap having a thickness of 100 ⁇ m or less.
- the clearance gap between the 1st member 201 and the 2nd member 202 in the semiconductor device 200 mentioned later is mentioned, for example.
- the first metal constituting the metal nanoparticle 1, the second metal constituting the core 22 of the metal microparticle 2, and the third metal constituting the metal coat layer 23 of the metal microparticle 2 will be described.
- the first metal and the third metal are the same material.
- the metal nanoparticles 1 composed of the first metal and the metal coat layer 23 composed of the third metal are in a state where they can contact each other.
- FIG. 1B if the first metal and the third metal are the same material, when the resin composition 100 is heated, the first metal and the third metal are melted together to form an integral body. It can be solidified.
- the joint 40 may be formed across three or more metal microparticles 2.
- the joint 40 may be formed by a plurality of metal microparticles 2 being in direct contact without the metal nanoparticles 1 being interposed. In this way, innumerable metal microparticles 2 are connected in a daisy chain to form the heat conduction path 300.
- the contact area between the metal microparticles 2 can be increased by interposing the metal nanoparticles 1 between them, so that the heat conduction path 300 as a whole has high thermal conductivity. have.
- the joint 40 of the heat conduction path 300 is formed of a single metal, and this metal is formed by the metal nanoparticle 1 and the metal coat layer 23 of the metal microparticle 2 being uniformly melted together. It contains various metal bonds. Therefore, the resin composition 100 has sufficiently high thermal conductivity and strength, and can suppress cracks in the joint portion 40 due to expansion and contraction accompanying temperature change.
- the joining portion 40 is composed of a first metal and a third metal, and the first metal and the third metal are the same material.
- the first metal and the third metal are preferably silver. Silver is preferable in that it has high thermal conductivity and is chemically stable, so that the influence of surface oxidation and the like can be suppressed.
- the second metal is preferably either copper or nickel. Copper and nickel are preferable in that they have high thermal conductivity and are inexpensive.
- the metal nanoparticles 1 and the metal microparticles 2 are isotropic, for example, spherical particles, and thus can exhibit high thermal conductivity isotropically. By using spherical particles, a low viscosity can be achieved even when the filling amount is high, and handling properties as a paste are not impaired.
- the polymer compound 3 will be described.
- the polymer compound 3 serves as a connection when the first powder 10 and the second powder 20 are kneaded to make a viscous paste.
- the polymer compound 3 preferably has heat resistance.
- the polymer compound 3 may be one that undergoes a crosslinking reaction or not reacts by heating or light irradiation.
- the polymer compound 3 reacts, a compound that becomes a gel-like or rubber-like solid after the reaction is preferable.
- the polymer compound 3 may not inhibit the fusion and integration of the first metal and the third metal.
- the polymer compound 3 may be a semi-solid grease at normal temperature (for example, 25 ° C.).
- the polymer compound 3 is preferably a silicone resin, and is preferably any one of silicone gel, silicone rubber, and silicone oil, for example.
- the polymer compound 3 is preferably either silicone gel or silicone rubber.
- the polymer compound 3 may have adhesiveness.
- the volume ratio of the first powder 10 to the total volume of the first powder 10 and the second powder 20 is preferably in the range of 5 to 50% by volume, and is preferably in the range of 10 to 30% by volume. Is more preferable.
- the volume ratio of the first powder 10 is 5% by volume or more, the bonding between the metal nanoparticles 1 constituting the first powder 10 and the metal microparticles 2 constituting the second powder 20 is sufficient. Can be secured.
- the volume ratio of the first powder 10 is 50% by volume or less, an increase in bulk density due to an increase in the first powder 10 having a smaller particle diameter than that of the second powder 20 can be suppressed. As a result, the filling amount of the entire first powder 10 and second powder 20 can be increased.
- the volume ratio of the total volume of the first powder 10 and the second powder 20 in the total volume of the resin composition 100 is preferably in the range of 10 to 80% by volume, and in the range of 30 to 60% by volume. More preferably.
- the volume ratio of the total volume of the first powder 10 and the second powder 20 is 10% by volume or more, the first powder 10 and the second powder 20 having high thermal conductivity are relatively increased. As a result, the thermal conductivity as the resin composition 100 can be further increased.
- the volume ratio of the total volume of the first powder 10 and the second powder 20 is 80% by volume or less, the polymer compound 3 is relatively increased, and low viscosity and low hardness can be achieved simultaneously. .
- the low viscosity of the resin composition 100 is preferable in that workability is improved and a decrease in thermal conductivity due to the void trap can be suppressed.
- the low hardness of the resin composition 100 is preferable in that the overall thermal resistance is lowered by reducing the contact resistance. Further, the polymer compound 3 can easily absorb thermal strain such as expansion and contraction, and the heat conduction path 300 can be prevented from being disconnected.
- the resin composition 100 can be manufactured by putting the first powder 10, the second powder 20, and the polymer compound 3 in a tank of a planetary mixer and stirring and kneading. Thus, the resin composition 100 in which the first powder 10 and the second powder 20 are uniformly dispersed can be obtained.
- FIG. 1A schematically shows a state before the resin composition 100 is heated.
- the first powder 10 and the second powder 20 are uniformly dispersed.
- FIG. 1B schematically shows a state after the resin composition 100 is heated.
- FIG. 1B shows a reaction product 101 obtained by heating the resin composition 100.
- the heating temperature may be a temperature at which the metal coating layer 23 of the metal nanoparticle 1 and the metal microparticle 2 is melted together, and this temperature may be less than 100 ° C.
- it is in the range of 100 to 300 ° C, more preferably in the range of 120 to 200 ° C.
- the metal nanoparticles 1 and the metal coat layer 23 are melted together to be integrated, and solidified in this state, the junction 40 can be formed.
- innumerable metal microparticles 2 are connected in a daisy chain to form the heat conduction path 300.
- the polymer compound 3 present around the heat conduction path 300 can absorb thermal strain when the reactant 101 expands and contracts with a change in temperature, and can suppress the disconnection of the heat conduction path 300.
- FIG. 2A shows the semiconductor device 200 of the first embodiment.
- the semiconductor device 200 includes a reactant 101 of the resin composition 100, a first member 201, and a second member 202.
- the reactant 101 of the resin composition 100 is interposed between the first member 201 and the second member 202. Specifically, the reactant 101 is in contact with both the first member 201 and the second member 202.
- the first member 201 and the second member 202 are not in direct contact.
- the first member 201 and the second member 202 can be a high temperature object, and the other can be a low temperature object.
- the first member 201 and the second member 202 are any of the substrate 210, the semiconductor component 220, and the cooling body 230.
- the first member 201 is a semiconductor component 220
- the second member 202 is a cooling body 230.
- the semiconductor component 220 includes an integrated circuit (IC: Integrated Circuit) that combines a single element and a plurality of elements into one.
- the semiconductor component 220 is mounted on the substrate 210.
- the semiconductor component 220 is electrically connected to the substrate 210 by solder bumps 223.
- the substrate 210 has electrical insulation.
- the substrate 210 is provided with a thermal via 211.
- the thermal via 211 is a through hole for heat dissipation. Thereby, the heat dissipation of the semiconductor device 200 can be further improved. Since the semiconductor component 220 generates heat, it is a high-temperature object, and the cooling body 230 is a low-temperature object. Therefore, the heat of the semiconductor component 220 can be released to the cooling body 230 by the reactant 101 interposed therebetween.
- the resin composition 100 used for forming the reactant 101 is called TIM (Thermal Interface Material).
- the cooling body 230 preferably includes at least one of a heat sink 231 and a heat lid 232. These are formed of a material with good heat dissipation. For example, aluminum and copper are mentioned.
- the heat sink 231 has pleats in order to increase the surface area.
- the cooling body 230 is a heat lid 232.
- the heat lid 232 is in contact with the substrate 210. In this manner, the heat from the heat lid 232 can be released to the substrate 210.
- the reactant 101 may be formed by heating, for example, with the resin composition 100 interposed between the semiconductor component 220 that is the first member 201 and the cooling body 230 that is the second member 202. it can.
- FIG. 2B is a modification of the semiconductor device 200 of the first embodiment shown in FIG. 2A.
- the semiconductor device 200 further includes a third member 203.
- the reactant 102 of the resin composition 100 is also interposed between the first member 201 or the second member 202 and the third member 203.
- the reactant 102 is interposed between the second member 202 and the third member 203.
- the reactant 102 is in contact with both the second member 202 and the third member 203.
- the third member 203 and the second member 202 are not in direct contact.
- the third member 203 is any one of the substrate 210, the semiconductor component 220, and the cooling body 230.
- the third member 203 is a cooling body 230
- the cooling body 230 is a heat sink 231.
- One of the second member 202 and the third member 203 can be a high-temperature object, and the other can be a low-temperature object.
- the second member 202 close to the semiconductor component 220 that generates heat is a high-temperature object
- the third member 203 separated from the semiconductor component 220 is a low-temperature object. Therefore, the heat of the cooling body 230 of the second member 202 can be released to the cooling body 230 of the third member 203 by the reactant 101 interposed therebetween.
- the resin composition 100 that forms the reaction product 101 in this case is also called TIM (Thermal Interface Material).
- the polymer compound 3 in the reactants 101 and 102 is a silicone gel, silicone rubber, or the like, the reactants 101 and 102 are removed from their original positions.
- the pump-out which melts and flows to another position can be suppressed.
- Example 1--5 High molecular compound
- Two-part room temperature curing silicone rubber SE1885 manufactured by Toray Dow Corning Co., Ltd. was used as the silicone resin.
- the particle diameters of metal nanoparticles and metal microparticles prepared in the table were prepared.
- Example 1-5 shows a higher thermal conductivity than Comparative Example 1-5.
- the metal coat layer is melted by using metal microparticles having a metal coat layer, the interfacial resistance between the particles after the heat treatment is lowered and the thermal conductivity is increased as compared with the case of using plate-type particles.
- Example 1-5 is lower than the viscosity of Comparative Example 1-5. This is probably because the plate-type particles are bulky compared to the spherical particles, so that the viscosity could be lowered even with the same filling amount. Thus, even when the filling amount is the same, even when the filling amount is high, a low viscosity is achieved, so that the handling property as a paste is not impaired.
- Example 3 when comparing Example 1-3, the thermal conductivity is higher in Examples 1 and 2 than in Example 3. From this, it is conceivable that the smaller the particle size of the metal nanoparticles, the easier the melting of the filler after the heat treatment occurs and the higher the heat conduction.
- FIG. 3A shows a semiconductor device 200 according to the second embodiment.
- the semiconductor device 200 includes a reactant 101 of the resin composition 100, a first member 201, and a second member 202.
- the reactant 101 of the resin composition 100 is interposed between the first member 201 and the second member 202. Specifically, the reactant 101 is in contact with both the first member 201 and the second member 202.
- the first member 201 and the second member 202 can be a high temperature object, and the other can be a low temperature object.
- the first member 201 and the second member 202 are any of the substrate 210, the semiconductor component 220, and the cooling body 230.
- the first member 201 is a substrate 210
- the second member 202 is a semiconductor component 220.
- the semiconductor component 220 may include a power semiconductor 221.
- the power semiconductor 221 is a semiconductor that controls a power source and converts power, and since the voltage and current to be handled are large, the amount of heat generation tends to increase. Specific examples of the power semiconductor 221 include a diode, a transistor, and an integrated circuit (IC: Integrated Circuit).
- the semiconductor component 220 is mounted on the substrate 210.
- the semiconductor component 220 is electrically connected to the substrate 210 by a wire 222.
- the substrate 210 is provided with a thermal via 211. Thereby, the heat dissipation of the semiconductor device 200 can be further improved. Since the semiconductor component 220 generates heat, it is a high-temperature object, and the substrate 210 is a low-temperature object. Therefore, the heat of the semiconductor component 220 can be released to the substrate 210 by the reactant 101 interposed therebetween. In this case, since the reactant 101 is interposed between and bonded to the substrate 210 and the semiconductor component 220, the resin composition 100 for forming the reactant 101 is also a die attach paste. be called.
- the reactant 101 can be formed, for example, by heating with the resin composition 100 interposed between the substrate 210 as the first member 201 and the semiconductor component 220 as the second member 202. .
- FIG. 3B is a modification of the semiconductor device 200 of the second embodiment shown in FIG. 3A.
- the semiconductor device 200 further includes a third member 203.
- the reactant 102 of the resin composition 100 is also interposed between the first member 201 or the second member 202 and the third member 203.
- the reactant 102 is interposed between the second member 202 and the third member 203.
- the reactant 102 is in contact with both the second member 202 and the third member 203.
- the third member 203 and the second member 202 are not in direct contact.
- the third member 203 is any one of the substrate 210, the semiconductor component 220, and the cooling body 230.
- the third member 203 is a cooling body 230.
- One of the third member 203 and the second member 202 can be a high-temperature object, and the other can be a low-temperature object.
- the semiconductor component 220 since the semiconductor component 220 generates heat, it is a high-temperature object, and the cooling body 230 is a low-temperature object. Therefore, the heat of the cooling body 230 of the second member 202 can be released to the cooling body 230 of the third member 203 by the reactant 101 interposed therebetween.
- the cooling body 230 preferably includes at least one of a heat sink 231 and a heat lid 232. In FIG. 3B, the cooling body 230 is a heat sink 231.
- the polymer compound 3 in the reactants 101 and 102 is a silicone gel, silicone rubber, or the like, the reactants 101 and 102 are removed from their original positions.
- the pump-out which melts and flows to another position can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
金属ナノ粒子(1)の集合体である第1粉体(10)と、金属マイクロ粒子(2)の集合体である第2粉体(20)と、高分子化合物(3)とを含有する。金属ナノ粒子(1)は、第1金属で構成されている。金属マイクロ粒子(2)は、コア(22)と、コア(22)を被覆する金属コート層(23)とを有している。コア(22)は、第2金属で構成されている。金属コート層(23)は、第3金属で構成されている。第1金属と第3金属とが同じ材質である。
Description
本発明は、一般に電子・電気機器に用いられる樹脂組成物及びそれを備えた半導体デバイスに関し、より詳細には放熱ペースト及びダイアタッチペーストなどに用いられる樹脂組成物及びそれを備えた半導体デバイスに関する。
近年の半導体デバイスの高速化及び高集積化に伴い、電子・電気機器からの発熱量は増加の一途をたどっている。そのため、電子産業分野やパワーエレクトロニクス分野において、放熱材料の熱伝導性を飛躍的に向上させることが急務となっている。
このような中、例えば、特許文献1に記載の熱硬化性樹脂組成物が提供されている。この熱硬化性樹脂組成物は、プレート型銀微粒子と、平均粒子径が0.5~30μmである銀粉と、熱硬化性樹脂とを含み、銀微粒子と銀粉の合計量を100質量部としたとき、熱硬化性樹脂が1~20質量部配合されている。
特許文献1では、熱硬化性樹脂組成物を100℃以上に加熱して硬化させることにより熱伝導経路(パス)を形成している。この場合、100℃以上に加熱しても銀粉は溶融せずに、プレート型銀微粒子のみが溶融して銀粉にくっつくことになる。
従って、接触抵抗が発生し熱伝導経路の形成が不十分であり、かつ熱伝導経路の強度が不十分である。すなわち、このような熱伝導経路は、温度変化に伴う膨張及び収縮により断絶しやすく、高熱伝導性を得ることができない。
従って、接触抵抗が発生し熱伝導経路の形成が不十分であり、かつ熱伝導経路の強度が不十分である。すなわち、このような熱伝導経路は、温度変化に伴う膨張及び収縮により断絶しやすく、高熱伝導性を得ることができない。
また、プレート型の粒子は、この形状に起因する熱伝導の異方性を有する。プレート型の粒子を放熱ペーストに用いる場合、放熱ペーストは放熱部材と冷却部材との間に挟まれ、押し広げられる。その結果、プレート型の粒子は水平方向に寝てしまうので、面方向に比べて厚み方向の熱伝導は低下してしまう。
また、プレート型の粒子は嵩高いため、同じ充填量の球状の粒子と比べ粘度が大きくなる。粘度が大きいと、成形時にディスペンサから押し出しできないなどの課題が生じるため好ましくない。その結果、プレート型の粒子は高充填することができなくなる。
本発明は上記の点に鑑みてなされたものであり、界面のない粒子間の熱伝導パスを形成することによって、接触熱抵抗を抑え高熱伝導性を得ることができる樹脂組成物及びそれを備えた半導体デバイスを提供することを目的とする。
本発明に係る樹脂組成物は、
金属ナノ粒子の集合体である第1粉体と、
金属マイクロ粒子の集合体である第2粉体と、
高分子化合物と を含有し、
前記金属ナノ粒子は、第1金属で構成され、
前記金属マイクロ粒子は、コアと、前記コアを被覆する金属コート層とを有し、
前記コアは、第2金属で構成され、
前記金属コート層は、第3金属で構成され、
前記第1金属と前記第3金属とが同じ材質であることを特徴とする。
金属ナノ粒子の集合体である第1粉体と、
金属マイクロ粒子の集合体である第2粉体と、
高分子化合物と を含有し、
前記金属ナノ粒子は、第1金属で構成され、
前記金属マイクロ粒子は、コアと、前記コアを被覆する金属コート層とを有し、
前記コアは、第2金属で構成され、
前記金属コート層は、第3金属で構成され、
前記第1金属と前記第3金属とが同じ材質であることを特徴とする。
前記第1粉体の平均粒子径が10~1000nmの範囲内であることが好ましい。
前記第2粉体の平均粒子径が1~100μmの範囲内であることが好ましい。
前記第1金属及び前記第3金属が銀であることが好ましい。
前記第2金属が銅、ニッケルのいずれかであることが好ましい。
前記高分子化合物がシリコーンゲル、シリコーンゴム、シリコーンオイルのいずれかであることが好ましい。
前記第1粉体及び前記第2粉体の合計体積に占める前記第1粉体の体積比率が5~50体積%の範囲内であることが好ましい。
前記樹脂組成物の全体積に占める前記第1粉体及び前記第2粉体の合計体積の体積比率が10~80体積%の範囲内であることが好ましい。
本発明に係る半導体デバイスは、
前記樹脂組成物の反応物と、
第1部材と、
第2部材と
を備え、
前記樹脂組成物の反応物が前記第1部材と前記第2部材との間に介在し、
前記第1部材及び前記第2部材が、基板、半導体部品、冷却体のいずれかであることを特徴とする。
前記樹脂組成物の反応物と、
第1部材と、
第2部材と
を備え、
前記樹脂組成物の反応物が前記第1部材と前記第2部材との間に介在し、
前記第1部材及び前記第2部材が、基板、半導体部品、冷却体のいずれかであることを特徴とする。
第3部材をさらに備え、
前記樹脂組成物の反応物が前記第1部材又は前記第2部材と前記第3部材との間に介在し、
前記第3部材が、基板、半導体部品、冷却体のいずれかであることが好ましい。
前記樹脂組成物の反応物が前記第1部材又は前記第2部材と前記第3部材との間に介在し、
前記第3部材が、基板、半導体部品、冷却体のいずれかであることが好ましい。
前記半導体部品がパワー半導体を含むことが好ましい。
前記冷却体がヒートシンク、ヒートリッドの少なくともいずれかを含むことが好ましい。
本発明によれば、金属ナノ粒子と、金属マイクロ粒子の金属コート層とが溶け合い、界面のない粒子間の熱伝導パスを形成するため、粒子界面の熱抵抗を取り除くとのができ、高い熱伝導性を得ることができる。
以下、本発明の実施の形態を説明する。
[樹脂組成物]
本実施形態の樹脂組成物100は、第1粉体10と、第2粉体20と、高分子化合物3とを含有している。樹脂組成物100は、無溶剤でもよいが、さらに溶剤が含有されていてもよい。図1Aは樹脂組成物100を加熱する前の状態を模式的に示し、図1Bは樹脂組成物100を加熱した後の状態を模式的に示している。
本実施形態の樹脂組成物100は、第1粉体10と、第2粉体20と、高分子化合物3とを含有している。樹脂組成物100は、無溶剤でもよいが、さらに溶剤が含有されていてもよい。図1Aは樹脂組成物100を加熱する前の状態を模式的に示し、図1Bは樹脂組成物100を加熱した後の状態を模式的に示している。
まず第1粉体10について説明する。第1粉体10は、金属ナノ粒子1の集合体である。実際には、第1粉体10は無数の金属ナノ粒子1で構成されている。金属ナノ粒子1は、ナノメートルのオーダー(ナノサイズ)の粒子である。金属ナノ粒子1は、第1金属で構成されている。ここで、第1金属で構成された金属ナノ粒子1の融点と、第1金属で構成されたバルク金属の融点とを比べると、金属ナノ粒子1は、いわゆるナノサイズ効果により、バルク金属に比べて融点が降下する現象が見られる。金属ナノ粒子1の融点は好ましくは100~300℃の範囲内であり、より好ましくは120~200℃の範囲内である。なお、金属ナノ粒子1の融点と第1粉体10の融点とは同じである。第1粉体10の平均粒子径は10~1000nmの範囲内であることが好ましく、10~500nmの範囲内であることがより好ましい。ここで、平均粒子径は、レーザー回折散乱法により測定されるものを意味し、以下も同様である。第1粉体10の平均粒子径が10nm以上であることによって、第1粉体10の嵩密度が高くなるのを抑制することができ、高充填化を実現することができる。第1粉体10の平均粒子径が1000nm以下であることによって、ナノサイズ効果により、第1粉体10の融点をさらに降下させることができる。
次に第2粉体20について説明する。第2粉体20は、金属マイクロ粒子2の集合体である。実際には、第2粉体20は無数の金属マイクロ粒子2で構成されている。金属マイクロ粒子2は、サブマイクロからマイクロメートルまでのオーダー(マイクロサイズ)の粒子である。このように、金属マイクロ粒子2は、金属ナノ粒子1よりも大きい。金属マイクロ粒子2は、コア22と、金属コート層23とを有している。コア22は、粒子状であり、第2金属で構成されている。金属コート層23は、第3金属で構成されている。金属コート層23は、コア22を被覆している。金属コート層23は、コア22の表面全体を被覆していることが好ましいが、コア22の表面の一部が金属コート層23で被覆されていなくてもよい。金属コート層23によるコア22の被覆は、例えば、粉体めっきにより行うことができる。ここで、第3金属で構成された金属コート層23の融点と、第3金属で構成されたバルク金属の融点とを比べると、ナノサイズ効果と同様の現象が起こることを本発明者らは見出した。すなわち、金属コート層23の融点がバルク金属の融点に比べて降下する。このような融点で金属コート層23は溶融する。
金属コート層23の融点は好ましくは100~300℃の範囲内であり、より好ましくは120~200℃の範囲内である。金属ナノ粒子1の融点と、金属マイクロ粒子2の金属コート層23の融点とは同じであることが好ましい。金属マイクロ粒子2のコア22は溶融しなくてもよい。金属コート層23の厚さは、1~200nmの範囲内であることが好ましく、10~100nmの範囲内であることがより好ましい。金属コート層23の厚さが1nm以上であることによって、金属コート層23が溶融して金属ナノ粒子1との間に金属結合を形成した際に接触面積が十分に高くなるので、後述の接合部40を強固に形成することができ、接合部40の熱伝導性も高めることができる。金属コート層23の厚さが200nm以下であることによって、金属コート層23の融点をさらに降下させることができる。
第2粉体20の平均粒子径は1~100μmの範囲内であることが好ましく、10~50μmの範囲内であることがより好ましい。第2粉体20の平均粒子径が1μm以上であることによって、樹脂組成物100の粘度が大きくなり過ぎないようにすることができ、熱伝導性も高めることができる。第2粉体20の平均粒子径が100μm以下であることによって、厚さが100μm以下である狭い隙間に樹脂組成物100を介在させることができる。なお、上記の隙間は、例えば、後述の半導体デバイス200における第1部材201と第2部材202との間の隙間が挙げられる。
次に金属ナノ粒子1を構成する第1金属、金属マイクロ粒子2のコア22を構成する第2金属、金属マイクロ粒子2の金属コート層23を構成する第3金属について説明する。第1金属と第3金属とは同じ材質である。図1Aに示すように、樹脂組成物100中において、第1金属で構成された金属ナノ粒子1と、第3金属で構成された金属コート層23とは、接触し得る状態にある。図1Bに示すように、第1金属及び第3金属が同じ材質であれば、樹脂組成物100を加熱した場合に、第1金属及び第3金属が互いに溶融し合って一体となり、この状態で固化させることができる。すなわち、実際には無数に存在する金属マイクロ粒子2のうち、特に近くに存在する2個の金属マイクロ粒子2に着目すると、これらの金属コート層23と、この近くに存在する金属ナノ粒子1とが溶融し合って一体となり、この状態で固化して接合部40が形成される。物理的な接触では界面が存在する。しかし、このように溶融して接合することで界面のない状態になる。
接合部40は、3個以上の金属マイクロ粒子2に跨って形成されることもある。接合部40は、金属ナノ粒子1が介在しないで、複数の金属マイクロ粒子2が直接接触して形成されることもあり得る。このように、無数の金属マイクロ粒子2が数珠つなぎになって連結して熱伝導経路300が形成される。金属マイクロ粒子2同士が接合するにあたって、その間に金属ナノ粒子1が介在していることで、金属マイクロ粒子2同士の接触面積を増加させることができるので、熱伝導経路300は全体として高熱伝導性を有している。しかも熱伝導経路300の接合部40は単一の金属で形成されており、この金属は、金属ナノ粒子1と金属マイクロ粒子2の金属コート層23とが均一に溶融し合って形成された強固な金属結合を含んでいる。従って、樹脂組成物100は、十分に高い熱伝導性と強度を有しており、温度変化に伴う膨張及び収縮により接合部40に亀裂が入ることを抑制することができる。接合部40は、第1金属及び第3金属で構成され、第1金属及び第3金属は同じ材質である。第1金属及び第3金属は銀であることが好ましい。銀は熱伝導率が高く、また化学的に安定なため、表面酸化などの影響を抑えることができる点で好ましい。第2金属は銅、ニッケルのいずれかであることが好ましい。銅、ニッケルは高い熱伝導性を有し、しかも安価な点で好ましい。
金属ナノ粒子1及び金属マイクロ粒子2は、それぞれ等方性を有する、例えば球状の粒子であるによって、等方的に高熱伝導を発揮することができる。球状粒子を用いることで充填量が高い場合でも低粘度を達成でき、ペーストとしてのハンドリング性を損なわない。次に高分子化合物3について説明する。高分子化合物3は、第1粉体10及び第2粉体20を粘性のあるペーストにするために練り込む場合のつなぎとなるものである。高分子化合物3は、耐熱性を有していることが好ましい。高分子化合物3は、加熱又は光照射などにより架橋反応するものでも反応しないものでもよい。高分子化合物3が反応する場合には、反応後にゲル状又はゴム状の固体となるものが好ましい。第1金属及び第3金属が溶融し始める前に高分子化合物3が反応し始める場合には、高分子化合物3は、第1金属及び第3金属の溶融一体化を阻害しないものであることが好ましい。また高分子化合物3は、常温(例えば25℃)で半固体のグリースでもよい。以上の観点から、高分子化合物3はシリコーン樹脂であることが好ましく、例えばシリコーンゲル、シリコーンゴム、シリコーンオイルのいずれかであることが好ましい。後述の半導体デバイス200などにおいて、いわゆるポンプアウトをより抑制するためには、高分子化合物3はシリコーンゲル、シリコーンゴムのいずれかであることが好ましい。高分子化合物3は接着性を有していてもよい。
次に樹脂組成物100に占める第1粉体10及び第2粉体20の割合について説明する。第1粉体10及び第2粉体20の合計体積に占める第1粉体10の体積比率は5~50体積%の範囲内であることが好ましく、10~30体積%の範囲内であることがより好ましい。第1粉体10の体積比率が5体積%以上であることによって、第1粉体10を構成する金属ナノ粒子1と第2粉体20を構成する金属マイクロ粒子2との間の接合を十分に確保することができる。第1粉体10の体積比率が50体積%以下であることによって、第2粉体20に比べて粒子径の小さい第1粉体10が増えることによる、嵩密度の増大を抑えることができる。結果として第1粉体10及び第2粉体20全体の充填量を増やすことができる。
樹脂組成物100の全体積に占める第1粉体10及び第2粉体20の合計体積の体積比率は10~80体積%の範囲内であることが好ましく、30~60体積%の範囲内であることがより好ましい。第1粉体10及び第2粉体20の合計体積の体積比率が10体積%以上であることによって、熱伝導性の高い第1粉体10及び第2粉体20が相対的に多くなる。その結果、樹脂組成物100としての熱伝導性をさらに高めることができる。第1粉体10及び第2粉体20の合計体積の体積比率が80体積%以下であることによって、相対的に高分子化合物3が多くなり、低粘度及び低硬度を同時に達成することができる。樹脂組成物100の低粘度は、作業性が向上し、ボイドトラップによる熱伝導性の低下を抑制することができる点で好ましい。樹脂組成物100の低硬度は、接触抵抗が減ることにより全体の熱抵抗が低下する点で好ましい。さらに高分子化合物3で膨張、収縮などの熱歪みを吸収しやすくなり、熱伝導経路300の断絶を抑制することができる。
次に樹脂組成物100の製造方法について説明する。樹脂組成物100は、第1粉体10、第2粉体20、高分子化合物3をプラネタリーミキサーのタンクに入れて攪拌、混練することによって製造することができる。このようにして第1粉体10及び第2粉体20が均一に分散した樹脂組成物100を得ることができる。
次に樹脂組成物100の加熱前後の様子について説明する。上述のように、図1Aは樹脂組成物100を加熱する前の状態を模式的に示している。樹脂組成物100中において第1粉体10及び第2粉体20は均一に分散している。図1Bは樹脂組成物100を加熱した後の状態を模式的に示している。言い換えると、図1Bは樹脂組成物100を加熱して得られた反応物101を示している。加熱温度は、金属ナノ粒子1及び金属マイクロ粒子2の金属コート層23が共に溶融する温度でよく、この温度は100℃未満でよい。好ましくは100~300℃の範囲内であり、より好ましくは120~200℃の範囲内である。金属ナノ粒子1及び金属コート層23が互いに溶融し合って一体となり、この状態で固化して接合部40を形成することができる。このように、無数の金属マイクロ粒子2が数珠つなぎになって連結して熱伝導経路300が形成される。物理的な接触では界面が存在する。しかし、このように溶融して接合することで界面のない状態になる。熱伝導経路300において、接合部40及び金属コート層23の部分のみならず、コア22の部分も熱の通り道となり得る。熱伝導経路300の周囲に存在する高分子化合物3は、温度変化に伴って反応物101が膨張及び収縮する場合に熱歪みを吸収し、熱伝導経路300の断絶を抑制することができる。
[半導体デバイス]
次に樹脂組成物100の半導体デバイス200への適用例について説明する。
次に樹脂組成物100の半導体デバイス200への適用例について説明する。
(第1実施形態)
図2Aに第1実施形態の半導体デバイス200を示す。半導体デバイス200は、樹脂組成物100の反応物101と、第1部材201と、第2部材202とを備えている。 樹脂組成物100の反応物101は第1部材201と第2部材202との間に介在している。具体的には、反応物101は第1部材201及び第2部材202の両方に接触している。第1部材201と第2部材202とは直接接触していない。
図2Aに第1実施形態の半導体デバイス200を示す。半導体デバイス200は、樹脂組成物100の反応物101と、第1部材201と、第2部材202とを備えている。 樹脂組成物100の反応物101は第1部材201と第2部材202との間に介在している。具体的には、反応物101は第1部材201及び第2部材202の両方に接触している。第1部材201と第2部材202とは直接接触していない。
第1部材201及び第2部材202の一方が高温物体、他方が低温物体となり得る。第1部材201及び第2部材202は、基板210、半導体部品220、冷却体230のいずれかである。図2Aでは、第1部材201は半導体部品220であり、第2部材202は冷却体230である。半導体部品220には、単一の素子及び複数の素子を1つにまとめた集積回路(IC:Integrated Circuit)が含まれる。半導体部品220は基板210に搭載されている。半導体部品220は、半田バンプ223により基板210に電気的に接続されている。基板210は電気的絶縁性を有している。基板210にはサーマルバイア211が設けられている。サーマルバイア211は、放熱用のスルーホールである。これにより、半導体デバイス200の放熱性をさらに向上させることができる。半導体部品220は発熱するので高温物体であり、冷却体230は低温物体である。したがって、この間に介在する反応物101によって、半導体部品220の熱を冷却体230に逃がすことができる。このような反応物101を形成するのに用いられる樹脂組成物100はTIM(Thermal Interface Material)と呼ばれる。冷却体230はヒートシンク231、ヒートリッド232の少なくともいずれかを含むことが好ましい。これらは、放熱性の良い材質で形成されている。例えば、アルミニウム、銅が挙げられる。ヒートシンク231は、表面積を大きくするために、ひだを有している。図2Aでは、冷却体230はヒートリッド232である。ヒートリッド232は基板210と接触している。このようにヒートリッド232からの熱を基板210に逃がすこともできる。
ここで、反応物101は、例えば、第1部材201である半導体部品220と第2部材202である冷却体230との間に樹脂組成物100を介在させた状態で加熱して形成することができる。
図2Bは、図2Aに示す第1実施形態の半導体デバイス200の変形例である。この半導体デバイス200は、第3部材203をさらに備えている。樹脂組成物100の反応物102が第1部材201又は第2部材202と第3部材203との間にも介在している。図2Bでは、反応物102が、第2部材202と第3部材203との間に介在している。反応物102は第2部材202及び第3部材203の両方に接触している。第3部材203と第2部材202とは直接接触していない。
第3部材203は、基板210、半導体部品220、冷却体230のいずれかであることが好ましい。図2Bでは、第3部材203は冷却体230であり、この冷却体230はヒートシンク231である。第2部材202及び第3部材203の一方が高温物体、他方が低温物体となり得る。この場合、発熱する半導体部品220に近い第2部材202が高温物体であり、半導体部品220から離れた第3部材203が低温物体である。したがって、この間に介在する反応物101によって、第2部材202の冷却体230の熱を第3部材203の冷却体230に逃がすことができる。この場合の反応物101を形成する樹脂組成物100もTIM(Thermal Interface Material)と呼ばれる。
上記のような半導体デバイス200を長期間使用した後であっても、反応物101、102中の高分子化合物3がシリコーンゲル、シリコーンゴムなどであれば、反応物101、102が元の位置から溶け出して別の位置に流動するポンプアウトを抑制することができる。
以下、本発明を実施例によって詳述する。
(実施例1-5)
・高分子化合物
シリコーン樹脂として二液室温硬化シリコーンゴム(東レ・ダウコーニング株式会社製SE1885)を用いた。
(実施例1-5)
・高分子化合物
シリコーン樹脂として二液室温硬化シリコーンゴム(東レ・ダウコーニング株式会社製SE1885)を用いた。
・金属ナノ粒子
銀粉を用いた。
銀粉を用いた。
・金属マイクロ粒子
粉体メッキにより銀をメッキした銅粉(銅コア銀コート粒子)を用いた。
粉体メッキにより銀をメッキした銅粉(銅コア銀コート粒子)を用いた。
金属ナノ粒子および金属マイクロ粒子の粒径は表中に記載のものを用意した。
金属マイクロ粒子、金属ナノ粒子を6:4の比率で混合し、続いて高分子化合物と(フィラー充填量が50vol%になるように)混合し、ペーストを得た。混合には、プラネタリーミキサーを用いた。
(比較例1-5)
熱伝導フィラー1としてプレート状粒子を用いた以外は、(実施例1-5)と同様にして、ペーストを得た。
(熱伝導率測定)
実施例および比較例のペーストを定常法により熱伝導率を測定した。測定手順は、定常法の測定治具にペーストを塗布し、その後180℃で30分間熱処理を加え、フィラー間の接合を形成した。
(粘度測定)
上記方法によって作成したペーストをレオメーターにより25℃、0.5rpmで粘度を測定した。
(比較例1-5)
熱伝導フィラー1としてプレート状粒子を用いた以外は、(実施例1-5)と同様にして、ペーストを得た。
(熱伝導率測定)
実施例および比較例のペーストを定常法により熱伝導率を測定した。測定手順は、定常法の測定治具にペーストを塗布し、その後180℃で30分間熱処理を加え、フィラー間の接合を形成した。
(粘度測定)
上記方法によって作成したペーストをレオメーターにより25℃、0.5rpmで粘度を測定した。
表1から明らかなように実施例1-5は比較例1-5と比べて、高い熱伝導率を示している。
金属コート層を有する金属マイクロ粒子を用いることにより金属コート層が溶融するため、プレート型の粒子を用いた場合に比べ、熱処理後の粒子間の界面抵抗が下がり、熱伝導率が高くなった。
さらに、実施例1-5の粘度は比較例1-5の粘度に比べて低くなっている。
これはプレート型の粒子が球状の粒子に比べて嵩高いため、同じ充填量であっても粘度を低くすることができたと考えられる。
このように同じ充填量であっても充填量が高い場合でも低粘度を達成するため、ペーストとしてのハンドリング性を損なわない。
これはプレート型の粒子が球状の粒子に比べて嵩高いため、同じ充填量であっても粘度を低くすることができたと考えられる。
このように同じ充填量であっても充填量が高い場合でも低粘度を達成するため、ペーストとしてのハンドリング性を損なわない。
また実施例1-3を比較すると、熱伝導率は実施例3に比べ実施例1、2が高い。このことから、金属ナノ粒子の粒径が小さい方が熱処理後のフィラーの溶融が起こりやすくなり、熱伝導が高くなることが考えられる。
また実施例2、4、5を比較すると、金属マイクロ粒子の粒径が大きくなるほど熱伝導は高くなる。これは粒径が大きいと、熱伝導パスの経路が長くなるため、熱が伝わり安くなると考えられる。
(第2実施形態)
図3Aに第2実施形態の半導体デバイス200を示す。半導体デバイス200は、樹脂組成物100の反応物101と、第1部材201と、第2部材202とを備えている。樹脂組成物100の反応物101は第1部材201と第2部材202との間に介在している。具体的には、反応物101は第1部材201及び第2部材202の両方に接触している。
図3Aに第2実施形態の半導体デバイス200を示す。半導体デバイス200は、樹脂組成物100の反応物101と、第1部材201と、第2部材202とを備えている。樹脂組成物100の反応物101は第1部材201と第2部材202との間に介在している。具体的には、反応物101は第1部材201及び第2部材202の両方に接触している。
第1部材201及び第2部材202の一方が高温物体、他方が低温物体となり得る。第1部材201及び第2部材202は、基板210、半導体部品220、冷却体230のいずれかである。図3Aでは、第1部材201は基板210であり、第2部材202は半導体部品220である。半導体部品220はパワー半導体221を含んでいてもよい。パワー半導体221は、電源の制御や電力の変換を行う半導体であり、扱う電圧や電流が大きいので、発熱量が多くなりやすい。パワー半導体221の具体例として、ダイオード、トランジスタ、集積回路(IC:Integrated Circuit)が挙げられる。半導体部品220は基板210に搭載されている。半導体部品220は、ワイヤー222により基板210に電気的に接続されている。基板210にはサーマルバイア211が設けられている。これにより、半導体デバイス200の放熱性をさらに向上させることができる。半導体部品220は発熱するので高温物体であり、基板210は低温物体である。したがって、この間に介在する反応物101によって、半導体部品220の熱を基板210に逃がすことができる。なお、この場合、反応物101は、基板210と半導体部品220との間に介在してこの両者を接着しているので、この反応物101を形成するための樹脂組成物100はダイアタッチペーストとも呼ばれる。
ここで、反応物101は、例えば、第1部材201である基板210と第2部材202である半導体部品220との間に樹脂組成物100を介在させた状態で加熱して形成することができる。
図3Bは、図3Aに示す第2実施形態の半導体デバイス200の変形例である。この半導体デバイス200は、第3部材203をさらに備えている。樹脂組成物100の反応物102が第1部材201又は第2部材202と第3部材203との間にも介在している。図3Bでは、反応物102が、第2部材202と第3部材203との間に介在している。反応物102は第2部材202及び第3部材203の両方に接触している。第3部材203と第2部材202とは直接接触していない。
第3部材203は、基板210、半導体部品220、冷却体230のいずれかであることが好ましい。図3Bでは、第3部材203は冷却体230である。第3部材203及び第2部材202の一方が高温物体、他方が低温物体となり得る。この場合、半導体部品220は発熱するので高温物体であり、冷却体230が低温物体である。したがって、この間に介在する反応物101によって、第2部材202の冷却体230の熱を第3部材203の冷却体230に逃がすことができる。冷却体230はヒートシンク231、ヒートリッド232の少なくともいずれかを含むことが好ましい。図3Bでは、冷却体230はヒートシンク231である。
上記のような半導体デバイス200を長期間使用した後であっても、反応物101、102中の高分子化合物3がシリコーンゲル、シリコーンゴムなどであれば、反応物101、102が元の位置から溶け出して別の位置に流動するポンプアウトを抑制することができる。
1 金属ナノ粒子
2 金属マイクロ粒子
3 高分子化合物
10 第1粉体
20 第2粉体
22 コア
23 金属コート層
100 樹脂組成物
101 反応物
102 反応物
200 半導体デバイス
201 第1部材
202 第2部材
203 第3部材
210 基板
220 半導体部品
221 パワー半導体
230 冷却体
231 ヒートシンク
232 ヒートリッド
2 金属マイクロ粒子
3 高分子化合物
10 第1粉体
20 第2粉体
22 コア
23 金属コート層
100 樹脂組成物
101 反応物
102 反応物
200 半導体デバイス
201 第1部材
202 第2部材
203 第3部材
210 基板
220 半導体部品
221 パワー半導体
230 冷却体
231 ヒートシンク
232 ヒートリッド
Claims (12)
- 金属ナノ粒子の集合体である第1粉体と、
金属マイクロ粒子の集合体である第2粉体と、
高分子化合物と
を含有し、
前記金属ナノ粒子は、第1金属で構成され、
前記金属マイクロ粒子は、コアと、前記コアを被覆する金属コート層とを有し、
前記コアは、第2金属で構成され、
前記金属コート層は、第3金属で構成され、
前記第1金属と前記第3金属とが同じ材質であることを特徴とする
樹脂組成物。 - 前記第1粉体の平均粒子径が10~1000nmの範囲内であることを特徴とする
請求項1に記載の樹脂組成物。 - 前記第2粉体の平均粒子径が1~100μmの範囲内であることを特徴とする
請求項1又は2に記載の樹脂組成物。 - 前記第1金属及び前記第3金属が銀であることを特徴とする
請求項1乃至3のいずれか一項に記載の樹脂組成物。 - 前記第2金属が銅、ニッケルのいずれかであることを特徴とする
請求項1乃至4のいずれか一項に記載の樹脂組成物。 - 前記高分子化合物がシリコーン樹脂であることを特徴とする
請求項1乃至5のいずれか一項に記載の樹脂組成物。 - 前記第1粉体及び前記第2粉体の合計体積に占める前記第1粉体の体積比率が5~50体積%の範囲内であることを特徴とする
請求項1乃至6のいずれか一項に記載の樹脂組成物。 - 前記樹脂組成物の全体積に占める前記第1粉体及び前記第2粉体の合計体積の体積比率が10~80体積%の範囲内であることを特徴とする
請求項1乃至7のいずれか一項に記載の樹脂組成物。 - 請求項1乃至8のいずれか一項に記載の樹脂組成物の反応物と、
第1部材と、
第2部材と
を備え、
前記樹脂組成物の反応物が前記第1部材と前記第2部材との間に介在し、
前記第1部材及び前記第2部材が、基板、半導体部品、冷却体のいずれかであることを特徴とする
半導体デバイス。 - 第3部材をさらに備え、
前記樹脂組成物の反応物が前記第1部材又は前記第2部材と前記第3部材との間に介在し、
前記第3部材が、基板、半導体部品、冷却体のいずれかであることを特徴とする
請求項9に記載の半導体デバイス。 - 前記半導体部品がパワー半導体を含むことを特徴とする
請求項9又は10に記載の半導体デバイス。 - 前記冷却体がヒートシンク、ヒートリッドの少なくともいずれかを含むことを特徴とする
請求項9乃至11のいずれか一項に記載の半導体デバイス。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016025313A JP2019065060A (ja) | 2016-02-12 | 2016-02-12 | 樹脂組成物及びそれを備えた半導体デバイス |
JP2016-025313 | 2016-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138326A1 true WO2017138326A1 (ja) | 2017-08-17 |
Family
ID=59563014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001887 WO2017138326A1 (ja) | 2016-02-12 | 2017-01-20 | 樹脂組成物及びそれを備えた半導体デバイス |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019065060A (ja) |
WO (1) | WO2017138326A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165357A (ja) * | 2002-11-12 | 2004-06-10 | Hitachi Chem Co Ltd | フィルム付熱伝導シート |
JP2006339057A (ja) * | 2005-06-03 | 2006-12-14 | Nec Corp | 樹脂金属複合導電材料、その製造方法およびそれを用いた電子デバイス |
JP2009230952A (ja) * | 2008-03-21 | 2009-10-08 | Fukuda Metal Foil & Powder Co Ltd | 導電性ペースト組成物及び電子回路並びに電子部品 |
JP2009275227A (ja) * | 2008-05-16 | 2009-11-26 | Bayer Materialscience Ag | 銀ナノ粒子含有印刷可能組成物、該組成物を用いた導電性被膜の製造方法、および該方法により製造された被膜 |
WO2014099639A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Corning Corporation | Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same |
JP2016023256A (ja) * | 2014-07-22 | 2016-02-08 | 京セラケミカル株式会社 | 熱硬化性樹脂組成物、半導体装置及び電気・電子部品 |
-
2016
- 2016-02-12 JP JP2016025313A patent/JP2019065060A/ja active Pending
-
2017
- 2017-01-20 WO PCT/JP2017/001887 patent/WO2017138326A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165357A (ja) * | 2002-11-12 | 2004-06-10 | Hitachi Chem Co Ltd | フィルム付熱伝導シート |
JP2006339057A (ja) * | 2005-06-03 | 2006-12-14 | Nec Corp | 樹脂金属複合導電材料、その製造方法およびそれを用いた電子デバイス |
JP2009230952A (ja) * | 2008-03-21 | 2009-10-08 | Fukuda Metal Foil & Powder Co Ltd | 導電性ペースト組成物及び電子回路並びに電子部品 |
JP2009275227A (ja) * | 2008-05-16 | 2009-11-26 | Bayer Materialscience Ag | 銀ナノ粒子含有印刷可能組成物、該組成物を用いた導電性被膜の製造方法、および該方法により製造された被膜 |
WO2014099639A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Corning Corporation | Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same |
JP2016023256A (ja) * | 2014-07-22 | 2016-02-08 | 京セラケミカル株式会社 | 熱硬化性樹脂組成物、半導体装置及び電気・電子部品 |
Also Published As
Publication number | Publication date |
---|---|
JP2019065060A (ja) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5237254B2 (ja) | 熱伝導部材、電子装置及び前記熱伝導部材の使用方法 | |
US6339120B1 (en) | Method of preparing thermally conductive compounds by liquid metal bridged particle clusters | |
JP4289949B2 (ja) | 低融点金属と保持マトリックスとを用いた熱界面パッド | |
US9512291B2 (en) | High thermal conductance thermal interface materials based on nanostructured metallic network-polymer composites | |
Bai | Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection | |
US6841867B2 (en) | Gel thermal interface materials comprising fillers having low melting point and electronic packages comprising these gel thermal interface materials | |
CA2401299C (en) | Morphing fillers and thermal interface materials | |
JP4848674B2 (ja) | 樹脂金属複合導電材料およびその製造方法 | |
US5056706A (en) | Liquid metal paste for thermal and electrical connections | |
KR102096575B1 (ko) | 이방성 도전 접착제 및 접속 구조체 | |
KR102487472B1 (ko) | 고성능, 열 전도성 표면 실장 (다이 부착) 접착제 | |
JP2010283327A (ja) | 熱伝導部材、電子装置及び該電子装置の製造方法 | |
JP5642336B2 (ja) | 半導体装置およびその製造方法 | |
JP2008270678A (ja) | 絶縁シートおよび半導体装置 | |
JP5442566B2 (ja) | 導電性接合剤及びその接合方法 | |
JP4412578B2 (ja) | 熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法 | |
JP2007189154A (ja) | 熱伝導接合材及び実装方法 | |
WO2017138326A1 (ja) | 樹脂組成物及びそれを備えた半導体デバイス | |
TWI484604B (zh) | 金屬熱界面材料以及含該材料的構裝半導體 | |
US20120069531A1 (en) | Conducting paste for device level interconnects | |
JP7122528B2 (ja) | 熱伝導性組成物及び半導体装置 | |
Benson et al. | TPolymer Adhesives and Encapsulants for | |
JP2005116291A (ja) | 異方性導電膜及びその製造方法 | |
JP4979542B2 (ja) | 実装構造体およびその製造方法 | |
CN114068447A (zh) | 热界面材料以及包括其的半导体封装件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17750051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |