WO2017135171A1 - 車両の制御装置、及び車両の制御方法 - Google Patents

車両の制御装置、及び車両の制御方法 Download PDF

Info

Publication number
WO2017135171A1
WO2017135171A1 PCT/JP2017/003018 JP2017003018W WO2017135171A1 WO 2017135171 A1 WO2017135171 A1 WO 2017135171A1 JP 2017003018 W JP2017003018 W JP 2017003018W WO 2017135171 A1 WO2017135171 A1 WO 2017135171A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engaged
control
lock
vehicle control
Prior art date
Application number
PCT/JP2017/003018
Other languages
English (en)
French (fr)
Inventor
太田 雄介
義祐 西廣
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to US16/073,311 priority Critical patent/US10690239B2/en
Priority to KR1020187024561A priority patent/KR20180102671A/ko
Priority to CN201780008411.7A priority patent/CN108603590B/zh
Publication of WO2017135171A1 publication Critical patent/WO2017135171A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0496Smoothing ratio shift for low engine torque, e.g. during coasting, sailing or engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP2013-213557 discloses a vehicle control system that performs so-called sailing stop control in which a clutch is disengaged and the automatic transmission is in a neutral state (power cut-off state) when the predetermined condition is satisfied, and the vehicle is driven with the drive source stopped.
  • An apparatus is disclosed.
  • the present invention aims to ensure acceleration response when the driver intends to accelerate during neutral travel control.
  • the drive source and the power transmission path are provided downstream of the drive source, the torque converter having a lock-up clutch, and the power transmission path are provided downstream of the torque converter.
  • An automatic transmission having a fastening element and a vehicle control device are provided.
  • the fastening element is fastened with the lock-up clutch fastened.
  • a control unit is provided.
  • the drive source and the power transmission path are provided on the downstream side of the drive source, and the torque converter having a lock-up clutch and the power transmission path are provided on the downstream side of the torque converter.
  • a vehicle control method for controlling a vehicle having an automatic transmission having a fastening element when the accelerator opening is equal to or greater than a predetermined opening during neutral traveling control in which the automatic transmission is powered off during vehicle traveling, the fastening element is fastened with the lock-up clutch fastened. .
  • the fastening element when the accelerator opening is greater than or equal to the predetermined opening during the neutral travel control, the fastening element is fastened while the lock-up clutch is fastened, whereby the acceleration after the fastening element is fastened. Responsiveness can be improved.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for canceling the sailing stop control in the embodiment.
  • FIG. 3 is a time chart for canceling the sailing stop control in the comparative example.
  • FIG. 4 is a time chart for canceling the sailing stop control in the first embodiment.
  • FIG. 5 is a time chart for canceling the sailing stop control in the second embodiment.
  • the gear ratio is a value obtained by dividing the rotational speed of the input shaft of the continuously variable transmission by the rotational speed of the output shaft of the continuously variable transmission.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • the vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission (variator) 4, a hydraulic control circuit 5, a mechanical oil pump 6m, an electric oil pump 6e, and an engine controller 10. And a transmission controller 11.
  • the rotation generated by the engine 1 is transmitted to driving wheels (not shown) via the torque converter 2, the forward / reverse switching mechanism 3, the continuously variable transmission 4, the gear set 8, and the differential gear device 9. That is, the rotation of the engine 1 is transmitted from upstream to downstream in a power transmission path with the engine 1 side as the upstream and the drive wheel side as the downstream.
  • the torque converter 2, the forward / reverse switching mechanism 3, and the continuously variable transmission 4 constitute an automatic transmission 15.
  • the torque converter 2 has a lockup clutch 2a.
  • the lockup clutch 2a When the lockup clutch 2a is engaged, the input shaft and the output shaft of the torque converter 2 are directly connected, and the input shaft and the output shaft rotate at the same speed. .
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear set as a main component, and the sun gear is coupled to the engine 1 via the torque converter 2 and the carrier is coupled to the primary pulley 4a.
  • the forward / reverse switching mechanism 3 further includes a forward clutch 3a that directly connects the sun gear of the double pinion planetary gear set and the carrier, and a reverse brake 3b that fixes the ring gear, and from the engine 1 via the torque converter 2 when the forward clutch 3a is engaged.
  • the input rotation is transmitted to the primary pulley 4a as it is, and when the reverse brake 3b is engaged, the input rotation via the torque converter 2 from the engine 1 is transmitted to the primary pulley 4a under reverse deceleration.
  • the states of the forward clutch 3a and the reverse brake 3b include “released”, “standby”, “slip”, and “engaged” states. These states are switched according to the hydraulic pressure supplied to each piston pressure receiving chamber.
  • Release is a state in which, for example, hydraulic pressure is not supplied to the forward clutch 3a, and the forward clutch 3a has no torque capacity.
  • “Standby” is a state in which, for example, hydraulic pressure is supplied to the forward clutch 3a, but the forward clutch 3a has no torque capacity. In the “standby” state, the forward clutch 3a is in a state immediately before having a torque capacity.
  • the “slip” is, for example, a forward / reverse switching mechanism when hydraulic pressure is supplied to the forward clutch 3a, the forward clutch 3a has torque capacity, and the forward clutch 3a is fastened between the input and output shafts of the forward / reverse switching mechanism 3.
  • 3 is a state in which a rotational speed difference taking into consideration a transmission gear ratio R1 of 3 is generated. In the “sliding” state, the torque capacity is smaller than the input torque of the forward clutch 3a.
  • the “engaged” means, for example, a forward / reverse switching mechanism when hydraulic pressure is supplied to the forward clutch 3a, the forward clutch 3a has a torque capacity, and the forward clutch 3a is engaged between the input / output shafts of the forward / reverse switching mechanism 3.
  • This is a state in which a rotational speed difference in consideration of the gear ratio R1 of 3 has not occurred.
  • the torque capacity is larger than the input torque of the forward clutch 3a.
  • the “engaged” state includes complete engagement in which the torque capacity is further increased after the torque capacity becomes larger than the input torque of the forward clutch 3a, and the torque capacity has a margin for the input torque.
  • the continuously variable transmission 4 includes a primary pulley 4a, a secondary pulley 4b, and a belt 4c.
  • the continuously variable transmission 4 by controlling the hydraulic pressure supplied to the primary pulley 4a and the hydraulic pressure supplied to the secondary pulley 4b, the contact radius between the pulleys 4a, 4b and the belt 4c is changed.
  • the gear ratio of the step transmission 4 is changed.
  • the mechanical oil pump 6m is a mechanical oil pump that receives the rotation of the engine 1 and is driven by using a part of the power of the engine 1.
  • the oil discharged from the mechanical oil pump 6m is supplied to the hydraulic control circuit 5 by driving the mechanical oil pump 6m.
  • engine 1 is stopped, mechanical oil pump 6m is not driven, and no oil is discharged from mechanical oil pump 6m.
  • the electric oil pump 6e is an electric oil pump that is driven by power supplied from a battery. By driving the electric oil pump 6e when the mechanical oil pump 6m is not driven, oil can be supplied to the hydraulic control circuit 5 even when the engine is stopped.
  • the hydraulic control circuit 5 includes a plurality of flow paths and a plurality of hydraulic actuators.
  • the hydraulic actuator includes a solenoid and a hydraulic control valve.
  • the hydraulic actuator is controlled based on the control signal from the transmission controller 11, the hydraulic supply path is switched, and the line pressure generated by the oil discharged from the mechanical oil pump 6m and the electric oil pump 6e.
  • the necessary hydraulic pressure is adjusted from The hydraulic control circuit 5 supplies the adjusted hydraulic pressure to each part of the continuously variable transmission 4, the forward / reverse switching mechanism 3, and the torque converter 2.
  • the transmission controller 11 includes a CPU, a ROM, a RAM, and the like, and controls the operation of the automatic transmission 15.
  • the function of the transmission controller 11 is exhibited by the CPU reading and executing a program stored in the ROM.
  • the engine controller 10 includes a CPU, a ROM, a RAM, and the like.
  • the transmission controller 11 includes a signal from the accelerator opening sensor 21 that detects the accelerator opening APO corresponding to the operation amount of the accelerator pedal 41, and a brake fluid that detects the brake fluid pressure BRP corresponding to the operation amount of the brake pedal 42.
  • a signal from the pressure sensor 22 and a signal from the inhibitor switch 23 for detecting the position of the shift lever 40 are input.
  • the transmission controller 11 also receives a signal from the engine speed sensor 24 that detects the engine speed Ne, which is the speed of the output shaft of the engine 1, and the speed of the primary pulley 4a of the continuously variable transmission 4 (forward / reverse travel).
  • Engine controller 10 that controls the operation of the engine 1, the signal from the primary rotation speed sensor 25 that detects the primary rotation speed Npri that is the rotation speed on the output side of the switching mechanism 3, the signal from the vehicle speed sensor 26 that detects the vehicle speed VSP.
  • a signal relating to the engine torque Te is input.
  • the fuel injection to the engine 1 is stopped and the engine 1 is stopped, and the forward clutch 3a and the reverse brake 3b of the forward / reverse switching mechanism 3 are released.
  • sailing stop control for setting the automatic transmission 15 to the neutral state is executed.
  • the lockup clutch 2a is released.
  • Sailing stop conditions are, for example, the following conditions.
  • the shift lever 40 is in the D range.
  • the vehicle speed VSP is equal to or higher than the first predetermined vehicle speed V1.
  • the accelerator pedal 41 is not depressed.
  • the brake pedal 42 is not depressed.
  • the first predetermined vehicle speed V1 is a vehicle speed in the middle vehicle speed range or the high vehicle speed range, and is set in advance.
  • the sailing stop condition is satisfied when all of the above conditions (a) to (d) are satisfied, and is not satisfied when any of the above (a) to (d) is not satisfied.
  • the sailing stop condition is also a sailing stop cancellation condition for canceling the sailing stop control.
  • the sailing stop condition and the sailing stop cancellation condition may be different conditions.
  • the forward / reverse switching mechanism 3 is in a power cut-off state, and the automatic transmission 15 is in a neutral state. Further, since the engine 1 is stopped, the mechanical oil pump 6m is not driven. Therefore, during the sailing stop control, the necessary hydraulic pressure is supplied to the vehicle using the oil discharged from the electric oil pump 6e.
  • step S100 the transmission controller 11 determines whether a sailing stop cancellation condition (SS cancellation condition) is satisfied. Specifically, the transmission controller 11 determines whether any of the above (a) to (d) is not satisfied. If the sailing stop cancellation condition is satisfied, the process proceeds to step S101. If the sailing stop cancellation condition is not satisfied, the current process ends.
  • SS cancellation condition a sailing stop cancellation condition
  • step S101 the transmission controller 11 determines whether or not the accelerator opening APO is equal to or greater than the predetermined opening APO1.
  • the accelerator opening APO is detected based on a signal from the accelerator opening sensor 21.
  • the predetermined opening APO1 is an opening that is set in advance and is an opening that can be determined that the driver's intention to accelerate is large. Specifically, the predetermined opening APO1 is an opening at which kickdown control is executed in the automatic transmission 15 during normal travel control. If the accelerator opening APO is greater than or equal to the predetermined opening APO1, the process proceeds to step S102. On the other hand, if the accelerator opening APO is less than the predetermined opening APO1, the process proceeds to step S104.
  • the accelerator opening APO can be substituted with another value having a correspondence relationship with the operation amount of the accelerator pedal 41, for example, the throttle opening TVO.
  • step S102 the transmission controller 11 and the engine controller 10 execute sailing stop cancellation control. Specifically, the transmission controller 11 engages the lockup clutch 2a, and the engine controller 10 starts the engine 1. That is, an engagement command is output to the lockup clutch 2a and a start command for the engine 1 is output. In this way, rotation synchronization control is performed with the lockup clutch 2a engaged.
  • the accelerator opening APO is equal to or greater than the predetermined opening APO1 and the driver's intention to accelerate is large
  • the lockup clutch 2a is engaged before the forward clutch 3a synchronizes with the rotation.
  • step S103 the transmission controller 11 determines whether or not the forward clutch 3a is synchronized in rotation. Specifically, the transmission controller 11 determines whether the relationship between the engine rotational speed Ne and the primary rotational speed Npri satisfies Expression (1).
  • the engine speed Ne is detected based on a signal from the engine speed sensor 24.
  • Primary rotation speed Npri is detected based on a signal from primary rotation speed sensor 25.
  • R1 is the gear ratio of the forward / reverse switching mechanism 3 when the forward clutch 3a is engaged.
  • N1 is a first threshold value that is set in advance, and is a value that can be determined that the engagement shock can be suppressed when the forward clutch 3a is engaged while the lockup clutch 2a is engaged.
  • the first threshold N1 is smaller than a second threshold N2 described later.
  • the forward clutch 3a is used using the engine rotational speed Ne and the primary rotational speed Npri. Judging whether the rotation is synchronized.
  • the transmission controller 11 determines that the forward clutch 3a is rotationally synchronized when the expression (1) is satisfied, and determines that the forward clutch 3a is not rotationally synchronized when the expression (1) is not satisfied. If it is determined that the engine rotational speed Ne is increased by starting the engine 1 and the forward clutch 3a is rotationally synchronized, the process proceeds to step S106.
  • step S104 the engine controller 10 starts the engine 1.
  • the accelerator opening APO is smaller than the predetermined opening APO1
  • the rotation synchronization control is executed with the lockup clutch 2a being released.
  • step S105 the transmission controller 11 determines whether or not the forward clutch 3a is synchronized in rotation. Specifically, the transmission controller 11 determines whether or not the relationship between the engine rotational speed Ne and the primary rotational speed Npri satisfies Expression (2).
  • N2 is a second threshold value set in advance, and is a value that can be determined to be able to suppress the occurrence of an engagement shock when the forward clutch 3a is engaged with the lockup clutch 2a released.
  • the second threshold N2 is larger than the first threshold N1.
  • the transmission controller 11 determines that the forward clutch 3a is rotationally synchronized when the expression (2) is satisfied, and determines that the forward clutch 3a is not rotationally synchronized when the expression (2) is not satisfied. If it is determined that the engine rotational speed Ne is increased by starting the engine 1 and the forward clutch 3a is rotationally synchronized, the process proceeds to step S106.
  • step S106 the transmission controller 11 ends the rotation synchronization control and executes the fastening control.
  • the transmission controller 11 increases the hydraulic pressure supplied to the forward clutch 3a and fastens the forward clutch 3a.
  • FIG. 3 is a time chart of a comparative example in which the sailing stop control is released in a state where the accelerator pedal 41 is depressed, the accelerator opening APO becomes larger than the predetermined opening APO1, and the lockup clutch 2a is released.
  • the rotational speed Nin on the input side of the forward / reverse switching mechanism 3 is detected, and the rotational speed Nin on the input side, the primary rotational speed Npri, and the forward / reverse switching mechanism 3 when the forward clutch 3a is engaged are detected.
  • the rotation synchronization is determined. Specifically, when the expression (3) is satisfied, it is determined that the forward clutch 3a is rotationally synchronized.
  • N3 is a preset threshold value, and is set so that the occurrence of engagement shock is suppressed when the forward clutch 3a is engaged with the lockup clutch 2a being released.
  • the sailing stop release control is started, and the rotation synchronization control is started.
  • the engine 1 is started, and the engine rotational speed Ne and the input-side rotational speed Nin are increased.
  • the engine rotational speed Ne is indicated by a solid line
  • a part of the input side rotational speed Nin is indicated by a broken line. Since the lockup clutch 2a is disengaged in the range indicated by the broken line, the input side rotational speed Nin is lower than the engine rotational speed Ne.
  • the pulling shock as shown in FIG. 3 does not occur after the forward clutch 3a is engaged, but the forward clutch 3a is engaged. A pulling shock occurs.
  • the lock-up clutch 2a is already engaged when the travel control is started, so that the acceleration response in the travel control can be improved. Is possible.
  • the threshold value for determining the rotation synchronization with the lockup clutch 2a engaged is different from the second threshold value N2 when the rotation synchronization is determined with the lockup clutch 2a released.
  • the first threshold value N1 is set, specifically, the first threshold value N1 is made smaller than the second threshold value N2.
  • the forward clutch 3a When releasing the sailing stop control and the accelerator opening APO is equal to or greater than the predetermined opening APO1, the forward clutch 3a is engaged with the lock-up clutch 2a engaged. Thereby, the acceleration responsiveness after the forward clutch 3a is engaged can be improved, and the acceleration responsiveness can be ensured when the accelerator opening APO is large and the driver intends to accelerate.
  • the forward clutch 3a When releasing the sailing stop control and the accelerator opening APO is smaller than the predetermined opening APO1, the forward clutch 3a is engaged with the lock-up clutch 2a released. Thereby, generation
  • Executed rotation synchronization control when releasing the sailing stop control can suppress the engagement shock when the forward clutch 3a is engaged.
  • a sensor for detecting the rotational speed Nin on the input side of the forward / reverse switching mechanism 3 is not provided, and rotational synchronization is determined using the engine rotational speed Ne and the primary rotational speed Npri.
  • the threshold value for determining the rotation synchronization is changed depending on whether the lockup clutch 2a is engaged or released. Thereby, irrespective of the state of the lock-up clutch 2a, it is possible to accurately determine the rotation synchronization and suppress the occurrence of the engagement shock when the forward clutch 3a is engaged.
  • the first threshold value N1 for determining the rotation synchronization with the lockup clutch 2a engaged is made smaller than the second threshold value N2 for determining the rotation synchronization with the lockup clutch 2a released.
  • an accumulator may be provided in an oil passage that supplies hydraulic pressure to the forward clutch 3a.
  • you may provide a dish plate between the piston and plate which fasten the forward clutch 3a according to oil_pressure
  • the automatic transmission 15 having the forward / reverse switching mechanism 3 disposed on the upstream side or the upstream side of the continuously variable transmission (variator) 4 has been described.
  • the automatic transmission 15 is disposed on the downstream side or downstream side of the continuously variable transmission 4.
  • the present invention may be applied to an automatic transmission having an auxiliary transmission mechanism.
  • the power transmission mechanism is a concept including a forward / reverse switching mechanism 3, a sub-transmission mechanism, and other power transmission mechanisms.
  • the main transmission mechanism that constitutes the automatic transmission 15 is not limited to the belt-type continuously variable transmission 4 but may be a toroidal continuously variable transmission. It may be a machine.
  • the formulas (1) and (2) are used as a method for determining whether or not the forward clutch 3a is rotationally synchronized. You may judge from.
  • N4 is a fourth threshold value set in advance, and is a value that can be determined to suppress the occurrence of an engagement shock when the forward clutch 3a is engaged with the lockup clutch 2a engaged.
  • N5 is a fifth threshold value set in advance, and is a value that can be determined to be able to suppress the occurrence of engagement shock when the forward clutch 3a is engaged with the lockup clutch 2a being released, and N4 Bigger than.
  • the method for determining whether or not the forward clutch 3a is rotationally synchronized is not limited to the formula (1), the formula (2), the formula (4), and the formula (5), and the rotation is performed when the sailing stop control is canceled. It is only necessary to accurately determine the synchronization and suppress the occurrence of the fastening shock.
  • sailing stop control has been described as an example of neutral travel control.
  • the neutral travel control may be sailing control or coast stop control, for example, in addition to the sailing stop control.
  • the above control can be applied when the neutral release condition is satisfied and the forward clutch 3a is engaged during the neutral traveling while the automatic transmission 15 is traveling in the neutral state.
  • the coast stop control is executed by the transmission controller 11 and the engine controller 10 when the coast stop establishment condition is satisfied.
  • the coast stop establishment conditions are, for example, the following (a) to (d).
  • the engine 1 that is a drive source is stopped.
  • the shift lever 40 is in the D range.
  • the vehicle speed VSP is less than the second predetermined vehicle speed V2.
  • the accelerator pedal 41 is not depressed.
  • the brake pedal 42 is depressed.
  • the second predetermined vehicle speed V2 is a low vehicle speed lower than the first predetermined vehicle speed V1.
  • the coast stop establishment condition is satisfied when all of the conditions (a) to (d) are satisfied, and is not satisfied when any of the conditions (a) to (d) is not satisfied.
  • the coast stop cancellation condition is, for example, that any of (a) to (d) is not established during the coast stop control, but the coast stop establishment condition and the coast stop cancellation condition may be different. .
  • the sailing control is executed by the transmission controller 11 and the engine controller 10 when a sailing establishment condition is established.
  • the sailing conditions are, for example, the following (a) to (d).
  • the engine 1 that is a drive source is not stopped.
  • the shift lever 40 is in the D range.
  • the vehicle speed VSP is equal to or higher than the second predetermined vehicle speed V2.
  • the accelerator pedal 41 is not depressed.
  • the brake pedal 42 is not depressed.
  • the sailing satisfaction condition is satisfied when all of the conditions (a) to (d) are satisfied, and is not satisfied when any of the conditions (a) to (d) is not satisfied.
  • the sailing cancellation condition is, for example, that any of (a) to (d) is not established during the sailing control, but the sailing establishment condition and the sailing cancellation condition may be different.
  • the lockup clutch 2a is released during the sailing stop control.
  • the lockup clutch 2a is engaged during the sailing stop control.
  • the maintained state may be maintained. Thereby, it is not necessary to fasten the lockup clutch 2a when the sailing stop control is released, the number of times the lockup clutch 2a is fastened can be reduced, and the durability of the lockup clutch 2a can be improved.
  • the “predetermined neutral travel control cancellation condition” is not limited, but may include at least one of the following conditions (a) to (c), for example.
  • the accelerator pedal 41 is depressed, and the accelerator opening APO is smaller than the predetermined opening APO1 (0 ⁇ APO ⁇ APO1).
  • B The brake pedal 42 is depressed.
  • C The vehicle speed VSP is less than the first predetermined vehicle speed V1 (VSP ⁇ V1).
  • the additional condition (d) is, for example, whether or not the road has a predetermined slope or more (climbing road) ), Or whether it has been changed to a low speed range (L range, S range) or the like. Then, when any of the conditions (a) to (d) is satisfied during the neutral travel control, it is determined that the neutral travel control cancellation condition is satisfied.
  • the coast stop control does not include (b) when the brake pedal 42 is depressed or (c) the vehicle speed VSP is less than the first predetermined vehicle speed V1 as the predetermined coast stop control cancellation condition.
  • the drive source is not limited to the engine 1, and may be, for example, a motor or a combination of the engine 1 and the motor.
  • the transmission controller 11 and the engine controller 10 are configured as separate controllers.
  • the transmission controller 11 and the engine controller 10 can be configured as a single controller by integrating their functions.
  • at least one of the transmission controller 11 and the engine controller 10 may be constituted by a plurality of controllers.
  • An automatic transmission connected to a drive source, provided on the downstream side of the power transmission path from the drive source, provided on the downstream side of the power transmission path from the torque converter having a lock-up clutch,
  • a control device for an automatic transmission for controlling an automatic transmission having a fastening element disposed so as to be capable of interrupting transmission of power through the automatic transmission, When the vehicle is traveling, neutral travel control is performed to turn off the automatic transmission when a predetermined neutral travel condition is met, and the neutral travel control with the lock-up clutch released is used to increase the accelerator opening. It is an automatic transmission control device that fastens a fastening element in a state in which a lock-up clutch is fastened at the time of release based on the automatic transmission.
  • the automatic transmission control device maintains the lockup clutch engaged during the neutral travel control.

Abstract

駆動源と、動力伝達経路において、駆動源よりも下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、動力伝達経路において、トルクコンバータよりも下流側に設けられた締結要素とを有する自動変速機と、を有する車両の制御装置である。車両走行中に自動変速機を動力遮断状態とするニュートラル走行制御中に、アクセル開度が所定開度以上になった場合は、ロックアップクラッチを締結した状態で締結要素を締結する制御部を備える。

Description

車両の制御装置、及び車両の制御方法
 本発明は、車両の制御装置、及び車両の制御方法に関するものである。
 JP2013-213557には、所定の条件が成立すると、クラッチを解放して自動変速機をニュートラル状態(動力遮断状態)にし、駆動源を停止して走行する、いわゆるセーリングストップ制御を実行する車両の制御装置が開示されている。
 セーリングストップ制御を実行中に、運転者に加速意図が生じた場合には、加速意図に対して応答良く駆動力を駆動源から駆動輪へ伝達することが望ましい。
 このような要望は、セーリングストップ制御を解除する際だけでなく、走行中にクラッチを解放して自動変速機をニュートラル状態にするニュートラル走行制御全般について、その実行中に運転者に加速意図がある場合にも生じる。
 本発明は、ニュートラル走行制御中に運転者に加速意図が生じた場合の加速応答性を確保することを目的とする。
 本発明のある態様では、駆動源と、動力伝達経路において、駆動源よりも下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、動力伝達経路において、トルクコンバータよりも下流側に設けられた締結要素とを有する自動変速機と、を有する車両の制御装置を提供する。本態様では、車両走行中に自動変速機を動力遮断状態とするニュートラル走行制御中に、アクセル開度が所定開度以上になった場合は、ロックアップクラッチを締結した状態で締結要素を締結する制御部を備える。
 本発明の別の態様では、駆動源と、動力伝達経路において、駆動源よりも下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、動力伝達経路において、トルクコンバータよりも下流側に設けられた締結要素とを有する自動変速機と、を有する車両を制御する、車両の制御方法を提供する。本態様では、車両走行中に自動変速機を動力遮断状態とするニュートラル走行制御中に、アクセル開度が所定開度以上になった場合は、ロックアップクラッチを締結した状態で締結要素を締結する。
 上記態様によると、ニュートラル走行制御中に、アクセル開度が所定開度以上になった場合には、ロックアップクラッチを締結した状態で締結要素を締結することで、締結要素が締結した後の加速応答性を向上させることができる。
図1は、本発明の一実施形態に係る車両の概略構成図である。 図2は、同上実施形態におけるセーリングストップ制御を解除する場合のフローチャートである。 図3は、比較例におけるセーリングストップ制御を解除する場合のタイムチャートである。 図4は、第1実施例におけるセーリングストップ制御を解除する場合のタイムチャートである。 図5は、第2実施例におけるセーリングストップ制御を解除する場合のタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。以下において、変速比は、無段変速機の入力軸の回転速度を無段変速機の出力軸の回転速度で除算した値である。
 図1は、本実施形態の車両の概略構成図である。車両は、エンジン1と、トルクコンバータ2と、前後進切替機構3と、無段変速機(バリエータ)4と、油圧制御回路5と、メカオイルポンプ6mと、電動オイルポンプ6eと、エンジンコントローラ10と、変速機コントローラ11とを備える。
 車両においては、エンジン1で発生した回転が、トルクコンバータ2、前後進切替機構3、無段変速機4、歯車組8、ディファレンシャルギヤ装置9を経て、図示しない駆動輪に伝達される。つまり、エンジン1側を上流、駆動輪側を下流とした動力伝達経路において、上流から下流に向けてエンジン1の回転が伝達される。トルクコンバータ2と前後進切替機構3と無段変速機4とによって自動変速機15が構成される。
 トルクコンバータ2は、ロックアップクラッチ2aを有しており、ロックアップクラッチ2aが締結されると、トルクコンバータ2の入力軸と出力軸とが直結し、入力軸と出力軸とが同速回転する。
 前後進切替機構3は、ダブルピニオン遊星歯車組を主たる構成要素とし、そのサンギヤをトルクコンバータ2を介してエンジン1に結合し、キャリアをプライマリプーリ4aに結合する。前後進切替機構3は更に、ダブルピニオン遊星歯車組のサンギヤおよびキャリア間を直結する前進クラッチ3a、及びリングギヤを固定する後進ブレーキ3bを備え、前進クラッチ3aの締結時にエンジン1からトルクコンバータ2を経由した入力回転をそのままプライマリプーリ4aに伝達し、後進ブレーキ3bの締結時にエンジン1からトルクコンバータ2を経由した入力回転を逆転減速下にプライマリプーリ4aへ伝達する。
 前進クラッチ3a、及び後進ブレーキ3bの状態としては、「解放」、「待機」、「滑り」、及び「締結」の状態がある。これらの状態は、各ピストン受圧室に供給される油圧に応じて切り替えられる。
 「解放」とは、例えば前進クラッチ3aに油圧が供給されておらず、前進クラッチ3aがトルク容量を持たない状態である。
 「待機」とは、例えば前進クラッチ3aに油圧が供給されているものの、前進クラッチ3aがトルク容量を持たない状態である。「待機」状態では、前進クラッチ3aはトルク容量を持つ直前の状態となっている。
 「滑り」とは、例えば前進クラッチ3aに油圧が供給されており、前進クラッチ3aがトルク容量を持ち、前後進切替機構3の入出力軸間で前進クラッチ3aを締結した場合の前後進切替機構3の変速比R1を考慮した回転速度差が発生している状態である。「滑り」状態では、トルク容量が前進クラッチ3aの入力トルクよりも小さい。
 「締結」とは、例えば前進クラッチ3aに油圧が供給されており、前進クラッチ3aがトルク容量を持ち、前後進切替機構3の入出力軸間で前進クラッチ3aを締結した場合の前後進切替機構3の変速比R1を考慮した回転速度差が発生していない状態である。「締結」状態では、トルク容量が前進クラッチ3aの入力トルクよりも大きい。なお、「締結」状態には、トルク容量が前進クラッチ3aの入力トルクよりも大きくなった後に、さらにトルク容量を大きくし、トルク容量が入力トルクに対して余裕代を持つ完全締結が含まれる。
 無段変速機4は、プライマリプーリ4aと、セカンダリプーリ4bと、ベルト4cとを備える。無段変速機4では、プライマリプーリ4aに供給される油圧と、セカンダリプーリ4bに供給される油圧とが制御されることで、各プーリ4a、4bとベルト4cとの接触半径が変更され、無段変速機4の変速比が変更される。
 メカオイルポンプ6mは、エンジン1の回転が入力され、エンジン1の動力の一部を利用して駆動する機械式のオイルポンプである。メカオイルポンプ6mの駆動により、メカオイルポンプ6mから吐出された油は、油圧制御回路5に供給される。なお、エンジン1が停止している場合には、メカオイルポンプ6mは駆動されず、油はメカオイルポンプ6mから吐出されない。
 電動オイルポンプ6eは、バッテリーから電力が供給されて駆動する電動式のオイルポンプである。メカオイルポンプ6mが駆動されていない場合に電動オイルポンプ6eを駆動することで、エンジン停止中にも油を油圧制御回路5に供給することができる。
 油圧制御回路5は、複数の流路、複数の油圧アクチュエータなどで構成される。油圧アクチュエータは、ソレノイドや油圧制御弁によって構成される。油圧制御回路5では、変速機コントローラ11からの制御信号に基づき油圧アクチュエータが制御され、油圧の供給経路が切り換えられ、メカオイルポンプ6m、及び電動オイルポンプ6eから吐出された油によって発生したライン圧から必要な油圧が調整される。油圧制御回路5は、調整された油圧を無段変速機4、前後進切替機構3、トルクコンバータ2の各部位に供給する。
 変速機コントローラ11は、CPU、ROM、RAMなどから構成され、自動変速機15の動作を制御する。変速機コントローラ11では、CPUがROMに記憶されたプログラムを読み出して実行することで、変速機コントローラ11の機能が発揮される。なお、エンジンコントローラ10も同様に、CPU、ROM、RAMなどから構成される。
 変速機コントローラ11には、アクセルペダル41の操作量に対応したアクセル開度APOを検出するアクセル開度センサ21からの信号、ブレーキペダル42の操作量に対応したブレーキ液圧BRPを検出するブレーキ液圧センサ22からの信号、シフトレバー40の位置を検出するインヒビタスイッチ23からの信号が入力される。また、変速機コントローラ11には、エンジン1の出力軸の回転速度であるエンジン回転速度Neを検出するエンジン回転速度センサ24からの信号、無段変速機4のプライマリプーリ4aの回転速度(前後進切替機構3の出力側の回転速度)であるプライマリ回転速度Npriを検出するプライマリ回転速度センサ25からの信号、車速VSPを検出する車速センサ26からの信号、エンジン1の動作を制御するエンジンコントローラ10からのエンジントルクTeに関した信号などが入力される。
 本実施形態では、車両走行中に、セーリングストップ条件が成立すると、エンジン1への燃料噴射を中止してエンジン1を停止するとともに、前後進切替機構3の前進クラッチ3a、及び後進ブレーキ3bを解放して自動変速機15をニュートラル状態とするセーリングストップ制御が実行される。セーリングストップ制御中は、ロックアップクラッチ2aは解放される。
 これにより、エンジン1を停止した状態での惰性走行距離が長くなり、エンジン1の燃費を向上させることができる。
 セーリングストップ条件は、例えば以下の条件である。
 (a)シフトレバー40がDレンジである。
 (b)車速VSPが第1所定車速V1以上である。
 (c)アクセルペダル41が踏み込まれていない。
 (d)ブレーキペダル42が踏み込まれていない。
 第1所定車速V1は、中車速域、又は高車速域の車速であり、予め設定されている。
 セーリングストップ条件は、上記(a)~(d)の条件を全て満たす場合に成立し、上記(a)~(d)のいずれかを満たさない場合には成立しない。
 セーリングストップ制御中にセーリングストップ条件が成立しなくなると、セーリングストップ制御を解除し、エンジン1を始動し、前進クラッチ3aを締結する。つまり、セーリングストップ条件は、セーリングストップ制御を解除するためのセーリングストップ解除条件でもある。なお、セーリングストップ条件とセーリングストップ解除条件とを異なる条件としてもよい。
 セーリングストップ解除条件が成立すると、エンジン1を始動し、前進クラッチ3aを締結するセーリングストップ解除制御が実行された後に、通常の走行制御が実行される。セーリングストップ解除制御では、エンジン1を始動して前進クラッチ3a前後の回転速度を同期させる回転同期制御の実行後、前進クラッチ3aを締結する締結制御が実行される。セーリングストップ制御、セーリングストップ解除制御(回転同期制御、締結制御)などは、変速機コントローラ11、及びエンジンコントローラ10によって実行される。
 セーリングストップ制御中は、前後進切替機構3が動力遮断状態となり、自動変速機15はニュートラル状態となっている。また、エンジン1が停止しているため、メカオイルポンプ6mが駆動されない。そのため、セーリングストップ制御中は、電動オイルポンプ6eから吐出される油を用いて、必要な油圧が車両に供給される。
 次に、セーリングストップ制御を解除する場合について、図2のフローチャートを用いて説明する。図2に示す処理を開始するに際し、セーリングストップ制御の実行中であるものとする。
 ステップS100では、変速機コントローラ11は、セーリングストップ解除条件(SS解除条件)が成立したかどうか判定する。具体的には、変速機コントローラ11は、上記(a)~(d)のいずれかを満たさなくなったかどうか判定する。セーリングストップ解除条件が成立した場合には、処理はステップS101に進み、セーリングストップ解除条件が成立していない場合には、今回の処理は終了する。
 ステップS101では、変速機コントローラ11は、アクセル開度APOが所定開度APO1以上かどうか判定する。アクセル開度APOは、アクセル開度センサ21からの信号に基づいて検出される。所定開度APO1は、予め設定された開度であり、運転者の加速意図が大きい、と判断可能な開度である。具体的には、所定開度APO1は、通常の走行制御時に自動変速機15においてキックダウン制御が実行される開度である。アクセル開度APOが所定開度APO1以上の場合には、処理はステップS102に進む。一方、アクセル開度APOが所定開度APO1未満である場合には、処理はステップS104に進む。
 なお、アクセル開度APOは、アクセルペダル41の操作量と対応関係にある他の値、例えば、スロットル開度TVOで代用することも可能である。
 ステップS102では、変速機コントローラ11、及びエンジンコントローラ10はセーリングストップ解除制御を実行する。具体的には、変速機コントローラ11は、ロックアップクラッチ2aを締結し、エンジンコントローラ10は、エンジン1を始動する。つまり、ロックアップクラッチ2aに締結指令が出力されるとともに、エンジン1の始動指令が出力される。このようにして、ロックアップクラッチ2aが締結された状態で回転同期制御が行われる。アクセル開度APOが所定開度APO1以上であり、運転者の加速意図が大きい場合には、前進クラッチ3aが回転同期する前にロックアップクラッチ2aを締結するのである。
 ステップS103では、変速機コントローラ11は、前進クラッチ3aが回転同期したかどうか判定する。具体的には、変速機コントローラ11は、エンジン回転速度Neと、プライマリ回転速度Npriとの関係が式(1)を満たすかどうか判定する。エンジン回転速度Neは、エンジン回転速度センサ24からの信号に基づいて検出される。プライマリ回転速度Npriは、プライマリ回転速度センサ25からの信号に基づいて検出される。
 |Ne-(R1×Npri)|≦N1   (1)
 「R1」は、前進クラッチ3aを締結した場合の前後進切替機構3の変速比である。「N1」は、予め設定された第1閾値であり、ロックアップクラッチ2aを締結した状態で前進クラッチ3aを締結するにあたり、締結ショックの発生を抑制できると判定可能な値である。第1閾値N1は、後述する第2閾値N2よりも小さい。
 本実施形態では、トルクコンバータ2のタービン回転速度(前後進切替機構3の入力側の回転速度Nin)を検出していないので、エンジン回転速度Neとプライマリ回転速度Npriとを用いて、前進クラッチ3aが回転同期したかどうか判定している。
 変速機コントローラ11は、式(1)を満たす場合、前進クラッチ3aが回転同期したと判定し、式(1)を満たさない場合、前進クラッチ3aが回転同期していないと判定する。エンジン1の始動によってエンジン回転速度Neが高くなり、前進クラッチ3aが回転同期したと判定すると、処理はステップS106に進む。
 ステップS104では、エンジンコントローラ10は、エンジン1を始動する。アクセル開度APOが所定開度APO1よりも小さい場合には、ロックアップクラッチ2aが解放された状態で回転同期制御が実行される。
 ステップS105では、変速機コントローラ11は、前進クラッチ3aが回転同期したかどうか判定する。具体的には、変速機コントローラ11は、エンジン回転速度Neと、プライマリ回転速度Npriとの関係が式(2)を満たすかどうか判定する。
 |Ne-(R1×Npri)|≦N2   (2)
 「N2」は、予め設定された第2閾値であり、ロックアップクラッチ2aを解放した状態で前進クラッチ3aを締結するにあたり、締結ショックの発生を抑制できると判定可能な値である。第2閾値N2は、第1閾値N1よりも大きい。
 変速機コントローラ11は、式(2)を満たす場合、前進クラッチ3aが回転同期したと判定し、式(2)を満たさない場合、前進クラッチ3aが回転同期していないと判定する。エンジン1の始動によってエンジン回転速度Neが高くなり、前進クラッチ3aが回転同期したと判定すると、処理はステップS106に進む。
 ステップS106では、変速機コントローラ11は、回転同期制御を終了し、締結制御を実行する。変速機コントローラ11は、前進クラッチ3aに供給される油圧を高くし、前進クラッチ3aを締結する。
 次に、セーリングストップ制御を解除する場合について、タイムチャートを用いて説明する。図3は、アクセルペダル41が踏み込まれ、アクセル開度APOが所定開度APO1よりも大きくなり、ロックアップクラッチ2aを解放した状態でセーリングストップ制御を解除する比較例のタイムチャートである。
 この比較例では、前後進切替機構3の入力側の回転速度Ninが検出されており、入力側の回転速度Nin、プライマリ回転速度Npri、及び前進クラッチ3aが締結した場合の前後進切替機構3の変速比R1に基づいて、回転同期の判定が行われている。具体的には、式(3)を満たす場合に前進クラッチ3aが回転同期したと判定される。
 |Nin-(R1×Npri)|≦N3   (3)
 「N3」は、予め設定された閾値であり、ロックアップクラッチ2aが解放された状態で前進クラッチ3aを締結する際に、締結ショックの発生が抑制されるように設定される。
 時間t0において、アクセルペダル41が踏み込まれ、セーリングストップ制御解除条件が成立した判定されると、セーリングストップ解除制御が開始され、回転同期制御が開始される。これにより、エンジン1が始動し、エンジン回転速度Ne、及び入力側の回転速度Ninが増加する。図3では、エンジン回転速度Neを実線で示し、入力側の回転速度Ninの一部を破線で示す。破線で示す範囲において、ロックアップクラッチ2aが解放されているので、エンジン回転速度Neよりも入力側の回転速度Ninが低い。
 また、回転同期制御が開始されると、前進クラッチ3aを素早く締結するための準備段階として前進クラッチ3aに待機圧が供給され、前進クラッチ3aのクラッチストロークが増加する。
 時間t1において、式(3)を満たし、前進クラッチ3aが回転同期したと判定されると、回転同期制御が終了し、締結制御が開始される。締結制御が実行されることで、前進クラッチ3aの指示圧が急上昇し、クラッチストロークが増加し、前進クラッチ3aが締結する。
 時間t2において、締結制御が終了することでセーリングストップ解除制御が終了し、通常の走行制御が開始される。前進クラッチ3aが締結されているので、エンジン1で発生したトルクが駆動輪に伝達され、車両が加速する。また、前進クラッチ3aが締結すると、時刻t3でロックアップクラッチ2aの締結を開始する。
 比較例のように、アクセル開度APOが所定開度APO1よりも大きい場合に、前進クラッチ3aの締結後にロックアップクラッチ2aを締結すると、走行制御を開始した際にはトルクコンバータ2で滑りが発生している。そのため、エンジン1から駆動輪へのトルク伝達が十分に行われず、加速する際に引きショックが発生する。また、前進クラッチ3aを締結した後の加速応答性が減殺される。これは、アクセル開度APOが大きいにもかかわらず、ロックアップクラッチ2aを解放した状態で前進クラッチ3aを締結すると、トルクコンバータ2によるトルク増幅よりも、滑りの影響が大きくなるためである。
 また、アクセルペダル41が踏み込まれ、アクセル開度APOが所定開度APO1よりも大きくなると、通常キックダウン制御が行われるが、セーリングストップ制御が実行される車速VSPで、キックダウン制御が実行される場合には、通常ロックアップクラッチ2aが締結されている。そのため、セーリングストップ制御が実行されていない場合と比較して、運転者に違和感を与えるおそれがある。
 これに対し、本実施形態の第1実施例として、ロックアップクラッチ2aを締結して回転同期を行い、前進クラッチ3aを締結する場合について、図4のタイムチャートを用いて説明する。
 時間t0において、アクセルペダル41が踏み込まれ、セーリングストップ制御解除条件が成立したと判定されると、ロックアップクラッチ2aの締結が開始されるとともに、セーリングストップ解除制御が開始され、回転同期制御が開始される。これにより、エンジン回転速度Neなどが図3と同様に増加する。ここでは、ロックアップクラッチ2aが締結されるので、前後進切替機構3の入力側の回転速度Ninは、エンジン回転速度Neに一致する。
 また、前進クラッチ3aに待機圧が供給されることで、前進クラッチ3aのクラッチストロークが増加する。
 時間t1において、式(3)を満たし、前進クラッチ3aが回転同期したと判定されると、回転同期制御が終了し、締結制御が開始される。これにより、前進クラッチ3aが締結する。ロックアップクラッチ2aを締結して前進クラッチ3aを締結した場合に、ロックアップクラッチ2aを締結しない図3と同様の条件で回転同期を判定したとすると、トルクコンバータ2による滑りがなく、エンジン1が負荷として作用するため、前進クラッチ3aを締結する際に引きショック(締結ショック)が発生する。
 時間t2において、締結制御が終了することでセーリングストップ解除制御が終了し、通常の走行制御が開始される。
 このように、ロックアップクラッチ2aを締結して回転同期を行い、前進クラッチ3aを締結すると、前進クラッチ3aを締結した後に図3に示すような引きショックは発生しないが、前進クラッチ3aを締結する際に引きショックが発生する。しかし、ロックアップクラッチ2aを締結した後に前進クラッチ3aを締結することで、走行制御を開始する際にロックアップクラッチ2aが既に締結した状態にあるため、走行制御における加速応答性を向上させることが可能である。
 次に、本実施形態の第2実施例による場合について、図5のタイムチャートを用いて説明する。図5では、説明のため、図4における回転速度などの変化の一部を点線で示す。
 時間t0において、アクセルペダル41が踏み込まれ、セーリングストップ制御解除条件が成立したと判定されると、ロックアップクラッチ2aの締結が開始されるとともに、セーリングストップ解除制御が開始され、回転同期制御が開始される。これにより、エンジン回転速度Neなどが図4と同様に増加する。
 また、前進クラッチ3aに待機圧が供給されることで、前進クラッチ3aのクラッチストロークが増加する。
 時間t1において、式(1)を満たし、前進クラッチ3aが回転同期したと判定されると、回転同期制御が終了し、締結制御が開始される。これにより、前進クラッチ3aが締結する。
 ここで、第2実施例では、ロックアップクラッチ2aを締結した状態で回転同期を判定する閾値として、ロックアップクラッチ2aを解放した状態で回転同期を判定する場合の第2閾値N2とは異なる第1閾値N1を設定し、具体的には、第1閾値N1を第2閾値N2よりも小さくする。これにより、ロックアップクラッチ2aを締結した状態で回転同期を判定し、前進クラッチ3aを締結しても、引きショックの発生を抑制することができる。
 本発明の実施形態の効果について説明する。
 セーリングストップ制御を解除する場合に、アクセル開度APOが所定開度APO1以上の場合には、ロックアップクラッチ2aを締結した状態で前進クラッチ3aを締結する。これにより、前進クラッチ3aが締結した後の加速応答性を向上させ、アクセル開度APOが大きく、運転者に加速意図が生じた場合の加速応答性を確保することができる。
 セーリングストップ制御を解除する場合に、アクセル開度APOが所定開度APO1よりも小さい場合には、ロックアップクラッチ2aを解放した状態で前進クラッチ3aを締結する。これにより、前進クラッチ3aを締結した際の締結ショックの発生を抑制することができる。
 セーリングストップ制御を解除する場合に回転同期制御を実行することで、前進クラッチ3aを締結した際の締結ショックを抑制することができる。本実施形態では、前後進切替機構3の入力側の回転速度Ninを検出するセンサを設けておらず、エンジン回転速度Neとプライマリ回転速度Npriとを用いて回転同期を判定している。
 このような場合、エンジン回転速度Neとプライマリ回転速度Npriとの回転速度差が同じでも、ロックアップクラッチ2aが締結されているか、または解放されているかによって、前進クラッチ3a前後の回転速度差、つまり回転同期状態は異なる。
 本実施形態では、ロックアップクラッチ2aが締結されているか、または解放されているかによって、回転同期を判定する閾値を変更する。これにより、ロックアップクラッチ2aの状態にかかわらず、回転同期を正確に判定し、前進クラッチ3aを締結した際の締結ショックの発生を抑制することができる。
 具体的には、ロックアップクラッチ2aを締結した状態で回転同期を判定する第1閾値N1を、ロックアップクラッチ2aを解放した状態で回転同期を判定する第2閾値N2よりも小さくする。これにより、ロックアップクラッチ2aの状態にかかわらず、前進クラッチ3aを締結する際の締結ショックの発生を抑制することができる。
 上記実施形態の構成に加えて、例えば前進クラッチ3aに油圧を供給する油路にアキュームレータを設けてもよい。また、油圧に応じて前進クラッチ3aを締結するピストンとプレートとの間にディッシュプレートを設けてもよい。
 上記実施形態では、無段変速機(バリエータ)4の前段ないし上流側に配置される前後進切替機構3を有する自動変速機15について説明したが、無段変速機4の後段ないし下流側に配置される副変速機構を有する自動変速機に適用してもよい。動力伝達機構は、前後進切替機構3、副変速機構、その他の動力伝達機構を含む概念である。また、自動変速機15を構成する主変速機構は、ベルト型の無段変速機4に限らず、トロイダル型の無段変速機であってもよく、無段変速機に限らず、有段変速機であってもよい。
 上記実施形態では、前進クラッチ3aが回転同期したかどうかを判定する方法として、式(1)、式(2)を用いたが、例えば式(4)、式(5)により、変速比の観点から判定してもよい。
 |R1-Ne/Npri|≦N4  (4)
 |R1-Ne/Npri|≦N5  (5)
 「N4」は、予め設定された第4閾値であり、ロックアップクラッチ2aが締結された状態で前進クラッチ3aを締結する際に、締結ショックの発生を抑制できると判定可能な値である。「N5」は、予め設定された第5閾値であり、ロックアップクラッチ2aが解放された状態で前進クラッチ3aを締結する際に、締結ショックの発生を抑制できると判定可能な値であり、N4よりも大きい。
 前進クラッチ3aが回転同期したかどうか判定する方法は、式(1)、式(2)、式(4)、式(5)に限られることはなく、セーリングストップ制御を解除する際に、回転同期を正確に判定し、締結ショックの発生を抑制できればよい。
 上記実施形態では、ニュートラル走行制御の一例としてセーリングストップ制御について説明した。しかし、ニュートラル走行制御は、セーリングストップ制御の他に、例えばセーリング制御、コーストストップ制御であってもよい。つまり、自動変速機15をニュートラル状態にして走行しているニュートラル走行中に、ニュートラル解除条件が成立して前進クラッチ3aを締結する場合に、上記制御を適用することができる。
 コーストストップ制御は、コーストストップ成立条件が成立すると変速機コントローラ11、及びエンジンコントローラ10によって実行される。コーストストップ成立条件は、例えば以下の(a)~(d)である。なお、コーストストップ制御中は、駆動源であるエンジン1を停止する。
 (a)シフトレバー40がDレンジである。
 (b)車速VSPが第2所定車速V2未満である。
 (c)アクセルペダル41が踏み込まれていない。
 (d)ブレーキペダル42が踏み込まれている。
 ここで、第2所定車速V2は、第1所定車速V1よりも低い低車速である。
 コーストストップ成立条件は、(a)~(d)の条件を全て満たす場合に成立し、(a)~(d)のいずれかを満たさない場合には成立しない。また、コーストストップ解除条件は、コーストストップ制御中に、例えば(a)~(d)のいずれかが不成立になることであるが、コーストストップ成立条件とコーストストップ解除条件とを異なる条件としてもよい。
 セーリング制御は、セーリング成立条件が成立すると変速機コントローラ11、及びエンジンコントローラ10によって実行される。セーリング成立条件は、例えば以下の(a)~(d)である。なお、セーリング制御中は、駆動源であるエンジン1を停止しない。
 (a)シフトレバー40がDレンジである。
 (b)車速VSPが第2所定車速V2以上である。
 (c)アクセルペダル41が踏み込まれていない。
 (d)ブレーキペダル42が踏み込まれていない。
 セーリング成立条件は、(a)~(d)の条件を全て満たす場合に成立し、(a)~(d)のいずれかを満たさない場合には成立しない。また、セーリング解除条件は、セーリング制御中に、例えば(a)~(d)のいずれかが不成立になることであるが、セーリング成立条件とセーリング解除条件とを異なる条件としてもよい。
 上記実施形態では、セーリングストップ制御中はロックアップクラッチ2aを解放したが、ロックアップクラッチ2aが締結された状態でセーリングストップ条件が成立した場合には、セーリングストップ制御中にロックアップクラッチ2aが締結された状態を維持してもよい。これにより、セーリングストップ制御解除時にロックアップクラッチ2aを締結する必要がなく、ロックアップクラッチ2aを締結する回数を少なくすることができ、ロックアップクラッチ2aの耐久性を向上させることができる。
 このようなニュートラル走行制御(セーリングストップ制御)を行う場合には、所定のニュートラル走行制御解除条件が成立した場合に、ロックアップクラッチ2aを解放し、ロックアップクラッチ2aが解放された状態で前進クラッチ3aを締結する。
 「所定のニュートラル走行制御解除条件」は限定されないが、例えば、次の(a)~(c)の条件の少なくとも1つを含むことができる。これにより、ロックアップクラッチ2aが解放された状態で前進クラッチ3aを締結することになるので、前進クラッチ3aの締結ショックを低減することができる。
 (a)アクセルペダル41が踏み込まれており、且つアクセル開度APOが所定開度APO1よりも小さい(0<APO<APO1)。
 (b)ブレーキペダル42が踏み込まれている。
 (c)車速VSPが第1所定車速V1未満である(VSP<V1)。
 ニュートラル走行制御解除条件として(a)~(c)以外の条件を追加することも可能であり、その場合の追加条件(d)は、例えば、道路が所定勾配以上であるか否か(登板路に差し掛かったか否か)、または低速レンジ(Lレンジ、Sレンジ)等へ変更されたか否か等である。そして、ニュートラル走行制御中に(a)~(d)のいずれかの条件が成立することで、ニュートラル走行制御解除条件が成立したと判定する。
 なお、所定のニュートラル走行制御解除条件として少なくとも(a)の条件を含むことは、締結ショックの防止という観点から好適である。
 なお、コーストストップ制御では、所定のコーストストップ制御解除条件として、(b)ブレーキペダル42が踏み込まれた場合、(c)車速VSPが第1所定車速V1未満となった場合は含まれない。
 上記実施形態では、エンジン1が駆動源である場合について説明した。しかし、駆動源は、エンジン1に限らず、例えば、モータであってもよく、エンジン1及びモータの組み合わせであってもよい。
 上記実施形態では、変速機コントローラ11とエンジンコントローラ10とを別体のコントローラとして構成する場合について説明した。しかし、変速機コントローラ11とエンジンコントローラ10とは、それらの機能を統合し、単一のコントローラとして構成することも可能である。また、変速機コントローラ11、エンジンコントローラ10の少なくとも一方を複数のコントローラによって構成してもよい。
 以上の説明から導き出される、請求の範囲に記載のもの以外の形態を以下に掲げる。
 駆動源に接続された自動変速機であって、駆動源よりも動力伝達経路の下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、トルクコンバータよりも動力伝達経路の下流側に設けられ、当該自動変速機を介する動力の伝達を遮断可能に配設された締結要素とを有する自動変速機を制御する、自動変速機の制御装置であって、
 車両走行中に、所定のニュートラル走行条件の成立により自動変速機を動力遮断状態とするニュートラル走行制御を実行し、ロックアップクラッチが解放された状態にあるニュートラル走行制御の、アクセル開度の増大に基づく解除時において、ロックアップクラッチを締結した状態で締結要素を締結する、自動変速機の制御装置である。
 ニュートラル走行制御の解除時に、ロックアップクラッチの締結後、締結要素を締結する、自動変速機の制御装置である。
 ニュートラル走行制御の解除時に、アクセル開度が所定開度以上に増大した場合に、ロックアップクラッチを締結し、アクセル開度が所定開度未満の場合は、ロックアップクラッチが解放された状態を維持する、自動変速機の制御装置である。
 ニュートラル走行条件の成立時にロックアップクラッチが締結された状態にあった場合は、ニュートラル走行制御中にロックアップクラッチが締結された状態を維持する、自動変速機の制御装置である。
 以上、本発明の実施形態について説明したが、上記実施形態の説明は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2016年 2月 4日付けで日本国特許庁に出願した特願2016-019759号に基づく優先権を主張し、その出願の全ての内容は、参照により本明細書に組み込まれる。

Claims (6)

  1.  駆動源と、
     動力伝達経路において、前記駆動源よりも下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、前記動力伝達経路において、前記トルクコンバータよりも下流側に設けられた締結要素とを有する自動変速機と、を有する車両の制御装置であって、
     車両走行中に前記自動変速機を動力遮断状態とするニュートラル走行制御中に、アクセル開度が所定開度以上になった場合は、前記ロックアップクラッチを締結した状態で前記締結要素を締結する制御部を備える、車両の制御装置。
  2.  請求項1に記載の車両の制御装置であって、
     前記制御部は、前記ニュートラル走行制御前に前記ロックアップクラッチが締結した状態であった場合は、前記ニュートラル走行制御中に前記ロックアップクラッチを締結した状態を維持する、車両の制御装置。
  3.  請求項1または2に記載の車両の制御装置であって、
     前記制御部は、所定のニュートラル走行制御解除条件が成立した場合は、前記ロックアップクラッチを解放した状態で前記締結要素を締結する、車両の制御装置。
  4.  請求項3に記載の車両の制御装置であって、
     前記制御部は、前記ニュートラル走行制御を行っている状態から前記締結要素を締結するときに、回転同期を行うとともに、前記ロックアップクラッチを解放した状態で前記締結要素を締結する場合の前記回転同期と、前記ロックアップクラッチを締結した状態で前記締結要素を締結する場合の前記回転同期とを異なる閾値で判定する、車両の制御装置。
  5.  請求項4に記載の車両の制御装置であって、
     前記ロックアップクラッチを締結した状態で前記締結要素を締結する場合の前記回転同期を判定する第1閾値は、前記ロックアップクラッチを解放した状態で前記締結要素を締結する場合の前記回転同期を判定する第2閾値よりも小さい、車両の制御装置。
  6.  駆動源と、
     動力伝達経路において、前記駆動源よりも下流側に設けられ、ロックアップクラッチを有するトルクコンバータと、前記動力伝達経路において、前記トルクコンバータよりも下流側に設けられた締結要素とを有する自動変速機と、を有する車両を制御する、車両の制御方法であって、
     車両走行中に前記自動変速機を動力遮断状態とするニュートラル走行制御中に、アクセル開度が所定開度以上になった場合は、前記ロックアップクラッチを締結した状態で前記締結要素を締結する、車両の制御方法。
PCT/JP2017/003018 2016-02-04 2017-01-27 車両の制御装置、及び車両の制御方法 WO2017135171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/073,311 US10690239B2 (en) 2016-02-04 2017-01-27 Control device for vehicle and control method for vehicle
KR1020187024561A KR20180102671A (ko) 2016-02-04 2017-01-27 차량의 제어 장치 및 차량의 제어 방법
CN201780008411.7A CN108603590B (zh) 2016-02-04 2017-01-27 车辆的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019759 2016-02-04
JP2016019759A JP6725254B2 (ja) 2016-02-04 2016-02-04 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2017135171A1 true WO2017135171A1 (ja) 2017-08-10

Family

ID=59500838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003018 WO2017135171A1 (ja) 2016-02-04 2017-01-27 車両の制御装置、及び車両の制御方法

Country Status (5)

Country Link
US (1) US10690239B2 (ja)
JP (1) JP6725254B2 (ja)
KR (1) KR20180102671A (ja)
CN (1) CN108603590B (ja)
WO (1) WO2017135171A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018008515A2 (ja) * 2015-10-28 2018-10-30 Nissan Motor Co., Ltd. A control device of vehicles, and the control method of vehicles
CN111183078B (zh) * 2017-10-02 2022-10-11 日产自动车株式会社 内燃机的控制方法及内燃机的控制装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276121A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 噛合クラッチ装置
JP2015148321A (ja) * 2014-02-07 2015-08-20 トヨタ自動車株式会社 車両駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230791A (en) * 1958-10-10 1966-01-25 Gen Motors Corp Transmission control system
DE1650869B2 (de) * 1967-06-20 1976-07-22 Alfred Teves Gmbh, 6000 Frankfurt Hydraulischer verstaerker des arbeitsmitteldruckes einer hydraulisch betaetigten kupplung
US5435797A (en) * 1993-07-23 1995-07-25 Safety And Performance Systems, Inc. Fluid-operated clutch
GB2354288B (en) * 1999-09-15 2003-12-17 Automotive Prod France Hydraulic damper
JP4627328B2 (ja) 2008-06-23 2011-02-09 ジヤトコ株式会社 自動変速機の制御装置
US8695738B2 (en) * 2009-03-30 2014-04-15 Diala Nassif Jordan Constant-ratio independent series-parallel hybrid drivetrain for a plug-in electric vehicle
DE102010003518A1 (de) * 2010-03-31 2011-10-06 Zf Friedrichshafen Ag Verfahren zur Regelung einer geregelten Überbrückungskupplung im Schubbetrieb
JP2013213557A (ja) 2012-04-03 2013-10-17 Toyota Motor Corp 車両の制御装置
US9151347B1 (en) * 2015-03-23 2015-10-06 Borgwarner Inc. Control system for operating a manual clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276121A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 噛合クラッチ装置
JP2015148321A (ja) * 2014-02-07 2015-08-20 トヨタ自動車株式会社 車両駆動装置

Also Published As

Publication number Publication date
JP2017137945A (ja) 2017-08-10
KR20180102671A (ko) 2018-09-17
US20190040947A1 (en) 2019-02-07
CN108603590B (zh) 2020-11-06
JP6725254B2 (ja) 2020-07-15
CN108603590A (zh) 2018-09-28
US10690239B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
JP5728422B2 (ja) ベルト式無段変速機の変速制御装置
JP5234171B2 (ja) 駆動力制御装置
WO2014017356A1 (ja) 自動変速機の制御装置及び制御方法
WO2018016391A1 (ja) 車両の制御装置及び車両の制御方法
US10421449B2 (en) Control device for vehicle and control method for vehicle
WO2017135171A1 (ja) 車両の制御装置、及び車両の制御方法
CN108474468B (zh) 车辆的控制装置、及车辆的控制方法
WO2017135172A1 (ja) 車両の制御装置、及び車両の制御方法
WO2017135174A1 (ja) 車両の制御装置、及び車両の制御方法
JP6560758B2 (ja) 車両の制御装置、及び車両の制御方法
WO2017135175A1 (ja) 車両の制御装置、及び車両の制御方法
JP6488404B2 (ja) 車両の制御装置、及び車両の制御方法
JP6633920B2 (ja) 車両の制御装置、及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024561

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024561

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017747328

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747328

Country of ref document: EP

Effective date: 20180904