WO2017135366A1 - Semiconductor laser light source device - Google Patents

Semiconductor laser light source device Download PDF

Info

Publication number
WO2017135366A1
WO2017135366A1 PCT/JP2017/003749 JP2017003749W WO2017135366A1 WO 2017135366 A1 WO2017135366 A1 WO 2017135366A1 JP 2017003749 W JP2017003749 W JP 2017003749W WO 2017135366 A1 WO2017135366 A1 WO 2017135366A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
lens
emitters
light source
emitter
Prior art date
Application number
PCT/JP2017/003749
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 吉野
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN201780009106.XA priority Critical patent/CN108604766A/en
Publication of WO2017135366A1 publication Critical patent/WO2017135366A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • the present invention relates to a semiconductor laser light source device.
  • PIV Particle Image Velocimetry
  • a technique called PIV is known as a method for measuring the flow and velocity of a fluid.
  • PIV is a technology that visualizes and measures the flow of fluid by mixing fine particles called tracer particles in a fluid and photographing the scattered light obtained by irradiating the tracer particles with a sheet of laser light. is there.
  • Patent Document 1 describes that an Nd: YAG laser is used as a PIV light source and laser light is converted into a sheet.
  • Patent Document 2 describes that an argon laser is used as a PIV light source, and the laser beam is incident on a rotating polygon mirror to scan in a sheet form.
  • FIGS. 14A and 14B are schematic views showing sheet-like laser light L ′ generated by the light source device 200 in the conventional PIV.
  • 14A is a diagram when the light source device 200 is viewed in the ⁇ x direction
  • FIG. 14B is a diagram when the light source device 200 is viewed in the ⁇ y direction.
  • the sheet-like laser beam L ′ irradiates the tracer particles 12.
  • the sheet-like laser light L ′ travels while spreading in the y direction.
  • the sheet-like laser light L ′ has a certain width without spreading in the x direction.
  • the conventional PIV has a problem that the tracer particles 12a floating in the shadow 13 region cannot be observed, and the accuracy of the measurement result is lowered.
  • This invention aims at providing the technique which can suppress that the precision of a measurement result falls due to the shadow of a tracer particle
  • the semiconductor laser light source device of the present invention is A semiconductor laser light source device that emits a laser sheet that spreads in a first direction and travels with a predetermined width in a second direction orthogonal to the first direction, A light source unit including a plurality of emitters arranged in the first direction; A lens for converting the laser beams emitted from the plurality of emitters in parallel in the second direction, The laser sheet is formed by overlapping parallel light emitted from the lens, The lens includes, for each of the plurality of emitters, a plurality of lens regions that convert the laser light emitted from the emitters in parallel in the second direction, In at least two of the plurality of emitters and two lens regions corresponding to the two emitters, when the positions of the emitters in the second direction are used as a reference, the emitters The position of the lens region corresponding to is different in the second direction.
  • the optical axis of one of the lens regions is higher than the emitter corresponding to one of the lens regions when viewed from a third direction orthogonal to both the first direction and the second direction. Is shifted in the direction of The optical axis of the other lens region may be shifted in the direction opposite to the second direction with respect to the emitter corresponding to the other lens region when viewed from the third direction.
  • the laser light when laser light emitted from at least two emitters is converted into parallel light by the lens region, the laser light travels in a direction opposite to the optical axis. Thereby, the shadow area by the tracer particles can be further reduced, and the decrease in the accuracy of the PIV measurement result can be further suppressed.
  • the light source unit includes a semiconductor laser array in which a plurality of the emitters are arranged in the first direction, the first direction is a slow axis direction, and the second direction is a fast axis direction,
  • the semiconductor laser array may be curved so as to protrude in a direction opposite to the second direction when viewed from a third direction orthogonal to both the first direction and the second direction. I do not care.
  • the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters.
  • the form can be realized by bending the semiconductor laser array.
  • the light source unit includes a plurality of semiconductor laser elements including one emitter. In at least two of the plurality of semiconductor laser elements, the positions in the second direction may be different from each other.
  • the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters.
  • the form can be realized by shifting the positions of the at least two semiconductor laser elements in the second direction.
  • the optical axes of at least two of the lens regions may be arranged so that the positions in the second direction are different from each other.
  • the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters.
  • the form can be realized by shifting the positions of the optical axes of the at least two lens regions in the second direction.
  • the optical axes of the plurality of lens regions are arranged in a straight line when viewed from a third direction orthogonal to both the first direction and the second direction,
  • the lens may be inclined at a predetermined angle from the first direction when viewed from the third direction.
  • the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters.
  • the form can be realized by inclining the lens by a predetermined angle from the first direction.
  • the semiconductor laser light source device of the present invention it is possible to prevent the accuracy of the measurement result from being lowered due to the shadow of the tracer particles in the PIV.
  • the semiconductor laser light source device 1 in the first embodiment will be described.
  • the semiconductor laser light source device 1 is used as a light source for PIV (Particle Image Velocimetry).
  • PIV Particle Image Velocimetry
  • the semiconductor laser light source device 1 includes a semiconductor laser array 3.
  • the longitudinal direction of the semiconductor laser array 3 is the y direction
  • the short direction of the semiconductor laser array 3 is the z direction
  • the direction orthogonal to the y direction and the z direction is the x direction.
  • the x direction corresponds to the “second direction”
  • the y direction corresponds to the “first direction”
  • the z direction corresponds to the “third direction”.
  • the semiconductor laser light source device 1 emits a sheet-like laser beam LS.
  • the sheet-like laser light LS is referred to as “laser sheet LS”.
  • the laser sheet LS is light that has a relatively small width in the x direction and travels while spreading in the y direction.
  • the width of the laser sheet LS in the x direction is 1.8 to 2.5 mm or less in a region at least 1 to 2 m away from the semiconductor laser array 3 in the z direction.
  • the laser sheet LS has a width of about 1 m in the y direction in a region at least 1 to 2 m away from the semiconductor laser array 3 in the z direction. That is, in this region, the width in the x direction is extremely small compared to the width in the y direction.
  • the semiconductor laser light source device 1 includes a plurality of emitters that emit laser light L, and converts the laser light L emitted from each emitter into parallel light LP parallel to a specific direction (FIG. 1). reference).
  • parallel light is light that has a certain width (as an example, 1.5 mm) in the x direction and travels while spreading in the y direction.
  • FIG. 1 shows laser light L emitted from four emitters and parallel light LP that is light after the laser light is converted. Further, the laser light L emitted from one emitter and before being converted into parallel light is given a right oblique line, and the parallel light LP after being converted is given a left oblique line.
  • the parallel light LP from each emitter overlaps each other to form a laser sheet LS.
  • the laser sheet LS does not necessarily have to overlap light emitted from all the emitters, and may be formed by overlapping at least light emitted from a plurality of emitters.
  • the tracer particles 12 are mixed in the fluid to be measured.
  • the fluid itself is not illustrated, in a situation where a large number of tracer particles 12 are mixed in a predetermined fluid and the laser sheet LS is irradiated to this fluid, the laser sheet LS Only a part of the tracer particles 12 located in the region irradiated with is shown.
  • the tracer particles 12 are, for example, fine particles made of resin such as polystyrene, fine droplets obtained by atomizing water and oil, plastic fine particles, smoke, and the like.
  • the imaging device 14 images the scattered light from the tracer particles 12 and outputs the captured image to the image processing device 15. As an example, the imaging device 14 captures an image of 1000 frames per second.
  • the image processing device 15 calculates the fluid velocity based on the input image. In addition, since the calculation method of the fluid velocity is a known technique (see, for example, Patent Document 1 and Patent Document 2 above), description thereof is omitted in this specification.
  • the semiconductor laser light source device 1 includes a semiconductor laser array 3, a submount 5, a heat sink 7, and a cylindrical lens 9.
  • FIG. 1 is a schematic plan view of a semiconductor laser light source device 1 in which a submount 5 is disposed above a heat sink 7 and a semiconductor laser array 3 is disposed above the submount 5 when viewed from above. It is shown in the figure.
  • the semiconductor laser light source device 1 includes solder layers between the semiconductor laser array 3 and the submount 5 and between the submount 5 and the heat sink 7.
  • the semiconductor laser array 3 corresponds to a “light source”
  • the cylindrical lens 9 corresponds to a “lens”.
  • FIG. 2 is a schematic diagram when the semiconductor laser light source device 1 of FIG. 1 is viewed in the left direction of the drawing, that is, in the ⁇ z direction.
  • the cylindrical lens 9 has an outer edge.
  • the semiconductor laser array 3 includes a plurality of edge-emitting semiconductor laser elements arranged in an array.
  • the semiconductor laser array 3 includes a side surface 30 that is a surface perpendicular to the z direction (corresponding to the xy plane in the drawing), and emits laser light from the side surface 30.
  • the semiconductor laser array 3 includes a plurality of emitters 31 arranged on the side surface 30 in the y direction.
  • the y direction that is the arrangement direction of the emitters 31 corresponds to the longitudinal direction of the semiconductor laser array 3.
  • the emitter 31a is an emitter located at the center of the side surface 30 in the y direction.
  • the emitter 31b is an emitter located at one end of the side surface 30 with respect to the y direction (ie, the end on the + y direction side), and the emitter 31c is the other end of the side surface 30 with respect to the y direction (ie, ⁇ y
  • the emitter is located at the end of the direction side.
  • the semiconductor laser array 3 includes 20 emitters 31 arranged at a pitch of 200 ⁇ m. In FIG. 2, nine emitters 31 are shown for convenience.
  • the emitter 31a may be referred to as “center emitter 31a”, and the emitters 31b and 31c may be referred to as “end emitter 31b” and “end emitter 31c”, respectively.
  • Each emitter 31 emits a laser beam that travels in both the x and y directions.
  • FIG. 3 shows laser light L emitted from the central emitter 31 a of the semiconductor laser array 3.
  • the laser beam L diverges in both the x direction and the y direction.
  • the laser light L diverges greatly in the x direction compared to the y direction. That is, the divergence angle in the x direction of the laser light L is larger than the divergence angle in the y direction. That is, the x direction corresponds to the “fast axis direction” and the y direction corresponds to the “slow axis direction”.
  • the laser light emitted from the other emitters 31 travels in the same manner as the laser light L.
  • the semiconductor laser array 3 is joined to the submount 5 by a solder layer 4.
  • the solder layer 4 is placed on the upper surface of the submount 5.
  • the semiconductor laser light source device 1 may not include the submount 5.
  • the semiconductor laser array 3 is curved so as to approach the submount 5 from the end toward the center.
  • the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (that is, the ⁇ x direction). The reason why the semiconductor laser array 3 is curved in this way will be described later.
  • the temperature of the semiconductor laser array 3 rises as the laser beam is emitted.
  • the submount 5 is made of a material having high thermal conductivity, and conducts heat generated from the semiconductor laser array 3 to the heat sink 7.
  • the solder layer 6 is placed on the upper surface of the heat sink 7 and joins the submount 5 and the heat sink 7.
  • the heat sink 7 releases the heat conducted from the submount 5 to the outside of the semiconductor laser light source device 1.
  • the heat sink 7 is made of a metal having high thermal conductivity.
  • the semiconductor laser light source device 1 may not include the heat sink 7.
  • the cylindrical lens 9 is disposed so as to collimate light in the x direction.
  • the cylindrical lens 9 will be described with reference to FIGS.
  • FIG. 4 is a schematic diagram when the cylindrical lens 9 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 31 located behind the cylindrical lens 9 that is, on the ⁇ z direction side
  • the cylindrical lens 9 includes a plurality of lens regions 91 arranged in the y direction.
  • the cylindrical lens 9 includes the same number of lens regions 91 as the emitter 31.
  • Each lens region 91 faces each emitter 31. That is, the laser light emitted from each emitter 31 is incident on the lens region 91 that faces the laser beam.
  • Each lens region 91 has an optical axis OA parallel to the z direction.
  • the optical axis OA is a straight line connecting the centers of the lens regions 91 and the focal points of the lens regions 91.
  • the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (that is, the ⁇ x direction). Therefore, the position in the x direction of each emitter 31 is different from the position in the x direction of the optical axis OA of the lens region 91 corresponding to the emitter 31. Specifically, as shown in FIG. 4, the central emitter 31 a is greatly displaced in the ⁇ x direction from the optical axis OA of the corresponding lens region 91. Further, the emitters 31b and 31c at the end portions are greatly shifted in the x direction from the optical axis OA of the corresponding lens region 91.
  • the emitter 31 positioned between the central emitter 31a and the end emitters 31b and 31c is slightly shifted in the x direction or the ⁇ x direction from the optical axis OA of the corresponding lens region 91.
  • the center emitter 31a and the end emitters 31b and 31c are separated by 0.5 to 1.5 ⁇ m in the x direction.
  • the lens region 91 corresponding to the central emitter 31a corresponds to “one lens region”
  • the lens region 91 corresponding to the end emitters 31b and 31c corresponds to “the other lens region”.
  • the lens region 91 converts the laser light L emitted from the opposing emitter 31 into parallel light LP. This will be specifically described with reference to FIGS.
  • FIG. 5 is a schematic cross-sectional view of the semiconductor laser light source device 1 of FIG. 1 taken along line AA.
  • the line AA is parallel to the z direction and passes through the central emitter 31a (see FIG. 2) of the semiconductor laser array 3.
  • the laser beam L spreads in the x direction and proceeds before entering the lens region 91.
  • the lens region 91 converts the laser light L so as to have a certain width in the x direction. In other words, the lens region 91 suppresses the divergence of the laser light L in the x direction. Further, as shown in FIG. 1, the lens region 91 holds the divergence of the laser light L in the y direction. That is, the lens area 91 holds the divergence angle in the y direction of the laser light L. Thus, the lens region 91 converts the laser light L emitted from the opposing emitter 31a into parallel light LP having a constant width in the x direction and traveling in the y direction (FIGS. 1 and 5). reference).
  • converting the laser light so as to have a certain width without diverging in the x direction is expressed as “converting in parallel in the x direction”.
  • the central emitter 31a is positioned in the ⁇ x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP obtained by converting the light emitted from the central emitter 31a travels at an angle ⁇ 1 (0.17 to 0.5 mrad as an example) with respect to the optical axis OA of the lens region 91. More specifically, the parallel light LP travels in the x direction with respect to the optical axis OA of the lens region 91.
  • FIG. 6 is a schematic cross-sectional view of the semiconductor laser light source device 1 of FIG. 1 taken along the line BB.
  • the line BB is parallel to the z direction and passes through the emitter 31c (see FIG. 2) at the end of the semiconductor laser array 3.
  • the lens region 91 converts the laser light L emitted from the opposing emitter 31c into parallel light LP having a certain width in the x direction and traveling while spreading in the y direction.
  • the emitter 31c at the end is positioned in the x direction with respect to the optical axis OA of the corresponding lens region 91 (see FIG. 4). Therefore, the parallel light LP obtained by converting the light emitted from the emitter 31c at the end portion travels at an angle ⁇ 2 (0.17 to 0.5 mrad as an example) with respect to the optical axis OA of the lens region 91. More specifically, the parallel light LP travels in the ⁇ x direction with respect to the optical axis OA of the lens region 91.
  • the parallel light LP by the center emitter 31a and the end emitter 31c has been described with reference to FIGS. 5 and 6.
  • the parallel light LP by the other emitters 31 is also relative to the optical axis OA of the lens region 91. , Proceed at a predetermined angle.
  • the center emitter 31a and the end emitters 31b and 31c are greatly displaced in the x direction or the ⁇ x direction from the optical axis OA of the corresponding lens region 91. Therefore, the converted parallel light LP travels at a relatively large angle ( ⁇ 1, ⁇ 2) with respect to the optical axis OA (see FIGS. 5 and 6).
  • the emitter 31 located between the central emitter 31a and the end emitters 31b and 31c is slightly shifted from the optical axis OA of the corresponding lens region 91 in the x direction or the ⁇ x direction. Therefore, the converted parallel light LP travels at a relatively small angle with respect to the optical axis OA.
  • the greater the deviation between the position of the emitter 31 and the position of the optical axis OA of the corresponding lens region 91 the greater the parallel light LP travels with respect to the optical axis OA.
  • the semiconductor laser array 3 and the submount 5 are superposed through the solder layer 4 melted by heating, and then bonded by the molten solder layer 4 being cured by cooling.
  • the semiconductor laser array 3 and the submount 5 are also heated / cooled together with the heating / cooling of the solder layer 4. At this time, the semiconductor laser array 3 and the submount 5 expand by heating and contract by cooling.
  • the semiconductor laser array 3 and the submount 5 are made of different materials. Therefore, the thermal expansion coefficient of the material constituting the semiconductor laser array 3 and the thermal expansion coefficient of the material constituting the submount 5 are different.
  • the semiconductor laser array 3 is made of GaAs
  • the submount 5 is made of AlN.
  • the thermal expansion coefficient of GaAs is 6.6 ⁇ 10 ⁇ 6 / K
  • the thermal expansion coefficient of AlN is 4.6 ⁇ 10 ⁇ 6 / K.
  • the thermal expansion coefficient of the semiconductor laser array 3 is larger than the thermal expansion coefficient of the submount 5. Therefore, as a result of the semiconductor laser array 3 contracting greatly as compared with the submount 5, the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (ie, the ⁇ x direction) as shown in FIG.
  • FIG. 7 is a schematic diagram of the semiconductor laser light source device 1 according to the first embodiment when the state in which the laser sheet LS is emitted is viewed in the ⁇ y direction.
  • the parallel light LP from the central emitter 31a and the end emitter 31b (or the end emitter 31c) is shown in FIG. 7, and the parallel light LP from the other emitters 31 is not shown.
  • the parallel light LP from the central emitter 31a is referred to as “parallel light LP1”
  • the parallel light LP from the end emitter 31b (or end emitter 31c) is referred to as “parallel light LP2”. Call.
  • the fluid (not shown) and the tracer particles (12b, 12c, 12d, 12e) exist within a range away from the cylindrical lens 9 by a distance d.
  • the distance d is 1 to 2 m.
  • the tracer particles (12b, 12c) exist in a region where the parallel light LP1 and the parallel light LP2 overlap. Therefore, the shadow of the tracer particles (12b, 12c) due to the parallel light LP1 is reduced by the parallel light LP2. Further, the shadow of the tracer particles (12b, 12c) due to the parallel light LP2 is reduced by the parallel light LP1. As a result, as shown in FIG. 7, the area of the shadow 13 by the tracer particles (12b, 12c) is relatively small.
  • the tracer particles (12d, 12e) exist in a region where the parallel light LP1 and the parallel light LP2 do not overlap. More specifically, the tracer particles (12d, 12e) exist in a region where each of the parallel light LP1 and the parallel light LP2 overlaps with another parallel light LP (not shown).
  • the parallel light LP1 overlaps the parallel light LP that travels more slowly in the ⁇ x direction than the parallel light LP2. Therefore, the shadow of the tracer particle 12d by the parallel light LP1 is reduced by the parallel light LP that travels while being gently inclined in the ⁇ x direction.
  • the parallel light LP2 overlaps the parallel light LP that travels more slowly in the x direction than the parallel light LP1.
  • the shadow of the tracer particle 12e due to the parallel light LP2 is reduced by the parallel light LP that travels while being gently inclined in the x direction.
  • the area of the shadow 13 due to the tracer particles (12d, 12e) is relatively small.
  • the area of the shadow 13 caused by the tracer particles 12 can be reduced as compared with the conventional light source device 200. That is, according to the semiconductor laser light source device 1 of the first embodiment, the tracer particles 12 that cannot be observed can be reduced, and the accuracy of PIV measurement results can be improved.
  • the parallel light LP1 from the central emitter 31a travels in the x direction
  • the parallel light LP2 from the end emitter 31b travels in the ⁇ x direction. That is, the parallel light LP1 and the parallel light LP2 travel while being inclined in the opposite direction with respect to the optical axis OA (not shown). Therefore, the angle ⁇ (that is, ⁇ 1 + ⁇ 2) formed by the parallel light LP1 and the parallel light LP2 becomes relatively large, so that the shadow caused by the tracer particles 12 can be further reduced.
  • the semiconductor laser light source device 100 of the second embodiment is different from the semiconductor laser light source device 1 of the first embodiment in that a plurality of semiconductor laser elements are provided instead of the semiconductor laser array 3, but the other configurations are as follows. It is the same.
  • the points of the second embodiment different from the first embodiment will be described with reference to FIGS.
  • FIG. 8 is a schematic view of the semiconductor laser light source device 100 according to the second embodiment when viewed in the ⁇ z direction (see FIG. 1).
  • the cylindrical lens 9 has an outer edge.
  • the semiconductor laser light source device 100 includes a plurality of semiconductor laser elements 103 instead of the semiconductor laser array 3.
  • nine semiconductor laser elements 103 are shown as an example.
  • the semiconductor laser elements 103 are arranged so that their positions in the x direction are different.
  • Each semiconductor laser element 103 is bonded to the submount 5 by the solder layer 4.
  • the plurality of semiconductor laser elements 103 correspond to a “light source unit”.
  • Each semiconductor laser element 103 includes one emitter 104.
  • the emitter 104 emits laser light L that travels in the x and y directions (see FIG. 3).
  • FIG. 9 is a schematic diagram when the cylindrical lens 9 of the semiconductor laser light source device 100 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 104 located behind the cylindrical lens 9 that is, on the ⁇ z direction side
  • each emitter 104 is arranged so as to face each lens region 91. That is, the laser light L emitted from each emitter 104 enters the opposing lens region 91 and is converted into parallel light LP (see FIGS. 5 and 6).
  • the position in the x direction is different between each emitter 104 and the optical axis OA of the lens region 91 corresponding to the emitter 104.
  • the emitters (104a, 104b, 104c, 104g, 104i) are located in the x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP from the emitters (104a, 104b, 104c, 104g, 104i) travels in the ⁇ x direction with respect to the optical axis OA of the lens region 91 (see FIG. 6). Note that the emitters (104a, 104b) are greatly displaced in the x direction from the optical axis OA of the lens region 91 as compared with the emitters (104c, 104g, 104i). Therefore, the parallel light LP from the emitters (104a, 104b) travels with a greater inclination in the -x direction than the parallel light LP from the emitters (104c, 104g, 104i).
  • the emitters (104d, 104e, 104f, 104h) are positioned in the ⁇ x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP from the emitters (104d, 104e, 104f, 104h) travels in the x direction with respect to the optical axis OA of the lens region 91 (see FIG. 5). It should be noted that the emitters (104d, 104e) are greatly displaced in the ⁇ x direction from the optical axis OA of the lens region 91 as compared with the emitters (104f, 104h). Therefore, the parallel light LP from the emitters (104d, 104e) travels with a greater inclination in the x direction than the parallel light LP from the emitters (104f, 104h).
  • the semiconductor laser element 103 is loaded when it is bonded to the submount 5 by the solder layer 4.
  • the position of the semiconductor laser element 103 in the x direction is adjusted.
  • the position of the semiconductor laser element 103 in the x direction is adjusted by adjusting the amount of the solder layer 4.
  • the emitters (104a and 104b) positioned closest to the x direction and the emitters (104d and 104e) positioned closest to the ⁇ x direction are 0.5 to 1.. 5 ⁇ m away.
  • the area of the shadow 13 by the tracer particles 12 can be reduced, and the accuracy of the PIV measurement result can be improved.
  • the semiconductor laser light source device 110 of the third embodiment is different from the semiconductor laser light source device 1 according to the first embodiment in that the semiconductor laser array 3 is not curved and a lens 112 described later instead of the cylindrical lens 9.
  • the other configurations are the same.
  • the points of the third embodiment different from the first embodiment will be described with reference to FIG.
  • FIG. 10 is a schematic view of the semiconductor laser light source device 110 according to the third embodiment when viewed in the ⁇ z direction (see FIG. 1).
  • the semiconductor laser light source device 110 includes a lens 112 instead of the cylindrical lens 9 (see FIG. 2).
  • the semiconductor laser array 3 is not curved, and the emitters 31 are arranged in a straight line in the y direction.
  • FIG. 11 shows a schematic diagram when the lens 112 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 31 positioned behind the lens 112 is indicated by a broken line.
  • the lens 112 includes a plurality of lens regions 113.
  • Each lens region 113 is arranged such that the position of the optical axis OA in the x direction is different.
  • the lens regions (113a, 113b, 113c, 113d, 113h, 113i) are arranged such that the optical axis OA is positioned in the x direction with respect to the corresponding emitter 31.
  • the lens regions (113e, 113f, 113g) are arranged so that the optical axis OA is positioned in the ⁇ x direction with respect to the corresponding emitter 31.
  • the parallel light LP from the emitter 31 corresponding to the lens regions (113a, 113b, 113c, 113d, 113h, 113i) is incident on the optical axis OA of each lens region 113 (113a, 113b, 113c, 113d, 113h, 113i). On the other hand, it travels in the x direction (see FIG. 5). In the lens areas (113a, 113b), the deviation between the position of the optical axis OA and the position of the emitter 31 is larger than in the lens areas (113c, 113d, 113h, 113i).
  • the parallel light LP from the emitter 31 corresponding to the lens regions (113a, 113b) travels with a greater inclination in the x direction than the parallel light LP from the emitter 31 corresponding to the lens regions (113c, 113d, 113h, 113i). To do.
  • the parallel light LP from the emitter 31 corresponding to the lens regions (113e, 113f, 113g) travels in the ⁇ x direction with respect to the optical axis OA of the lens region 113 (see FIG. 6).
  • the optical axis OA and the corresponding emitter 31 are shifted by the same amount. Therefore, each parallel light LP from the emitter 31 corresponding to each lens region (113e, 113f, 113g) travels in the ⁇ x direction by the same angle.
  • the optical axis OA of the lens regions 113a and 113b and the optical axis OA of the lens regions 113e, 113f, and 113g are separated by 0.5 to 1.5 ⁇ m in the x direction.
  • the semiconductor laser light source device 120 of the fourth embodiment is different from the semiconductor laser light source device 1 of the first embodiment in that the semiconductor laser array 3 is not curved and in the direction of the cylindrical lens 9. Other configurations are the same.
  • the points of the fourth embodiment different from the first embodiment will be described with reference to FIG.
  • FIG. 12 is a schematic diagram of the semiconductor laser light source device 120 according to the fourth embodiment viewed in the ⁇ z direction (see FIG. 1).
  • the outer edge of the cylindrical lens is shown.
  • the cylindrical lens 9 is disposed at an angle ⁇ (0.13 to 0.38 mrad as an example) with respect to the y direction.
  • the semiconductor laser array 3 is not curved, and the emitters 31 are arranged in a straight line in the y direction.
  • the angle ⁇ corresponds to the “predetermined angle”.
  • FIG. 13 shows a schematic diagram when the cylindrical lens 9 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 31 located behind the cylindrical lens 9 that is, on the ⁇ z direction side
  • FIG. 13 shows a schematic diagram when the cylindrical lens 9 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 31 located behind the cylindrical lens 9 that is, on the ⁇ z direction side
  • FIG. 13 shows a schematic diagram when the cylindrical lens 9 is viewed in the ⁇ z direction (see FIG. 1).
  • the emitter 31 located behind the cylindrical lens 9 that is, on the ⁇ z direction side
  • the position in the x direction differs between each emitter 31 and the optical axis OA of the lens region 91 corresponding to the emitter 31.
  • the lens regions (91a, 91b, 91c, 91d, 91e) are arranged such that the optical axis OA is positioned in the x direction with respect to the corresponding emitter 31.
  • the lens regions (91f, 91g, 91h, 91i) are arranged so that the optical axis OA is positioned in the ⁇ x direction with respect to the corresponding emitter 31.
  • the optical axis OA of the lens region 91a and the optical axis OA of the lens region 91i are separated by 0.5 to 1.5 ⁇ m in the x direction.
  • the parallel light LP from the emitter 31 corresponding to the lens regions (91a, 91b, 91c, 91d, 91e) travels in the x direction with respect to the optical axis OA of the lens region 91 (see FIG. 5). Further, the parallel light LP from the emitter 31 corresponding to the lens regions (91f, 91g, 91h, 91i) travels in the ⁇ x direction with respect to the optical axis OA of the lens region 91 (see FIG. 6).
  • the optical axis OA of the lens region 91a is most greatly shifted in the x direction from the emitter 31b. Therefore, the parallel light LP from the emitter 31b travels with the greatest inclination in the x direction. Further, the optical axis OA of the lens area 91i is most greatly shifted in the ⁇ x direction from the emitter 31c. Therefore, the parallel light LP from the emitter 31c travels with the greatest inclination in the ⁇ x direction. In addition, the parallel light LP by the emitter 31 corresponding to the lens regions (91b, 91c, 91d, 91e, 91f, 91g, 91h) travels at a relatively small angle with respect to the optical axis OA.
  • the semiconductor laser light source device is not limited to the configuration of the above-described embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention.
  • the configuration according to another embodiment below may be arbitrarily selected and adopted in the configuration according to the above-described embodiment.
  • the positions of the optical axes OA in the x direction of the lens areas 91 are the same, but the positions of the optical axes OA of the at least two lens areas 91 in the x direction are different. It doesn't matter.
  • the positions of the emitters 31 in the x direction are the same, but the positions of at least two emitters 31 in the x direction may be different.
  • the positions of (91, 113) in the x direction may coincide with each other.
  • each emitter (31, 104) includes at least two emitters (31, 104) and at least two lens regions (91, 113) corresponding to the emitters (31, 104).
  • the position in the x direction is used as a reference, it can be expressed that the position of the corresponding lens region (91, 113) in the x direction is different.
  • the laser light L has a large divergence angle in the x direction and a small divergence angle in the y direction
  • the present invention is not limited thereto. That is, the laser light L may travel with the same divergence angle in the x direction and the y direction. Further, the laser beam L may travel with a small divergence angle in the x direction and a large divergence angle in the y direction.
  • a cylindrical lens is used as a lens for converting in parallel in the x direction (fast axis direction), but the present invention is not limited to this.
  • a fly-eye lens can be used in addition to the cylindrical lens. That is, any lens may be used as long as it is a lens that converts in parallel in the x direction (fast axis direction).
  • a lens that converts not only in the x direction (fast axis direction) but also in the y direction (slow axis direction) may be used.
  • the lens region 113 may constitute one lens. That is, the lens 112 may be a lens group including a plurality of lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A technique in PIV is provided which makes it possible to suppress reduction in accuracy of measurement results due to shadows of tracer particles. This semiconductor laser light source device is provided with a light source unit which includes multiple emitters arranged in a first direction, and a lens which converts the lasers emitted from the emitters so as to be parallel in a second direction. For each of the multiple emitters, the lens includes multiple lens regions which convert the lasers emitted from the respective emitters so as to be parallel in the second direction. In at least two of the multiple emitters and two lens regions corresponding to the two emitters, the positions in the second direction of the lens regions corresponding to the emitters are different with reference to the positions in the second direction of the respective emitters.

Description

半導体レーザ光源装置Semiconductor laser light source device
 本発明は半導体レーザ光源装置に関する。 The present invention relates to a semiconductor laser light source device.
 従来、流体の流れや速度を計測する方法として、PIV(Particle Image Velocimetry)と呼ばれる技術が知られている。PIVとは、流体にトレーサ粒子と呼ばれる微小粒子を混入し、当該トレーサ粒子にシート状のレーザ光を照射して得られる散乱光を撮影することで、流体の流動を可視化して計測する技術である。 Conventionally, a technique called PIV (Particle Image Velocimetry) is known as a method for measuring the flow and velocity of a fluid. PIV is a technology that visualizes and measures the flow of fluid by mixing fine particles called tracer particles in a fluid and photographing the scattered light obtained by irradiating the tracer particles with a sheet of laser light. is there.
 例えば特許文献1には、PIVの光源にNd:YAGレーザを使用し、レーザ光をシート状に変換することが記載されている。また特許文献2には、PIVの光源にアルゴンレーザを使用し、レーザ光を回転するポリゴンミラーに入射することでシート状に走査することが記載されている。 For example, Patent Document 1 describes that an Nd: YAG laser is used as a PIV light source and laser light is converted into a sheet. Further, Patent Document 2 describes that an argon laser is used as a PIV light source, and the laser beam is incident on a rotating polygon mirror to scan in a sheet form.
特開2007-085784号公報JP 2007-085784 A 特開2010-117190号公報JP 2010-117190 A
 ところで、本発明者の鋭意研究によれば、従来のPIVには次のような問題が生じることが分かった。以下、図14A及び図14Bを参照して具体的に説明する。 By the way, according to the earnest study of the present inventor, it has been found that the conventional PIV has the following problems. Hereinafter, a specific description will be given with reference to FIGS. 14A and 14B.
 図14A及び図14Bは、従来のPIVにおける光源装置200が生成するシート状のレーザ光L’を示す模式図である。図14Aは、光源装置200を-x方向にみたときの図であり、図14Bは、光源装置200を-y方向にみたときの図である。シート状のレーザ光L’は、トレーサ粒子12を照射する。シート状のレーザ光L’は、図14Aに示すように、y方向に拡がりつつ進行する。またシート状のレーザ光L’は、図14Bに示すように、x方向に拡がることなく一定の幅を有する。 FIGS. 14A and 14B are schematic views showing sheet-like laser light L ′ generated by the light source device 200 in the conventional PIV. 14A is a diagram when the light source device 200 is viewed in the −x direction, and FIG. 14B is a diagram when the light source device 200 is viewed in the −y direction. The sheet-like laser beam L ′ irradiates the tracer particles 12. As shown in FIG. 14A, the sheet-like laser light L ′ travels while spreading in the y direction. Further, as shown in FIG. 14B, the sheet-like laser light L ′ has a certain width without spreading in the x direction.
 ここで、トレーサ粒子12が照射されると、当該粒子12により影13が生じる(図14A及び図14B参照)。そのため従来のPIVでは、影13の領域に浮遊するトレーサ粒子12aを観測することができず、計測結果の精度が低下するという問題があった。 Here, when the tracer particle 12 is irradiated, a shadow 13 is generated by the particle 12 (see FIGS. 14A and 14B). Therefore, the conventional PIV has a problem that the tracer particles 12a floating in the shadow 13 region cannot be observed, and the accuracy of the measurement result is lowered.
 本発明は、PIVにおいて、トレーサ粒子の影に起因して計測結果の精度が低下することを抑制可能な技術を提供することを目的とする。 This invention aims at providing the technique which can suppress that the precision of a measurement result falls due to the shadow of a tracer particle | grain in PIV.
 本発明の半導体レーザ光源装置は、
 第一の方向に拡がり、且つ、前記第一の方向に直交する第二の方向に所定の幅を有して進行するレーザシートを射出する半導体レーザ光源装置であって、
 前記第一の方向に並ぶ複数のエミッタを含む光源部と、
 複数の前記エミッタから射出されたレーザ光を、前記第二の方向において平行に変換するレンズと、を有し、
 前記レーザシートは、前記レンズから射出された平行光が重なり合うことによって形成され、
 前記レンズは、複数の前記エミッタごとに、それぞれの前記エミッタから射出された前記レーザ光を前記第二の方向において平行に変換する複数のレンズ領域を含み、
 複数の前記エミッタのうちの少なくとも二つの前記エミッタと、二つの前記エミッタに対応する二つの前記レンズ領域と、において、それぞれの前記エミッタの前記第二の方向における位置を基準としたとき、前記エミッタに対応する前記レンズ領域の前記第二の方向における位置が異なることを特徴とする。
The semiconductor laser light source device of the present invention is
A semiconductor laser light source device that emits a laser sheet that spreads in a first direction and travels with a predetermined width in a second direction orthogonal to the first direction,
A light source unit including a plurality of emitters arranged in the first direction;
A lens for converting the laser beams emitted from the plurality of emitters in parallel in the second direction,
The laser sheet is formed by overlapping parallel light emitted from the lens,
The lens includes, for each of the plurality of emitters, a plurality of lens regions that convert the laser light emitted from the emitters in parallel in the second direction,
In at least two of the plurality of emitters and two lens regions corresponding to the two emitters, when the positions of the emitters in the second direction are used as a reference, the emitters The position of the lens region corresponding to is different in the second direction.
 上記構成によれば、複数のエミッタのうち少なくとも二つのエミッタと、二つのエミッタに対応する二つのレンズ領域と、において、エミッタと、エミッタに対応するレンズ領域との、第二の方向に関する相対的な位置関係が相違する。これにより、少なくとも二つのエミッタから射出されたレーザ光は、レンズ領域により平行光に変換されると、同一方向に進行することなく所定の角度をなして進行する。その結果、トレーサ粒子による影の領域を低減することができ、PIVの計測結果の精度が低下することを抑制できる。 According to the above configuration, in at least two of the plurality of emitters and two lens regions corresponding to the two emitters, relative to the second direction of the emitter and the lens region corresponding to the emitter. The positional relationship is different. As a result, when laser light emitted from at least two emitters is converted into parallel light by the lens region, it proceeds at a predetermined angle without traveling in the same direction. As a result, it is possible to reduce the shadow area due to the tracer particles, and it is possible to suppress a decrease in the accuracy of the PIV measurement result.
 また、上記構成において、
 複数の前記レンズ領域のうち少なくとも二つの前記レンズ領域において、
  一方の前記レンズ領域の光軸は、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、一方の前記レンズ領域に対応する前記エミッタよりも前記第二の方向にずれており、
  他方の前記レンズ領域の光軸は、前記第三の方向からみたとき、他方の前記レンズ領域に対応する前記エミッタよりも前記第二の方向と反対方向にずれているものとしても構わない。
In the above configuration,
In at least two of the lens regions of the plurality of lens regions,
The optical axis of one of the lens regions is higher than the emitter corresponding to one of the lens regions when viewed from a third direction orthogonal to both the first direction and the second direction. Is shifted in the direction of
The optical axis of the other lens region may be shifted in the direction opposite to the second direction with respect to the emitter corresponding to the other lens region when viewed from the third direction.
 上記構成によれば、少なくとも二つのエミッタから射出されたレーザ光は、レンズ領域により平行光に変換されると、光軸に対して逆向きに傾いて進行する。これにより、トレーサ粒子による影の領域をより低減することができ、PIVの計測結果の精度の低下をより抑制できる。 According to the above configuration, when laser light emitted from at least two emitters is converted into parallel light by the lens region, the laser light travels in a direction opposite to the optical axis. Thereby, the shadow area by the tracer particles can be further reduced, and the decrease in the accuracy of the PIV measurement result can be further suppressed.
 また、上記構成において、
 前記光源部は、複数の前記エミッタが前記第一の方向に並び、前記第一の方向を遅軸方向とし、前記第二の方向を速軸方向とする半導体レーザアレイを含み、
 前記半導体レーザアレイは、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、前記第二の方向と反対方向に突き出すように湾曲しているものとしても構わない。
In the above configuration,
The light source unit includes a semiconductor laser array in which a plurality of the emitters are arranged in the first direction, the first direction is a slow axis direction, and the second direction is a fast axis direction,
The semiconductor laser array may be curved so as to protrude in a direction opposite to the second direction when viewed from a third direction orthogonal to both the first direction and the second direction. I do not care.
 上記構成によれば、少なくとも二つのエミッタと、二つのエミッタに対応する二つのレンズ領域とにおいて、エミッタと、エミッタに対応するレンズ領域との、第二の方向に関する相対的な位置関係が相違する形態を、半導体レーザアレイが湾曲することによって実現できる。 According to the above configuration, the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters. The form can be realized by bending the semiconductor laser array.
 また、上記構成において、
 前記光源部は、1つの前記エミッタを含む複数の半導体レーザ素子を有してなり、
 複数の前記半導体レーザ素子のうち少なくとも二つの前記半導体レーザ素子において、前記第二の方向における位置が互いに異なるものとしても構わない。
In the above configuration,
The light source unit includes a plurality of semiconductor laser elements including one emitter.
In at least two of the plurality of semiconductor laser elements, the positions in the second direction may be different from each other.
 上記構成によれば、少なくとも二つのエミッタと、二つのエミッタに対応する二つのレンズ領域とにおいて、エミッタと、エミッタに対応するレンズ領域との、第二の方向に関する相対的な位置関係が相違する形態を、少なくとも二つの半導体レーザ素子の第二の方向における位置をずらすことによって実現できる。 According to the above configuration, the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters. The form can be realized by shifting the positions of the at least two semiconductor laser elements in the second direction.
 また、上記構成において、
 複数の前記レンズ領域のうち、少なくとも二つの前記レンズ領域の光軸は、前記第二の方向における位置が互いに異なるように配置されているものとしても構わない。
In the above configuration,
Of the plurality of lens regions, the optical axes of at least two of the lens regions may be arranged so that the positions in the second direction are different from each other.
 上記構成によれば、少なくとも二つのエミッタと、二つのエミッタに対応する二つのレンズ領域とにおいて、エミッタと、エミッタに対応するレンズ領域との、第二の方向に関する相対的な位置関係が相違する形態を、少なくとも二つのレンズ領域の光軸の第二の方向における位置をずらすことによって実現できる。 According to the above configuration, the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters. The form can be realized by shifting the positions of the optical axes of the at least two lens regions in the second direction.
 また、上記構成において、
 複数の前記レンズ領域の光軸は、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、直線状に並び、
 前記レンズは、前記第三の方向からみたとき、前記第一の方向から所定の角度だけ傾斜しているものとしても構わない。
In the above configuration,
The optical axes of the plurality of lens regions are arranged in a straight line when viewed from a third direction orthogonal to both the first direction and the second direction,
The lens may be inclined at a predetermined angle from the first direction when viewed from the third direction.
 上記構成によれば、少なくとも二つのエミッタと、二つのエミッタに対応する二つのレンズ領域とにおいて、エミッタと、エミッタに対応するレンズ領域との、第二の方向に関する相対的な位置関係が相違する形態を、レンズを第一の方向から所定の角度だけ傾斜させることによって実現できる。 According to the above configuration, the relative positional relationship in the second direction between the emitter and the lens region corresponding to the emitter is different in at least two emitters and the two lens regions corresponding to the two emitters. The form can be realized by inclining the lens by a predetermined angle from the first direction.
 本発明の半導体レーザ光源装置によれば、PIVにおいてトレーサ粒子の影に起因して計測結果の精度が低下することを抑制することができる。 According to the semiconductor laser light source device of the present invention, it is possible to prevent the accuracy of the measurement result from being lowered due to the shadow of the tracer particles in the PIV.
PIVの概要を説明するための模式図である。It is a schematic diagram for demonstrating the outline | summary of PIV. 第一実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 1st embodiment. 半導体レーザアレイから射出されるレーザ光を説明するための模式図である。It is a schematic diagram for demonstrating the laser beam inject | emitted from a semiconductor laser array. 第一実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 1st embodiment. 第一実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 1st embodiment. 第一実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 1st embodiment. 第一実施形態の半導体レーザ光源装置による作用効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect by the semiconductor laser light source device of 1st embodiment. 第二実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 2nd embodiment. 第二実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 2nd embodiment. 第三実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 3rd embodiment. 第三実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 3rd embodiment. 第四実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 4th embodiment. 第四実施形態の半導体レーザ光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the semiconductor laser light source device of 4th embodiment. 従来の光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the conventional light source device. 従来の光源装置を説明するための模式図である。It is a schematic diagram for demonstrating the conventional light source device.
 実施形態の半導体レーザ光源装置につき、図面を参照して説明する。なお、各図において図面の寸法比と実際の寸法比は必ずしも一致しない。 The semiconductor laser light source device of the embodiment will be described with reference to the drawings. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
 (第一実施形態)
 [PIVの概要]
 第一実施形態における半導体レーザ光源装置1について説明する。半導体レーザ光源装置1は、PIV(Particle Image Velocimetry)の光源に使用される。まず初めに図1を参照してPIVの概要について説明する。
(First embodiment)
[Overview of PIV]
The semiconductor laser light source device 1 in the first embodiment will be described. The semiconductor laser light source device 1 is used as a light source for PIV (Particle Image Velocimetry). First, an outline of PIV will be described with reference to FIG.
 図1に示すように、半導体レーザ光源装置1は半導体レーザアレイ3を含む。図1では半導体レーザアレイ3の長手方向をy方向とし、半導体レーザアレイ3の短手方向をz方向とし、y方向及びz方向に直交する方向をx方向としている。なお、x方向が「第二の方向」に対応し、y方向が「第一の方向」に対応し、z方向が「第三の方向」に対応する。 As shown in FIG. 1, the semiconductor laser light source device 1 includes a semiconductor laser array 3. In FIG. 1, the longitudinal direction of the semiconductor laser array 3 is the y direction, the short direction of the semiconductor laser array 3 is the z direction, and the direction orthogonal to the y direction and the z direction is the x direction. The x direction corresponds to the “second direction”, the y direction corresponds to the “first direction”, and the z direction corresponds to the “third direction”.
 半導体レーザ光源装置1は、シート状のレーザ光LSを射出する。以下、シート状のレーザ光LSを「レーザシートLS」と呼ぶ。レーザシートLSは、x方向に比較的小さい幅を有し、y方向に拡がりつつ進行する光である。一例として、レーザシートLSのx方向の幅は、半導体レーザアレイ3からz方向に少なくとも1~2m離れた領域において、1.8~2.5mm以下である。なお、レーザシートLSは、半導体レーザアレイ3からz方向に少なくとも1~2m離れた領域において、y方向に1m程度の幅を有している。すなわち、この領域においては、x方向の幅はy方向の幅と比較して極めて小さい。 The semiconductor laser light source device 1 emits a sheet-like laser beam LS. Hereinafter, the sheet-like laser light LS is referred to as “laser sheet LS”. The laser sheet LS is light that has a relatively small width in the x direction and travels while spreading in the y direction. As an example, the width of the laser sheet LS in the x direction is 1.8 to 2.5 mm or less in a region at least 1 to 2 m away from the semiconductor laser array 3 in the z direction. The laser sheet LS has a width of about 1 m in the y direction in a region at least 1 to 2 m away from the semiconductor laser array 3 in the z direction. That is, in this region, the width in the x direction is extremely small compared to the width in the y direction.
 詳細は後述するが、半導体レーザ光源装置1は、レーザ光Lを射出するエミッタを複数含み、各エミッタから射出されるレーザ光Lを、特定の方向に平行な平行光LPに変換する(図1参照)。本明細書において「平行光」とは、x方向に一定の幅(一例として、1.5mm)を有し、y方向に拡がりつつ進行する光である。なお、図1では便宜的に、4つのエミッタから射出されるレーザ光L、及び当該レーザ光が変換された後の光である平行光LPを示している。また、1つのエミッタから射出され、平行光に変換される前のレーザ光Lには右斜線を付し、変換された後の平行光LPには左斜線を付している。 As will be described in detail later, the semiconductor laser light source device 1 includes a plurality of emitters that emit laser light L, and converts the laser light L emitted from each emitter into parallel light LP parallel to a specific direction (FIG. 1). reference). In this specification, “parallel light” is light that has a certain width (as an example, 1.5 mm) in the x direction and travels while spreading in the y direction. For convenience, FIG. 1 shows laser light L emitted from four emitters and parallel light LP that is light after the laser light is converted. Further, the laser light L emitted from one emitter and before being converted into parallel light is given a right oblique line, and the parallel light LP after being converted is given a left oblique line.
 図1に示すように、各エミッタからの平行光LPは、互いに重なり合うことによりレーザシートLSを形成する。なお、レーザシートLSは、全てのエミッタから射出された光が必ずしも重なり合う必要はなく、少なくとも複数のエミッタから射出された光が重なり合うことで形成されるものであればよい。 As shown in FIG. 1, the parallel light LP from each emitter overlaps each other to form a laser sheet LS. The laser sheet LS does not necessarily have to overlap light emitted from all the emitters, and may be formed by overlapping at least light emitted from a plurality of emitters.
 計測対象の流体には、トレーサ粒子12が混入されている。なお、図1では、流体自体は図示していないが、所定の流体内に多数のトレーサ粒子12が混入されており、この流体に対してレーザシートLSが照射された状況において、当該レーザシートLSが照射された領域内に位置しているトレーサ粒子12の一部のみが図示されている。トレーサ粒子12は、一例として、ポリスチレン等の樹脂からなる微小粒子、水及びオイルを噴霧化した微小な液滴、プラスチック製の微小粒子、煙等である。半導体レーザ光源装置1から射出されたレーザシートLSが、流体内のトレーサ粒子12に照射されると、散乱光が生成される。 The tracer particles 12 are mixed in the fluid to be measured. In FIG. 1, although the fluid itself is not illustrated, in a situation where a large number of tracer particles 12 are mixed in a predetermined fluid and the laser sheet LS is irradiated to this fluid, the laser sheet LS Only a part of the tracer particles 12 located in the region irradiated with is shown. The tracer particles 12 are, for example, fine particles made of resin such as polystyrene, fine droplets obtained by atomizing water and oil, plastic fine particles, smoke, and the like. When the laser sheet LS emitted from the semiconductor laser light source device 1 is irradiated onto the tracer particles 12 in the fluid, scattered light is generated.
 撮影装置14は、トレーサ粒子12からの散乱光を撮影し、撮影した画像を画像処理装置15に出力する。なお、一例として撮影装置14は1秒間に1000フレームの画像を撮影する。画像処理装置15は、入力された画像を基に、流体の速度を算出する。なお、流体の速度の算出方法は既知の技術であるため(例えば上記の特許文献1及び特許文献2を参照)、本明細書では説明を省略する。 The imaging device 14 images the scattered light from the tracer particles 12 and outputs the captured image to the image processing device 15. As an example, the imaging device 14 captures an image of 1000 frames per second. The image processing device 15 calculates the fluid velocity based on the input image. In addition, since the calculation method of the fluid velocity is a known technique (see, for example, Patent Document 1 and Patent Document 2 above), description thereof is omitted in this specification.
 [構成]
 続いて、半導体レーザ光源装置1の構成について説明する。図1に示すように、半導体レーザ光源装置1は、半導体レーザアレイ3、サブマウント5、ヒートシンク7、及びシリンドリカルレンズ9を備える。図1は、ヒートシンク7の上方にサブマウント5が配置され、サブマウント5の上方に半導体レーザアレイ3が配置されてなる半導体レーザ光源装置1を、上方から見たときの模式的な平面図として図示されている。なお図1には示されていないが、半導体レーザ光源装置1は、半導体レーザアレイ3及びサブマウント5の間、及び、サブマウント5及びヒートシンク7の間にハンダ層を含む。なお、半導体レーザアレイ3が「光源部」に対応し、シリンドリカルレンズ9が「レンズ」に対応する。
[Constitution]
Next, the configuration of the semiconductor laser light source device 1 will be described. As shown in FIG. 1, the semiconductor laser light source device 1 includes a semiconductor laser array 3, a submount 5, a heat sink 7, and a cylindrical lens 9. FIG. 1 is a schematic plan view of a semiconductor laser light source device 1 in which a submount 5 is disposed above a heat sink 7 and a semiconductor laser array 3 is disposed above the submount 5 when viewed from above. It is shown in the figure. Although not shown in FIG. 1, the semiconductor laser light source device 1 includes solder layers between the semiconductor laser array 3 and the submount 5 and between the submount 5 and the heat sink 7. The semiconductor laser array 3 corresponds to a “light source”, and the cylindrical lens 9 corresponds to a “lens”.
 以下、図2を参照して半導体レーザ光源装置1の構成について具体的に説明する。 Hereinafter, the configuration of the semiconductor laser light source device 1 will be specifically described with reference to FIG.
 図2は、図1の半導体レーザ光源装置1を紙面左方向、即ち-z方向にみたときの模式的な図である。なお図2において、説明の便宜上、シリンドリカルレンズ9については外縁を示している。 FIG. 2 is a schematic diagram when the semiconductor laser light source device 1 of FIG. 1 is viewed in the left direction of the drawing, that is, in the −z direction. In FIG. 2, for the convenience of explanation, the cylindrical lens 9 has an outer edge.
 半導体レーザアレイ3は、端面発光型の半導体レーザ素子がアレイ状に複数配置されて構成されている。半導体レーザアレイ3は、z方向に垂直な面(図面上はxy平面に対応する)である側面30を含み、この側面30からレーザ光を射出する。 The semiconductor laser array 3 includes a plurality of edge-emitting semiconductor laser elements arranged in an array. The semiconductor laser array 3 includes a side surface 30 that is a surface perpendicular to the z direction (corresponding to the xy plane in the drawing), and emits laser light from the side surface 30.
 半導体レーザアレイ3は、側面30上にy方向に複数配置されたエミッタ31を含む。図2に示される半導体レーザアレイ3では、エミッタ31の配置方向であるy方向が、半導体レーザアレイ3の長手方向に対応している。エミッタ31aは、y方向に関して側面30の中央に位置するエミッタである。エミッタ31bは、y方向に関して側面30の一方の端部(即ち、+y方向側の端部)に位置するエミッタであり、エミッタ31cは、y方向に関して側面30の他方の端部(即ち、-y方向側の端部)に位置するエミッタである。一例として、半導体レーザアレイ3は、200μmのピッチで並ぶ20個のエミッタ31を含む。なお、図2では、便宜的に9個のエミッタ31を図示している。 The semiconductor laser array 3 includes a plurality of emitters 31 arranged on the side surface 30 in the y direction. In the semiconductor laser array 3 shown in FIG. 2, the y direction that is the arrangement direction of the emitters 31 corresponds to the longitudinal direction of the semiconductor laser array 3. The emitter 31a is an emitter located at the center of the side surface 30 in the y direction. The emitter 31b is an emitter located at one end of the side surface 30 with respect to the y direction (ie, the end on the + y direction side), and the emitter 31c is the other end of the side surface 30 with respect to the y direction (ie, −y The emitter is located at the end of the direction side. As an example, the semiconductor laser array 3 includes 20 emitters 31 arranged at a pitch of 200 μm. In FIG. 2, nine emitters 31 are shown for convenience.
 以下では、エミッタ31aを「中央のエミッタ31a」と呼び、エミッタ31b、31cをそれぞれ「端部のエミッタ31b」、「端部のエミッタ31c」と呼ぶことがある。 Hereinafter, the emitter 31a may be referred to as “center emitter 31a”, and the emitters 31b and 31c may be referred to as “end emitter 31b” and “end emitter 31c”, respectively.
 各エミッタ31は、x方向及びy方向の双方に拡がりつつ進行するレーザ光を射出する。図3に、半導体レーザアレイ3の中央のエミッタ31aから射出されるレーザ光Lを示す。図3に示すように、レーザ光Lは、x方向及びy方向の双方に発散する。またレーザ光Lは、y方向に比べてx方向に大きく発散する。即ち、レーザー光Lのx方向における発散角は、y方向における発散角に比べて大きい。つまり、x方向が「速軸方向」に対応し、y方向が「遅軸方向」に対応する。なお、他のエミッタ31から射出されるレーザ光もレーザ光Lと同様に進行する。 Each emitter 31 emits a laser beam that travels in both the x and y directions. FIG. 3 shows laser light L emitted from the central emitter 31 a of the semiconductor laser array 3. As shown in FIG. 3, the laser beam L diverges in both the x direction and the y direction. In addition, the laser light L diverges greatly in the x direction compared to the y direction. That is, the divergence angle in the x direction of the laser light L is larger than the divergence angle in the y direction. That is, the x direction corresponds to the “fast axis direction” and the y direction corresponds to the “slow axis direction”. The laser light emitted from the other emitters 31 travels in the same manner as the laser light L.
 図2に戻って説明を続ける。半導体レーザアレイ3は、ハンダ層4によりサブマウント5と接合されている。ハンダ層4は、サブマウント5の上面に載置されている。なお、半導体レーザ光源装置1はサブマウント5を備えないものとしても構わない。 Referring back to FIG. The semiconductor laser array 3 is joined to the submount 5 by a solder layer 4. The solder layer 4 is placed on the upper surface of the submount 5. The semiconductor laser light source device 1 may not include the submount 5.
 図2に示すように、半導体レーザアレイ3は、端部から中央に向かうほどサブマウント5に接近するように湾曲している。換言すると、半導体レーザアレイ3は、サブマウント5に向かう方向(即ち、-x方向)に突き出すように湾曲している。半導体レーザアレイ3がこのように湾曲する理由については後述する。 As shown in FIG. 2, the semiconductor laser array 3 is curved so as to approach the submount 5 from the end toward the center. In other words, the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (that is, the −x direction). The reason why the semiconductor laser array 3 is curved in this way will be described later.
 半導体レーザアレイ3の温度は、レーザ光の射出に伴い上昇する。サブマウント5は、熱伝導率の高い材料により構成されており、半導体レーザアレイ3から生じる熱をヒートシンク7へ伝導する。 The temperature of the semiconductor laser array 3 rises as the laser beam is emitted. The submount 5 is made of a material having high thermal conductivity, and conducts heat generated from the semiconductor laser array 3 to the heat sink 7.
 ハンダ層6は、ヒートシンク7の上面に載置されており、サブマウント5及びヒートシンク7を接合する。 The solder layer 6 is placed on the upper surface of the heat sink 7 and joins the submount 5 and the heat sink 7.
 ヒートシンク7は、サブマウント5から伝導された熱を半導体レーザ光源装置1の外部へ放出する。ヒートシンク7は、熱伝導率の高い金属によって構成されている。なお、半導体レーザ光源装置1はヒートシンク7を備えないものとしても構わない。 The heat sink 7 releases the heat conducted from the submount 5 to the outside of the semiconductor laser light source device 1. The heat sink 7 is made of a metal having high thermal conductivity. The semiconductor laser light source device 1 may not include the heat sink 7.
 シリンドリカルレンズ9は、x方向に光をコリメートするように配置されている。以下、シリンドリカルレンズ9について図4~図6を参照して説明する。 The cylindrical lens 9 is disposed so as to collimate light in the x direction. Hereinafter, the cylindrical lens 9 will be described with reference to FIGS.
 [シリンドリカルレンズ]
 図4は、シリンドリカルレンズ9を-z方向(図1参照)にみたときの模式的な図である。なお、図4では説明の都合上、シリンドリカルレンズ9の後方(即ち、-z方向側)に位置するエミッタ31を破線で示している。
[Cylindrical lens]
FIG. 4 is a schematic diagram when the cylindrical lens 9 is viewed in the −z direction (see FIG. 1). In FIG. 4, for convenience of explanation, the emitter 31 located behind the cylindrical lens 9 (that is, on the −z direction side) is indicated by a broken line.
 図4に示すように、シリンドリカルレンズ9は、y方向に並ぶ複数のレンズ領域91からなる。本実施形態において、シリンドリカルレンズ9は、エミッタ31と同数のレンズ領域91を含む。各レンズ領域91は、各エミッタ31に対向している。即ち、各エミッタ31から射出されるレーザ光は、対向するレンズ領域91に入射する。 As shown in FIG. 4, the cylindrical lens 9 includes a plurality of lens regions 91 arranged in the y direction. In the present embodiment, the cylindrical lens 9 includes the same number of lens regions 91 as the emitter 31. Each lens region 91 faces each emitter 31. That is, the laser light emitted from each emitter 31 is incident on the lens region 91 that faces the laser beam.
 各レンズ領域91は、z方向に平行な光軸OAを有する。光軸OAとは、各レンズ領域91の中心及び各レンズ領域91の焦点を結んだ直線である。 Each lens region 91 has an optical axis OA parallel to the z direction. The optical axis OA is a straight line connecting the centers of the lens regions 91 and the focal points of the lens regions 91.
 上述のように、半導体レーザアレイ3はサブマウント5に向かう方向(即ち、-x方向)に突き出すように湾曲している。そのため、各エミッタ31のx方向における位置と、当該エミッタ31に対応するレンズ領域91の光軸OAのx方向における位置とが相違する。具体的には図4に示すように、中央のエミッタ31aは、対応するレンズ領域91の光軸OAから-x方向に大きくずれる。また、端部のエミッタ31b、31cは、対応するレンズ領域91の光軸OAからx方向に大きくずれる。また、中央のエミッタ31a及び端部のエミッタ31b、31cの間に位置するエミッタ31は、対応するレンズ領域91の光軸OAからx方向または-x方向に小さくずれる。一例として、中央のエミッタ31aと、端部のエミッタ31b、31cとは、x方向に0.5~1.5μm離れている。なお、中央のエミッタ31aに対応するレンズ領域91が「一方のレンズ領域」に対応し、端部のエミッタ31b、31cに対応するレンズ領域91が「他方のレンズ領域」に対応する。 As described above, the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (that is, the −x direction). Therefore, the position in the x direction of each emitter 31 is different from the position in the x direction of the optical axis OA of the lens region 91 corresponding to the emitter 31. Specifically, as shown in FIG. 4, the central emitter 31 a is greatly displaced in the −x direction from the optical axis OA of the corresponding lens region 91. Further, the emitters 31b and 31c at the end portions are greatly shifted in the x direction from the optical axis OA of the corresponding lens region 91. Further, the emitter 31 positioned between the central emitter 31a and the end emitters 31b and 31c is slightly shifted in the x direction or the −x direction from the optical axis OA of the corresponding lens region 91. As an example, the center emitter 31a and the end emitters 31b and 31c are separated by 0.5 to 1.5 μm in the x direction. The lens region 91 corresponding to the central emitter 31a corresponds to “one lens region”, and the lens region 91 corresponding to the end emitters 31b and 31c corresponds to “the other lens region”.
 レンズ領域91は、対向するエミッタ31から射出されるレーザ光Lを、平行光LPに変換する。図5及び図6を参照して具体的に説明する。 The lens region 91 converts the laser light L emitted from the opposing emitter 31 into parallel light LP. This will be specifically described with reference to FIGS.
 図5は、図1の半導体レーザ光源装置1をA-A線で切断したときの模式的な断面図である。なお、A-A線はz方向に平行であり、半導体レーザアレイ3の中央のエミッタ31a(図2参照)を通過する。 FIG. 5 is a schematic cross-sectional view of the semiconductor laser light source device 1 of FIG. 1 taken along line AA. The line AA is parallel to the z direction and passes through the central emitter 31a (see FIG. 2) of the semiconductor laser array 3.
 図5に示すように、レーザ光Lは、レンズ領域91に入射前においてx方向に拡がって進行する。レンズ領域91は、レーザ光Lをx方向に一定の幅を有するよう変換する。換言すると、レンズ領域91は、レーザ光Lのx方向への発散を抑制する。またレンズ領域91は、図1に示すように、レーザ光Lのy方向における発散を保持する。即ちレンズ領域91は、レーザ光Lのy方向における発散角を保持する。このようにレンズ領域91は、対向するエミッタ31aから射出されるレーザ光Lを、x方向に一定の幅を有し、y方向に拡がりつつ進行する平行光LPに変換する(図1及び図5参照)。 As shown in FIG. 5, the laser beam L spreads in the x direction and proceeds before entering the lens region 91. The lens region 91 converts the laser light L so as to have a certain width in the x direction. In other words, the lens region 91 suppresses the divergence of the laser light L in the x direction. Further, as shown in FIG. 1, the lens region 91 holds the divergence of the laser light L in the y direction. That is, the lens area 91 holds the divergence angle in the y direction of the laser light L. Thus, the lens region 91 converts the laser light L emitted from the opposing emitter 31a into parallel light LP having a constant width in the x direction and traveling in the y direction (FIGS. 1 and 5). reference).
 なお、上述したように、レーザ光をx方向に発散せずに一定の幅を有するように変換することを、本明細書では「x方向において平行に変換する」と表現している。 In addition, as described above, converting the laser light so as to have a certain width without diverging in the x direction is expressed as “converting in parallel in the x direction”.
 図4を参照して上述したように、中央のエミッタ31aは、対応するレンズ領域91の光軸OAに対し、-x方向に位置する。そのため、中央のエミッタ31aから射出された光が変換された平行光LPは、レンズ領域91の光軸OAに対し角度θ1(一例として0.17~0.5mrad)をなして進行する。より具体的には、この平行光LPは、レンズ領域91の光軸OAに対しx方向に傾いて進行する。 As described above with reference to FIG. 4, the central emitter 31a is positioned in the −x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP obtained by converting the light emitted from the central emitter 31a travels at an angle θ1 (0.17 to 0.5 mrad as an example) with respect to the optical axis OA of the lens region 91. More specifically, the parallel light LP travels in the x direction with respect to the optical axis OA of the lens region 91.
 図6は、図1の半導体レーザ光源装置1をB-B線で切断したときの模式的な断面図である。なお、B-B線はz方向に平行であり、半導体レーザアレイ3の端部のエミッタ31c(図2参照)を通過する。 FIG. 6 is a schematic cross-sectional view of the semiconductor laser light source device 1 of FIG. 1 taken along the line BB. The line BB is parallel to the z direction and passes through the emitter 31c (see FIG. 2) at the end of the semiconductor laser array 3.
 図6に示すように、レンズ領域91は、対向するエミッタ31cから射出されるレーザ光Lを、x方向に一定の幅を有し、y方向に拡がりつつ進行する平行光LPに変換する。上述のように、端部のエミッタ31cは、対応するレンズ領域91の光軸OAに対し、x方向に位置する(図4参照)。そのため、端部のエミッタ31cから射出された光が変換された平行光LPは、レンズ領域91の光軸OAに対し角度θ2(一例として0.17~0.5mrad)をなして進行する。より具体的には、この平行光LPは、レンズ領域91の光軸OAに対し-x方向に傾いて進行する。 As shown in FIG. 6, the lens region 91 converts the laser light L emitted from the opposing emitter 31c into parallel light LP having a certain width in the x direction and traveling while spreading in the y direction. As described above, the emitter 31c at the end is positioned in the x direction with respect to the optical axis OA of the corresponding lens region 91 (see FIG. 4). Therefore, the parallel light LP obtained by converting the light emitted from the emitter 31c at the end portion travels at an angle θ2 (0.17 to 0.5 mrad as an example) with respect to the optical axis OA of the lens region 91. More specifically, the parallel light LP travels in the −x direction with respect to the optical axis OA of the lens region 91.
 図5及び図6を参照して、中央のエミッタ31a及び端部のエミッタ31cによる平行光LPについて説明したが、他のエミッタ31による平行光LPも同様に、レンズ領域91の光軸OAに対し、所定の角度をなして進行する。 The parallel light LP by the center emitter 31a and the end emitter 31c has been described with reference to FIGS. 5 and 6. Similarly, the parallel light LP by the other emitters 31 is also relative to the optical axis OA of the lens region 91. , Proceed at a predetermined angle.
 上述のように中央のエミッタ31a、及び、端部のエミッタ31b、31cは、対応するレンズ領域91の光軸OAからx方向または-x方向に大きくずれる。そのため、変換後の平行光LPは、光軸OAに対して比較的大きい角度(θ1、θ2)をなして進行する(図5及び図6参照)。これに対し、中央のエミッタ31a及び端部のエミッタ31b、31cの間に位置するエミッタ31は、対応するレンズ領域91の光軸OAからx方向または-x方向に小さくずれる。そのため、変換後の平行光LPは、光軸OAに対して比較的小さい角度をなして進行する。このように、エミッタ31の位置と、対応するレンズ領域91の光軸OAの位置との間のずれが大きいほど、平行光LPは光軸OAに対して大きく傾いて進行する。 As described above, the center emitter 31a and the end emitters 31b and 31c are greatly displaced in the x direction or the −x direction from the optical axis OA of the corresponding lens region 91. Therefore, the converted parallel light LP travels at a relatively large angle (θ1, θ2) with respect to the optical axis OA (see FIGS. 5 and 6). On the other hand, the emitter 31 located between the central emitter 31a and the end emitters 31b and 31c is slightly shifted from the optical axis OA of the corresponding lens region 91 in the x direction or the −x direction. Therefore, the converted parallel light LP travels at a relatively small angle with respect to the optical axis OA. Thus, the greater the deviation between the position of the emitter 31 and the position of the optical axis OA of the corresponding lens region 91, the greater the parallel light LP travels with respect to the optical axis OA.
 [半導体レーザアレイが湾曲する理由]
 続いて、半導体レーザアレイ3が図2に示すように湾曲する理由について説明する。
[Reason for bending the semiconductor laser array]
Next, the reason why the semiconductor laser array 3 is curved as shown in FIG. 2 will be described.
 半導体レーザアレイ3及びサブマウント5は、加熱により溶融されたハンダ層4を介して重ね合わされた後、溶融されたハンダ層4が冷却により硬化することで接合される。ここで、ハンダ層4の加熱/冷却に伴い半導体レーザアレイ3及びサブマウント5も併せて加熱/冷却される。このとき、半導体レーザアレイ3及びサブマウント5は、加熱により膨張し、冷却により収縮する。 The semiconductor laser array 3 and the submount 5 are superposed through the solder layer 4 melted by heating, and then bonded by the molten solder layer 4 being cured by cooling. Here, the semiconductor laser array 3 and the submount 5 are also heated / cooled together with the heating / cooling of the solder layer 4. At this time, the semiconductor laser array 3 and the submount 5 expand by heating and contract by cooling.
 ここで、半導体レーザアレイ3及びサブマウント5は、異なる材料によって構成されている。そのため、半導体レーザアレイ3を構成する材料の熱膨張係数、及び、サブマウント5を構成する材料の熱膨張係数は相違する。一例として、半導体レーザアレイ3はGaAsにより構成され、サブマウント5はAlNにより構成されている。また、GaAsの熱膨張係数は6.6×10-6/Kであり、AlNの熱膨張係数は4.6×10-6/Kである。このように、半導体レーザアレイ3の熱膨張係数は、サブマウント5の熱膨張係数に比べて大きい。そのため、半導体レーザアレイ3がサブマウント5に比べて大きく収縮する結果、図2に示すようにサブマウント5に向かう方向(即ち、-x方向)に突き出すように湾曲する。 Here, the semiconductor laser array 3 and the submount 5 are made of different materials. Therefore, the thermal expansion coefficient of the material constituting the semiconductor laser array 3 and the thermal expansion coefficient of the material constituting the submount 5 are different. As an example, the semiconductor laser array 3 is made of GaAs, and the submount 5 is made of AlN. The thermal expansion coefficient of GaAs is 6.6 × 10 −6 / K, and the thermal expansion coefficient of AlN is 4.6 × 10 −6 / K. As described above, the thermal expansion coefficient of the semiconductor laser array 3 is larger than the thermal expansion coefficient of the submount 5. Therefore, as a result of the semiconductor laser array 3 contracting greatly as compared with the submount 5, the semiconductor laser array 3 is curved so as to protrude in the direction toward the submount 5 (ie, the −x direction) as shown in FIG.
 [作用効果]
 続いて、半導体レーザ光源装置1による作用効果について説明する。
[Function and effect]
Then, the effect by the semiconductor laser light source device 1 is demonstrated.
 図7は、第一実施形態の半導体レーザ光源装置1がレーザシートLSを射出する状態を-y方向にみたときの模式的な図である。図7では便宜的に、中央のエミッタ31a及び端部のエミッタ31b(又は端部のエミッタ31c)による平行光LPのみを図示し、他のエミッタ31による平行光LPの図示を省略している。また、以下では説明の都合上、中央のエミッタ31aによる平行光LPを「平行光LP1」と呼び、端部のエミッタ31b(又は端部のエミッタ31c)による平行光LPを「平行光LP2」と呼ぶ。 FIG. 7 is a schematic diagram of the semiconductor laser light source device 1 according to the first embodiment when the state in which the laser sheet LS is emitted is viewed in the −y direction. For the sake of convenience, only the parallel light LP from the central emitter 31a and the end emitter 31b (or the end emitter 31c) is shown in FIG. 7, and the parallel light LP from the other emitters 31 is not shown. In the following, for convenience of explanation, the parallel light LP from the central emitter 31a is referred to as “parallel light LP1”, and the parallel light LP from the end emitter 31b (or end emitter 31c) is referred to as “parallel light LP2”. Call.
 図7に示すように、流体(図示略)及びトレーサ粒子(12b、12c、12d、12e)は、シリンドリカルレンズ9から距離dだけ離れた範囲内に存在する。一例として、距離dは1~2mである。 As shown in FIG. 7, the fluid (not shown) and the tracer particles (12b, 12c, 12d, 12e) exist within a range away from the cylindrical lens 9 by a distance d. As an example, the distance d is 1 to 2 m.
 トレーサ粒子(12b、12c)は、平行光LP1及び平行光LP2が重なり合う領域に存在する。そのため、平行光LP1によるトレーサ粒子(12b、12c)の影は、平行光LP2により削減される。また、平行光LP2によるトレーサ粒子(12b、12c)の影は、平行光LP1により削減される。その結果、図7に示すように、トレーサ粒子(12b、12c)による影13の領域は比較的小さい。 The tracer particles (12b, 12c) exist in a region where the parallel light LP1 and the parallel light LP2 overlap. Therefore, the shadow of the tracer particles (12b, 12c) due to the parallel light LP1 is reduced by the parallel light LP2. Further, the shadow of the tracer particles (12b, 12c) due to the parallel light LP2 is reduced by the parallel light LP1. As a result, as shown in FIG. 7, the area of the shadow 13 by the tracer particles (12b, 12c) is relatively small.
 一方、トレーサ粒子(12d、12e)は、平行光LP1及び平行光LP2が重ならない領域に存在する。より具体的には、トレーサ粒子(12d、12e)は、平行光LP1及び平行光LP2のそれぞれが、図示しない他の平行光LPと重なり合う領域に存在する。例えば平行光LP1は、平行光LP2よりも緩やかに-x方向に傾いて進行する平行光LPと重なり合う。そのため、平行光LP1によるトレーサ粒子12dの影は、-x方向に緩やかに傾いて進行する当該平行光LPによって削減される。同様に、平行光LP2は、平行光LP1よりも緩やかにx方向に傾いて進行する平行光LPと重なり合う。そのため、平行光LP2によるトレーサ粒子12eの影は、x方向に緩やかに傾いて進行する当該平行光LPによって削減される。その結果、図7に示すように、トレーサ粒子(12d、12e)による影13の領域は比較的小さい。 On the other hand, the tracer particles (12d, 12e) exist in a region where the parallel light LP1 and the parallel light LP2 do not overlap. More specifically, the tracer particles (12d, 12e) exist in a region where each of the parallel light LP1 and the parallel light LP2 overlaps with another parallel light LP (not shown). For example, the parallel light LP1 overlaps the parallel light LP that travels more slowly in the −x direction than the parallel light LP2. Therefore, the shadow of the tracer particle 12d by the parallel light LP1 is reduced by the parallel light LP that travels while being gently inclined in the −x direction. Similarly, the parallel light LP2 overlaps the parallel light LP that travels more slowly in the x direction than the parallel light LP1. Therefore, the shadow of the tracer particle 12e due to the parallel light LP2 is reduced by the parallel light LP that travels while being gently inclined in the x direction. As a result, as shown in FIG. 7, the area of the shadow 13 due to the tracer particles (12d, 12e) is relatively small.
 このように、第一実施形態の半導体レーザ光源装置1によれば、従来の光源装置200に比べ、トレーサ粒子12による影13の領域を小さくすることができる。即ち、第一実施形態の半導体レーザ光源装置1によれば、観測不能なトレーサ粒子12を減らすことができ、PIVの測定結果の精度を向上できる。 Thus, according to the semiconductor laser light source device 1 of the first embodiment, the area of the shadow 13 caused by the tracer particles 12 can be reduced as compared with the conventional light source device 200. That is, according to the semiconductor laser light source device 1 of the first embodiment, the tracer particles 12 that cannot be observed can be reduced, and the accuracy of PIV measurement results can be improved.
 さらに、図7に示すように、中央のエミッタ31aによる平行光LP1はx方向に傾いて進行し、端部のエミッタ31bによる平行光LP2は-x方向に傾いて進行する。即ち、平行光LP1及び平行光LP2は、光軸OA(図示略)に対して逆向きに傾いて進行する。そのため、平行光LP1と平行光LP2とがなす角θ(即ち、θ1+θ2)が比較的大きくなるため、トレーサ粒子12による影をより削減することができる。 Further, as shown in FIG. 7, the parallel light LP1 from the central emitter 31a travels in the x direction, and the parallel light LP2 from the end emitter 31b travels in the −x direction. That is, the parallel light LP1 and the parallel light LP2 travel while being inclined in the opposite direction with respect to the optical axis OA (not shown). Therefore, the angle θ (that is, θ1 + θ2) formed by the parallel light LP1 and the parallel light LP2 becomes relatively large, so that the shadow caused by the tracer particles 12 can be further reduced.
 (第二実施形態)
 [構成]
 続いて、第二実施形態の半導体レーザ光源装置100について説明する。第二実施形態の半導体レーザ光源装置100は、第一実施形態の半導体レーザ光源装置1と比較して、半導体レーザアレイ3に代わり複数の半導体レーザ素子を備える点で相違するが、他の構成は同様である。以下、第二実施形態が第一実施形態と相違する点について図8及び図9を参照して説明する。
(Second embodiment)
[Constitution]
Next, the semiconductor laser light source device 100 of the second embodiment will be described. The semiconductor laser light source device 100 of the second embodiment is different from the semiconductor laser light source device 1 of the first embodiment in that a plurality of semiconductor laser elements are provided instead of the semiconductor laser array 3, but the other configurations are as follows. It is the same. Hereinafter, the points of the second embodiment different from the first embodiment will be described with reference to FIGS.
 図8は、第二実施形態の半導体レーザ光源装置100を-z方向(図1参照)にみたときの模式的な図である。なお、図8では説明の便宜上、シリンドリカルレンズ9については外縁を示している。 FIG. 8 is a schematic view of the semiconductor laser light source device 100 according to the second embodiment when viewed in the −z direction (see FIG. 1). In FIG. 8, for the convenience of explanation, the cylindrical lens 9 has an outer edge.
 図8に示すように半導体レーザ光源装置100は、半導体レーザアレイ3に代わり、複数の半導体レーザ素子103を備える。図8では一例として、9個の半導体レーザ素子103を示している。半導体レーザ素子103は、x方向における位置が相違するように配置されている。各半導体レーザ素子103は、ハンダ層4によりサブマウント5に接合される。なお、複数の半導体レーザ素子103が「光源部」に対応する。 As shown in FIG. 8, the semiconductor laser light source device 100 includes a plurality of semiconductor laser elements 103 instead of the semiconductor laser array 3. In FIG. 8, nine semiconductor laser elements 103 are shown as an example. The semiconductor laser elements 103 are arranged so that their positions in the x direction are different. Each semiconductor laser element 103 is bonded to the submount 5 by the solder layer 4. The plurality of semiconductor laser elements 103 correspond to a “light source unit”.
 各半導体レーザ素子103は、一つのエミッタ104を含む。エミッタ104は、x方向及びy方向に拡がりつつ進行するレーザ光Lを射出する(図3参照)。 Each semiconductor laser element 103 includes one emitter 104. The emitter 104 emits laser light L that travels in the x and y directions (see FIG. 3).
 続いて図9を参照して、エミッタ104及びシリンドリカルレンズ9のx方向における位置について説明する。図9は、半導体レーザ光源装置100のシリンドリカルレンズ9を-z方向(図1参照)にみたときの模式的な図である。なお、図9では説明の都合上、シリンドリカルレンズ9の後方(即ち、-z方向側)に位置するエミッタ104を破線で示している。 Subsequently, the positions of the emitter 104 and the cylindrical lens 9 in the x direction will be described with reference to FIG. FIG. 9 is a schematic diagram when the cylindrical lens 9 of the semiconductor laser light source device 100 is viewed in the −z direction (see FIG. 1). In FIG. 9, for convenience of explanation, the emitter 104 located behind the cylindrical lens 9 (that is, on the −z direction side) is indicated by a broken line.
 図9に示すように、各エミッタ104は、各レンズ領域91に対向するように配置されている。即ち、各エミッタ104から射出されるレーザ光Lは、対向するレンズ領域91に入射し、平行光LP(図5及び図6参照)に変換される。 As shown in FIG. 9, each emitter 104 is arranged so as to face each lens region 91. That is, the laser light L emitted from each emitter 104 enters the opposing lens region 91 and is converted into parallel light LP (see FIGS. 5 and 6).
 また図9に示すように、各エミッタ104と、当該エミッタ104に対応するレンズ領域91の光軸OAとにおいて、x方向における位置が相違する。 Further, as shown in FIG. 9, the position in the x direction is different between each emitter 104 and the optical axis OA of the lens region 91 corresponding to the emitter 104.
 具体的には、エミッタ(104a、104b、104c、104g、104i)は、対応するレンズ領域91の光軸OAに対してx方向に位置する。そのため、エミッタ(104a、104b、104c、104g、104i)による平行光LPは、レンズ領域91の光軸OAに対し-x方向に傾いて進行する(図6参照)。なお、エミッタ(104a、104b)は、エミッタ(104c、104g、104i)に比べ、レンズ領域91の光軸OAからx方向に大きくずれる。そのため、エミッタ(104a、104b)による平行光LPは、エミッタ(104c、104g、104i)による平行光LPに比べて-x方向に大きく傾いて進行する。 Specifically, the emitters (104a, 104b, 104c, 104g, 104i) are located in the x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP from the emitters (104a, 104b, 104c, 104g, 104i) travels in the −x direction with respect to the optical axis OA of the lens region 91 (see FIG. 6). Note that the emitters (104a, 104b) are greatly displaced in the x direction from the optical axis OA of the lens region 91 as compared with the emitters (104c, 104g, 104i). Therefore, the parallel light LP from the emitters (104a, 104b) travels with a greater inclination in the -x direction than the parallel light LP from the emitters (104c, 104g, 104i).
 また、エミッタ(104d、104e、104f、104h)は、対応するレンズ領域91の光軸OAに対して-x方向に位置する。そのため、エミッタ(104d、104e、104f、104h)による平行光LPは、レンズ領域91の光軸OAに対しx方向に傾いて進行する(図5参照)。なお、エミッタ(104d、104e)は、エミッタ(104f、104h)に比べ、レンズ領域91の光軸OAから-x方向に大きくずれる。そのため、エミッタ(104d、104e)による平行光LPは、エミッタ(104f、104h)による平行光LPに比べてx方向に大きく傾いて進行する。 The emitters (104d, 104e, 104f, 104h) are positioned in the −x direction with respect to the optical axis OA of the corresponding lens region 91. Therefore, the parallel light LP from the emitters (104d, 104e, 104f, 104h) travels in the x direction with respect to the optical axis OA of the lens region 91 (see FIG. 5). It should be noted that the emitters (104d, 104e) are greatly displaced in the −x direction from the optical axis OA of the lens region 91 as compared with the emitters (104f, 104h). Therefore, the parallel light LP from the emitters (104d, 104e) travels with a greater inclination in the x direction than the parallel light LP from the emitters (104f, 104h).
 なお、半導体レーザ素子103は、ハンダ層4によりサブマウント5に接合される際、荷重を掛けられる。半導体レーザ素子103に掛ける荷重の大きさを変更することにより、半導体レーザ素子103のx方向における位置が調整される。あるいは、ハンダ層4の分量を調整することにより、半導体レーザ素子103のx方向における位置が調整される。一例として、エミッタ104a~104iのうち最もx方向側に位置するエミッタ(104a、104b)と、最も-x方向側に位置するエミッタ(104d、104e)とは、x方向に0.5~1.5μm離れている。 The semiconductor laser element 103 is loaded when it is bonded to the submount 5 by the solder layer 4. By changing the magnitude of the load applied to the semiconductor laser element 103, the position of the semiconductor laser element 103 in the x direction is adjusted. Alternatively, the position of the semiconductor laser element 103 in the x direction is adjusted by adjusting the amount of the solder layer 4. As an example, among the emitters 104a to 104i, the emitters (104a and 104b) positioned closest to the x direction and the emitters (104d and 104e) positioned closest to the −x direction are 0.5 to 1.. 5 μm away.
 本実施形態の半導体レーザ光源装置100においても、第一実施形態の半導体レーザ光源装置1と同様の理由により、トレーサ粒子12による影13の領域を低減でき、PIVの測定結果の精度を向上できる。以下の実施形態についても同様である。 Also in the semiconductor laser light source device 100 of the present embodiment, for the same reason as the semiconductor laser light source device 1 of the first embodiment, the area of the shadow 13 by the tracer particles 12 can be reduced, and the accuracy of the PIV measurement result can be improved. The same applies to the following embodiments.
 (第三実施形態)
 [構成]
 続いて、第三実施形態の半導体レーザ光源装置110について説明する。第三実施形態の半導体レーザ光源装置110は、第一実施形態の半導体レーザ光源装置1と比較して、、半導体レーザアレイ3が湾曲していない点、及び、シリンドリカルレンズ9に代わり後述のレンズ112を備える点で相違するが、他の構成は同様である。以下、第三実施形態が第一実施形態と相違する点について図10を参照して説明する。
(Third embodiment)
[Constitution]
Next, the semiconductor laser light source device 110 of the third embodiment will be described. The semiconductor laser light source device 110 according to the third embodiment is different from the semiconductor laser light source device 1 according to the first embodiment in that the semiconductor laser array 3 is not curved and a lens 112 described later instead of the cylindrical lens 9. However, the other configurations are the same. Hereinafter, the points of the third embodiment different from the first embodiment will be described with reference to FIG.
 図10は、第三実施形態の半導体レーザ光源装置110を-z方向(図1参照)にみたときの模式的な図である。なお図10において、説明の便宜上、レンズ112については外縁を示している。図10に示すように半導体レーザ光源装置110は、シリンドリカルレンズ9(図2参照)に代わり、レンズ112を備える。また、半導体レーザアレイ3は湾曲しておらず、各エミッタ31はy方向に直線状に並んでいる。 FIG. 10 is a schematic view of the semiconductor laser light source device 110 according to the third embodiment when viewed in the −z direction (see FIG. 1). In FIG. 10, for the convenience of explanation, the outer edge of the lens 112 is shown. As shown in FIG. 10, the semiconductor laser light source device 110 includes a lens 112 instead of the cylindrical lens 9 (see FIG. 2). The semiconductor laser array 3 is not curved, and the emitters 31 are arranged in a straight line in the y direction.
 図11にレンズ112を-z方向(図1参照)にみたときの模式的な図を示す。なお、図11では説明の都合上、レンズ112の後方(即ち、-z方向側)に位置するエミッタ31を破線で示している。 FIG. 11 shows a schematic diagram when the lens 112 is viewed in the −z direction (see FIG. 1). In FIG. 11, for convenience of explanation, the emitter 31 positioned behind the lens 112 (that is, on the −z direction side) is indicated by a broken line.
 図11に示すようにレンズ112は、複数のレンズ領域113からなる。各レンズ領域113は、光軸OAのx方向における位置が相違するように配置されている。具体的には、レンズ領域(113a、113b、113c、113d、113h、113i)は、対応するエミッタ31に対して光軸OAがx方向に位置するように配置されている。また、レンズ領域(113e、113f、113g)は、対応するエミッタ31に対して光軸OAが-x方向に位置するように配置されている。 As shown in FIG. 11, the lens 112 includes a plurality of lens regions 113. Each lens region 113 is arranged such that the position of the optical axis OA in the x direction is different. Specifically, the lens regions (113a, 113b, 113c, 113d, 113h, 113i) are arranged such that the optical axis OA is positioned in the x direction with respect to the corresponding emitter 31. Further, the lens regions (113e, 113f, 113g) are arranged so that the optical axis OA is positioned in the −x direction with respect to the corresponding emitter 31.
 なお、レンズ領域(113a、113b、113c、113d、113h、113i)に対応するエミッタ31による平行光LPは、各レンズ領域113(113a、113b、113c、113d、113h、113i)の光軸OAに対し、x方向に傾いて進行する(図5参照)。なお、レンズ領域(113a、113b)では、レンズ領域(113c、113d、113h、113i)に比べ、光軸OAの位置とエミッタ31の位置とのずれが大きい。そのため、レンズ領域(113a、113b)に対応するエミッタ31による平行光LPは、レンズ領域(113c、113d、113h、113i)に対応するエミッタ31による平行光LPに比べてx方向に大きく傾いて進行する。 The parallel light LP from the emitter 31 corresponding to the lens regions (113a, 113b, 113c, 113d, 113h, 113i) is incident on the optical axis OA of each lens region 113 (113a, 113b, 113c, 113d, 113h, 113i). On the other hand, it travels in the x direction (see FIG. 5). In the lens areas (113a, 113b), the deviation between the position of the optical axis OA and the position of the emitter 31 is larger than in the lens areas (113c, 113d, 113h, 113i). Therefore, the parallel light LP from the emitter 31 corresponding to the lens regions (113a, 113b) travels with a greater inclination in the x direction than the parallel light LP from the emitter 31 corresponding to the lens regions (113c, 113d, 113h, 113i). To do.
 また、レンズ領域(113e、113f、113g)に対応するエミッタ31による平行光LPは、レンズ領域113の光軸OAに対し-x方向に傾いて進行する(図6参照)。なお、各レンズ領域(113e、113f、113g)において、光軸OA及び対応するエミッタ31は同じだけずれている。そのため、各レンズ領域(113e、113f、113g)に対応するエミッタ31による各平行光LPは、同じ角度だけ-x方向に傾いて進行する。一例として、レンズ領域113a、113bの光軸OAと、レンズ領域113e、113f、113gの光軸OAとは、x方向に0.5~1.5μm離れている。 Further, the parallel light LP from the emitter 31 corresponding to the lens regions (113e, 113f, 113g) travels in the −x direction with respect to the optical axis OA of the lens region 113 (see FIG. 6). In each lens region (113e, 113f, 113g), the optical axis OA and the corresponding emitter 31 are shifted by the same amount. Therefore, each parallel light LP from the emitter 31 corresponding to each lens region (113e, 113f, 113g) travels in the −x direction by the same angle. As an example, the optical axis OA of the lens regions 113a and 113b and the optical axis OA of the lens regions 113e, 113f, and 113g are separated by 0.5 to 1.5 μm in the x direction.
 (第四実施形態)
 [構成]
 続いて、第四実施形態の半導体レーザ光源装置120について説明する。第四実施形態の半導体レーザ光源装置120は、第一実施形態の半導体レーザ光源装置1と比較して、、半導体レーザアレイ3が湾曲していない点、及び、シリンドリカルレンズ9の向きにおいて相違するが、他の構成は同様である。以下、第四実施形態が第一実施形態と相違する点について図12を参照して説明する。
(Fourth embodiment)
[Constitution]
Subsequently, the semiconductor laser light source device 120 of the fourth embodiment will be described. The semiconductor laser light source device 120 of the fourth embodiment is different from the semiconductor laser light source device 1 of the first embodiment in that the semiconductor laser array 3 is not curved and in the direction of the cylindrical lens 9. Other configurations are the same. Hereinafter, the points of the fourth embodiment different from the first embodiment will be described with reference to FIG.
 図12は、第四実施形態の半導体レーザ光源装置120を-z方向(図1参照)にみたときの模式的な図である。なお図12において、説明の便宜上、シリンドリカルレンズについては外縁を示している。図12に示すように、半導体レーザ光源装置120において、シリンドリカルレンズ9は、y方向から角度φ(一例として0.13~0.38mrad)だけ傾いて配置されている。また、半導体レーザアレイ3は湾曲しておらず、各エミッタ31はy方向に直線状に並んでいる。なお、角度φが「所定の角度」に対応する。 FIG. 12 is a schematic diagram of the semiconductor laser light source device 120 according to the fourth embodiment viewed in the −z direction (see FIG. 1). In FIG. 12, for the convenience of explanation, the outer edge of the cylindrical lens is shown. As shown in FIG. 12, in the semiconductor laser light source device 120, the cylindrical lens 9 is disposed at an angle φ (0.13 to 0.38 mrad as an example) with respect to the y direction. The semiconductor laser array 3 is not curved, and the emitters 31 are arranged in a straight line in the y direction. The angle φ corresponds to the “predetermined angle”.
 図13にシリンドリカルレンズ9を-z方向(図1参照)にみたときの模式的な図を示す。なお、図13では説明の都合上、シリンドリカルレンズ9の後方(即ち、-z方向側)に位置するエミッタ31を破線で示している。 FIG. 13 shows a schematic diagram when the cylindrical lens 9 is viewed in the −z direction (see FIG. 1). In FIG. 13, for convenience of explanation, the emitter 31 located behind the cylindrical lens 9 (that is, on the −z direction side) is indicated by a broken line.
 図13に示すように、各エミッタ31と、当該エミッタ31に対応するレンズ領域91の光軸OAとにおいて、x方向における位置が相違する。具体的には、レンズ領域(91a、91b、91c、91d、91e)は、対応するエミッタ31に対して光軸OAがx方向に位置するように配置されている。また、レンズ領域(91f、91g、91h、91i)は、対応するエミッタ31に対して光軸OAが-x方向に位置するように配置されている。一例として、レンズ領域91aの光軸OAと、レンズ領域91iの光軸OAとは、x方向に0.5~1.5μm離れている。 As shown in FIG. 13, the position in the x direction differs between each emitter 31 and the optical axis OA of the lens region 91 corresponding to the emitter 31. Specifically, the lens regions (91a, 91b, 91c, 91d, 91e) are arranged such that the optical axis OA is positioned in the x direction with respect to the corresponding emitter 31. Further, the lens regions (91f, 91g, 91h, 91i) are arranged so that the optical axis OA is positioned in the −x direction with respect to the corresponding emitter 31. As an example, the optical axis OA of the lens region 91a and the optical axis OA of the lens region 91i are separated by 0.5 to 1.5 μm in the x direction.
 なお、レンズ領域(91a、91b、91c、91d、91e)に対応するエミッタ31による平行光LPは、レンズ領域91の光軸OAに対しx方向に傾いて進行する(図5参照)。また、レンズ領域(91f、91g、91h、91i)に対応するエミッタ31による平行光LPは、レンズ領域91の光軸OAに対し-x方向に傾いて進行する(図6参照)。 Note that the parallel light LP from the emitter 31 corresponding to the lens regions (91a, 91b, 91c, 91d, 91e) travels in the x direction with respect to the optical axis OA of the lens region 91 (see FIG. 5). Further, the parallel light LP from the emitter 31 corresponding to the lens regions (91f, 91g, 91h, 91i) travels in the −x direction with respect to the optical axis OA of the lens region 91 (see FIG. 6).
 また、レンズ領域91aの光軸OAは、エミッタ31bからx方向に最も大きくずれる。そのため、エミッタ31bによる平行光LPは、x方向に最も大きく傾いて進行する。また、レンズ領域91iの光軸OAは、エミッタ31cから-x方向に最も大きくずれる。そのため、エミッタ31cによる平行光LPは、-x方向に最も大きく傾いて進行する。なお、レンズ領域(91b、91c、91d、91e、91f、91g、91h、)に対応するエミッタ31による平行光LPは、光軸OAに対して比較的小さい角度をなして進行する。 Also, the optical axis OA of the lens region 91a is most greatly shifted in the x direction from the emitter 31b. Therefore, the parallel light LP from the emitter 31b travels with the greatest inclination in the x direction. Further, the optical axis OA of the lens area 91i is most greatly shifted in the −x direction from the emitter 31c. Therefore, the parallel light LP from the emitter 31c travels with the greatest inclination in the −x direction. In addition, the parallel light LP by the emitter 31 corresponding to the lens regions (91b, 91c, 91d, 91e, 91f, 91g, 91h) travels at a relatively small angle with respect to the optical axis OA.
 (別実施形態)
 なお、半導体レーザ光源装置は、上記の実施形態の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、以下の別実施形態に係る構成を任意に選択して、上記の実施形態に係る構成に採用してもよいことは勿論である。
(Another embodiment)
The semiconductor laser light source device is not limited to the configuration of the above-described embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention. For example, it is needless to say that the configuration according to another embodiment below may be arbitrarily selected and adopted in the configuration according to the above-described embodiment.
 〈1〉第一実施形態及び第二実施形態において、各レンズ領域91の光軸OAのx方向における位置が同じであるが、少なくとも二つのレンズ領域91の光軸OAのx方向における位置が相違しても構わない。また、第三実施形態及び第四実施形態において各エミッタ31のx方向における位置が同じであるが、少なくとも二つのエミッタ31のx方向における位置が相違しても構わない。 <1> In the first embodiment and the second embodiment, the positions of the optical axes OA in the x direction of the lens areas 91 are the same, but the positions of the optical axes OA of the at least two lens areas 91 in the x direction are different. It doesn't matter. In the third embodiment and the fourth embodiment, the positions of the emitters 31 in the x direction are the same, but the positions of at least two emitters 31 in the x direction may be different.
 また、第一実施形態から第四実施形態の一つまたは複数のエミッタ(31、104)において、エミッタ(31、104)のx方向における位置と、当該エミッタ(31、104)に対応するレンズ領域(91、113)のx方向における位置とが、一致していても構わない。 Further, in one or a plurality of emitters (31, 104) of the first to fourth embodiments, the position of the emitter (31, 104) in the x direction and the lens region corresponding to the emitter (31, 104). The positions of (91, 113) in the x direction may coincide with each other.
 以上を一般的に言えば、少なくとも二つのエミッタ(31、104)と、当該エミッタ(31、104)に対応する少なくとも二つのレンズ領域(91、113)と、において、各エミッタ(31、104)のx方向における位置を基準としたとき、対応するレンズ領域(91、113)のx方向における位置が異なる、と表現できる。 Generally speaking, each emitter (31, 104) includes at least two emitters (31, 104) and at least two lens regions (91, 113) corresponding to the emitters (31, 104). When the position in the x direction is used as a reference, it can be expressed that the position of the corresponding lens region (91, 113) in the x direction is different.
 〈2〉第一実施形態から第四実施形態では、レンズ領域(91、113)の光軸OAに対し、x方向にずれるエミッタ(31、104)と、-x方向にずれるエミッタ(31、104)とが存在するがこれに限らない。即ち、全てのエミッタ(31、104)が、レンズ領域(91、113)の光軸OAに対しx方向にずれていても構わない。同様に、全てのエミッタ(31、104)が、光軸OAに対し-x方向にずれていても構わない。換言すると、各エミッタ(31、104)による全ての平行光LPが、光軸OAに対してx方向/-x方向に傾いて進行しても構わない。 <2> In the first to fourth embodiments, the emitter (31, 104) shifted in the x direction and the emitter (31, 104) shifted in the −x direction with respect to the optical axis OA of the lens region (91, 113). ) And is not limited to this. That is, all the emitters (31, 104) may be displaced in the x direction with respect to the optical axis OA of the lens regions (91, 113). Similarly, all the emitters (31, 104) may be displaced in the −x direction with respect to the optical axis OA. In other words, all the parallel light LP from each emitter (31, 104) may travel in an x-direction / −x-direction with respect to the optical axis OA.
 〈3〉また、レーザ光Lは、x方向に大きな発散角を有し、y方向に小さな発散角を有して進行すると説明したが、これに限らない。即ちレーザ光Lは、x方向及びy方向に同程度の発散角を有して進行しても構わない。またレーザ光Lは、x方向に小さな発散角を有し、y方向に大きな発散角を有して進行しても構わない。 <3> Further, although it has been described that the laser light L has a large divergence angle in the x direction and a small divergence angle in the y direction, the present invention is not limited thereto. That is, the laser light L may travel with the same divergence angle in the x direction and the y direction. Further, the laser beam L may travel with a small divergence angle in the x direction and a large divergence angle in the y direction.
 〈4〉また、実施形態の半導体レーザ光源装置では、x方向(速軸方向)において平行に変換するレンズとしてシリンドリカルレンズを使用したが、これに限らない。例えば、シリンドリカルレンズの他に、フライアイレンズを利用することができる。即ち、x方向(速軸方向)において平行に変換するレンズであれば何れのレンズを使用しても構わない。例えば、x方向(速軸方向)のみならず、y方向(遅軸方向)においても平行に変換するレンズを使用しても構わない。 <4> In the semiconductor laser light source device of the embodiment, a cylindrical lens is used as a lens for converting in parallel in the x direction (fast axis direction), but the present invention is not limited to this. For example, a fly-eye lens can be used in addition to the cylindrical lens. That is, any lens may be used as long as it is a lens that converts in parallel in the x direction (fast axis direction). For example, a lens that converts not only in the x direction (fast axis direction) but also in the y direction (slow axis direction) may be used.
 〈5〉また、第三実施形態において、レンズ領域113が1つのレンズを構成しても構わない。即ち、レンズ112は、複数のレンズからなるレンズ群であっても構わない。 <5> In the third embodiment, the lens region 113 may constitute one lens. That is, the lens 112 may be a lens group including a plurality of lenses.
    1   :  第一実施形態の半導体レーザ光源装置
    3   :  半導体レーザアレイ
   30   :  側面
   31   :  エミッタ
    5   :  サブマウント
    7   :  ヒートシンク
    9   :  シリンドリカルレンズ
   91   :  レンズ領域
   12   :  トレーサ粒子
   13   :  影
  100   :  第二実施形態の半導体レーザ光源装置
  103   :  第二実施形態の半導体レーザ素子
  104   :  第二実施形態のエミッタ
  110   :  第三実施形態の半導体レーザ光源装置
  112   :  第三実施形態のレンズ
  113   :  第三実施形態のレンズ領域
  120   :  第四実施形態の半導体レーザ光源装置
    L   :  レーザ光
   LP   :  平行光
   LS   :  レーザシート
   OA   :  光軸
 
1: Semiconductor laser light source device of the first embodiment 3: Semiconductor laser array 30: Side surface 31: Emitter 5: Submount 7: Heat sink 9: Cylindrical lens 91: Lens region 12: Tracer particle 13: Shadow 100: Second embodiment Semiconductor laser light source device 103: Semiconductor laser element of the second embodiment 104: Emitter of the second embodiment 110: Semiconductor laser light source device of the third embodiment 112: Lens of the third embodiment 113: Lens of the third embodiment Area 120: Semiconductor laser light source device of the fourth embodiment L: Laser light LP: Parallel light LS: Laser sheet OA: Optical axis

Claims (6)

  1.  第一の方向に拡がり、且つ、前記第一の方向に直交する第二の方向に所定の幅を有して進行するレーザシートを射出する半導体レーザ光源装置であって、
     前記第一の方向に並ぶ複数のエミッタを含む光源部と、
     複数の前記エミッタから射出されたレーザ光を、前記第二の方向において平行に変換するレンズと、を有し、
     前記レーザシートは、前記レンズから射出された平行光が重なり合うことによって形成され、
     前記レンズは、複数の前記エミッタごとに、それぞれの前記エミッタから射出された前記レーザ光を前記第二の方向において平行に変換する複数のレンズ領域を含み、
     複数の前記エミッタのうちの少なくとも二つの前記エミッタと、二つの前記エミッタに対応する二つの前記レンズ領域と、において、それぞれの前記エミッタの前記第二の方向における位置を基準としたとき、前記エミッタに対応する前記レンズ領域の前記第二の方向における位置が異なることを特徴とする半導体レーザ光源装置。
    A semiconductor laser light source device that emits a laser sheet that spreads in a first direction and travels with a predetermined width in a second direction orthogonal to the first direction,
    A light source unit including a plurality of emitters arranged in the first direction;
    A lens for converting the laser beams emitted from the plurality of emitters in parallel in the second direction,
    The laser sheet is formed by overlapping parallel light emitted from the lens,
    The lens includes, for each of the plurality of emitters, a plurality of lens regions that convert the laser light emitted from the emitters in parallel in the second direction,
    In at least two of the plurality of emitters and two lens regions corresponding to the two emitters, when the positions of the emitters in the second direction are used as a reference, the emitters A position of the lens region corresponding to the second region in the second direction is different.
  2.  複数の前記レンズ領域のうち少なくとも二つの前記レンズ領域において、
      一方の前記レンズ領域の光軸は、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、一方の前記レンズ領域に対応する前記エミッタよりも前記第二の方向にずれており、
      他方の前記レンズ領域の光軸は、前記第三の方向からみたとき、他方の前記レンズ領域に対応する前記エミッタよりも前記第二の方向と反対方向にずれていることを特徴とする請求項1に記載の半導体レーザ光源装置。
    In at least two of the lens regions of the plurality of lens regions,
    The optical axis of one of the lens regions is higher than the emitter corresponding to one of the lens regions when viewed from a third direction orthogonal to both the first direction and the second direction. Is shifted in the direction of
    The optical axis of the other lens region is shifted in a direction opposite to the second direction with respect to the emitter corresponding to the other lens region when viewed from the third direction. 2. The semiconductor laser light source device according to 1.
  3.  前記光源部は、複数の前記エミッタが前記第一の方向に並び、前記第一の方向を遅軸方向とし、前記第二の方向を速軸方向とする半導体レーザアレイを含み、
     前記半導体レーザアレイは、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、前記第二の方向と反対方向に突き出すように湾曲していることを特徴とする請求項1または2に記載の半導体レーザ光源装置。
    The light source unit includes a semiconductor laser array in which a plurality of the emitters are arranged in the first direction, the first direction is a slow axis direction, and the second direction is a fast axis direction,
    The semiconductor laser array is curved so as to protrude in a direction opposite to the second direction when viewed from a third direction orthogonal to both the first direction and the second direction. The semiconductor laser light source device according to claim 1 or 2.
  4.  前記光源部は、1つの前記エミッタを含む複数の半導体レーザ素子を有してなり、
     複数の前記半導体レーザ素子のうち少なくとも二つの前記半導体レーザ素子において、前記第二の方向における位置が互いに異なることを特徴とする請求項1または2に記載の半導体レーザ光源装置。
    The light source unit includes a plurality of semiconductor laser elements including one emitter.
    3. The semiconductor laser light source device according to claim 1, wherein positions of the semiconductor laser elements in the second direction are different from each other in at least two of the plurality of semiconductor laser elements.
  5.  複数の前記レンズ領域のうち、少なくとも二つの前記レンズ領域の光軸は、前記第二の方向における位置が互いに異なるように配置されていることを特徴とする請求項1または2に記載の半導体レーザ光源装置。 3. The semiconductor laser according to claim 1, wherein optical axes of at least two of the lens regions are arranged so that positions in the second direction are different from each other. Light source device.
  6.  複数の前記レンズ領域の光軸は、前記第一の方向と前記第二の方向との双方に直交する第三の方向からみたとき、直線状に並び、
     前記レンズは、前記第三の方向からみたとき、前記第一の方向から所定の角度だけ傾斜していることを特徴とする請求項1または2に記載の半導体レーザ光源装置。
    The optical axes of the plurality of lens regions are arranged in a straight line when viewed from a third direction orthogonal to both the first direction and the second direction,
    3. The semiconductor laser light source device according to claim 1, wherein the lens is inclined by a predetermined angle from the first direction when viewed from the third direction. 4.
PCT/JP2017/003749 2016-02-04 2017-02-02 Semiconductor laser light source device WO2017135366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780009106.XA CN108604766A (en) 2016-02-04 2017-02-02 Semiconductor laser light resource device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019716 2016-02-04
JP2016019716A JP6390920B2 (en) 2016-02-04 2016-02-04 Semiconductor laser light source device

Publications (1)

Publication Number Publication Date
WO2017135366A1 true WO2017135366A1 (en) 2017-08-10

Family

ID=59499871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003749 WO2017135366A1 (en) 2016-02-04 2017-02-02 Semiconductor laser light source device

Country Status (3)

Country Link
JP (1) JP6390920B2 (en)
CN (1) CN108604766A (en)
WO (1) WO2017135366A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169510A (en) * 2017-11-30 2018-06-15 东南大学 Micro-flows three-dimensional velocity field measurement device and method based on single light-field camera
WO2023072979A1 (en) * 2021-10-29 2023-05-04 Trumpf Photonic Components Gmbh Laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163245A (en) * 2019-09-27 2022-10-26 パナソニックIpマネジメント株式会社 Laser light emitting element and laser light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140528A (en) * 2003-11-04 2005-06-02 Toshiba Corp Fluid measurement device
JP2007102121A (en) * 2005-10-07 2007-04-19 Sony Corp Image converting device
JP2015125013A (en) * 2013-12-25 2015-07-06 本田技研工業株式会社 Time-series fluid velocity measurement system
JP2016004007A (en) * 2014-06-19 2016-01-12 東京電力株式会社 Flow rate calculation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832455B2 (en) * 2010-03-05 2015-12-16 テラダイオード, インコーポレーテッド Selective rearrangement and rotation wavelength beam combining system and method
CN103081261B (en) * 2010-03-05 2016-03-09 泰拉二极管公司 Wavelength light beam combined system and method
WO2014087726A1 (en) * 2012-12-03 2014-06-12 三菱電機株式会社 Semiconductor laser apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140528A (en) * 2003-11-04 2005-06-02 Toshiba Corp Fluid measurement device
JP2007102121A (en) * 2005-10-07 2007-04-19 Sony Corp Image converting device
JP2015125013A (en) * 2013-12-25 2015-07-06 本田技研工業株式会社 Time-series fluid velocity measurement system
JP2016004007A (en) * 2014-06-19 2016-01-12 東京電力株式会社 Flow rate calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169510A (en) * 2017-11-30 2018-06-15 东南大学 Micro-flows three-dimensional velocity field measurement device and method based on single light-field camera
WO2023072979A1 (en) * 2021-10-29 2023-05-04 Trumpf Photonic Components Gmbh Laser device

Also Published As

Publication number Publication date
JP6390920B2 (en) 2018-09-19
CN108604766A (en) 2018-09-28
JP2017139355A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US7277229B2 (en) Linear light beam generating optical system
WO2017135366A1 (en) Semiconductor laser light source device
US20060018356A1 (en) Diode laser arrangement and associated beam shaping unit
ES2431308T3 (en) A method and a laser device producing high optical power density
JP5916751B2 (en) Apparatus for converting a laser beam having a maximum intensity distribution at the center into a laser beam having an M profile
JPH1082971A (en) Optical device for uniformizing laser light and generating plural lighting fields
WO2019192055A1 (en) Laser radar
JP6668793B2 (en) Semiconductor laser light source device and method of manufacturing semiconductor laser light source device
BRPI1011039B1 (en) laser welding system and method for laser beam welding
JP2002239773A (en) Device and method for semiconductor laser beam machining
JP2009543143A (en) Apparatus for homogenizing light and laser apparatus for generating a linear intensity distribution on the work surface
JP2014188518A (en) Laser processing device
CN106873168A (en) A kind of lens for being applied to semiconductor laser device beam shaping
CN207216260U (en) Project module
JP6677073B2 (en) Laser sheet light source device
US20190341745A1 (en) Laser device
JP2007000897A (en) Laser beam device
JP6743479B2 (en) Light source unit and laser unit
KR20200068811A (en) Laser processing apparatus
JP2019124732A (en) Light emission device and image display system
KR101928264B1 (en) Laser beam shaping apparatus
KR20190080411A (en) A line beam forming device
JPH1197340A (en) Exposing optical system, optical processing device, exposing device, and photocoupler
JP2009251381A (en) Laser irradiation device
JP6376412B2 (en) Laser sheet light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747517

Country of ref document: EP

Kind code of ref document: A1