WO2017138183A1 - Substrate processing device, joining part, and method for manufacturing semiconductor device - Google Patents

Substrate processing device, joining part, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2017138183A1
WO2017138183A1 PCT/JP2016/077143 JP2016077143W WO2017138183A1 WO 2017138183 A1 WO2017138183 A1 WO 2017138183A1 JP 2016077143 W JP2016077143 W JP 2016077143W WO 2017138183 A1 WO2017138183 A1 WO 2017138183A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sealing member
heating
substrate
processing apparatus
Prior art date
Application number
PCT/JP2016/077143
Other languages
French (fr)
Japanese (ja)
Inventor
山口 天和
谷山 智志
隆史 佐々木
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2017566504A priority Critical patent/JP6561148B2/en
Priority to KR1020187009658A priority patent/KR102133547B1/en
Publication of WO2017138183A1 publication Critical patent/WO2017138183A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a substrate processing apparatus, a joint portion, and a method for manufacturing a semiconductor device.
  • a process for forming a film on the substrate may be performed. Before supplying the processing gas into the processing chamber of the substrate processing apparatus, the processing gas is heated in advance, thereby processing gas. Attempts have been made to improve the uniformity of the film by controlling the thermal decomposition of the film.
  • connection part is interposed in the connection part of a gas supply pipe and a gas introduction port (for example, patent documents 1). If the processing gas is heated to a temperature higher than the heat resistance temperature of the connection part, the connection part may be deteriorated. Therefore, the processing gas cannot be heated to a temperature higher than the heat resistance temperature of the connection part, and the process gas is thermally decomposed. It was sometimes difficult to control.
  • An object of the present invention is to provide a technique capable of improving the uniformity of a film formed on a substrate.
  • a gas inlet configured to introduce gas into a reaction tube for processing the substrate;
  • a heating unit for heating the gas outside the reaction tube;
  • a connection part installed between the gas introduction part and the heating part,
  • the connecting portion is An outer pipe connected to the gas introduction part via a sealing member;
  • a technique is provided that includes an inner tube that has a smaller diameter than the outer tube, one end connected to the heating unit, and the other end extending to at least a position where the sealing member is installed.
  • the uniformity of a film formed on a substrate can be improved.
  • the substrate processing apparatus is configured as a processing apparatus 2 that performs a substrate processing step such as a heat treatment as one step of a manufacturing step in a manufacturing method of a semiconductor device (device).
  • the processing apparatus 2 includes a cylindrical reaction tube 10 and a heater 12 as a heating unit (heating mechanism) installed on the outer periphery of the reaction tube 10.
  • the reaction tube is made of, for example, quartz or SiC.
  • a processing chamber 14 for processing a wafer W as a substrate is formed inside the reaction tube 10.
  • a temperature detection unit 16 as a temperature detector is erected along the inner wall of the reaction tube 10.
  • a cylindrical manifold 18 is connected to the lower end opening of the reaction tube 10 via a seal member 20 such as an O-ring to support the lower end of the reaction tube 10.
  • the manifold 18 is formed of a metal such as stainless steel.
  • a plurality of gas ports (gas introduction portions) to be described later are formed on the side wall of the manifold.
  • the lower end opening of the manifold 18 is opened and closed by a disk-shaped lid 22.
  • the lid 22 is made of metal, for example.
  • a sealing member 20 such as an O-ring is installed on the upper surface of the lid portion 22 so that the inside of the reaction tube 10 and the outside air are hermetically sealed.
  • the heat insulating portion 24 is formed of a cylindrical member made of a heat resistant material such as quartz or SiC.
  • the processing chamber 14 stores therein a boat 26 as a substrate holder for supporting a plurality of, for example, 25 to 150 wafers W vertically in a shelf shape.
  • the boat 26 is made of, for example, quartz or SiC.
  • the boat 26 is supported above the heat insulating portion 24 by a rotating shaft 28 that passes through the holes of the lid portion 22 and the heat insulating portion 24.
  • a magnetic fluid seal is provided at a portion of the lid portion 22 through which the rotation shaft 28 passes, and the rotation shaft 28 is connected to a rotation mechanism 30 installed below the lid portion 22.
  • the rotating shaft 28 is configured to be rotatable in a state where the inside of the reaction tube 10 is hermetically sealed.
  • the lid portion 22 is driven in the vertical direction by a boat elevator 32 as a lifting mechanism. As a result, the boat 26 and the lid portion 22 are integrally moved up and down, and the boat 26 is carried into and out of the reaction tube 10.
  • the processing apparatus 2 includes a gas supply mechanism 34 that supplies a gas used for substrate processing into the processing chamber 14.
  • the gas supplied by the gas supply mechanism 34 is changed according to the type of film to be formed.
  • the gas supply mechanism 34 includes a source gas supply unit, a reaction gas supply unit, and an inert gas supply unit.
  • the raw material gas supply unit includes a gas supply pipe 36a.
  • a gas flow controller (MFC) 38a which is a flow rate controller (flow rate control unit), and a valve 40a, which is an on-off valve, are provided in order from the upstream direction. It is done.
  • the gas supply pipe 36a may be provided with a preheating device 70 and a connecting portion 80 described later.
  • the nozzle 44 a is erected in the vertical direction in the reaction tube 10 and has a plurality of supply holes that open toward the wafers W held by the boat 26. The source gas supplied from the gas supply pipe 36a is supplied to the wafer W through the supply hole of the nozzle 44a.
  • the reaction gas supply unit includes a gas supply pipe 36b, and an MFC 38b, a valve 40b, and a preheating device 70 are provided in this order from the upstream direction.
  • the gas supply pipe 36b is connected to the nozzle 44b via a connecting portion 80 described later.
  • the connecting portion 80 may be included in the gas supply pipe 36b. From the inert gas supply unit, an inert gas is supplied to the wafer W via supply pipes 36c and 36d, MFCs 38c and 38d, valves 40c and 40d, and nozzles 44a and 44b.
  • An exhaust pipe 46 is attached to the manifold 18.
  • the exhaust pipe 46 is connected with a pressure sensor 48 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 14 and an APC (Auto Pressure Controller) valve 40 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 52 as an evacuation device is connected.
  • Rotating mechanism 30, boat elevator 32, MFCs 38a to 38d and valves 40a to 40d of gas supply mechanism 34, APC valve 50, and preheating device 70 are connected to controller 100 for controlling them.
  • the controller 100 is composed of, for example, a microprocessor (computer) having a CPU, and is configured to control the operation of the processing device 2.
  • an input / output device 102 configured as a touch panel or the like is connected to the controller 100.
  • the controller 100 is connected to a storage unit 104 as a storage medium.
  • the storage unit 104 stores a control program for controlling the operation of the processing device 10 and a program (also referred to as a recipe) for causing each component unit of the processing device 2 to execute processing according to processing conditions in a readable manner.
  • the control program for controlling the operation of the processing device 10
  • a program also referred to as a recipe
  • the storage unit 104 may be a storage device (hard disk or flash memory) built in the controller 100, or a portable external recording device (magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card. Further, the program may be provided to the computer using a communication means such as the Internet or a dedicated line. The program is read from the storage unit 104 according to an instruction from the input / output device 102 as necessary, and the controller 100 executes processing according to the read recipe, so that the processing device 2 Under the control of 100, a desired process is executed.
  • a storage device hard disk or flash memory
  • a portable external recording device magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card.
  • the program may be
  • nozzle 44 includes a case where only the nozzle 44a is shown, a case where only the nozzle 44b is shown, and a case where both of them are shown. The same applies to other configurations.
  • a gas introduction part (port) 60 that holds the base of the inserted nozzle 44 is formed in a hollow cylindrical shape so as to protrude to the outside of the manifold 18.
  • the nozzle 44 is held by the port 60 while the base of the nozzle 44 is inserted into the opening 19 provided in the manifold 18.
  • the nozzle 44 and the port 60 are in close contact with each other, and the reaction container is configured to be kept airtight.
  • One end of the port 60 (the processing chamber 14 side and the downstream end) is configured to airtightly seal the outer periphery of the opening 19 provided in the manifold 18.
  • a thread 61 as a fixing portion is provided on the outer peripheral surface of the other end (upstream end portion) of the port 60.
  • the diameter of the inner peripheral surface of the thread 61 portion that is the other end of the port 60 is formed larger than the diameter of the inner peripheral surface of the intermediate portion at both ends of the port 60.
  • the other end of the port 60 is formed so that the inner diameter becomes one size larger.
  • a gap 62 is provided between the thread 61 of the port 60 and the nozzle 44.
  • the gap portion 62 is provided with an O-ring 63 as a sealing member (seal member). Further, an end portion of an outer tube 82 of a connecting portion 80 described later is fitted, whereby the port 60 and the outer tube 82 are connected. It is configured to be connected and engaged through an O-ring 63.
  • the connecting portion 80 On the upstream side of the port 60, a connecting portion 80 as a joint portion is installed.
  • the port 60 and the preheating device 70 are connected via a connection unit 80.
  • the preheating device 70 is configured as a heating unit that heats the processing gas to a predetermined temperature outside the reaction tube 10 in advance, for example, a temperature higher than the heat resistant temperature of the O-ring 63.
  • the connection unit 80 may be configured to connect the port 60 and the gas supply pipe 36.
  • the connecting portion 80 is constituted by an inner tube 81 and an outer tube 82.
  • the nut 85 may be included in the configuration of the connecting portion 80.
  • the inner tube 81 and the outer tube 82 are formed in a hollow cylindrical (columnar) shape.
  • the outer diameter of the inner tube 81 is smaller than the inner diameter of the outer tube 82 and the outer diameter of the nozzle 44.
  • An outer tube 82 is provided outside the inner tube 81.
  • the outer tube 82 has a shape in which one end (upstream side, end portion on the preheating device 70 side) is closed and the other end (downstream side, end portion on the port 60 side) is opened.
  • the connection wall 83 is welded to the outer surface of the inner tube 81.
  • the inner tube 81 is configured to penetrate the outer tube 82, and the outer tube 82 and the inner tube 81 are integrally formed. Further, the entire length of the inner tube 81 is longer than the entire length of the outer tube 80.
  • the connecting portion 80 has a double tube structure of an outer tube 82 and an inner tube 81.
  • the inner diameter of the intermediate portion at both ends of the outer tube 82 is formed to be the same as the inner diameter of the nozzle 44.
  • the other end of the outer tube 82 is provided with a stepped portion 84 that interferes with a nut 85 described later.
  • the outer circumference and inner circumference diameter of the other end of the outer tube 82 are formed larger than the outer circumference and inner circumference diameter of one end.
  • the inner diameter of the other end of the outer tube 82 is formed to be larger than the outer diameter of the nozzle 44.
  • An open end 89 that is an end portion on the downstream side (port 60 side) of the inner tube 81 is formed to extend further downstream than the other end of the outer tube 82.
  • the inner tube 81 is formed so as to extend into the port 60, that is, into the nozzle 44.
  • the nut 85 as a fixing member has an opening 87 having a diameter slightly larger than the outer diameter of the outer tube 82, and is attached to be rotatable around the outer tube 82.
  • connection between the port 60 and the connection unit 80 will be described with reference to FIG.
  • a part of the stepped portion 64 of the connection portion 80 is fitted into the gap 62 provided inside the thread 61 of the port 60 together with the 0 ring 63 as a sealing member.
  • the thread 61 on the port side and the thread 86 on the nut 85 side are fitted.
  • the step portion 84 is pushed by the step receiving portion 88 of the nut 85, the O-ring 63 is crushed and the port 60 and the connection portion 80 can be connected in an airtight manner.
  • the open end 89 of the inner pipe 81 is located downstream of the O-ring 63, that is, in the nozzle 44 (in the port 60).
  • the heated gas directly comes into contact with the periphery of the O-ring installation portion at a high temperature.
  • the O-ring installation portion is heated to a temperature higher than the heat-resistant temperature of the O-ring, and the O-ring may be deteriorated. Therefore, it has been difficult to heat the gas to a temperature higher than the heat resistance temperature of the O-ring, for example, higher than 100 to 350 ° C. which is a heat resistance temperature of a general O-ring.
  • the present embodiment as shown in FIG. 7, even when a high-temperature gas flows in the inner pipe 81, the temperature around the O-ring is maintained at about half or less of the temperature in the inner pipe 81. I understand that.
  • the O-ring it is possible to prevent the O-ring from being heated to a temperature higher than the heat-resistant temperature by setting the O-ring to have a double-pipe structure and suppressing direct contact with high-temperature gas.
  • the inner tube 81 may be extended to the opening 19. By extending the inner pipe 81 to the opening 19, it is possible to prevent the high temperature gas from being cooled before being supplied into the reaction pipe 10.
  • connection part 80 is formed of a metal material that is heat resistant to high-temperature gas and hardly causes metal contamination.
  • the connection part 80 is formed of a metal to which aluminum is added.
  • an alumina film is formed on the inner wall surface of the connecting portion 80, that is, the gas flow path through which the gas flows.
  • the alumina film can be formed, for example, by firing a metal material as described above.
  • the alumina coating is preferably formed on the wall surface of a gas flow path formed of a metal material through which at least a high-temperature gas flows.
  • the preheating device 70 may be formed of the same material as that of the connection portion 80. Further, for example, the preheating device 70 and the connecting portion 80 may be integrally formed. With such a configuration, it is possible to prevent the heated gas from being cooled (heat radiation) due to the difference in material between the preheating device 70 and the connection portion 80, and to further reduce metal contamination.
  • the processing gas heated to a high temperature by the preheating device 70 can be supplied into the processing apparatus 2, the desired gas decomposition control can be performed, and the uniformity of the film is improved. Can be made. Since the heated gas flows through the inner pipe portion, the high-temperature gas does not directly contact the periphery of the O-ring of the outer pipe. Further, the processing gas that circulates around the O-ring after exiting the inner pipe 81 is equal to or lower than the heat resistance temperature of the O-ring. Thereby, even if the gas is heated to a temperature higher than the heat resistant temperature of the O-ring, the deterioration of the O-ring can be suppressed, and the breakage and deterioration of the O-ring can be prevented.
  • the periphery of the O-ring 63 can be cooled by providing an annular cooling flow path 64 in the vicinity of the thread 63 and the gap 62 of the port 60 and flowing cooling water therein. Further, the risk of damage to the O-ring 63 can be further reduced. With such a configuration, the processing gas can be heated to a higher temperature.
  • the annular cooling flow path 64 is not limited to the configuration embedded in the port 60, and may be configured such that a water cooling tube is wound around the outer periphery of the connection portion 80.
  • the processing chamber 14 is evacuated (reduced pressure) by the vacuum pump 52 so that the inside of the processing chamber 14 has a predetermined pressure (degree of vacuum).
  • the pressure in the processing chamber 14 is measured by the pressure sensor 48, and the APC valve 50 is feedback-controlled based on the measured pressure information.
  • the wafer W in the processing chamber 14 is heated by the heater 12 so as to reach a predetermined temperature.
  • the power supply to the heater 12 is feedback-controlled based on the temperature information detected by the temperature detector 16 so that the processing chamber 14 has a predetermined temperature distribution. Further, the rotation of the boat 26 and the wafer W by the rotation mechanism 30 is started.
  • the preheating device 70 is turned on.
  • the preheating device 70 is turned off or lower than the film forming temperature before and after the film forming process.
  • the O 2 gas is heated to a high temperature, for example, 800 ° C. by the preheating device 70.
  • the O 2 gas is controlled to have a desired flow rate by the MFC 38b, and is supplied into the processing chamber 14 through the gas supply pipe 36b, the preheating device 70, the connection portion 80, and the nozzle 44b. With such a configuration, the O 2 gas can be heated to a high temperature in advance before being introduced into the processing chamber 14.
  • Examples of processing conditions for forming the SiO film on the wafer W include the following. Processing temperature (wafer temperature): 300 ° C. to 1000 ° C. Processing pressure (pressure in processing chamber) 1 Pa to 4000 Pa, DCS gas: 100 sccm to 10,000 sccm, O 2 gas: 100 sccm to 10,000 sccm, N 2 gas: 100 sccm to 10,000 sccm, By setting each processing condition to a value within the respective range, it is possible to appropriately progress the film forming process.
  • the processing gas can be heated to a high temperature higher than the heat resistant temperature of the O-ring, it is possible to promote decomposition of the processing gas and improve reactivity. Thereby, the quality of film formation can be improved, and the yield of devices can be improved.
  • the O-ring installation part a double tube structure of an inner tube and an outer tube, it is possible to suppress the heat of the processing gas flowing in the inner tube from being propagated around the O-ring. Thereby, since an O-ring can be maintained below heat-resistant temperature, deterioration of an O-ring can be suppressed and an apparatus operation rate can be improved.
  • a connecting part may be included in the gas supply pipe.
  • the end of the gas supply pipe (the side connected to the gas introduction port) may have the same configuration as the connection.
  • the connecting portion may be welded and fixed to the end portion of the gas supply pipe.
  • the processing gas is heated by passing the processing gas into the preheating device.
  • an external heater such as a tape heater is installed in the gas supply pipe so that the processing gas passing through the gas supply pipe is heated. Also good.
  • the present invention can be applied to the case where the source gas is heated.
  • connection portion 80 may have a flange shape and may be fixed with screws. Even in these cases, similarly to the above-described embodiment, the temperature of the connection portion can be maintained at a temperature equal to or lower than the heat resistance temperature of each sealing member.
  • the present invention is not limited to such an aspect.
  • the present invention can be suitably applied to a case where a processing gas is heated and used in a process such as an oxidation process, a diffusion process, an annealing process, and an etching process on a wafer W or a film formed on the wafer W. It is.
  • a processing gas is heated and used in a process such as an oxidation process, a diffusion process, an annealing process, and an etching process on a wafer W or a film formed on the wafer W.
  • a processing gas is heated and used in a process such as an oxidation process, a diffusion process, an annealing process, and an etching process on a wafer W or a film formed on the wafer W.
  • a vertical apparatus it can apply suitably also to a single wafer apparatus.

Abstract

[Problem] To provide technology that can improve uniformity in a film formed on a substrate. [Solution] Provided is a substrate processing device that has: a gas introducing unit constituted so as to introduce gas into a reaction pipe for processing the substrate; a heating unit for heating the gas outside of the reaction pipe; and a connecting unit disposed between the gas introducing unit and the heating unit. The connecting unit is constituted of: an outer pipe connected to the gas introducing unit via a sealing member; and an inner pipe formed with a diameter smaller than the outer pipe, having one end connected to the heating unit, and the other end extending at least to the position where the sealing member is disposed.

Description

基板処理装置、継手部および半導体装置の製造方法Substrate processing apparatus, joint portion, and semiconductor device manufacturing method
 本発明は、基板処理装置、継手部および半導体装置の製造方法に関する。 The present invention relates to a substrate processing apparatus, a joint portion, and a method for manufacturing a semiconductor device.
近年、フラッシュメモリ等の半導体装置(デバイス)は高集積化・微細化が進んでいる。デバイス製造工程の一工程として、基板上に膜を形成する処理が実施される場合があり、基板処理装置の処理室内に処理ガスを供給する前に、あらかじめ処理ガスを加熱することにより、処理ガスの熱分解を制御し、膜の均一性を向上させることが試みられている。 In recent years, semiconductor devices (devices) such as flash memories have been highly integrated and miniaturized. As a process of the device manufacturing process, a process for forming a film on the substrate may be performed. Before supplying the processing gas into the processing chamber of the substrate processing apparatus, the processing gas is heated in advance, thereby processing gas. Attempts have been made to improve the uniformity of the film by controlling the thermal decomposition of the film.
通常、ガス供給管とガス導入ポートとの接続部分には接続部が介設されている(例えば特許文献1)。接続部の耐熱温度より高い温度に処理ガスを加熱した場合、接続部を劣化させることがあるため、処理ガスを接続部の耐熱温度より高い温度に加熱することができず、処理ガスの熱分解制御が困難なことがあった。 Usually, a connection part is interposed in the connection part of a gas supply pipe and a gas introduction port (for example, patent documents 1). If the processing gas is heated to a temperature higher than the heat resistance temperature of the connection part, the connection part may be deteriorated. Therefore, the processing gas cannot be heated to a temperature higher than the heat resistance temperature of the connection part, and the process gas is thermally decomposed. It was sometimes difficult to control.
特開2010-45251号公報JP 2010-45251
 本発明の目的は、基板上に形成する膜の均一性を向上させることが可能な技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the uniformity of a film formed on a substrate.
本発明の一態様によれば、
 基板を処理する反応管内にガスを導入するよう構成されたガス導入部と、
 前記ガスを前記反応管外で加熱する加熱部と、
 前記ガス導入部と前記加熱部との間に設置される接続部と、を有し、
 前記接続部は、
 前記ガス導入部と密閉部材を介して接続される外管と、
 前記外管よりも小さい径に形成され、一端が前記加熱部と接続し、他端が少なくとも前記密閉部材が設置される位置まで延伸する内管と、で構成される技術が提供される。
According to one aspect of the invention,
A gas inlet configured to introduce gas into a reaction tube for processing the substrate;
A heating unit for heating the gas outside the reaction tube;
A connection part installed between the gas introduction part and the heating part,
The connecting portion is
An outer pipe connected to the gas introduction part via a sealing member;
A technique is provided that includes an inner tube that has a smaller diameter than the outer tube, one end connected to the heating unit, and the other end extending to at least a position where the sealing member is installed.
本発明によれば、基板上に形成する膜の均一性を向上させることが可能となる。 According to the present invention, the uniformity of a film formed on a substrate can be improved.
本発明の一実施形態で好適に用いられる基板処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the substrate processing apparatus used suitably by one Embodiment of this invention. 本発明の一実施形態にかかるポートと接続部の接続状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection state of the port and connection part concerning one Embodiment of this invention. 本発明の一実施形態にかかるポートを示す縦断面図である。It is a longitudinal cross-sectional view which shows the port concerning one Embodiment of this invention. 本発明の一実施形態にかかる接続部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part concerning one Embodiment of this invention. 本発明の一実施形態にかかるナットを示す斜視図である。It is a perspective view showing a nut concerning one embodiment of the present invention. 本発明の別の実施形態にかかるポートを示す縦断面図である。It is a longitudinal cross-sectional view which shows the port concerning another embodiment of this invention. 本発明におけるガス温度のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the gas temperature in this invention.
<本発明の一実施形態>
 以下、図面を参照しながら、本発明の限定的でない例示の実施形態について説明する。全図面中、同一または対応する構成については、同一または対応する参照符号を付し、重複する説明を省略する。
<One Embodiment of the Present Invention>
Hereinafter, non-limiting exemplary embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and redundant description is omitted.
 本実施形態において、基板処理装置は、半導体装置(デバイス)の製造方法における製造工程の一工程として熱処理等の基板処理工程を実施する処理装置2として構成されている。図1に示すように、処理装置2は、円筒形状の反応管10と、反応管10の外周に設置された加熱手段(加熱機構)としてのヒータ12とを備える。反応管は、例えば石英やSiCにより形成される。反応管10の内部には、基板としてのウエハWを処理する処理室14が形成される。反応管10には、温度検出器としての温度検出部16が、反応管10の内壁に沿って立設されている。 In the present embodiment, the substrate processing apparatus is configured as a processing apparatus 2 that performs a substrate processing step such as a heat treatment as one step of a manufacturing step in a manufacturing method of a semiconductor device (device). As shown in FIG. 1, the processing apparatus 2 includes a cylindrical reaction tube 10 and a heater 12 as a heating unit (heating mechanism) installed on the outer periphery of the reaction tube 10. The reaction tube is made of, for example, quartz or SiC. Inside the reaction tube 10, a processing chamber 14 for processing a wafer W as a substrate is formed. In the reaction tube 10, a temperature detection unit 16 as a temperature detector is erected along the inner wall of the reaction tube 10.
 反応管10の下端開口部には、円筒形のマニホールド18が、Oリング等のシール部材20を介して連結され、反応管10の下端を支持している。マニホールド18は、例えばステンレス等の金属により形成される。マニホールドの側壁には、後述するガスポート(ガス導入部)が複数形成される。マニホールド18の下端開口部は円盤状の蓋部22によって開閉される。蓋部22は、例えば金属により形成される。蓋部22の上面にはOリング等のシール部材20が設置されており、これにより、反応管10内と外気とが気密にシールされる。蓋部22上には、中央に上下に亘って孔が形成された断熱部24が載置される。断熱部24は、例えば石英やSiC等の耐熱性材料からなる筒状の部材により形成される。 A cylindrical manifold 18 is connected to the lower end opening of the reaction tube 10 via a seal member 20 such as an O-ring to support the lower end of the reaction tube 10. The manifold 18 is formed of a metal such as stainless steel. A plurality of gas ports (gas introduction portions) to be described later are formed on the side wall of the manifold. The lower end opening of the manifold 18 is opened and closed by a disk-shaped lid 22. The lid 22 is made of metal, for example. A sealing member 20 such as an O-ring is installed on the upper surface of the lid portion 22 so that the inside of the reaction tube 10 and the outside air are hermetically sealed. On the cover part 22, the heat insulation part 24 in which the hole was formed in the center up and down was mounted. The heat insulating portion 24 is formed of a cylindrical member made of a heat resistant material such as quartz or SiC.
 処理室14は、複数枚、例えば25~150枚のウエハWを垂直に棚状に支持する基板保持具としてのボート26を内部に収納する。ボート26は、例えば石英やSiCより形成される。ボート26は、蓋部22および断熱部24の孔を貫通する回転軸28により、断熱部24の上方に支持される。蓋部22の回転軸28が貫通する部分には、例えば、磁性流体シールが設けられ、回転軸28は蓋部22の下方に設置された回転機構30に接続される。これにより、回転軸28は反応管10の内部を気密にシールした状態で回転可能に構成される。蓋部22は昇降機構としてのボートエレベータ32により上下方向に駆動される。これにより、ボート26および蓋部22が一体的に昇降され、反応管10に対してボート26が搬入出される。 The processing chamber 14 stores therein a boat 26 as a substrate holder for supporting a plurality of, for example, 25 to 150 wafers W vertically in a shelf shape. The boat 26 is made of, for example, quartz or SiC. The boat 26 is supported above the heat insulating portion 24 by a rotating shaft 28 that passes through the holes of the lid portion 22 and the heat insulating portion 24. For example, a magnetic fluid seal is provided at a portion of the lid portion 22 through which the rotation shaft 28 passes, and the rotation shaft 28 is connected to a rotation mechanism 30 installed below the lid portion 22. Thereby, the rotating shaft 28 is configured to be rotatable in a state where the inside of the reaction tube 10 is hermetically sealed. The lid portion 22 is driven in the vertical direction by a boat elevator 32 as a lifting mechanism. As a result, the boat 26 and the lid portion 22 are integrally moved up and down, and the boat 26 is carried into and out of the reaction tube 10.
 処理装置2は、基板処理に使用されるガスを処理室14内に供給するガス供給機構34を備えている。ガス供給機構34が供給するガスは、成膜される膜の種類に応じて換えられる。ここでは、ガス供給機構34は、原料ガス供給部、反応ガス供給部および不活性ガス供給部を含む。 The processing apparatus 2 includes a gas supply mechanism 34 that supplies a gas used for substrate processing into the processing chamber 14. The gas supplied by the gas supply mechanism 34 is changed according to the type of film to be formed. Here, the gas supply mechanism 34 includes a source gas supply unit, a reaction gas supply unit, and an inert gas supply unit.
 原料ガス供給部は、ガス供給管36aを備え、ガス供給管36aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)38aおよび開閉弁であるバルブ40aが設けられる。ガス供給管36aには、後述する予備加熱装置70および接続部80が設けられていても良い。ノズル44aは、反応管10内に上下方向に沿って立設し、ボート26に保持されるウエハWに向かって開口する複数の供給孔が形成されている。ガス供給管36aから供給された原料ガスは、ノズル44aの供給孔を通してウエハWに対して供給される。 The raw material gas supply unit includes a gas supply pipe 36a. A gas flow controller (MFC) 38a, which is a flow rate controller (flow rate control unit), and a valve 40a, which is an on-off valve, are provided in order from the upstream direction. It is done. The gas supply pipe 36a may be provided with a preheating device 70 and a connecting portion 80 described later. The nozzle 44 a is erected in the vertical direction in the reaction tube 10 and has a plurality of supply holes that open toward the wafers W held by the boat 26. The source gas supplied from the gas supply pipe 36a is supplied to the wafer W through the supply hole of the nozzle 44a.
 反応ガス供給部は、ガス供給管36bを備え、ガス供給管36bには、上流方向から順に、MFC38b、バルブ40b、予備加熱装置70が設けられる。ガス供給管36bは、後述する接続部80を介してノズル44bに接続される。接続部80をガス供給管36bに含めて考えても良い。不活性ガス供給部からは、供給管36c、36d、MFC38c、38d、バルブ40c、40dおよびノズル44a、44bを介して、ウエハWに対して不活性ガスが供給される。 The reaction gas supply unit includes a gas supply pipe 36b, and an MFC 38b, a valve 40b, and a preheating device 70 are provided in this order from the upstream direction. The gas supply pipe 36b is connected to the nozzle 44b via a connecting portion 80 described later. The connecting portion 80 may be included in the gas supply pipe 36b. From the inert gas supply unit, an inert gas is supplied to the wafer W via supply pipes 36c and 36d, MFCs 38c and 38d, valves 40c and 40d, and nozzles 44a and 44b.
 マニホールド18には、排気管46が取り付けられている。排気管46には、処理室14内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ48および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ40を介して、真空排気装置としての真空ポンプ52が接続されている。このような構成により、処理室14内の圧力を処理に応じた処理圧力とすることができる。 An exhaust pipe 46 is attached to the manifold 18. The exhaust pipe 46 is connected with a pressure sensor 48 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 14 and an APC (Auto Pressure Controller) valve 40 as a pressure regulator (pressure adjustment unit). A vacuum pump 52 as an evacuation device is connected. With such a configuration, the pressure in the processing chamber 14 can be set to a processing pressure corresponding to the processing.
 回転機構30、ボートエレベータ32、ガス供給機構34のMFC38a~38dおよびバルブ40a~40d、APCバルブ50、予備加熱装置70には、これらを制御するコントローラ100が接続される。コントローラ100は、例えば、CPUを備えたマイクロプロセッサ(コンピュータ)からなり、処理装置2の動作を制御するよう構成される。コントローラ100には、例えばタッチパネル等として構成された入出力装置102が接続されている。 Rotating mechanism 30, boat elevator 32, MFCs 38a to 38d and valves 40a to 40d of gas supply mechanism 34, APC valve 50, and preheating device 70 are connected to controller 100 for controlling them. The controller 100 is composed of, for example, a microprocessor (computer) having a CPU, and is configured to control the operation of the processing device 2. For example, an input / output device 102 configured as a touch panel or the like is connected to the controller 100.
 コントローラ100には記憶媒体としての記憶部104が接続されている。記憶部104には、処理装置10の動作を制御する制御プログラムや、処理条件に応じて処理装置2の各構成部に処理を実行させるためのプログラム(レシピとも言う)が、読み出し可能に格納される。 The controller 100 is connected to a storage unit 104 as a storage medium. The storage unit 104 stores a control program for controlling the operation of the processing device 10 and a program (also referred to as a recipe) for causing each component unit of the processing device 2 to execute processing according to processing conditions in a readable manner. The
 記憶部104は、コントローラ100に内蔵された記憶装置(ハードディスクやフラッシュメモリ)であってもよいし、可搬性の外部記録装置(磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)であってもよい。また、コンピュータへのプログラムの提供は、インターネットや専用回線等の通信手段を用いて行ってもよい。プログラムは、必要に応じて、入出力装置102からの指示等にて記憶部104から読み出され、読み出されたレシピに従った処理をコントローラ100が実行することで、処理装置2は、コントローラ100の制御のもと、所望の処理を実行する。 The storage unit 104 may be a storage device (hard disk or flash memory) built in the controller 100, or a portable external recording device (magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card. Further, the program may be provided to the computer using a communication means such as the Internet or a dedicated line. The program is read from the storage unit 104 according to an instruction from the input / output device 102 as necessary, and the controller 100 executes processing according to the read recipe, so that the processing device 2 Under the control of 100, a desired process is executed.
 続いて、本実施形態にかかる接続部80の構成について、図2~6を用いて説明する。以下、ノズル44と称する場合は、ノズル44aのみを示す場合、ノズル44bのみを示す場合、それらの両方を示す場合を含む。その他の構成についても同様である。 Subsequently, the configuration of the connection unit 80 according to the present embodiment will be described with reference to FIGS. Hereinafter, the term “nozzle 44” includes a case where only the nozzle 44a is shown, a case where only the nozzle 44b is shown, and a case where both of them are shown. The same applies to other configurations.
(ガス導入部)
 図3に示すように、マニホールド18の側壁には、ノズル44の基部を挿入するための開口部(貫通穴)19が、ノズルと同数設けられている。マニホールド18の開口部19には、挿入されたノズル44の基部を保持するガス導入部(ポート)60が、マニホールド18の外側に突出するように中空の円筒形状に構成されている。ノズル44は、マニホールド18に設けられた開口部19にノズル44の基部が挿入されるとともに、ポート60によって保持される。なお、ノズル44とポート60とは密着されており、反応容器内は気密に保たれるように構成されている。
(Gas introduction part)
As shown in FIG. 3, the same number of openings (through holes) 19 as the nozzles are provided on the side walls of the manifold 18 for inserting the bases of the nozzles 44. In the opening 19 of the manifold 18, a gas introduction part (port) 60 that holds the base of the inserted nozzle 44 is formed in a hollow cylindrical shape so as to protrude to the outside of the manifold 18. The nozzle 44 is held by the port 60 while the base of the nozzle 44 is inserted into the opening 19 provided in the manifold 18. The nozzle 44 and the port 60 are in close contact with each other, and the reaction container is configured to be kept airtight.
 ポート60の一端(処理室14側、下流側の端部)は、マニホールド18に設けられた開口部19の外周を気密に塞ぐように構成されている。ポート60の他端(上流側の端部)の外周面には、固定部としてのねじ山61が設けられている。ポート60の他端であるねじ山61部分の内周面の径は、ポート60の両端の中間部分の内周面の径よりも大きく形成されている。すなわち、ポート60の他端は内径が一回り大きくなるように形成されている。これにより、ポート60のねじ山61とノズル44との間には、間隙部62が設けられる。この間隙部62には、密閉部材(シール部材)としてのOリング63が設けられ、更に、後述する接続部80の外管82の端部が嵌め込まれることにより、ポート60と外管82とがOリング63を介して接続され、係合するように構成されている。 One end of the port 60 (the processing chamber 14 side and the downstream end) is configured to airtightly seal the outer periphery of the opening 19 provided in the manifold 18. On the outer peripheral surface of the other end (upstream end portion) of the port 60, a thread 61 as a fixing portion is provided. The diameter of the inner peripheral surface of the thread 61 portion that is the other end of the port 60 is formed larger than the diameter of the inner peripheral surface of the intermediate portion at both ends of the port 60. In other words, the other end of the port 60 is formed so that the inner diameter becomes one size larger. As a result, a gap 62 is provided between the thread 61 of the port 60 and the nozzle 44. The gap portion 62 is provided with an O-ring 63 as a sealing member (seal member). Further, an end portion of an outer tube 82 of a connecting portion 80 described later is fitted, whereby the port 60 and the outer tube 82 are connected. It is configured to be connected and engaged through an O-ring 63.
(接続部)
 次に、図4、5を用いて接続部80について説明する。ポート60の上流側には、継手部としての接続部80が設置される。ポート60と予備加熱装置70とは、接続部80を介して接続される。予備加熱装置70は、処理ガスを反応管10外で予め所定の温度、例えば、Oリング63の耐熱温度より高い温度に加熱する加熱部として構成される。予備加熱装置70がガス供給管36に設置される場合は、接続部80はポート60とガス供給管36とを接続するように構成されても良い。接続部80は、内管81および外管82により構成される。ナット85を接続部80の構成に含めて考えても良い。内管81および外管82は、中空の円筒(円柱)形状に形成される。内管81の外径は、外管82の内径およびノズル44の外径よりも小さく構成されている。
(Connection part)
Next, the connecting portion 80 will be described with reference to FIGS. On the upstream side of the port 60, a connecting portion 80 as a joint portion is installed. The port 60 and the preheating device 70 are connected via a connection unit 80. The preheating device 70 is configured as a heating unit that heats the processing gas to a predetermined temperature outside the reaction tube 10 in advance, for example, a temperature higher than the heat resistant temperature of the O-ring 63. When the preheating device 70 is installed in the gas supply pipe 36, the connection unit 80 may be configured to connect the port 60 and the gas supply pipe 36. The connecting portion 80 is constituted by an inner tube 81 and an outer tube 82. The nut 85 may be included in the configuration of the connecting portion 80. The inner tube 81 and the outer tube 82 are formed in a hollow cylindrical (columnar) shape. The outer diameter of the inner tube 81 is smaller than the inner diameter of the outer tube 82 and the outer diameter of the nozzle 44.
 内管81の外側には、外管82が設けられる。外管82は一端(上流側、予備加熱装置70側の端部)が閉塞し、他端(下流側、ポート60側の端部)が開口した形状であり、外管82の一端の閉塞部分である接続壁83は内管81の外面と溶接されている。言い換えれば、内管81は、外管82を貫通するように構成され、外管82と内管81とは一体に形成される。また、内管81の全長は外管80の全長よりも長く形成されている。接続部80は、外管82と内管81との二重管構造を有する。 An outer tube 82 is provided outside the inner tube 81. The outer tube 82 has a shape in which one end (upstream side, end portion on the preheating device 70 side) is closed and the other end (downstream side, end portion on the port 60 side) is opened. The connection wall 83 is welded to the outer surface of the inner tube 81. In other words, the inner tube 81 is configured to penetrate the outer tube 82, and the outer tube 82 and the inner tube 81 are integrally formed. Further, the entire length of the inner tube 81 is longer than the entire length of the outer tube 80. The connecting portion 80 has a double tube structure of an outer tube 82 and an inner tube 81.
 外管82の両端の中間部分の内径は、ノズル44の内径と同じ径に形成される。外管82の他端は後述するナット85と干渉する段差部84が設けられている。また、外管82の他端の外周および内周の径は一端の外周および内周の径よりも大きく形成されている。言い換えれば、外管82の他端の内周の径はノズル44の外周の径以上に形成されている。内管81の下流側(ポート60側)の端部である開放端89は、外管82の他端よりもさらに下流側へ延伸するよう形成される。言い換えれば、内管81はポート60内、すなわち、ノズル44内まで延伸するよう形成される。 The inner diameter of the intermediate portion at both ends of the outer tube 82 is formed to be the same as the inner diameter of the nozzle 44. The other end of the outer tube 82 is provided with a stepped portion 84 that interferes with a nut 85 described later. In addition, the outer circumference and inner circumference diameter of the other end of the outer tube 82 are formed larger than the outer circumference and inner circumference diameter of one end. In other words, the inner diameter of the other end of the outer tube 82 is formed to be larger than the outer diameter of the nozzle 44. An open end 89 that is an end portion on the downstream side (port 60 side) of the inner tube 81 is formed to extend further downstream than the other end of the outer tube 82. In other words, the inner tube 81 is formed so as to extend into the port 60, that is, into the nozzle 44.
 固定部材としてのナット85は、図5に示すように、外管82の外径より若干大きな径を有する開口部87を有しており、外管82の周りで回転可能に取り付けられている。 As shown in FIG. 5, the nut 85 as a fixing member has an opening 87 having a diameter slightly larger than the outer diameter of the outer tube 82, and is attached to be rotatable around the outer tube 82.
 次に、ポート60と接続部80との接続について図2を用いて説明する。
 ポート60に接続部80を接続する際、ポート60のねじ山61の内側に設けられた間隙62に、密閉部材としての0リング63と共に接続部80の段差部64の一部分を嵌め込む。続いて、ナット85をポート60側に押しながら回転させることによって、ポート側のねじ山61とナット85側のねじ山86が嵌合する。そして、ナット85の段差受部88によって段差部84が押されることにより、Oリング63が圧潰され、ポート60と接続部80とを気密に接続することが出来る。ポート60と接続部80とが接続された状態において、内管81の開放端89はOリング63よりも下流側、すなわち、ノズル44内(ポート60内)に位置することとなる。
Next, the connection between the port 60 and the connection unit 80 will be described with reference to FIG.
When connecting the connection portion 80 to the port 60, a part of the stepped portion 64 of the connection portion 80 is fitted into the gap 62 provided inside the thread 61 of the port 60 together with the 0 ring 63 as a sealing member. Subsequently, by rotating the nut 85 while pushing it toward the port 60 side, the thread 61 on the port side and the thread 86 on the nut 85 side are fitted. Then, when the step portion 84 is pushed by the step receiving portion 88 of the nut 85, the O-ring 63 is crushed and the port 60 and the connection portion 80 can be connected in an airtight manner. In a state where the port 60 and the connection portion 80 are connected, the open end 89 of the inner pipe 81 is located downstream of the O-ring 63, that is, in the nozzle 44 (in the port 60).
 従来の構成においては内管81を備えないため、加熱されたガスが高温のままOリング設置部分周辺に直接接触してしまう。これにより、Oリング設置部分が、Oリングの耐熱温度より高い高温に加熱され、Oリングが劣化してしまうことがあった。そのため、Oリングの耐熱温度より高い温度、例えば、一般的なOリングの耐熱温度である100~350℃より高い温度にガスを加熱することが困難であった。本実施形態によれば、図7に示すように、内管81内を高温のガスが流れても、Oリング周辺は内管81内の温度に比較して約半分以下の温度に維持されていることが分かる。すなわち、Oリングの設置位置を二重管構造とし、高温のガスの直接接触を抑制することにより、Oリングが耐熱温度より高い温度に加熱されることを防ぐことができる。なお、内管81の長さは、少なくともOリングが設置されている位置よりもポート側(下流側)へ延伸するような長さに構成することが好ましい。少なくともOリングが設置される位置を二重管構造とすることにより、高温のガスによるOリングの加熱を抑制できる。また、内管81は、開口部19まで延伸されていても良い。内管81を開口部19まで延伸することにより、高温のガスが反応管10内に供給される前に冷却されてしまうことを抑制できる。 In the conventional configuration, since the inner pipe 81 is not provided, the heated gas directly comes into contact with the periphery of the O-ring installation portion at a high temperature. Thereby, the O-ring installation portion is heated to a temperature higher than the heat-resistant temperature of the O-ring, and the O-ring may be deteriorated. Therefore, it has been difficult to heat the gas to a temperature higher than the heat resistance temperature of the O-ring, for example, higher than 100 to 350 ° C. which is a heat resistance temperature of a general O-ring. According to the present embodiment, as shown in FIG. 7, even when a high-temperature gas flows in the inner pipe 81, the temperature around the O-ring is maintained at about half or less of the temperature in the inner pipe 81. I understand that. That is, it is possible to prevent the O-ring from being heated to a temperature higher than the heat-resistant temperature by setting the O-ring to have a double-pipe structure and suppressing direct contact with high-temperature gas. In addition, it is preferable to comprise the length of the inner pipe | tube 81 so that it may extend | stretch to the port side (downstream side) rather than the position in which the O-ring is installed at least. At least the position where the O-ring is installed has a double-pipe structure, so that heating of the O-ring by high temperature gas can be suppressed. Further, the inner tube 81 may be extended to the opening 19. By extending the inner pipe 81 to the opening 19, it is possible to prevent the high temperature gas from being cooled before being supplied into the reaction pipe 10.
 接続部80は、高温のガスに対して耐熱性があり、金属汚染が発生しにくい金属材料で形成される。例えば、接続部80はアルミニウムが添加された金属で形成される。このような材料を用いることにより、接続部80の内壁面、すなわち、ガスが流れるガス流路にアルミナ皮膜が形成される。このアルミナ皮膜が保護膜の役割を果たすことによって、接続部80が含有する金属を起因とした金属汚染を抑制することができる。アルミナ皮膜は、例えば、上述のような金属材料を焼成することにより形成することができる。また、アルミナ皮膜は、少なくとも高温のガスが流れ、金属材料で形成されるガス流路の壁面に形成されることが好ましい。例えば、予備加熱装置70内のガス流路も高温のガスが流れることから、予備加熱装置70を接続部80と同一の材料で形成しても良い。また例えば、予備加熱装置70と接続部80を一体に形成しても良い。このような構成により、予備加熱装置70と接続部80との材質の違いにより、加熱されたガスが冷却されてしまうこと(放熱)を抑制できるとともに、金属汚染もさらに低減させることができる。 The connection part 80 is formed of a metal material that is heat resistant to high-temperature gas and hardly causes metal contamination. For example, the connection part 80 is formed of a metal to which aluminum is added. By using such a material, an alumina film is formed on the inner wall surface of the connecting portion 80, that is, the gas flow path through which the gas flows. When this alumina film serves as a protective film, metal contamination caused by the metal contained in the connection portion 80 can be suppressed. The alumina film can be formed, for example, by firing a metal material as described above. The alumina coating is preferably formed on the wall surface of a gas flow path formed of a metal material through which at least a high-temperature gas flows. For example, since a high-temperature gas flows through the gas flow path in the preheating device 70, the preheating device 70 may be formed of the same material as that of the connection portion 80. Further, for example, the preheating device 70 and the connecting portion 80 may be integrally formed. With such a configuration, it is possible to prevent the heated gas from being cooled (heat radiation) due to the difference in material between the preheating device 70 and the connection portion 80, and to further reduce metal contamination.
 以上の様な構成によって、処理装置2内に予備加熱装置70によって高温に加熱された処理ガスを供給することが可能となり、所望のガスの分解制御を行うことができ、膜の均一性を向上させることができる。加熱されたガスは内管部分を流れるため、外管のOリング周辺に高温のガスが直接接触することがない。また、内管81を出た後に、Oリング周辺に回り込んでくる処理ガスは、Oリングの耐熱温度以下となっている。これにより、Oリングの耐熱温度より高い温度にガスを加熱しても、Oリングの劣化を抑制することができ、Oリングの破損や劣化を防ぐことができる。 With the configuration as described above, the processing gas heated to a high temperature by the preheating device 70 can be supplied into the processing apparatus 2, the desired gas decomposition control can be performed, and the uniformity of the film is improved. Can be made. Since the heated gas flows through the inner pipe portion, the high-temperature gas does not directly contact the periphery of the O-ring of the outer pipe. Further, the processing gas that circulates around the O-ring after exiting the inner pipe 81 is equal to or lower than the heat resistance temperature of the O-ring. Thereby, even if the gas is heated to a temperature higher than the heat resistant temperature of the O-ring, the deterioration of the O-ring can be suppressed, and the breakage and deterioration of the O-ring can be prevented.
 なお、図6に示すように、ポート60のねじ山63及び間隙62の近傍に環状の冷却流路64を設け、内部に冷却水を流すことにより、Oリング63周辺を冷却することができるため、Oリング63の破損のおそれを更に低下させることが可能となる。このような構成により、処理ガスをより高温に加熱することができる。環状の冷却流路64は、ポート60に埋め込むような構成に限らず、接続部80の外周に水冷管を巻きつけるような構成としても良い。 As shown in FIG. 6, the periphery of the O-ring 63 can be cooled by providing an annular cooling flow path 64 in the vicinity of the thread 63 and the gap 62 of the port 60 and flowing cooling water therein. Further, the risk of damage to the O-ring 63 can be further reduced. With such a configuration, the processing gas can be heated to a higher temperature. The annular cooling flow path 64 is not limited to the configuration embedded in the port 60, and may be configured such that a water cooling tube is wound around the outer periphery of the connection portion 80.
 次に、上述の処理装置2を用いて、基板上に膜を形成する処理(成膜処理)について説明する。ここでは、ウエハWに対して、原料ガスとしてDCS(SiHCl2 :ジクロロシラン)ガスと、反応ガスとしてO2 (酸素)ガスとを供給することで、ウエハW上にシリコン酸化(SiO)膜を形成する例について説明する。なお、以下の説明において、処理装置2を構成する各部の動作はコントローラ100により制御される。 Next, a process (film forming process) for forming a film on the substrate using the processing apparatus 2 described above will be described. Here, by supplying DCS (SiH 2 Cl 2 : dichlorosilane) gas as a source gas and O 2 (oxygen) gas as a reaction gas to the wafer W, silicon oxide (SiO) is formed on the wafer W. An example of forming a film will be described. In the following description, the operation of each part constituting the processing apparatus 2 is controlled by the controller 100.
(ウエハチャージおよびボートロード)
 複数枚のウエハWがボート26に装填(ウエハチャージ)されると、ボート26は、ボートエレベータ32によって処理室14内に搬入(ボートロード)され、反応管10の下部開口は蓋部22によって気密に閉塞(シール)された状態となる。
(Wafer charge and boat load)
When a plurality of wafers W are loaded into the boat 26 (wafer charge), the boat 26 is loaded into the processing chamber 14 by the boat elevator 32 (boat loading), and the lower opening of the reaction tube 10 is hermetically sealed by the lid 22. Closed (sealed).
(圧力調整および温度調整)
 処理室14内が所定の圧力(真空度)となるように、真空ポンプ52によって真空排気(減圧排気)される。処理室14内の圧力は、圧力センサ48で測定され、この測定された圧力情報に基づきAPCバルブ50が、フィードバック制御される。また、処理室14内のウエハWが所定の温度となるように、ヒータ12によって加熱される。この際、処理室14が所定の温度分布となるように、温度検出部16が検出した温度情報に基づきヒータ12への通電具合がフィードバック制御される。また、回転機構30によるボート26およびウエハWの回転を開始する。
(Pressure adjustment and temperature adjustment)
The processing chamber 14 is evacuated (reduced pressure) by the vacuum pump 52 so that the inside of the processing chamber 14 has a predetermined pressure (degree of vacuum). The pressure in the processing chamber 14 is measured by the pressure sensor 48, and the APC valve 50 is feedback-controlled based on the measured pressure information. In addition, the wafer W in the processing chamber 14 is heated by the heater 12 so as to reach a predetermined temperature. At this time, the power supply to the heater 12 is feedback-controlled based on the temperature information detected by the temperature detector 16 so that the processing chamber 14 has a predetermined temperature distribution. Further, the rotation of the boat 26 and the wafer W by the rotation mechanism 30 is started.
(成膜処理)
[原料ガス供給工程]
 処理室14内の温度が予め設定された処理温度に安定すると、処理室14内のウエハWに対してDCSガスを供給する。DCSガスは、MFC38aにて所望の流量となるように制御され、ガス供給管36aおよびノズル44aを介して処理室14内に供給される。
(Deposition process)
[Raw gas supply process]
When the temperature in the processing chamber 14 is stabilized at a preset processing temperature, DCS gas is supplied to the wafer W in the processing chamber 14. The DCS gas is controlled to have a desired flow rate by the MFC 38a, and is supplied into the processing chamber 14 through the gas supply pipe 36a and the nozzle 44a.
[原料ガス排気工程]
 次に、DCSガスの供給を停止し、真空ポンプ52により処理室14内を真空排気する。この時、不活性ガス供給部から不活性ガスとしてNガスを処理室14内に供給しても良い(不活性ガスパージ)。
[Raw material gas exhaust process]
Next, the supply of DCS gas is stopped, and the inside of the processing chamber 14 is evacuated by the vacuum pump 52. At this time, N 2 gas as an inert gas may be supplied from the inert gas supply unit into the processing chamber 14 (inert gas purge).
[反応ガス供給工程]
 次に、処理室14内のウエハWに対してO2ガスを供給する。処理室14内にO2ガスを供給する前に、予備加熱装置70をONとしておく。予備加熱装置70は、成膜処理の前後においては、OFFとするか、成膜温度よりも低い温度とする。O2ガスは、予備加熱装置70で高温に、例えば、800℃に加熱される。O2ガスは、MFC38bにて所望の流量となるように制御され、ガス供給管36b、予備加熱装置70、接続部80およびノズル44bを介して処理室14内に供給される。このような構成により、処理室14内に導入される前に、O2ガスを予め高い温度に加熱することができる。
[Reactive gas supply process]
Next, O 2 gas is supplied to the wafer W in the processing chamber 14. Before supplying the O 2 gas into the processing chamber 14, the preheating device 70 is turned on. The preheating device 70 is turned off or lower than the film forming temperature before and after the film forming process. The O 2 gas is heated to a high temperature, for example, 800 ° C. by the preheating device 70. The O 2 gas is controlled to have a desired flow rate by the MFC 38b, and is supplied into the processing chamber 14 through the gas supply pipe 36b, the preheating device 70, the connection portion 80, and the nozzle 44b. With such a configuration, the O 2 gas can be heated to a high temperature in advance before being introduced into the processing chamber 14.
[反応ガス排気工程]
 次に、O2ガスの供給を停止し、真空ポンプ52により処理室14内を真空排気する。この時、不活性ガス供給部からNガスを処理室14内に供給しても良い(不活性ガスパージ)。
[Reactant gas exhaust process]
Next, the supply of O 2 gas is stopped, and the inside of the processing chamber 14 is evacuated by the vacuum pump 52. At this time, N 2 gas may be supplied from the inert gas supply unit into the processing chamber 14 (inert gas purge).
 上述した4つの工程を行うサイクルを所定回数(1回以上)行うことにより、ウエハW上に、所定組成および所定膜厚のSiO膜を形成することができる。 It is possible to form a SiO film having a predetermined composition and a predetermined film thickness on the wafer W by performing a cycle of performing the above-described four steps a predetermined number of times (one or more times).
(ボートアンロードおよびウエハディスチャージ)
 所定膜厚の膜を形成した後、不活性ガス供給部からNガスが供給され、処理室14内がNガスに置換されると共に、処理室14の圧力が常圧に復帰される。その後、ボートエレベータ32により蓋部22が降下されて、ボート26が反応管10から搬出(ボートアンロード)される。その後、処理済ウエハWはボート26より取出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
After the film having a predetermined thickness is formed, N 2 gas is supplied from the inert gas supply unit, the inside of the processing chamber 14 is replaced with N 2 gas, and the pressure in the processing chamber 14 is returned to normal pressure. Thereafter, the lid 22 is lowered by the boat elevator 32, and the boat 26 is carried out of the reaction tube 10 (boat unloading). Thereafter, the processed wafer W is taken out from the boat 26 (wafer discharge).
 ウエハWにSiO膜を形成する際の処理条件としては、例えば、下記が例示される。
 処理温度(ウエハ温度):300℃~1000℃、
 処理圧力(処理室内圧力)1Pa~4000Pa、
 DCSガス:100sccm~10000sccm、
 O2ガス:100sccm~10000sccm、
 N2ガス:100sccm~10000sccm、
 それぞれの処理条件を、それぞれの範囲内の値に設定することで、成膜処理を適正に進行させることが可能となる。
Examples of processing conditions for forming the SiO film on the wafer W include the following.
Processing temperature (wafer temperature): 300 ° C. to 1000 ° C.
Processing pressure (pressure in processing chamber) 1 Pa to 4000 Pa,
DCS gas: 100 sccm to 10,000 sccm,
O 2 gas: 100 sccm to 10,000 sccm,
N 2 gas: 100 sccm to 10,000 sccm,
By setting each processing condition to a value within the respective range, it is possible to appropriately progress the film forming process.
<本実施形態にかかる効果>
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
 (1)処理ガスをOリングの耐熱温度より高い温度の高温に加熱することができるため、処理ガスの分解を促進させたり、反応性を向上させたりすることが可能となる。これにより、成膜の品質を向上させることができ、デバイスの歩留まりを向上させることが可能となる。
 (2)Oリング設置部分を、内管と外管との二重管構造とすることにより、内管内を流れる処理ガスの熱がOリング周辺に伝播することを抑制することができる。これにより、Oリングを耐熱温度以下に維持することができるため、Oリングの劣化を抑制することができ、装置稼働率を向上させることができる。
 (3)内管をガスノズル内まで延出させることにより、接続部内での処理ガスの冷却(放熱)を抑制することができるため、高温を保ったまま処理ガスを処理室内に供給させることができ、膜の面間均一性および面内均一性を向上させることができる。
<Effect according to this embodiment>
According to the present embodiment, one or more effects shown below can be obtained.
(1) Since the processing gas can be heated to a high temperature higher than the heat resistant temperature of the O-ring, it is possible to promote decomposition of the processing gas and improve reactivity. Thereby, the quality of film formation can be improved, and the yield of devices can be improved.
(2) By making the O-ring installation part a double tube structure of an inner tube and an outer tube, it is possible to suppress the heat of the processing gas flowing in the inner tube from being propagated around the O-ring. Thereby, since an O-ring can be maintained below heat-resistant temperature, deterioration of an O-ring can be suppressed and an apparatus operation rate can be improved.
(3) By extending the inner tube into the gas nozzle, it is possible to suppress the cooling (heat dissipation) of the processing gas in the connection portion, so that the processing gas can be supplied into the processing chamber while maintaining a high temperature. Further, the uniformity between the surfaces of the film and the uniformity within the surface can be improved.
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 例えば、ガス供給管に接続部を含めてもよい。言い換えれば、ガス供給管の端部(ガス導入ポートとの接続側)を接続部と同様の構成にしても良い。また、ガス供給管の端部に接続部を溶接して固着しても良い。このような構成とすることにより、接続部を介することがないため、構成を簡略化することができる。 For example, a connecting part may be included in the gas supply pipe. In other words, the end of the gas supply pipe (the side connected to the gas introduction port) may have the same configuration as the connection. Further, the connecting portion may be welded and fixed to the end portion of the gas supply pipe. By adopting such a configuration, the configuration can be simplified because there is no connection portion.
 また例えば、予備加熱装置内に処理ガスを通して処理ガスを加熱する例を挙げたが、ガス供給管に外部ヒータ、例えばテープヒータを設置してガス供給管内を通過する処理ガスを加熱するようにしても良い。また、反応ガスを加熱する場合を例に挙げたが、原料ガスを加熱する場合についても本発明を適用できる。 In addition, for example, the processing gas is heated by passing the processing gas into the preheating device. However, an external heater such as a tape heater is installed in the gas supply pipe so that the processing gas passing through the gas supply pipe is heated. Also good. Moreover, although the case where the reaction gas was heated was given as an example, the present invention can be applied to the case where the source gas is heated.
 また例えば、密閉部材として0リング63を用いる例を挙げたが、Oリングの代わりに金属製のガスケットを用いても良い。また例えば、接続部80の端部をフランジ形状とし、ねじで固定する構成としても良い。これらの場合においても、上述の実施形態と同様に、接続部分の温度をそれぞれの密閉部材の耐熱温度以下の温度に維持することができる。 Further, for example, although an example in which the 0-ring 63 is used as the sealing member has been given, a metal gasket may be used instead of the O-ring. Further, for example, the end portion of the connection portion 80 may have a flange shape and may be fixed with screws. Even in these cases, similarly to the above-described embodiment, the temperature of the connection portion can be maintained at a temperature equal to or lower than the heat resistance temperature of each sealing member.
 上述の実施形態では、ウエハW上に膜を堆積させる例について説明したが、本発明は、このような態様に限定されない。例えば、ウエハWやウエハW上に形成された膜等に対して、酸化処理、拡散処理、アニール処理、エッチング処理等の処理において、処理ガスを加熱して使用する場合にも、好適に適用可能である。また、上述の実施形態では、縦型装置を用いる例について説明したが、枚葉装置にも好適に適用可能である。 In the above-described embodiment, an example in which a film is deposited on the wafer W has been described, but the present invention is not limited to such an aspect. For example, the present invention can be suitably applied to a case where a processing gas is heated and used in a process such as an oxidation process, a diffusion process, an annealing process, and an etching process on a wafer W or a film formed on the wafer W. It is. Moreover, although the above-mentioned embodiment demonstrated the example using a vertical apparatus, it can apply suitably also to a single wafer apparatus.
 なお、上述した各実施形態以外にも、本発明は、その要旨を逸脱しない範囲で、種々様々に変形して実施可能なことは勿論である。 In addition to the above-described embodiments, the present invention can be variously modified and implemented without departing from the scope of the invention.
 この出願は、2016年2月8日に出願された日本出願特願2016-021845を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 This application claims the benefit of priority based on Japanese Patent Application No. 2016-021845 filed on February 8, 2016, the entire disclosure of which is incorporated herein by reference.
2    処理装置
10   反応管
36   ガス供給管
60   ポート
63   Oリング
64   冷却路
70   予備加熱装置
80   接続部
81   内管
82   外管
85   ナット
89   解放端
 
 
2 Processing device 10 Reaction tube 36 Gas supply tube 60 Port 63 O-ring 64 Cooling path 70 Preheating device 80 Connection portion 81 Inner tube 82 Outer tube 85 Nut 89 Open end

Claims (12)

  1.  基板を処理する反応管内にガスを導入するよう構成されたガス導入部と、
     前記ガスを前記反応管外で加熱する加熱部と、
     前記ガス導入部と前記加熱部との間に設置される接続部と、を有し、
     前記接続部は、
     前記ガス導入部と密閉部材を介して接続される外管と、
     前記外管よりも小さい径に形成され、一端が前記加熱部と接続し、他端が少なくとも前記密閉部材が設置される位置まで延伸する内管と、で構成される基板処理装置。
    A gas inlet configured to introduce gas into a reaction tube for processing the substrate;
    A heating unit for heating the gas outside the reaction tube;
    A connection part installed between the gas introduction part and the heating part,
    The connecting portion is
    An outer pipe connected to the gas introduction part via a sealing member;
    A substrate processing apparatus comprising: an inner tube that is formed to have a smaller diameter than the outer tube, one end connected to the heating unit, and the other end extending to at least a position where the sealing member is installed.
  2. 前記内管の全長は、前記外管の全長よりも長く形成される請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein a total length of the inner tube is longer than a total length of the outer tube.
  3. 前記内管の他端は前記ガス導入部内まで延伸するよう構成される請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the other end of the inner tube is configured to extend into the gas introduction unit.
  4. 前記内管と前記外管とは一体に形成される請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the inner tube and the outer tube are integrally formed.
  5.  前記加熱部は、前記密閉部材の耐熱温度よりも高い温度に前記ガスを加熱する請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the heating unit heats the gas to a temperature higher than a heat resistant temperature of the sealing member.
  6.  前記接続部は前記加熱部と一体に形成される請求項5に記載の基板処理装置。 6. The substrate processing apparatus according to claim 5, wherein the connection part is formed integrally with the heating part.
  7.  前記接続部と前記加熱部とは同じ金属材料で形成される請求項6に記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein the connection part and the heating part are formed of the same metal material.
  8.  前記ガスは、前記加熱部内および前記内管内に形成された流路を流れ、前記流路の壁面は、アルミナ皮膜が形成される請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the gas flows through a flow path formed in the heating unit and in the inner pipe, and an alumina film is formed on a wall surface of the flow path.
  9.  前記金属材料はAlを含む金属材料であり、前記金属材料を焼成することにより、前記加熱部内および前記内管内に形成されるガス流路の壁面にアルミナ皮膜を形成する請求項7に記載の基板処理装置。 The said metal material is a metal material containing Al, The board | substrate of Claim 7 which forms an alumina membrane | film | coat on the wall surface of the gas flow path formed in the said heating part and the said inner pipe by baking the said metal material. Processing equipment.
  10.  前記密閉部材を冷却する環状の冷却部材を備える請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 5, further comprising an annular cooling member that cools the sealing member.
  11.  基板を処理する反応管内にガスを導入するよう構成されたガス導入部と前記ガスを前記反応管外で加熱する加熱部との間に設置される継手部であって、
     前記ガス導入部と密閉部材を介して接続される外管と、
     前記外管よりも小さい径に形成され、一端が前記加熱部と接続し、他端が少なくとも前記密閉部材が設置される位置まで延伸する内管と、で構成される前記継手部。
    A joint installed between a gas inlet configured to introduce gas into a reaction tube for processing a substrate and a heating unit for heating the gas outside the reaction tube;
    An outer pipe connected to the gas introduction part via a sealing member;
    The joint part formed of a diameter smaller than that of the outer pipe, one end connected to the heating part, and the other end extending to at least a position where the sealing member is installed.
  12.  反応管内に基板を搬入する工程と、
     前記反応管外に設置された加熱部によって加熱されたガスを、ガス導入部を介して前記反応管内に供給し、前記基板を処理する工程と、を有し、
     前記加熱部と前記ガス導入部とは、前記ガス導入部と密閉部材を介して接続される外管と、前記外管よりも小さい径に形成され、一端が前記加熱部と接続し、他端が少なくとも前記密閉部材が設置される位置まで延伸する内管とで構成される接続部を介して接続され、前記ガスは、前記密閉部材の耐熱温度よりも高い温度に加熱される半導体装置の製造方法。
     
     
     
    Carrying the substrate into the reaction tube;
    Supplying a gas heated by a heating unit installed outside the reaction tube into the reaction tube via a gas introduction unit, and processing the substrate,
    The heating part and the gas introduction part are formed with an outer pipe connected to the gas introduction part via a sealing member, a diameter smaller than the outer pipe, one end connected to the heating part, and the other end Is connected through a connecting portion constituted by an inner pipe extending at least to a position where the sealing member is installed, and the gas is heated to a temperature higher than the heat-resistant temperature of the sealing member. Method.


PCT/JP2016/077143 2016-02-08 2016-09-14 Substrate processing device, joining part, and method for manufacturing semiconductor device WO2017138183A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017566504A JP6561148B2 (en) 2016-02-08 2016-09-14 Substrate processing apparatus, joint portion, and semiconductor device manufacturing method
KR1020187009658A KR102133547B1 (en) 2016-02-08 2016-09-14 Method for manufacturing substrate processing apparatus, joint and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021845 2016-02-08
JP2016-021845 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138183A1 true WO2017138183A1 (en) 2017-08-17

Family

ID=59563778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077143 WO2017138183A1 (en) 2016-02-08 2016-09-14 Substrate processing device, joining part, and method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP6561148B2 (en)
KR (1) KR102133547B1 (en)
WO (1) WO2017138183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194972A (en) * 2020-08-12 2020-12-03 株式会社Kokusai Electric Substrate processing apparatus, manufacturing method of semiconductor device, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012126A1 (en) * 1989-03-31 1990-10-18 Canon Kabushiki Kaisha Method of forming polycrystalline film by chemical vapor deposition
JPH0325230U (en) * 1989-07-20 1991-03-15
JPH0471898U (en) * 1990-10-29 1992-06-25
JPH04187592A (en) * 1990-11-22 1992-07-06 Anelva Corp Device of preparing thin film
JPH10231970A (en) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd Vacuum insulated pipe fitting
JP2010045251A (en) * 2008-08-14 2010-02-25 Shin Etsu Handotai Co Ltd Vertical heat treatment apparatus and heat treatment method
JP2010090422A (en) * 2008-10-07 2010-04-22 Soken Kogyo Kk Fluid-heating device and semiconductor treatment apparatus using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001187U (en) * 2007-07-30 2009-02-04 최양일 A protective tube assembly for tube and a protective box for tube comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012126A1 (en) * 1989-03-31 1990-10-18 Canon Kabushiki Kaisha Method of forming polycrystalline film by chemical vapor deposition
JPH0325230U (en) * 1989-07-20 1991-03-15
JPH0471898U (en) * 1990-10-29 1992-06-25
JPH04187592A (en) * 1990-11-22 1992-07-06 Anelva Corp Device of preparing thin film
JPH10231970A (en) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd Vacuum insulated pipe fitting
JP2010045251A (en) * 2008-08-14 2010-02-25 Shin Etsu Handotai Co Ltd Vertical heat treatment apparatus and heat treatment method
JP2010090422A (en) * 2008-10-07 2010-04-22 Soken Kogyo Kk Fluid-heating device and semiconductor treatment apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194972A (en) * 2020-08-12 2020-12-03 株式会社Kokusai Electric Substrate processing apparatus, manufacturing method of semiconductor device, and program
JP7038770B2 (en) 2020-08-12 2022-03-18 株式会社Kokusai Electric Substrate processing equipment, semiconductor equipment manufacturing methods, programs

Also Published As

Publication number Publication date
JP6561148B2 (en) 2019-08-14
KR102133547B1 (en) 2020-07-13
JPWO2017138183A1 (en) 2018-12-20
KR20180050709A (en) 2018-05-15

Similar Documents

Publication Publication Date Title
US11222796B2 (en) Substrate processing apparatus
JP4889683B2 (en) Deposition equipment
WO2014192871A1 (en) Substrate processing apparatus, method for manufacturing semiconductor manufacturing apparatus, and furnace opening cover body
JP6605398B2 (en) Substrate processing apparatus, semiconductor manufacturing method, and program
US10351951B2 (en) Substrate treatment apparatus including reaction tube with opened lower end, furnace opening member, and flange configured to cover upper surface of the furnace opening member
KR102076643B1 (en) Manufacturing Method of Substrate Processing Apparatus and Semiconductor Device
KR102074668B1 (en) Substrate processing apparatus, quartz reaction tube, cleaning method and program
US9793112B2 (en) Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US11784070B2 (en) Heat treatment apparatus, heat treatment method, and film forming method
JP2020017757A (en) Substrate processing apparatus, reaction vessel, and manufacturing method of semiconductor device
US20180087709A1 (en) Substrate processing apparatus and heat insulating pipe structure
KR20170090967A (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP6561148B2 (en) Substrate processing apparatus, joint portion, and semiconductor device manufacturing method
US11219096B2 (en) Substrate processing apparatus and furnace opening assembly thereof
WO2018150537A1 (en) Substrate treatment device, method for manufacturing semiconductor device, and program
JP4782761B2 (en) Deposition equipment
WO2016046947A1 (en) Substrate holder, substrate-processing apparatus, and semiconductor device manufacturing method
JP7317912B2 (en) Furnace throat structure, substrate processing apparatus, and semiconductor device manufacturing method
TW202316560A (en) Support tool, substrate processing device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187009658

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017566504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889884

Country of ref document: EP

Kind code of ref document: A1