WO2017138109A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2017138109A1
WO2017138109A1 PCT/JP2016/053943 JP2016053943W WO2017138109A1 WO 2017138109 A1 WO2017138109 A1 WO 2017138109A1 JP 2016053943 W JP2016053943 W JP 2016053943W WO 2017138109 A1 WO2017138109 A1 WO 2017138109A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
return port
storage
cold air
compartment
Prior art date
Application number
PCT/JP2016/053943
Other languages
French (fr)
Japanese (ja)
Inventor
安田 直史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to MYPI2018702690A priority Critical patent/MY192683A/en
Priority to PCT/JP2016/053943 priority patent/WO2017138109A1/en
Priority to AU2016392120A priority patent/AU2016392120B2/en
Priority to SG11201806147UA priority patent/SG11201806147UA/en
Priority to JP2017566459A priority patent/JP6444543B2/en
Priority to TW105143822A priority patent/TWI671499B/en
Priority to CN201720105151.2U priority patent/CN206583180U/en
Priority to CN201710060787.4A priority patent/CN107062748B/en
Publication of WO2017138109A1 publication Critical patent/WO2017138109A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers

Definitions

  • the present invention relates to a refrigerator with improved cooling performance.
  • a conventional refrigerator is provided with a cooling chamber on the back side of each storage room such as a freezing room and a refrigeration room, and the cool air generated by a cooler in the cooling room is sent to each storage room by a blower fan.
  • the food stored in the container is cooled.
  • a barrier wall is provided between each storage chamber and the cooling chamber, and a clearance is provided between the barrier wall and the cooler in the cooling chamber.
  • the shut-off wall is provided with a cold air return port through which each storage chamber communicates with the cooling chamber, and the return air from the storage chamber whose temperature has risen by cooling the storage chamber flows into the cooling chamber.
  • a plurality of wind direction plates are formed in the cool air return port to efficiently flow the return air from the storage chamber into the cooling chamber.
  • frost is generated on the surface of the cooler in this way, it affects the performance of the cooler such as an increase in the air path resistance of the cooler and a decrease in heat exchange capacity, resulting in a reduction in energy saving. Therefore, the conventional refrigerator is provided with a heater for melting the frost attached to the cooler. When heat from the heater is transmitted to the cooler, the frost attached to the surface of the cooler is melted. And when the melted frost is dripped as defrost water, the frost adhering to the surface of the cooler can be removed.
  • defrost water generated by melting of frost is dripped downward as it is, but at that time, it may be dripped on the wind direction plate of the cool air return port.
  • the defrost water dripped on the wind direction plate stays on the wind direction plate as it is, the defrost water becomes frost again, and the cold air return port may be blocked.
  • the circulation of air in the refrigerator is hindered, and it is difficult to normally cool each storage chamber.
  • Patent Document 1 and Patent Document 2 from the viewpoint of the capacity of the storage room, an unnecessary space is provided in the refrigerator, so that the capacity of the storage room is sacrificed. There was a point.
  • the present invention has been made in view of the problems in the above-described conventional technology, and an object thereof is to provide a refrigerator capable of realizing a larger-capacity refrigerator while ensuring cooling quality.
  • the refrigerator of the present invention includes a storage chamber that performs at least one of freezing and refrigeration of food, a cooler that is provided on the back side of the storage chamber, and that generates cool air that cools the storage chamber, and below the cooler
  • a cooling chamber in which a heater for melting frost attached to the cooler is housed and a blocking wall that separates the storage chamber and the cooling chamber from each other. It has a first opening surface that opens and a second opening surface that opens to the storage chamber side so that the storage chamber communicates with the cooling chamber, and the return air from the storage chamber flows into the cooling chamber.
  • a cold air return port, and a wind direction plate provided in the cold air return port and inclined downward from the storage chamber side toward the cooler side, the first opening surface of the cold air return port and the Formed between the storage chamber side surface of the cooler Minimum spacing in the gap is not more than the minimum spacing in the gap formed between the storage compartment side surface of the surface of the cooling chamber side and the cooler of the barrier walls.
  • the airflow direction plate is inclined, and the distance of the gap formed between the cool air return port and the cooler is set to be equal to or less than the distance of the gap between the blocking wall and the cooler.
  • FIG. 2 is an internal structure diagram of the refrigerator when the line segment AA shown in FIG. 1 is viewed from the arrow direction. It is a principal part enlarged view which shows a part of structure of the cooling chamber enclosed with the dotted line B shown in FIG.
  • FIG. 4 is a structural diagram around the freezer compartment return port when the line segment CC shown in FIG. 3 is viewed from the direction of the arrow.
  • FIG. 4 is a structural diagram around the freezer compartment return port when the line segment DD shown in FIG. 3 is viewed from the direction of the arrow.
  • It is a front view which shows an example of a structure of the cooler of FIG. 2, a ventilation fan, and a precooler.
  • FIG. 1 is a front view of a refrigerator 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is an internal structural view of the refrigerator 1 when the line segment AA shown in FIG. 1 is viewed from the arrow direction.
  • FIG. 3 is an enlarged view of a main part showing a part of the structure of the cooling chamber 10 surrounded by a dotted line B shown in FIG.
  • the refrigerator 1 includes a housing 1 ⁇ / b> A that forms an outer shell.
  • the housing 1A is formed in a rectangular parallelepiped shape, for example.
  • storage rooms such as a refrigerator room 2, an ice making room 3, a switching room 4, a freezing room 5, a vegetable room 6 and the like are provided, and doors are provided corresponding to the respective storage rooms.
  • the door of the refrigerator compartment 2 is a double-opening type configured with two doors, but is not limited thereto, and may be a single-opening type configured with one door, for example.
  • an operation panel 7 for setting the temperature of each storage room and displaying the state of each storage room is provided.
  • the operation panel 7 is not limited to the door surface, and may be provided in the refrigerator 1 such as a side surface of the refrigerator compartment 2, for example.
  • the refrigerator compartment 2 is a space provided with an open / close door as a door, and is arranged at the top.
  • the ice making chamber 3 is a space provided with a drawer door as a door, and is arranged below the refrigerator compartment 2.
  • the switching chamber 4 is a space provided with a drawer door as a door, and is arranged in parallel with the ice making chamber 3.
  • the switching chamber 4 has a cold storage temperature ranging from a freezing temperature zone (eg, about ⁇ 18 ° C.) to a refrigeration (eg, about 3 ° C.), chilled (eg, about 0 ° C.), soft freezing (eg, about ⁇ 7 ° C.) The band can be switched.
  • the freezer compartment 5 is a space provided with a drawer door as a door, and is disposed below the ice making chamber 3 and the switching chamber 4.
  • the vegetable compartment 6 is a space provided with a drawer door as a door, and is arranged at the bottom.
  • the refrigerator 1 is not limited to the structure mentioned above.
  • the ice making chamber 3 and the switching chamber 4 may be omitted.
  • the positions of the freezer compartment 5 and the vegetable compartment 6 may be reversed.
  • the refrigerator compartment 2 is provided with one or a plurality of refrigerator compartment storage cases 2A and one or a plurality of refrigerator compartment storage shelves 2B for storing food.
  • the refrigerated chamber 2 is provided with a chilled chamber 2C and is provided with one or a plurality of chilled chamber storage cases 2D for storing food.
  • the ice making chamber 3 is provided with one or a plurality of ice making chamber storage cases 3A for storing food.
  • the freezer compartment 5 is provided with one or a plurality of freezer compartment storage cases 5A for storing food.
  • the vegetable compartment 6 is provided with one or a plurality of vegetable compartment storage cases 6A for storing food.
  • the switching chamber 4 is also provided with a switching chamber storage case for storing food.
  • Each storage room of the refrigerator compartment 2, the ice making room 3, the switching room 4, the freezing room 5, and the vegetable room 6 is partitioned by a heat insulating partition wall 8 that blocks heat transfer between adjacent storage rooms.
  • a machine room 9 is provided at the lower back side of the housing 1A.
  • the machine room 9 stores a compressor (not shown).
  • the compressor discharges the sucked refrigerant at high temperature and high pressure.
  • a thermistor and a control device are provided inside the housing 1A.
  • the thermistor is provided in each storage room and detects the temperature of each storage room.
  • the control device controls the entire refrigerator 1. For example, based on the temperature detected by the thermistor, the control device controls the capacity of the compressor, the amount of air blown from a blower fan 12 to be described later, and the like so that the temperature in each storage chamber becomes a preset temperature.
  • the control means includes, for example, hardware such as a circuit device that realizes this function, software that is executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit).
  • a cooling chamber 10 that generates and sends out cool air for cooling the respective storage chambers is provided inside the housing 1A on the back side.
  • the cooling chamber 10 is provided with a cooler 11, a blower fan 12 (see FIG. 2), a precooler 13, and a heater 14.
  • a blocking wall 20 for partitioning the cooling chamber 10 and each storage chamber is provided between the cooling chamber 10 and each storage chamber (particularly, the freezing chamber 5), that is, on the front side of the cooling chamber 10, in the entire lateral direction. Is provided.
  • the cooler 11 is a heat exchanger that cools the air in the refrigerator 1. Although details will be described later, the cooler 11 performs heat exchange between the refrigerant flowing through the refrigerant pipe and the air to cool the air. In this example, the air in the refrigerator 1 flows from the lower side of the cooler 11 upward.
  • the blower fan 12 is provided above the cooler 11 and sends air cooled by the cooler 11 (hereinafter, appropriately referred to as “cold air”) to each storage room.
  • the pre-cooler 13 is provided below the cooler 11, and, like the cooler 11, performs heat exchange between the refrigerant flowing through the refrigerant pipe and the air. Details of the precooler 13 will be described later.
  • the heater 14 is provided below the cooler 11.
  • the heater 14 is, for example, a radiant heater, and is provided for melting frost attached to the cooler 11 and the barrier wall 20 on the cooler 11 side.
  • a heater roof 14 ⁇ / b> A is provided on the upper surface of the heater 14.
  • the heater roof 14A is for protecting the heater 14 from the defrost water dripped by removing frost.
  • a clearance X which is a gap, is provided between the surface of the cooler 11 on the freezer compartment 5 side and the surface of the blocking wall 20 on the cooling chamber 10 side, thereby forming a bypass air passage 30.
  • the bypass air passage 30 is in a state in which the air flow flows so as to bypass the cooler 11, but the bypass air flow is converged to the cooler 11 side above the cooler 11. Yes.
  • the drip tray 21 is provided at a position where defrosted water generated by melting of the frost by the heat of the heater 14 at the time of defrosting is dropped.
  • the drain groove 22 is for discharging the defrost water dripped onto the drip tray 21 to the outside.
  • a freezing chamber return port 23 and a vegetable chamber return port 24 as cold air return ports are formed below the blocking wall 20 on the front side of the cooling chamber 10.
  • the freezer compartment return port 23 has a first opening surface 23 a that opens to the cooling chamber 10 and a second opening surface 23 b that opens to the freezer chamber 5, and is disposed between the cooling chamber 10 and the freezer chamber 5. Is provided so as to allow the return air from the freezing chamber 5 to flow into the cooling chamber 10.
  • the “first opening surface 23a” refers to a boundary line between the cooling wall 10 side surface of the blocking wall 20 at the upper end of the freezing chamber return port 23 and the blocking wall 20 at the lower end of the opening. The surface formed when connecting the boundary line with the surface at the side of the cooling chamber 10 in a plane.
  • the “second opening surface 23 b” refers to a boundary line between a freezing chamber 5 side surface of the blocking wall 20 at the upper end of the freezer return port 23 and a freezing chamber of the blocking wall 20 at the lower end of the frontage. A surface formed when a boundary line with the surface on the 5th side is connected by a plane.
  • the freezer compartment return port 23 is provided so that the lower end of the front end thereof is substantially the same as or lower than the lower end of the cooler 11. Thereby, the heat exchange in the cooler 11 can be performed efficiently.
  • the clearance Y which is a gap between them, is a clearance substantially equal to or less than the clearance X in the bypass air passage 30 described above. At this time, when the minimum interval in the clearance Y is equal to or less than the minimum interval in the clearance X in the bypass air passage 30, the space in the refrigerator 1 can be used more effectively, and the capacity of the refrigerator 1 is increased. can do.
  • the vegetable room return port 24 is provided below the freezer room return port 23, has an opening surface that opens to each of the cooling room 10 and the vegetable room 6, and communicates between the cooling room 10 and the vegetable room 6. It is provided to do.
  • the vegetable room return port 24 is for allowing the return air from the vegetable room 6 to flow into the cooling room 10.
  • dehumidification of the return air can be sufficiently performed by the pre-cooler 13, and frosting of the cooler 11 can be suppressed to suppress a decrease in cooling capacity.
  • the fin pitch of the cooler 11 can be reduced, and the cooling performance in the cooler 11 can be improved.
  • a plurality of wind direction plates 25 for efficiently allowing the return air from the freezing chamber 5 to flow into the cooling chamber 10 are formed in the freezing chamber return port 23 provided in the blocking wall 20.
  • Each of the airflow direction plates 25 is formed in a flat plate shape, and is inclined so as to be inclined downward with respect to the horizontal direction from the freezer compartment 5 side toward the cooler 11 side.
  • the cooler 11, the heater 14 and the like in the cooling chamber 10 can be shielded from light, and visibility from the outside can be improved. Further, by providing a plurality of wind direction plates 25 at the freezer return port 23, it is possible to block radiant heat from the heater 14 and the pipe heater 17 which will be described later when defrosting, and to suppress the intrusion of heat into the freezer room 5. The energy saving property of the refrigerator 1 can be further improved.
  • FIG. 4 is a structural diagram around the freezer compartment return port 23 when the line segment CC shown in FIG. 3 is viewed from the direction of the arrow.
  • the width extending in the side surface direction when viewed from the back side of the freezer return port 23 is equal to or less than a range in which heat generated by the heater 14 can be transmitted, that is, an effective heat generation range of the heater 14. Set to: This is to ensure that frost can be removed by defrosting when frost is generated at the freezer return port 23.
  • the freezer return port 23 is provided with a heat conduction wall 26 between the wind direction plate 25 of the freezer return port 23 and the cooler 11.
  • the heat conducting wall 26 is provided in the vicinity of the central portion in the side surface direction of the freezer compartment return port 23.
  • the heat conductive wall 26 is formed of a member in which a member having thermal conductivity such as an aluminum tape is attached to the surface on the cooler 11 side.
  • the heat of the heater 14 at the time of defrosting can be transmitted to the freezer return port 23 and the entire cooler 11. . Therefore, the frost in the freezer return port 23 and the cooler 11 can be removed without residual frost.
  • the width in the side surface direction of the heat conducting wall 26 is preferably about 30 mm to 100 mm, for example.
  • the width of the heat conducting wall 26 is substantially equal to the width of the aluminum tape that can be easily obtained commercially. This is because manufacturing costs such as material costs and pasting costs can be suppressed.
  • heat conducting wall 26 is not limited to the position shown in FIG.
  • a plurality of heat conducting walls 26 may be arranged at regular intervals with respect to the side surface direction of the freezer compartment return port 23.
  • FIG. 5 is a structural diagram around the freezer compartment return port 23 when the line segment DD shown in FIG. 3 is viewed from the direction of the arrow.
  • a rib-like inclined portion 27 protruding toward the freezer compartment 5 is formed on the wall provided between the freezer compartment 5 and the cooling chamber 10 below the freezer compartment return port 23. Yes.
  • the inclined portion 27 is formed by connecting one flat plate formed in a valley shape downward or a plurality of flat plates formed in this way.
  • a drainage hole 28 for guiding the defrost water to the drip tray 21 is provided at the valley-shaped apex in the inclined portion 27.
  • FIG. 6 is a front view showing an example of the configuration of the cooler 11, the blower fan 12, and the precooler 13 of FIG.
  • the cooler 11 has a refrigerant pipe 15 and fins 16.
  • the cooler 11 exchanges heat between the air passing between the plurality of fins 16 and the refrigerant flowing through the refrigerant pipe 15.
  • the fins 16 are stacked at a predetermined interval (hereinafter referred to as “fin pitch” as appropriate), and air flows between them.
  • An opening for inserting the refrigerant pipe 15 is formed in the fin 16.
  • the refrigerant pipe 15 is inserted into the opening and joined to the refrigerant pipe 15.
  • the fin pitch of the fins 16 is determined in consideration of preventing an increase in air path resistance due to clogging between the fins 16 due to frost formation on the cooler 11.
  • the fin pitch is set in a range of about 5 mm to 10 mm, for example.
  • frost formation on the cooler 11 occurs more on the upstream side than on the downstream side of the air flow. This is because heat exchange is performed with the cooler 11 as the air moves downstream, and the amount of moisture in the air decreases. Therefore, in the cooler 11, the fin pitch on the upstream side of the air flow is set wider than that on the downstream side.
  • the downstream fin pitch of the fins 16 is preferably set to 5 mm
  • the upstream fin pitch is preferably set to about 7.5 mm to 10 mm.
  • the fin pitch of the fins 16 is not limited to the above-described value as long as it does not depart from the spirit of the present invention, and can be appropriately changed.
  • the shape of the fin 16 is not particularly limited, and for example, a plate fin, a corrugated fin, a louver fin, a slit fin, or the like can be applied.
  • a pre-cooler 13 is provided on the upstream side of the air flow of the cooler 11. Similar to the cooler 11, the precooler 13 has a refrigerant pipe 15 and fins 16. The fins 16 of the precooler 13 are stacked at a predetermined fin pitch.
  • the fin pitch of the fins 16 in the pre-cooler 13 is set wider than the fin pitch in the cooler 11, for example, in a range of about 10 mm to 15 mm.
  • the fin pitch of the fins 16 in the precooler 13 is not particularly limited as long as it does not depart from the spirit of the present invention, and can be changed as appropriate.
  • the shape of the fin 16 is not particularly limited as in the case of the cooler 11, and for example, a plate fin, a corrugated fin, a louver fin, a slit fin, or the like can be applied.
  • the cooler 11 and the precooler 13 are provided with a pipe heater 17.
  • the pipe heater 17 is provided so as to be incorporated between the fins 16 of the cooler 11 and the precooler 13, and removes frost attached to the cooler 11 and the precooler 13.
  • the pipe heater 17 can directly heat the cooler 11 and the precooler 13 by heat conduction, and can efficiently remove frost in a short time.
  • the return air from the freezer compartment 5 flows into the cooling chamber 10 from the freezer compartment return port 23.
  • the air that has flowed into the respective storage chambers such as the ice making chamber 3 and the switching chamber 4 cools the respective storage chambers, and the return air from each of the storage chambers flows into the cooling chamber 10 from a return port (not shown). .
  • FIG. 7 is a schematic diagram for explaining an example of the flow of the defrost water 40 at the time of defrosting in the refrigerator 1 of FIG.
  • FIG. 8 is a schematic view for explaining another example of the flow of the defrost water 40 at the time of defrosting in the refrigerator 1 of FIG.
  • the frost adhering to the cooler 11 drops as defrost water 40 when defrosting and passes through the clearance Y between the freezer return port 23 and the cooler 11. And after defrosting water 40 is dripped on the drip tray 21, it is discharged
  • FIG. 7 the frost adhering to the cooler 11 drops as defrost water 40 when defrosting and passes through the clearance Y between the freezer return port 23 and the cooler 11. And after defrosting water 40 is dripped on the drip tray 21, it is discharged
  • the defrost water 40 passes through the clearance Y between the freezer return port 23 and the cooler 11, it may be dripped onto the wind direction plate 25.
  • the defrost water 40 dripped on the wind direction plate 25 remains on the wind direction plate 25 as it is, there is a possibility that the defrost water 40 becomes frost again and closes the freezer compartment return port 23.
  • the wind direction plate 25 according to the first embodiment is formed so as to be inclined downward with respect to the horizontal direction from the freezer compartment 5 side toward the cooler 11 side. Therefore, the defrost water 40 dripped on the wind direction plate 25 is returned to the clearance Y between the freezer return port 23 and the cooler 11 by the inclination of the wind direction plate 25.
  • the defrost water 40 generated at the time of defrosting is kept on the wind direction plate 25. It is possible to guide it to the drip tray 21 without making it. Therefore, blockage of the freezer compartment return port 23 due to frost caused by the defrosted water 40 remaining on the wind direction plate 25 can be prevented.
  • an inclined portion 27 protruding toward the freezer compartment 5 is provided on the wall below the freezer compartment return port 23. Therefore, as shown in FIG. 8, the defrost water 40 that has entered the freezer compartment 5 is guided to the drain hole 28 provided at the apex on the lower side along the inclined portion 27. Then, the defrost water 40 guided to the drain hole 28 is drained into the cooling chamber 10 through the drain hole 28, dropped onto the drip tray 21, and then discharged to the outside through the drain groove 22.
  • FIG. 9 is a schematic diagram showing a temperature measurement position in the cooler 11 of FIG.
  • FIG. 10 is a graph showing the measurement results of the temperature at each measurement position in FIG.
  • the cooler 11 is divided into nine in the vertical and horizontal directions.
  • a circle which is each divided portion when the heat conduction wall 26 having a width of about 100 mm is provided near the center of the cooler 11 and when it is not provided between the freezer return port 23 and the cooler 11.
  • the surface temperature of the fin 16 in the cooler 11 during defrosting was measured. And based on these measurement results, the average temperature of each of the upper part, the center part, and the lower part of the fin 16 was calculated, and the effectiveness of the heat conduction wall 26 was verified.
  • the symbol a indicates the position of the upper left side of the fin 16.
  • the symbol b indicates the position of the upper center of the fin 16.
  • Reference symbol c indicates a position on the upper right side of the fin 16.
  • the symbol d indicates the position on the left side of the central portion of the fin 16.
  • the symbol e indicates the position of the center of the center of the fin 16.
  • the symbol f indicates the position on the right side of the center portion of the fin 16.
  • a symbol g indicates a position on the lower left side of the fin 16.
  • the symbol h indicates the position of the lower center of the fin 16.
  • the symbol i indicates the position on the lower right side of the fin 16.
  • the temperature when the heat conduction wall 26 was provided increased in all of the upper part, the center part, and the lower part of the fin 16 as compared with the case where the heat conduction wall 26 was not provided.
  • the wind direction plate 25 that is inclined downward from the freezer compartment 5 side toward the cooler 11 side is provided in the freezer compartment return port 23. Therefore, it is possible to prevent the defrost water 40 from staying on the wind direction plate 25. And obstruction
  • a wind direction plate 25 is provided, and a bypass air passage formed between the cooler 11 and the blocking wall 20 has a minimum distance in the clearance Y between the freezer return port 23 and the cooler 11. It was made into below the minimum space
  • the defrost water which infiltrated the freezer room 5 was provided. 40 can be discharged into the cooling chamber 10. And the frost and dew in the freezer compartment 5 resulting from the defrost water 40 which penetrate
  • the heat conduction wall 26 to which a member having thermal conductivity is attached is provided between the freezer return port 23 and the cooler 11, heat at the time of defrosting is efficiently spread over the entire cooler 11. be able to.
  • Refrigerator 1A enclosure, 2 cold storage room, 2A cold storage room storage case, 2B cold storage room storage shelf, 2C chilled room, 2D chilled room storage case, 3 ice making room, 3A ice making room storage case, 4 switching room, 5 freezing room 5A freezer storage case, 6 vegetable room, 6A vegetable room storage case, 7 operation panel, 8 heat insulation partition wall, 9 machine room, 10 cooling room, 11 cooler, 12 blower fan, 13 precooler, 14 heater, 14A heater roof, 15 refrigerant piping, 16 fins, 17 pipe heater, 20 barrier wall, 21 drip tray, 22 drainage groove, 23 freezer return port, 23a first opening surface, 23b second opening surface, 24 vegetable room return Mouth, 25 wind direction plate, 26 heat conduction wall, 27 inclined part, 28 drainage hole, 30 bypass air passage, 40 defrost water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Defrosting Systems (AREA)

Abstract

A refrigerator equipped with: storage compartments for freezing or refrigerating food items; a cooling compartment housing a cooler that generates cold air for cooling the storage compartments, and a heater that is provided below the cooler and that melts frost adhering to the cooler; and a barrier wall that separates the storage compartments and the cooling compartment from each other. A cold air return opening, which has a first opening surface opening on the cooling compartment side and a second opening surface opening on the storage compartment side, and which connects the storage compartments and the cooling compartment, enabling return air from the storage compartments to flow into the cooling compartment, and louver plates, which are provided in the cold air return opening and slant downward from the storage compartment side toward the cooler side, are formed in the barrier wall. The minimum interval in a gap formed between the first opening surface of the cold air return opening and the storage-compartment-side surface of the cooler is equal to or less than the minimum interval in a gap formed between the cooling-compartment-side surface of the barrier wall and the storage-compartment-side surface of the cooler.

Description

冷蔵庫refrigerator
 本発明は、冷却性能を改善した冷蔵庫に関する。 The present invention relates to a refrigerator with improved cooling performance.
 近年、地球環境の保護という観点から、電気製品の省エネルギーに対して様々な取り組みがなされている。
 食品等を収納して貯蔵する冷蔵庫においても、省エネルギー性に対する関心が高く、より効率的に食品等を貯蔵できる冷蔵庫に対するニーズが高まっている。また、最近は、夫婦共働きの家庭が増加しているため、一度に大量の食品等をまとめ買いした場合にも対応可能な、大容量の冷蔵庫に対するニーズも高まっている。
In recent years, various efforts have been made to save energy in electrical products from the viewpoint of protecting the global environment.
In refrigerators that store and store foods and the like, there is a high interest in energy saving, and there is an increasing need for refrigerators that can store foods and the like more efficiently. Recently, the number of couples working together has increased, and there is an increasing need for large-capacity refrigerators that can handle large-scale purchases of food at once.
 このようなニーズに対応するため、省エネルギー性が高く、かつ大容量の冷蔵庫が提案され、実用化されている。 In order to meet these needs, refrigerators with high energy saving and large capacity have been proposed and put into practical use.
 従来の冷蔵庫は、冷凍室および冷蔵室等の各貯蔵室の背面側に冷却室が設けられ、冷却室内の冷却器で生成された冷気が送風ファンによって各貯蔵室に送り出されることにより、貯蔵室内に収納された食品等を冷却している。 A conventional refrigerator is provided with a cooling chamber on the back side of each storage room such as a freezing room and a refrigeration room, and the cool air generated by a cooler in the cooling room is sent to each storage room by a blower fan. The food stored in the container is cooled.
 各貯蔵室と冷却室との間には、それぞれを区画する遮断壁が設けられ、遮断壁と冷却室内の冷却器との間にクリアランスが設けられている。遮断壁には、各貯蔵室と冷却室とを連通し、貯蔵室を冷却することによって温度が上昇した貯蔵室からの戻り空気を冷却室に流入させる冷気戻り口が設けられている。また、冷気戻り口には、貯蔵室からの戻り空気を冷却室に対して効率的に流入させるための複数の風向板が形成されている。 A barrier wall is provided between each storage chamber and the cooling chamber, and a clearance is provided between the barrier wall and the cooler in the cooling chamber. The shut-off wall is provided with a cold air return port through which each storage chamber communicates with the cooling chamber, and the return air from the storage chamber whose temperature has risen by cooling the storage chamber flows into the cooling chamber. In addition, a plurality of wind direction plates are formed in the cool air return port to efficiently flow the return air from the storage chamber into the cooling chamber.
 このような冷蔵庫において、冷却室に設けられた冷却器は、冷気を生成する際に、表面温度が-25℃程度まで低下する。そのため、各貯蔵庫から冷却室内に流入する水蒸気を含んだ戻り空気との間で熱交換が行われると、冷却器の表面に霜が発生する。 In such a refrigerator, when the cooler provided in the cooling chamber generates cold air, the surface temperature decreases to about −25 ° C. Therefore, frost is generated on the surface of the cooler when heat exchange is performed with the return air containing water vapor flowing from each storage into the cooling chamber.
 このように冷却器の表面に霜が発生すると、冷却器の風路抵抗の増加、熱交換能力の低下といった冷却器の性能に影響を及ぼし、省エネルギー性が低下する。そのため、従来の冷蔵庫には、冷却器に付着した霜を融解させるためのヒータが設けられており、ヒータからの熱が冷却器に伝わると、冷却器の表面に付着した霜が融解する。そして、融解した霜が除霜水として滴下することにより、冷却器の表面に付着した霜を取り除くことができる。 If frost is generated on the surface of the cooler in this way, it affects the performance of the cooler such as an increase in the air path resistance of the cooler and a decrease in heat exchange capacity, resulting in a reduction in energy saving. Therefore, the conventional refrigerator is provided with a heater for melting the frost attached to the cooler. When heat from the heater is transmitted to the cooler, the frost attached to the surface of the cooler is melted. And when the melted frost is dripped as defrost water, the frost adhering to the surface of the cooler can be removed.
 ここで、霜の融解により発生した除霜水は、そのまま下方へ滴下するが、その際に、冷気戻り口の風向板上に滴下してしまうことがある。このように風向板上に滴下した除霜水がそのまま風向板上に留まると、除霜水が再度霜となり、冷気戻り口を閉塞してしまう虞がある。冷気戻り口が閉塞した場合には、冷蔵庫内の空気の循環を阻害し、各貯蔵室内の冷却を正常に行うことが困難となる。 Here, defrost water generated by melting of frost is dripped downward as it is, but at that time, it may be dripped on the wind direction plate of the cool air return port. Thus, if the defrost water dripped on the wind direction plate stays on the wind direction plate as it is, the defrost water becomes frost again, and the cold air return port may be blocked. When the cold air return port is blocked, the circulation of air in the refrigerator is hindered, and it is difficult to normally cool each storage chamber.
 そこで、このような霜による冷気戻り口の閉塞を防止するため、風向板と冷却器との間に空間を設け、霜の融解によって発生した除霜水の風向板上への滴下を防止する構造が提案されている(例えば、特許文献1および特許文献2)。
 これにより、風向板上への除霜水の滴下防止に加えて、貯蔵室内へ除霜水が侵入することによる貯蔵室内での霜付きおよび露付き等を防止することができる。
Therefore, in order to prevent the cold air return port from being blocked due to such frost, a structure is provided in which a space is provided between the wind direction plate and the cooler to prevent dripping of defrost water generated by melting of the frost onto the wind direction plate. Has been proposed (for example, Patent Document 1 and Patent Document 2).
Thereby, in addition to preventing the defrost water from dripping onto the wind direction plate, it is possible to prevent frost and dew in the storage chamber due to the entry of the defrost water into the storage chamber.
特開2012-237520号公報JP 2012-237520 A 特開2013-139982号公報JP 2013-139882 A
 しかしながら、特許文献1および特許文献2に記載の構造では、貯蔵室の容量という観点においては、冷蔵庫内に不要な空間が設けられているため、貯蔵室の容量を犠牲にすることになるという問題点があった。 However, in the structures described in Patent Document 1 and Patent Document 2, from the viewpoint of the capacity of the storage room, an unnecessary space is provided in the refrigerator, so that the capacity of the storage room is sacrificed. There was a point.
 本発明は、上記従来の技術における問題点に鑑みてなされたものであって、冷却品質を確保しつつ、より大容量の冷蔵庫を実現することが可能な冷蔵庫を提供することを目的とする。 The present invention has been made in view of the problems in the above-described conventional technology, and an object thereof is to provide a refrigerator capable of realizing a larger-capacity refrigerator while ensuring cooling quality.
 本発明の冷蔵庫は、食品の冷凍および冷蔵の少なくとも一方を行う貯蔵室と、前記貯蔵室の背面側に設けられ、前記貯蔵室を冷却する冷気を生成する冷却器、および該冷却器の下方に設けられて前記冷却器に付着する霜を融解させるヒータが収容された冷却室と、前記貯蔵室および前記冷却室を互いに区画する遮断壁とを備え、前記遮断壁には、前記冷却室側に開口する第1の開口面および前記貯蔵室側に開口する第2の開口面を有して前記貯蔵室と前記冷却室とを連通し、前記貯蔵室からの戻り空気を前記冷却室に流入させる冷気戻り口と、前記冷気戻り口に設けられ、前記貯蔵室側から前記冷却器側に向かって下側に傾斜する風向板とが形成され、前記冷気戻り口の前記第1の開口面と前記冷却器の前記貯蔵室側の面との間に形成される隙間における最小の間隔が、前記遮断壁の前記冷却室側の面と前記冷却器の前記貯蔵室側の面との間に形成される隙間における最小の間隔以下であるものである。 The refrigerator of the present invention includes a storage chamber that performs at least one of freezing and refrigeration of food, a cooler that is provided on the back side of the storage chamber, and that generates cool air that cools the storage chamber, and below the cooler A cooling chamber in which a heater for melting frost attached to the cooler is housed; and a blocking wall that separates the storage chamber and the cooling chamber from each other. It has a first opening surface that opens and a second opening surface that opens to the storage chamber side so that the storage chamber communicates with the cooling chamber, and the return air from the storage chamber flows into the cooling chamber. A cold air return port, and a wind direction plate provided in the cold air return port and inclined downward from the storage chamber side toward the cooler side, the first opening surface of the cold air return port and the Formed between the storage chamber side surface of the cooler Minimum spacing in the gap is not more than the minimum spacing in the gap formed between the storage compartment side surface of the surface of the cooling chamber side and the cooler of the barrier walls.
 以上のように、本発明によれば、風向板を傾斜させ、冷気戻り口と冷却器との間に形成される隙間の距離を、遮断壁と冷却器との間の隙間の距離以下とすることにより、冷却品質を確保しつつ、より大容量の冷蔵庫を実現することが可能になる。 As described above, according to the present invention, the airflow direction plate is inclined, and the distance of the gap formed between the cool air return port and the cooler is set to be equal to or less than the distance of the gap between the blocking wall and the cooler. Thus, it is possible to realize a refrigerator with a larger capacity while ensuring the cooling quality.
本発明の実施の形態1に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on Embodiment 1 of this invention. 図1に示す線分A-Aを矢印方向から見た際の冷蔵庫の内部構造図である。FIG. 2 is an internal structure diagram of the refrigerator when the line segment AA shown in FIG. 1 is viewed from the arrow direction. 図2に示す点線Bで囲まれた冷却室の構造の一部を示す要部拡大図である。It is a principal part enlarged view which shows a part of structure of the cooling chamber enclosed with the dotted line B shown in FIG. 図3に示す線分C-Cを矢印方向から見た際の冷凍室戻り口周辺の構造図である。FIG. 4 is a structural diagram around the freezer compartment return port when the line segment CC shown in FIG. 3 is viewed from the direction of the arrow. 図3に示す線分D-Dを矢印方向から見た際の冷凍室戻り口周辺の構造図である。FIG. 4 is a structural diagram around the freezer compartment return port when the line segment DD shown in FIG. 3 is viewed from the direction of the arrow. 図2の冷却器、送風ファンおよびプレ冷却器の構成の一例を示す正面図である。It is a front view which shows an example of a structure of the cooler of FIG. 2, a ventilation fan, and a precooler. 図1の冷蔵庫における霜取り時の除霜水の流れの一例について説明するための概略図である。It is the schematic for demonstrating an example of the flow of the defrost water at the time of defrosting in the refrigerator of FIG. 図1の冷蔵庫における霜取り時の除霜水の流れの他の例について説明するための概略図である。It is the schematic for demonstrating the other example of the flow of the defrost water at the time of defrosting in the refrigerator of FIG. 図6の冷却器における温度の測定位置を示す概略図である。It is the schematic which shows the measurement position of the temperature in the cooler of FIG. 熱伝導壁の有無による図9の各測定位置の温度の測定結果を示すグラフである。It is a graph which shows the measurement result of the temperature of each measurement position of Drawing 9 with and without the heat conduction wall.
 以下、本発明の冷蔵庫について説明する。なお、以下の説明に用いられる図面では、各構成要素についての大きさの関係が実際のものとは異なる場合がある。また、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, the refrigerator of the present invention will be described. Note that in the drawings used for the following description, the size relationship for each component may be different from the actual one. Moreover, the form of the component represented to the whole specification is an illustration to the last, Comprising: It is not limited to these description.
実施の形態1.
 図1は本発明の実施の形態1に係る冷蔵庫1の正面図である。図2は図1に示す線分A-Aを矢印方向から見た際の冷蔵庫1の内部構造図である。図3は、図2に示す点線Bで囲まれた冷却室10の構造の一部を示す要部拡大図である。
Embodiment 1 FIG.
FIG. 1 is a front view of a refrigerator 1 according to Embodiment 1 of the present invention. FIG. 2 is an internal structural view of the refrigerator 1 when the line segment AA shown in FIG. 1 is viewed from the arrow direction. FIG. 3 is an enlarged view of a main part showing a part of the structure of the cooling chamber 10 surrounded by a dotted line B shown in FIG.
[冷蔵庫の構成]
 図1に示すように、冷蔵庫1は、外郭を構成する筐体1Aを備える。筐体1Aは、例えば、直方体状に形成されている。筐体1Aの内部には、冷蔵室2、製氷室3、切替室4、冷凍室5、野菜室6等の貯蔵室が設けられ、それぞれの各貯蔵室に対応して扉が設けられている。なお、この例では、冷蔵室2の扉が2つの扉で構成された両開き式としているが、これに限られず、例えば、1つの扉で構成された片開き式としてもよい。
[Composition of refrigerator]
As shown in FIG. 1, the refrigerator 1 includes a housing 1 </ b> A that forms an outer shell. The housing 1A is formed in a rectangular parallelepiped shape, for example. In the housing 1A, storage rooms such as a refrigerator room 2, an ice making room 3, a switching room 4, a freezing room 5, a vegetable room 6 and the like are provided, and doors are provided corresponding to the respective storage rooms. . In addition, in this example, the door of the refrigerator compartment 2 is a double-opening type configured with two doors, but is not limited thereto, and may be a single-opening type configured with one door, for example.
 また、冷蔵室2に対応して設けられた扉表面には、各貯蔵室の温度等を設定したり、各貯蔵室の状態を表示する操作パネル7が設けられている。この操作パネル7は、扉表面に限られず、例えば、冷蔵室2の側面等の冷蔵庫1内に設けられていてもよい。 Further, on the door surface provided corresponding to the refrigerator compartment 2, an operation panel 7 for setting the temperature of each storage room and displaying the state of each storage room is provided. The operation panel 7 is not limited to the door surface, and may be provided in the refrigerator 1 such as a side surface of the refrigerator compartment 2, for example.
 冷蔵室2は、扉としての開閉ドアを備えた空間であり、最上部に配置される。製氷室3は、扉としての引き出しドアを備えた空間であり、冷蔵室2の下方に配置される。切替室4は、扉としての引き出しドアを備えた空間であり、製氷室3と並列に配置される。切替室4は、冷凍温度帯(例えば-18℃程度)から冷蔵(例えば3℃程度)、チルド(例えば0℃程度)、ソフト冷凍(例えば-7℃程度)等の各種温度帯に、保冷温度帯を切り替えることができる。冷凍室5は、扉としての引き出しドアを備えた空間であり、製氷室3および切替室4の下方に配置される。野菜室6は、扉としての引き出しドアを備えた空間であり、最下部に配置される。
 なお、冷蔵庫1は、上述した構成に限定されるものではない。例えば、製氷室3および切替室4を設けないで構成してもよい。また、例えば、冷凍室5および野菜室6の位置を逆に構成してもよい。
The refrigerator compartment 2 is a space provided with an open / close door as a door, and is arranged at the top. The ice making chamber 3 is a space provided with a drawer door as a door, and is arranged below the refrigerator compartment 2. The switching chamber 4 is a space provided with a drawer door as a door, and is arranged in parallel with the ice making chamber 3. The switching chamber 4 has a cold storage temperature ranging from a freezing temperature zone (eg, about −18 ° C.) to a refrigeration (eg, about 3 ° C.), chilled (eg, about 0 ° C.), soft freezing (eg, about −7 ° C.) The band can be switched. The freezer compartment 5 is a space provided with a drawer door as a door, and is disposed below the ice making chamber 3 and the switching chamber 4. The vegetable compartment 6 is a space provided with a drawer door as a door, and is arranged at the bottom.
In addition, the refrigerator 1 is not limited to the structure mentioned above. For example, the ice making chamber 3 and the switching chamber 4 may be omitted. Further, for example, the positions of the freezer compartment 5 and the vegetable compartment 6 may be reversed.
 冷蔵室2には、食品を収納するための1または複数の冷蔵室収納ケース2Aおよび1または複数の冷蔵室収納棚2Bが設けられている。また、冷蔵室2には、チルド室2Cが設けられ、食品を収納するための1または複数のチルド室収納ケース2Dが設けられている。
 製氷室3には、食品を収納するための1または複数の製氷室収納ケース3Aが設けられている。冷凍室5には、食品を収納するための1または複数の冷凍室収納ケース5Aが設けられている。野菜室6には、食品を収納するための1または複数の野菜室収納ケース6Aが設けられている。なお、図示しないが、切替室4にも、食品を収納するための切替室収納ケースが設けられている。
The refrigerator compartment 2 is provided with one or a plurality of refrigerator compartment storage cases 2A and one or a plurality of refrigerator compartment storage shelves 2B for storing food. The refrigerated chamber 2 is provided with a chilled chamber 2C and is provided with one or a plurality of chilled chamber storage cases 2D for storing food.
The ice making chamber 3 is provided with one or a plurality of ice making chamber storage cases 3A for storing food. The freezer compartment 5 is provided with one or a plurality of freezer compartment storage cases 5A for storing food. The vegetable compartment 6 is provided with one or a plurality of vegetable compartment storage cases 6A for storing food. Although not shown, the switching chamber 4 is also provided with a switching chamber storage case for storing food.
 冷蔵室2、製氷室3、切替室4、冷凍室5、野菜室6の各貯蔵室は、隣接する貯蔵室との間での熱の移動を遮断する断熱仕切り壁8によって仕切られている。 Each storage room of the refrigerator compartment 2, the ice making room 3, the switching room 4, the freezing room 5, and the vegetable room 6 is partitioned by a heat insulating partition wall 8 that blocks heat transfer between adjacent storage rooms.
 筐体1Aの背面側下部には、機械室9が設けられている。機械室9には、図示しない圧縮機が収納されている。圧縮機は、吸入した冷媒を高温高圧にして吐出する。 A machine room 9 is provided at the lower back side of the housing 1A. The machine room 9 stores a compressor (not shown). The compressor discharges the sucked refrigerant at high temperature and high pressure.
 また、筐体1Aの内部には、図示しないサーミスタおよび制御装置が設けられている。
 サーミスタは、各貯蔵室に設けられ、各貯蔵室の温度を検出する。
 制御装置は、この冷蔵庫1全体を制御する。例えば、制御装置は、サーミスタによって検出された温度に基づき、各貯蔵室内の温度が予め設定された温度になるように、圧縮機の能力、後述する送風ファン12の送風量等を制御する。制御手段は、例えば、この機能を実現する回路デバイスなどのハードウェア、マイクロコンピュータまたはCPU(Central Processing Unit)等の演算装置上で実行されるソフトウェアで構成される。
Further, a thermistor and a control device (not shown) are provided inside the housing 1A.
The thermistor is provided in each storage room and detects the temperature of each storage room.
The control device controls the entire refrigerator 1. For example, based on the temperature detected by the thermistor, the control device controls the capacity of the compressor, the amount of air blown from a blower fan 12 to be described later, and the like so that the temperature in each storage chamber becomes a preset temperature. The control means includes, for example, hardware such as a circuit device that realizes this function, software that is executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit).
 筐体1Aの背面側内部には、各貯蔵室内を冷却するための冷気を生成して送り出す冷却室10が設けられている。 A cooling chamber 10 that generates and sends out cool air for cooling the respective storage chambers is provided inside the housing 1A on the back side.
[冷却室の構造]
 次に、冷却室10の構造について説明する。
 図3に示すように、冷却室10には、冷却器11、送風ファン12(図2参照)、プレ冷却器13、ヒータ14が設けられている。また、冷却室10と各貯蔵室(特に、冷凍室5)との間、すなわち冷却室10の前面側には、冷却室10と各貯蔵室とを区画するための遮断壁20が側面方向全体に渡って設けられている。
[Cooling chamber structure]
Next, the structure of the cooling chamber 10 will be described.
As shown in FIG. 3, the cooling chamber 10 is provided with a cooler 11, a blower fan 12 (see FIG. 2), a precooler 13, and a heater 14. In addition, a blocking wall 20 for partitioning the cooling chamber 10 and each storage chamber is provided between the cooling chamber 10 and each storage chamber (particularly, the freezing chamber 5), that is, on the front side of the cooling chamber 10, in the entire lateral direction. Is provided.
 冷却器11は、冷蔵庫1内の空気を冷却する熱交換器である。詳細については後述するが、冷却器11は、冷媒配管を流れる冷媒と空気との間で熱交換を行い、空気を冷却する。なお、この例において、冷蔵庫1内の空気は、冷却器11の下方から上方に向かって流れる。
 送風ファン12は、冷却器11の上方に設けられ、冷却器11によって冷却された空気(以下、「冷気」と適宜称する)を各貯蔵室へ送出する。
The cooler 11 is a heat exchanger that cools the air in the refrigerator 1. Although details will be described later, the cooler 11 performs heat exchange between the refrigerant flowing through the refrigerant pipe and the air to cool the air. In this example, the air in the refrigerator 1 flows from the lower side of the cooler 11 upward.
The blower fan 12 is provided above the cooler 11 and sends air cooled by the cooler 11 (hereinafter, appropriately referred to as “cold air”) to each storage room.
 プレ冷却器13は、冷却器11の下方に設けられ、冷却器11と同様に、冷媒配管を流れる冷媒と空気との間で熱交換を行う。プレ冷却器13の詳細については、後述する。
 ヒータ14は、冷却器11の下方に設けられる。ヒータ14は、例えばラジアンヒータであり、冷却器11および遮断壁20の冷却器11側の面に付着した霜を融解させるために設けられている。
 ヒータ14の上面には、ヒータルーフ14Aが設けられている。ヒータルーフ14Aは、霜を取り除くことによって滴下する除霜水からヒータ14を保護するためのものである。
The pre-cooler 13 is provided below the cooler 11, and, like the cooler 11, performs heat exchange between the refrigerant flowing through the refrigerant pipe and the air. Details of the precooler 13 will be described later.
The heater 14 is provided below the cooler 11. The heater 14 is, for example, a radiant heater, and is provided for melting frost attached to the cooler 11 and the barrier wall 20 on the cooler 11 side.
A heater roof 14 </ b> A is provided on the upper surface of the heater 14. The heater roof 14A is for protecting the heater 14 from the defrost water dripped by removing frost.
 冷却器11の冷凍室5側の面と遮断壁20の冷却室10側の面との間には、隙間であるクリアランスXが設けられ、これによってバイパス風路30が形成されている。バイパス風路30は、空気の流れが冷却器11をバイパスするように流れる状態となっているが、冷却器11の上方では、バイパスした空気の流れが冷却器11側に収束する状態になっている。
 このようにバイパス風路30を設けることにより、空気を冷却するにしたがって冷却器11の下方から着霜が進行し、冷却器11の下方が着霜により閉塞しても、空気がバイパス風路30を流れることで、冷却器11の冷却可能時間を延ばすことができる。
A clearance X, which is a gap, is provided between the surface of the cooler 11 on the freezer compartment 5 side and the surface of the blocking wall 20 on the cooling chamber 10 side, thereby forming a bypass air passage 30. The bypass air passage 30 is in a state in which the air flow flows so as to bypass the cooler 11, but the bypass air flow is converged to the cooler 11 side above the cooler 11. Yes.
By providing the bypass air passage 30 in this manner, frost formation proceeds from below the cooler 11 as the air is cooled, and even if the lower portion of the cooler 11 is blocked by frost formation, the air is bypassed air passage 30. , The coolable time of the cooler 11 can be extended.
 冷却室10の下方には、ドリップトレイ21および排水溝22が設けられている。
 ドリップトレイ21は、霜取り時にヒータ14の熱によって霜が融解して生じた除霜水が滴下する位置に設けられている。排水溝22は、ドリップトレイ21に滴下した除霜水を外部に排出するためのものである。
Below the cooling chamber 10, a drip tray 21 and a drain groove 22 are provided.
The drip tray 21 is provided at a position where defrosted water generated by melting of the frost by the heat of the heater 14 at the time of defrosting is dropped. The drain groove 22 is for discharging the defrost water dripped onto the drip tray 21 to the outside.
 冷却室10の前面側の遮断壁20の下方には、冷気戻り口としての冷凍室戻り口23および野菜室戻り口24が形成されている。
 冷凍室戻り口23は、冷却室10に開口する第1の開口面23aと、冷凍室5に開口する第2の開口面23bとを有し、冷却室10と冷凍室5との間に互いが連通するように設けられ、冷凍室5からの戻り空気を冷却室10に流入させるためのものである。
 なお、ここでいう「第1の開口面23a」とは、冷凍室戻り口23の間口の上端における遮断壁20の冷却室10側の面との境界線と、当該間口の下端における遮断壁20の冷却室10側の面との境界線とを平面で結んだ際に形成される面のことをいうものとする。また、「第2の開口面23b」とは、冷凍室戻り口23の間口の上端における遮断壁20の冷凍室5側の面との境界線と、当該間口の下端における遮断壁20の冷凍室5側の面との境界線とを平面で結んだ際に形成される面のことをいうものとする。
 冷凍室戻り口23は、その間口の下端が冷却器11の下端と略同一または下端よりも上方になるように設けられている。これにより、冷却器11での熱交換を効率的に行うことができる。
A freezing chamber return port 23 and a vegetable chamber return port 24 as cold air return ports are formed below the blocking wall 20 on the front side of the cooling chamber 10.
The freezer compartment return port 23 has a first opening surface 23 a that opens to the cooling chamber 10 and a second opening surface 23 b that opens to the freezer chamber 5, and is disposed between the cooling chamber 10 and the freezer chamber 5. Is provided so as to allow the return air from the freezing chamber 5 to flow into the cooling chamber 10.
Here, the “first opening surface 23a” refers to a boundary line between the cooling wall 10 side surface of the blocking wall 20 at the upper end of the freezing chamber return port 23 and the blocking wall 20 at the lower end of the opening. The surface formed when connecting the boundary line with the surface at the side of the cooling chamber 10 in a plane. In addition, the “second opening surface 23 b” refers to a boundary line between a freezing chamber 5 side surface of the blocking wall 20 at the upper end of the freezer return port 23 and a freezing chamber of the blocking wall 20 at the lower end of the frontage. A surface formed when a boundary line with the surface on the 5th side is connected by a plane.
The freezer compartment return port 23 is provided so that the lower end of the front end thereof is substantially the same as or lower than the lower end of the cooler 11. Thereby, the heat exchange in the cooler 11 can be performed efficiently.
 また、冷凍室戻り口23は、遮断壁20の下方の延長上に設けられているので、この冷凍室戻り口23の第1の開口面23aと冷却器11の冷凍室5側の面との間の隙間であるクリアランスYは、上述したバイパス風路30におけるクリアランスXと略同等またはそれ以下のクリアランスである。このとき、クリアランスYにおける最小の間隔が、バイパス風路30におけるクリアランスXにおける最小の間隔以下とすることにより、冷蔵庫1内の空間をより有効的に利用することができ、冷蔵庫1を大容量化することができる。 Moreover, since the freezer compartment return port 23 is provided on the extension below the blocking wall 20, the first opening surface 23 a of the freezer compartment return port 23 and the surface of the cooler 11 on the freezer compartment 5 side are provided. The clearance Y, which is a gap between them, is a clearance substantially equal to or less than the clearance X in the bypass air passage 30 described above. At this time, when the minimum interval in the clearance Y is equal to or less than the minimum interval in the clearance X in the bypass air passage 30, the space in the refrigerator 1 can be used more effectively, and the capacity of the refrigerator 1 is increased. can do.
 野菜室戻り口24は、冷凍室戻り口23の下方に設けられ、冷却室10および野菜室6のそれぞれに開口する開口面を有し、冷却室10と野菜室6との間に互いが連通するように設けられている。野菜室戻り口24は、野菜室6からの戻り空気を冷却室10に流入させるためのものである。
 このように、冷凍室戻り口23および野菜室戻り口24の配置位置を異ならせることにより、冷凍室5からの戻り空気と、野菜室6からの戻り空気とが冷却室10に流入する際の合流を抑制することができる。
 また、野菜室戻り口24を冷凍室戻り口23よりも下方に設けることにより、含有する水分量が多い野菜室6からの戻り空気をプレ冷却器13の近傍に流入させる。そのため、プレ冷却器13によって戻り空気の除湿を十分に行うことができ、冷却器11の着霜を抑制して冷却能力の低下を抑制することができる。これにより、冷却器11のフィンピッチを小さくすることが可能になり、冷却器11における冷却性能を向上させることができる。
The vegetable room return port 24 is provided below the freezer room return port 23, has an opening surface that opens to each of the cooling room 10 and the vegetable room 6, and communicates between the cooling room 10 and the vegetable room 6. It is provided to do. The vegetable room return port 24 is for allowing the return air from the vegetable room 6 to flow into the cooling room 10.
Thus, by changing the arrangement positions of the freezer compartment return port 23 and the vegetable compartment return port 24, the return air from the freezer compartment 5 and the return air from the vegetable compartment 6 flow into the cooling chamber 10. Confluence can be suppressed.
In addition, by providing the vegetable room return port 24 below the freezer room return port 23, the return air from the vegetable room 6 containing a large amount of moisture is caused to flow into the vicinity of the precooler 13. Therefore, dehumidification of the return air can be sufficiently performed by the pre-cooler 13, and frosting of the cooler 11 can be suppressed to suppress a decrease in cooling capacity. Thereby, the fin pitch of the cooler 11 can be reduced, and the cooling performance in the cooler 11 can be improved.
 遮断壁20に設けられた冷凍室戻り口23には、冷凍室5からの戻り空気を冷却室10に対して効率的に流入させるための複数の風向板25が形成されている。風向板25は、それぞれが平板状に形成されるとともに、冷凍室5側から冷却器11側に向かって水平方向に対して下側に傾斜するように形成されている。 A plurality of wind direction plates 25 for efficiently allowing the return air from the freezing chamber 5 to flow into the cooling chamber 10 are formed in the freezing chamber return port 23 provided in the blocking wall 20. Each of the airflow direction plates 25 is formed in a flat plate shape, and is inclined so as to be inclined downward with respect to the horizontal direction from the freezer compartment 5 side toward the cooler 11 side.
 なお、冷凍室戻り口23に複数の風向板25を設けることにより、冷却室10内の冷却器11、ヒータ14等を遮光し、外部からの視認性を改善することができる。
 また、冷凍室戻り口23に複数の風向板25を設けることにより、霜取り時に発生するヒータ14および後述するパイプヒータ17からの輻射熱を遮断し、冷凍室5への熱の侵入を抑制することができ、冷蔵庫1の省エネルギー性をより向上させることができる。
In addition, by providing a plurality of wind direction plates 25 in the freezer compartment return port 23, the cooler 11, the heater 14 and the like in the cooling chamber 10 can be shielded from light, and visibility from the outside can be improved.
Further, by providing a plurality of wind direction plates 25 at the freezer return port 23, it is possible to block radiant heat from the heater 14 and the pipe heater 17 which will be described later when defrosting, and to suppress the intrusion of heat into the freezer room 5. The energy saving property of the refrigerator 1 can be further improved.
 図4は、図3に示す線分C-Cを矢印方向から見た際の冷凍室戻り口23周辺の構造図である。
 図4(a)に示すように、冷凍室戻り口23の背面側から見て側面方向に延びる幅は、ヒータ14で発生した熱を伝えることが可能な範囲以下、すなわちヒータ14の有効発熱範囲以下に設定される。これは、冷凍室戻り口23に霜が発生した場合に、霜取りによって霜を確実に取り除くことができるようにするためである。
4 is a structural diagram around the freezer compartment return port 23 when the line segment CC shown in FIG. 3 is viewed from the direction of the arrow.
As shown in FIG. 4A, the width extending in the side surface direction when viewed from the back side of the freezer return port 23 is equal to or less than a range in which heat generated by the heater 14 can be transmitted, that is, an effective heat generation range of the heater 14. Set to: This is to ensure that frost can be removed by defrosting when frost is generated at the freezer return port 23.
 また、図4(b)に示すように、冷凍室戻り口23には、冷凍室戻り口23の風向板25と冷却器11との間に熱伝導壁26が設けられる。この熱伝導壁26は、例えば、冷凍室戻り口23の側面方向の中央部近傍に設けられる。熱伝導壁26は、アルミテープ等の熱伝導性を有する部材が冷却器11側の表面に貼り付けられた部材で形成されている。 Further, as shown in FIG. 4B, the freezer return port 23 is provided with a heat conduction wall 26 between the wind direction plate 25 of the freezer return port 23 and the cooler 11. For example, the heat conducting wall 26 is provided in the vicinity of the central portion in the side surface direction of the freezer compartment return port 23. The heat conductive wall 26 is formed of a member in which a member having thermal conductivity such as an aluminum tape is attached to the surface on the cooler 11 side.
 このように、熱伝導壁26の冷却器11側の表面にアルミテープ等を貼り付けることにより、霜取り時におけるヒータ14の熱を冷凍室戻り口23および冷却器11全体に伝えることが可能となる。そのため、冷凍室戻り口23および冷却器11の霜を残霜なく取り除くことができる。 Thus, by sticking aluminum tape or the like on the surface of the heat conducting wall 26 on the side of the cooler 11, the heat of the heater 14 at the time of defrosting can be transmitted to the freezer return port 23 and the entire cooler 11. . Therefore, the frost in the freezer return port 23 and the cooler 11 can be removed without residual frost.
 熱伝導壁26の側面方向の幅は、例えば、30mm~100mm程度とすると好ましい。これは、例えば、熱伝導壁26の冷却器11側の表面全体にアルミテープ等を貼り付ける際に、熱伝導壁26の幅を、市販等によって容易に入手可能なアルミテープの幅と略同等とすることにより、材料費および貼り付け加工費等の製造コストを抑制できるためである。 The width in the side surface direction of the heat conducting wall 26 is preferably about 30 mm to 100 mm, for example. For example, when the aluminum tape or the like is applied to the entire surface of the heat conducting wall 26 on the cooler 11 side, the width of the heat conducting wall 26 is substantially equal to the width of the aluminum tape that can be easily obtained commercially. This is because manufacturing costs such as material costs and pasting costs can be suppressed.
 なお、熱伝導壁26は、図4(b)に示す位置に限られない。例えば、図4(c)に示すように、冷凍室戻り口23の側面方向に対して一定の間隔で複数の熱伝導壁26を配置するようにしてもよい。 Note that the heat conducting wall 26 is not limited to the position shown in FIG. For example, as shown in FIG. 4C, a plurality of heat conducting walls 26 may be arranged at regular intervals with respect to the side surface direction of the freezer compartment return port 23.
 図5は、図3に示す線分D-Dを矢印方向から見た際の冷凍室戻り口23周辺の構造図である。
 図5に示すように、冷凍室戻り口23の下方の冷凍室5と冷却室10との間に設けられた壁には、冷凍室5側に突出するリブ状の傾斜部27が形成されている。
 傾斜部27は、下方に向かって谷状に形成された1つの平板、または、このように形成された複数の平板が接続されて形成されている。
FIG. 5 is a structural diagram around the freezer compartment return port 23 when the line segment DD shown in FIG. 3 is viewed from the direction of the arrow.
As shown in FIG. 5, a rib-like inclined portion 27 protruding toward the freezer compartment 5 is formed on the wall provided between the freezer compartment 5 and the cooling chamber 10 below the freezer compartment return port 23. Yes.
The inclined portion 27 is formed by connecting one flat plate formed in a valley shape downward or a plurality of flat plates formed in this way.
 また、傾斜部27における谷状の頂点には、除霜水をドリップトレイ21に導く排水穴28が設けられている。傾斜部27および排水穴28をこのような形状とすることにより、霜取り時に冷凍室5内に侵入し、傾斜部27上に滴下した除霜水が排水穴28に向かって流れ、ドリップトレイ21に導かれるようになっている。 Further, a drainage hole 28 for guiding the defrost water to the drip tray 21 is provided at the valley-shaped apex in the inclined portion 27. By making the inclined portion 27 and the drainage hole 28 into such a shape, the defrost water that has entered the freezer compartment 5 during defrosting and dropped onto the inclined portion 27 flows toward the drainage hole 28, and enters the drip tray 21. It has come to be guided.
[冷却器、送風ファンおよびプレ冷却器の構造]
 図6は、図2の冷却器11、送風ファン12およびプレ冷却器13の構成の一例を示す正面図である。
 図6に示すように、冷却器11は、冷媒配管15およびフィン16を有している。
 この冷却器11は、複数のフィン16の間を通過する空気と、冷媒配管15を流通する冷媒との間で熱交換を行う。
 フィン16は、予め設定された一定の間隔(以下、「フィンピッチ」と適宜称する)で積層され、その間を空気が流通する。フィン16には、冷媒配管15を挿入するための開口が形成され、この開口に冷媒配管15が挿入され、冷媒配管15と接合されている。
[Structure of cooler, blower fan and precooler]
6 is a front view showing an example of the configuration of the cooler 11, the blower fan 12, and the precooler 13 of FIG.
As shown in FIG. 6, the cooler 11 has a refrigerant pipe 15 and fins 16.
The cooler 11 exchanges heat between the air passing between the plurality of fins 16 and the refrigerant flowing through the refrigerant pipe 15.
The fins 16 are stacked at a predetermined interval (hereinafter referred to as “fin pitch” as appropriate), and air flows between them. An opening for inserting the refrigerant pipe 15 is formed in the fin 16. The refrigerant pipe 15 is inserted into the opening and joined to the refrigerant pipe 15.
 フィン16のフィンピッチは、冷却器11への着霜によるフィン16間の目詰まりによる風路抵抗の増加を防止することを考慮して決定される。このような目詰まりを防止するため、フィンピッチは、例えば、5mm~10mm程度の範囲に設定される。
 また、冷却器11に対する着霜は、空気の流れの下流側と比較して上流側で多く発生する。これは、空気が下流側に移動するにしたがって冷却器11との間で熱交換が行われ、空気中の水分量が減少するからである。
 そのため、冷却器11においては、空気流れの上流側におけるフィンピッチを下流側よりも広く設定する。具体的には、例えば、フィン16における下流側のフィンピッチを5mmに設定し、上流側のフィンピッチを7.5mm~10mm程度とすると好ましい。
The fin pitch of the fins 16 is determined in consideration of preventing an increase in air path resistance due to clogging between the fins 16 due to frost formation on the cooler 11. In order to prevent such clogging, the fin pitch is set in a range of about 5 mm to 10 mm, for example.
Further, frost formation on the cooler 11 occurs more on the upstream side than on the downstream side of the air flow. This is because heat exchange is performed with the cooler 11 as the air moves downstream, and the amount of moisture in the air decreases.
Therefore, in the cooler 11, the fin pitch on the upstream side of the air flow is set wider than that on the downstream side. Specifically, for example, the downstream fin pitch of the fins 16 is preferably set to 5 mm, and the upstream fin pitch is preferably set to about 7.5 mm to 10 mm.
 なお、フィン16のフィンピッチは、本発明の趣旨を逸脱しない範囲であれば、上述した値に限定されるものではなく、適宜変更が可能である。
 また、フィン16の形状としては、特に限定されるものではなく、例えば、プレートフィン、コルゲートフィン、ルーバーフィン、スリットフィン等を適用することができる。
Note that the fin pitch of the fins 16 is not limited to the above-described value as long as it does not depart from the spirit of the present invention, and can be appropriately changed.
Further, the shape of the fin 16 is not particularly limited, and for example, a plate fin, a corrugated fin, a louver fin, a slit fin, or the like can be applied.
 また、冷却器11への着霜によるフィン16間の目詰まりの対策として、冷却器11の空気流れ上流側に、プレ冷却器13が設けられている。プレ冷却器13は、冷却器11と同様に、冷媒配管15およびフィン16を有している。プレ冷却器13のフィン16は、予め設定された一定のフィンピッチで積層されている。 Further, as a countermeasure against clogging between the fins 16 due to frost formation on the cooler 11, a pre-cooler 13 is provided on the upstream side of the air flow of the cooler 11. Similar to the cooler 11, the precooler 13 has a refrigerant pipe 15 and fins 16. The fins 16 of the precooler 13 are stacked at a predetermined fin pitch.
 プレ冷却器13は、冷却器11の空気流れ上流側に配置されているため、冷却器11よりも多くの着霜が発生する。そのため、プレ冷却器13におけるフィン16のフィンピッチは、冷却器11におけるフィンピッチよりも広く、例えば、10mm~15mm程度の範囲に設定される。 Since the pre-cooler 13 is arranged on the upstream side of the air flow of the cooler 11, more frost is generated than the cooler 11. Therefore, the fin pitch of the fins 16 in the pre-cooler 13 is set wider than the fin pitch in the cooler 11, for example, in a range of about 10 mm to 15 mm.
 なお、プレ冷却器13におけるフィン16のフィンピッチについても、本発明の趣旨を逸脱しない範囲であれば特に限定されるものではなく、適宜変更が可能である。
 フィン16の形状についても、冷却器11と同様に、特に限定されるものではなく、例えば、プレートフィン、コルゲートフィン、ルーバーフィン、スリットフィン等を適用することができる。
The fin pitch of the fins 16 in the precooler 13 is not particularly limited as long as it does not depart from the spirit of the present invention, and can be changed as appropriate.
The shape of the fin 16 is not particularly limited as in the case of the cooler 11, and for example, a plate fin, a corrugated fin, a louver fin, a slit fin, or the like can be applied.
 冷却器11およびプレ冷却器13には、パイプヒータ17が設けられている。
 パイプヒータ17は、冷却器11およびプレ冷却器13のフィン16間に組み込まれて設けられ、冷却器11およびプレ冷却器13に付着する霜を取り除くためのものである。パイプヒータ17は、熱伝導によって冷却器11およびプレ冷却器13を直接加熱することができ、短時間で効率的に霜を取り除くことができる。
The cooler 11 and the precooler 13 are provided with a pipe heater 17.
The pipe heater 17 is provided so as to be incorporated between the fins 16 of the cooler 11 and the precooler 13, and removes frost attached to the cooler 11 and the precooler 13. The pipe heater 17 can directly heat the cooler 11 and the precooler 13 by heat conduction, and can efficiently remove frost in a short time.
[冷蔵庫内の空気流れ]
 次に、本実施の形態1に係る冷蔵庫1内の空気流れについて説明する。
 まず、送風ファン12が回転されると、冷却器11からの冷気は、各貯蔵室に送出されて各貯蔵室を冷却する。
 冷蔵室2に流入した空気は、冷蔵室2内を循環することによって冷蔵室2内を冷却し、冷蔵庫1の背面側に設けられた図示しない風路を通って野菜室6に流入する。
 野菜室6に流入した空気は、野菜室6内を循環することによって野菜室6内を冷却する。そして、野菜室6からの戻り空気は、野菜室戻り口24から冷却室10内に流入する。
 また、冷凍室5に流入した空気は、冷凍室5内を循環することによって冷凍室5内を冷却する。そして、冷凍室5からの戻り空気は、冷凍室戻り口23から冷却室10内に流入する。
 同様にして、製氷室3および切替室4等の各貯蔵室に流入した空気は、それぞれの貯蔵室内を冷却し、各貯蔵室からの戻り空気が図示しない戻り口から冷却室10内に流入する。
[Air flow in the refrigerator]
Next, the air flow in the refrigerator 1 according to the first embodiment will be described.
First, when the blower fan 12 is rotated, the cool air from the cooler 11 is sent to each storage room to cool each storage room.
The air flowing into the refrigerator compartment 2 circulates in the refrigerator compartment 2 to cool the refrigerator compartment 2 and flows into the vegetable compartment 6 through an air passage (not shown) provided on the back side of the refrigerator 1.
The air flowing into the vegetable compartment 6 circulates in the vegetable compartment 6 to cool the vegetable compartment 6. The return air from the vegetable compartment 6 flows into the cooling chamber 10 from the vegetable compartment return port 24.
The air that has flowed into the freezer compartment 5 circulates within the freezer compartment 5 to cool the inside of the freezer compartment 5. Then, the return air from the freezer compartment 5 flows into the cooling chamber 10 from the freezer compartment return port 23.
Similarly, the air that has flowed into the respective storage chambers such as the ice making chamber 3 and the switching chamber 4 cools the respective storage chambers, and the return air from each of the storage chambers flows into the cooling chamber 10 from a return port (not shown). .
[除霜水の流れ]
 次に、霜取り時に発生する除霜水の流れについて説明する。
 図7は、図1の冷蔵庫1における霜取り時の除霜水40の流れの一例について説明するための概略図である。図8は、図1の冷蔵庫1における霜取り時の除霜水40の流れの他の例について説明するための概略図である。
[Flow of defrost water]
Next, the flow of defrost water generated at the time of defrosting will be described.
FIG. 7 is a schematic diagram for explaining an example of the flow of the defrost water 40 at the time of defrosting in the refrigerator 1 of FIG. FIG. 8 is a schematic view for explaining another example of the flow of the defrost water 40 at the time of defrosting in the refrigerator 1 of FIG.
 図7に示すように、冷却器11に付着した霜は、霜取り時に除霜水40となって滴下し、冷凍室戻り口23と冷却器11との間のクリアランスYを通過する。そして、除霜水40は、ドリップトレイ21上に滴下した後、排水溝22を介して外部に排出される。 As shown in FIG. 7, the frost adhering to the cooler 11 drops as defrost water 40 when defrosting and passes through the clearance Y between the freezer return port 23 and the cooler 11. And after defrosting water 40 is dripped on the drip tray 21, it is discharged | emitted outside via the drainage groove 22. FIG.
 ここで、除霜水40は、冷凍室戻り口23と冷却器11との間のクリアランスYを通過する際に、風向板25上に滴下することがある。このように風向板25上に滴下した除霜水40がそのまま風向板25上に留まると、除霜水40が再度霜となり、冷凍室戻り口23を閉塞してしまう虞がある。 Here, when the defrost water 40 passes through the clearance Y between the freezer return port 23 and the cooler 11, it may be dripped onto the wind direction plate 25. Thus, if the defrost water 40 dripped on the wind direction plate 25 remains on the wind direction plate 25 as it is, there is a possibility that the defrost water 40 becomes frost again and closes the freezer compartment return port 23.
 しかしながら、本実施の形態1による風向板25は、冷凍室5側から冷却器11側に向かって水平方向に対して下側に傾斜するように形成されている。そのため、風向板25上に滴下した除霜水40は、風向板25の傾斜によって冷凍室戻り口23と冷却器11との間のクリアランスYに戻される。 However, the wind direction plate 25 according to the first embodiment is formed so as to be inclined downward with respect to the horizontal direction from the freezer compartment 5 side toward the cooler 11 side. Therefore, the defrost water 40 dripped on the wind direction plate 25 is returned to the clearance Y between the freezer return port 23 and the cooler 11 by the inclination of the wind direction plate 25.
 このように、冷凍室5側から冷却器11側に向かって下側に傾斜する風向板25を冷凍室戻り口23に設けることにより、霜取り時に発生する除霜水40を風向板25上に留まらせることなく、ドリップトレイ21に導くことができる。そのため、風向板25上に留まった除霜水40に起因する霜による冷凍室戻り口23の閉塞を防止することができる。 Thus, by providing the wind direction plate 25 inclined downward from the freezer compartment 5 side toward the cooler 11 side, the defrost water 40 generated at the time of defrosting is kept on the wind direction plate 25. It is possible to guide it to the drip tray 21 without making it. Therefore, blockage of the freezer compartment return port 23 due to frost caused by the defrosted water 40 remaining on the wind direction plate 25 can be prevented.
 一方、風向板25上に滴下した除霜水40が、風向板25を越えて冷凍室5に侵入する場合が考えられる。このように除霜水40が冷凍室5に侵入すると、冷凍室5内における霜付きおよび露付きが発生する虞がある。 On the other hand, it is conceivable that the defrosted water 40 dripped on the wind direction plate 25 enters the freezer compartment 5 beyond the wind direction plate 25. When the defrost water 40 enters the freezer compartment 5 in this manner, frost and dew in the freezer compartment 5 may occur.
 しかしながら、本実施の形態1では、冷凍室戻り口23の下方の壁に、冷凍室5側に突出する傾斜部27を設けている。そのため、図8に示すように、冷凍室5に侵入した除霜水40は、傾斜部27上を伝って下部側の頂点に設けられた排水穴28に導かれる。そして、排水穴28に導かれた除霜水40は、排水穴28を介して冷却室10内に排水され、ドリップトレイ21上に滴下した後、排水溝22を介して外部に排出される。 However, in the first embodiment, an inclined portion 27 protruding toward the freezer compartment 5 is provided on the wall below the freezer compartment return port 23. Therefore, as shown in FIG. 8, the defrost water 40 that has entered the freezer compartment 5 is guided to the drain hole 28 provided at the apex on the lower side along the inclined portion 27. Then, the defrost water 40 guided to the drain hole 28 is drained into the cooling chamber 10 through the drain hole 28, dropped onto the drip tray 21, and then discharged to the outside through the drain groove 22.
 このように、冷凍室5側に突出する傾斜部27および排水穴28を冷凍室戻り口23の下方の壁に設けることにより、万が一、除霜水40が冷凍室5に侵入した場合でも、除霜水40を冷却室10内に排出することができる。そのため、冷凍室5に侵入した除霜水40に起因する、冷凍室5内における霜付きおよび露付きを防止することができる。 In this way, by providing the inclined portion 27 and the drainage hole 28 protruding to the freezer compartment 5 side in the wall below the freezer compartment return port 23, even if the defrost water 40 enters the freezer compartment 5, it can be removed. The frost water 40 can be discharged into the cooling chamber 10. Therefore, it is possible to prevent frost and dew in the freezer compartment 5 due to the defrosted water 40 that has entered the freezer compartment 5.
[熱伝導壁による効果]
 次に、冷凍室戻り口23と冷却器11との間に熱伝導壁26を設けたことによる効果について説明する。
[Effects of heat conduction wall]
Next, the effect obtained by providing the heat conduction wall 26 between the freezer return port 23 and the cooler 11 will be described.
 図9は、図6の冷却器11における温度の測定位置を示す概略図である。図10は、熱伝導壁26の有無による図9の各測定位置の温度の測定結果を示すグラフである。
 この例では、図9に示すように、まず、冷却器11を上下左右方向に9分割する。次に、冷凍室戻り口23と冷却器11との間に、幅が100mm程度の熱伝導壁26を冷却器11の中央近傍に設けた場合および設けない場合の、各分割部分である円で示す部分a~iについて、霜取り時の冷却器11におけるフィン16の表面温度を測定した。そして、これらの測定結果に基づき、フィン16の上部、中央部および下部それぞれの平均温度を算出し、熱伝導壁26の有効性を検証した。
FIG. 9 is a schematic diagram showing a temperature measurement position in the cooler 11 of FIG. FIG. 10 is a graph showing the measurement results of the temperature at each measurement position in FIG.
In this example, as shown in FIG. 9, first, the cooler 11 is divided into nine in the vertical and horizontal directions. Next, a circle which is each divided portion when the heat conduction wall 26 having a width of about 100 mm is provided near the center of the cooler 11 and when it is not provided between the freezer return port 23 and the cooler 11. For the portions a to i shown, the surface temperature of the fin 16 in the cooler 11 during defrosting was measured. And based on these measurement results, the average temperature of each of the upper part, the center part, and the lower part of the fin 16 was calculated, and the effectiveness of the heat conduction wall 26 was verified.
 符号aは、フィン16の上部左側の位置を示す。符号bは、フィン16の上部中心の位置を示す。符号cは、フィン16の上部右側の位置を示す。
 符号dは、フィン16の中央部左側の位置を示す。符号eは、フィン16の中央部中心の位置を示す。符号fは、フィン16の中央部右側の位置を示す。
 符号gは、フィン16の下部左側の位置を示す。符号hは、フィン16の下部中心の位置を示す。符号iは、フィン16の下部右側の位置を示す。
The symbol a indicates the position of the upper left side of the fin 16. The symbol b indicates the position of the upper center of the fin 16. Reference symbol c indicates a position on the upper right side of the fin 16.
The symbol d indicates the position on the left side of the central portion of the fin 16. The symbol e indicates the position of the center of the center of the fin 16. The symbol f indicates the position on the right side of the center portion of the fin 16.
A symbol g indicates a position on the lower left side of the fin 16. The symbol h indicates the position of the lower center of the fin 16. The symbol i indicates the position on the lower right side of the fin 16.
 検証の結果、図10に示すように、フィン16の上部、中央部および下部のすべてにおいて、熱伝導壁26を設けた場合の温度が熱伝導壁26を設けない場合と比較して上昇した。
 これにより、熱伝導壁26を設けることによって、霜取り時の熱を効率的に冷却器11全体に広げることが可能であることがわかる。
As a result of the verification, as shown in FIG. 10, the temperature when the heat conduction wall 26 was provided increased in all of the upper part, the center part, and the lower part of the fin 16 as compared with the case where the heat conduction wall 26 was not provided.
Thereby, by providing the heat conductive wall 26, it turns out that the heat at the time of defrosting can be efficiently spread over the cooler 11 whole.
 以上のように、本実施の形態1では、冷凍室5側から冷却器11側に向かって下側に傾斜する風向板25を冷凍室戻り口23に設けた。そのため、風向板25上に除霜水40が留まるのを防止することができる。そして、風向板25上に留まった除霜水40に起因する霜による冷凍室戻り口23の閉塞を防止することができる。 As described above, in the first embodiment, the wind direction plate 25 that is inclined downward from the freezer compartment 5 side toward the cooler 11 side is provided in the freezer compartment return port 23. Therefore, it is possible to prevent the defrost water 40 from staying on the wind direction plate 25. And obstruction | occlusion of the freezer compartment return port 23 by the frost resulting from the defrost water 40 which stayed on the wind direction board 25 can be prevented.
 また、このような風向板25を設けるとともに、冷凍室戻り口23と冷却器11との間のクリアランスYにおける最小の間隔を、冷却器11と遮断壁20との間に形成されたバイパス風路30のクリアランスXにおける最小の間隔以下とした。そのため、冷蔵庫1内の空間を有効に利用することができ、より大容量化を実現することができる。 In addition, such a wind direction plate 25 is provided, and a bypass air passage formed between the cooler 11 and the blocking wall 20 has a minimum distance in the clearance Y between the freezer return port 23 and the cooler 11. It was made into below the minimum space | interval in the clearance X of 30. Therefore, the space in the refrigerator 1 can be used effectively, and a larger capacity can be realized.
 さらに、冷凍室戻り口23の下方の壁に、冷凍室5側に突出する傾斜部27と、傾斜部27の下部側の頂点に排水穴28を設けたため、冷凍室5に侵入した除霜水40を冷却室10内に排出することができる。そして、冷凍室5に侵入した除霜水40に起因する、冷凍室5内における霜付きおよび露付きを防止することができる。 Furthermore, since the inclined part 27 which protrudes in the freezer compartment 5 side and the drainage hole 28 were provided in the vertex of the lower part side of the inclined part 27 in the wall below the freezer compartment return port 23, the defrost water which infiltrated the freezer room 5 was provided. 40 can be discharged into the cooling chamber 10. And the frost and dew in the freezer compartment 5 resulting from the defrost water 40 which penetrate | invaded the freezer compartment 5 can be prevented.
 さらにまた、冷凍室戻り口23と冷却器11との間に、熱伝導性を有する部材が貼り付けられた熱伝導壁26を設けたため、霜取り時の熱を効率的に冷却器11全体に広げることができる。 Furthermore, since the heat conduction wall 26 to which a member having thermal conductivity is attached is provided between the freezer return port 23 and the cooler 11, heat at the time of defrosting is efficiently spread over the entire cooler 11. be able to.
 1 冷蔵庫、1A 筐体、2 冷蔵室、2A 冷蔵室収納ケース、2B 冷蔵室収納棚、2C チルド室、2D チルド室収納ケース、3 製氷室、3A 製氷室収納ケース、4 切替室、5 冷凍室、5A 冷凍室収納ケース、6 野菜室、6A 野菜室収納ケース、7 操作パネル、8 断熱仕切り壁、9 機械室、10 冷却室、11 冷却器、12 送風ファン、13 プレ冷却器、14 ヒータ、14A ヒータルーフ、15 冷媒配管、16 フィン、17 パイプヒータ、20 遮断壁、21 ドリップトレイ、22 排水溝、23 冷凍室戻り口、23a 第1の開口面、23b 第2の開口面、24 野菜室戻り口、25 風向板、26 熱伝導壁、27 傾斜部、28 排水穴、30 バイパス風路、40 除霜水。 1 Refrigerator, 1A enclosure, 2 cold storage room, 2A cold storage room storage case, 2B cold storage room storage shelf, 2C chilled room, 2D chilled room storage case, 3 ice making room, 3A ice making room storage case, 4 switching room, 5 freezing room 5A freezer storage case, 6 vegetable room, 6A vegetable room storage case, 7 operation panel, 8 heat insulation partition wall, 9 machine room, 10 cooling room, 11 cooler, 12 blower fan, 13 precooler, 14 heater, 14A heater roof, 15 refrigerant piping, 16 fins, 17 pipe heater, 20 barrier wall, 21 drip tray, 22 drainage groove, 23 freezer return port, 23a first opening surface, 23b second opening surface, 24 vegetable room return Mouth, 25 wind direction plate, 26 heat conduction wall, 27 inclined part, 28 drainage hole, 30 bypass air passage, 40 defrost water.

Claims (7)

  1.  食品の冷凍および冷蔵の少なくとも一方を行う貯蔵室と、
     前記貯蔵室の背面側に設けられ、前記貯蔵室を冷却する冷気を生成する冷却器、および該冷却器の下方に設けられて前記冷却器に付着する霜を融解させるヒータが収容された冷却室と、
     前記貯蔵室および前記冷却室を互いに区画する遮断壁と
    を備え、
     前記遮断壁には、
     前記冷却室側に開口する第1の開口面および前記貯蔵室側に開口する第2の開口面を有して前記貯蔵室と前記冷却室とを連通し、前記貯蔵室からの戻り空気を前記冷却室に流入させる冷気戻り口と、
     前記冷気戻り口に設けられ、前記貯蔵室側から前記冷却器側に向かって下側に傾斜する風向板と
    が形成され、
     前記冷気戻り口の前記第1の開口面と前記冷却器の前記貯蔵室側の面との間に形成される隙間における最小の間隔が、前記遮断壁の前記冷却室側の面と前記冷却器の前記貯蔵室側の面との間に形成される隙間における最小の間隔以下である
    冷蔵庫。
    A storage room for at least one of freezing and refrigeration of food;
    A cooling chamber that is provided on the back side of the storage chamber and that contains a cooler that generates cool air that cools the storage chamber, and a heater that is provided below the cooler and that melts frost adhering to the cooler When,
    A blocking wall that partitions the storage chamber and the cooling chamber from each other;
    The barrier wall includes
    A first opening surface that opens to the cooling chamber side and a second opening surface that opens to the storage chamber side communicate with the storage chamber and the cooling chamber, and return air from the storage chamber A cold air return port to flow into the cooling chamber;
    A wind direction plate provided at the cold air return port and inclined downward from the storage chamber side toward the cooler side;
    The minimum gap in the gap formed between the first opening surface of the cold air return port and the storage chamber side surface of the cooler is the cooling chamber side surface of the blocking wall and the cooler. The refrigerator which is below the minimum space | interval in the clearance gap formed between the said storage chamber side surfaces.
  2.  前記遮断壁における前記冷気戻り口より下方に、前記貯蔵室側に突出する下方に向かって谷状とされた傾斜部が形成されている
    請求項1に記載の冷蔵庫。
    2. The refrigerator according to claim 1, wherein an inclined portion having a valley shape is formed below the cold air return port in the blocking wall and protrudes downward toward the storage chamber side.
  3.  前記冷気戻り口および前記冷却器の間に、前記ヒータによる熱を前記冷却器に伝える熱伝導壁が設けられている
    請求項1または2に記載の冷蔵庫。
    The refrigerator according to claim 1, wherein a heat conduction wall is provided between the cold air return port and the cooler to transfer heat from the heater to the cooler.
  4.  前記熱伝導壁は、熱伝導性を有する部材が前記冷却器側の表面に設けられている
    請求項3に記載の冷蔵庫。
    The refrigerator according to claim 3, wherein the heat conducting wall is provided with a member having heat conductivity on a surface on the cooler side.
  5.  前記冷気戻り口は、側面方向の幅が前記ヒータからの熱が伝わる有効発熱範囲以下である
    請求項1~4のいずれか一項に記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 4, wherein the cold air return port has a width in a side surface direction that is equal to or less than an effective heat generation range in which heat from the heater is transmitted.
  6.  前記冷気戻り口は、下端が前記冷却器の下端よりも上方に位置する
    請求項1~5のいずれか一項に記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 5, wherein a lower end of the cold air return port is located above a lower end of the cooler.
  7.  前記貯蔵室は、
     冷凍室を少なくとも含み、
     前記冷気戻り口は、
     前記冷凍室からの戻り空気を前記冷却室に流入させる冷凍室戻り口である
    請求項1~6のいずれか一項に記載の冷蔵庫。
    The storage room is
    Including at least a freezer compartment,
    The cold air return port is
    The refrigerator according to any one of claims 1 to 6, wherein the refrigerator is a freezing room return port through which return air from the freezing room flows into the cooling room.
PCT/JP2016/053943 2016-02-10 2016-02-10 Refrigerator WO2017138109A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MYPI2018702690A MY192683A (en) 2016-02-10 2016-02-10 Refrigerator
PCT/JP2016/053943 WO2017138109A1 (en) 2016-02-10 2016-02-10 Refrigerator
AU2016392120A AU2016392120B2 (en) 2016-02-10 2016-02-10 Refrigerator
SG11201806147UA SG11201806147UA (en) 2016-02-10 2016-02-10 Refrigerator
JP2017566459A JP6444543B2 (en) 2016-02-10 2016-02-10 refrigerator
TW105143822A TWI671499B (en) 2016-02-10 2016-12-29 refrigerator
CN201720105151.2U CN206583180U (en) 2016-02-10 2017-01-25 Refrigerator
CN201710060787.4A CN107062748B (en) 2016-02-10 2017-01-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053943 WO2017138109A1 (en) 2016-02-10 2016-02-10 Refrigerator

Publications (1)

Publication Number Publication Date
WO2017138109A1 true WO2017138109A1 (en) 2017-08-17

Family

ID=59563054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053943 WO2017138109A1 (en) 2016-02-10 2016-02-10 Refrigerator

Country Status (7)

Country Link
JP (1) JP6444543B2 (en)
CN (2) CN107062748B (en)
AU (1) AU2016392120B2 (en)
MY (1) MY192683A (en)
SG (1) SG11201806147UA (en)
TW (1) TWI671499B (en)
WO (1) WO2017138109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132496A (en) * 2018-01-31 2019-08-08 日立グローバルライフソリューションズ株式会社 refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444543B2 (en) * 2016-02-10 2018-12-26 三菱電機株式会社 refrigerator
MY191881A (en) * 2019-02-15 2022-07-18 Mitsubishi Electric Corp Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243746A (en) * 1994-03-09 1995-09-19 Sanyo Electric Co Ltd Lateral cooling storage box
JP2007071487A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
JP2007093108A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Refrigerator
JP2010060188A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944498B2 (en) * 2004-08-25 2007-07-11 日立アプライアンス株式会社 refrigerator
JP2008202823A (en) * 2007-02-19 2008-09-04 Hitachi Appliances Inc Refrigerator
JP2009275929A (en) * 2008-05-12 2009-11-26 Toshiba Corp Refrigerator
JP4644271B2 (en) * 2008-06-09 2011-03-02 日立アプライアンス株式会社 refrigerator
JP5025689B2 (en) * 2009-06-26 2012-09-12 三菱電機株式会社 refrigerator
JP5487053B2 (en) * 2010-08-25 2014-05-07 日立アプライアンス株式会社 refrigerator
JP2012237520A (en) * 2011-05-13 2012-12-06 Hitachi Appliances Inc Refrigerator
CN103975207A (en) * 2011-12-06 2014-08-06 松下电器产业株式会社 Refrigerator
CN203704501U (en) * 2013-12-26 2014-07-09 合肥晶弘三菱电机家电技术开发有限公司 Defrosting system and refrigerator provided with defrosting system
JP6444543B2 (en) * 2016-02-10 2018-12-26 三菱電機株式会社 refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243746A (en) * 1994-03-09 1995-09-19 Sanyo Electric Co Ltd Lateral cooling storage box
JP2007071487A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
JP2007093108A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Refrigerator
JP2010060188A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132496A (en) * 2018-01-31 2019-08-08 日立グローバルライフソリューションズ株式会社 refrigerator
JP7028661B2 (en) 2018-01-31 2022-03-02 日立グローバルライフソリューションズ株式会社 refrigerator

Also Published As

Publication number Publication date
AU2016392120A1 (en) 2018-07-12
JP6444543B2 (en) 2018-12-26
CN206583180U (en) 2017-10-24
TW201736791A (en) 2017-10-16
CN107062748B (en) 2019-07-30
TWI671499B (en) 2019-09-11
MY192683A (en) 2022-08-30
SG11201806147UA (en) 2018-08-30
JPWO2017138109A1 (en) 2018-06-07
AU2016392120B2 (en) 2019-05-09
CN107062748A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
JP5405011B2 (en) Refrigeration equipment
KR101705644B1 (en) Ice maker for refrigerator and manufacturing method for the same
JP6444543B2 (en) refrigerator
JP5847198B2 (en) refrigerator
JP7421309B2 (en) refrigerator
AU2016286893A1 (en) Refrigerator
JP5787837B2 (en) refrigerator
JP2014238182A (en) Refrigerator
JP6426350B2 (en) refrigerator
JP6678542B2 (en) refrigerator
JP6490221B2 (en) refrigerator
WO2017163965A1 (en) Refrigerator
JP2005345061A (en) Refrigerator
JP2014167361A (en) Refrigerator
JP6940424B2 (en) refrigerator
JP5367553B2 (en) Cooling storage
JP2006078053A (en) Refrigerator
JPWO2019175965A1 (en) refrigerator
JP4203662B2 (en) refrigerator
WO2023068023A1 (en) Refrigerator
KR102630192B1 (en) Refrigerator
JP4924213B2 (en) refrigerator
JP2009287890A (en) Refrigerator
JP6811371B2 (en) refrigerator
JP6145640B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566459

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016392120

Country of ref document: AU

Date of ref document: 20160210

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201806147U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889811

Country of ref document: EP

Kind code of ref document: A1