WO2017135570A1 - 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치 - Google Patents

긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017135570A1
WO2017135570A1 PCT/KR2016/015221 KR2016015221W WO2017135570A1 WO 2017135570 A1 WO2017135570 A1 WO 2017135570A1 KR 2016015221 W KR2016015221 W KR 2016015221W WO 2017135570 A1 WO2017135570 A1 WO 2017135570A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
subsequence
sequences
sub
combination
Prior art date
Application number
PCT/KR2016/015221
Other languages
English (en)
French (fr)
Inventor
고현수
김봉회
이윤정
신석민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017135570A1 publication Critical patent/WO2017135570A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition

Definitions

  • the following description relates to a method for generating a long sequence based on a short length sequence in a wireless communication system, and a communication method and apparatus using the same.
  • NB-IoT Near Band IoT
  • 3GPP In the standardization for NB IoT, 3GPP is studying the NB IoT technology that can operate in conjunction with other 3GPP technology, such as GSM, WCDMA or LTE. In this context, it is discussed what resource structure to have in terms of existing systems.
  • 1 is a view for explaining the three modes available in the NB IoT.
  • NB IoT is considering utilizing a channel bandwidth of 180 kHz in both uplink and downlink. This is an interval corresponding to one physical resource block (PRB) in the LTE system.
  • PRB physical resource block
  • the NB-IoT may support three modes, such as a standby one operation, a guard band operation, and an in-band operation.
  • NB-IoT operation can be performed over a specific narrowband within the LTE channel bandwidth.
  • FDD Frequency Division Duplex
  • NB Synchronizat ion Signal s In order to operate the NB IoT as described above, transmission of a narrowband synchronization signal (NB Synchronizat ion Signal s) is required. However, for NB IoT operation
  • the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) are more efficiently. Is required.
  • the PSS and SSS enhancement specific synchronization signal needs to indicate the entire cell identifier, for this purpose, the need for a longer length sequence than the conventionally used sequence is increased and interesting. .
  • the signal is transmitted using the long length sequence consisting of a combination of a plurality of sub-sequences, each of the plurality of sub-sequences are a plurality of basic of a short length of less than the predetermined length
  • a signal transmission method which is composed of a combination of base sequences and sequences obtained by multiplying each of the base sequences by a cover sequence.
  • the products of the base sequences may be set to have different phases, and when all elements of the subsequence are internalized, the products of the base sequences may be set to have the same phase.
  • the first subsequence of the combination of the plurality of subsequences may have a form in which one base sequence is repeated, and the second subsequence of the combination of the plurality of subsequences is the first subsequence.
  • a first cover sequence different from the first subsequence a first sequence selected to have a base sequence different from the first subsequence, a server sequence different from the first subsequence is applied, and the same base sequence as the first subsequence.
  • a cover sequence such as the first sub sequence is applied, and a third method of temporarily selecting a base sequence different from the first sub sequence. Can be determined.
  • a third subsequence of the combinations of the plurality of subsequences is determined by the first subsequence.
  • a sub-sequence different cover sequence is applied, a first method of selecting to have the same base sequence as the first subsequence, a server sequence different from the first subsequence is applied, a base different from the first subsequence
  • a second method of selecting to have a sequence, a third method of applying the same cover sequence as the first subsequence, and a third method of selecting to have a different base sequence from the first subsequence, which is sequentially applicable Can be determined by either method.
  • the first subsequence of the combination of the plurality of subsequences has a combination form of a plurality of base sequences, and a second subsequence of the combination of the plurality of subsequences has a cover sequence different from the first subsequence.
  • a second method of selecting to have a combination, a third method of applying the same cover sequence as the first subsequence, and a third method of selecting to have a basic sequence combination different from the first subsequence, which is sequentially applicable Can be determined by either method.
  • a third subsequence of the combinations of the plurality of subsequences is applied to the same cover sequence as the first subsequence, and A first method of selecting to have a basic sequence arrangement identical to a first subsequence, a server sequence different from the first subsequence is applied, and selecting to have a basic sequence arrangement different from the first subsequence In a second method, a cover sequence different from the first subsequence is applied and the first subsequence is selected to have the same basic sequence arrangement. It can be determined by any of the third method, which is sequentially applicable.
  • the signal may be a synchronization signal, and the long length sequence may be set to represent a cell identifier.
  • the long length sequence may be mapped and transmitted by the number of subcarriers corresponding to each OFDM symbol over a plurality of OFDM symbols.
  • a method for receiving a signal using a long length sequence of more than a predetermined length in a wireless communication system it is composed of a combination of a plurality of sub-sequences (Sub-sequence) Receive a signal including the long length sequence, wherein each of the plurality of sub-sequences are a plurality of base sequences of short lengths less than or equal to the predetermined length and a cover sequence to each of the base sequences.
  • a signal reception method that consists of a combination of.
  • the method may further include detecting the long length sequence through autocorrelation at a sliding window method through autocorrelation, and calculating the autocorrelation of the subsequence.
  • the products of the base sequences may have different phases, and when all elements of the subsequences are internalized, the products of the base sequences may have the same phase.
  • the signal may be a synchronization signal and may further include detecting a cell identifier through the long length sequence.
  • the long length sequence may be received by mapping the number of subcarriers corresponding to each OFDM symbol over a plurality of 0FDM symbols.
  • a combination of a plurality of sub-sequences (Sub-sequence) A transceiver configured to transmit a signal using the long length sequence;
  • a processor configured to generate the long length sequence and to transmit the long length sequence to the transceiver, wherein each of the plurality of subsequences includes a plurality of base sequences of short lengths less than or equal to the predetermined length and the base sequence;
  • a combination of a plurality of sub-sequences (Sub-sequence)
  • a transceiver configured to receive a signal comprising the long length sequence configured
  • a processor configured to receive and process the long length sequence received by the transceiver, wherein each of the plurality of sub-sequences includes a plurality of basic sequences of short length less than or equal to the predetermined length;
  • a receiving apparatus is proposed, which is assumed to be composed of a combination of sequences obtained by multiplying each of the base sequences and the base sequences by a cover sequence.
  • 1 is a diagram for explaining three modes available in the NB IoT.
  • 2 and 3 are diagrams for explaining a method of transmitting a synchronization signal when using a basic CP and when using an extended CP, respectively.
  • FIG. 4 is a diagram showing that two sequences in a logical domain are interleaved and mapped in a physical domain.
  • FIG. 5 is a view for explaining the overall structure for transmitting and receiving a synchronization signal in the NB LTE system.
  • FIG. 6 is a diagram illustrating an autocorrelation result of the sequence 3 of Equation 3.
  • FIG. 7 is a diagram illustrating an autocorrelation result of the sequence Ss of Equation 3.
  • FIG. 8 is a view for explaining a method for generating a long length sequence having excellent autocorrelation characteristics according to an embodiment of the present invention.
  • 9 and 10 are diagrams for explaining a method of generating a transmission sequence with Differential Encoding.
  • FIG. 13 illustrates a method of configuring an NB-SSS according to an embodiment of the present invention. It is a figure for illustration.
  • 15 and 16 are diagrams for explaining considerations according to frequency shifting between a transmission signal and a reception signal.
  • 19 is a diagram for describing a specific method of repeatedly transmitting NB-PSS in a plurality of OFDM symbols according to an embodiment of the present invention.
  • FIG. 20 is a diagram illustrating correl at ion characteristics of a length 10 comp l ementary sequence pa r a (n), b (n) and various c (n) pat terns.
  • 21 is a view for explaining the concept of transmitting the NB-SSS according to an embodiment of the present invention.
  • FIG. 22 is a view for explaining a method for generating and transmitting an NB-SSS according to an embodiment of the present invention.
  • FIG. 23 is a view for explaining a root index selection method of ZC Siemens to be used in the NB-SSS according to an embodiment of the present invention.
  • FIG. 24 is a diagram illustrating a cross correlation value in the case of using Hadamard Seance specific to NB-SSS in one embodiment of the present invention.
  • 25 is a downlink (down l ink, DL) / uplink in a wireless communication system
  • FIG. 26 is a downlink subframe used in a wireless communication system.
  • FIG. (subframe) structure is illustrated.
  • FIG. 27 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention. [Form for implementation of invention]
  • the present invention relates to a method of generating a long sequence by connecting base sequences of short length and efficiently transmitting a signal such as a synchronization signal using the same.
  • a signal such as a synchronization signal
  • a synchronization signal for NB IoT operation is assumed, and since such a signal can also reuse a synchronization signal in an LTE system, it is necessary to discuss ⁇ synchronization signal transmission and reception.
  • SS synchronization signal
  • SS is composed of PSS and SSS, is a signal used when performing a cell search.
  • 2 and 3 illustrate a frame structure for transmission of an SS in a system using a basic CP and an extended CP, respectively.
  • the SS is transmitted in the second slot of subframe 0 and subframe 5, respectively, considering the GSM frame length of 4.6ms, and the boundary of the corresponding radio frame can be detected through SSS.
  • PSS is transmitted in the last OFDM symbol of the slot
  • SSS is transmitted in the OFDM symbol immediately before the PSS.
  • the SS can transmit a total of 504 physical cell IDs through a combination of three PSSs and 168 SSSs.
  • the SS and the PBCH are transmitted within 6 RBs within the system bandwidth, allowing the UE to detect or decode regardless of the transmission bandwidth.
  • the transmit diversity scheme of the SS uses only a single antenna port, and is not defined separately in the standard. That is, a single antenna transmission or a transparent transmission scheme (for example, PVS, TSTD, CDD) can be used.
  • a single antenna transmission or a transparent transmission scheme for example, PVS, TSTD, CDD
  • PSS code defines a ZC (Zadoff-Chu) sequence of length 63 in the frequency domain to use as a sequence of PSS.
  • 29 and 34 have conjugate symmetry, so two correlations (correl at i on) can be performed at the same time.
  • d u (n) (d Nzc _ u (, when N zc is odd number.
  • the sequence used for the SSS makes an interleaved concatenation of two m-sequences of length 31 and combines the two sequences to transmit a 168 cell group identifier (ce l group group ID).
  • a sequence of S-SS m-Siemens is robust in frequency-selective environment and can reduce the computation amount by fast m_sequence transformation using fast fast adamant transform.
  • configuring the S-SS with two short codes has been proposed to reduce the amount of computation of the UE.
  • SSS 4 is a diagram showing that two sequences in a logical domain are interleaved and mapped in a physical domain.
  • SI and S2 respectively, if the SSS of subframe 0 transmits a sal group identifier in two combinations of (SI, S2), subframe 5
  • the SSS can distinguish 10 ms frame boundaries by swapping and transmitting to (S2, S1).
  • the used SSS code uses a generation polynomial of x 5 + x 2 + l, and a total of 31 codes can be generated through different cyclic shifts.
  • PSS-based two different sequences of PSS-based (PSS-based) may be defined and scrambled in the SSS, but may be scrambled in different sequences in S1 and S2. Thereafter, Sl-based scrambling codes are defined and scrambling is performed on S2. At this time, the sign of the SSS is exchanged in units of 5ms, but the PSS-based scrambling code is not exchanged.
  • the PSS-based scrambling code is defined as six cyclic shift versions according to the PSS index in the m-sequence generated from the generation polynomial of + +1 , and the S1-based scrambling code is ⁇ 5 + ⁇ 4 + ⁇ 2 + ⁇ '+ In m-sequences generated from the polynomials of ⁇ , we can define eight circular transition versions according to the index of S1.
  • FIG. 5 is a view for explaining the overall structure for transmitting and receiving a synchronization signal in the NB LTE system.
  • NB-PSS proposes to transmit by using one predetermined sequence. Accordingly, 504 NB cell identifiers are required to be distinguished only by the NB-SSS.
  • the receiving device will attempt to detect the PSS in a sliding window method in the time domain.
  • a detection method of the PSS may increase the complexity of the receiving device, and thus may be an inappropriate configuration in the NB LTE system, which has a single purpose of reducing the complexity.
  • the NB-PSS according to the present embodiment transmits using one predetermined specific sequence, the receiving side can reduce complexity by performing only an operation for detecting the specific sequence.
  • the NB-SSS is required to efficiently distinguish 504 cell identifiers, which will be described later as another aspect of the present invention.
  • the NB-PSS is preferably repeatedly transmitted to a plurality of 0FDM symbols.
  • NB-PSS is applied to nine 0FDM symbols.
  • the number of specific OFDM symbols need not be limited thereto.
  • the NB-PSS is repeatedly transmitted in 9 OFDM symbols.
  • a subframe using an extended CP includes 12 OFDM symbols, and the first 3 OFDM symbols of the 12 OFDM symbols are PDCCH. Because it can be used to transmit.
  • the above-described numerical values may vary according to changes in the number of OFDM symbols included in one subframe of the NB LTE system and the maximum number of OFDM symbols required for PDCCH transmission.
  • the number of OFDM symbols repeatedly transmitted by the NB-PSS may be 11 OFDM symbols.
  • the NB PSS is repeatedly transmitted in a plurality of OFDM symbols continuously arranged in the time domain.
  • NB-PSS when NB-PSS is mapped to the resource element for transmitting the CRS, LTE system providing the NB LTE service when mapping to the resource element (resource element) of the time-frequency domain, corresponding NB-PSS component Is preferably flattened to prevent delamination. That is, the N ⁇ -PSS / NB-SSS transmission location is preferably designed to avoid collision with legacy LTE signals, for example, PDCCH, PCFICH, PHICH and MBSFN transmission.
  • legacy LTE signals for example, PDCCH, PCFICH, PHICH and MBSFN transmission.
  • the receiving device can easily determine the subframe tie 3 ⁇ 4 and the frequency offset.
  • NB-SSS has six OFDM Although shown to be transmitted over the symbol, need not be limited to this. For example, it may be transmitted over 11 OFDM symbols as shown in the above-described NB-PSS. Long sequence generation method
  • the following description describes a method of improving auto-correlation performance when concatenating existing short length sequences (8336 sequences) to generate long length sequences.
  • the auto-correlation characteristics vary according to the arrangement order of the short base sequences and the combination of the code cover. In the following examples, the size of the second peak compared to the highest peak in auto-correlation is different.
  • a combination of length 10-length Binary Go lay Sequence a (n) and b (n) can be made as follows, Sequence S and Sequence Sc with a total length of 80. Equation 3 a (n): (1, 1, -1, 1, -1, 1, -1, -1, 1, 1)
  • Sequence Sc (an, an, bn, -bn, an, -an, bn, bn)
  • Sequence Sc is four Base-sequence an and Create 4 bn and apply the code cover.
  • FIG. 6 is a diagram illustrating an autocorrelation result of the sequence S of Equation 3.
  • FIG. Specifically, FIG. 6 shows Auto—correlat ion results of Sequence S of length 80.
  • FIG. 6 when performing Auto-correl at ion of Sequence S, a plurality of spikes of various sizes are generated, and in particular, it can be seen that a spike size having a next size compared to the largest spike is 3 dB or less.
  • the reason why this spike is generated is that the code cover applied to Sequence S induces a phased-off synthesis by creating the opposite phase under certain circumstances, while in many cases it is a reinforcement synthesis to generate spikes.
  • the table below describes the situations in which spikes are created.
  • FIG. 7 is a diagram illustrating an autocorrelation result of the sequence Ss of Equation 3.
  • FIG. 7 it can be seen that the Spike size having the next size compared to the largest Spike size, especially when performing Auto—correlat ion of Sequence Sc is more than 8dB.
  • the combination of base-sequence and code cover can be configured a sequence of various lengths *, depending on the combination method Auto-correlation characteristics of the sequences are derived in various forms.
  • a method of concatenating a sequence that has good auto-correlation characteristics when generating a long length sequence by concatenating short length base sequences is described.
  • FIG. 8 is a diagram for explaining a method for generating a long length sequence having excellent autocorrelation characteristics according to an embodiment of the present invention.
  • a sub-sequence 802 is formed by combining M basic sequences 801 of length N.
  • the sub-sequence A 802 includes two basic sequences an and bn for convenience of illustration, but the present invention is not limited thereto.
  • a new subsequence can be generated by applying a code cover to the base sequence (an, bn) constituting the subsequence 802.
  • the sub-sequence corresponding to ⁇ A is generated by multiplying the cover sequence of [-1, —L] by [an, bn] constituting sub-sequence A, but need not be limited thereto.
  • system The subsequence can be generated by applying the cover sequence.
  • L sub-sequences can be selected and arranged to form the final sequence.
  • the final sequence constitutes a combination of subsequences to satisfy the following conditions.
  • a code cover +/- j may be used.
  • the base sequence various sequences such as Complementary Go Sequence, Zadof f-Chu Sequence, and M ⁇ Sequence can be used.However, in the following description, a Complementary Go Sequence is used for convenience of description.
  • a sub-sequence may be constructed using a base sequence an and ftn of length N. In the sub-sequence configuration method, two base sequences are concatenated, and an orthogonal code cover is applied to the two concatenated base sequences.
  • Sub-sequence A [an an]
  • B [bn bn]
  • C [an bn]
  • D [bn ctn] to configure the code cover to introduce a new
  • Sub-sequence Ac [ an-an]
  • Be [bn-bn]
  • Cc [an-bn]
  • Dc [bn-an].
  • Sub1 sequence Cc, Dc and Sub-sequences A, B are not orthogonal.
  • Sub-sequence set l (A, B, Ac, Be) and Sub-sequence set 2 in the present embodiment
  • the first sub-sequence an arbitrary sub-sequence may be selected, and the second sub-sequence may be selected as another sub-sequence as the first sub-sequence.
  • the priority of selection among the selectable candidates is as follows. Priority 1. Sub-sequence selection having a different base sequence and OCC different from the first Sub-sequence Priority 2. Sub-sequence selection having a 0CC and the same base sequence different from the first Sub-sequence
  • Sub-sequence selection with 0CC and other base sequences as the first sub-sequence Table 2 below shows an example of configuring two subsequences in this manner.
  • a B (an an bn bn) 0 0 2 4
  • Priority 1 Select a Sub-sequence having a different OCC and the same Element as the first Sub-sequence.
  • Priority 3 Select a Sub-sequence with 0 CC and a different Element as the first Sub-sequence.
  • Table 3 below shows an example of configuring three subsequences in this manner.
  • the fourth sub-sequence may be configured as the remaining sub-sequence without selecting the foregoing.
  • Table 4 below shows an example of configuring four subsequences in this manner.
  • Sub-sequences selected one by one may be used once more. The pattern produced by the preceding four sub-sequences is not repeated.
  • Sub-sequences can be selected and arranged without B), (A Ac Be B) or the like.
  • Table 5-7 below shows three examples of eight sub-sequences.
  • X denotes a sequence with poor auto-correlation characteristics
  • o denotes a sequence suitable for use because of good auto-correlation.
  • the sequence of length N may use only L ( ⁇ N) length depending on the situation.
  • the sequence having good Auto-Correlat m characteristics regardless of the length is as follows.
  • Table 8 shows a sequence consisting of 8 or 6 sub-sequences based on ⁇ ⁇ .
  • SI 272 [A Ac BcB B A Be Ac]
  • Table 9 shows a sequence consisting of 8 or 6 sub-sequences based on ( ⁇ Be Ac).
  • Table 10 below shows eight or six sub-sequences based on M Be Ac ⁇ .
  • Sub-sequences (A Ac Be B): Sequences consisting of 8 or 6 Sub-sequences based on (AB Be Ac), (A Be Ac B), (A Be B Ac) Even though L elements are used, they have characteristics that maintain good auto-correlation characteristics.
  • the first sub-sequence selects an arbitrary sub-sequence, and the second sub-sequence may select another sub-sequence as the first sub-sequence.
  • the priority of selection among the selectable candidates is as follows. Priority 1. 0CC and Base sequence array different from the first Sub—sequence Sub-sequence selection like this
  • Priority 2 Select Sub-sequence with different 0CC and Base sequence arrays different from the first Sub-sequence.
  • Priori ty 3 Select sub-sequences with different OCC and base sequence arrangements as the first sub-sequence.
  • Table 12 shows an example of configuring two subsequences.
  • the third sub-sequence may be selected in the following priority order from the remaining sub-sequence tokens without selecting the previous one.
  • Priority 1 Select Sub-sequences with the same 0CC and Base sequence arrays as the first Sub-sequence.
  • Table 13 below shows an example of configuring three subsequences.
  • CDc D (an bn bn -an bn an) 100016
  • CDDc (an bn bn an bn -an) I 02016
  • the fourth sub-sequence is left unselected earlier.
  • It can be configured as a sub-sequence.
  • a root when using a ZC sequence as a base sequence, a root generates a sequence column having a good auto-correlation property by combining a combination of N sequence vectors and an orthogonal code cover applied in units of vectors. do.
  • a sequence column may be composed of a combination of two 2C sequences with different root values and an orthogonal code cover.
  • Z (u, n) is a ZC sequence with root value u and length N
  • Example 1 Subcarrier Spacing 15 kHz, Bandwidth 180 kHz, Sampling
  • an OFDM system defined with a frequency of 1920 kHz and CP 4us an OFDM system consisting of 11 OFDM symbols is as follows.
  • an OFDM symbol generation process is performed for each bundle (12-DFT spreading >> 12 ⁇ sub-carrier mapping mapping ⁇ 128-FFT ⁇ CP length insertion ( A total of 11 OFDM symbols can be generated by performing 9 sampl e)).
  • a sequence column having a length of 132 is configured using a base-sequence having a length of 12, and can be generated using two base sequences and 0CC.
  • two ZC sequenced base-sequences having a length of 12 and different Root values improve the auto-correl at ion characteristics.
  • Example 2 As the root value, a root whose ZC sequence sequence is a complex con j ugat ion relationship can be selected.
  • the 11-length ZC sequence has 11 root values ranging from 1 to 11, and root values such as 1 and 10, 2 and 9, 3 and 8, 4 and 7, 5 and 6 are ZC sequences. You can have columns conj ugate to each other.
  • ZC sequence up to length 13 has 13 root values from 1 to 13, 1 and
  • Root values such as 12, 2 and 11, 3 and 10, 4 and 9, 5 and 8, 6 and 7 can cause the ZC sequence to be conjugated to each other.
  • Example 3 Any two different values may be used as the root value.
  • Example 4 When a ZC sequence having a length of 11 is mapped to 12 subcarriers in a frequency region, DC positions may be empty and mapped to the remaining 11 subcarriers. In case of using ZC sequence of length 11, DFT spreading size can be 11.
  • Example 5 When a ZCsequence having a length of 13 is mapped to 12 subcarriers in a frequency region, a result obtained after DFT spreading of 12 remaining subtracted portions of a sequence may be mapped to 12 subcarriers.
  • Sync signal receiving method
  • a synchronization signal is transmitted for the purpose of finding a starting point of a symbol and detecting a frequency offset.
  • the highest accuracy algorithm is the cross-correlation method.
  • the receiver performs cross-correlation of the received signal and the sync signal and recognizes the maximum point among the correlation results as the start point of the symbol.
  • the problem is that if there is a frequency offset, the cross-correlation results are of similar magnitude. To solve this problem, it is assumed that a frequency offset occurs at a specific value within a range in which a frequency offset can occur.
  • An algorithm that can be performed by a simple operation is an autocorrelation method.
  • the difference between the received signal and the previous received signal is obtained, and the result values in a certain range are added and the result is moved by moving the starting point of the window.
  • the maximum point among the auto-correlation results is recognized as the starting point of the symbol.
  • the auto-correlation method performs the difference operation between the received signals and thus has the advantage of obtaining a correlation result regardless of the frequency offset.
  • noise amplification by difference calculation is a factor that reduces the detection performance at low SNR, and the result of auto-correlation has a problem that resolution decreases.
  • a hybrid algorithm can be considered that combines the advantages of the accuracy of the cross-correlation method and the low calculation amount of the auto-correlation method. Obtaining the difference between the received signal and the previous received signal cancels the effect of phase shift due to the frequency offset. By obtaining the cross-correlation of this result and the synchronization signal, good correlation results can be obtained.
  • the advantage is that the start point of the symbol can be detected even when cross-correlation is applied once by canceling the effect of the frequency offset.
  • the disadvantage is noise amplification due to differential decoding.
  • the receiver performs Cross— Cor 1 at ion, the Correlation property of the transmitted sequence should be good. If cross-correlat ion is performed after differential decoding, the correlat ion characteristics of the sequence resulting from the differential decoding of the transmission sequence should be good.
  • Embodiments of the present invention describe a method of differentially encoding a sequence having a good correlation property to generate a transmission sequence, and propose a method of generating a transmission sequence having a good correlat ion property even when differentially encoded.
  • 9 and 10 are diagrams for describing a method of generating a transmission sequence by differential encoding.
  • sequences having good auto-correlation may be made into a transmission sequence by performing differential encoding.
  • the Transmission Sequence is generated.
  • Example 1 An initial value of 0CC that is differentially encoded is T or
  • Example 2 SourxeOCC introduces a binary sequence with good auto-correlation characteristics.
  • Base-sequence may use Single Vector or Two Vectors, but N Vectors may be used.
  • FIG. 11 shows a conceptual diagram of generating a Transmission Sequence by differentially encoding an Orthogonal Code Cover and combining it with a Base Sequence.
  • a binary sequence ⁇ 1 -1 1 -1 -1 1 -1 -1 1 ⁇ having a length of 10 is set as a source OCC, and differential encoding is performed to perform ⁇ 1 1 -1 -1 1- 1 -1 1 -1 1 1 ⁇ Re-Generated OCC is obtained.
  • the transmission sequence can be 0 and 3 ⁇ 4 °] 3 ⁇ 4].
  • Eleven sub-vectors can be configured with two base-sequences.
  • [0176] may be configured of 11 Sub-vector with different Base-sequence, for example, you can obtain the root value Transmission Sequence 3 ⁇ 4 ⁇ using different ZC sequence. [Equation 13]
  • FIG. 12 is a conceptual diagram of generating a transmission sequence by combining an orthogonal code cover with a base sequence (a n ).
  • N sub-vectors have different ZC sequences with different root values.
  • Example 1 ZCsequences of length N may be used, and some of the N roots may be used.
  • one root, two roots, four roots, six roots, eight roots, ten roots, and eleven roots may be used.
  • Root value is selected to have a complex conjugate relationship among N Root values.
  • one combination may be considered as follows.
  • Z (u, n) is defined as follows.
  • one OFDM symbol is configured by using 12 subcarriers having a subcarrier spacing of 15 kHz, and the PSS may be configured by 11 OFDM symbols.
  • the sequence When applying a ZC sequence, the sequence indicates a Transmission sequence.
  • the transmission sequence applied to one DM symbol is configured according to the length of the ZC sequence. For example, if a length 11 ZC sequence is used, the sequence can be cyclically shifted into a length 12 sequence. All.
  • one subcarrier may be left blank and mapped to 11 subcarriers. If you use a 13-length ZC sequence, you can subtract one of the sequences to make it a 12-length sequence.
  • the selected N Root values may be used repeatedly. For example, when there are two sequences an and bn with different root values, an and bn are used repeatedly. When there are 4 sequences an, bn, cn, and dn with different root values, each sequence is used repeatedly.
  • Root value is a combination of N sequence arrays having different root values and 0CC
  • M transmission sequences made by different 0CCs can be configured and used as information.
  • it may indicate the FDD / TDD mode.
  • the operation mode can be divided according to the frequency position used,
  • Mode that operates in LTE in-band, Guard band or Stand-alone mode can indicate the mode.
  • This section describes how to inform various information through NB-SSS.
  • NB-IoT informs 504 Physical Cel 1 IDs in NB-SSS.
  • PBCH is transmitted every 10ms
  • PSS / SSS is transmitted every 5ms
  • two PSS / SSS transmissions are sent between PBCH transmission periods
  • the SSS transmission subframe number is informed through SSS.
  • the subframe index is indicated by swapping SSS1 and SSS2 constituting SSS according to subframe position.
  • NB-PBCH is transmitted every 80ms and NB—PSS is transmitted every 10ms.
  • the NB-SSS may be designed to be transmitted at a longer period (eg, 20 ms, 40 ms) than the NB-PSS. If the NB-SSS transmission period is designed to be transmitted in a period shorter than the NB—PBCH period transmitted every 80 ms, the candidate positions where the NB-SSS can be transmitted may be larger than LTE in the period where the NB-PBCH is transmitted. have.
  • the NB-SSS must include a considerable number of information such as the NB-SSS frame index as well as the Cell-ID.
  • the NB-SSS design that can contain a lot of information and can simplify the reception complexity of the terminal.
  • FIG. 13 is a view for explaining how to configure an NB-SSS according to an embodiment of the present invention.
  • Example 1 Base-sequence is generated by L-length ZC sequence, L-length
  • the base-sequence uses a ZC sequence having a length of 67 as shown in Fig. 13, and one sample is puncturing to make a ZC having a length of 66.
  • the root index of two ZC sequences can be set independently of each other.
  • the scrambling sequence may consist of an M-sequence or a PN sequence.
  • Base-sequence uses a ZC sequence of length 67 and one sample is puncturing to concatenate two ZC sequences of length 66 to 132 lengths. Create a base sequence of.
  • the root indexes of the two ZC sequences can be set independently of each other.
  • the scrambling sequence may consist of an M-sequence or PN sequence of length 66.
  • a Cover Sequence may form a Sequence with a limited Element.
  • an Orthogonal Cover Sequence consisting of + 1 / — 1 or Configure.
  • a short length Orthogonal Sequence may be created and configured by repetition according to the total length of the Sequence.
  • [1111], [1-11 -1], [11-1-1], and [1 -1 -11] are orthogonal 4—Hadamard sequences, [1111], [1 j -1 -j ], [1 -11— ⁇ ], [1 -j -1 j] are orthogonal 4-DFT sequences. If a total of 132 sequences are formed, the Orthogonal sequence of length 4 is repeated 33 times. When the cover sequence is composed of +/- j as described above, the computational complexity of the receiver can be reduced.
  • the cover sequence may be a Hadamard matrix, DFT matrix, etc., M-sequence may be used.
  • Example 1 When a plurality of ZC sequences are used as the base-sequence, the positions of CeH-ID and NB—SSS can be expressed by a combination of root indices of a plurality of ZC sequences. In this case, the state that can be expressed by the root index combination may be greater than the state of the total information to be sent. In such a case, it is preferable to use a root index of a part of the whole root index. When selecting a part of the root index, root indexes that have a complex conjugate relationship between ZC sequences are used.
  • Roots Since there are indexes, a total of 4489 O 67 x 67) states can be represented by two root indexes. If 504 cell-IDs and four NB-SSS positions must be represented, a total of 2016 states are required, which is the root index. It is smaller than State that can be expressed as a combination, and it is preferable to express it as a combination of some root indexes. In addition, if 504 Cell-IDs are represented, the required State can be expressed even if fewer Root indexes are used. If it is 504, it is possible to express Cel ID by using 21 root indexes in the previous ZC sequence and 24 root indexes in the later ZC sequence. In case of selecting some Root indexes of length 67 (eg, 21, 24), Root index that can generate ZC sequence having complex conjugate relationship is selected and used.
  • Example 2 The Cell index is indicated by the Root index of the sequence, and the position of the NB-SSS is indicated by the cover sequence.
  • CeH-ID is indicated by the Root index of the Base-sequence
  • Cyclic shift of the scrambling sequence indicates the poisition of NB ⁇ SSS.
  • Example 4 The CeU-ID is indicated by the root index and the cyclic shift of the base-sequence, and the position of the NB-SSS is indicated by the cover sequence.
  • a length 131 ZC sequence has a limit on the Cel ID that can be expressed. Because of low correlation between cyclic shifted ZC sequences, cyclic shift can be used as a resource. Cyclic shift by 'Sequence length / N' length unit. In order to express 504 Cell-ID, 126 Root Index and 4 Cyclic Shift are used, and a total of 504 states can be expressed. However, there is not enough information space to indicate the position of NB-SSS. To do this, cover sequence is applied and NB-SSS posi ion index is found by searching the cover sequence selected according to NB-SSS position index among Candidate cover sequences. I can make it.
  • N is the length of the sequence and u is the root index
  • n denotes the index of the sequence. Substitute the length N from 0 to N-1.
  • the ZC sequence may be used by performing a cyclic shift.
  • a total of 132 Resource Elements can be utilized as a resource for sequence transmission.
  • a ZC sequence As a base sequence, a prime number close to 132 is assumed to be the length of the ZC sequence. You can use the nearest prime, 131.
  • ZC sequence of length 131 is used as the base sequence, and one more sample is needed to make length 132. In this case, ZC sequence is used as a cyclic shift. Can be used.
  • the starting point is offset by s and the cyclic shift is performed.
  • the offset value may be utilized as information.
  • mapping a sequence to an RE if you want to use the offset as information, it is desirable to have an offset of at least 2 samples.
  • the receiving end converts the received signal into the frequency domain and thinks that the sequences are mapped to each RE and de -sequencing is tried.
  • the frequency offset value exists in the received signal
  • the phenomenon that the signal is shifted to the adjacent RE occurs in the frequency domain.
  • Cyclic shifted sequence by original offset It has a correlation value. If you use this as information, if you use a shifted sequence that does not have enough offset, ambiguity occurs during detection.
  • 15 and 16 are diagrams for explaining considerations according to frequency shifting between a transmission signal and a reception signal.
  • Sequence 1 When 2 is present, if Sequence 1 is sent and CF0 causes the frequency shift to occur, it is similar to transmitting Sequence 2. That is, when Sequence 1 is transmitted, Cross-correlation of Sequence 2 becomes large when the receiving side takes .Cross1 correlat ion of Sequence 1 and Sequence 2, which is a detection error.
  • NB-SSS will attempt to detect the Cell-ID and SSS frame index with CF0 remaining, but will attempt to detect it with a frequency shift of the transmitted sequence.
  • the starting point of the ZC sequence is to be used as the information different from each other, it is preferable to leave a sufficient offset, but it is preferable to drop at least two or more samples.
  • Sequence 1 is placed under a cyclic shift with an original sequence and 12 sample offsets and used for transmission in adjacent cells, respectively. If it is assumed that the signal transmitted from Cell # l and Cell # 2 has a transmission delay, and the receiver receives it, the distinction between Sequence 1 and Sequence 2 may be ambiguous.
  • the offset is preferably 2-9, 13-17... Offset can be +/- etc.
  • a ZC sequence of length N may use N root indexes, and a number of root indexes smaller than N may be selected and used as information. In such a case, an appropriate root index should be selected. It is preferable to select a root index having a complex conjugate relationship and a root index whose PAPR of the generated NB-SSS is not high.
  • the root index pair (1,130), (2,129) to make the ZC sequence a com lex conjugate Select 64 pairs from a total of 65 pairs, such as), (3,128), (4,127), (5,126),-", (65,66).
  • a specific root index pair is created.
  • OFDM symbol is You will have a big PAPR. If a sequence with small phase change is mapped between the REs of an OFDM symbol, the PAPR of the OFDM symbol has a large value (for example, if [1111] is mapped in the frequency domain, it appears as [2000] in the time domain). The larger the PAPR, the lower the root index, and the smaller the phase change between the preceding sequences, resulting in larger PAPR. The low root index and the paired root index have the same value.
  • the NB-SSS transmission frame index may cover the sequence consisting of the DFT. For example, if the NB-SSS is transmitted in 20 ms periods between the NB-PBCHs transmitted in 80 ms periods, the NB-SSS is transmitted four times between the NB-PBCHs. (If 40ms period, 2 position candidates) [0255] When the sequence length is 132, the offset of the DFT may be [0,33,66,99].
  • the DFT sequence can be multiplied element-wise to the previously created sequence.
  • ⁇ - ⁇ is a system for supporting low comp lex i ty, low power consumpt ion having a system BW corresponding to 1 PRB of the LTE system.
  • This can be mainly MTC (machine-type communi cat ion ) and ⁇ devices supported in the eel hil ar system, such as using a communication method for implementing an internet oi things (IoT).
  • IoT internet oi things
  • 19 is a diagram for describing a specific method of repeatedly transmitting an NB-PSS to a plurality of OFDM symbols according to an embodiment of the present invention.
  • the sequence to be transmitted to the OFDM symbol is proposed to transmit the same sequence repeatedly, and to multiply each OFDM symbol by a specific cover sequence as shown in FIG.
  • the maximum length of a sequence that can be transmitted in one OFDM symbol is 12 assuming a 15 KHz subcarrier spacing.
  • the system bandwidth of the NB LTE system is 1 PRB and 15 KHz subcarrier spacing is used.
  • an implementation of processing in the time domain is generally considered in consideration of the complexity of the calculation.
  • correlation is obtained by applying a si iding window to the PSS sequence.
  • a relatively large correlation value can be produced by giving an OFDM symbol length. Therefore, when the condition of complementary go lay sequence is used, the correlation period is extended by outputting a relatively large correlation value. Properties can be improved.
  • Method 1 Alternate placement of complementary Go lay sequence pair OFDM symbol.
  • a (n) is transmitted for OFDM symbol 1 and b (n) for OFDM symbol 2.
  • c (n) can be applied to m-sequence of length 7 by taking length 6.
  • the number of the OFDM symbol to transmit the PSS is preferably taken "number.
  • possible sequence length 2 a 10 b 26 c (a , b, c is zero or more integer If there are only 12 available resources in one OFDM symbol, the possible Go lay sequence length may be 10.
  • 20 is a diagram illustrating correlation characteristics of a complementary sequence pair a (n) and b (n) having a length of 10 and various c (n) patterns.
  • the PSS may be transmitted in a form in which one sequence of the sequence pair is transmitted once more. All.
  • N 7 OFDM symbol
  • a (n) b (n) a (n) b (n) a (n) b (n) a (n) is arranged in the OFDM symbol to be transmitted. Can be.
  • Method 2 A method of arranging complementary Go lay sequence pairs in one OFDM symbol.
  • Method 2-1 Method of generating and placing a sequence corresponding to 1/2 of an OFDM symbol.
  • a non-binary comlementary Golay sequence a (n), b (n) of length 6 is generated, and a (n) OFDM symbol is available. It can be allocated to 1/2 of and assigned to the other half of b (n). In this case, RE allocation may allocate a (n) to the first half and b (n) to the second half.
  • Method 2-2 A Method of Transmitting One OFDM Symbol a (n) and b (n) by Superposit Ions
  • N 6 OFDM symbols
  • a length 10/12, binary / non-binary comlementary Golay sequence may be generated, and a (n) + b (n) may be calculated and transmitted one by one. .
  • Method 3 Method of placing and transmitting L (L> 2) or more complementary Golay sequences.
  • the number of OFDM symbols for transmitting the PSS must satisfy the multiple condition of L.
  • a length 10 or 12 complementary Golay sequence la (n), lb (n), and lc (n) may be sequentially arranged in an OFDM symbol for transmission. That is, la (n), lb (n), lc (n), la (n), lb (n), and lc (n) are arranged in this order, and the cover sequence c (n) is applied and transmitted.
  • a ZC sequence having a number of components corresponding to 12 subcarriers may be used in the frequency domain of one OFDM symbol.
  • a ZC sequence having a number of components corresponding to 12 subcarriers may be used.
  • only 11 subcarriers may be used, and a ZC sequence having a length of 11 may be used for this purpose.
  • the sequence of the NB-PSS may be generated using a ZC sequence having a length of 11 in the frequency domain as follows.
  • Equation 24 s (l) represents the above-described cover sequence, and SU) may be defined as follows according to the OFDM symbol index ' ⁇ .
  • NB-PSS is transmitted using one specific sequence
  • 504 NB cell identifiers are required to be represented by the NB-SSS. Therefore Accordingly, in the case of NB-SSS, a method of transmitting through a plurality of OFDM symbols in the same manner as the NB-PSS, and mapping a long sequence divided into a plurality of OFDM symbols for cell identifier identification is proposed.
  • 21 is a diagram for explaining a concept of transmitting an NB-SSS according to an embodiment of the present invention.
  • the receiving device that is, the terminal detects cell id
  • the transmission structure of the SSS is not repeatedly transmitted to a plurality of OFDM symbols like the PSS described above, but it is preferable to transmit a sequence having a long length M as a plurality of OFDM symbols as shown in FIG. 21.
  • the long length sequence used for the NB-SSS may be a sequence composed of a sub-sequence combination selected in consideration of self correlation characteristics as described above.
  • a sequence having a length M may be generated to multiply the scrambling sequence having a length M by component units.
  • N 6
  • a sequence of length 72 is divided into six sequences of length 12 and transmitted in six OFDM symbols, respectively.
  • M L * N to satisfy.
  • the Physical Cell ID of 504 was indicated through PSS and SSS.
  • NB-IoT informs 504 Physical Cel 1 IDs in NB—SSS.
  • PBCH is transmitted every 10ms
  • PSS / SSS is transmitted every 5ms, so two PSS / SSS transmission between the PBCH transmission period informs the SSS transmission subframe number through the SSS, for this purpose
  • the subframe index is indicated by swapping SSS1 and SSS2 constituting SSS according to subframe position.
  • NB-PBCH is transmitted every 80ms and NB-PSS is transmitted every 10ms.
  • NB-SSS can be designed to be sent at a longer share price (eg 20ms, 40ms) than NB-PSS. If the NB-SSS transmission period is designed to be transmitted in a shorter period than the NB-PBCH period transmitted every 80 ms, the candidate positions where the NB-SSS can be transmitted in the period during which the NB-PBCH is transmitted may be larger than in LTE. have.
  • the NB-SSS must include a considerable number of information such as the NB-SSS frame index as well as the Cell-ID.
  • the NB-SSS design that can contain a lot of information and can simplify the reception complexity of the terminal.
  • the configuration of the NB-SSS is a combination of several sequences. It is suggested to divide by.
  • the NB-SSS is composed of a base—sequence, a scrambling sequence, a cyclic shift, and a cover sequence.
  • the base-sequence generates an L-length ZC sequence ⁇ - and performs element wise multiplication of the L-length scrambling sequence. Then, perform a cyclic shift, and then L-length cover Element wise multiplication can be created by creating a sequence.
  • 22 is a diagram for describing a method of generating and transmitting an NB-SSS according to an embodiment of the present invention. In FIG. 22, a ZC sequence having an M-length may be generated first.
  • This ZC source may be a plurality of ZBs that can transmit NB-SSS as described above.
  • the antenna has a long length that can be divided into OFDM symbols.
  • M 132 (12 subcarriers * 11 OFDM symbols).
  • 11 OFDM symbols may be regarded as a value excluding 3 0FDM symbol regions in which PDCCH can be transmitted among 14 0FDM symbols included in one subframe as described in the above-described NB-PSS.
  • specific values may vary depending on the implementation of the system.
  • the number of root indexes that can be distinguished from each other in ZC sequence is possible when the length of the sequence is based on prime numbers. Accordingly, rather than generating a ZC sequence having a length of 132 as described above, the length of the ZC sequence, which is 131, which is the largest of the smaller numbers than 132, is used as the length of the ZC sequence, and the 131 ZC sequence is used as the length of 132. It is preferable to use the circular expansion as follows.
  • FIG. 22 shows the location of the NB-SSS using the M length cover sequence.
  • the NB-SSS may be transmitted less frequently than the NB-PSS, and thus signaling may be required to indicate this.
  • the method of transmitting information about the location where the NB-SSS is transmitted through NB—SSS is a cyclic shift applied to the ZC sequence as described above in addition to the method of transmitting through the cover sequence as shown in FIG. 9. ft).
  • the above-described offset may be applied to the ZC sequence instead of the cover sequence.
  • 131 root indexes can be selected, whereas when using 4 offsets to distinguish 504 cell identifiers as described above, selecting only 126 root indexes among 131 root indexes. Because of this, there is plenty of room to take advantage of a good root index out of all 131 root indexes.
  • FIG. 23 is a diagram for describing a root index selection method of a ZC sequence to be used for NB-SSS according to an embodiment of the present invention.
  • NB-SSS When constructing the NB-SSS, the use of a long single ZC sequence may increase the PAPR even when using the ZC sequence, NB-SSS has a different PAPR according to the root index. In particular, low root indexes (high root index paired with them) and intermediate root indexes can produce high PAPR.
  • Length-131 ZC sequence is the root index 1,130, 2,129, 3,128, 65, 66, 64,
  • FIG. 10A illustrates a case where a root index indicating a high PAPR is used
  • FIG. 10B illustrates a case where a root index indicating a low PAPR is used.
  • index 3-128 except for the root index to create a high PAPR Suggest to use In this case, the average PAPR can be lowered. That is, in this embodiment, to transmit the NB-SSS To select the root index of L length ZC sequence to be used, M root index increments smaller than L are selected, but the M root indexes are not selected in the range [0, M-1]. Proposes to select from the range of [k, M + k-1]. Preferably ZC Siemens suggests being selected as one of the 126 root indices in the range [3, 128].
  • the NB-SSS may be transmitted in units of 20ms period. This
  • the NB-SSS may indicate 504 PCIDs and indicate which position is transmitted within the 80 ms range.
  • the NB-SSS sequence is generated using a frequency domain ZC sequence of length 131, where the root index may be selected in the range [3, 128]. This ZC sequence can then use a sequence in which the binary scrambling sequence is multiplied by the component through a cyclic shift.
  • 504 PCIDs can be represented by 126 ZC root indexes and 4 binary scrambling sequences.
  • the position of NB-SSS within the 80 ms boundary is determined by four cyc l i c shi f t values (eg, 0, 33, 66,
  • the following Hadamard sequence may be used.
  • the NB-SSS may be configured as follows.
  • FIG. 24 is a diagram illustrating a cross correlation value when a Hadamard sequence specific to an NB-SSS is used in an embodiment of the present invention.
  • the Hadamard sequence is composed of binary
  • time ⁇ domain cyclic shift is composed of a complex value
  • the ambiguity between the two sequences can be eliminated because a sequence of domains distinct from Hadamrd is formed.
  • the Hadamard sequence and the time-domain cyclic shift are composed of different domains
  • the Hadamard sequence can be applied to either a full orthogonal sequence or a quasi ⁇ orthogonal sequence.
  • Equations below are examples according to such embodiments. In addition to the examples illustrated below, there may be various examples that satisfy the above principles.
  • Equation 35 below is NB-SSS according to another embodiment of the present invention. As shown, this is an example of concrete implementation of sequence and Hadamard sequence for circular movement.
  • Equation 35 the binary sequence bq (m) in Equation 35 may be given as shown in the following table.
  • the cyclic shift value in the frame number ⁇ in Equation 35 may be determined as follows.
  • Base sequence roneun ZC sequence is ⁇ ] "may be used, roneun Scranibl ing sequence can be for the M sequence binary words.
  • the PCID can be configured by combining the root index of the base-sequence and the cyclic shift offset value of the scrambling sequence, and the DFT sequence.
  • NB-SSS position indication can be configured as an index.
  • the overall resource structure is as follows.
  • DL 25 is a downlink (DL) / uplink in a wireless communication system
  • a slot may include a plurality of slots in a time domain.
  • a 0FDM (0rthogonal Frequency Division Multiplexing) symbol is included and a plurality of resource blocks (RBs) are included in a frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including ⁇ L / UL RBX ⁇ b sc subcarriers and 1 ⁇ ⁇ OFDM symbols.
  • 7 ⁇ 3 ⁇ 4 represents the number of resource blocks (RBs) in the downlink slot, and represents the number of RBs in the UL slot.
  • v B and L RB depend on the DL transmission bandwidth and the UL transmission bandwidth, respectively.
  • / ⁇ ⁇ Represents the number of OFDM symbols in the downlink slot, and / represents the number of OFDM symbols in the UL slot.
  • Seed represents the number of subcarriers that constitute one RB.
  • the OFDM symbol is an OFDM symbol, SOFDM (Single Carrier) according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols. 12 illustrates a subframe in which one slot consists of 7 OFDM symbols for convenience of description, the embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner.
  • each OFDM symbol is in the frequency domain
  • Subcarriers are included.
  • the types of subcarriers include data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, and guard bands. It can be divided into null subcarriers for guard band or direct current (DC) components.
  • the DC component is mapped to a carrier frequency (/ 0 ) in the OFDM signal generation process or the frequency upconversion process.
  • the carrier frequency is also called the center frequency (/ c ).
  • One RB is defined as / L ⁇ sy ⁇ (e.g., seven) consecutive OFDM symbols in the time domain, and ⁇ (e.g., twelve) consecutive subcarriers in the frequency domain.
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of / UL symb X7 ⁇ sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair U and ⁇ in one slot.
  • / r is an index given from 0 to y ⁇ x / sc-l in the frequency domain, and / is an index given from 0 to ⁇ L / UL s ⁇ b -l in the time domain.
  • 1RB is one physical resource block (physical resource block, PRB) and one box source blocks are mapped respectively to the (virtual resource block, VRB)
  • eu PRB is the ⁇ L / UL symb dog (such as in the time domain For example, it is defined as 7 consecutive OFDM symbols or SC-FDM symbols, and is defined by ⁇ B sc (for example 12) consecutive subcarriers in the frequency domain. Therefore, one PRB is composed of ' / UL symb x' resource elements. Two RBs, one occupied in each of the two slots of the subframe, while occupying the ⁇ B sc consecutive subcarriers in one subframe, are called PRB pairs. Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • FIG. 26 is a downlink subframe used in a wireless communication system. (subframe) structure is illustrated.
  • a DL subframe is a control region in the time domain.
  • a control region It is divided into a control region and a data region.
  • up to three (or four) OFDM symbols located at the front of the first slot of a subframe are controlled in a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared CHannel
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include PCFICH (Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid ARQ indicator Channel).
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ Hybrid Automatic Repeat Request (ACK) / ACK (NACK) acknowledgment / negative ve-acknowledgement (ACK) signal as a response to the UL transmission.
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • Transmission format and resource allocation information is UL scheduling information or UL grant (UL Also called grant).
  • DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • formats 0 and 4 for uplink formats 1, 1A, IB, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for downlink.
  • Cyclic shift demodulation reference signal (S) UL index
  • CQI channel quality information
  • HARQ number transmitted precoding matrix indicator (TPMI)
  • control information such as PMKprecoding matrix indicator information is selected is transmitted to the UE as the downlink control information.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may monitor the plurality of PDCCHs.
  • the eNB determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg radio network temporary ident if ier) depending on the owner or purpose of the PDCCH. For example, if the PDCCH is for a specific UE, the identifier (eg, cell-RNTI (ORNTI)) of that UE may be masked in the CRC.
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SIB system information block
  • RA-RNTI random access-RNTI
  • CRC masking (or scrubbing) Ramble) includes X0R operation of the CRC and RNTI at the bit level, for example.
  • the PDCCH is transmitted on an aggregate of one or a plurality of contiguous control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel state.
  • the CCE processes a plurality of resource element groups (REGs). For example, one CCE can be matched to nine REGs and one REG to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of RS.
  • the REG concept is also used for other downlink control channels (ie, PCFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCE are numbered consecutively used, the decoding process in order to briefly, PDCCH with a format consisting of n CCE can be started only with the CCE corresponds with the number in multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the network or eNB according to the channel state. For example, a PDCCH for a UE having a good downlink channel (for example, adjacent to an eNB) may be divided into one CCE. However, in case of PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • FIG. 27 is a block diagram of a transmitter 10 and a receiver 20 for carrying out the present invention. It is a block diagram showing a cow.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving a radio signal carrying information and / or data, a signal, a message, and the like. It is operatively connected to components such as the memory 12, 22, the RF unit 13, 23 and the memory 12, 22 for storing various information related to communication in the communication system, to control the components A processor 11, 21 configured to control the memory 12, 22 and / or the RF unit 13, 23, respectively, such that the apparatus performs at least one of the embodiments of the invention described above. do.
  • RF radio frequency
  • the memory 12, 22 may store a program for processing and controlling the processor 11, 21, and may temporarily store input / output information. Memory 12, 22 may be utilized as a buffer.
  • Processors 11 and 21 typically control the overall operation of various models in a transmitter or receiver.
  • the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof. In the case of implementing the present invention using hardware, it is possible to implement the present invention, such as application icat ion specific integrated circuits (ASICs) or digital signal processing devices (DSPs), digital signal processing devices (DSPs), and programmable logic devices (PLDs). ), FPGAsCield programmable gate arrays, etc.
  • ASICs application icat ion specific integrated circuits
  • DSPs digital signal processing devices
  • DSPs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAsCield programmable gate arrays etc.
  • firmware or software may be configured to include the functions, procedures, or functions for performing the functions or operations of the present invention.
  • the firmware or software configured to perform the present invention may include a processor ( 11, 21, or stored in the memory 12, 22 may be driven by the processor (11, 21).
  • the processor 11 of the transmission apparatus 10 encodes a predetermined encoding on a signal and / or data to be transmitted from the processor 11 or a scheduler connected to the processor 11 to be transmitted to the outside. ) And transmits to the RF unit 13 after performing modulation.
  • the processor 11 converts the data stream to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also referred to as a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include ⁇ ⁇ ( ⁇ circumflex ⁇ ) ⁇ ⁇ transmit antennas.
  • the signal processing process of the receiving device 20 consists of the inverse of the signal processing process of the transmitting device 10.
  • the RF unit 23 of the receiver 20 receives a radio signal transmitted by the transmitter 10.
  • the RF unit 23 may include r reception antennas, and the RF unit 23 frequency down-converts each of the signals received through the reception antennas and restores the baseband signals.
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate (demodulat ion) the radio signal received through the reception antenna to restore the data originally transmitted by the transmitter 10.
  • the RF unit 13, 23 is equipped with one or more antennas.
  • the antenna transmits a signal processed by the RF unit 13, 23 to the outside, or receives a radio signal from the outside under the control of the processor 11, 21, the RF unit (13, 23) to perform the function.
  • Antennas are also called antenna ports.
  • Each antenna may be configured by one physical antenna or a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the receiver 20, and includes a single radio channel from the one physical antenna or the antenna. Regardless of whether it is a composite channel from a plurality of physical antenna elements, the receiver 20 enables channel estimation for the antenna.
  • RS reference signal
  • the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel carrying another symbol on the same antenna.
  • a channel carrying a symbol on the antenna can be derived from the channel carrying another symbol on the same antenna.
  • MIM0 multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and operates as the receiver 20 in the downlink.
  • the eNB operates as the receiving device 20 in the uplink, and the transmission field in the downlink. Value 10.
  • a processor, an RF unit, and a memory provided in the UE are referred to as a UE processor, an IE RF unit, and a UE memory, respectively, and a processor, an RF unit, and a memory provided in the eNB are called an eNB processor, an eNB RF unit, and an eNB memory, respectively. It is called.
  • the present invention provides a narrowband (Narrow) to provide IoT services as well as a wireless communication system that provides IoT services based on an LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 문서는 무선통신 시스템에서 긴 길이의 시퀀스를 이용하여 신호를 전송하는 방법에 대한 것으로서, 본 방법에 따르면 송신측 기기가 복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 이용하여 신호를 전송하되, 상기 복수의 서브 시퀀스 각각은 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시퀀스들 각각에 커버 시퀀스 (cover sequence)를 곱한 시퀀스들의 조합으로 구성되는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치
【기술분야】
[0001] 이하의 설명은 무선통신 시스템에서 짧은 길이의 시뭔스에 기반하여 긴 시퀀스를 생성하는 방법과 이를 이용한 통신 방법 및 장치에 대한 것이다. 【배경기술】
[0002] 최근 사물인터넷 ( Internet of Things) 기술에 대한 요구가증대되고 있 으며 , 이러한 IoT서비스 지원을 위해 NB-IoT (Narrow Band IoT) 기술에 대해 논 의되고 있다. NB IoT에서는 낮은 기기 복잡도와 낮은 전력 소모를 가짐에도 불구 하고 연결된 기기들 사 "이에 적절한 처리율을 제공할 수 있는 것을 추구하고 있 다-
[0003] NB IoT에 대한 표준화 중 3GPP에서는 GSM , WCDMA 또는 LTE와 같은 다 른 3GPP 기술과 결합되어 동작할 수 있는 NB IoT 기술을 연구하고 있다. '이를^ 해 기존 시스템과의 관점에서 어떠한 자원 구조를 가질지 논의되고 있다.
[0004] 도 1은 NB IoT에서 이용 가능한 3가지 모드에 대해 설명하기 위한 도 면이다.
[0005] 상술한 바와 같은 요구를 만족시키기 위해 NB IoT 에서는 상향링크 및 하향링크 모두에서 180 kHz 의 채널 대역폭을 활용하는 것을 고려하고 있다. 이 는 LTE 시스템에서 하나의 PRB (Phys ical Resource Block)에 대응하는 간격이다.
[0006] 도 1 에 도시된 바와 같이 NB-IoT는 Standal one 동작, 가드 밴드 동작 및 인밴드 동작과 같은 3가지 모드를 지원할 수 있다. 특히, 도 1의 하단에 도 시된 인밴드 배치 모드에서는 NB-IoT 동작이 LTE 채널 대역폭 내의 특정 협대역 을 통해 이루어질 수 있다.
[0007] 또한, NB IoT에서 무선 기기에 확장된 DRX사이클, HD-FDD (hal f-duplex
FDD) 동작 및 단일 수신 안테나의 사용하는 것은 전력 및 비용을 실질적으로 감 소시켜준다.
【발명의 상세한 설명】
【기술적 과제】
[0008] 상술한 바와 같은 NB IoT 동작을 위해서는 협대역 동기 신호 (NB Synchronizat ion Signal s)의 전송이 필요하다. 다만, NB IoT동작을 위해서는 도
1 에 도시된 바와 같이 특정 협대역에서 동작하는 것이 요구되며, 이에 따라 보 다 효율적으로 주 동기 신호 (Pr imary Synchroni zat ion Signal s : PSS) 및 보조 동 기 신호 (Secondary Synchroni zat ion Signal s : SSS)를 전송하는 방법이 요구된다.
[0009] 무선 통신 시스템의 상황에 따라 상기 PSS 및 SSS 증 특정 동기 신호 가 셀 식별자 전체를 나타내어줄 필요가 있고, 이를 위해 기존에 사용되던 시퀀 스보다 더 긴 길이의 시퀀스에 대한 요구가 증대되고밌다.
[0010] 아을러, 긴 길이의 시퀀스 생성 시 신호 검출을 용이하게 하기 위한 자기 상관 (Auto-Correl at ion) 특성 등에 대한 고려가 필요하다. 【기술적 해결방법】
[0011] 상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는 무 선통신 시스템에서 소정 길이 이상의 긴 길이의 시퀀스를 이용하여 신호를 전송 하는 방법에 있어서, 복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 이용하여 신호를 전송하되, 상기 복수의 서브 시퀀스 각각은 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence) 들 및 상기 기본 시퀀스들 각각에 커버 시뭔스 (cover sequence)를 곱한 시뭔스들 의 조합으로 구성되는, 신호 전송 방법을 제안한다.
[0012] 상기 긴 길이의 시퀀스는 수신단에서 스라이딩 원도우 (s l iding window) 방식으로 자기 상관 (Auto Corre l at ion)올 산출할 때, 상기 서브 시퀀스의 일부 요소들이 내적 ( inner product )되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 다른 위상을 가지도록 설정될 수 있으며, 상기 서브 시퀀스의 모든 요소들이 내 적되는 경우에는 상기 기본 시뭔스들 간의 곱이 서로 같은 위상을 가지도록 설 정될 수 있다.
[0013] 상기 복수의 서브 시퀀스의 조합 중 제 1 서브 시뭔스는 하나의 기본 시퀀스가 반복된 형태를 가질 수 있으며, 상기 복수의 서브 시¾스의 조합 중 제 2 서브 시퀀스는, 상기 제 1 서브 시퀀스와 다른 커버 시퀀스가 적용되고, 상기 제 1 서브 시뭔스와 다른 기본 시뭔스를 가지도록 선택하는 제 1 방법, 상 기 제 1 서브 시퀀스와 다른 서버 시뭔스가 적용되고, 상기 제 1 서브 시퀀스와 동일한 기본 시퀀스를 가지도록 선택하는 제 2 방법 , 상기 제 1 서브 시원스와 같은 커버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 다른 기본 시퀀스를 가 지도톡 선택하는 제 3 방법, 중 순차적으로 적용 가능한 어느 한 방법에 의해 결정될 수 있다.
[0014] 상기 복수의 서브 시퀀스의 조합이 4 개 이상의 서브 시퀀스를 포함하 는 경우, 상기 복수의 서브 시퀀스의 조합 중 제 3 서브 시퀀스는, 상기 제 1 서브 시퀀스와 다른 커버 시퀀스가 적용되고, 상기 제 1 서브 시뭔스와 동일한 기본 시퀀스를 가지도록 선택하는 제 1 방법 , 상기 제 1 서브 시퀀스와 다른 서 버 시퀀스가 적용되고, 상기 제 1 서브 시뭔스와 다른 기본 시 ¾스를 가지도록 선택하는 제 2 방법 , 상기 제 1 서브 시퀀스와 같은 커버 시 ¾스가 적용되고, 상기 제 1 서브 시¾스와 다른 기본 시퀀스를 가지도록 선택하는 제 3 방법 , 중 순차적으로 적용 가능한 어느 한 방법에 의해 결정될 수 있다.
[0015] 상기 복수의 서브 시퀀스의 조합 중 제 1 서브 시퀀스는 복수의 기본 시퀀스의 조합 형태를 가지며, 상기 복수의 서브 시퀀스의 조합 중 제 2 서브 시퀀스는, 상기 제 1 서브 시퀀스와 다른 커버 시퀀스가 적용되고, 상기 제 1 서브 시¾스와 같은 배열의 기본 시퀀스 조합을 가지도록 선택하는 제 1 방법, 상기 제 1 서브 시퀀스와 다른 서버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스 와 다른 배열의 기본 시뭔스 조합을 가지도록 선택하는 제 2 방법, 상기 제 1 서브 시퀀스와 같은 커버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 다른 배 열의 기본 시퀀스 조합을 가지도록 선택하는 제 3 방법, 중 순차적으로 적용 가 능한 어느 한 방법에 의해 결정될 수 있다.
[0016] 상기 복수의 서브 시퀀스의 조합이 4 개 이상의 서브 시퀀스를 포함하 는 경우, 상기 복수의 서브 시퀀스의 조합 중 제 3 서브 시퀀스는, 상기 제 1 서브 시뭔스와 같은 커버 시퀀스가 적용되고, 상기 제 1 서브 시 ¾스와 동일한 기본 시뭔스 배열을 가지도록 선택하는 제 1 방법 , 상기 제 1 서브 시퀀스와 다 른 서버 시¾스가 적용되고, 상기 제 1 서브 시뭔스와 다른 기본 시퀀스 배열을 가지도록 선택하는 제 2 방법, 상기 제 1 서브 시뭔스와 다른 커버 시퀀스가 적 용되고, 상기 제 1 서브 시뭔스와 같은 기본 시퀀스 배열을 가지도록 선택하는 제 3 방법, 중 순차적으로 적용 가능한 어느 한 방법에 의해 결정될 수 있다.
[0017] 상기 신호는 동기 신호일 수 있으며, 상기 긴 길이의 시퀀스는 셀 식 별자를 나타내도록 설정될 수 있다.
[0018] 상기 긴 길이의 시뭔스는 복수의 OFDM 심볼에 걸쳐서, 각 OFDM 심볼에 대응하는 서브캐리어의 수만큼 맵핑되어 전송될 수 있다.
[0019] 한편, 본 발명의 다른 일 측면에서는 무선통신 시스템에서 소정 길이 이상의 긴 길이의 시¾스를 이용하는 신호를 수신하는 방법에 있어서, 복수의 서브 시뭔스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시뭔스를 포함 하는 신호를 수신하되, 상기 복수의 서브 시퀀스 각각은 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시퀀스들 각각 에 커버 시퀀스 (cover sequence)를 곱한 .시퀀스들의 조합으로 구성되는, 신호 수 신 방법을 제안한다.
[0020] 상기 긴 길이의 시퀀스를 슬라이딩 원도우 ( s l i d i ng w i ndow) 방식으로 자기 상관 (Auto Corre l at i on)을 통해 검출하는 것을 추가적으로 포함할 수 있으 며, 상기 자동 상관 산출 시 상기 서브 시퀀스의 일부 요소 이 내적 ( inner product )되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 다른 위상을 가지며, 상기 서브 시퀀스의 모든 요소들이 내적되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 같은 위상을 가질 수 있다.
[0021] 상기 신호는 동기 신호일 수 있으며, 상기 긴 길이의 시퀀스를 통해 셀 식별자를 검출하는 것을 추가적으로 포함할 수 있다.
[0022] 상기 긴 길이의 시뭔스는 복수의 0FDM 심볼에 걸쳐서, 각 OFDM 심볼에 대응하는 서브캐리어의 수만큼 맵핑되어 수신될 수 있다. [0023] 한편, 본 발명의 또 다른 일 측면에서는 무선통신 시스템에서 소정 길 이 이상의 긴 길이의 시퀀스를 이용하여 신호를 전송하는 송신 장치에 있어서, 복수의 서브 시뭔스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시원스 를 이용하여 신호를 전송하도톡 구성되는 송수신기; 및 상기 긴 길이의 시퀀스 를 생성하여 상기 송수신기에 전달하도록 구성되는 프로세서를 포함하며, 상기 프로세서는 상기 복수의 서브 시퀀스 각각이 상기 소정 길이 이하의 짧은 길이 의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시뭔스들 각각에 커버 시 뭔스 (cover sequence)를 곱한 시뭔스들의 조합으로 구성되도록 하는, 송신 장치 를 제안한다.
[0024] 한편, 본 발명의 또 다른 일 측면에서는 무선통신 시스템에서 소정 길 이 이상의 긴 길이의 시¾스를 이용하는 신호를 수신하는 수신 장치에 있어서, 복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스 를 포함하는 신호를 수신하도록 구성되는 송수신기; 및 상기 송수신기에 의해 수신된 상기 긴 길이의 시퀀스를 전달받아 처리하도록 구성되는 프로세서를 포 함하며, 상기 프로세서는 상기 복수의 서브 시¾스 각각이 상기 소정 길이 이하 의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시뭔스들 각 각에 커버 시퀀스 (cover sequence)를 곱한 시퀀스들의 조합으로 구성되는 것을 가정하여 처리하는, 수신 장치를 제안한다. 【유리한 효과】
[0025] 상술한 바와 같은 본 발명에 따르면 차세대 무선통신 시스템에서 긴 길이의 시퀀스를 이용하여 보다 효율적으로 동기 신호 등의 정보를 전송할 수 있다.
【도면의 간단한 설명】
[0026] 도 1은 NB IoT에서 이용 가능한 3가지 모드에 대해 설명하기 위한 도 면이다.
[0027] 도 2 및 도 3은 각각기본 CP를 이용하는 경우와 확장 CP를 이용하는 경우에 동기 신호를 전송하는 방식을 설명하기 위한 도면이다.
[0028] 도 4 는 논리 영역에서의 두 개의 시퀀스가 물리 영역에서 인터리빙되 어 매핑되는 것을 보여주는 도면이다.
[0029] 도 5 는 NB LTE 시스템에서 동기신호를 송수신하는 전체적인 구조를 설 명하기 위한 도면이다.
[0030] 도 6은 수학식 3의 시 ¾스 S 의 자동상관 결과를 도시한 도면이다.
[0031] 도 7은 수학식 3의 시퀀스 Ss 의 자동상관 결과를 도시한 도면이다.
[0032] 도 8 은 본 발명의 일 실시형태에 따라 우수한 자동 상관 특성을 가지 는 긴 길이의 시뭔스를 생성하는 방법을 설명하기 위한 도면이다.
[0033] 도 9 및 도 10 은 Differential Encoding 으로 전송 시퀀스를 생성하는 방법을 설명하기 위한 도면들이다.
[0034] 도 11 은 Orthogonal Code Cover 를 Differential Encoding 하고 Base
Sequence와 결합하여 Transmission Sequence를 생성하는 개념도를 나타낸다.
[0035] 도 12 는 Orthogonal Code Cover 를 Base Sequence (an)과 결합하여
Transmission Sequence를 생성하는 개념도이다.
[0036] 도 13 은 본 발명의 일 실시형태에 따라 NB-SSS 를 구성하는 방법을 설 명하기 위한 도면이다.
[0037] 도 14 는 본 발명의 일 실시형태에 따라 Of f set 을 적용하여 서로 다른
ZC 시퀀스를 생성하는 방법을 설명하기 위한 도면이다.
[0038] 도 15 및 16 은 전송 신호와 수신 신호 사이의 주파수 쉬프팅에 따른 고려사항을 설명하기 위한 도면이다.
[0039] 도 17 및 도 18 은 본 발명의 일 실시예에 따라 수학식 23 의 오프셋이 적용되는 형태를 도시하고 있다.
[0040] 도 19는 본 발명의 일 실시예에 따라 NB— PSS를 복수의 OFDM 심볼에 반 복 전송하는 구체적인 방법을 설명하기 위한 도면이다.
[0041] 도 20은 길이 10의 comp l ementary sequence pai r a(n) , b(n)과 다양한 c(n) pat tern에 대한 correl at ion 특성을 도시한 도면이다.
[0042] 도 21 은 본 발명의 일 실시예에 따라 NB-SSS 를 전송하는 개념을 설명 하기 위한 도면이다.
[0043] 도 22 는 본 발명의 일 실시예에 따라 NB-SSS 를 생성하여 전송하는 방 법을 설명하기 위한 도면이다.
[0044] 도 23은 본 발명의 일 실시예에 따라 NB-SSS에 사용될 ZC 시뭔스의 루 트 인덱스 선택 방식을 설명하기 위한 도면이다.
[0045] 도 24 는 본 발명의 일 실시예에서 NB-SSS 에 특정 하다마드 시원스를 이용하는 경우의 교차 상관값을 나타낸 도면이다.
[0046] 도 25 는 무선 통신 시스템에서 하향링크 (down l ink , DL)/상향링크
(upl ink , UL) 슬롯 구조의 일례를 나타^ 것이다.
[0047] 도 26 은 무선 통신 시스템에서 사용되는 하향링크 서브프레임 ( subf rame) 구조를 예시한 것이다.
[0048] 도 27 은 본 발명을 수행하는 전송장치 ( 10) 및 수신장치 (20)의 구성요 소를 나타내는 블록도이다. 【발명의 실시를 위한 형태】
[0049] 이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명 의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유 일한 실시형태를 나타내고자 하는 것이 아니다.
[0050] 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체 적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능 을 중심으로 한 블록도 형식으로 도시된다.
[0051] 상술한 바와 같이 본 발명에서는 짧은 길이의 기본 시원스 (base sequence)들을 연결하여 긴 길이의 시퀀스를 생성하고, 이를 이용하여 동기 신 호 등 신호를 효율적으로 전송하는 방법에 대한 것이다. 이러한 긴 길이의 신호 가 전송될 수 있는 경우로서 먼저 NB IoT 동작을 위한 동기신호를 가정하고, 이 러한 신호 역시 LTE 시스템에서의 동기 신호를 재사용할 수 있기 때문에, ΝΒ 동 기 신호 송수신에 대한 논의의 출발점으로써 LTE 시스템에서의 동기신호 (SS)에 대해 구체적으로 살펴본다.
[0052] 도 2 및 도 3은 각각 기본 CP를 이용하는 경우와 확장 CP를 이용하는 경우에 동기 신호를 전송하는 방식을 설명하기 위한 도면이다.
[0053] SS는 PSS와 SSS로 구성되며, 셀 탐색을 수행할 때 사용되는 신호이다. 도 2 및 3은 각각 기본 CP와 확장 CP를사용하는 시스템의 경우 SS 의 전송을 위한 프레임 구조를 도시한 것이다. SS는 inter-RAT measurement의 용이함을 위 해 GSM 프레임 길이인 4.6ms 를 고려하여 서브프레임 0 번과 서브프레임 5 번의 두 번째 슬롯에서 각각 전송되고, 해당 무선 프레임에 대한 경계는 SSS 를 통해 검출 가능하다. PSS 는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고, SSS 는 PSS 바로 앞 OFDM심볼에서 전송된다. SS는 3개의 PSS와 168개의 SSS의 조합을 통해 총 504개의 물리계층 셀 식별자 (physical cell ID)를 전송할 수가 있다. 또 한, SS 및 PBCH 는 시스템 대역폭 내의 가운데 6RB 내에서 전송되어, 전송 대역 폭에 관계없이 UE가 검출 혹은 복호할 수 있도록 한다.
[0054] SS의 전송 다이버시티 방식은 단일 안테나 포트 (single antenna port) 만을 사용하고, 표준에서는 따로 정의하지 않는다. 즉, 단일 안테나 전송 혹은 UE에 투명한 (transparent) 전송 방식 (예를 들어 PVS, TSTD, CDD) 을사용할 수 가 있다.
[0055] 한편, 이하에서는 PSS 및 SSS의 부호화 과정을 설명한다 .
[0056] PSS 부호는 길이 63의 ZC (Zadoff-Chu) 시퀀스를 주파수 영역에서 정의 하여 PSS의 시퀀스로 사용한다. ZC시퀀스는 아래 수학식 1에 의해 정의되며 )C 부반송파에 해당되는 시퀀스 성분 (element), n=31 은 펑처링 (puncturing)한다. 아래 수학식 1에서 Nzc=63이다.
【수학식 1】 du (n) = e Nzc
[0057] 가운데 부분의 6RB (=72 서브캐리어) 중 9개의 남는 서브캐리어는 항상
0의 값으로 전송하며, 동기 수행을 위한 필터 설계에 용이함을 가져다 준다. 총 3개의 PSS를 정의하기 위해 수학식 1에서 u=25 , 29, 그리고 34의 값을 사용할 수 있다. 이 때 , 29와 34는 켤레대칭 (conjugate symmetry) 관계를 가지고 있어 서, 2개의 상관 ( correl at i on)을 동시에 수행할 수가 있다. 여기서, 켤레대칭은 다음 수학식 2의 관계를 의미하며 이 특성을 이용하여 u=29와 34에 대한 원샷 상관기 (one-shot correl ator )의 구현이 가능하여, 전체적인 연산량을 약 33.3% 감소시킬 수 있다.
【수학식 2】 du {n) - (^l)" [d (η)) , 쎄 en Nzc is even number.
du {n) = [dNzc_u ( , when Nzc is odd number.
[0058] 다음으로 SSS의 부호화에 대해 설명한다.
[0059] SSS를 위해 사용되는 시퀀스는 길이 31 의 두 개 m-시퀀스를 인터리빙 된 접합을 하고 두 개의 시퀀스를 조합하여 168 셀 그룹 식별자 (ce l l group ID) 를 전송한다. S-SS의 시퀀스로서 m-시뭔스는 주파수 선택적 환경에서 강건하고, 고속 하다마드 변환 (Fast Hadamard Transform)을 이용한 고속 m_시퀀스 변환으 로 연산량을 줄일 수가 있다. 또한, 두 개의 짧은 부호 (short code)로 S-SS 를 구성하는 것은 단말의 연산량을 줄이기 위해 제안되었다.
[0060] 도 4 는 논리 영역에서의 두 개의 시퀀스가 물리 영역에서 인터리빙되 어 매핑되는 것을 보여주는 도면이다. [0061] SSS 부호 생성을 위해 사용되는 두 개의 m-시퀀스를 각각 SI, S2 라고 정의할 때 , 서브프레임 0의 SSS가 (SI, S2) 두 조합으로 샐 그룹 식별자를 전송 한다면, 서브프레임 5의 SSS는 (S2,S1)으로 교환 (swapping)하여 전송함으로써, 10ms 프레임 경계를 구분할 수 있게 된다. 이 때, 사용되는 SSS 부호는 x5+x2+l의 생성다항식을 사용하며 , 서로 다른 순환 천이 (circular shift)를 통해 총 31개의 부호를 생성할 수가 있다.
[0062] 수신 성능을 향상시키기 위하여, PSS 기반 (PSS-based)의 서로 다른 두 개의 시퀀스를 정의하여, SSS에 스크램블링 하되 S1과 S2에 서로 다른 시뭔스로 스크램블링 할 수 있다. 그 후, S1 기반 (Sl-based)의 스크램블링 부호를 정의하 여, S2에 스크램블링을 수행한다. 이 때, SSS의 부호는 5ms 단위로 교환되지만 PSS 기반의 스크램블링 부호는 교환되지 않는다. PSS 기반의 스크램블링 부호는 + +1의 생성 다항식으로부터 생성된 m-시퀀스에서 PSS 인덱스에 따라 6 개의 순환 천이 버전으로 정의하고, S1 기반의 스크램블링 부호는 χ 5 4 2 + χ'+ι의 다항식으로부터 생성된 m-시뭔스에서 S1의 인텍스에 따라 8개의 순환 천이 버전 으로 정의할 수 있다.
[0063] NB IoT 또는 이의 LTE 시스템에의 적용 모델인 NB-LTE 에서의 셀 탐색
(cell searching)은 기본적으로 상술한 LTE 시스템과 동일하다. 다만, NB LTE특 성에 따라 사용되는 시퀀스를 변형하여 이용할 필요가 있으며, 이하에서는 LTE 시스템에 비해 변화가 필요한 부분을 중심으로 설명한다.
[0064] 도 5 는 NB LTE 시스템에서 동기신호를 송수신하는 전체적인 구조를 설 명하기 위한 도면이다.
[0065] 도 5에 도시된 바와 같이 NB LTE 시스템에서도 PSS와 SSS를 구분하여 전송하는 것을 제안하며 , 이를 기존 PSS 및 SSS 와 구분하기 위해 NB-PSS 및 NB-SSS 로 지칭하기로 한다. 다만, 흔동의 우려가 없는 경우 간단히 PSS 및 SSS 로 표기할 수 있다.
[0066] NB LTE 시스템에서도 기존 LTE 시스템과 마찬가지로 504 개의 NB 셀 식 별자를 동기채널을 통해 식별하는 것이 요구된다. 다만, 본 발명의 일 실시예 에 따른 NB LTE 시스템에서 NB-PSS는 미리 결정된 하나의 특정 시퀀스를 이용하 여 전송하는 것을 제안한다. 이에 따라 504개의 NB 셀 식별자는 NB-SSS에 의해 서만 구분되는 것이 요구된다.
[0067] 수신측 기기에서 PSS 를 검출하기 위해서는 auto-correlation 을 수행 하는 것이 일반적이고, 이를 위해 수신측 기기는 시간 영역에서 Sliding Window 방식으로 PSS의 검출을 시도할 것이다. 다만, 이와 같은 PSS의 검출 방식은 수 신측 기기의 복잡도를 증가시킬 수 있으며, 이에 따라 복잡도 감소를 하나의 목 표로 하는 NB LTE 시스템에서는 적절하지 않은 구성일 수 있다. 이에 따라 본 실 시예에 따른 NB-PSS 는 미리 결정된 하나의 특정 시뭔스를 이용하여 전송함으로 써 수신측에서는 이 특정 시퀀스 검출을 위한 동작만을 수행하여 복잡도를 감소 시킬 수 있다. 예를 들어, NB-PSS를 위해 Zadoff-Chu (ZC) 시퀀스를 사용하는 경 우, 이 ZC 시퀀스의 루트 인덱스는 미리 결정된 하나의 값 (e.g. u=5)으로 고정되 어 사용될 수 있다. 위와 같이 NB-PSS를 단순하게 구성함에 따라 NB-SSS는 효율 적으로 504개의 셀 식별자를 구분하는 것이 요구되며, 이에 대해서는 본 발명의 다른 일 측면으로서 후술하기로 한다.
[0068] 한편, 본 발명의 일 실시형태서 NB-PSS 는 복수의 0FDM 심블에 반복되 어 전송되는 것이 바람직하다. 도 5 의 예에서는 NB-PSS 가 9 개의 0FDM 심볼에 반복되어 전송되는 것을 도시하고 있으나, 구체적인 OFDM 심볼의 수는 이에 한 정될 필요는 없다. 도 5의 예에서 NB-PSS가 9개의 OFDM 심볼에 반복되어 전송 하는 것으로 도시한 이유는 확장 CP를 이용하는 하나의 서브프레임에는 12 OFDM 심볼이 포함되며 , 이 12 OFDM심볼 중 최초 3 OFDM 심볼은 PDCCH를 전송하기 위 해 이용될 수 있기 때문이다. 다만, NB LTE 시스템의 한 서브프레임에 포함되는 OFDM 심볼 수 및 PDCCH 전송에 요구되는 최대 OFDM 심볼 수 등의 변화에 따라 상술한 수치는 달라질 수 있다. 예를 들어, 하나의 서브프레임에 포함된 OFDM 심볼 수가 14이고, PDCCH 전송을 위해 최대 3 OFDM 심볼이 이용되는 경우, 상기 NB-PSS 가 반복 전송되는 OFDM 심볼 수는 11 OFDM 심볼일 수 있다. 본 실시예에 서는 NB PSS 가 시간 영역에서 연속적으로 배치되는 복수의 OFDM 심볼에 반복되 어 전송되는 것이 바람직하다.
[0069] 한편, NB-PSS는 시간—주파수 영역의 자원 요소 ( resource e l ement )에 맵 핑할 때 NB LTE 서비스를 제공하는 LTE 시스템이 CRS 를 전송하는 자원 요소에 대응되는 경우, 해당 NB-PSS 성분은 평처링되어 층돌을 방지하는 것이 바람직하 다. 즉, Νβ-PSS/NB-SSS 전송 위치는 레거시 LTE 신호들, 예를 들어 PDCCH , PCFICH , PHICH 및 MBSFN 전송과의 충돌을 회피하여 설계하는 것이 바람직하다.
[0070] 이와 같이 복수의 0FDM 심볼에 NB-PSS 가 반복 전송됨에 따라 수신측 기기는 용이하게 서브프레임 타이 ¾ 및 주파수 오프셋을 결정할 수 있다.
[0071 ] 한편, NB-SSS 의 경우에도 도 5 에 도시된 바와 같이 복수의 0FDM 심볼 에 걸쳐서 전송되는 것이 바람직하며, 다만 상술한 바와 같이 NB-SSS는 셀 식별 자 전체의 식별을 수행해야 하기 때문에 긴 시뭔스를 생성하여 이를 복수의 0FDM 심볼에 분할하여 전송하는 방식을 제안한다. 도 5는 NB-SSS가 6개의 OFDM 심볼에 걸쳐서 전송되는 것을 도시하고 있으나, 이에 한정될 필요는 없다. 예를 들어 , 상술한 NB-PSS에 도시된 바와 같이 11개의 OFDM 심볼에 걸쳐 전송될 수도 있다. 긴 시퀀스 생성 방식
[0072] 이하의 설명에서는 짧은 길이의 기존 시¾스(8336 Sequence)들을 연접 하여 긴 길이의 시원스를 생성하고자 할 때 Auto— correlation 성능을 향상 시킬 수 있는 방안을 기술한다. 짧은 길이의 Base Sequence의 배치 순서와 Code Cover 와 조합의 방법에 따라 Auto-correlation 특성이 달라지게 되는데, 이하의 실시 예들에서는 Auto-correlation에서 가장 높은 peak 대비 두 번 째 peak의 크기가
1/8 이하 (9dB 이상 차이) 가 되도특 하는 것을 설계 목표로 한다. [0073] 예를 들어, 길이 10 짜리 Binary Go lay Sequence a(n)과 b(n)을 조합하 여 총 길이 80짜리 Sequence S와 Sequence Sc를 아래와 같이 만들 수 있다. 【수학식 3] a(n): (1, 1,-1, 1,-1, 1,-1, -1, 1, 1)
b(n): (1, 1, -1, 1, 1, 1, 1, 1, -1, -1)
Sequence S: (an, an, an, an, -an, -an, -an, -an)
Sequence Sc: (an, an, bn, -bn, an, -an, bn, bn) [0074] 물론, 시퀀스의 예로 Binary Go lay Sequence이외에 임의의 다른 시퀀스 를 이용할 수도 있다. [0075] Sequences는 base-sequence an을 8번 반복해서 구성하며 전반 4개 an 과후반 4개 an에 다른 code cover를 적용하여 총 길이 80의 Sequence를 생성 하며 , Sequence Sc는 Base-sequence an 4개와 bn 4개 그리고 code cover를 적 용하여 생성한다. 이 두 Sequence의 Auto-correlat ion을 살펴보면 아래와 같다. [0076] 도 6은 수학식 3의 시 ¾스 S 의 자동상관 결과를 도시한 도면이다. 구 체적으로 도 6은 길이 80의 Sequence S의 Auto—correlat ion 결과를 나타낸다.
[0077] 도 6에서는 Sequence S의 Auto-correl at ion 수행 시 다양한 크기의 다 수의 Spike 가 생성되고, 특히 크기가 가장 큰 Spike 대비 다음 크기를 갖는 Spike 크기가 3dB 이하인 것을 볼 수 있다. 이와 같이 반복되는 spike가 생성되 는 이유는, Sequence S에 적용된 code cover는 특정 상황에서는 반대 위상을 만 들어 상쇄 합성을 유도하는 반면 많은 경우 보강 합성이 되어 Spike를 생성하게 된다. 아래 표는 Spike가 만들어지는 상황을 설명하고 있다.
【표 1】
Figure imgf000017_0001
[0078] 상기 표 1에서 an · αηΗ = 10이다. ,
[0079] 한편, 이와 같이 Auto-correlat ion 결과 가장 큰 Spike 대비 다음 크 기의 Spike 의 차이가 작거나, 다수의 Spike 의 결과물을 도출하는 특성을 갖는 Sequence는 신호 검출 시 오류가 발생할 확률이 높아 다중 경로를 갖는 무선 채 널 환경에서 신호 검출에 활용하는데 어려움이 있다. 따라서 , 작은 길이의
Base-sequence 를 연접하여 긴 길이의 Sequence 를 생성할 때에는 좋은 Auto-correlation특성을 갖도록 그 구성 방법이 고안될 필요가 있다. [0080] 도 7은 수학식 3의 시퀀스 Ss 의 자동상관 결과를 도시한 도면이다. [0081] 도 7 에서는 Sequence Sc 의 Auto— correlat ion 수행 시 특히 크기가 가 장 큰 Spike 대비 다음 크기를 갖는 Spike 크기가 8dB 이상 되는 것을 볼 수 있 다.
1
7
[0082] Base-sequence와 code cover의 조합으로 다양한 길이의 Sequence* 구 성할 수 있는데, 조합의 방법에 따라서 Sequence 들의 Auto-correlation 특성은 다양한 형태로 도출된다. 이하에서는 짧은 길이의 Base-sequence 들을 연접하여 긴 길이의 Sequence 를 생성할 때, 좋은 Auto-correlation 특성을 갖도록 하는 Sequence를 연접 방법에 대해서 기술한다.
[0083] 도 8 은 본 발명의 일 실시형태에 따라 우수한 자동 상관 특성을 가지 는 긴 길이의 시퀀스를 생성하는 방법을 설명하기 위한 도면이다. [0084] 먼저 상술한 바와 같이 본 실시형태에서는 길이 N 의 기본 시퀀스 (801) 를 M개를 조합하여 서브 시퀀스 (Sub-sequence: 802)를 구성하는 것을 가정한다. 도 8에서는 도시의 편의를 위해 서브 시뭔스 A(802)가 2개의 기본 시뭔스 an 및 bn을 포함하는 것을 도시하였으나, 이에 한정될 필요는 없다.
[0085] 한편, 서브 시퀀스 (802)를 구성하는 기본 시퀀스 (an, bn)에 code cover 를 적용해서 새로운 서브 시퀀스를 생성할 수 있다. 도 8 에서는 서브 시퀀스 A 를 구성하는 [an, bn]에 [-1, —L]의 커버 시퀀스를 곱하여 -A 에 대응하는 서브 시¾스를 생성하는 것을 예시하였으나, 이에 한정될 필요는 없으며 다양한 방식 으로 커버 시퀀스를 적용하여 서브 시퀀스를 생성할 수 있다.
[0086] 이렇게 생성된 Sub-sequence Set에서 L개의 Sub-sequence를 선택하고 배열하여 최종 sequence 구성할 수 있다. 이 때, 최종 Sequence 는 아래의 조건 만족할 수 있도록 서브 시뭔스의 조합을 구성하는 것이 바람직하다.
[0087] Sl iding window기반으로 Auto-correl at ion 을 산줄할 때 sub-sequence 일부 el ement 들이 내적 ( inner product )되는 경우에는 base一 sequence들 간 곱의 결과가 서로 다른 phase를 갖도록 하고, 모든 Element 들이 inner product 되는 경우에는 base-sequence들 간 곱의 결과 결과가서로 같은 phase를 갖도톡 하는 Sequence 열을 구성하는 것이 바람직하다.
[0088] 또한, Code cover로는 +/-j 등이 사용될 수 있다. Base sequence 로는 Compl ementary Go l ay Sequence , Zadof f-Chu sequence , M一 sequence 등의 다 양한 Sequence 들이 사용될 수 있으나, 이하의 설명에서는 설명의 편의상 Compl ementary Go l ay Sequence를 사용하는 경우를 예를 들어 설명한다. [0089] 예를 들어, 길이 N의 base sequence an과 ftn올 사용하여 Sub-sequence 를 구성할 수 있다. Sub-sequence 구성 방법은 base sequence 2 개를 연접하며 , 연접한 2개의 base sequence에 orthogonal code cover를 적용한다.
[0090] Sub-sequence A = [an an] , B = [bn bn] , C = [an bn], D = [bn ctn]를 구 성하며 , code cover 를 도입하여 신규 Sub-sequence Ac = [an - an], Be = [bn - bn], Cc = [an - bn], Dc = [bn - an] 등을 생성할 수 있다.
[0091] 계산을 간략히 하기 위해서 an과 의 inner produce 는 아래와 같이 정의 하자. 【수학식 4】 an ' an - bn · bn = 1
an bn' bn · anH = 0
[0092] Sub-sequence A = [an an] , B = [bn bn] inner product는 아래와 같이 표현된다.
【수학식 5]
A-A" an - an + an an" = 2
B BH bn bnH + bn bnH = 2
an an + bn bn" = 2
bn · bnH + an anH =2
[0093] 이 때, 정의에 따라 code cover 를 도입하여 생성된 Sub-sequence
Ac, Be와 sub- sequence A, B 그리고 Sub_sequenceCc, Dc와 Sub-sequence C, D는 직 교하게 된다.
【수학식 6】
A = an anH ― an an" = 0
A BHc = an bnH ― an bnH = 0
B = b .' anH ― bn an" = 0
B B"c = bn bnH ― bn bnH = 0
C ■ H c = an anH ― bn - bnH = 0
C = an bnH ― bn an" = 0
D cc" = bn - anH ― an bn" = 0
C- = bn bnH ― an · an" = 0
[0094] 반면 Sub-sequence Ac, Be 와 sub-sequence C,D 그리고
Sub一 sequenceCc, Dc와 Sub-sequence A, B는 직교하지 않는다.
【수학식 7】
A - C" = an- an" - an · bn = 1
A - Dc = an · bnH― an · anH =―'
B C" = bn- an" - bn · bnH =—: B = bn bnH― bn . anH = 1
C = an an" - bn anH = 1
C - = an · bnH - - bn bnH = - -1
D ' AH C - = bn · an" - - an · an" = - -1
D = bn bnH ― an bnH = 1
[0095] 본 실시예에서 Sub-sequence set l ( A, B, Ac, Be )과 Sub-sequence set2
(C, D, Cc, Dc)로 구분한 후, 각 Set에서 Sub-sequence를 선택하고 적절히 배열하 여 아래 실시예들과 같이 최종 Sequence를 생성할 수 있다. 실시예 1 - Set 1을사용하는 경우
[0096] ( 1) 2개의 서브 시뭔스로 구성하는 방법
[0097] 첫 번째 Sub-sequence 로는 임의의 Sub-sequence 를 선택하며, 두 번째 Sub— sequence는 첫 번째 Sub— sequence로 다른 Sub-sequence 선택할 수 있다. 선택할 수 있는 후보 중에서 선택의 우선 순위는 다음과 같다. [0098] Priority 1. 첫 번째 Sub-sequence 와 다른 OCC 및 다른 Base sequence 를 갖는 Sub-sequence 선택 [0099] Priority 2. 첫 번째 Sub-sequence 와 다른 0CC 및 같은 Base sequence 를 갖는 Sub-sequence 선택
[0100] Priority 3. 첫 번째 Sub-sequence 와 같은 0CC 및 다른 Base sequence 를 갖는 Sub-sequence 선택 [0101] 아래 표 2는 이와 같은 방식에 따라 2개의 서브 시퀀스를 구성하는 예 를 나타낸다.
【표 2】
Figure imgf000021_0001
A Be (an an bn -bn) 0 0 0 4
A Ac (an an an -an) 1 0 1 4
A B (an an bn bn) 0 0 2 4
[0102] (2) 4개의 서브 시퀀스로 구성하는 방법
[0103] 세 번째 sub-sequence 는 앞에서 선택하지 않고 남은 Sub-sequence 중 에서 아래의 우선 순위로 선택하는 것이 바람직하다.
[0104] Priority 1. 첫 번째 Sub-sequence 와 다른 OCC 및 같은 El ement 를 갖 는 Sub-sequence선택
[0105] Priority 2. 첫 번째 Sub-sequence 와 다른 0CC 및 다른 El ement 를 갖 는 Sub-sequence선 ^
[0106] Priority 3. 첫 번째 Sub-sequence 와 같은 0CC 및 다른 E lement 를 갖 는 Sub-sequence 선택
[0107] 아래 표 3은 이와 같은 방식에 따라 3개의 서브 시퀀스를 구성하는 예 를 나타낸다.
【표 3】
Figure imgf000022_0001
[0108] 본 실시예에서 네 번째 Sub-sequence 는 앞에서 선텍하지 않고 남은 Sub-sequence로 구성할 수 있다. [0109] 아래 표 4는 이와 같은 방식에 따라 4개의 서브 시퀀스를 구성하는 예 를 나타낸다.
【표 4】
Figure imgf000023_0001
[0110] (3) 8개의 서브 시퀀스로 구성하는 방법
[0111] 앞에서 하나씩 선택된 Sub-sequence 들을 한 번씩 더 사용할 수 있다. 앞에 있는 4 개 sub-sequence 가 만들어 내는 Pat tern 이 반복되지 않도톡
Sub-sequence 열을 구성하는 것이 바람직하다.
[0112] 예를 들어, Sub-sequence 열 (A Ac Be B)이 있을 때, 2~4 개의 sub-sequence가 만들어 내는 Pat t ern (A Ac) , (Ac Be) , (Be B) , (A Ac Be) , (Ac Be
B) , (A Ac Be B) 등이 되지 않도톡 Sub-sequence를 선택하여 배열할 수 있다.
[0113] 다섯 번째 Sub-sequence를 선택하는 우선 순위는 아래와 같다.
[0114] Priority 1. 앞선 네 번째 Sub-sequence 선택
[0115] 네 번째 Sub-sequence 를 시작으로 이 후에 어떤 sub- S6QU6I C6 선택하여 열을 만들더라도 앞에 4 개 sub-sequence 가 만든 pattern 과 같은 pattern이 만들어지는 것은 방지할 수 있는 장점이 있다.
[0116] Priority 2. 앞선 네 번째 Sub-sequence 와 다른 0CC 를 갖는
Sub-sequence선텍
[0117] 아래 표 5-7은 8개의 Sub-sequence로 구성하는 3가지 예를 나타낸다. 아래 표 5-7에서 X 표시는 Auto-correlation 특성이 좋지 않은 Sequence이고, o 표시는 Auto-correlation이 좋아서 사용하기에 적합한 Sequence를 의미한다.
【표 5]
Figure imgf000024_0001
A Ac B Be Ac Be A A Ac BcB Ac Be A
16 SI 161 X 16 SI 261
B B
AAcBBcAcBcB A Ac BcB Ac BcB
0 16 SI 162 X 16 SI 262
A A
O 12 S117 A Ac B BcB A 0 12 SI 27 AAcBcBBA
A Ac B BcB A Ac A Ac BcB B A Ac
X 16 SI 171 X 16 SI 27 J
Be Be
AAcBBcBA Be A Ac Be B B A Be o 16 SI 172 o 16 SI 272
Ac Ac
0 12 SI 18 A Ac B BcB Ac 0 12 S128 AAcBcBBAc
AAcBBcBAcA A Ac Be BB Ac A
X 16 SI 181 o 16 S1281
Be Be
A Ac B BcB Ac Be AAcBcBBAc Be o 16 SI 182 X 16 SI 282
A A
X 12 SI 19 AAcB Be B Be 0 12 S129 A Ac BcB B Be
AAcB BcB Be A AAcBcBBBcA
X 16 SI 191 X 16 SI 291
Ac Ac
AAcB BcB Be Ac A Ac Be BB Be Ac
X 16 SI 192 o 16 S1292
A A
o 12 SI la AAcB Be Be A 0 12 SI 2a A Ac BcB Be A
AAcB Be Be A Ac AAcBcBBcAAc
X 16 Sllal X 16 SI 2a I
B B
AAcB Be BcAB A Ac BcB Be A B o 16 Slla2 0 16 S12a2
Ac Ac
0 12 SUb AAcB Be Be Ac o 12 S12b A Ac BcB Be Ac
AAcB Be Be Ac A A Ac BcB Be Ac A o 16 Sllbl X 16 S12bl
B B
AAcB Be BcAcB A Ac Be B Be Ac B
X 16 Sllb2 X 16 S12b2
A A
o 12 Sllc AAcB Be BcB X 12 SI 2c A Ac BcB BcB
AAcB Be BcB A A Ac BcB BcB A
X 16 SI lcl X 16 Sl2cl
Ac Ac
AAcB Be BcB Ac A Ac BcB BcB Ac o 16 Slid X 16 S12c2
A A
【표 6】
Figure imgf000025_0001
Figure imgf000026_0001
A B Ac Be Be Ac B A B Be Ac Be Ac B
0 16 S21b2 X 16 S22b2
A A
0 12 S21c ABAc BcBcB 0 12 S22c ABBc AcBcB
ABAc Be BcBA A B Be Ac Be B A
0 16 S21cl X 16 S22cl
Ac ' ' Ac
A B Ac Be Be B Ac A B Be Ac Be B Ac
X 16 S21c2 0 16 S22c2
A A. . —
【표 7】
Figure imgf000027_0001
Figure imgf000028_0001
[0118] N 길이의 Sequence 는 상황에 따라 L(<N) 길이만 사용할 수도 있는더 1, 길이에 상관 없이 Auto-Correlat m 특성이 좋은 Sequence 를 정리하면 아래와 같다.
[0119] 아래 표 8은 에 ^ ^를 기본으로 8개 혹은 6개의 Sub-sequence로 구성하는 Sequence를 나타낸다.
【표 8】
S1252 = [AAcBcBAcBBcA]
SI 272 = [A Ac BcB B A Be Ac]
S1281 = [A Ac BcB B Ac A Be J
Figure imgf000029_0001
[0120] 아래 표 9는 ( β Be Ac)를 기본으로 8개 혹은 6개의 Sub-sequence로 구성하는 Sequence를 나타낸다.
【표 9】
S2242 = [A BBc Ac Ac A Be BJ
S2251 = [A B Be Ac Ac B A Be]
S2262 = [AB Be Ac Ac Be B A]
52281 = [A B Be Ac B Ac A Be]
52282 = [A B Be Ac B Ac Be AJ
S22c2 = [ABBc Ac Be B Ac A]
S221 = [ABBc Ac A Ac]
S223 = [A B Be Ac A BcJ
S22a = [A BBc Ac Be A]
[0121] 아래 표 10 은 M Be Ac ^를 기본으로 8 개 혹은 6 개의 Sub— sequence
. 로 구성하는 Sequence를 나타낸다.
【표 10】
S3171 = [ABcAcBBAAcBc]
S3182 = [A BcAcBBAcBcA]
S3191 ^[ABcAcBBBcA Ac]
S31cl = [A Be Ac B Be B A Ac]
S31c2 = [ABcAcBBcBAcA]
5311 =[A Be Ac B A Ac]
5312 = [ABcAcBAB]
S314 = [A BcAcBAcA]
S316 = [ABcAcBAcBc]
S3 la = [A Be Ac B Be A] [0122] 아래 표 11 은 ( Be β Ac)를기본으로 8 개 혹은 6 개의 Sub-sequence 로 구성하는 Sequence를 나타내다.
【표 11】
S3241 = [ABcBAcAcA BBc]
S3252 = [A Be B Ac Ac B Be A]
S3261 = [A BcB Ac Ac Be A B]
S3271 = [ABcBAcBAAc Be]
S32b2 = [ABcB Ac Be Ac B A]
5321 =[A Be B Ac A Ac]
5322 = [ABcBAcABJ
S329 = [A Be BAc B BcJ
S32a = [A Be B Ac Be A]
[0123] 4개의 Sub-sequence {A Ac Be B): (A B Be Ac) , (A Be Ac B) , (A Be B Ac) 를 기본으로 8개 혹은 6개의 Sub-sequence로 구성된 Sequence들은 앞에서 L개 의 element 를 사용하더라도 좋은 Auto-correlation 특성을 유지하는 특성을 갖
실시예 2 - Set 2를사용하는 경우
[0124] 본 실시예의 경우에도 상술한 실시예 1 과 같이 긴 길이의 시퀀스를 이 루는 서브 시뭔스의 개수에 따라 다음과 같이 규정할 수 있다. [0125] (1) 2개의 서브 시퀀스로 구성하는 방법
[0126] 첫 번째 Sub-sequence 로는 임의의 Sub-sequence를 선택하며, 두 번째 Sub一 sequence는 첫 번째 Sub一 sequence로 다른 Sub一 sequence를 선택할 있다. 선택할 수 있는 후보 중에서 선택의 우선 순위는 다음과 같다. [0127] Priority 1. 첫 번째 Sub—sequence 와 다른 0CC 및 Base sequence 배열 이 같은 Sub-sequence 선택
[0128] Priority 2. 첫 번째 Sub-sequence 와 다른 0CC 및 Base sequence 배열 이 다른 Sub-sequence 선택
[0129] Priori ty 3. 첫 번째 Sub-sequence 와 같은 OCC 및 Base sequence 배열 이 다른 Sub-sequence 선택 '
[0130] 아래 표 12는 2개의 서브 시뭔스를 구성하는 예를 나타낸다. '
【표 12】
Figure imgf000031_0001
[0131] (2) 4개의 서브 시퀀스로 구성하는 방법
[0132] 세 번째 sub-sequence 는 앞에서 선택하지 않고 남은 Sub-sequence 증 에서 아래의 우선 순위로 선택할 수 있다.
[0133] Priori ty 1. 첫 번째 Sub-sequence 와 같은 0CC 및 Base sequence 배열 이 같은 Sub-sequence 선택
[0134] Priority 2. 첫 번째 Sub-sequence 와 다른 0CC 및 Base sequence 배열 이 다른 Sub-sequence선택
[0135] Priority 3. 첫 번째 Sub-sequence 와 다른 0CC 및 Base sequence 배열 이 같은 Sub-sequence선택
[0136] 아래 표 13는 3개의 서브 시뭔스를 구성하는 예를 나타낸다.
【표 13] Sub-sequence Sequence . Auto-correlation 결과 배열
CCc Dc (an hn an -bn bn -a ) 100016
CCc D (an bn an -bn bn an) 102016
CDc Cc (an bn bn -an an bn) 020006
CDc D (an bn bn -an bn an) 100016
CDCc (an bn bn an an -bn) 000026
CDDc (an bn bn an bn -an) I 02016
[0137] 이 경우, 네 번째 Sub-sequence 는 앞에서 선택하지 않고 남은
Sub-sequence로 구성할 수 있다.
【표 14】
Figure imgf000032_0001
[0138] (3) 8개의 서브 시퀀스로 구성하는 방법
[0139] 아래는 상술한 바와 같은 원리에 의해 8 개까지의 서브 시뭔스를 구성 하는 방법이다.
[0140] <5개 Sub-sequence로 구성하는 예〉 T/KR2016/015221
SI = [C Cc D Dc Cc];
S2 = [C Cc D Dc DJ;
S3 = [C D Cc Dc Cc];
S4 = [C D Cc Dc D];
S5 = [C Cc D Dc A] ;
S6 = [C Cc D Dc mB]
S7 = [C D Cc Dc A] ;
o
S8 = [C D Cc mB mB]
<6개 Sub-sequence로 구성하는 예>
S1=[A mA B mB A mA];
S2=[A mA B mB mA A]; 0
S3=[A mA B mB A B];
S4=[A mA B mB A mB]; 0
S5=[A mA B mB A A];
S6=[A mA B mB
S7=[A mA B mB mA B];
S8^[A mA B mB mA mB];
S9=[A mA B mB B A] ; 0
S10=[A mA B mB B mA]; 0
S11=[A mA B mB B B];
S12=[A mA B mB B mB]; 1
S13= A mA B mB mB A];
S14= A mA B mB mB mA]; 0
S15= A mA B mB mB B]; 0
S16= A mA B mB mB mB];
S17= A B mA mB A B];
S18= A B mA mB A mB] ; 0
S19= A B mA mB mA B];
S20 A B mA mB mA mB]; 0
S21= A B mA mB A A]
S22= A B mA mB A mA]; 0
S23= A B mA mB mA A]
S24= A B mA mB mA mA]
S25= A B mA mB B A];
S26= A B mA mB. B mA];
S27= A B mA mB B B]; 0
S28= A B mA mB B mB];
S29= A B mA mB mB A]; 0
S30= A B mA mB mB mA];
S31= A B mA mB mB B]; 0
S32: A B mA mB mB mB]; 퀀스에 ZC시퀀스를사용하는 경우 [0142] 이하의 실시예에서는 Base sequence로 ZC sequence를 사용할 때, root 가 다른 N 개의 Sequence vector 와 Vector 단위로 적용되는 Orthogonal code cover 의 조합으로 Auto-correlation 특성이 좋은 Sequence 열을 생성하는 방법 을 설명한다.
[0143] 상술한 실시예 1 및 2에서 제안된 Sequence 구성에서 Base Sequence를
ZC sequence 로 사용할 수 있다. 일례로 Root 값이 다른 2 개의 2C sequence 와 Orthogonal code cover의 조합으로 Sequence 열을 구성할 수 있다. [0144] 이하의 표현에서 Z(u,n)은 root 값이 u 이고 길이가 N 인 ZC sequence
열을 나타낸다. 【수학식 8】
Figure imgf000035_0001
η = 0, ...,N- 1
u = 1, ...,Ν
an = Z(ul, n) , bn = Z(u2 , n) (where, ul ≠ u2)
[0145] 또 다른 예로는 Z' (u,n)과 같이 표현되는 Sequence 열을 고려할 수 있다. 【수학식 9】
, πυη2
Ζ'(ΐί,η) = e~^~^~) ,
η = 0, ...,N- 1
u = Ι,.,.,Ν
an = Z(ul , n), bn = Z(u2 , n) (where, ul ≠ u2)
[0146] 상기 수학식 8 및 9 와 같은 기본 시뭔스를 이용하는 방식으로는 다음 과 같은 실시예가 가능하다. [0147] 실시예 1) Subcarrier Spacing 15kHz, Bandwidth 180kHz , Sampling frequency 1920kHz , CP 4us으로 정의하는 OFDM system이 있을 때, 11개의 OFDM symbol로 구성되는 NB-PSS 생성방법은 아래와 같다.
[0148] 길이 132인 Sequence 열을 12개씩 나눠 11개의 묶음을 만든 후, 각 묶 음 별로 OFDM symbol 생성 과정 ( 12-DFT spreading ·> 12개 subcarr i er에 mapping ^ 128-FFT ^ CP길이 삽입 (9개 sampl e) )을 수행해서 총 11개의 OFDM symbol 을 만들 수 있다.
[0149] 길이 132인 Sequence 열은 길이 12짜리 Base-sequence를 사용하여 구 성하며, 2개의 Base sequence와 0CC를사용하여 생성할 수 있다.
[0150] 예를 들어, 길이 12 이고 Root 값이 다른 2 개의 ZC sequenced Base-sequence로 사용하고, 상술한 실시예들에서 제시한 11 개 sub-sequence를 사용하는 Auto-correl at ion 특성을 좋게 만드는 Sequence 구성에 맞춰 길이 132 인 Sequence 열을 만들 수 있다.
【수학식 10]
an an bn -bn an -an bn bn bn — bn
[0151] 실시예 2) root 값으로는 ZC sequence열이 서로 complex con j ugat ion 관 계가 되는 root를 선정할 수 있다.
[0152] 예를 들어 , 길이 11짜리 ZC sequence에는 1~11까지 11개의 root값이 있는데 , 1과 10 , 2와 9 , 3과 8 , 4와 7 , 5와 6 등의 root 값은 ZC sequence열 이 서로 conj ugate 관계를 갖게 할 수 있다.
[0153] 길이 13까지 ZC sequence는 1~13까지 13개의 root 값이 있는데, 1과
12 , 2와 11 , 3과 10, 4와 9, 5와 8 , 6과 7 등의 Root 값은 ZC sequence 열이 서 로 conjugate 관계를 갖게 할 수 있다. [0154] 실시예 3) root 값으로는 서로 다른 임의의 2 개의 값을 사용할 수 있 다.
[0155] 실시예 4) 길이 11인 ZC sequence를 Frequency 영역의 12개 subcarrier 에 mapping 시킬 때 , DC자리는 비우고 나머지 11개에 mapping할 수 있다. 길이 11인 ZC sequence를 사용하는 경우 DFT spreading크기는 11로 할 수 있다.
[0156] 실시예 5) 길이 13인 ZCsequence를 Frequency 영역의 12개 subcarrier 에 mapping 시킬 때는, Sequence 의 마지막 부분을 뺀 나머지 12 개를 DFT spreading 한 早 결과물을 12 subcarrier에 mapping할 수 있다. 동기신호 수신 방식
[0157] 초기 동기 수행 과정에서 심볼의 시작점을 찾고 주파수 오프셋을 검출 하기 위한 목적으로 동기 신호가 전송된다. 시간 동기 및 주파수 오프셋을 획득 하기 위한 다양한 알고리즘이 있는데, 각 알고리즘들은 성능과 복잡도에 Trade-off 가 존재한다.
[0158] 정확도가 가장 높은 알고리즘은 Cross-correlation 방법이다. 수신기 는 수신 신호와 동기 신호의 cross-correlation 을 수행하고 Correlation 결과 중 가장 최대가 되는 지점을 심볼의 시작점으로 인지하게 된다. 문제는 주파수 오프셋이 존재하는 경우에는 Cross-correlation 결과들이 비슷한 크기를 갖게 된다는 점이다. 이를 해결하기 위한 방법으로는 주파수 오프셋이 발생할 수 있 는 범위의 값에서 특정 값에서 주파수 오프셋이 발생했다고 가정하고
Cross-correlation 을 수행하는 안이 있다. 주파수 오프셋 후보들을 두고 cross-correlation 을 수행한 결과들을 모두 비교해서, 전력이 가장 큰 지점을 심볼의 시작점으로 인지하고 그 때의 후보 값을 주파수 오프셋으로 결정한다. 후보 안을 모두 비교하는 방식은 정확도는 높겠지만, 계산 복잡도가 높아지는 단점이 있다.
[0159] 간단한 연산으로 수행할 수 있는 알고리즘은 Autocorrelation 방법이 다. 수신 신호와 이전 수신한 신호의 Difference 를 구하고, 일정 범위에 있는 결과 값들을 더하는데 그 window 의 시작점을 옮겨가면서 결과를 산출한다. Auto-correlation 결과 중 가장 최대가 되는 지점을 심볼의 시작점으로 인지하 게 된다. Auto-correlation 방법은 수신 신호 간에 difference 연산을 수행하기 때문에 주파수 오프셋의 여부와 상관 없이 Correlation 결과물을 얻을 수 있는 장점이 있다. 그러나 Difference 연산에 따른 Noise 증폭은 Low SNR 에서 검출 성능을 떨어뜨리는 요인이 되며 , Auto-correlation의 결과는 Resolution이 떨어 지는 문제가 있다.
[0160] Cross-correlation 방법의 정확도와 Auto-correlation 방법의 낮은 연 산량의 장점을 결합한 Hybrid 알고리즘을 생각해 볼 수 있다. 수신 신호와 이전 수신 신호의 Difference를 구하면 주파수 오프셋에 따른 위상 변화 효과가 상쇄 된다. 이 결과물과 동기 신호의 Cross-correlation을 구하면, 좋은 Correlation 결과를 얻을 수 있다. 장점은 주파수 오프셋의 효과를 상쇄해서 Cross-correlation 을 한번 적용하고도 심볼의 시작점을 검출할 수 있다는 점인 데, 단점은 Differential decoding에 따른 Noise 증폭이다.
[0161] 앞서 설명한 알고리즘들을 수행하기 위해서는 Correlation 특성이 좋 은 Sequence를 설계하는 것이 바람직하다. 수신기에서 Cross— cor re 1 at ion을 수 행하한다면, 전송된 Sequence 의 Correlation 특성이 좋아야 할 것이고, Differential decoding후에 Cross-correlat ion을 수행한다면, 전송 Sequence의 Different ial decoding 결과물인 sequence의 Correlat ion 특성이 좋아야 한다.
[0162] 본 발명의 실시예들에서는 correlation 특성이 좋은 sequence 를 differential encoding하여 Transmission sequence 생성하는 방법을 설명하고, differential encoding 되어도 correlat ion 특성이 좋은 Transmission sequence 를 생성하는 방법을 제안한다.
[0163] 도 9 및 도 10 은 Differential Encoding 으로 전송 시퀀스를 생성하는 방법을 설명하기 위한 도면들이다.
[0164] 도 9 및 10에 도시된 바와 같이 Auto-correlation이 좋은 Sequence들 을 Differential encoding을 수행하여 전송 Sequence로 만들 수 있다.
[0165] Orthogonal code cover (0CC)를 different ial encoding 하여
Transmission sequence 생성하는데 Λ1"용한다 .
[0166] 이 때, Differential Encoding 된 0CC 는 Base—Sequence 들과 결합되어
Transmission Sequence를, 생성하게 된다.
[0167] 실시예 1) Differential Encoding 되는 0CC 의 초기 값은 T 또는
-1' 로 setting되는데, T 을사용한다.
[0168] 실시예 2)SourxeOCC는 Auto-correlation 특성이 좋은 Binary Sequence 를 도입한다.
[0169] 실시예 3) Base-sequence는 Single Vector나 Two Vectors가사용될 수 있으나, N개의 Vector가사용될 수 도 있다.
[0170] 11 은 Orthogonal Code Cover 를 Differential Encoding 하고 Base Sequence와 결합하여 Transmission Sequence를 생성하는 개념도를 나타낸다. [0171] 예를 들어, 길이 10 의 Binary Sequence {1 -1 1 -1 -1 1 -1 -1 -1 1} 를 Source OCC로 하고, Differential Encoding을 수행하여 {1 1 -1 -1 1 -1 -1 1 -1 1 1}의 Re-Generated OCC를 얻는다.
[0172] 11개의 sub-vector와각각의 sub-vector에 Re—Generated OCC Element 를 곱해서 최종 Transmission sequence를 생성한다.
[0173] 11개의 Sub-vector가모두 동일한 Base— sequence로 구성될 수 있는데 ,
Base— Sequence를 an 0l라고 표人 1하면 Transmission sequence는 0 래와 ¾°] ¾ ] 될 수 있다.
【수학식 11】
[0174] 11 개의 Sub-vector 를 2 개의 Base-sequence 로 구성할 수 있는데,
Base— Sequence를 an, bn 이라고 표시하고 Base-sequence의 순서 조합에 따라 다 양한 Transmission Sequence를 구할 수 있다.
[0175] Base-Sequence an, bn 를 순서대로 나열하여 적용한 예를 아래와 같이 표시될 수 있다.
【수학식 12]
an bnᅳ an -bn a _bnᅳ an b„ᅳ an bn an
z(l'u) z(10'n) -z(l,n) -z(10,n)z(l,n) -z(10,n) -z(l,n) z(10,n) - z(l,n) z(10,n) z(l,n)
[0176] 11 개의 Sub-vector 를 서로 다른 Base-sequence 로 구성할 수 있는데, 예를 들어, root 값이 다른 ZC sequence를사용하여 Transmission Sequence ¾ 구 할 수 있다. 【수학식 13]
z(l,u) z(10'n) - z(2,n) - z(9,n) z(3'n) - z(8,n) -z(4,n) z(7,n) - z(5,n) z(6,n) z(5,n)
[0177] 도 12 는 Orthogonal Code Cover 를 Base Sequence (an)과 결합하여 Transmission Sequence를 생성하는 개념도이다.
[0178] 본 예에서 N 개의 Sub-vector 를 Root 값이 다른 ZC sequence 를
Base-sequence로 하여 구성하고, 각 sub— vector에 OCC를 적용한다.
[0179] 실시예 1. 길이 N의 ZCsequence를 사용하고 , N개의 root 중 일부를 사 용할 수 있다.
[0180] 예를 들어, 1개의 root, 2개의 root, 4개의 root, 6개의 root, 8개의 root, 10개의 root, 11개의 root를 사용할 수 있다.
[0181] Root 값이 다른 어떤 ZC sequence 들은 Complex conjugate 관계가 있는 더 1, 수신기의 연산량을 줄이는데 효과가 있다. N 개의 Root 값 중 Complex conjugate 관계를 갖도록 하는 Root 값을 선택한다.
[0182] 예를 들어, 길이 11의 ZC sequence라면, Root 값 1과 10, 2와 9, 3과
8, 4와 7, 5와 6으로 생성한 ZC sequence는 서로 complex conjugate 관계를 갖 는다.
[0183] 11개의 Root 값 중 2개를 선택한다면, 아래와 같이 5가지 조합을 고려 할 수 있다.
【표 15】
Figure imgf000041_0001
不하 ^ Z(3,n) Z(8,n)
不히 4 Z(4,n) Z(7,n)
不 oh Z(5,n) Z(6,n)
[0184] 11개의 Root 값 중 4개를 선택한다면, 아래와 같이 10가지 조합을 고 려할 수 있다.
【표 16】
Figure imgf000042_0001
[0185] 11개의 Root 값 중 6개를 선택한다면, 아래와 같이 10가지 조합을 고 려할 수 있다.
【표 17]
Figure imgf000042_0002
不히 6 Z(l,n) Z(10,n) Z(4,n) Z(7,n) Z(5,n) Z(6,n) 不하 7 Z(2,n) Z(9,n) Z(3,n) Z(8,n) Z(4,n) Z(7,n) 不하 8 Z(2,n) Z(9,n) Z(3,n) Z(8,n) Z(5,n) Z(6,n) 조합 9 Z(2,n) Z(9,n) Z(4,n) Z(7,n) Z(5,n) Z(6,n) 조합 10 Z(3,n) Z(8,n) Z(4,n) Z(7,n) Z(5,n) Z(6,n)
[0186] 11개의 Root 값 중 8개를 선택한다면, 아래와 같이 5가지 조합을 고려 할 수 있다.
【표 18]
Figure imgf000043_0002
[0187] 11개의 Root 값 중 8개를 선택한다면, 아래와 같이 1가지 조합을 고려 할 수 있다.
【표 19】
Figure imgf000043_0003
[0188] 위 표들에서 Z(u , n)은 다음과 같이 규정된다.
【수학식 14】
Figure imgf000043_0001
[0189] 예를 들어, 길이 13의 ZC sequence라면, Root 값 1과 12 , 2와 11 3 과 10 4와 9 5와 8 6과 7 등 13개의 Root 값 중 2개 선택한다면, 아래와 같이 5가지 조합을 고려할 수 있다.
【표 20】
Figure imgf000044_0001
[0190] 13개의 Root 값 중 4개를 선택한다면, 아래와 같이 15가지 조합을 고 려할 수 있다.
【표 21】
Figure imgf000044_0002
조합 11 Z(3,n) Z(10,n) Z(5,n) Z(8,n) 조합 12 Z(3,n) Z(10,n) Z(6,n) Z(7,n) 조합 13 Z(4,n) Z(9,n) Z(5,n) Z(8,n) 조합 14 Z(4,n) Z(9,n) Z(6,n) Z(7,n) 조합 15 Z(5,n) Z(8,n) Z(6,n) Z(7,n) 1] 13개의 Root 값 중 6개를 선택한다면, 아래와 같이 20가지 조합을 고 려할 수 있다. ' 【표 22]
Figure imgf000045_0001
[0192] 13 개의 Root 값 중 8 개를 선택한다면, 아래와 같은 조합을 고려할 수 있다.
【표 23]
Figure imgf000046_0001
[0193] 13개의 Root 값 중 10개를 선택한다면, 아래와 같은 조합을 고려할 수 있다.
【표 24】
Figure imgf000046_0002
ol- ς
不하 fi
실시예 2
[0194] NB-IoT System 에서는 15kHz 의 subcarrier spacing 을 갖는 12 개의 subcarrier를사용하여 하나의 OFDM symbol을 구성하는데, PSS는 11개의 OFDM symbol로 구성될 수 있다.
[0195] ZC sequence 를 적용할 때, Sequence 는 Transmission sequence 를
Frequency map ing을 하거나, Transmission Sequence를 DFT spreading 한 후에
Frequency mapping을 할 수도 있다.
[0196] 이 때 한 ( DM symbol 에 적용되는 Transmission sequence 는 ZC sequence 의 길이에 맞춰서 구성을 한다. 예를 들어, 길이 11 짜리 ZC sequence 를 사용한다면 Sequence를 cyclic shift하여 길이 12의 sequence로 만들 수 있 다.
[0197] 길이 11짜리 ZC sequence를 사용한다면 하나의 Subcarrier를 비워 두 고 11개 Subcarrier에 mapping할 수 있다. 길이 13짜리 ZC sequence를 사용한 다면 Sequence 중 하나의 값을 빼서 길이 12의 sequence로 만들 수 있다.
[0198] 11개의 OFDMsymb 로 NB-PSS를 구성하는 경우, 선택한 N개의 Root 값 을 반복적으로 사용할 수 있다. 예를 들어 , Root값이 서로 다른 2개의 Sequence an, bn이 있을 때 , an과 bn을 반복적으로 사용한다. Root 값이 서로 다른 4개의 Sequence an, bn, cn, dn이 있을 때, 각 Sequence를 반복적으로 사용한다.
【수학식 15】 an bn cn dn an bn cn dn an bn 추
[0199] 11개의 OFDM symbol로 NB-PSS를 구성하는 경우, 길이 11의 0CC를 각
OFDM symbol에 적용한다.
[0200] Root 값이 서로 다른 N 개의 Sequence 배열과 0CC 의 조합으로
Transmission sequence가 생성되는데, Sequence 배열을 다르게 하거나 적용되는
0CC를 다르게 하여 만들어진 M개의 Transmission sequence를 구성하고 이를 정 보로서 활용할 수 있다.
[0201] 예를 들어 , FDD/TDD mode를 지시할 수 있다.
[0202] 사용되는 주파수 위치에 따라서 Operation Mode 를 나눌 수 있는데,
(LTE의 in-band에서 동작하는 mode인지 , Guard band 혹은 Stand-alone으로 동 작하는 mode)이 mode를 지시할 수 있다.
NB-SSS 전송 방법
[0203] 이하에서는 상술한 설명에 기반하여 NB-SSS 를 구성하는 방법 및
NB-SSS를 통해 다양한 정보를 알려주는 방법에 대해 설명한다.
[0204] 기존 LTE에서는 504의 Physical Cell ID를 PSS와 SSS를 통해 지시하 였다. 반면 , NB-IoT에서는 NB-SSS에서 504개의 Physical Cel 1 ID를 알려준다. 한 편 , 기존 LTE에서 PBCH는 10ms 마다 전송이 되는데, PSS/SSS는 5ms 마다 전송이 되어 PBCH 전송 주기 사이에 2 번의 PSS/SSS 전송이 되기 때문에 SSS 를 통해서 SSS 전송 subframe 의 번호를 알려주며, 이를 위한 방안으로 SSS 를 구성하는 SSS1과 SSS2를 subframe 위치에 따라 Swapping함으로써 subframe index를 지시 하였다. NB-IoT에서 NB-PBCH는 80ms 주기로 전송되고 NB—PSS는 10ms 주기로 전 송되는데 , NB-SSS는 NB-PSS보다 긴 주기 (예 , 20ms, 40ms)로 전송되도록 설계될 수 있다. NB-SSS 전송 주기가 80ms 마다 전송되는 NB— PBCH 주기 보다 짧은 주기 로 전송되도록 설계하는 경우에는, NB-PBCH가 전송되는 주기 내에 NB-SSS가 전 송될 수 있는 후보 위치는 LTE보다 더 많아 질 수 있다.
[0205] 요약을 하면, NB-SSS에서는 Cell-ID 뿐만 아니라 NB-SSS Frame index 등 상당히 많은 수의 정보를 포함해야 한다. 많은 정보를 포함할 수 있으면서도 단 말의 수신 복잡도기를 단순화 할수 있는 NB-SSS 설계가 요구된다.
[0206] 이를 위한 본 발명의 일 실시형태에서는 Narrow Band Secondary
Synchronization Signal (NB—SSS)을 구성하는더 1, Base一 sequence, Scrambling sequence , Cyclic shift 및 Cover Sequence의 조합을 이용하는 방법을 제안한다.
[0207] 도 13 은 본 발명의 일 실시형태에 따라 NB-SSS 를 구성하는 법을 설 명하기 위한 도면이다.
[0208] 실시예 1. Base-sequence는 L- length ZC sequence로 생성하고, L-length
Scrambl ing sequence를 Element wise multiplication 한다. 이푸, Cycl ic shift 를 수행한다. 그리고, L-length Cover Sequence 를 생성하여 Element wise multipl icat ion 한다.
[0209] 실시예 2. Base-sequence는 2개의 L/2-length ZC sequence를 생성하고,
L-length Scrambl ing sequence를 Element wise로 mul t ipl icat ion을 한다. 그리 JL , L-length Cover Sequence , Element wise≤- mult ipl icat ion 쫘.
[0210] 예를 들어, 132-length의 NB-SSS sequence를 생성할 때, Base-sequence 는 도 、13에 도시된 바와 같이 길이 67의 ZC sequence를 사용하고 1개의 sample 은 puncturing 하여 길이 66 의 ZC sequence 2 개를 연접하여 132 길이의 base sequence를 생성한다. 이 때, 2개의 ZC sequence의 Root index를 서로 독립적 으로 설정할 수 있다.
[0211] 예를 들어 , Scrambling sequence는 M-sequence나 PN sequence로 구성 할 수 있다.
[0212] Cover sequence는 아래의 실시예 5에서 설명한다.
[0213] 실시예 3. Base-sequence는 2개의 L/2—length ZC sequence를 생성하고,
2 끠 length Scrambling sequence λ^Λέ ^}°^ Element wise S. multiplication을 한다. 그리 , L- length Cover sequence를 생성하여 Element wise로 multiplication 한다.
[0214] 예를 들어 , 132-length의 NB-SSS sequence를 생성할 때, Base-sequence 는 길이 67의 ZC sequence를 사용하고 1개의 sample은 puncturing하여 길이 66 의 ZC sequence 2개를 연접하여 132 길이의 base sequence를 생성한다. 이 때, 2 개의 ZC sequence의 Root index를 서로 독립적으로 설정할 수 있다.
[0215] 예를 들어, Scrambling sequence 는 길이 66 의 M-sequence 나 PN sequence로 구성할 수 있다.
[0216] Cover sequence는 아래의 실시예 5에서 설명한다.
[0217] 실시예 4. Base-sequence는 2개의 L/2-length ZC sequence를 생성하고,
L- length Scrambling sequence 를 생성한다. L- length Scrambling sequence 를 cyclic shift한다. 이푸, Element wise로 multiplication을 한다.
[0218] 실시예 5. Cover Sequence는 한정된 Element로 Sequence를 구성할 수 있다.
[0219] 예를 들어, +1/— 1 혹은 로 구성된 Orthogonal Cover Sequence 를 구성한다.
[0220] 짧은 길이의 Orthogonal Sequence 를 생성하고, Sequence 의 전체 길이 에 맞춰 Repetition하여 구성할 수 있다.
[0221] [1111], [1-11 -1], [11-1-1], [ 1 -1 -11]은 직교하는 4— Hadamard sequence이고, [1111], [1 j -1 -j], [1 -11— ί], [1 -j -1 j]는 직교하는 4-DFT sequence 인데, 총 132 길이의 Sequence 를 구성한다면, 길이 4 의 Orthogonal sequence를 33번 반복한다. 이와 같이 +/-j 로 Cover sequence를 구성하 는 경우 수신기의 계산 복잡도를 줄일 수 있다.
[0222] 예를 들어 , 커버 시퀀스는 Hadamard matrix, DFT matrix 등이 사용될 수 있으며 , M-sequence가사용될 수 있다.
[0223] 본 발명의 다른 일 실시형태에서는 NB-SSS 를 통해 Cell-ID 및 NB-SSS position number 등 다양한 정보를 전송할 때, Base-sequence 의 root index, Cyclic shift 그리고 Scrambling Sequence의 Cyclic shift, 또한 Cover Sequence 의 set 등을 조합하여 정보를 표현하는 것을 제안한다.
[0224] 실시예 1. Base-sequence 로 다수의 ZC sequence 를 사용하는 경우, 다 수의 ZC sequence의 각 Root index들의 조합으로 CeH-ID 및 NB— SSS의 position 을 표현할 수 있다. 이와 같은 경우, Root index 조합으로 표현 가능한 State가 보내고자 하는 총 정보의 State 보다 클 수 있다. 이와 같은 경우, 전체 Root index 중 일부의 Root index가사용되는 것이 바람직한데, 일부 Root index를 선 택할 때 , ZC sequence가서로 complex conjugate 관계를 갖도록 하는 Root index 들을 뽑아서 사용한다.
[0225] 예를 들어, 길이 67의 ZC sequence가 2개 사용되는 경우, 67개의 Root index가 있어서 2개의 Root index로 총 4489 O 67 x 67)의 State를 표현이 가 능하다.504개의 Cell-ID와 4개의 NB-SSS position을 표현해야 한다면, 총 2016 State 가 요구되며, 이는 Root index 조합으로 표현 가능한 State 보다 작은 값 이고, 이를 표현할 때 일부 Root index들의 조합으로 표현하는 것이 바람직하다. 또한, 504개의 Cell— ID를 표현한다면 더 적은 수의 Root index들을 사용하더라 도 요구되는 State 표현이 가능해 진다. 504 개라면 앞 ZC sequence 에서 21 개 Root index, 뒤 ZC sequence에서는 24개의 Root index를 사용하여 Cel卜 ID 표 현할 수 있게 된다. 길이 67의 Root index 중 일부 (예, 21개 , 24개)를 선택하 는 경우, complex conjugate 관계를 갖는 ZC sequence 를 생성할 수 있는 Root index를 선택하여 사용한다.
[0226] Index: (33, 34), (32, 35), (31, 36), (30, 37), (29, 38), (28, 39),
(27, 40) 등 2 index의 sum이 Sequence 길이와 같은 root index를 선택하면 , 이 는 Complex conjugate을 만족한다.
[0227] 실시예 2. Base— sequence의 Root index로 Cell-ID를 지시하고, Cover sequence로는 NB-SSS의 position을 지시한다.
[0228] 실시예 3. Base-sequence 의 Root index 로 CeH-ID 를 지시하고,
Scambl ing sequence의 Cyclic shift로는 NB一 SSS의 poisition을 지시한다.
[0229] 실시예 4. Base-sequence의 Root index 및 Cyclic shift로 CeU-ID를 지시하고, Cover sequence로는 NB-SSS의 position을 지시한다.
[0230] 예를 들어, 길이 131 ZC sequence 를 사용하면 표현 가능한 Cel ID 에 한계가 있다. Cyclic shift 된 ZC sequence 간에는 Correlation이 낮기 때문에, Cyclic shift 를 자원으로 활용할 수 있는데, Sequence 길이를 1/N 등분하여 'Sequence 길이 /N ' 길이 단위로 Cyclic shift한다. 504 Cell-ID 표현을 위해 서는 126개 Root Index와 4개 Cyclic shift를 사용하며 총 504개 State를 표 현할수 있다. 그런데, NB-SSS의 position을 지시하기 위한 정보 공간이 부족한 데 , 이를 위해서 Cover sequence를 입히고, Candidate cover sequence 중 NB-SSS position index에 따라 선택된 cover sequence를 찾아 봄으로써 NB-SSS posi ion index를 알아 낼 수 있다.
[0231] 아래는 ZC sequence 생성식을 나타낸다.
【수학식 16】
.nun(n+l)
Szc(u, n) = e1 w , where, u: root index, n: sequence index
[0232] 여기서 N은 sequence의 길이이며 , u는 root index를 나타내는데 주로
0부터 N-1 혹은 1부터 N-1을사용한다. (0과 N인 경우 Sequence의 element는 모두 1이 됨) n은 sequence의 index를 나타내는데, 0부터 N-1을 대입해서 길 이 N의 sequence를 생성한다 .
[0233] (1) 길이 N 보다 더 긴 길이의 sequence 를 생성해야 하는 경우, ZC sequence를 Cyclic shift해서 사용할 수 있다.
[0234] 예를 들어, 1개의 NB-SSS는 11개의 OFDM symbol 로 구성되고 각 OFDM symbol 은 12 개의 RE (Resource Element)로 이루어 지는 경우, 총 132 개의 Resource Element 를 Sequence 전송을 위한 자원으로 활용할 수 있다. ZC sequence를 Base sequence로사용하는 경우에, 132와 가까운 소수 (Prime Number) 를 ZC sequence의 길이로 가정한다. 가장 가까운 소수인 131을 사용할 수 있다. 길이 131 ZC sequence를 Base Sequence로 사용하는데 , 길이 132를 만들기 위해 서 1 개의 sample 이 더 필요고, 이와 같은 경우에 ZC sequence를 Cyclic shift 해서 사용할 수 있다.
【수학식 17】
S (u,k) = Szc(u, k % N) , where k-0,---,K-l
(여기서 %는 modular 연산을 나타낸다.)
[0235] (2) ZC sequence에 offset을 두어서 Sequence의 시작점이 서로 다른
ZC sequence를 만들어낼 수 있다.
[0236] 도 14 는 본 발명의 일 실시형태에 따라 Offset 을 적용하여 서로 다른
ZC 시퀀스를 생성하는 방법을 설명하기 위한 도면이다.
[0237] Offset 을 s 라고 표시하면 s 만큼 offset 을 둔 시점을 시작점하고, cycl ic shift한다.
【수학식 18】
S (u,k) = Szc(u, (k+s) % N), where k=0,---,K-l, seisO, si, ···' sN}
[0238] Offset 값은 정보로 활용될 수 있다. RE에 Sequence를 mapping하는 경 우, Offset 을 정보로 활용하고자 한다면, 최소한 2개 sample 이상의 offset 을 두는 것이 바람직하다.
[0239] 예를 들어, ZC sequence를 frequency domain에서 각 RE에 mapping해 서 OFDM symbol 을 만드는 경우에 , 수신단은 수신된 신호를 Frequency domain으 로 변환으로 하고 각 RE 에 sequence 들이 mapping 되었다고 생각하고 각 de-sequencing 을 시도한다. 이 때 수신된 신호에 Frequency offset 값이 존재 하는 경우에 주파수 영역에서는 신호가 인접 RE 로 shift 되는 현상이 발상하게 된다. Original sequence와 일정 offset 만큼 cycl ic shift된 Sequence는 낮은 correlation 값을 갖는데, 이를 정보로 활용하고자 할 때, offset 충분히 두지 않은 shifted sequence를 사용한다면 detection 시 ambiguity가 발생한다.
[0240] 도 15 및 16 은 전송 신호와 수신 신호 사이의 주파수 쉬프팅에 따른 고려사항을 설명하기 위한 도면이다.
[0241] 도 15 에서 보는 바와 같이, Sequence 1과 1 sample shift된 Sequence
2가 있을 때 , Sequence 1을 전송했는데 CF0로 인해 Rx signal이 Frequency shi ft 된다면 Sequence 2를 전송한 것과 유사하게 된다. 즉, Sequence 1을 전송했는데 , 수신단에서 Sequence 1과 Sequence 2의 .Cross一 correlat ion을 취하면 Sequence 2 의 Cross-correlation이 크게 나타나게 되고 이는 Detection오류가 된다.
[0242] NB-PSS를 통해 CF0를 추정해서 보상하더라도 일정 값 정도의 Residual
CF0가 존계한 상태로 NB-SSS에서 Cell-ID 및 SSS frame index 검출을 시도할 텐 데, 전송된 Sequence가 어느 정도 Frequency shift 가 된 상태에서 검출을 시도 하게 된다.
[0243] 따라서 Sequence 를 RE 에 mapping 하는 signal 전송의 경우에, ZC sequence 의 시작점이 서로 다르게 해서 정보로 활용하고자 한다면, 충분한 offset 을 두는 거이 바람직한데 최소한 2개 이상의 sample을 떨어뜨리는 것이 바람직하다.
[0244] 그리고, NB-SSS 처럼 11 개의 OFDM symbol 이 사용되고 각 OFDM symbol 당 12개의 RE를 사용되는 경우에 , Offset을 12개 sample 단위로 두게 되면 이 또한 ambiguity를 발상하게 된다.
[0245] 도 16 에서 보는 바와 같이 , Original sequence와 12 sample offset을 두고 cyclic shift하 Sequence 2를 만고 인접한 cell에서 각각 전송에 사용한다 고 가정하는 경우, Cell#l과 Cell#2에서 전송한 신호가 각각 전송 지연이 발생 하여 수신단이 수신하면 Sequence 1과 Sequence2의 구분이 모호해 질 수 있다.
[0246] 따라서 NB-SSS처럼 12개 단위로 한 OFDM symbol 에 mapping되는 설계 에 있어서는 Offset을 12 단위로 하는 것은 바람직하지 않다.
[0247] Offset을사용하여 sequence를 만든다면, Offset은 2~9, 13-17 .. 등 이 바람직하다. Offset은 +/-등이 될 수 있다.
[0248] 예를 들어, Offset 2를 사용하면 5개의, offset 3는 4개, offset 4는
2개의 구분된 sequence를 만들어 낼 수 있다. (2x6=3x4 =4x3= 12 간격이 되며 , 앞서 설명한 문제가 있기 때문)
[0249] (3) 길이 N의 ZC sequence는 N개의 root index를 사용할 수 있는데, N 개보다 작은 수의 root index를 선택해서 정보로 사용할 수 있다. 이와 같은 경 우, 적절한 root index를 선택해야 하는데, complex conjugate 관계를 갖는 root index와 생성된 NB-SSS의 PAPR이 높지 않은 root index를 선택하는 것이 바람 직하다.
[0250] 예를 들어 , 길이 131의 ZC sequence를 사용할 때 , 1-130의 Root index 를 candidate이라고 하고 126개를 뿐는다면, ZC sequence가 com lex conjugate 이 되도록 하는 root index pair (1,130), (2,129), (3,128), (4,127), (5,126), -" , (65,66) 등 총 65개의 pair 중에서 64개 pair를 선택한다.
[0251] Long ZC sequence 를 OFDM symbol 에 나눠서 전송하면 (예, 길이 132 sequence를 11개의 OFDM symbol , 각 OFDM symbol 당 12개의 RE에 mapping해서 NB-SSS를 구성하는 경우), 특정 root index pair로 만들어진 OFDM symbol은 상 당히 큰 PAPR을 갖게 된다. 한 OFDM symbol의 RE에 sequence 간에 위상 변화가 크지 않은 sequence가 mapping된다면 해당 OFDM symbol의 PAPR은 큰 값을 갖게 되는데 (예, 주파수 영역에 [1111]이 mapping되었다면 시간 영역에서 [2000] 값으로 나오고 이때 PAPR이 가장 크다ᅳ), root index가 낮을수록 앞 부분에 있 는 sequence들간에 위상 변화량은 작기 때문에 , 큰 PAPR이 나타나게 된다. 낮은 root index와 pair가 되는 root index는 동일한 값을 갖는다.
[0252] 즉, 길이 131 ZC sequence 에서는 Root index pair (1,130), (2,129),
(3,128), (65,66), … 순서로 높은 PAPR를 갖게 된다. 여기서 1~L30 중에서 126 개의 root index를 선택해야 한다면, 3-128을 선택하는 것이 바람직하다. 높은 PAPR을 만들어 내는 Root index는 제외를 하고, Complex conjugate 관계를 갖도 록 하는 root index pair로 구성한다.
[0253] 상기 내용을 정리하면,총 504개의 CeH-ID를 Root index와 Offset으 로 만들고자 할 때, 126개의 root index와 4가지 offset으로 구성해 볼 수 있 다. 길이 131 의 ZC sequence를 사용한다면, Root index 는 3~128을 사용하고, Offset 은 2 혹은 3 을 사용한다. 이렇게 만들어진 504 가지 sequence 로는 Cell-ID지시를 위해 사용된다.
[0254] (4) 여기에 추가로 NB-SSS 전송 frame index를 알려 주기 위해, DFT로 구성된 sequence 를 covering 할 수 있다. 예를 들어, 80ms 주기로 전송되는 NB-PBCH사이에 20ms 주기로 NB-SSS가 전송 되다면 , NB-PBCH사이에 NB-SSS는 4 번 전송되는데 이 4가지 position를 알려줄 필요가 있다. (만약 40ms 주기라면, position candidate은 2가지) [0255] Sequence 길이가 132일 때 , DFT의 offset은 [0,33,66,99] 가 될 수 있 다.
【수학식 19】
.2nkn
Sdft(/c,n) = e]~N~ , where, k Ε {0,33,66,99}, N = 132, n = 0, ... ,131
[0256] 앞에서 만들어진 Sequence 에 DFT sequence 를 Element wise 로 multiplication 할 수 있다.
[0257] 즉, 상술한 내용을 다음과 같이 정리할 수도 있다.
<Base Sequence> 【수학식 20】
Sbase(u,s,m) = Szc u, (s + m)%N) .where, N = 131, n = 0,...,130,u £ {3, 128},s ε {0,3,6,9}, m = 0, ...,131
■7run(n+l)
Szc(u, n) = eJ w , where ,N = 131
<Cover Seq니 ence> 【수학식 21]
.2nkm
Sdft(/; m) = eJᅳ ᅳ , where, k E {0,33,66,99}, where, M = 132, m = 0, ...'131 <NB-SSS Sequence> 【수학식 22】
Ssss u, s, k, m) = Sbase(u, s, m) * Sdft(k, m), where, m = 0, ... ,131
*: Element― wise multiplication [0258] 한편, Base sequence 의 cycl i c shi f t 의 다른 예로는 아래와 같은 of fset을 고려할 수 있다.
【수학식 23】
Sbase(u, s, m) = Szc(u, (s + m)%N) offset = 3, s e {0, 3, 6, 9}
offset = 9, s e {0, 9, 18, 27}
offset = 15, s G {0, 15, 30, 45}
offset = 21, s G {0, 21, 42, 63}
offset = 27, s G {0, 27, 54, 81}
offset = 33, s G {0, 33, 66, 99}
offset = 39, s G {0, 39, 78, 117}
[0259] 도 17 및 도 18 은 본 발명의 일 실시예에 따라 수학식 23 의 오프셋이 적용되는 형태를 도시하고 있다.
[0260] 이하에서는 상술한 바와 같은 설명에 따른 긴 길이의 시¾스를 적용할 수 있는 실시예로서 NB IoT의 동기 신호에 활용되는 경우를 살펴본다.
ΝΒ-ΙοΤ에의 적용
[0261] 상술한 바와 같이 ΝΒ-ΙοΤ는 LTE 시스템의 1 PRB에 해당하는 시스템 BW 를 갖는 낮은 comp lex i ty, 낮은 power consumpt ion을 지원하기 위한 시스템이다. 이는 주로 MTC (machine-type communi cat ion)와 같은 기기를 eel hil ar system에 서 지원하여 internet oi things ( IoT)를 구현하기 위한 통신 방식으로 이용될 수 있다. 기존의 LTE의 subcarr i er spacing 등의 OFDM parameter 들을 LTE와 같은 것을사용함으로써 추가적인 band 할당 없이 l egacy LTE band에 1 PRB를 NB-IoT 용으로 할당하여 주파수를 효율적으로사용할 수 있는 장점이 있다.
[0262] 이하에서는 상술한 설명에 기반하여 NB-PSS 와 NB-SSS 전송 방식 각각 에 대한 구체적인 형태를 설명한다. [0263] NB-PSS 전송
[0264] 도 19는 본 발명의 일 실시예에 따라 NB-PSS를 복수의 OFDM 심볼에 반 복 전송하는 구체적인 방법을 설명하기 위한 도면이다.
[0265] 상술한 바와 같이 NB-PSS를 전송하는 데 있어서 다수 개의 OFDM symbol 을 사용하여 전송한다. 이 때, OFDM symbol 에 전송하는 sequence 는 동일한 sequence를 반복하여 전송하고, 각 OFDM symbol에 도 19에 도시된 바와 같이 특 정 cover sequence를 곱하여 전송하는 것을 제안한다.
[0266] 1PRB의 시스템 대역폭을 가정하면 하나의 OFDM symbol에 전송할 수 있 는 sequence 의 최대 길이는 15 KHz subcarrier spacing 을 가정할 때 12 이다. 설명의 편의상 이하에서는 NB LTE 시스템의 시스템 대역폭은 1 PRB이고, 15 KHz subcarrier spacing을 이용하는 것을 가정한다.
[0267] PSS 를 수신기에서 detection 할 때 보통 계산의 복잡도를 고려하여 time domain에서 처리하는 구현이 일반적이다. PSS에서 t i me/ frequency 동기를 획득하기 위해서 PSS sequence에 대하여 si iding window를 적용하여 correlation 을 취하게 된다. 도 19 와 같은 PSS 전송 구조는 매 OFDM symbol 마다 동일한 sequence 가 전송되기 때문에 OFDM symbol 길이를 주기로 하여 상대적으로 큰 correlation 값을 낼 수 있다. 이에, complementary Go lay sequence의 조건을 활 용하면 상대적으로 큰 correlation 값을 출력하는 주기를 늘여서 correlation 특성을 개선할 수 있다.
[0268] 또한, cover sequence 를 도 19 에 도시된 바와 같이 OFDM symbol 마다 적용함으로써, correlation 특성을 '더욱 개선할 수 있다. 이 때 , complementary Go lay sequence를 이용하여 PSS를 전송하는 방법은 다음과 같다.
[0269] 방법 1: complementary Go lay sequence pair OFDM symbol에 번갈아 배 치하는 방법 .
[0270] 예를 들면 , N=6 OFDM symbol을 가정하면 , OFDM symbol 1에는 a(n), OFDM symbol 2 에는 b(n)과 같이 전송한다. 이 때, c(n)은 length 7의 m-sequence를 length 6을 취하여 적용할 수 있다. 이 때, PSS를 전송하는 OFDM symbol의 개수 는 찍"수인 것이 바람직하다 . Complementary Go lay sequence 를 binary sequence 로 가정하는 경우, 가능한 sequence 길이 2a10b26c (a, b, c 는 0 이상의 정수이 다.) 이다. 한 OFDM symbol 에 12 개의 가용 resource 만 있을 경우, 가능한 Go lay sequence 길이는 10이 될 수 있다. 길이 10의 complement Go lay sequence pair의 일 실시 예는 a(n)=[l 1 -1 -1 1 1 1 -1 1 -1], b(n)= [1 1 1 1 1 -1 1 -1 -1 1]와 같다. OFDM symbol 중에서 sequence가 할당되지 않는 RE에는 0을 채워 서 전송한다. Non-binary complementary Go lay sequence 가정하는 경우, 길이 의 제한 없이 sequence pair 7} 존재하게 되므로, 길이 12인 sequence pair a(n), b(n)을 동일한 방식으로 OFDM symbol에 배치하여 전송할 수 있다.
[0271] 도 20은 길이 10의 complementary sequence pair a(n) , b(n)과 다양한 c(n) pattern에 대한 correlation 특성을 도시한 도면이다.
[0272] 또 다른 방법으로, 홀수 개의 OFDM symbol로 PSS를 전송하는 경우에는 sequence pair 중 한 sequence가 한 번 더 전송되는 형태로 PSS를 전송할 수 있 다. 예를 들면, N=7 OFDM symbol인 경우, a(n) b(n) a(n) b(n) a(n) b(n) a(n) 의 순서로 OFDM symbol에 배치되어 전송될 수 있다.
[0273] 방법 2: complementary Go lay sequence pair를 모두 한 OFDM symbol에 배치하는 방법 .
[0274] 방법 2-1: 한 OFDM symbol 의 1/2에 해당하는 sequence를 생성하여 배 치하는 방법 .
[0275] 예를 들면, N=6 OFDM symbol 을 가정하면, 길이 6 인 non-binary com lementary Golay sequence a(n) , b(n)을 생성하고 , a(n)올 한 OFDM symbol 가 용 RE의 1/2에 할당하고, b(n)올 나머지 1/2에 할당하여 전송할 수 있다. 이 때, RE 할당은 처음 1/2에 a(n)을 할당하고, 나중 1/2에 b(n)을 할당할 수 있다.
[0276] 방법 2-2: 한 OFDMsymbol a(n), b(n)을 superposit ion하여 전송하는 방
[0277] 예를 들면, N=6 OFDM symbol 을 가정하면, 길이 10/12, binary/non-binary com lementary Golay sequence 생성하고, a(n)+b(n)을 겨 1산 하여 전송할 수 있다.
[0278] 방법 3: L (L>2)개 이상의 complementary Golay sequence를 배치하여 전 송하는 방법 .
[0279] 이 때, PSS를 전송하는 OFDM symbol의 개수는 L의 multiple 조건올 만 족하여야 한다. 예를 들면, L=3, N=6 일 때, 길이 10 또는 12 complementary Golay sequence la(n), lb(n), lc(n)을 순차적으로 OFDM symbol에 배치하여 전송 할 수 있다. 즉, la(n), lb(n), lc(n), la(n), lb(n), lc(n)의 순서로 배치하고, cover sequence c(n)을 적용하여 전송하게 된다. [0280] 한편, 상술한 NB-PSS 전송 방식에 있어서 하나의 OFDM 심볼의 주파수 영역에서는 12 서브캐리어에 대응하는 수의 성분을 가지는 ZC 시퀀스를 이용할 수 있다. 다만, 이와 같은 NB-PSS가 DC성분에 맵핑되는 것을 방지하기 위해 11 서브캐리어만을 이용할 수 있고, 이를 위해 길이 11을 가지는 ZC 시퀀스를 이용' - 할 수 있다.
[0281] 상술한 바와 같은 NB-PSS 전송 방식의 구체적인 일례로서 NB-PSS 의 시 뭔스 는 다음과 같이 주파수 영역에서 길이 11 을 가지는 ZC 시퀀스를 이 용하여 생성될 수 있다.
【수학식 24】
Figure imgf000063_0001
0,1,...,10
[0282] 여기서 ZC 시뭔스의 루트 인텍스 (u)는 상술한 바와 같이 특정 루트 인덱스로 특정되어 있는 것이 바람직하며, 본 실시예에서는 u=5 인 것을 가정하 나 이에 한정될 필요는 없다.
[0283] 상기 수학식 24에서 s( l )은 상술한 커버 시뭔스를 나타내며, OFDM 심볼 인덱스 ' Γ 에 따라 SU )은 다음과 같이 규정될 수 있다.
【표 25】
Figure imgf000063_0002
NB-SSS 전송
[0284] 상술한 바와 같이 NB-PSS 는 하나의 특정 시퀀스를 이용하여 전송되기 때문에 NB 셀 식별자 504개는 NB-SSS에 의해 나타내어지는 것이 요구된다. 이에 따라 NB-SSS의 경우에도 NB-PSS와 동일하게 복수의 OFDM심볼을 통해 전송하되, 셀 식별자 구분올 위해 긴 시퀀스를 이와 같은 복수의 OFDM 심볼에 나누어 맵핑 하여 전송하는 방식을 제안한다.
[0285] 도 21 은 본 발명의 일 실시예에 따라 NB-SSS 를 전송하는 개념을 설명 하기 위한 도면이다.
[0286] SSS를 detection함으로써 수신측 기기, 즉 단말은 cell id detection,
SSS가 전송되는 stibframe index, 기타 system information 에 대한 정보를 획득 할 수 있다. 이를 위해 SSS의 전송 구조는 상술한 PSS와 같이 복수의 OFDM 심볼 에 반복 전송하는 것이 아니라, 도 21에 도시된 바와 같이 긴 길이 M을 가지는 시뭔스를 복수의 OFDM심볼에 나누어 전송하는 것이 바람직하다 .
[0287] 이와 같이 NB-SSS 에 사용된 긴 길이의 시퀀스는 상술한 바와 같이 자 기 상관 특성을 고려하여 선택되는 서브-시퀀스 조합에 의해 구성되는 시뭔스일 수 있다.
[0288] 도 21 에서 길이 M 인 sequence 를 생성하여 길이 M 인 scrambling sequence를 성분 단위로 곱할 수 있다. N 개의 OFDM symbol 에 전송할 수 있도 록 길이 L (M >= L)인 sequence 로 나누어서 해당 OFDM symbol 로 배치하고, scrambling sequence s(n)을 적용하여 전송할 수 있다. 예를 들면, M=72, L=12. N=6로 가정하면 길이 72의 sequence를 길이 12인 sequence 6 개로 나누어서, 6 개의 OFDM symbol 로 각각 전송할 수 있다. 위 수치는 예시적인 것이며, 구체적 인 수치는 이와 다를 수 있다. 다만, M = L*N을 만족하도톡 설정하는 것이 바람 직하다.
[0289] 이 때 , 해당 정보를 전송하기 위해 SSS sequence를 설계하는 방법은 다 음과 같다.
[0290] 기존 LTE에서는 504의 Physical Cell ID를 PSS와 SSS를 통해 지시하 였다. 반면, NB-IoT에서는 NB— SSS에서 504개의 Physical Cel 1 ID를 알려준다. 한 편, 기존 LTE에서 PBCH는 10ms 마다 전송이 되는데, PSS/SSS는 5ms 마다 전송이 되어 PBCH 전송 주기 사이에 2 번의 PSS/SSS 전송이 되기 때문에 SSS 를 통해서 SSS 전송 subframe 의 번호를 알려주며, 이를 위한 방안으로 SSS 를 구성하는 SSS1과 SSS2를 subframe 위치에 따라 Swapping함으로써 subframe index를 지시 하였다. NB-IoT에서 NB-PBCH는 80ms 주기로 전송되고 NB-PSS는 10ms 주기로 전 송되는데 , NB-SSS는 NB-PSS보다 긴 주가 (예 , 20ms, 40ms)로 전송되도톡 설계될 수 있다. NB-SSS 전송 주기가 80ms 마다 전송되는 NB-PBCH 주기 보다 짧은 주기 로 전송되도록 설계하는 경우에는, NB-PBCH가 전송되는 주기 내에 NB-SSS가 전 송될 수 있는 후보 위치는 LTE 보다 더 많아 질 수 있다.
[0291] 요약을 하면, NB-SSS에서는 Cell-ID 뿐만 아니라 NB-SSS Frame index 등 상당히 많은 수의 정보 포함해야 한다. 많은 정보를 포함할 수 있으면서도 단 말의 수신 복잡도기를 단순화 할 수 있는 NB-SSS 설계가 요구된다.
[0292] 이를 위해 본 발명의 일 실시에에서는 도 21 과 관련하여 상술한 바와 같이 긴 길이의 시퀀스를 복수의 OFDM 심볼에 나누어 전송하는 방법에 추가하여, NB-SSS의 구성을 여러 시뭔스의 조합으로 구분하는 것을 제안한다. 구체적으로, NB-SSS 을 구성하는데, Base— sequence, Scrambling sequence, Cyclic shift 및 Cover Sequence 의 조합으로 구성을 할 수 있다. 예를 들어, Base-sequence 는 L- length ZC sequence≤- 생성하고, L— length Scrambl ing sequence를 Element wise multiplication을 한다. 이후, Cycl ic shift를 수행하고, 그리고, L-length Cover Sequence를 생성하여 Element wise multiplication 할 수 있다. [0293] 도 22 는 본 발명의 일 실시예에 따라 NB-SSS 를 생성하여 전송하는 방 법을 설명하기 위한 도면이다. [0294] 도 22에서 먼저 M-길이를 가지는 ZC 시뭔스를 생성할 수 있다.
【수학식 25】
,nun(n+l)
Szc(u, n) = eJ M , where, u: root index, n: sequence index
[0295] 이 ZC 시원스는 상술한 바와 같이 NB-SSS 를 전송할 수 있는 복수의
OFDM 심볼에 나누어 전송할 수 있는 긴 길이를 가지는 것을 가정하며, 본 실시 예에서는 M = 132 (12 subcarriers * 11 OFDM 심볼)가 될 수 있다. 여기서 11 OFDM 심볼은 상술한 NB-PSS 에 대한 설명에서와 같이 하나의 서브프레임 내에 포함되 는 14개의 0FDM 심볼 중 PDCCH가 전송될 수 있는 3개 0FDM심볼 영역을 제외한 수치로 볼 수 있다. 다만, 구체적인 수치는 시스템의 구현에 따라 달라질 수 있 다.
[0296] 다만, 잘 알려진 바와 같이 ZC 시원스에서 서로 구분 가능한 루트 인 텍스의 수는 시퀀스의 길이가 소수 (prime number) 기반인 경우에 가능하다. 이 에 따라 상술한 바와 같이 길이 132인 ZC 시퀀스를 생성하는 경우보다는, 132보 다 작은 소수 중 가장 큰 소수인 131 길이를 ZC 시퀀스의 길이로서 이용하고, 이 131 길이의 ZC 시뭔스를 132 길이로 다음과 같이 순환 확장하여 이용하는 것 이 바람직하다.
【수학식 26】
,7runf(n +1)
Szc(u, n) = eJ ^ ,
where u: root index,
n = Ο,Ι'.,.,Μ ' = n mod M
[0297] 상술한 바와 같이 NB LTE 시스템에서는 NB-PSS는 특정한 하나의 시뭔스 를 이용함으로, NB-SSS에 의해 504개의 샐 식별자를 구분할 필요가 있으며, 이 에 따라 상술한 131개의 ZC 시퀀스만으로는 504개의 샐 식별자를 구분하는 것이 부족하다ᅳ 이를 위해 본 발명의 일 실시예에서는 도 22 에 도시된 바와 같이 M 길이의 커버 시뭔스를 상술한 ZC 시퀀스와 성분단위로 곱하여 이용하되, 이 커 버 시퀀스가 소정 개수의 오프셋 또는 위치 인텍스를 나타낼 수 있도록 하여 , 결과적인 NB-SSS가 전체 셀 식별자를 나타내도록 구성하는 것을 제안한다 . 예를 들어, 504 개의 샐 식별자를 나타내기 위해서는 최소 4 개의 오프셋을 이용하는 것이 요구되며, 이에 따라 본 발명의 바람직한 일 실시예에서는 ZC 시뭔스의 루 트 인텍스는 M 길이 ( 131)보다 작은 126 개의 루트 인텍스를 나타내고, 이에 성 분 단위로 곱해지는 커버 시퀀스를 통해 126*4=504개의 셀 식별자를 구분하도록 구성하는 것을 제안한다.
[0298] 한편, 도 22에서는 M 길이의 커버 시퀀스를 이용하여 NB-SSS의 위치를 알려주는 것을 도시하고 있다. 상술한 바와 같이 NB-SSS는 NB-PSS에 비해 적은 빈도로 전송될 수 있으며, 따라서 이를 나타내기 위한 시그널링이 요구될 수 있 다. 다만, NB— SSS를 통해 NB-SSS가 전송되는 위치에 대한 정보를 전송하는 방식 은 도 9 와 같이 커버 시뭔스를 통해 전송하는 방법 이외에도 상술한 바와 같이 ZC 시퀀스에 적용되는 순환이동 (Cyc l i c Shi f t )를 통해 나타내어 질 수 있다. 경 우에 따라 상술한 바와 같은 오프셋은 커버 시퀀스가 아니라 ZC 시퀀스에 적용 될 수도 있다. [0299] 상술한 바와 같이 길이 131 인 ZC 시퀀스에서는 131 개의 루트 인텍스 선택이 가능한 반면, 위와 같이 504개의 셀 식별자를 구분하기 위해 4개 오프셋 을 이용하는 경우 131개 루트 인덱스 중 126개의 루트 인텍스만을 선택하기 때 문에, 전체 131 개 루트 인덱스 중 성능이 좋은 루트 인덱스를 활용할 수 밌는 여지가 있다.
[0300] 도 23은 본 발명의 일 실시예에 따라 NB-SSS에 사용될 ZC 시퀀스의 루 트 인덱스 선택 방식을 설명하기 위한 도면이다.
[0301] NB-SSS를구성할 때 , Long single ZC sequence를 사용하면 ZC sequence 를 사용하더라도 PAPR이 높아질 수 있는데, Root index에 따라서 NB-SSS는 PAPR 이 서로 다른 값을 갖게 된다. 특히, 낮은 root index (이와 pairing 되는 높은 root index)와 중간 root index들은 높은 PAPR을 만들어 낼 수 있다.
[0302] 504PCID를 표현할 수 있는 다양한 조합을 고려해 블 수 있다. 예를 들 어, 126 root indices x 4 additional indices, 84 root indices x 6 additional indices, 42 root indices x 12 additional indices 등을 생각해 볼 수 있다.
[0303] Length- 131 ZC sequence은 root index 1,130, 2,129, 3,128, 65, 66, 64,
67 등은 높은 PAPR을 만들어 낸다. 도 10의 (a)는 이와 같이 높은 PAPR을 나타 내는 루트 인덱스를 사용하는 경우를, 그리고 도 10의 (b)는 낮은 PAPR을 나타 내는 루트 인텍스를 사용하는 경우를 나타낸다.
[0304] 126개의 root index를 사용하는 경우에는 1~130 중에서 4개를 제외하 고 사용하는데, 이에 따라본 발명의 바람직한 일 실시예에서는 높은 PAPR을 만 들어내는 root index를 제외하고 index 3-128를 사용하는 것을 제안한다. 이러 한 경우, 평균 PAPR이 낮아 질 수 있다. 즉, 본 실시예에서 NB-SSS를 전송하기 위해 이용하는 L 길이의 ZC 시뭔스의 루트 인덱스를 L 보다 작은 M 개의 루트 인 덱스 증 선택하되 , 이 M개의 루트 인덱스는 [0 , M-1]범위에서 선택하는 것이 아 니라, 소정 오프셋 k를 이용하여 [k , M+k-1] 범위에서 선택하는 것을 제안한다. 바람직하게 ZC 시뭔스는 [3 , 128] 범위 내의 126개의 루트 인덱스 중 하나로 선 택되는 것올 제안한다.
[0305] 상술한 내용을 정리하면 다음과 같다.
[0306] NB LTE 시스템에서 NB-SSS 는 주기 20ms 단위로 전송될 수 있다. 이
NB-SSS는 504개의 PCID를 나타냄과 동시에 80 ms 범위 내에서 어느 위치에 전송 되는지를 나타낼 수 있다.
[0307] 또한, NB-SSS 시뭔스는 길이 131 길이의 주파수 영역 ZC 시퀀스를 이용 하여 생성되며, 이때 루트 인텍스는 [3, 128] 범위에서 선택될 수 있다. 이 ZC 시¾스는 이후 순환 이동을 거쳐 이진 스크램블링 시¾스가 성분 단위로 곱해진 시퀀스를 이용할 수 있다. 이러한 구조에서 504 개의 PCID 는 126 개의 ZC 루트 인텍스와 4 개의 이진 스크램블링 시퀀스에 의해 나타내어 질 수 있다. 아울러 80 ms 경계 내에서 NB-SSS의 위치는 4개의 cyc l i c shi f t 값 (예를 들어 , 0, 33, 66 ,
99)에 의해 나타내어질 수 있다.
[0308] 여기서 커버 시퀀스로 사용되는 이진 스크램블링 시뭔스로는 아래와 같은 하다마드 시퀀스가 이용될 수 있다.
【수학식 27】
= 纖 ' 8(腳 ι 姆) f = |1,2,3 5 1 '
[0309] 이를 이용하여 NB-SSS는 다음과 같이 구성될 수 있다.
【수학식 28】 - SSSu,q,k(n) = Su(n) bq(n) * Ck(n)
,nr(u+3)n(n+i)
- Su(n) = eJ Ϊ3Ϊ n = 0, ...,131, u = 0, ...,125
bq(n) = Hadamard12Sx128 ^^(modCn, 128)), n = 0, ,131
Cfe(n) n = 0, ...,131, k = 0
PCID
- u = mod(PCID,126), q = k = Sub frame indication
126
[0310] 이하에서는 위와 같은 구조에서 어떠한 하다마드 시¾스를 이용할 것 인지를 설명한다.
[0311] 도 24 는 본 발명의 일 실시예에서 NB-SSS 에 특정 하다마드 시퀀스를 이용하는 경우의 교차 상관값을 나타낸 도면이다.
[0312] 도 24 에 도시된 바와 같이 하다마드 시뭔스와 시간 영역 순환 이동이 동일한 시퀀스를 가지는 경우 (예를 들어, [1 1 1 1 ···], [1 -1 1-1 -.])) 열악 한 교차상관값을 가질 수 있다. [0313] 이러한 문제를 해결하기 위해 본 발명의 일 실시예에서는 Hadamard sequence 중에 4개의 Sequence를 뽑아서 쓸 때 , t ime-domain cycl ic shift어 1포 함되지 않은 sequence 를 사용하는 것을 제안한다. 예를 들어, time-domain cycl ic shift에 [1 1 1 1 ·.·] , [1 -1 1 -1 ···] 등이 포함되어 있다면, Hadamard matrix에서 1과 2는 [1 1 1 1···] [1 -1 1 -1 ···] 으로 구성되는 sequence이기 때 문에 제외한다. 이러한 경우, q=0,l,2,3 이라고 할 때, q의 N (>= 4) 배수로 선 택하는 것이 바람직하다.
【수학식 29】
- SSSu,q,k(n = 5u(n) * bq(n) * C/ (n)
.rr(u+3)n(n+i)
- Su(n) = eJ ~ ~ :, n = 0, ...,131, w = 0,—,125
- bq(n) {mo d(n, 128)), n = 0,...,131; q = 0,1,2,3 - Ck(n)
Figure imgf000070_0001
.,131, k = 0,1,2,3 PCID
u = mod(PCID(126), q = , k = Sub frame indication
126
[0314] 본 발명의 다른 일 실시예에서는 Hadamard sequence 가 binary로 구성 되어 , timeᅳ domain cyclic shift는 complex value로 구성하면 Hadamrd와 구분되 는 domain의 sequence가 형성되기 때문에 두 sequence 간의 ambiguity는 없어 질 수 있는 점을 주목하여 이용한다. 예를 들어 , 132 sample에서 33 offset이 아 닌 다른 값으로 time一 domain cyclic shift 를 구성하면 complex value 를 갖는 sequence를 갖게 된다. 132 길이의 sequence에서 가능한 equal distance를 유지 하는 time-domain shift value는 32, 34등이 있다. 또한 36 of fset을 가정할 수 도 있다.
[0315] 위와 같이 Hadamard sequence 와 time-domain cyclic shift 가 서로 다 른 domain으로 구성하는 경우에 Hadamard sequence는 full orthogonal sequence 나 quasi ^orthogonal sequence 모두 적용이 가능하다.
[0316] 128 Hadamard matrix에서 cyclic하게 132로 확장하는 경우, q=0 , 1 , 2 , 3 의 sequence는 서로 fully orthogonal 하다.
[0317] 아래 수학식들은 이와 같은 실시예들에 따른 예들이다. 아래 예시된 예 이외에도 상술한 원칙을 만족하는 다양한 예가 존재할 수 있다.
【수학식 30】
SSSu,q,k(n) = S (n) * bq(n) * Ck(n
5 (n) = eJ , n = 0, ...,131, u = 0, ...,125
- 6c n) //adamard sx a rnoc n, 128)), n = 0,一, 131, q = 0,1,2,3
- Cfe(n) = e~J^ ~, n = 0 , ,113311,, k = 0,1,2,3
PCID\
u = mod(PCID;126), q = k = Sub frame indication
126 【수학식 31】
- SSSu,q,k(n) = Su(n) * bq(n) * Ck(n)
- Su(n
- bq(n 0,… ,131, q = 0,1,2,3 一 Ck(n)
一 u― m dication
Figure imgf000072_0001
【수학식 32]
- SSSu, q, k(n = 5u(n) * bq(n) * Ck(n)
- Su(n)
一 bq{n) 0, ...,131, q = 0,1,2,3
- Ck(n)
- = m dication
Figure imgf000072_0002
【수학식 33】
- SSSu, q, k{n) = Su(n) * bq(n) * Ck(n)
(u+3)n(n+i)
- Su(n) = eJ , n = 0 , 131, u = 0, ...,125
- bq(n) = Hadamard128x128 q(rnodCn, 128)),n = 0, ...,131, q = 0,1,2,3
- Cfe(n) = e~J~ ~, n = 0, ...,131, k = 0,1,2,3
IPCID I
, k = Subframe indication
【수학식 34】
- SSSu,q,k{n) = Su(n) * bq(n) * Ck(n)
.n(u+3)n(n+i)
- Su(n) = eJ , n = 0, ...,131, u = 0, ...,125
― bq(n) = Hadarnard128xl2S 5q(mod(n, 128)), n = 0, ... ,131, q = 0,1,2,3
- Cfc(n)
Figure imgf000072_0003
0,1,2,3
IP ID I
, k = Subframe indication
[0318] 아래 수학식 35 는 본 발명의 다른 일 실시예에 따른 NB-SSS 를 나타낸 것으로서, 순환이동을 위한 시뭔스와 하다마드 시퀀스를 구체적으로 구 현한 예이다.
【수학식 35]
Figure imgf000073_0001
여기서
w二 0,1,... ,131
n 二 nodl31
m = wmodl28
w = enmodl26 + 3
Figure imgf000073_0002
나타낸다.
[0319] 한편 , 상기 수학식 35에서 이진 시뭔스 bq(m)는 아래 표와 같이 주어 질 수 있다.
【표 26】
Figure imgf000074_0001
[0320] 한편, 상기 수학식 35에서 프레임 번호 ^에서의 순환 이동값 는 다 음과 같이 결정될 수 있다.
【수학식 36】 二 l"//2)mod4
NB-SSS에 대한 다른실시예
[0321] 본 발명의 또 다른 실시예로서 NB-SSS 를 Base sequence, Scrambling sequence , DFT cover sequence로 구성하는 방안을 설명한다.
[0322] 여기서 Base sequence로는 ZC sequence가 Λ] "용될 수 있고, Scranibl ing sequence로는 binary M sequence가사용될 수 있다. Base— sequence와 Scrambling sequence로 PCID를 알려주고, DFT cover sequence로 NB-SSS position을 알려줄 수 있다. 이와 같은 경우, Base-sequence의 root index와 Scrambling sequence 의 cyclic shift offset 값의 조합으로 PCID 를 구성할 수 있고, DFT sequence index로 NB-SSS position indication을 구성할 수 있다.
【수학식 37】
<Base Sequence>
Sbase(u, m) = Szc{u,m%N) , where, N = 131,u e {3, ... , 128},m = 0, ...,131
.nun(n+l)
Szc(u, n) = eJ N , where, N = 131
u: root index ^ 상기에서 정의한 값을사용할 수 있다.
<Scrambl ing Sequence>
Sss(m, s) = 2 * S((m + s)%132) - 1
S(m) = mod( S(m-7) + S(m-6), 2), S(0)=1, S(1)=S(2)=S(3)=S(4)= S(5)= S(6)=0, m=0,---,131
s: offset → 상기 Base sequence에서 정의한 offset 값을사용할 수 있다. <Cover Sequence>
.2nkm
Sdft(/, m) = eS~M~ , where, k 6 {0,33,66,99}, where, M = 132,m = 0, ...,131
<NB-SSS Sequence>
Ssss(u,5, /c,m) = Sbase(u, m) * Sss(m, s) * Sdft(/, m), where, m = 0, ... ,131
*: Element― wise multiplication 자원 구조
[0323] 이와 같은 NB-PSS 및 NB-SSS 가 적용되는 시스템에서 전체적인 자원 구 조는 다음과 같다.
[0324] 도 25 는 무선 통신 시스템에서 하향링크 (downlink, DL)/상향링크
(uplink, UL) 슬롯 구조의 일례를 나타낸 것이다.
[0325] 도 25 를 참조하면, 슬롯은 시간 도메인 (time domain)에서 복수의 0FDM(0rthogonal Frequency Division Multi lexing) 심볼을 포함하고, 주파수 도 메인 (frequency domain)에서 복수의 자원 블록 (resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 25 를 참조하면, 각 슬롯에서 전송되는 신호는 ^L/ULRBX^b sc 개의 부반송파 (subcarrier)와 1 ^^ 개의 OFDM 심볼로 구성되는 자원격자 (resource grid)로 표현될 수 있다. 여기서, 7^¾은 하 향링크 슬롯에서의 자원 블록 (resource block, RB)의 개수를 나타내고, 은 UL 슬롯에서의 RB 의 개수를 나타낸다. v BL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. /\^ 은 하향링크 슬롯 내 OFDM심볼의 개수를 나타내 며, / 은 UL슬롯 내 OFDM 심볼의 개수를 나타낸다. 씨는 하나의 RB 를 구 성하는 부반송파의 개수를 나타낸다.
[0326] OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SOFDM(Single Carrier
Frequency Division Multiplexing) 심불 등으로 불릴 수 있다. 하나의 슬롯에 포 함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하 게 변경될 수 있다. 예를 들어, 일반 (normal) CP 의 경우에는 하나의 슬롯이 7 개의 OFDM심볼을 포함하나, 확장 (extended) CP 의 경우에는 하나의 슬롯이 6 개 의 OFDM 심볼을 포함한다. 도 12 에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있 다.
[0327] 도 25 를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서,
Figure imgf000076_0001
개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반 송파, 참조신호 (reference signal)의 전송 위한 참조신호 부반송파, 보호 밴드 (guard band) 또는 직류 (Direct Current, DC) 성분을 위한 널 (null) 부반송파로 나뉠 수 있다. DC 성분은 OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수 (carrier frequency, /0)로 맵핑 (mapping)된다. 반송파 주파수는 중심 주파수 (center frequency, /c)라고도 한다.
[0328] 1 RB 는 시간 도메인에서 /L^sy^개 (예를 들어 , 7 개 )의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 ^개 (예를 들어, 12 개)의 연속하는 부 반송파에 의해 정의된다. 참고로, 하나의 OFDM 심블과 하나의 부반송파로 구성 된 자원을 자원요소 (resource element, RE) 혹은 톤 (tone)이라고 한다. 따라서, 하나의 RB 는 /UL symbX7^sc개의 자원요소로 구성된다. 자원격자 내 각 자원요 소는 일 슬롯 내 인텍스 쌍 U, Λ에 의해 고유하게 정의될 수 있다. /r는 주파수 도메인에서 0부터 y ^^x/ sc-l까지 부여되는 인텍스이며 , /은 시간 도메인에 서 0부터 ^L/UL s^b-l까지 부여되는 인텍스이다.
[0329] 한편 , 1RB는 일 물리 자원 블록 (physical resource block, PRB)와 일 가 상자원 블록 (virtual resource block, VRB)에 각각 맵핑된다ᅳ PRB는 시간 도메인 에서 ^L/UL symb개 (예를 들어 , 7 개)의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 ^B sc 개 (예를 들어, 12 개)의 연속하는 부반송파에 의해 정의된다. 따라서 , 하나의 PRB는 '/UL symbx씨개의 자원요소로 구성된다. 일 서브프레임에서 ^B sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서 브프레임의 2 개의 슬롯 각각에 1 개씩 위치하는 2 개의 RB 를 PRB 쌍이라고 한 다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호 (혹은, PRB 인덱스라고도 함) 를 갖는다.
[0330] 도 26 은 무선 통신 시스템에서 사용되는 하향링크 서브프레임 (subframe) 구조를 예시한 것이다.
[0331] 도 26 을 참조하면, DL 서브프레임은 시간 도메인에서 제어 영역
(control region)과 데이터 영역 (data region)으로 구분된다. 도 26을 참조하면 , 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼 은 제어 채널이 할당되는 제어 영역 (control region)에 대웅한다. 이하, DL서브 프레임에서 PDCCH 전송에 이용 가능한 자원 영역 (resource region)을 PDCCH 영역 이라 칭한다. 제어 영역으로 사용되는 OFDM 심볼 (들)이 아닌 남은 OFDM 심볼들 은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역 (data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용 가능한 자원 영역을 PDSCH 영역이라 칭한다. 3GPP LTE 에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한 다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로서 HARQ Hybrid Automatic Repeat Request) ACK/NACK( acknow 1 edgiiient / nega t i ve-acknow 1 edgment ) 신호를 나른다 .
[0332] PDCCH 를 통해 전송되는 제어 정보를 상향링크 제어 정보 (downlink control information, DCI)라고 지칭한다. DCI 는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. DL공유 채널 (downlink shared channel : DL-SCH)의 전송 포맷 (Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트 (DL grant)라고도 불리며, UL 공유 채널 (uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 흑은 UL 그랜트 (UL grant)라고도 불린다. 일 PDCCH 가 나르는 DCI 는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 코딩 레이트에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0 및 4, 하향링크용으로 포맷 1, 1A, IB, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용 도에 맞게, 호핑 플래그, RB 할당 (RB allocation), MCS(modulat ion coding scheme) RV( redundancy version) , NDI (new data indicator) , TPC(transmit power control ) , 순환 천이. 丽 S(cyclic shift demodulation reference signal) , UL 인덱스, CQI (channel quality information) 요청 , DL 할당 인덱스 (DL assignment index) , HARQ 넘버, TPMI (transmitted precoding matrix indicator) ,
PMKprecoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하 향링크 제어정보로서 UE 에게 전송된다.
33] 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. UE는 복수의 PDCCH 를 모니터링 할 수 있다. eNB 는 UE에게 전송될 DCI 에 따라 DCI 포맷을 결정하 고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또 는 사용 목적에 따라 식별자 (예, RNTI (radio network temporary ident i f ier ))로 마스킹 (또는 스크램블)된다. 예를 들어 , PDCCH가 특정 UE을 위한 것일 경우, 해 당 UE의 식별자 (예, cell-RNTI (ORNTI))가 CRC에 마스킹될 수 있다. PDCCH가 페 이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging-RNTI (P-RNTI))가 CRC 에 마스킹될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system information block, SIB))를 위한 것일 경우, SI—RNTK system information RNTI)가 CRC 에 마스킹될 수 있다. PDCCH 가 랜덤 접속 웅답을 위한 것일 경우, RA-RNTI (random access-RNTI)가 CRC에 마스킹될 수 있다. CRC 마스킹 (또는 스크 램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 X0R 연산하는 것을 포함한다.
[0334] PDCCH 는 하나 또는 복수의 연속된 제어 채널 요소 ( cont ro l channe l el ement , CCE)들의 집성 ( aggregat ion) 상에서 전송된다. CCE는 PDCCH에 무선 채 널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE 는 복수의 자원 요소 그룹 ( resource e l ement group , REG)에 대웅한다. 예를 들어, 하나의 CCE는 9개의 REG에 대웅되고 하나의 REG는 4개의 RE에 대웅한다. 4개의 QPSK심볼이 각각의 REG에 맵핑된다. 참조신호 (RS)에 의해 점유된 자원요 소 (RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수 는 RS 의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널 (즉, PCFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE 의 개수에 따라 결정된다. CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 과정을 간단 히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하 는 번호를 가지는 CCE 에서만 시작될 수 있다. 특정 PDCCH 의 전송에 사용되는 CCE 의 개수는 채널 상태에 따라 네트워크 혹은 eNB 에 의해 결정된다. 예를 들 어, 좋은 하향링크 채널을 가지는 UE (예, eNB 에 인접함)올 위한 PDCCH 의 경우 하나의 CCE로도 층분할 수 있다. 그러나, 열악한 채널을 가지는 UE (예, 셀 경계 에 근처에 존재)를 위한 PDCCH 의 경우 층분한 강건성 ( robustness)을 얻기 위해 서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞 춰 조정될 수 있다. 장치 구성
[0335] 도 27 은 본 발명을 수행하는 전송장치 ( 10) 및 수신장치 (20)의 구성요 소를 나타내는 블록도이다.
[0336] 전송장치 (10) 및 수신장치 (20)는 정보 및 /또는 데이터 , 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛 (13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리 (12, 22), 상기 RF 유닛 (13, 23) 및 메모리 (12, 22)등의 구성요소와 동작적으로 연결 되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적 어도 하나를 수행하도록 메모리 (12, 22) 및 /또는 RF 유닛 (13,23)을 제어하도록 구성된 (configured) 프로세서 (11, 21)를 각각 포함한다.
[0337] 메모리 (12, 22)는 프로세서 (11, 21)의 처리 및 제어를 위한프로그램을 저장할 수 있고, 입 /출력되는 정보를 임시 저장할 수 있다. 메모리 (12, 22)가 버 퍼로서 활용될 수 있다.
[0338] 프로세서 (11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모들 의 전반적인 동작을 제어한다. 특히, 프로세서 (11, 21)는 본 발명을 수행하기 위 한 각종 제어 기능을 수행할 수 있다. 프로세서 (11, 21)는 컨트률러 (controller), 마이크로 컨트롤러 (microcontroller ) , 마이크로 프로세서 (microprocessor ), 마 이크로 컴퓨터 (microcomputer) 등으로도 불릴 수 있다. 프로세서 (11, 21)는 하드 웨어 (hardware) 또는 펌웨어 (firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명올 수행하도록 구성된 ASICs(appl icat ion specific integrated circuits) 또는 DSPs(digi tal signal processors) , DSPDs(digi tal signal processing devices) , PLDs (programmable logic devices) , FPGAsCf ield programmable gate arrays) 등 이 프로세서 (400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용 하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모 들, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며 , 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서 (11, 21) 내에 구비되거나 메모리 (12, 22)에 저장되어 프로세서 (11, 21)에 의해 구동될 수 있다.
[0339] 전송장치 (10)의 프로세서 (11)는 상기 프로세서 (11) 또는 상기 프로세 서 (11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및 /또는 데 이터에 대하여 소정의 부호화 (coding) 및 변조 (modulation)를 수행한 후 RF 유 닛 (13)에 전송한다. 예를 들어, 프로세서 (11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변 환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하 는 데이터 블록인 전송 블록과 등가이다. 일 전송블록 (transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장 치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛 (13)은 오실레이터 (oscillator)를 포함할 수 있다. RF 유닛 (13)은 Λ{개 (Λ{는 1 보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
[0340] 수신장치 (20)의 신호 처리 과정은 전송장치 (10)의 신호 처리 과정의 역으로 구성된다. 프로세서 (21)의 제어 하에, 수신장치 (20)의 RF 유닛 (23)은 전 송장치 (10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛 (23)은 r 개의 수신 안테나흩 포함할 수 있으며, 상기 RF 유닛 (23)은 수신 안테나를 통해 수신 된 신호 각각을 주파수 하향 변환하여 (frequency down-convert) 기저대역 신호로 복원한다. RF유닛 (23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서 (21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호 (decoding) 및 복조 (demodulat ion)를 수행하여 , 전송장치 (10)가 본래 전송하고 자 했던 데이터를 복원할 수 다.
[0341] RF 유닛 (13, 23)은 하나 이상의 안테나를 구비한다 . 안테나는 , 프로세 서 (11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛 (13, 23)에 의해 처 리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛 (13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소 (element)의 조합에 의해 구성될 (configured) 수 있다. 각 안테나로부터 전송된 신호는 수신장치 (20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호 (reference signal, RS)는 수신장치 (20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일 (single) 무선 채널인지 혹은 상 기 안테나를 포함하는 복수의 물리 안테나 요소 (element)들로부터의 합성 (composite) 채널인지에 관계없이, 상기 수신장치 (20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달 하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도 출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력 (Multi-Input Multi-Output, MIM0) 기능을 지원하는 RF 유닛의 경우에는 2 개 이상의 안테나와 연결될 수 있다.
[0342] 본 발명의 실시예들에 있어서, UE 는 상향링크에서는 전송장치 (10)로 동작하고 하향링크에서는 수신장치 (20)로 동작한다. 본 발명의 실시예들에 있 어서 , eNB 는 상향링크에서는 수신장치 (20)로 동작하고, 하향링크에서는 전송장 치 ( 10)로 동작한다. 이하, UE 에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로 세서 , IE RF 유닛 및 UE 메모리라 각각 칭하고, eNB 에 구비된 프로세서, RF 유 닛 및 메모리를 eNB 프로세서, eNB RF 유닛 및 eNB 메모리라 각각 칭한다.
[0343] 상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련 된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부 터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서 , 본 발명은 여기에 나타난 실시형태들에 제한되 려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
【산업상 이용가능성】
[0344] 상술한 바와 같은 본 발명은 LTE 시스템을 기반으로 IoT 서비스를 제 공하는 무선통신 시스템뿐만 아니라 IoT 서비스를 제공하기 위해 협대역 (Narrow
Band) 통신을 지원하는 다양한 무선 시스템에 적용될 수 있다.

Claims

【청구의 범위】
【청구항 1】
무선통신 시스템에서 소정 길이 이상의 긴 길이의 시퀀스를 이용하여 신호를 전송하는 방법에 있어서,
복수의 서브 시뭔스 (Sub— sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 이용하여 신호를 전송하되,
상기 복수의 서브 시퀀스 각각은 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시뭔스들 각각에 커버 시퀀스 (cover sequence)를 곱한 시¾스들의 조합으로 구성되는, 신호 전송 방법 .
【청구항 2】
제 1 항에 있어서,
상기 긴 길이의 시퀀스는 수신단에서 스라이딩 원도우 (sliding window) 방식으로 자기 상관 (Auto Correlation)을 산출할 때,
상기 서브 시퀀스의 일부 요소들이 내적 (inner product)되는 경우에는 상기 기본 시뭔스들 간의 곱이 서로 다른 위상을 가지도록 설정되며,
상기 서브 시퀀스의 모든 요소들이 내적되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 같은 위상을 가지도록 설정되는, 신호 전송 방법.
【청구항 3】
제 1 항에 있어서,
상기 복수의 서브 시퀀스의 조합 중 제 1 서브 시퀀스는 하나의 기본 시퀀스가 반복된 형태를 가지며,
상기 복수의 서브 시퀀스의 조합 중 제 2 서브 시뭔스는, 상기 제 1 서브 시뭔스와 다른 커버 시퀀스가 적용되고, 상기 게 1 서브
Λ 1퀀스와 다른 기본 시퀀스를 가지도록 선택하는 제 1 방법
상기 제 1 서브 시퀀스와 다른 서버 시뭔스가 적용되고, 상기 제 1 서브 시퀀스와 동일한 기본 시퀀스를 가지도록 선택하는 제 2 방법,
상기 제 1 서브 시뭔스와 같은 커버 시 ¾스가 적용되고, 상기 제 1 서브 시퀀스와 다른 기본 시퀀스를 가지도록 선택하는 제 3 방법 ,
중 순차적으로 적용 가능한 어느 한 방법에 의해 결정되는, 신호 전송 방법.
【청구항 4】
제 3 항에 있어서,
상기 복수의 서브 시퀀스의 조합이 4개 이상의 서브 시퀀스를 포함하 경우,
상기 복수의 서브 시퀀스의 조합 중 제 3 서브 시 ¾스
상기 제 1 서브 시¾스와 다른 커버 시¾스가 적용되고, 상기 제 1 서브 시퀀스와 동일한 기본 시뭔스를 가지도록 선택하는 제 1 방법 ,
상기 제 1 서브 시뭔스와 다른 서버 시 ¾스가 적용되고, 상기 제 1 서브 시퀀스와 다른 기본 시퀀스를 가지도특 선택하는 제 2 방법,
상기 게 1 서브 시뭔스와 같은 커버 시퀀스가 적용되: a , 상기 제 1 서브 시퀀스와 다른 기본 시퀀스를 가지도록 선택하는 제 3 방법,
중 순차적으로 적용 가능한 어느 한 방법에 의해 결정되는, 신호 전송 방법.
【청구항 5】
제 1 항에 있어서,
상기 복수의 서브 시 ¾스의 조합 중 제 1 서브 시퀀스는 복수의 기본 9시뭔스의 조합 형태를 가지며,
상기 복수의 서브 시퀀스의 조합 중 제 2 서브 시퀀스는,
상기 제 1 서브 시퀀스와 다른 커버 시 ¾스가 적용되고, 상기 게 1 서브 시퀀스와 같은 배열의 기본 시퀀스 조합을 가지도록 선텍하는 제 1 방법,
상기 제 1 서브 시뭔스와 다른 서버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 다른 배열의 기본 시퀀스 조합을 가지도록 선택하는 제 2 방법 ,
상기 게 1 서브 시뭔스와 같은 커버 시퀀스가 적용되고, 상기 제 1 서브 시뭔스와 다른 배열의 기본 시뭔스 조합을 가지도록 선택하는 제 3 방법,
중 순차적으로 적용 가능한 어느 한 방법에 의해 결정되는, 신호 전송 방법.
【청구항 6】
제 5 항에 있어서,
상기 복수의 서브 시퀀스의 조합이 4개 이상의 서브 시퀀스를 포함하는 경우,
상기 복수의 서브 시퀀스의 조합 중 제 3 서브 시퀀스는,
상기 제 1 서브 시퀀스와 같은 커버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 동일한 기본 시뭔스 배열을 가지도록 선택하는 제 1 방법 ,
상기 제 1 서브 시퀀스와 다른 서버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 다른 기본 시퀀스 배열을 가지도록 선택하는 제 2 방법,
상기 제 1 서브 시뭔스와 다른 커버 시퀀스가 적용되고, 상기 제 1 서브 시퀀스와 같은 기본 시퀀스 배열을 가지도록 선택하는 제 3 방법 ,
중 순차적으로 적용 가능한 어느 한 방법에 의해 결정되는, 신호 전송 방법.
【청구항 7】 제 1 항에 있어서,
상기 신호는 동기 신호이며,
상기 긴 길이의 시퀀스는 셀 식별자를 나타내도록 설정되는, 신호 전송 방법.
【청구항 8】
제 1 항에 있어서,
상기 긴 길이의 시퀀스는 복수의 OFDM 심볼에 걸쳐서, 각 OFDM 심볼에 대응하는 서브캐리어의 수만큼 맵핑되어 전송되는, 신호 전송 방법.
【청구항 9】
무선통신 시스템에서 소정 길이 이상의 긴 길이의 시뭔스를 이용하는 신호를 수신하는 방법에 있어서,
복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 포함하는 신호를 수신하되,
상기 복수의 서브 시뭔스 각각은 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시뭔스 (Base Sequence)들 및 상기 기본 시퀀스들 각각에 커버 시뭔스 (cover sequence)를 급한 시뭔스들의 조합으로 구성되는, 신호 수신 방법.
【청구항 10】
제 9 항에 있어서,
상기 긴 길이의 시뭔스를 슬라이딩 원도우 (s l iding window) 방식으로 자기 상관 (Auto Corre l at i on)을 통해 검출하는 것을 추가적으로 포함하며,
상기 자동 상관 산출 시 상기 서브 시뭔스의 일부 요소들이 내적 ( i nner product )되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 다른 위상을 가지며, 상기 서브 시뭔스의 모든 요소들이 내적되는 경우에는 상기 기본 시퀀스들 간의 곱이 서로 같은 위상을 가지는, 신호 수신 방법.
【청구항 111
제 9 항에 있어서,
상기 신호는 동기 신호이며
상기 긴 길이의 시퀀스를 통해 셀 식별자를 검출하는 것을 추가적으로 포함하는, 신호 수신 방법 .
【청구항 12]
제 9 항에 있어서,
상기 긴 길이의 시퀀스는 복수의 OFDM 심볼에 걸쳐서, 각 OFDM 심볼에 대웅하는 서브캐리어의 수만큼 맵핑되어 수신되는, 신호 수신 방법.
【청구항 13】 '
무선통신 시스템에서 소정 길이 이상의 긴 길이의 시퀀스를 이용하여 신호를 전송하는 송신 장치에 있어서,
복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 이용하여 신호를 전송하도록 구성되는 송수신기 ; 및
상기 긴 길이의 시퀀스를 생성하여 상기 송수신기에 전달하도록 구성되는 프로세서를 포함하며 ,
상기 프로세서는 상기 복수의 서브 시퀀스 각각이 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시퀀스들 각각에 커버 시뭔스 (cover sequence)를 곱한 시¾스들의 조합으로 구성되도록 하는, 송신 장치 . 【청구항 14】
무선통신 시스템에서 소정 길이 이상의 긴 길이의 시퀀스를 이용하는 신호를 수신하는 수신 장치에 있어서,
복수의 서브 시퀀스 (Sub-sequence)의 조합으로 구성되는 상기 긴 길이의 시퀀스를 포함하는 신호를 수신하도록 구성되는 송수신기; 및
상기 송수신기에 의해 수신된 상기 긴 길이의 시퀀스를 전달받아 처리하도록 구성되는 프로세서를 포함하며,
상기 프로세서는 상기 복수의 서브 시퀀스 각각이 상기 소정 길이 이하의 짧은 길이의 복수의 기본 시퀀스 (Base Sequence)들 및 상기 기본 시뭔스들 각각에 커버 시퀀스 (cover sequence)를 곱한 시퀀스들의 조합으로 구성되는 것을 가정하여 처리하는, 수신 장치 .
PCT/KR2016/015221 2016-02-03 2016-12-23 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치 WO2017135570A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201662290892P 2016-02-03 2016-02-03
US62/290,892 2016-02-03
US201662296592P 2016-02-17 2016-02-17
US62/296,592 2016-02-17
US201662305543P 2016-03-09 2016-03-09
US62/305,543 2016-03-09
US201662315675P 2016-03-31 2016-03-31
US62/315,675 2016-03-31
US201662318801P 2016-04-06 2016-04-06
US62/318,801 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017135570A1 true WO2017135570A1 (ko) 2017-08-10

Family

ID=58046485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015221 WO2017135570A1 (ko) 2016-02-03 2016-12-23 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (4) US10149260B2 (ko)
EP (2) EP3203674B1 (ko)
KR (1) KR102622879B1 (ko)
CN (1) CN107040489B (ko)
WO (1) WO2017135570A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830521B (zh) * 2014-06-03 2020-03-20 华为技术有限公司 随机接入信道的zc序列产生方法和装置
KR20170092443A (ko) * 2016-02-03 2017-08-11 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
KR102622879B1 (ko) * 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
CN114900278A (zh) * 2016-02-05 2022-08-12 北京三星通信技术研究有限公司 V2x终端时频同步的发送和接收处理方法及装置
CN107046461B (zh) * 2016-02-05 2022-06-07 北京三星通信技术研究有限公司 V2x终端时频同步的发送和接收处理方法及装置
US10887143B2 (en) * 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
US10805893B2 (en) * 2016-08-19 2020-10-13 Samsung Electronics Co., Ltd System and method for providing universal synchronization signals for new radio
KR102559804B1 (ko) * 2016-09-20 2023-07-26 삼성전자주식회사 동기 신호를 검출하기 위한 방법 및 장치
JP7066735B2 (ja) * 2017-03-22 2022-05-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の動作方法及びそれを支援する装置
WO2019036846A1 (en) * 2017-08-21 2019-02-28 Qualcomm Incorporated NPRACH HAVING IMPROVED RELIABILITY PERFORMANCE
CN109495413B (zh) * 2017-09-11 2022-04-01 中国移动通信有限公司研究院 同步信号块的传输、小区质量的测量方法、基站及终端
WO2019057311A1 (en) * 2017-09-25 2019-03-28 Huawei Technologies Co., Ltd. WIRELESS NETWORK DISCOVERY SIGNAL
US11290957B2 (en) * 2017-11-17 2022-03-29 Samsung Electronics Co., Ltd. Sequence design of wake-up signals and resynchronization sequence
CN109818896A (zh) * 2017-11-20 2019-05-28 富士通株式会社 同步信号的传输方法、装置及通信系统
US11374730B2 (en) * 2017-11-24 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Explicit measurement definition
US10958383B2 (en) * 2017-12-06 2021-03-23 Qualcomm Incorporated Time based redundancy version determination for grant-free signaling
US10931500B2 (en) * 2018-01-25 2021-02-23 Qualcomm Incorporated Resynchronization signal design
CN113708911B (zh) * 2018-05-10 2023-04-07 中兴通讯股份有限公司 信号的发送方法及装置、存储介质、电子装置
US10834708B2 (en) 2018-07-06 2020-11-10 Samsung Electronics Co., Ltd. Method and apparatus for NR sidelink SS/PBCH block
CN110915176B (zh) * 2018-07-16 2022-07-08 康姆索利德有限责任公司 网络中窄带物联网信号的快速扫描
CN111465022B (zh) * 2019-01-18 2023-07-18 华为技术有限公司 一种信号发送、接收方法及设备
US11329851B2 (en) * 2019-12-10 2022-05-10 Qualcomm Incorporated Techniques for generating signal sequences for wireless communications
CN111093253A (zh) * 2019-12-27 2020-05-01 重庆物奇科技有限公司 一种窄带物联网NB-IoT的主同步信号精细搜索方法
CN111093252B (zh) * 2019-12-27 2021-09-28 重庆物奇科技有限公司 一种窄带物联网NB-IoT的分层快速搜索方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064744A1 (en) * 2005-08-16 2007-03-22 Turgut Aytur Frame synchronization
US20080101520A1 (en) * 2006-10-26 2008-05-01 Qualcomm Incorporated Method and apparatus for carrier frequency offset estimation and frame synchronization in a wireless communication system
US20090316757A1 (en) * 2007-04-25 2009-12-24 Ten Brink Stephan System and method using high performance preamble cover sequences for multi-band ofdm two-band hopping modes

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077693B2 (en) * 2007-09-19 2011-12-13 Samsung Electronics Co., Ltd. Resource remapping and regrouping in a wireless communication system
US8320907B2 (en) * 2007-12-17 2012-11-27 Lg Electronics Inc. Method for performing cell search procedure in wireless communication system
EP2211515B1 (en) 2009-01-22 2016-05-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving uplink sounding signal in broadband wireless communication system
US8964621B2 (en) * 2009-05-08 2015-02-24 Qualcomm Incorporated Transmission and reception of a reference signal supporting positioning in a wireless communication network
US8681730B2 (en) * 2009-07-09 2014-03-25 Broadcom Corporation Method and system for using sign based synchronization sequences in a correlation process to reduce correlation complexity in an OFDM system
CN102195917B (zh) * 2010-03-09 2014-01-08 华为技术有限公司 协作通信中站点共用和确定站点小区标识的方法及装置
US8526347B2 (en) * 2010-06-10 2013-09-03 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
US8965443B2 (en) * 2011-07-28 2015-02-24 Blackberry Limited Method and system for access and uplink power control for a wireless system having multiple transmit points
US9332516B2 (en) * 2011-08-11 2016-05-03 Blackberry Limited Method and system for signaling in a heterogeneous network
EP2798891B1 (en) * 2011-12-29 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) A user equipment and a radio network node, and methods therein
US9497719B2 (en) * 2012-01-29 2016-11-15 Lg Electronics Inc. User equipment and method for receiving synchronization signals, and base station and method for transmitting synchronization signals
CN103298121B (zh) * 2012-03-02 2016-07-06 普天信息技术有限公司 一种终端频点映射与配置方法
US9078146B2 (en) * 2012-09-10 2015-07-07 Qualcomm Incorporated Secondary synchronization signal (SSS) post-processing to eliminate short code collision induced false cells
CN104838702A (zh) * 2012-09-20 2015-08-12 奥普蒂斯无线技术有限责任公司 噪声功率估计方法和设备
CN103905363B (zh) * 2012-12-28 2018-01-26 展讯通信(上海)有限公司 辅同步信号检测方法、装置和网络模式判断方法
US10212646B2 (en) * 2013-01-25 2019-02-19 Electronics And Telecommunications Research Institute Method for cell discovery
US9814076B2 (en) * 2013-01-28 2017-11-07 Lg Electronics Inc. Method for performing high-speed initial access process in wireless access system supporting ultrahigh frequency band, and device supporting same
US9398062B2 (en) * 2013-03-29 2016-07-19 Intel IP Corporation Timing synchronization in discovery signals
EP2978152B1 (en) * 2013-06-13 2021-01-06 LG Electronics Inc. Method for transmitting/receiving synchronization signal for direct communication between terminals in wireless communication system
CN104185247B (zh) * 2013-09-26 2017-12-08 上海朗帛通信技术有限公司 Ue装置及方法
US9276693B2 (en) * 2013-10-15 2016-03-01 Electronics And Telecommunications Research Institute Apparatus and method for transmitting synchronization signal
US9730174B2 (en) * 2014-02-27 2017-08-08 Lg Electronics Inc. Method of transmitting a scheduling assignment signal for device-to-device communication in a wireless communication system, and an apparatus thereof
EP3130094B1 (en) * 2014-04-09 2020-12-23 LG Electronics Inc. Method and apparatus for transmitting synchronization signals for a moving cell
US9615279B2 (en) * 2015-01-27 2017-04-04 Intel Corporation Enhanced listen-before-talk (LBT) for unlicensed band operation with cell splitting
US20160262123A1 (en) * 2015-03-06 2016-09-08 Qualcomm Incorporated Downlink synchronization channel for the narrow-band cellular iot
WO2016142798A1 (en) * 2015-03-09 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband orthogonal frequency-division multiple access cell search
US10425259B2 (en) * 2015-03-13 2019-09-24 Nokia Technologies Oy Non-orthogonal cover codes for co-channel network isolation
US9894626B2 (en) * 2015-06-18 2018-02-13 Qualcomm Incorporated Secondary synchronization signals for a synchronization channel
JP6513877B2 (ja) * 2015-07-24 2019-05-15 インテル コーポレイション 狭帯域lte配置のための同期信号及びチャネル構造
US10206189B2 (en) * 2015-07-27 2019-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband LTE cell search
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
WO2017069531A1 (ko) * 2015-10-21 2017-04-27 엘지전자 주식회사 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치
US10285144B2 (en) * 2015-11-05 2019-05-07 Qualcomm Incorporated Clean-slate synchronization signal design and cell search algorithms
US11159355B2 (en) * 2015-11-06 2021-10-26 Apple Inc. Synchronization signal design for narrowband Internet of Things communications
WO2017119925A1 (en) 2016-01-08 2017-07-13 Intel IP Corporation Nb-iot synchronization signals with offset information
KR20170092443A (ko) * 2016-02-03 2017-08-11 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
US10575272B2 (en) * 2016-02-03 2020-02-25 Lg Electronics Inc. Method and apparatus for synchronizing frequency and time in a wireless communication system
KR102622879B1 (ko) * 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
US10743272B2 (en) * 2016-02-16 2020-08-11 Cable Television Laboratories, Inc. Coordinated beamforming
US10200169B2 (en) * 2016-03-11 2019-02-05 Qualcomm Incorporated Narrowband wireless communications cell search
US10122528B2 (en) * 2016-04-29 2018-11-06 Qualcomm Incorporated Narrow band synchronization signal
US9992800B2 (en) * 2016-05-13 2018-06-05 Qualcomm Incorporated Techniques for performing a random access procedure in an unlicensed spectrum
US9942069B2 (en) * 2016-08-25 2018-04-10 Intel IP Corporation Methods and devices for frequency shift detection
CN108207120A (zh) * 2016-09-14 2018-06-26 联发科技股份有限公司 在新无线电网络的短物理上行链路控制信道

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064744A1 (en) * 2005-08-16 2007-03-22 Turgut Aytur Frame synchronization
US20080101520A1 (en) * 2006-10-26 2008-05-01 Qualcomm Incorporated Method and apparatus for carrier frequency offset estimation and frame synchronization in a wireless communication system
US20090316757A1 (en) * 2007-04-25 2009-12-24 Ten Brink Stephan System and method using high performance preamble cover sequences for multi-band ofdm two-band hopping modes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "NB-IoT - Improved Synchronization Channel Design", RL-157455, 3GPP TSG-RAN WG1 #83, 13 November 2015 (2015-11-13), Anaheim, California, USA, pages 1 - 7, XP051042223 *
QUALCOMM INCORPORATED: "Sequence Design for NB-IoT SYNC Channel", RL-157069, 3GPP TSG-RAN WG1 #83, 7 November 2015 (2015-11-07), Anaheim, California, USA, pages 1 - 5, XP051022656 *

Also Published As

Publication number Publication date
US10306576B2 (en) 2019-05-28
EP3203674B1 (en) 2020-07-29
US20170223649A1 (en) 2017-08-03
US20200267675A1 (en) 2020-08-20
CN107040489A (zh) 2017-08-11
EP3737028B1 (en) 2023-10-11
KR102622879B1 (ko) 2024-01-09
US10681660B2 (en) 2020-06-09
US20170223650A1 (en) 2017-08-03
US20190141652A1 (en) 2019-05-09
US10149260B2 (en) 2018-12-04
US11350379B2 (en) 2022-05-31
EP3737028A1 (en) 2020-11-11
CN107040489B (zh) 2021-05-04
EP3203674A1 (en) 2017-08-09
KR20170092442A (ko) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2017135570A1 (ko) 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치
US10966171B2 (en) Method and apparatus for transmitting and receiving narrowband synchronization signals
WO2017069531A1 (ko) 긴 시퀀스를 이용한 신호 송수신 방법 및 이를 위한 장치
JP6513877B2 (ja) 狭帯域lte配置のための同期信号及びチャネル構造
CN110808825B (zh) 基站、用户设备及其方法
JP6586520B2 (ja) 同期信号を伝送するための方法およびデバイス
CN101574010B (zh) 二维参考信号序列
CN103944685B (zh) 扩展参考信号的方法、设备和通信系统
CN108200651B (zh) 无线通信控制信道系统和方法
US9565001B2 (en) Guard subcarrier placement in an OFDM symbol used for synchronization
CN108141424B (zh) 发送和接收参考信号的方法、网络设备、可读存储介质
US20190394706A1 (en) Configurable discovery reference signal periodicity for narrowband internet-of-things in unlicensed spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889547

Country of ref document: EP

Kind code of ref document: A1