WO2017138098A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2017138098A1
WO2017138098A1 PCT/JP2016/053859 JP2016053859W WO2017138098A1 WO 2017138098 A1 WO2017138098 A1 WO 2017138098A1 JP 2016053859 W JP2016053859 W JP 2016053859W WO 2017138098 A1 WO2017138098 A1 WO 2017138098A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
balance weight
scroll compressor
main body
shaft portion
Prior art date
Application number
PCT/JP2016/053859
Other languages
French (fr)
Japanese (ja)
Inventor
修平 小山
友寿 松井
浩平 達脇
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680080809.7A priority Critical patent/CN108603500B/en
Priority to JP2017566450A priority patent/JP6400237B2/en
Priority to PCT/JP2016/053859 priority patent/WO2017138098A1/en
Priority to EP16889800.5A priority patent/EP3415760B1/en
Priority to US15/781,781 priority patent/US10968912B2/en
Publication of WO2017138098A1 publication Critical patent/WO2017138098A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0028Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight

Definitions

  • the present invention relates to a scroll compressor mounted mainly in a refrigerator, an air conditioner, a water heater or the like.
  • a scroll compressor that forms a plurality of compression chambers by meshing a spiral body of a fixed scroll and a spiral body of an orbiting scroll.
  • a cylindrical boss portion is formed on the side of the swing scroll base plate opposite to the spiral body, and this boss portion and the upper end portion of the crankshaft that rotates the swing scroll.
  • a scroll compressor in which a shaft portion of a bush is fitted through an oscillating bearing between an eccentric pin portion provided on the shaft and a balance weight portion is fixed by shrinkage to the shaft portion (see, for example, Patent Document 1). ).
  • the balance weight part is provided to cancel the centrifugal force of the orbiting scroll and suppress the vibration of the compression element.
  • the shaft portion is provided so that the fixed scroll spiral body and the swing scroll spiral body are always in contact with each other when the swing scroll revolves, and is slidable with respect to the eccentric pin section. And the revolution radius of the orbiting scroll is automatically adjusted (see, for example, Patent Document 1).
  • the shaft portion and the balance weight portion are joined by shrink fitting or press fitting, and pressure is generated that presses each other at the time of joining, and this pressure causes the shaft portion to shrink radially inward. May be deformed.
  • an unnecessary gap is generated between the outer peripheral surface of the shaft portion and the rocking bearing located outside the shaft portion, and the lubricating oil leaks from this gap and the oil film thickness becomes thin. There is a problem that reliability is lowered due to wear, seizure, and the like.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a scroll compressor that can suppress the amount of deformation of the shaft portion in the radial direction and has improved reliability. .
  • a scroll compressor forms a compression chamber by combining a fixed scroll and an orbiting scroll with each other, drives the orbiting scroll to compress the fluid in the compression chamber, and a rotational force on the orbiting scroll.
  • a crank shaft that drives the orbiting scroll, an orbiting bearing that supports the orbiting scroll, a shaft portion disposed between the orbiting bearing and the eccentric pin of the crankshaft, and a shaft
  • a bush having a balance weight portion fixed by shrink fitting on the outer periphery of the shaft, the shaft portion being fitted into the rocking bearing, and a cylindrical body portion into which an eccentric pin of the crankshaft is inserted, and a body portion And a cylindrical connecting portion to which the balance weight portion is joined, and the bush satisfies the following conditions (a) and (b).
  • the amount of deformation in the radial direction of the shaft portion can be suppressed, and a scroll compressor with improved reliability can be obtained.
  • FIG. 1 is a longitudinal schematic cross-sectional view of a scroll compressor according to Embodiment 1 of the present invention. It is sectional drawing which shows the structure of the bush of the scroll compressor which concerns on Embodiment 1 of this invention. It is a top view which shows the structure of the bush of the scroll compressor which concerns on Embodiment 1 of this invention. It is a schematic diagram for demonstrating the deformation
  • FIG. 5 is a diagram showing a relationship between “(D2-D3) / (D4-D2) ⁇ E1 / E2” and the maximum amount of deformation in the radial direction of the shaft portion. It is a figure which shows the relationship between “D2 / D1” and "(D2-D3) / (D4-D2) * E1 / E2".
  • FIG. 1 is a schematic vertical sectional view of a scroll compressor according to Embodiment 1 of the present invention.
  • This scroll compressor has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high temperature and high pressure state.
  • the scroll compressor includes a compression mechanism unit 10, a drive mechanism unit 20, a crank that connects the compression mechanism unit 10 and the drive mechanism unit 20 and transmits the rotational force generated by the drive mechanism unit 20 to the compression mechanism unit 10.
  • the shaft 30 and other components are included, and these are housed in the shell 40 that forms the outer shell.
  • An oil sump 41 for storing lubricating oil is provided at the lower part of the shell 40.
  • An oil pump 42 fixed to the lower end portion of the crankshaft 30 is immersed in the oil sump 41, and the lubricating oil passes through the oil passage 31 in the crankshaft 30 as the crankshaft 30 rotates, It is supplied to each sliding part of the compression mechanism part 10.
  • a suction pipe 43 for sucking the refrigerant is provided on the side surface of the shell 40, and a discharge pipe 44 for discharging the compressed refrigerant is provided on the upper surface of the shell 40.
  • the compression mechanism unit 10 includes a fixed scroll 11 and a swing scroll 12.
  • the fixed scroll 11 includes a first base plate 11a and a first spiral body 11b erected on one surface of the first base plate 11a.
  • the orbiting scroll 12 includes a second base plate 12a and a second spiral body 12b erected on one surface of the second base plate 12a.
  • the fixed scroll 11 and the swing scroll 12 are disposed in the shell 40 in a state where the first spiral body 11b and the second spiral body 12b are engaged with each other.
  • a compression chamber 13 is formed between the first spiral body 11b and the second spiral body 12b. The compression chamber 13 decreases in volume as the crankshaft 30 rotates from the radially outer side toward the inner side.
  • the fixed scroll 11 is fixed in the shell 40 through the frame 50.
  • a discharge port 14 is formed at the center of the fixed scroll 11 to discharge the compressed and high pressure fluid.
  • a leaf spring valve 15 is disposed at the outlet opening of the discharge port 14 so as to cover the outlet opening and prevent backflow of fluid.
  • a valve retainer 16 that restricts the lift amount of the valve 15 is provided on one end side of the valve 15. That is, when the fluid is compressed to a predetermined pressure in the compression chamber 13, the valve 15 is lifted against the elastic force, and the compressed fluid is discharged from the discharge port 14 into the high-pressure space 17, and the discharge pipe 44. And is discharged to the outside of the scroll compressor.
  • the rocking scroll 12 performs an eccentric revolving motion without rotating with respect to the fixed scroll 11 by the Oldham ring 60.
  • the Oldham ring 60 is disposed between the orbiting scroll 12 and the frame 50.
  • a hollow cylindrical boss portion 12c is formed at a substantially central portion of the surface of the second base plate 12a of the orbiting scroll 12 opposite to the surface on which the second spiral body 12b is formed.
  • An oscillating bearing 18 composed of a sliding bearing is fitted inside the boss portion 12c, and an eccentric pin portion 30a described later formed on the upper end portion of the crankshaft 30 is a shaft portion 71 of a bush 70 described later. It is connected to the rocking bearing 18 via.
  • the drive mechanism unit 20 includes a stator 21 and a rotor 22 that is rotatably disposed on the inner peripheral surface side of the stator 21 and is fixed to the crankshaft 30.
  • the stator 21 has a function of rotating the rotor 22 when energized.
  • the outer peripheral surface of the stator 21 is fixedly supported on the shell 40 by shrink fitting or the like.
  • the rotor 22 has a function of rotating and driving the crankshaft 30 when the stator 21 is energized.
  • a frame 50 and a sub frame 51 are arranged on the shell 40 so as to face each other with the drive mechanism unit 20 interposed therebetween.
  • the frame 50 is disposed on the upper side of the drive mechanism unit 20 and is positioned between the drive mechanism unit 20 and the compression mechanism unit 10, and the sub-frame 51 is positioned on the lower side of the drive mechanism unit 20.
  • the frame 50 and the sub frame 51 are fixed to the inner peripheral surface of the shell 40 by shrink fitting, welding, or the like.
  • a main bearing 50a is provided at the center of the frame 50, and a sub bearing 51a is provided at the center of the sub frame 51, and the crankshaft 30 is rotatably supported by the main bearing 50a and the sub bearing 51a. Has been.
  • the crankshaft 30 has an eccentric pin portion 30a that is eccentric from the axis of the crankshaft 30 at the upper end. As described above, the eccentric pin portion 30 a is connected to the boss portion 12 c via the shaft portion 71 of the bush 70, and rotates the rocking scroll 12 eccentrically by the rotation of the crankshaft 30.
  • FIG. 2 is a cross-sectional view showing the structure of the bush of the scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view showing the structure of the bush of the scroll compressor according to Embodiment 1 of the present invention. D1 to D4 in FIGS. 2 and 3 will be described later with reference to FIG.
  • the bush 70 has a substantially cylindrical shaft portion 71 and a balance weight portion 72.
  • the shaft portion 71 is integrally formed with a substantially cylindrical main body portion 71a and a substantially cylindrical connecting portion 71b extending outwardly on one axial end side (lower end side in FIG. 2) of the main body portion 71a. Have a configuration.
  • the balance weight portion 72 has a through hole 72a, and the shaft portion 71 and the balance weight portion 72 are shrink-fitted and joined at the connection portion 71b in a state where the connection portion 71b of the shaft portion 71 is inserted into the through hole 72a. ing.
  • the main body portion 71 a of the shaft portion 71 is rotatably fitted in the rocking bearing 18 that supports the rocking scroll 12, and the eccentric pin portion 30 a is cranked in the slide hole 73 formed in the center portion of the shaft portion 71. It is slidably inserted in the radial direction of the shaft 30. Therefore, when the crankshaft 30 rotates, the rotational force is transmitted to the orbiting scroll 12 via the shaft portion 71, and the orbiting scroll 12 revolves. At this time, the bush 70 moves in the radial direction along the flat surface portion 73a of the slide hole 73 by the action of the centrifugal force on the balance weight portion 72, and the orbiting scroll 12 also moves along with this movement. The second spiral body 12 b is pressed against the first spiral body 11 b of the fixed scroll 11. Thus, a driven crank mechanism that improves the sealing performance of the compression chamber 13 is configured.
  • the gas refrigerant sucked into the shell 40 from the suction pipe 43 is taken into the compression chamber 13. And the compression chamber 13 which took in gas reduces a volume, moving to a center direction from an outer peripheral part with the eccentric revolving motion of the rocking scroll 12, and compresses a refrigerant
  • the orbiting scroll 12 moves in the radial direction together with the bush 70 by its centrifugal force, and the first spiral body 11b and the second spiral body 12b are brought into close contact with each other. Accordingly, refrigerant leakage from the high pressure side to the low pressure side is prevented in the compression chamber 13, and efficient compression is performed.
  • the pressing force of the second spiral body 12b against the first spiral body 11b depends on the weight of the orbiting scroll 12, the revolution radius, and the rotational speed of the crankshaft 30. Becomes excessive. In this case, the sliding loss accompanying the sliding of the first spiral body 11b and the second spiral body 12b increases, and the efficiency of the scroll compressor decreases.
  • the centrifugal force in the direction 180 ° opposite to the centrifugal force direction of the orbiting scroll 12 acts on the balance weight portion 72 of the bush 70, the bush 70 is rotated 180 degrees with respect to the eccentric pin portion 30a of the crankshaft 30. ° Slide in the opposite radial direction to adjust the pressing force to prevent an increase in sliding loss.
  • the main body portion 71a of the shaft portion 71 slides on the boss portion 12c of the rocking scroll 12 via the rocking bearing 18, so that the outer peripheral surface 71aa of the main body portion 71a is as much as possible. It is required to have a flat surface with small undulations.
  • the balance weight portion 72 is shrink-fitted and fixed to the shaft portion 71, the shaft portion 71 is deformed in a direction of reducing the outer diameter due to the mutual pressure due to the shrink-fitting. This modification will be described with reference to FIG.
  • FIG. 4 is a schematic diagram for explaining the deformation of the shaft portion that occurs when the balance weight portion is shrink-fitted and fixed to the shaft portion of the bush.
  • the solid line indicates before deformation
  • the dotted line indicates after deformation.
  • the main body 71a is deformed so that the boundary with the connecting portion 71b is reduced radially inward.
  • the connecting portion 71b is also deformed so that the outer diameter is reduced radially inward. That is, the shaft portion 71 is deformed so that the outer diameter is reduced radially inward in both the main body portion 71a and the connecting portion 71b.
  • the balance weight portion 72 is deformed in the direction in which the inner diameter is expanded by mutual pressure due to shrink fitting.
  • the positions P0 and P1, the distance L, and the deformation amount ⁇ in FIG. 4 will be described later.
  • the bush 70 is designed to satisfy the following conditions (a) and (b) in the first embodiment. Refer to FIGS. 2 and 3 for D1 to D4 in this condition.
  • the reason why the conditions (a) and (b) are set is that pressure pressing the shaft portion 71 and the balance weight portion 72 is generated between the shaft portion 71 and the balance weight portion 72 as described above. Therefore, the connecting portion 71b having a larger outer diameter than that of the main body portion 71a is provided in the main body portion 71a, and the thickness of the portion that is shrink-fitted to the balance weight portion 72 is increased to increase the rigidity. Compared with the case where the balance weight part 72 is directly joined without providing the 71b, the deformation amount of the shaft part 71 in the radial direction can be suppressed.
  • the rigidity of the shaft portion 71 increases as the outer diameter D1 of the main body portion 71a becomes smaller than the outer diameter D2 of the connecting portion 71b, that is, as the value of “D2 / D1” increases.
  • the condition of (a) is the condition that the outer diameter D2 of the connecting portion 71b is larger than the outer diameter D1 of the main body portion 71a.
  • the rigidity of the shaft portion 71 increases, the amount of deformation ⁇ when the balance weight portion 72 is shrink-fitted can be reduced.
  • the value of “D2 / D1” is increased too much, it is necessary to enlarge the frame 50 from the viewpoint of stowage, and the size of the scroll compressor itself must be changed, resulting in an increase in cost.
  • the rigidity of the shaft portion 71 increases as the Young's modulus E1 of the shaft portion 71 is higher than the Young's modulus E2 of the balance weight portion 72, that is, the value of E1 / E2 increases, and the balance weight portion 72 is shrink-fitted.
  • the deformation amount ⁇ at the time can be suppressed.
  • Young's modulus varies depending on the material, there are limited options available for the compressor.
  • the unevenness on the surface of the contact surface between the main body 71a of the bush 70 and the rocking bearing 18 is set to 1.5 ⁇ m or less, depending on the processing accuracy in order to ensure reliability.
  • the bearing is designed so that the minimum oil film thickness is about 3 to 5 ⁇ m from the viewpoint of preventing reliability deterioration due to metal contact. Therefore, it is desirable that the deformation amount ⁇ of the shaft portion 71 be less than the minimum oil film thickness of 3 ⁇ m.
  • the deformation amount ⁇ can be suppressed to 3 ⁇ m or less, and it is not necessary to enlarge the frame 50 from the viewpoint of storage property, and the above (a), (b) Each condition was set.
  • the deformation amount ⁇ can be reduced while preventing the deterioration in manufacturability and the cost by increasing the outer diameter D2 of the connecting portion 71b more than necessary or increasing the Young's modulus E1 of the shaft portion 71 more than necessary.
  • the bushing 70 that can be suppressed and has high reliability can be configured.
  • FIG. 5 shows the result of measuring the amount of deformation in the radial direction of the shaft portion 71 of the scroll compressor by simulation or the like in the scroll compressor that satisfies the condition (a).
  • FIG. 5 is a graph showing the amount of deformation in the radial direction of the shaft portion of the scroll compressor according to Embodiment 1 of the present invention.
  • the horizontal axis indicates the distance from the height position P0 of the shrink-fit upper end to the measurement position P1 on the outer peripheral surface 71aa (hereinafter referred to as “distance from the shrink-fit upper end”) L [mm.
  • the vertical axis represents the deformation amount ⁇ [ ⁇ m] in the radial direction of the shaft portion 71 at the measurement position P1.
  • the amount of deformation ⁇ increases as the distance L from the shrink-fit upper end decreases.
  • the deformation amount ⁇ is about ⁇ 7 ⁇ m in the comparative example
  • the deformation amount ⁇ is suppressed to about ⁇ 2 ⁇ m
  • the deformation amount allowable range is 3 ⁇ m. It turns out that it is less than.
  • the smaller the amount of deformation ⁇ the easier it is to secure the oil film of the rocking bearing 18, so that insufficient lubrication can be suppressed. Therefore, it has been confirmed that the reliability of the rocking bearing 18 is improved in the first embodiment compared to the comparative example.
  • the shrink-fit fixing portion between the balance weight portion 72 and the connecting portion 71b is required to have a holding force that prevents the balance weight portion 72 from separating from the connecting portion 71b when the crankshaft 30 rotates.
  • This holding force increases as the shrink-fitting allowance increases, but if the shrink-fit allowance is excessively increased, the deformation amount ⁇ increases accordingly. Therefore, the lower limit of the shrinkage allowance is set on condition that the necessary holding force is secured, and the upper limit of the shrinkage allowance is set on condition that the deformation amount ⁇ is suppressed to less than 3 ⁇ m as described above.
  • the lower limit of the shrinkage allowance is, for example, about 30 ⁇ m considering machining accuracy.
  • FIG. 6 is a diagram showing the relationship between “(D2-D3) / (D4-D2) ⁇ E1 / E2” and the maximum amount of deformation in the radial direction of the shaft portion.
  • the horizontal axis represents the calculated value of “(D2 ⁇ D3) / (D4 ⁇ D2) ⁇ E1 / E2”, and the vertical axis represents the maximum amount of deformation [ ⁇ m] in the radial direction of the shaft portion 71.
  • FIG. 6 shows the amount of deformation in the radial direction of the shaft portion 71 in the axial direction when shrink-fitting is performed with the bush 70 in which the value of “(D2-D3) / (D4-D2) ⁇ E1 / E2” is changed.
  • the maximum deformation amount is plotted by changing the symbol according to the magnitude relationship with 3 ⁇ m among the deformation amounts obtained by measurement through simulation and the like. “ ⁇ ” indicates a verification point where the maximum deformation amount is less than 3 ⁇ m, “ ⁇ ” indicates a maximum deformation amount of 3 ⁇ m, and “ ⁇ ” indicates a maximum deformation amount of more than 3 ⁇ m.
  • the maximum amount of deformation in the radial direction of the shaft portion 71 can be suppressed to less than 3 ⁇ m, and in order to ensure the reliability of the bearing, “(D2-D3) / (D4-D2) ⁇ E1 / E2 ⁇ It can be seen that “1.0” needs to be satisfied.
  • the material of the shaft portion 71 chromium molybdenum steel or a high-strength sintered material is used to ensure high strength and slidability, and the Young's modulus E1 is about 140 to 220 GPa.
  • the balance weight portion 72 is made of gray cast iron or graphite cast iron in consideration of the strength and manufacturability due to centrifugal force, and the Young's modulus E2 is about 110 to 170 GPa.
  • FIG. 7 is a diagram showing the relationship between “D2 / D1” and “(D2-D3) / (D4-D2) ⁇ E1 / E2”.
  • the horizontal axis represents the calculated value of “D2 / D1”
  • the vertical axis represents the calculated value of “(D2-D3) / (D4-D2) ⁇ E1 / E2.”
  • FIG. 7 shows the radial direction of the shaft portion 71 when shrink fitting is performed with the bush 70 in which the combination of “D2 / D1” and “(D2-D3) / (D4-D2) ⁇ E1 / E2” is changed.
  • the deformation amount is measured by simulation or the like in the axial direction, and the maximum deformation amount among the deformation amounts obtained by measurement is plotted by changing the symbol according to the magnitude relationship with 3 ⁇ m. “ ⁇ ” indicates a verification point where the maximum deformation amount is less than 3 ⁇ m, “ ⁇ ” indicates a maximum deformation amount of 3 ⁇ m, and “ ⁇ ” indicates a maximum deformation amount of more than 3 ⁇ m.
  • a region surrounded by a thick frame indicates a usable range in which the maximum deformation amount in the radial direction of the shaft portion 71 can be set to less than 3 ⁇ m.
  • “D2 / D1 ⁇ 1.2” may be satisfied. Further, from the viewpoint of storage property in the shell 40, “D2 / D1 ⁇ 1.6” was set.
  • the shaft portion 71 is subjected to surface treatment such as quenching and tempering for improving strength, nitriding treatment, manganese phosphate treatment, diamond-like carbon (DLC) treatment for improving slidability. Also good.
  • surface treatment such as quenching and tempering for improving strength, nitriding treatment, manganese phosphate treatment, diamond-like carbon (DLC) treatment for improving slidability. Also good.
  • Both the shaft portion 71 and the balance weight portion 72 use iron-based materials, but when they are not the same material, the linear expansion coefficients are different.
  • the bush 70 according to the first embodiment is desirably mounted on a low-pressure shell type compressor in which the bush 70 is arranged in a low-pressure space where the temperature does not increase.
  • the compressor that needs to be equipped with the bush 70 is a compressor in which the centrifugal force of the orbiting scroll 12 is excessive.
  • the centrifugal force of the orbiting scroll 12 becomes excessive either when the compressor is operated up to a high rotational speed or when the orbiting scroll 12 is heavy. In either case, this is a measure for ensuring the refrigerating capacity, heating, and hot water supply capacity.
  • the amount of deformation of the shaft portion 71 can be suppressed and the reliability of the rocking bearing 18 can be secured, which is effective when a single HFO refrigerant or a mixed refrigerant is used as the refrigerant.
  • the shaft portion 71 of the bush 70 is connected to the substantially cylindrical main body portion 71a and the substantially cylindrical connection extending outward at one end side in the axial direction of the main body portion 71a. It has a configuration in which the portion 71b is integrally formed, and has a structure in which the rigidity of the shaft portion 71 is increased as compared with a configuration in which the connecting portion 71b is not provided.
  • the amount of deformation in the radial direction of the shaft portion 71 during shrink-fitting can be less than 3 ⁇ m.
  • the bush 70 is disposed in the low pressure space in the shell 40 and the atmospheric temperature of the bush 70 does not become high, a gap is generated between the shaft portion 71 and the balance weight portion 72 due to the difference in linear expansion coefficient, and the joining is performed. The inconvenience of detachment can be prevented.
  • FIG. The second embodiment is different from the first embodiment in the shape of the bush 70, and is otherwise the same as the first embodiment. In the following, the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 8 is a cross-sectional view of the bush of the scroll compressor according to Embodiment 2 of the present invention.
  • FIG. 9 is a plan view of the bush of FIG.
  • the bush 70A of the scroll compressor according to the second embodiment is provided with a flexible structure 80 that absorbs deformation of the shaft portion 71 at the time of shrink fitting on the connecting portion 71b of the bush 70 according to the first embodiment shown in FIG. It is.
  • the flexible structure 80 is configured by a recess provided on the surface on the main body 71a side of both end surfaces in the axial direction of the connecting portion 71b.
  • the recess is formed in an annular shape centering on the central axis of the main body 71a.
  • the deformation of the shaft portion 71 of the bush 70A at the time of shrink fitting is absorbed, and the deformation amount ⁇ can be made smaller than that of the first embodiment shown in FIG. Specifically, the amount of deformation in the radial direction of the shaft portion 71 can be further suppressed from 3 ⁇ m.
  • FIG. 10 is a graph showing the amount of radial deformation of the shaft portion of the scroll compressor according to Embodiment 2 of the present invention.
  • the horizontal axis represents the distance L [mm] from the height position P0 of the shrink-fit upper end to the measurement position P1 on the outer peripheral surface 71aa
  • the vertical axis represents the radial deformation amount ⁇ [ ⁇ m] at the measurement position P1. It is. Refer to FIG. 4 for P0, P1, and ⁇ .
  • (1) shows a graph of the first embodiment
  • (2) shows a graph of the second embodiment.
  • the deformation amount ⁇ can be made smaller in the second embodiment than in the first embodiment.
  • the same effect as in the first embodiment can be obtained, and the deformation amount ⁇ can be further reduced by providing the flexible structure 80. Further, the amount of deformation in the radial direction of the shaft portion 71 can be adjusted by changing the depth and width of the groove of the flexible structure 80.
  • liquid back in which liquid refrigerant returns to the oil reservoir 41 may occur.
  • the viscosity of the lubricating oil decreases, and the oil film thickness of the rocking bearing 18 becomes transiently less than 3 ⁇ m, and the rocking bearing 18 may seize.
  • the deformation amount ⁇ can be further reduced by providing the flexible structure 80, even when the oil film thickness of the rocking bearing 18 becomes transiently thin, such as during liquid back, the oil film thickness is reduced. The thickness can be maintained at 3 ⁇ m or more, and high reliability can be secured.
  • the connecting portion 71b of the shaft portion 71 of the bush 70 and the balance weight portion 72 have been described as being joined by shrink fitting, but they may be joined by press-fitting. By adopting the above configuration, the deformation amount ⁇ can be suppressed.
  • the bush of the present invention is not limited to the structure shown in each of the above drawings, and can be variously modified as follows without departing from the gist of the present invention.
  • FIG. 8 the structure in which the flexible structure 80 is formed by one annular recess that is continuous as a whole is illustrated and described. However, the recess is divided into a plurality of arcs and is formed in an annular shape as a whole. May be.
  • FIG. 11 is a plan view showing Modification Example 1 of the flexible structure.
  • the flexible structure 80 is configured by arranging a plurality of circular recesses 80a in a ring shape when seen in a plan view.
  • FIG. 12 is a cross-sectional view showing Modification Example 2 of the flexible structure.
  • 13 is a plan view of the flexible structure of FIG. In FIG. 8, FIG. 9 and FIG. 11, the flexible structure 80 is provided over 360 °.
  • the structure is provided with the flexible structure 80 only in a range where the rigidity is high due to the balance weight portion 72 and the deformation due to shrink fitting is large.
  • a flexible structure 80 constituted by a concave portion is provided in a range of, for example, 180 ° on the side where the balance weight portion 72 is joined in the connecting portion 71 b.
  • the angle range in which the flexible structure 80 is provided is not limited to 180 °, and may be larger or smaller.
  • FIG. 13 shows an example in which the flexible structure 80 is configured by an arc-shaped recess when viewed in a plan view. However, as shown in FIG. It is good also as a structure arrange
  • FIG. 14 is a plan view showing Modification 3 of the flexible structure.
  • the flexible structure 80 of Modification 3 is configured by dividing the flexible structure 80 of Modification 2 shown in FIG. 13 into a plurality (here, two).

Abstract

This scroll compressor is provided with a bush including: a shaft portion disposed between an orbiting bearing that supports an orbiting scroll and an eccentric pin of a crankshaft; and a balance weight portion secured by shrink-fitting to the outer circumference of the shaft portion. The shaft portion is provided with: a cylindrically shaped main body portion which is fitted into the orbiting bearing and into which the eccentric pin of the crankshaft is inserted; and a cylindrically shaped linking portion which extends outward from the end portion, in the axial direction, of the main body portion, and to which the balance weight portion is joined. Furthermore, the bush satisfies the following conditions (a) and (b). (a) 1.2 ≤ D2/D1 ≤ 1.6 (b) 1.0 ≤ (D2-D3)/(D4-D2)×E1/E2 ≤ 3.5 Where D1: external diameter of main body portion, D2: external diameter of linking portion, D3: internal diameter of main body portion, D4: external diameter of balance weight portion, E1: Young's modulus of shaft portion, E2: Young's modulus of balance weight portion

Description

スクロール圧縮機Scroll compressor
 この発明は、主に冷凍機、空気調和機、給湯機等に搭載されるスクロール圧縮機に関するものである。 The present invention relates to a scroll compressor mounted mainly in a refrigerator, an air conditioner, a water heater or the like.
 従来より、固定スクロールの渦巻体と揺動スクロールの渦巻体とをかみ合わせて複数の圧縮室を形成するスクロール圧縮機がある。この種のスクロール圧縮機において、揺動スクロールの台板において渦巻体とは反対側には円筒状のボス部が形成されており、このボス部と、揺動スクロールを回転させるクランクシャフトの上端部に設けられた偏心ピン部との間に、揺動軸受を介してブッシュの軸部が嵌め合わされ、軸部にバランスウェイト部が焼嵌固定されたスクロール圧縮機がある(例えば、特許文献1参照)。 Conventionally, there is a scroll compressor that forms a plurality of compression chambers by meshing a spiral body of a fixed scroll and a spiral body of an orbiting scroll. In this type of scroll compressor, a cylindrical boss portion is formed on the side of the swing scroll base plate opposite to the spiral body, and this boss portion and the upper end portion of the crankshaft that rotates the swing scroll. There is a scroll compressor in which a shaft portion of a bush is fitted through an oscillating bearing between an eccentric pin portion provided on the shaft and a balance weight portion is fixed by shrinkage to the shaft portion (see, for example, Patent Document 1). ).
 バランスウェイト部は、揺動スクロールの遠心力を打ち消して圧縮要素の振動を抑えるために設けられている。また、軸部は、揺動スクロールの公転時に常に固定スクロールの渦巻体と揺動スクロールの渦巻体とが互いに接した状態となるように設けられたものであり、偏心ピン部に対してスライド自在に嵌め合わされ、揺動スクロールの公転半径を自動的に調整するものである(例えば、特許文献1参照)。 The balance weight part is provided to cancel the centrifugal force of the orbiting scroll and suppress the vibration of the compression element. The shaft portion is provided so that the fixed scroll spiral body and the swing scroll spiral body are always in contact with each other when the swing scroll revolves, and is slidable with respect to the eccentric pin section. And the revolution radius of the orbiting scroll is automatically adjusted (see, for example, Patent Document 1).
特許第3026672号公報Japanese Patent No. 3026672
 特許文献1のスクロール圧縮機では、軸部とバランスウェイト部と焼嵌め又は圧入で接合しており、接合時に互いに押圧し合う圧力が生じ、この圧力により、軸部が径方向内側に縮小するように変形することがある。このような変形が生じると、軸部の外周面と軸部の外側に位置する揺動軸受との間に必要以上の隙間が生し、この隙間から潤滑油が漏れて油膜厚さが薄くなり、摩耗、焼付き等が発生して信頼性が低下するという問題があった。 In the scroll compressor of Patent Document 1, the shaft portion and the balance weight portion are joined by shrink fitting or press fitting, and pressure is generated that presses each other at the time of joining, and this pressure causes the shaft portion to shrink radially inward. May be deformed. When such a deformation occurs, an unnecessary gap is generated between the outer peripheral surface of the shaft portion and the rocking bearing located outside the shaft portion, and the lubricating oil leaks from this gap and the oil film thickness becomes thin. There is a problem that reliability is lowered due to wear, seizure, and the like.
 この発明は、上記のよう課題を解決するためになされたもので、軸部の径方向の変形量を抑えることができ、信頼性を向上したスクロール圧縮機を得ることを目的とするものである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a scroll compressor that can suppress the amount of deformation of the shaft portion in the radial direction and has improved reliability. .
 この発明に係るスクロール圧縮機は、固定スクロールと揺動スクロールとを互いに組合せて圧縮室を形成し、揺動スクロールを駆動して圧縮室内の流体を圧縮する圧縮部と、揺動スクロールに回転力を伝える偏心ピン部を有し、揺動スクロールを駆動するクランクシャフトと、揺動スクロールを支持する揺動軸受と、揺動軸受とクランクシャフトの偏心ピンとの間に配置された軸部と、軸部の外周に焼嵌固定されたバランスウェイト部とを有するブッシュとを備え、軸部は、揺動軸受に嵌め込まれ、且つクランクシャフトの偏心ピンが挿入される円筒形状の本体部と、本体部の軸方向の端部から外方に延出し、バランスウェイト部が接合される円筒形状の連結部とを備え、ブッシュは以下の(a)、(b)の条件を満たすものである。
 (a)1.2≦D2/D1≦1.6
 (b)1.0≦(D2-D3)/(D4-D2)×E1/E2≦3.5
 ここで、D1:本体部の外径、D2:連結部の外径、D3:本体部の内径、D4:バランスウェイト部の外径、E1:軸部のヤング率、E2:バランスウェイト部のヤング率
A scroll compressor according to the present invention forms a compression chamber by combining a fixed scroll and an orbiting scroll with each other, drives the orbiting scroll to compress the fluid in the compression chamber, and a rotational force on the orbiting scroll. A crank shaft that drives the orbiting scroll, an orbiting bearing that supports the orbiting scroll, a shaft portion disposed between the orbiting bearing and the eccentric pin of the crankshaft, and a shaft A bush having a balance weight portion fixed by shrink fitting on the outer periphery of the shaft, the shaft portion being fitted into the rocking bearing, and a cylindrical body portion into which an eccentric pin of the crankshaft is inserted, and a body portion And a cylindrical connecting portion to which the balance weight portion is joined, and the bush satisfies the following conditions (a) and (b).
(A) 1.2 ≦ D2 / D1 ≦ 1.6
(B) 1.0 ≦ (D2-D3) / (D4-D2) × E1 / E2 ≦ 3.5
Here, D1: outer diameter of the main body part, D2: outer diameter of the connecting part, D3: inner diameter of the main body part, D4: outer diameter of the balance weight part, E1: Young's modulus of the shaft part, E2: Young of the balance weight part rate
 この発明によれば、軸部の径方向の変形量を抑えることができ、信頼性を向上したスクロール圧縮機を得ることができる。 According to this invention, the amount of deformation in the radial direction of the shaft portion can be suppressed, and a scroll compressor with improved reliability can be obtained.
この発明の実施の形態1に係るスクロール圧縮機の縦概略断面図である。1 is a longitudinal schematic cross-sectional view of a scroll compressor according to Embodiment 1 of the present invention. この発明の実施の形態1に係るスクロール圧縮機のブッシュの構造を示す断面図である。It is sectional drawing which shows the structure of the bush of the scroll compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るスクロール圧縮機のブッシュの構造を示す平面図である。It is a top view which shows the structure of the bush of the scroll compressor which concerns on Embodiment 1 of this invention. ブッシュの軸部にバランスウェイト部を焼嵌固定した際に生じる軸部の変形を説明するための模式図である。It is a schematic diagram for demonstrating the deformation | transformation of the axial part which arises when a balance weight part is shrink-fitted and fixed to the axial part of a bush. この発明の実施の形態1に係るスクロール圧縮機の軸部の径方向の変形量を示すグラフである。It is a graph which shows the deformation amount of the radial direction of the axial part of the scroll compressor which concerns on Embodiment 1 of this invention. 「(D2-D3)/(D4-D2)×E1/E2」と、軸部の径方向の最大変形量との関係を示す図である。FIG. 5 is a diagram showing a relationship between “(D2-D3) / (D4-D2) × E1 / E2” and the maximum amount of deformation in the radial direction of the shaft portion. 「D2/D1」と「(D2-D3)/(D4-D2)×E1/E2」との関係を示す図である。It is a figure which shows the relationship between "D2 / D1" and "(D2-D3) / (D4-D2) * E1 / E2". この発明の実施の形態2に係るスクロール圧縮機のブッシュ70の断面図である。It is sectional drawing of the bush 70 of the scroll compressor which concerns on Embodiment 2 of this invention. 図8のブッシュの平面図である。It is a top view of the bush of FIG. この発明の実施の形態2に係るスクロール圧縮機の軸部の径方向の変形量を示すグラフである。It is a graph which shows the deformation amount of the radial direction of the axial part of the scroll compressor which concerns on Embodiment 2 of this invention. 柔構造の変形例1を示す平面図である。It is a top view which shows the modification 1 of a flexible structure. 柔構造の変形例2を示す断面図である。It is sectional drawing which shows the modification 2 of a flexible structure. 図12の柔構造の平面図である。It is a top view of the flexible structure of FIG. 柔構造の変形例3を示す平面図である。It is a top view which shows the modification 3 of a flexible structure.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ及び配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Moreover, the shape, size, arrangement, and the like of the configurations described in the drawings can be changed as appropriate within the scope of the present invention.
実施の形態1.
 以下、実施の形態1について説明する。図1は、この発明の実施の形態1に係るスクロール圧縮機の縦概略断面図である。
 このスクロール圧縮機は、冷媒等の流体を吸入し、圧縮して高温高圧の状態として吐出させる機能を有している。スクロール圧縮機は、圧縮機構部10と、駆動機構部20と、この圧縮機構部10と駆動機構部20とを連結し、駆動機構部20の発生する回転力を圧縮機構部10に伝達するクランクシャフト30と、その他の構成部品とを有し、これらが外郭を構成するシェル40の内部に収納された構成を有している。そして、シェル40の下部には、潤滑油を貯留する油溜り41が設けられている。油溜り41内には、クランクシャフト30の下端部に固着されたオイルポンプ42が浸漬しており、クランクシャフト30の回転に伴って潤滑油がクランクシャフト30内の油流路31内を通り、圧縮機構部10の各摺動部に供給されるようになっている。
Embodiment 1 FIG.
The first embodiment will be described below. FIG. 1 is a schematic vertical sectional view of a scroll compressor according to Embodiment 1 of the present invention.
This scroll compressor has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high temperature and high pressure state. The scroll compressor includes a compression mechanism unit 10, a drive mechanism unit 20, a crank that connects the compression mechanism unit 10 and the drive mechanism unit 20 and transmits the rotational force generated by the drive mechanism unit 20 to the compression mechanism unit 10. The shaft 30 and other components are included, and these are housed in the shell 40 that forms the outer shell. An oil sump 41 for storing lubricating oil is provided at the lower part of the shell 40. An oil pump 42 fixed to the lower end portion of the crankshaft 30 is immersed in the oil sump 41, and the lubricating oil passes through the oil passage 31 in the crankshaft 30 as the crankshaft 30 rotates, It is supplied to each sliding part of the compression mechanism part 10.
 また、シェル40の側面には冷媒を吸入するための吸入管43が設けられ、シェル40の上面には圧縮した冷媒を吐出するための吐出管44が設けられている。 Further, a suction pipe 43 for sucking the refrigerant is provided on the side surface of the shell 40, and a discharge pipe 44 for discharging the compressed refrigerant is provided on the upper surface of the shell 40.
 圧縮機構部10は、固定スクロール11と揺動スクロール12とを備えている。固定スクロール11は、第1台板11aと、第1台板11aの一方の面に立設された第1渦巻体11bと、で構成されている。揺動スクロール12は、第2台板12aと、第2台板12aの一方の面に立設された第2渦巻体12bと、で構成されている。固定スクロール11及び揺動スクロール12は、第1渦巻体11bと第2渦巻体12bとを互いに噛み合わせた状態でシェル40内に配置されている。そして、第1渦巻体11b及び第2渦巻体12bとの間には、クランクシャフト30の回転に伴い、半径方向外側から内側へ向かうに従って容積が縮小する圧縮室13が形成されている。 The compression mechanism unit 10 includes a fixed scroll 11 and a swing scroll 12. The fixed scroll 11 includes a first base plate 11a and a first spiral body 11b erected on one surface of the first base plate 11a. The orbiting scroll 12 includes a second base plate 12a and a second spiral body 12b erected on one surface of the second base plate 12a. The fixed scroll 11 and the swing scroll 12 are disposed in the shell 40 in a state where the first spiral body 11b and the second spiral body 12b are engaged with each other. A compression chamber 13 is formed between the first spiral body 11b and the second spiral body 12b. The compression chamber 13 decreases in volume as the crankshaft 30 rotates from the radially outer side toward the inner side.
 固定スクロール11は、フレーム50を介してシェル40内に固定されている。固定スクロール11の中央部には、圧縮されて高圧となった流体を吐出する吐出ポート14が形成されている。吐出ポート14の出口開口部には、この出口開口部を覆い、流体の逆流を防ぐ板バネ製の弁15が配設されている。弁15の一端側には、弁15のリフト量を制限する弁押さえ16が設けられている。つまり、圧縮室13内で流体が所定圧力まで圧縮されると、弁15が、その弾性力に逆らって持ち上げられ、圧縮された流体が吐出ポート14から高圧空間17内に吐出され、吐出管44を通ってスクロール圧縮機の外部に吐出される。 The fixed scroll 11 is fixed in the shell 40 through the frame 50. A discharge port 14 is formed at the center of the fixed scroll 11 to discharge the compressed and high pressure fluid. A leaf spring valve 15 is disposed at the outlet opening of the discharge port 14 so as to cover the outlet opening and prevent backflow of fluid. A valve retainer 16 that restricts the lift amount of the valve 15 is provided on one end side of the valve 15. That is, when the fluid is compressed to a predetermined pressure in the compression chamber 13, the valve 15 is lifted against the elastic force, and the compressed fluid is discharged from the discharge port 14 into the high-pressure space 17, and the discharge pipe 44. And is discharged to the outside of the scroll compressor.
 揺動スクロール12は、オルダムリング60によって固定スクロール11に対して自転することなく偏心公転運動を行うようになっている。このオルダムリング60は揺動スクロール12とフレーム50との間に配設されている。また、揺動スクロール12の第2台板12aにおいて第2渦巻体12b形成面とは反対側の面の略中心部には、中空円筒形状のボス部12cが形成されている。ボス部12cの内側には、滑り軸受で構成された揺動軸受18が嵌め合わされており、クランクシャフト30の上端部に形成された後述の偏心ピン部30aが、後述のブッシュ70の軸部71を介して揺動軸受18に連結されている。 The rocking scroll 12 performs an eccentric revolving motion without rotating with respect to the fixed scroll 11 by the Oldham ring 60. The Oldham ring 60 is disposed between the orbiting scroll 12 and the frame 50. In addition, a hollow cylindrical boss portion 12c is formed at a substantially central portion of the surface of the second base plate 12a of the orbiting scroll 12 opposite to the surface on which the second spiral body 12b is formed. An oscillating bearing 18 composed of a sliding bearing is fitted inside the boss portion 12c, and an eccentric pin portion 30a described later formed on the upper end portion of the crankshaft 30 is a shaft portion 71 of a bush 70 described later. It is connected to the rocking bearing 18 via.
 駆動機構部20は、ステータ21と、ステータ21の内周面側に回転可能に配設され、クランクシャフト30に固定されたロータ22とを備えている。ステータ21は、通電されることによってロータ22を回転駆動させる機能を有している。また、ステータ21は、外周面が焼き嵌め等によりシェル40に固着支持されている。ロータ22は、ステータ21に通電がされることにより回転駆動し、クランクシャフト30を回転させる機能を有している。 The drive mechanism unit 20 includes a stator 21 and a rotor 22 that is rotatably disposed on the inner peripheral surface side of the stator 21 and is fixed to the crankshaft 30. The stator 21 has a function of rotating the rotor 22 when energized. In addition, the outer peripheral surface of the stator 21 is fixedly supported on the shell 40 by shrink fitting or the like. The rotor 22 has a function of rotating and driving the crankshaft 30 when the stator 21 is energized.
 シェル40には更に、駆動機構部20を挟んで対向するようにフレーム50とサブフレーム51とが配置されている。フレーム50は、駆動機構部20の上側に配置されて駆動機構部20と圧縮機構部10との間に位置しており、サブフレーム51は、駆動機構部20の下側に位置している。フレーム50及びサブフレーム51は、焼き嵌め、溶接等によってシェル40の内周面に固着されている。フレーム50の中央部には主軸受50aが設けられ、また、サブフレーム51の中央部には副軸受51aが設けられており、この主軸受50a及び副軸受51aにクランクシャフト30が回転自在に支持されている。 Further, a frame 50 and a sub frame 51 are arranged on the shell 40 so as to face each other with the drive mechanism unit 20 interposed therebetween. The frame 50 is disposed on the upper side of the drive mechanism unit 20 and is positioned between the drive mechanism unit 20 and the compression mechanism unit 10, and the sub-frame 51 is positioned on the lower side of the drive mechanism unit 20. The frame 50 and the sub frame 51 are fixed to the inner peripheral surface of the shell 40 by shrink fitting, welding, or the like. A main bearing 50a is provided at the center of the frame 50, and a sub bearing 51a is provided at the center of the sub frame 51, and the crankshaft 30 is rotatably supported by the main bearing 50a and the sub bearing 51a. Has been.
 クランクシャフト30は、上端部に、クランクシャフト30の軸心から偏心した偏心ピン部30aを有している。偏心ピン部30aは、上述したようにブッシュ70の軸部71を介してボス部12cに連結されており、クランクシャフト30の回転により揺動スクロール12を偏心回転させるようになっている。 The crankshaft 30 has an eccentric pin portion 30a that is eccentric from the axis of the crankshaft 30 at the upper end. As described above, the eccentric pin portion 30 a is connected to the boss portion 12 c via the shaft portion 71 of the bush 70, and rotates the rocking scroll 12 eccentrically by the rotation of the crankshaft 30.
 図2は、この発明の実施の形態1に係るスクロール圧縮機のブッシュの構造を示す断面図である。図3は、この発明の実施の形態1に係るスクロール圧縮機のブッシュの構造を示す平面図である。図2及び図3におけるD1~D4については後述の図4で説明する。 ブッシュ70は、略円筒形状の軸部71とバランスウェイト部72とを有している。軸部71は、略円筒形状の本体部71aと、本体部71aの軸方向の一端側(図2では下端側)で外方に延出した略円筒形状の連結部71bとが一体に形成された構成を有する。バランスウェイト部72は貫通孔72aを有し、貫通孔72a内に軸部71の連結部71bが挿入された状態で、連結部71b部分で軸部71とバランスウェイト部72とが焼嵌め接合されている。 FIG. 2 is a cross-sectional view showing the structure of the bush of the scroll compressor according to Embodiment 1 of the present invention. FIG. 3 is a plan view showing the structure of the bush of the scroll compressor according to Embodiment 1 of the present invention. D1 to D4 in FIGS. 2 and 3 will be described later with reference to FIG. The bush 70 has a substantially cylindrical shaft portion 71 and a balance weight portion 72. The shaft portion 71 is integrally formed with a substantially cylindrical main body portion 71a and a substantially cylindrical connecting portion 71b extending outwardly on one axial end side (lower end side in FIG. 2) of the main body portion 71a. Have a configuration. The balance weight portion 72 has a through hole 72a, and the shaft portion 71 and the balance weight portion 72 are shrink-fitted and joined at the connection portion 71b in a state where the connection portion 71b of the shaft portion 71 is inserted into the through hole 72a. ing.
 軸部71の本体部71aは、揺動スクロール12を支持する揺動軸受18に回転可能に嵌め込まれ、また、軸部71の中央部に形成されたスライド穴73に、偏心ピン部30aがクランクシャフト30の径方向にスライド自在に挿入される。よって、クランクシャフト30が回転すると、その回転力が軸部71を介して揺動スクロール12に伝達され、揺動スクロール12が公転するようになっている。このとき、バランスウェイト部72に対する遠心力の作用により、ブッシュ70がスライド穴73の平面部73aに沿って径方向に移動し、この移動に伴って揺動スクロール12も移動して揺動スクロール12の第2渦巻体12bが固定スクロール11の第1渦巻体11bに押し付けられる。これにより圧縮室13のシール性を向上させる従動クランク機構が構成されている。 The main body portion 71 a of the shaft portion 71 is rotatably fitted in the rocking bearing 18 that supports the rocking scroll 12, and the eccentric pin portion 30 a is cranked in the slide hole 73 formed in the center portion of the shaft portion 71. It is slidably inserted in the radial direction of the shaft 30. Therefore, when the crankshaft 30 rotates, the rotational force is transmitted to the orbiting scroll 12 via the shaft portion 71, and the orbiting scroll 12 revolves. At this time, the bush 70 moves in the radial direction along the flat surface portion 73a of the slide hole 73 by the action of the centrifugal force on the balance weight portion 72, and the orbiting scroll 12 also moves along with this movement. The second spiral body 12 b is pressed against the first spiral body 11 b of the fixed scroll 11. Thus, a driven crank mechanism that improves the sealing performance of the compression chamber 13 is configured.
 ここで、スクロール圧縮機の動作について簡単に説明する。
 シェル40に設けられた図示省略の電源端子に通電されると、ステータ21とロータ22とにトルクが発生し、クランクシャフト30が回転する。クランクシャフト30の回転力はブッシュ70を介して揺動スクロール12に伝えられ、揺動スクロール12はオルダムリング60により自転を規制されて偏心公転運動する。
Here, the operation of the scroll compressor will be briefly described.
When a power supply terminal (not shown) provided in the shell 40 is energized, torque is generated in the stator 21 and the rotor 22 and the crankshaft 30 rotates. The rotational force of the crankshaft 30 is transmitted to the orbiting scroll 12 via the bush 70, and the orbiting scroll 12 is controlled to rotate by the Oldham ring 60 and eccentrically revolves.
 吸入管43からシェル40内に吸入されたガス冷媒は、圧縮室13内に取り込まれる。そして、ガスを取り込んだ圧縮室13は、揺動スクロール12の偏心公転運動に伴い、外周部から中心方向に移動しながら容積を減じ、冷媒を圧縮する。そして、圧縮された冷媒ガスは、固定スクロール11に設けた吐出ポート14から弁15及び弁押さえ16に逆らって吐出され、吐出管44からシェル40外に排出される。 The gas refrigerant sucked into the shell 40 from the suction pipe 43 is taken into the compression chamber 13. And the compression chamber 13 which took in gas reduces a volume, moving to a center direction from an outer peripheral part with the eccentric revolving motion of the rocking scroll 12, and compresses a refrigerant | coolant. Then, the compressed refrigerant gas is discharged from the discharge port 14 provided in the fixed scroll 11 against the valve 15 and the valve retainer 16 and discharged from the discharge pipe 44 to the outside of the shell 40.
 揺動スクロール12の偏心公転運転時、揺動スクロール12は自身の遠心力により、ブッシュ70と共に径方向に移動し、第1渦巻体11bと第2渦巻体12bとが密接する。従って、圧縮室13において高圧側から低圧側への冷媒漏れを防止し、効率の良い圧縮が行われる。 During the eccentric revolving operation of the orbiting scroll 12, the orbiting scroll 12 moves in the radial direction together with the bush 70 by its centrifugal force, and the first spiral body 11b and the second spiral body 12b are brought into close contact with each other. Accordingly, refrigerant leakage from the high pressure side to the low pressure side is prevented in the compression chamber 13, and efficient compression is performed.
 第1渦巻体11bと第2渦巻体12bとが密接するとき、揺動スクロール12の重量、公転半径及びクランクシャフト30の回転数によっては、第2渦巻体12bの第1渦巻体11bに対する押し付け力が過大となる。この場合、第1渦巻体11bと第2渦巻体12bとの摺動に伴う摺動ロスが増加し、スクロール圧縮機の効率が低下する。しかし、ブッシュ70のバランスウェイト部72に、揺動スクロール12の遠心力方向と180°反対方向の遠心力が作用することで、ブッシュ70を、クランクシャフト30の偏心ピン部30aに対して前記180°反対方向の径方向へスライドさせて押し付け力を調整し、摺動ロスの増加を防止している。 When the first spiral body 11b and the second spiral body 12b are in close contact, the pressing force of the second spiral body 12b against the first spiral body 11b depends on the weight of the orbiting scroll 12, the revolution radius, and the rotational speed of the crankshaft 30. Becomes excessive. In this case, the sliding loss accompanying the sliding of the first spiral body 11b and the second spiral body 12b increases, and the efficiency of the scroll compressor decreases. However, when the centrifugal force in the direction 180 ° opposite to the centrifugal force direction of the orbiting scroll 12 acts on the balance weight portion 72 of the bush 70, the bush 70 is rotated 180 degrees with respect to the eccentric pin portion 30a of the crankshaft 30. ° Slide in the opposite radial direction to adjust the pressing force to prevent an increase in sliding loss.
 クランクシャフト30が回転しているとき、軸部71の本体部71aは揺動スクロール12のボス部12cに揺動軸受18を介して摺動するため、本体部71aの外周面71aaは可能な限りうねりが小さく、平坦な平面とすることが求められる。しかし、軸部71にバランスウェイト部72を焼嵌固定する際に、焼嵌めによる相互圧力により軸部71が外径を縮小する方向に変形する。この変形について次の図4を用いて説明する。 When the crankshaft 30 is rotating, the main body portion 71a of the shaft portion 71 slides on the boss portion 12c of the rocking scroll 12 via the rocking bearing 18, so that the outer peripheral surface 71aa of the main body portion 71a is as much as possible. It is required to have a flat surface with small undulations. However, when the balance weight portion 72 is shrink-fitted and fixed to the shaft portion 71, the shaft portion 71 is deformed in a direction of reducing the outer diameter due to the mutual pressure due to the shrink-fitting. This modification will be described with reference to FIG.
 図4は、ブッシュの軸部にバランスウェイト部を焼嵌固定した際に生じる軸部の変形を説明するための模式図である。図4において実線は変形前、点線は変形後を示している。
 図4に示すように、本体部71aは連結部71bとの境界部分が径方向内側に縮小するように変形する。また、連結部71bも、外径が径方向内側に縮小するように変形を生じる。つまり、軸部71は本体部71a及び連結部71bの両方において外径が径方向内側に縮小するように変形を生じる。一方、バランスウェイト部72は、焼嵌めによる相互圧力で、内径が拡大する方向に変形を生じる。図4における位置P0、P1、距離L及び変形量ξについては後述する。
FIG. 4 is a schematic diagram for explaining the deformation of the shaft portion that occurs when the balance weight portion is shrink-fitted and fixed to the shaft portion of the bush. In FIG. 4, the solid line indicates before deformation, and the dotted line indicates after deformation.
As shown in FIG. 4, the main body 71a is deformed so that the boundary with the connecting portion 71b is reduced radially inward. Further, the connecting portion 71b is also deformed so that the outer diameter is reduced radially inward. That is, the shaft portion 71 is deformed so that the outer diameter is reduced radially inward in both the main body portion 71a and the connecting portion 71b. On the other hand, the balance weight portion 72 is deformed in the direction in which the inner diameter is expanded by mutual pressure due to shrink fitting. The positions P0 and P1, the distance L, and the deformation amount ξ in FIG. 4 will be described later.
 そこで、この軸部71の径方向の変形量の抑制を図ることを目的として、この実施の形態1では、ブッシュ70を以下(a)、(b)の条件を満たすように設計した。この条件におけるD1~D4は図2及び図3を参照されたい。 Therefore, for the purpose of suppressing the amount of deformation in the radial direction of the shaft portion 71, the bush 70 is designed to satisfy the following conditions (a) and (b) in the first embodiment. Refer to FIGS. 2 and 3 for D1 to D4 in this condition.
(a)1.2≦D2/D1≦1.6
(b)1.0≦(D2-D3)/(D4-D2)×E1/E2≦3.5
 ここで、
 D1:本体部71aの外径
 D2:連結部71bの外径
 D3:本体部71aの内径
 D4:バランスウェイト部72の外径
 E1:軸部71のヤング率
 E2:バランスウェイト部72のヤング率
(A) 1.2 ≦ D2 / D1 ≦ 1.6
(B) 1.0 ≦ (D2-D3) / (D4-D2) × E1 / E2 ≦ 3.5
here,
D1: Outer diameter of main body 71a D2: Outer diameter of connecting part 71b D3: Inner diameter of main body 71a D4: Outer diameter of balance weight 72 E1: Young's modulus of shaft 71 E2: Young's modulus of balance weight 72
 以下、(a)、(b)の条件を設定した理由について説明する。
 焼嵌め時において、ブッシュ70の軸部71が径方向内側に縮小するのは、上述したように、軸部71とバランスウェイト部72との間で互いに押圧する圧力が生じるからである。よって、本体部71aに、本体部71aよりも外径の大きい連結部71bを設け、バランスウェイト部72に焼嵌めされる部分の肉厚を増して剛性を高めることで、本体部71aに連結部71bを設けずに直接、バランスウェイト部72を接合する場合に比べて、軸部71の径方向の変形量を抑制することができる。
Hereinafter, the reason why the conditions (a) and (b) are set will be described.
The reason why the shaft portion 71 of the bush 70 shrinks radially inward during shrink fitting is that pressure pressing the shaft portion 71 and the balance weight portion 72 is generated between the shaft portion 71 and the balance weight portion 72 as described above. Therefore, the connecting portion 71b having a larger outer diameter than that of the main body portion 71a is provided in the main body portion 71a, and the thickness of the portion that is shrink-fitted to the balance weight portion 72 is increased to increase the rigidity. Compared with the case where the balance weight part 72 is directly joined without providing the 71b, the deformation amount of the shaft part 71 in the radial direction can be suppressed.
 軸部71の剛性は、本体部71aの外径D1が連結部71bの外径D2より小さくなる程、つまり「D2/D1」の値が大きくなるほど上昇する。連結部71bの外径D2を本体部71aの外径D1よりもどの程度、大きくするかの条件が上記(a)の条件である。そして、軸部71の剛性が高くなる程、バランスウェイト部72が焼嵌められたときの変形量ξを小さくできる。しかし、「D2/D1」の値を大きくし過ぎると、収納性の観点からフレーム50も合わせて拡大する必要が生じ、スクロール圧縮機の大きさそのものを変えなければならずコスト増加となる。 The rigidity of the shaft portion 71 increases as the outer diameter D1 of the main body portion 71a becomes smaller than the outer diameter D2 of the connecting portion 71b, that is, as the value of “D2 / D1” increases. The condition of (a) is the condition that the outer diameter D2 of the connecting portion 71b is larger than the outer diameter D1 of the main body portion 71a. As the rigidity of the shaft portion 71 increases, the amount of deformation ξ when the balance weight portion 72 is shrink-fitted can be reduced. However, if the value of “D2 / D1” is increased too much, it is necessary to enlarge the frame 50 from the viewpoint of stowage, and the size of the scroll compressor itself must be changed, resulting in an increase in cost.
 また、連結部71bの外径D2、本体部71aの内径D3、バランスウェイト部72の外径D4の関係において、「D2-D3」が「D4-D2」より大きいほど、つまり「(D2-D3)/(D4-D2)」の値が大きいほど、軸部71の剛性が高くなる。よって、「(D2-D3)/(D4-D2)」の値が大きいほど、焼嵌めによる相互圧力が小さくなるため、変形量ξを抑えられる。しかし、「(D2-D3)/(D4-D2)」の値を大きくし過ぎると、収納性の観点からフレーム50も合わせて拡大する必要がありコスト増加となる。 Further, in the relationship between the outer diameter D2 of the connecting portion 71b, the inner diameter D3 of the main body portion 71a, and the outer diameter D4 of the balance weight portion 72, “D2-D3” is larger than “D4-D2”, that is, “(D2-D3 ) / (D4-D2) ”is larger, the rigidity of the shaft portion 71 is higher. Therefore, the larger the value of “(D2-D3) / (D4-D2)”, the smaller the mutual pressure due to shrink fitting, so that the deformation amount ξ can be suppressed. However, if the value of “(D2−D3) / (D4−D2)” is too large, the frame 50 needs to be enlarged together from the viewpoint of stowage, resulting in an increase in cost.
 また更に、軸部71のヤング率E1がバランスウェイト部72のヤング率E2より高いほど、つまりE1/E2の値が大きいほど、軸部71の剛性は上がり、バランスウェイト部72が焼嵌められたときの変形量ξを抑えることができる。しかし、ヤング率は素材によって変わるため圧縮機に使用できる選択肢としては限りがある。 Furthermore, the rigidity of the shaft portion 71 increases as the Young's modulus E1 of the shaft portion 71 is higher than the Young's modulus E2 of the balance weight portion 72, that is, the value of E1 / E2 increases, and the balance weight portion 72 is shrink-fitted. The deformation amount ξ at the time can be suppressed. However, since Young's modulus varies depending on the material, there are limited options available for the compressor.
 また、ブッシュ70の本体部71aと揺動軸受18との互いの接触面の表面の凹凸は、信頼性を確保するため、加工精度にも依存するがそれぞれ1.5μm以内とされる。一般的に軸受は、金属接触による信頼性低下を防止するという観点から、最小油膜厚さが3~5μm程度となるように設計される。従って、軸部71の変形量ξは最小油膜厚さの3μm未満に収めることが望ましい。 Further, the unevenness on the surface of the contact surface between the main body 71a of the bush 70 and the rocking bearing 18 is set to 1.5 μm or less, depending on the processing accuracy in order to ensure reliability. In general, the bearing is designed so that the minimum oil film thickness is about 3 to 5 μm from the viewpoint of preventing reliability deterioration due to metal contact. Therefore, it is desirable that the deformation amount ξ of the shaft portion 71 be less than the minimum oil film thickness of 3 μm.
 そこでこの実施の形態1では、変形量ξを3μm以下に抑えることができ、また、収納性の観点からフレーム50の拡大を行う必要の無いことを設計条件として、上記(a)、(b)のそれぞれの条件を設定した。これにより、連結部71bの外径D2を必要以上に大きくしたり、軸部71のヤング率E1を必要以上に高くしたりすることによる製造性悪化、コスト増加を防止しつつ、変形量ξの抑制が可能で、また信頼性の高いブッシュ70を構成できる。 Therefore, in the first embodiment, the deformation amount ξ can be suppressed to 3 μm or less, and it is not necessary to enlarge the frame 50 from the viewpoint of storage property, and the above (a), (b) Each condition was set. As a result, the deformation amount ξ can be reduced while preventing the deterioration in manufacturability and the cost by increasing the outer diameter D2 of the connecting portion 71b more than necessary or increasing the Young's modulus E1 of the shaft portion 71 more than necessary. The bushing 70 that can be suppressed and has high reliability can be configured.
 上記(a)の条件を満たしたスクロール圧縮機において、スクロール圧縮機の軸部71の径方向の変形量をシミュレーション等により計測した結果を次の図5に示す。 FIG. 5 shows the result of measuring the amount of deformation in the radial direction of the shaft portion 71 of the scroll compressor by simulation or the like in the scroll compressor that satisfies the condition (a).
 図5は、この発明の実施の形態1に係るスクロール圧縮機の軸部の径方向の変形量を示すグラフである。図5において横軸は、図4に示したように、焼嵌上端の高さ位置P0から外周面71aaにおける計測位置P1までの距離(以下、「焼嵌上端からの距離」という)L[mm]であり、縦軸は計測位置P1での軸部71の径方向の変形量ξ[μm]である。図5において(1)は、上記(b)の条件を満たす実施の形態1のグラフを示しており、特に「(D2-D3)/(D4-D2)×E1/E2=1.5」のグラフを示している。(2)は、比較例として、上記(b)の条件範囲外である「(D2-D3)/(D4-D2)×E1/E2=0.4」のグラフを示している。 FIG. 5 is a graph showing the amount of deformation in the radial direction of the shaft portion of the scroll compressor according to Embodiment 1 of the present invention. In FIG. 5, the horizontal axis indicates the distance from the height position P0 of the shrink-fit upper end to the measurement position P1 on the outer peripheral surface 71aa (hereinafter referred to as “distance from the shrink-fit upper end”) L [mm. The vertical axis represents the deformation amount ξ [μm] in the radial direction of the shaft portion 71 at the measurement position P1. In FIG. 5, (1) shows a graph of the first embodiment that satisfies the condition (b), and particularly “(D2−D3) / (D4−D2) × E1 / E2 = 1.5”. The graph is shown. (2) shows, as a comparative example, a graph of “(D2−D3) / (D4−D2) × E1 / E2 = 0.4” which is outside the condition range of (b).
 実施の形態1及び比較例のどちらの場合においても、焼嵌上端からの距離Lが短いほど変形量ξが大きくなっている。具体的には、P0において比較例のときは変形量ξが-7μm程度あるのに対し、実施の形態1のときは変形量ξが-2μm程度まで抑えられて、変形量許容範囲である3μm未満に収まっていることがわかる。変形量ξが小さいほど揺動軸受18の油膜も確保し易くなるため、潤滑不足を抑制できる。よって、比較例に比べて実施の形態1の方が揺動軸受18の信頼性を高めることが確認できた。 In both cases of the first embodiment and the comparative example, the amount of deformation ξ increases as the distance L from the shrink-fit upper end decreases. Specifically, in P0, the deformation amount ξ is about −7 μm in the comparative example, whereas in the first embodiment, the deformation amount ξ is suppressed to about −2 μm, and the deformation amount allowable range is 3 μm. It turns out that it is less than. The smaller the amount of deformation ξ, the easier it is to secure the oil film of the rocking bearing 18, so that insufficient lubrication can be suppressed. Therefore, it has been confirmed that the reliability of the rocking bearing 18 is improved in the first embodiment compared to the comparative example.
 ところで、バランスウェイト部72と連結部71bとの焼嵌固定部には、クランクシャフト30の回転時にバランスウェイト部72が連結部71bから分離することを避ける保持力が求められる。この保持力は、焼嵌め代が大きくなる程、大きくなるが、焼嵌め代を大きくし過ぎると、その分、変形量ξも大きくなる。よって、焼嵌め代の下限値は、必要保持力を確保することを条件として設定し、焼嵌め代の上限値は、上述したように変形量ξを3μm未満に抑えることを条件として設定する。焼嵌め代の下限値は加工精度を考慮すると例えば30μm程度となる。 By the way, the shrink-fit fixing portion between the balance weight portion 72 and the connecting portion 71b is required to have a holding force that prevents the balance weight portion 72 from separating from the connecting portion 71b when the crankshaft 30 rotates. This holding force increases as the shrink-fitting allowance increases, but if the shrink-fit allowance is excessively increased, the deformation amount ξ increases accordingly. Therefore, the lower limit of the shrinkage allowance is set on condition that the necessary holding force is secured, and the upper limit of the shrinkage allowance is set on condition that the deformation amount ξ is suppressed to less than 3 μm as described above. The lower limit of the shrinkage allowance is, for example, about 30 μm considering machining accuracy.
 次に、上記(a)、(b)のそれぞれに条件における数値範囲の根拠について説明する。 Next, the grounds of the numerical range in the conditions will be described in each of the above (a) and (b).
 図6は、「(D2-D3)/(D4-D2)×E1/E2」と、軸部の径方向の最大変形量との関係を示す図である。図6において横軸は、「(D2-D3)/(D4-D2)×E1/E2」の算出値、縦軸は軸部71の径方向の最大変形量[μm]である。図6は、「(D2-D3)/(D4-D2)×E1/E2」の値を変えたブッシュ70で焼嵌めを行った場合の、軸部71の径方向の変形量を軸方向に渡ってシミュレーション等で計測し、計測して得られた各変形量のうち最大変形量を、3μmとの大小関係に応じて記号を代えてプロットしたものである。「○」は最大変形量3μm未満、「△」は最大変形量が3μm、「×」は最大変形量3μm超となる検証ポイントを示している。 FIG. 6 is a diagram showing the relationship between “(D2-D3) / (D4-D2) × E1 / E2” and the maximum amount of deformation in the radial direction of the shaft portion. In FIG. 6, the horizontal axis represents the calculated value of “(D2−D3) / (D4−D2) × E1 / E2”, and the vertical axis represents the maximum amount of deformation [μm] in the radial direction of the shaft portion 71. FIG. 6 shows the amount of deformation in the radial direction of the shaft portion 71 in the axial direction when shrink-fitting is performed with the bush 70 in which the value of “(D2-D3) / (D4-D2) × E1 / E2” is changed. The maximum deformation amount is plotted by changing the symbol according to the magnitude relationship with 3 μm among the deformation amounts obtained by measurement through simulation and the like. “◯” indicates a verification point where the maximum deformation amount is less than 3 μm, “Δ” indicates a maximum deformation amount of 3 μm, and “×” indicates a maximum deformation amount of more than 3 μm.
 図6より、軸部71の径方向の最大変形量を3μm未満に抑えることができ、軸受の信頼性を確保するには、「(D2-D3)/(D4-D2)×E1/E2≧1.0」を満たす必要があることがわかる。 From FIG. 6, the maximum amount of deformation in the radial direction of the shaft portion 71 can be suppressed to less than 3 μm, and in order to ensure the reliability of the bearing, “(D2-D3) / (D4-D2) × E1 / E2 ≧ It can be seen that “1.0” needs to be satisfied.
 軸部71の材質としては、高強度と摺動性を確保するためクロムモリブデン鋼又は高強度の焼結材などが用いられ、ヤング率E1は140~220GPa程度である。一方、バランスウェイト部72は、遠心力による強度と製造性を考慮してねずみ鋳鉄又は黒鉛鋳鉄などが用いられ、ヤング率E2は110~170GPa程度である。 As the material of the shaft portion 71, chromium molybdenum steel or a high-strength sintered material is used to ensure high strength and slidability, and the Young's modulus E1 is about 140 to 220 GPa. On the other hand, the balance weight portion 72 is made of gray cast iron or graphite cast iron in consideration of the strength and manufacturability due to centrifugal force, and the Young's modulus E2 is about 110 to 170 GPa.
 また、本発明者らは、圧縮機に使用できるヤング率E1、E2の材質の制約と圧縮機への収納性とを考慮すると、「(D2-D3)/(D4-D2)×E1/E2≦3.5」であれば構成可能なことを確認した。 Further, the present inventors consider that the material limitations of Young's modulus E1 and E2 that can be used for the compressor and the storage property in the compressor, “(D2-D3) / (D4-D2) × E1 / E2 It was confirmed that the configuration was possible if ≦ 3.5 ”.
 以上より、上記(b)の条件の数値範囲を決定した。 From the above, the numerical range of the above condition (b) was determined.
 図7は、「D2/D1」と「(D2-D3)/(D4-D2)×E1/E2」との関係を示す図である。図7において横軸は「D2/D1」の算出値、縦軸は「(D2-D3)/(D4-D2)×E1/E2」の算出値である。図7は、「D2/D1」と「(D2-D3)/(D4-D2)×E1/E2」との組み合わせを変えたブッシュ70で焼嵌めを行った場合の、軸部71の径方向の変形量を軸方向に渡ってシミュレーション等で計測し、計測して得られた各変形量のうち最大変形量を、3μmとの大小関係に応じて記号を代えてプロットしたものである。「○」は最大変形量3μm未満、「△」は最大変形量が3μm、「×」は最大変形量3μm超となる検証ポイントを示している。 FIG. 7 is a diagram showing the relationship between “D2 / D1” and “(D2-D3) / (D4-D2) × E1 / E2”. In FIG. 7, the horizontal axis represents the calculated value of “D2 / D1”, and the vertical axis represents the calculated value of “(D2-D3) / (D4-D2) × E1 / E2.” FIG. 7 shows the radial direction of the shaft portion 71 when shrink fitting is performed with the bush 70 in which the combination of “D2 / D1” and “(D2-D3) / (D4-D2) × E1 / E2” is changed. The deformation amount is measured by simulation or the like in the axial direction, and the maximum deformation amount among the deformation amounts obtained by measurement is plotted by changing the symbol according to the magnitude relationship with 3 μm. “◯” indicates a verification point where the maximum deformation amount is less than 3 μm, “Δ” indicates a maximum deformation amount of 3 μm, and “×” indicates a maximum deformation amount of more than 3 μm.
 図7において太枠で囲った領域は、軸部71の径方向の最大変形量を3μm未満に収めることが可能な使用可能範囲を示している。図7より、軸部71の剛性を高めて軸部71の径方向の最大変形量を3μm未満に収めるには、「D2/D1≧1.2」とすればよい。また、シェル40内への収納性の観点から「D2/D1≦1.6」とした。 In FIG. 7, a region surrounded by a thick frame indicates a usable range in which the maximum deformation amount in the radial direction of the shaft portion 71 can be set to less than 3 μm. From FIG. 7, in order to increase the rigidity of the shaft portion 71 and keep the maximum amount of deformation in the radial direction of the shaft portion 71 to be less than 3 μm, “D2 / D1 ≧ 1.2” may be satisfied. Further, from the viewpoint of storage property in the shell 40, “D2 / D1 ≦ 1.6” was set.
 以上より、上記(a)の条件の数値範囲を決定した。 From the above, the numerical range of the above condition (a) was determined.
 なお、軸部71には、強度を向上させるための焼入れ、焼き戻しや、摺動性を向上させるための窒化処理、りん酸マンガン処理、ダイヤモンドライクカーボン(DLC)処理等の表面処理を行っても良い。 The shaft portion 71 is subjected to surface treatment such as quenching and tempering for improving strength, nitriding treatment, manganese phosphate treatment, diamond-like carbon (DLC) treatment for improving slidability. Also good.
 軸部71とバランスウェイト部72には共に鉄系の材質を用いるが、全く同一の材質でない場合、線膨張係数が異なる。ブッシュ70の雰囲気温度が高温になった場合、線膨張係数の違いにより軸部71とバランスウェイト部72との間に隙間が生じ、焼嵌めが外れてしまい圧縮機が破損してしまう可能性がある。従って、この実施の形態1のブッシュ70は、温度が高くならない低圧空間にブッシュ70が配置される構成となる、低圧シェルタイプの圧縮機に搭載することが望ましい。 Both the shaft portion 71 and the balance weight portion 72 use iron-based materials, but when they are not the same material, the linear expansion coefficients are different. When the ambient temperature of the bush 70 becomes high, there is a possibility that a gap is generated between the shaft portion 71 and the balance weight portion 72 due to the difference in the linear expansion coefficient, and the shrinkage fit is released and the compressor is damaged. is there. Therefore, the bush 70 according to the first embodiment is desirably mounted on a low-pressure shell type compressor in which the bush 70 is arranged in a low-pressure space where the temperature does not increase.
 ブッシュ70を搭載する必要のある圧縮機は、揺動スクロール12の遠心力が過大となる圧縮機である。揺動スクロール12の遠心力が過大となるのは、圧縮機の回転数が高い条件まで運転する場合か、揺動スクロール12の重量が重い場合かのどちらかである。何れの場合も、冷凍能力や暖房、給湯能力を確保するための対応である。 The compressor that needs to be equipped with the bush 70 is a compressor in which the centrifugal force of the orbiting scroll 12 is excessive. The centrifugal force of the orbiting scroll 12 becomes excessive either when the compressor is operated up to a high rotational speed or when the orbiting scroll 12 is heavy. In either case, this is a measure for ensuring the refrigerating capacity, heating, and hot water supply capacity.
 現在、地球温暖化を防止するため、従来のHFC冷媒から地球温暖化係数(GWP)の低い冷媒への転換が要求されており、低GWPの冷媒としては、Cで表される2,3,3,3-テトラフルオロ-1-プロペンに代表されるHFO冷媒がある。この冷媒は単位体積あたりの冷凍能力が低い。このため、HFO冷媒単体又はHFO冷媒を含む混合冷媒で従来のHFC冷媒と同等の冷凍能力、暖房、給湯能力を確保するためには、圧縮機を高い回転数で運転して単位時間当たりの吐出流量を増やすか、圧縮機構部10を大きくして1回転当たりの吐出流量を増やす必要がある。どちらにしても、HFO冷媒を用いる場合の揺動スクロール12の遠心力は、HFC冷媒を用いる場合に比べて過大となることから、ブッシュ70を搭載して揺動スクロール12が固定スクロール11に押し付けられる力を低減することが求められる。 At present, in order to prevent global warming, conversion from a conventional HFC refrigerant to a refrigerant having a low global warming potential (GWP) is required, and the low GWP refrigerant is represented by C 3 H 2 F 4. There are HFO refrigerants represented by 2,3,3,3-tetrafluoro-1-propene. This refrigerant has a low refrigeration capacity per unit volume. For this reason, in order to ensure the same refrigeration capacity, heating and hot water supply capacity as conventional HFC refrigerants with a single HFO refrigerant or a mixed refrigerant containing HFO refrigerant, the compressor is operated at a high rotational speed and discharged per unit time. It is necessary to increase the flow rate or enlarge the compression mechanism unit 10 to increase the discharge flow rate per revolution. In any case, since the centrifugal force of the orbiting scroll 12 when using the HFO refrigerant is excessive compared to when using the HFC refrigerant, the bushing 70 is mounted and the orbiting scroll 12 is pressed against the fixed scroll 11. It is required to reduce the force generated.
 この発明のブッシュ70を用いれば、軸部71の変形量を抑えて揺動軸受18の信頼性を確保できるため、冷媒としてHFO冷媒単体もしくは混合冷媒を用いる場合に有効である。なお、この発明で用いる冷媒は上記に限られたものではなく、分子式がC(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は、この冷媒を含む混合冷媒でもよい。 If the bush 70 of the present invention is used, the amount of deformation of the shaft portion 71 can be suppressed and the reliability of the rocking bearing 18 can be secured, which is effective when a single HFO refrigerant or a mixed refrigerant is used as the refrigerant. The refrigerant used in the present invention is not limited to the above, and the molecular formula is C 3 H m F n (where m and n are integers of 1 to 5 and the relationship of m + n = 6 is established). Or a refrigerant having one double bond in the molecular structure, or a mixed refrigerant containing this refrigerant.
 以上説明したように実施の形態1によれば、ブッシュ70の軸部71が略円筒形状の本体部71aと、本体部71aの軸方向の一端側で外方に延出した略円筒形状の連結部71bとが一体に形成された構成を有しており、連結部71bを設けない構成に比べて軸部71の剛性を高めた構造としている。そして、「1.2≦D2/D1≦1.6」と、「1.0≦(D2-D3)/(D4-D2)×E1/E2≦3.5」の両方の条件を満たすことで、焼嵌め時の軸部71の径方向の変形量を3μm未満に収めることができる。 As described above, according to the first embodiment, the shaft portion 71 of the bush 70 is connected to the substantially cylindrical main body portion 71a and the substantially cylindrical connection extending outward at one end side in the axial direction of the main body portion 71a. It has a configuration in which the portion 71b is integrally formed, and has a structure in which the rigidity of the shaft portion 71 is increased as compared with a configuration in which the connecting portion 71b is not provided. By satisfying both the conditions of “1.2 ≦ D2 / D1 ≦ 1.6” and “1.0 ≦ (D2-D3) / (D4-D2) × E1 / E2 ≦ 3.5”, The amount of deformation in the radial direction of the shaft portion 71 during shrink-fitting can be less than 3 μm.
 また、ブッシュ70はシェル40内の低圧空間に配置され、ブッシュ70の雰囲気温度が高温とならないため、線膨張係数の違いにより軸部71とバランスウェイト部72との間に隙間が生じ、接合が外れるという不都合を防止できる。 Further, since the bush 70 is disposed in the low pressure space in the shell 40 and the atmospheric temperature of the bush 70 does not become high, a gap is generated between the shaft portion 71 and the balance weight portion 72 due to the difference in linear expansion coefficient, and the joining is performed. The inconvenience of detachment can be prevented.
実施の形態2.
 実施の形態2は、ブッシュ70の形状が実施の形態1と異なるものであり、それ以外については実施の形態1と同様である。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
The second embodiment is different from the first embodiment in the shape of the bush 70, and is otherwise the same as the first embodiment. In the following, the second embodiment will be described focusing on the differences from the first embodiment.
 図8は、この発明の実施の形態2に係るスクロール圧縮機のブッシュの断面図である。図9は、図8のブッシュの平面図である。
 実施の形態2のスクロール圧縮機のブッシュ70Aは、図2に示した実施の形態1のブッシュ70の連結部71bに、焼嵌め時の軸部71の変形を吸収する柔構造80を設けたものである。柔構造80は、連結部71bの軸方向両端面のうち本体部71a側の表面に設けられた凹部で構成されている。凹部は、本体部71aの中心軸を中心とした環状に形成されている。
FIG. 8 is a cross-sectional view of the bush of the scroll compressor according to Embodiment 2 of the present invention. FIG. 9 is a plan view of the bush of FIG.
The bush 70A of the scroll compressor according to the second embodiment is provided with a flexible structure 80 that absorbs deformation of the shaft portion 71 at the time of shrink fitting on the connecting portion 71b of the bush 70 according to the first embodiment shown in FIG. It is. The flexible structure 80 is configured by a recess provided on the surface on the main body 71a side of both end surfaces in the axial direction of the connecting portion 71b. The recess is formed in an annular shape centering on the central axis of the main body 71a.
 このように柔構造80を設けたことにより、焼嵌め時のブッシュ70Aの軸部71の変形が吸収され、図1に示した実施の形態1よりも変形量ξを小さくすることができる。具体的には、軸部71の径方向の変形量を3μmから更に抑えることができるようになる。 By providing the flexible structure 80 in this way, the deformation of the shaft portion 71 of the bush 70A at the time of shrink fitting is absorbed, and the deformation amount ξ can be made smaller than that of the first embodiment shown in FIG. Specifically, the amount of deformation in the radial direction of the shaft portion 71 can be further suppressed from 3 μm.
 図10は、この発明の実施の形態2に係るスクロール圧縮機の軸部の径方向の変形量を示すグラフである。図10において横軸は、焼嵌上端の高さ位置P0から外周面71aaにおける計測位置P1までの距離L[mm]であり、縦軸は計測位置P1での径方向の変形量ξ[μm]である。なお、P0、P1、ξは図4を参照されたい。図10において、(1)は、実施の形態1のグラフを示しており、(2)は、実施の形態2のグラフを示している。 FIG. 10 is a graph showing the amount of radial deformation of the shaft portion of the scroll compressor according to Embodiment 2 of the present invention. 10, the horizontal axis represents the distance L [mm] from the height position P0 of the shrink-fit upper end to the measurement position P1 on the outer peripheral surface 71aa, and the vertical axis represents the radial deformation amount ξ [μm] at the measurement position P1. It is. Refer to FIG. 4 for P0, P1, and ξ. In FIG. 10, (1) shows a graph of the first embodiment, and (2) shows a graph of the second embodiment.
 図10に示したように、実施の形態2の方が、実施の形態1よりも変形量ξを小さくすることが可能になっている。 As shown in FIG. 10, the deformation amount ξ can be made smaller in the second embodiment than in the first embodiment.
 以上説明したように、この実施の形態2によれば、実施の形態1と同様の効果が得られると共に、柔構造80を設けたことで、更に変形量ξを小さくできる。また、柔構造80の溝の深さ、幅を変えることで軸部71の径方向の変形量を調整することができる。 As described above, according to the second embodiment, the same effect as in the first embodiment can be obtained, and the deformation amount ξ can be further reduced by providing the flexible structure 80. Further, the amount of deformation in the radial direction of the shaft portion 71 can be adjusted by changing the depth and width of the groove of the flexible structure 80.
 ところで、スクロール圧縮機の使われ方によっては油溜り41に液冷媒が返ってくる液バックと呼ばれる現象が生じる場合がある。液バックが生じると、潤滑油の粘度が低下して過渡的に揺動軸受18の油膜厚さが3μm未満となり、揺動軸受18が焼付きを起こす可能性がある。しかし、この実施の形態2では、柔構造80を設けたことで変形量ξをより小さくできるため、液バック時など過渡的に揺動軸受18の油膜厚さが薄くなった場合でも、油膜厚さを3μm以上に保つことができ、高い信頼性を確保することが可能となる。 By the way, depending on how the scroll compressor is used, a phenomenon called liquid back in which liquid refrigerant returns to the oil reservoir 41 may occur. When liquid back occurs, the viscosity of the lubricating oil decreases, and the oil film thickness of the rocking bearing 18 becomes transiently less than 3 μm, and the rocking bearing 18 may seize. However, in the second embodiment, since the deformation amount ξ can be further reduced by providing the flexible structure 80, even when the oil film thickness of the rocking bearing 18 becomes transiently thin, such as during liquid back, the oil film thickness is reduced. The thickness can be maintained at 3 μm or more, and high reliability can be secured.
 なお、上記実施の形態1、2では、ブッシュ70の軸部71の連結部71bとバランスウェイト部72との接合を焼嵌めで行うとして説明したが、圧入で接合してもよく、その場合でも、上記構成を採用することで、変形量ξを抑えることができる。 In the first and second embodiments, the connecting portion 71b of the shaft portion 71 of the bush 70 and the balance weight portion 72 have been described as being joined by shrink fitting, but they may be joined by press-fitting. By adopting the above configuration, the deformation amount ξ can be suppressed.
 また、この発明のブッシュは、上記の各図に構造に限定されるものではなく、この発明の要旨を逸脱しない範囲で例えば以下のように種々変形実施可能である。 Further, the bush of the present invention is not limited to the structure shown in each of the above drawings, and can be variously modified as follows without departing from the gist of the present invention.
 図8では、柔構造80が、全体が連なった一つの環状の凹部で形成した構成を図示して説明したが、凹部が複数に分割されて円弧状に形成され、全体として環状に形成されていてもよい。 In FIG. 8, the structure in which the flexible structure 80 is formed by one annular recess that is continuous as a whole is illustrated and described. However, the recess is divided into a plurality of arcs and is formed in an annular shape as a whole. May be.
 図11は、柔構造の変形例1を示す平面図である。
 この変形例では、平面的に見て円形状の複数の凹部80aを環状に配置して柔構造80を構成している。
FIG. 11 is a plan view showing Modification Example 1 of the flexible structure.
In this modification, the flexible structure 80 is configured by arranging a plurality of circular recesses 80a in a ring shape when seen in a plan view.
 図12は、柔構造の変形例2を示す断面図である。図13は、図12の柔構造の平面図である。
 上記図8、図9及び図11では、柔構造80を360°に亘って設けていた。これに対し、図12及び図13に示す変形例2では、バランスウェイト部72があることで剛性が高く、焼嵌めによる変形が大きい範囲にのみ、柔構造80を設けた構造とした。ここでは、図13に示したように連結部71bにおいてバランスウェイト部72が接合される側の例えば180゜の範囲に凹部で構成した柔構造80を設けた。なお、柔構造80を設ける角度範囲は180゜に限られたものではなく、更に大きくてもよいし、小さくてもよい。また、図13には柔構造80が平面的に見て円弧状の凹部で構成された例を示しているが、図11に示したように平面的に見て円形状の複数の凹部を円弧状に配置した構成としてもよい。
FIG. 12 is a cross-sectional view showing Modification Example 2 of the flexible structure. 13 is a plan view of the flexible structure of FIG.
In FIG. 8, FIG. 9 and FIG. 11, the flexible structure 80 is provided over 360 °. On the other hand, in the second modification shown in FIGS. 12 and 13, the structure is provided with the flexible structure 80 only in a range where the rigidity is high due to the balance weight portion 72 and the deformation due to shrink fitting is large. Here, as shown in FIG. 13, a flexible structure 80 constituted by a concave portion is provided in a range of, for example, 180 ° on the side where the balance weight portion 72 is joined in the connecting portion 71 b. In addition, the angle range in which the flexible structure 80 is provided is not limited to 180 °, and may be larger or smaller. Further, FIG. 13 shows an example in which the flexible structure 80 is configured by an arc-shaped recess when viewed in a plan view. However, as shown in FIG. It is good also as a structure arrange | positioned at arc shape.
 図14は、柔構造の変形例3を示す平面図である。
 変形例3の柔構造80は、図13に示した変形例2の柔構造80を複数(ここでは2つ)に分割した構成としたものである。
FIG. 14 is a plan view showing Modification 3 of the flexible structure.
The flexible structure 80 of Modification 3 is configured by dividing the flexible structure 80 of Modification 2 shown in FIG. 13 into a plurality (here, two).
 以上の図11~図14に示した変形例の柔構造80を用いた場合も、上記と同様の作用効果を得ることができる。 Even when the flexible structure 80 of the modification shown in FIGS. 11 to 14 is used, the same effect as described above can be obtained.
 10 圧縮機構部、11 固定スクロール、11a 第1台板、11b 第1渦巻体、12 揺動スクロール、12a 第2台板、12b 第2渦巻体、12c ボス部、13 圧縮室、14 吐出ポート、15 弁、16 弁押さえ、17 高圧空間、18 揺動軸受、20 駆動機構部、21 ステータ、22 ロータ、30 クランクシャフト、30a 偏心ピン部、31 油流路、40 シェル、41 油溜り、42 オイルポンプ、43 吸入管、44 吐出管、50 フレーム、50a 主軸受、51 サブフレーム、51a 副軸受、60 オルダムリング、70 ブッシュ、70A ブッシュ、71 軸部、71a 本体部、71aa 外周面、71b 連結部、72 バランスウェイト部、72a 貫通孔、73 スライド穴、73a 平面部、80 柔構造、80a 凹部、D1 本体部の外径、D2 連結部の外径、D3 本体部の内径、D4 バランスウェイト部の外径、L 距離、P0 高さ位置、P1 計測位置。 10 compression mechanism part, 11 fixed scroll, 11a first base plate, 11b first spiral body, 12 swing scroll, 12a second base plate, 12b second spiral body, 12c boss part, 13 compression chamber, 14 discharge port, 15 valve, 16 valve retainer, 17 high pressure space, 18 rocking bearing, 20 drive mechanism, 21 stator, 22 rotor, 30 crankshaft, 30a eccentric pin, 31 oil flow path, 40 shell, 41 oil sump, 42 oil Pump, 43 suction pipe, 44 discharge pipe, 50 frame, 50a main bearing, 51 subframe, 51a subbearing, 60 Oldham ring, 70 bushing, 70A bushing, 71 shaft part, 71a body part, 71aa outer peripheral surface, 71b connecting part , 72 Balance weight part, 72a Through hole, 73 thrust Hole, 73a plane part, 80 flexible structure, 80a concave part, D1 outer diameter of D1 body, D2 outer diameter of connecting part, D3 inner diameter of main body part, D4 outer diameter of balance weight part, L distance, P0 height position, P1 Measurement position.

Claims (8)

  1.  固定スクロールと揺動スクロールとを互いに組合せて圧縮室を形成し、前記揺動スクロールを駆動して前記圧縮室内の流体を圧縮する圧縮部と、
     前記揺動スクロールに回転力を伝える偏心ピン部を有し、前記揺動スクロールを駆動するクランクシャフトと、
     前記揺動スクロールを支持する揺動軸受と、
     前記揺動軸受と前記クランクシャフトの偏心ピンとの間に配置された軸部と、前記軸部の外周に焼嵌固定されたバランスウェイト部とを有するブッシュとを備え、
     前記軸部は、前記揺動軸受に嵌め込まれ、且つ前記クランクシャフトの偏心ピンが挿入される円筒形状の本体部と、前記本体部の軸方向の端部から外方に延出し、前記バランスウェイト部が接合される円筒形状の連結部とを備え、
     前記ブッシュは以下の(a)、(b)の条件を満たすスクロール圧縮機。
    (a)1.2≦D2/D1≦1.6
    (b)1.0≦(D2-D3)/(D4-D2)×E1/E2≦3.5
     ここで、
     D1:本体部の外径
     D2:連結部の外径
     D3:本体部の内径
     D4:バランスウェイト部の外径
     E1:軸部のヤング率
     E2:バランスウェイト部のヤング率
    A compression unit that combines a fixed scroll and an orbiting scroll to form a compression chamber, and that drives the orbiting scroll to compress the fluid in the compression chamber;
    A crankshaft having an eccentric pin portion for transmitting a rotational force to the swing scroll, and driving the swing scroll;
    A rocking bearing for supporting the rocking scroll;
    A bush having a shaft portion disposed between the rocking bearing and the eccentric pin of the crankshaft, and a balance weight portion fixed by shrinkage to the outer periphery of the shaft portion;
    The shaft portion is fitted into the rocking bearing and has a cylindrical main body portion into which an eccentric pin of the crankshaft is inserted, and extends outward from an axial end portion of the main body portion. A cylindrical connecting part to which the parts are joined,
    The bush is a scroll compressor that satisfies the following conditions (a) and (b).
    (A) 1.2 ≦ D2 / D1 ≦ 1.6
    (B) 1.0 ≦ (D2-D3) / (D4-D2) × E1 / E2 ≦ 3.5
    here,
    D1: Outer diameter of main body part D2: Outer diameter of connecting part D3: Inner diameter of main body part D4: Outer diameter of balance weight part E1: Young's modulus of shaft part E2: Young's modulus of balance weight part
  2.  前記連結部は、前記バランスウェイト部との接合時の前記軸部の変形を吸収する柔構造を備えた請求項1記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the connecting portion includes a flexible structure that absorbs deformation of the shaft portion when joined to the balance weight portion.
  3.  前記柔構造は、前記連結部の前記軸方向両端面のうち前記本体部側の端面に形成された1又は複数の凹部である請求項2記載のスクロール圧縮機。 3. The scroll compressor according to claim 2, wherein the flexible structure is one or a plurality of concave portions formed on an end surface on the main body portion side of the axially opposite end surfaces of the connecting portion.
  4.  前記凹部は、
     平面的に見て前記本体部の中心軸を中心とした環状若しくは円弧状、又は平面的に見て円形状である請求項3記載のスクロール圧縮機。
    The recess is
    4. The scroll compressor according to claim 3, wherein the scroll compressor has an annular shape or an arc shape centering on a central axis of the main body portion when seen in a plan view, or a circular shape when seen in a plan view.
  5.  前記ブッシュは鉄系材料でありヤング率が140[GPa]≦E1≦220[GPa]、
     前記バランスウェイト部は鉄系材料でありヤング率が110[GPa]≦E2≦170[GPa]である請求項1~請求項4の何れか一項に記載のスクロール圧縮機。
    The bush is an iron-based material and has a Young's modulus of 140 [GPa] ≦ E1 ≦ 220 [GPa],
    The scroll compressor according to any one of claims 1 to 4, wherein the balance weight portion is an iron-based material and has a Young's modulus of 110 [GPa] ≤ E2 ≤ 170 [GPa].
  6.  前記ブッシュ及び前記バランスウェイト部は、前記圧縮部、前記クランクシャフトを収納するシェル内の低圧空間に配置される請求項1~請求項5の何れか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein the bush and the balance weight portion are arranged in a low-pressure space in a shell that houses the compression portion and the crankshaft.
  7.  前記流体は、分子式がC(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され、且つ分子構造中に二重結合を1個有する冷媒、又は、前記冷媒を含む混合冷媒である請求項1~請求項6の何れか一項に記載のスクロール圧縮機。 The fluid has a molecular formula of C 3 H m F n (where m and n are integers of 1 to 5, and a relationship of m + n = 6 is established), and a double bond is formed in the molecular structure. The scroll compressor according to any one of claims 1 to 6, wherein the scroll compressor is one refrigerant or a mixed refrigerant containing the refrigerant.
  8.  前記流体は、2,3,3,3-テトラフルオロ-1-プロペンであることを特徴とする請求項1~請求項7の何れか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 7, wherein the fluid is 2,3,3,3-tetrafluoro-1-propene.
PCT/JP2016/053859 2016-02-09 2016-02-09 Scroll compressor WO2017138098A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680080809.7A CN108603500B (en) 2016-02-09 2016-02-09 Scroll compressor having a plurality of scroll members
JP2017566450A JP6400237B2 (en) 2016-02-09 2016-02-09 Scroll compressor
PCT/JP2016/053859 WO2017138098A1 (en) 2016-02-09 2016-02-09 Scroll compressor
EP16889800.5A EP3415760B1 (en) 2016-02-09 2016-02-09 Scroll compressor
US15/781,781 US10968912B2 (en) 2016-02-09 2016-02-09 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053859 WO2017138098A1 (en) 2016-02-09 2016-02-09 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2017138098A1 true WO2017138098A1 (en) 2017-08-17

Family

ID=59563008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053859 WO2017138098A1 (en) 2016-02-09 2016-02-09 Scroll compressor

Country Status (5)

Country Link
US (1) US10968912B2 (en)
EP (1) EP3415760B1 (en)
JP (1) JP6400237B2 (en)
CN (1) CN108603500B (en)
WO (1) WO2017138098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026272A1 (en) * 2017-08-04 2019-02-07 三菱電機株式会社 Scroll compressor
WO2023106116A1 (en) * 2021-12-08 2023-06-15 サンデン株式会社 Scroll-type fluid machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110206728B (en) * 2019-05-14 2020-11-24 珠海格力节能环保制冷技术研究中心有限公司 Scroll compressor and air conditioner
FR3102792B1 (en) * 2019-11-05 2021-10-29 Danfoss Commercial Compressors Scroll compressor comprising a crank pin having an upper recess
DE102021210295A1 (en) 2021-09-16 2023-03-16 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg scroll machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281083A (en) * 1997-04-04 1998-10-20 Mitsubishi Electric Corp Scroll compressor
JP2003239881A (en) * 2002-02-20 2003-08-27 Fujitsu General Ltd Scroll compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199862A (en) * 1990-07-24 1993-04-06 Mitsubishi Jukogyo Kabushiki Kaisha Scroll type fluid machinery with counter weight on drive bushing
JP3026672B2 (en) 1992-04-10 2000-03-27 三洋電機株式会社 Scroll compressor
JP2000220585A (en) * 1999-01-28 2000-08-08 Toyota Autom Loom Works Ltd Scroll type compressor
JP2002089468A (en) * 2000-09-14 2002-03-27 Toyota Industries Corp Scroll type compressor
JP2002106483A (en) * 2000-09-29 2002-04-10 Toyota Industries Corp Scroll type compressor and sealing method therefor
JP3858762B2 (en) * 2002-05-29 2006-12-20 ダイキン工業株式会社 Slide bush and scroll type fluid machine
JP2004124834A (en) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp Hermetically sealed rotary compressor
CN102046981A (en) * 2008-05-28 2011-05-04 东芝开利株式会社 Enclosed compressor and refrigeration cycle device
JP2012057499A (en) * 2010-09-06 2012-03-22 Toyota Industries Corp Electric compressor
WO2015068308A1 (en) * 2013-11-11 2015-05-14 三菱電機株式会社 Scroll compressor
WO2017168631A1 (en) * 2016-03-30 2017-10-05 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281083A (en) * 1997-04-04 1998-10-20 Mitsubishi Electric Corp Scroll compressor
JP2003239881A (en) * 2002-02-20 2003-08-27 Fujitsu General Ltd Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415760A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026272A1 (en) * 2017-08-04 2019-02-07 三菱電機株式会社 Scroll compressor
JPWO2019026272A1 (en) * 2017-08-04 2019-11-21 三菱電機株式会社 Scroll compressor
WO2023106116A1 (en) * 2021-12-08 2023-06-15 サンデン株式会社 Scroll-type fluid machine

Also Published As

Publication number Publication date
JPWO2017138098A1 (en) 2018-04-26
CN108603500A (en) 2018-09-28
EP3415760A1 (en) 2018-12-19
US20180363653A1 (en) 2018-12-20
JP6400237B2 (en) 2018-10-03
CN108603500B (en) 2020-09-18
US10968912B2 (en) 2021-04-06
EP3415760A4 (en) 2018-12-19
EP3415760B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP6400237B2 (en) Scroll compressor
EP3138994B1 (en) Scroll compressor
JP4162708B2 (en) Expander integrated compressor
US10859083B2 (en) Scroll compressor
US20090098000A1 (en) Scroll compressor with scroll deflection compensation
JP6057535B2 (en) Refrigerant compressor
JP5017842B2 (en) Rotary compressor
US11441565B2 (en) Compressor having Oldham's ring
JP5034975B2 (en) Scroll compressor
JP6463514B2 (en) Slider and scroll compressor with balancer
JPH0893672A (en) Hermetic compressor and scroll compressor
JP4749136B2 (en) Scroll compressor
JP5864883B2 (en) Scroll compressor
WO2015049745A1 (en) Scroll compressor
JP2008121490A (en) Rotary compressor
JP2016156297A (en) Scroll compressor
EP3705723B1 (en) Scroll compressor
EP4212726A1 (en) Scroll compressor
WO2017122304A1 (en) Scroll compressor
JP2017198133A (en) Scroll compressor
JP5229129B2 (en) Scroll compressor
WO2017212527A1 (en) Scroll compressor
JP2012036841A (en) Compressor
JP2003139078A (en) Compressor
JP2010077918A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889800

Country of ref document: EP

Effective date: 20180910