WO2017134809A1 - レドックスフロー電池およびレドックスフロー電池システム - Google Patents

レドックスフロー電池およびレドックスフロー電池システム Download PDF

Info

Publication number
WO2017134809A1
WO2017134809A1 PCT/JP2016/053460 JP2016053460W WO2017134809A1 WO 2017134809 A1 WO2017134809 A1 WO 2017134809A1 JP 2016053460 W JP2016053460 W JP 2016053460W WO 2017134809 A1 WO2017134809 A1 WO 2017134809A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow battery
negative electrode
redox flow
electrode chamber
positive electrode
Prior art date
Application number
PCT/JP2016/053460
Other languages
English (en)
French (fr)
Inventor
安藤 正彦
杉政 昌俊
尚起 吉本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/053460 priority Critical patent/WO2017134809A1/ja
Publication of WO2017134809A1 publication Critical patent/WO2017134809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery and a redox flow battery system, and more particularly to a redox flow battery that is charged and discharged using photoelectrochemical action and a redox flow battery system using the same.
  • RFB redox flow battery
  • RFB has the advantage that it does not choose a location. Therefore, a large amount of RFB and RFB power storage systems are introduced as renewable energy such as solar and wind power spreads in the suburbs or inner areas of large cities that are generally located in plains where pumping water cannot generate potential energy. Is expected to be.
  • Patent Document 1 contains a negative electrode electrolyte, a first chamber in which a first negative electrode is arranged, a gas, a second chamber in which a first positive electrode and a second negative electrode are arranged, A third chamber containing a positive electrode electrolyte and having a second positive electrode disposed therein, an ion conductive first diaphragm separating a negative electrode electrolyte in the first chamber and a gas in the second chamber, and a positive electrode in the third chamber An ion-conductive second diaphragm that separates the electrolyte and the gas in the second chamber; and a conductive member that electrically connects the first positive electrode and the second negative electrode.
  • a redox flow battery in which the second negative electrode is disposed on the surface of the second chamber and the second negative electrode is disposed on the surface of the second diaphragm on the second chamber side. According to the configuration of Patent Document 1, in the redox flow battery, mixing of anolyte and catholyte can be prevented, and an anolyte or catholyte regeneration process becomes unnecessary.
  • Non-Patent Document 1 proposes metal ions such as vanadium and iron / chromium.
  • a battery using an organic molecule as an active material has been proposed.
  • charging and discharging is performed by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes.
  • a redox flow battery is described, and a negative electrode electrolyte containing anthraquinone is described.
  • Non-Patent Document 3 an artificial photosynthesis system is disclosed in Non-Patent Document 3 as a power storage system using light energy.
  • the artificial photosynthesis system is characterized by a structure in which a solar cell and a catalyst electrode are integrated. Water and oxygen are decomposed using electrons and holes excited by solar energy, and carbon dioxide in the atmosphere. By synthesizing and synthesizing carbohydrates, solar energy is converted to chemical energy, stored and used. Since the solar cell for photoelectric conversion and the catalyst for electrolyzing water are integrally formed, the size of the equipment can be expected to be smaller than the system combining the solar cell and RFB, and if the conversion efficiency and reliability are improved, the hydrogen society It is expected that it will be put into practical use with the arrival of
  • the 1 MW class RFB is about 500 square meters, and requires the same installation area as the solar cell panel used for charging. In this case, the solar energy irradiated to the RFB installation region is not charged, and there is a problem that the charging efficiency per the total installation area of the RFB and the solar cell is reduced. In addition, the energy conversion efficiency and reliability of the artificial photosynthesis system is insufficient, and there is a problem that it still takes time for practical use.
  • an object of the present invention is to provide a redox flow battery system and a redox flow battery system capable of realizing a reduction in size of the system while maintaining energy conversion efficiency and reliability equal to or higher than those of conventional ones. It is in.
  • the present invention provides a positive electrode chamber having a positive electrode, a negative electrode chamber having a negative electrode, a diaphragm separating the positive electrode chamber and the negative electrode chamber, an electrolyte filled in the positive electrode chamber and the negative electrode chamber,
  • a redox flow battery comprising: a positive electrode chamber, a negative electrode chamber, a diaphragm, and a housing that houses an electrolyte solution, wherein the negative electrode includes a photoelectric conversion material.
  • a redox flow battery and a redox flow battery system capable of realizing downsizing of the system while maintaining energy conversion efficiency and reliability equal to or higher than those of conventional ones.
  • FIG. 3 is an energy level diagram of a first example of a photoelectric conversion film constituting the negative electrode in FIG. 2. It is an energy level figure of the 2nd example of the photoelectric converting film which comprises the negative electrode of FIG. It is an energy level figure of the 3rd example of the photoelectric converting film which comprises the negative electrode of FIG. It is a figure which shows typically the energy level of AQDS contained in the pentacene and negative electrode liquid which comprise a photoelectric converting film.
  • FIG. 1 is a schematic diagram showing an example of a redox flow battery system according to the present invention.
  • a redox flow battery system (hereinafter referred to as “RFB system”) 100 includes an RFB 1 according to the present invention and an electrolyte solution in each of a positive electrode chamber 3 and a negative electrode chamber 4 of RFB1.
  • Electrolyte supply devices 60a and 60b that can be circulated and supplied to the load, a load 15 connected to the RFB1 via the control device 13, and a control that controls the RFB1, the electrolyte solution supply devices 60a and 60b, and the load 15.
  • a device 13 is provided.
  • Electrolyte supply devices 60a and 60b include a positive electrode liquid tank (electrolyte tank (hereinafter also simply referred to as “tank”; the same applies to the negative electrode liquid tank 10)) 9 and the negative electrode liquid for storing the positive electrode liquid 7 of RFB1.
  • the negative electrode liquid tank 10 which stores 8 is provided.
  • the tanks 9 and 10 are connected to the RFB1 through circulation paths (piping) 11a and 11b and circulation pumps (chemical pumps) 12a and 12b, respectively, and the electrolytes 7 and 8 are provided between the tanks 9 and 10 and the RFB1.
  • the tanks 9 and 10, the circulation paths 11a and 11b, and the circulation pumps 12a and 12b are referred to as “electrolyte supply devices”.
  • RFB 1 constituting the RFB system 100 includes a positive electrode chamber (positive electrode cell) 3, a negative electrode chamber (negative electrode cell) 4, a diaphragm 2 provided between the positive electrode chamber 3 and the negative electrode chamber 4, a positive electrode chamber 3 and a negative electrode.
  • Electrolytic solutions 7 and 8 filled in the chamber 4 a positive electrode 5 immersed in the electrolytic solution 7, a negative electrode 6 immersed in the electrolytic solution 8, and a housing 70 for housing them.
  • the electrolytic solution filled in the positive electrode chamber 3 is referred to as a positive electrode electrolytic solution (positive electrode solution) 7
  • the electrolytic solution filled in the negative electrode chamber 4 is referred to as a negative electrode electrolytic solution (negative electrode solution) 8.
  • the RFB system 100 is a power generation and storage system using renewable energy such as sunlight. Since the RFB system 100 according to the present invention includes the RFB 1 having a configuration capable of direct oxidation-reduction reaction by light energy (sunlight or the like) irradiated to the RFB 1, a power generation unit (solar power generation or wind power generation or the like) as in the past. There is no need to separately provide the power storage unit. For this reason, a system can be reduced in size compared with the past. That is, the redox flow battery according to the present invention can provide a photoelectrochemical RFB system that satisfies both the practicality of the RFB system and the compactness of the artificial photosynthesis system. Thus, the RFB system which does not have a power generation part and has a configuration for directly converting light energy into electric energy is novel and not new.
  • FIG. 2 is a cross-sectional view schematically showing an example of the configuration of the RFB negative electrode according to the present invention
  • FIGS. 3A to 3C are diagrams schematically showing the energy levels of the photoelectric conversion film constituting the negative electrode of FIG. is there.
  • the negative electrode 6 includes a light-transmitting (transparent) substrate 17, a light-transmitting (transparent) electrode 18, and a photoelectric conversion film 19 having a photoelectric conversion material stacked in this order. It has the structure made. Light energy is irradiated from the transparent substrate 17 toward the photoelectric conversion film 19.
  • the transparent substrate 17 and the transparent electrode 18 are made of a light transmissive material capable of transmitting light such as sunlight.
  • a polycarbonate resin having a thickness of 5 mm manufactured by Sumitomo Bakelite Co., Ltd.
  • an RF (Radio-Frequency) magnetron sputtering apparatus manufactured by Anelva Co., Ltd.
  • the transparent electrode 18 made of indium tin oxide (ITO) having a thickness of 1 ⁇ m can be formed.
  • the material of the photoelectric conversion film 19 is a material having a film thickness of 500 nm, absorbing light energy with high efficiency, and having a small barrier energy (overvoltage) when electrons are transferred to the active material (reducing the active material) on the electrode surface. Can be used.
  • FIG. 3A shows a structure using a single layer film (p (hole transport type) layer) (hereinafter referred to as “p layer”).
  • p layer a single layer film
  • FIG. 3A shows a structure using a single layer film (p (hole transport type) layer) (hereinafter referred to as “p layer”).
  • p layer a single layer film
  • an electron-hole pair generated by sunlight irradiation can be used for charge / discharge (oxidation reduction) of the active material.
  • the charging voltage is supplied, the electron-hole pair is separated and moves to the positive electrode and the negative electrode, respectively.
  • the charging voltage is not supplied, the electron-hole pair disappears and moves to each electrode. There is no.
  • FIG. 3B shows a structure using the above-described laminated structure of the p layer and the electron transport type n layer, or a laminated film having a so-called bulk heterojunction structure in which both are mixed without being isolated.
  • the active material is charged (reduced) by electrons.
  • the n layer a layer containing at least one of C60, C70 or derivatives thereof, lead sulfide and lead selenide can be used.
  • the electron-hole pair generated at the photoelectric conversion electrode is in a singlet excited state and thus has a short lifetime, and reaches the heterointerface before the recombination annihilation and charge separation.
  • a photoelectric conversion film (exciton splitting) is formed by a material that generates electron-hole pairs in a triplet excited state having a life of about three orders of magnitude longer than that in a singlet excited state by light energy irradiation.
  • the film thickness of the photoelectric conversion film (exciton splitting p layer 24) can be increased to about 1 ⁇ m, and the storage (storage) effect of light energy can be increased.
  • any of the photoelectric conversion films shown in FIGS. 3A to 3C can be used, but from the viewpoint of the storage (electric storage) effect of light energy, it is most preferable to use the photoelectric conversion film of the type shown in FIG. 3C.
  • aromatic molecules such as anthracene, tetracene, pentacene, and TIPS pentacene
  • oxides thereof anthraquinone, tetraquinone, pentaquinone, and pentane
  • Tetron etc. Tetron etc.
  • C60, C70 and derivatives thereof, lead sulfide (PbS), lead selenide (PbSe), and the like can be used as the n-layer material mixed with the substance constituting the p-layer.
  • the photoelectric conversion film 19 a laminated film of a nanoparticle of the p layer material and the n layer material and a bulk heterojunction film can be used.
  • the negative electrode solution 8 contains an active material that exchanges electrons with the photoelectric conversion film 19 described above.
  • the active material is not particularly limited as long as it can exchange electrons with the photoelectric conversion film 19, but a material (active material) that can be reversibly oxidized and reduced by light energy irradiation is preferably used.
  • a material (active material) that can be reversibly oxidized and reduced by light energy irradiation is preferably used.
  • Can do examples thereof include anthraquinone derivatives, tetraquinone, pentaquinone, pentatetron and mixtures thereof.
  • An example of an anthraquinone derivative is anthraquinone-2-sulfonic acid (hereinafter referred to as “AQDS”).
  • the negative electrode solution 8 preferably contains an auxiliary agent capable of supplying electrons and protons to the active material.
  • an auxiliary agent capable of supplying electrons and protons to the active material.
  • the auxiliary agent is not particularly limited, and any auxiliary agent can be used as long as it can supply electrons and protons to the above-described active material.
  • Preferable examples include 2-propanol.
  • FIG. 4 is a diagram schematically showing the energy levels of AQDS contained in pentacene and the negative electrode liquid 8 constituting the photoelectric conversion film 19.
  • the electrons excited from the ground level S 0 of pentacene to the excited level S 1 by absorption of light energy instantaneously have an exciton splitting state with an energy of about half with a probability of almost 100%. to generate two electrons to the position of the excitation level T 1.
  • the energy of the T 1 level electrons is about 1 eV higher than the ground level energy of AQDS
  • the T 1 level of the negative electrode is immediately Then, electrons are automatically supplied to the holes of AQDS, and further combined with protons H + existing in the aqueous solution to generate stable reduced states AQDSH and AQDSH2 of the active material AQDS.
  • the combination of the photoelectric conversion film and the active material is not limited to the above. By employing a combination in which electrons are easily transferred as the photoelectric conversion film and the active material, the active material can be efficiently oxidized and reduced.
  • FIG. 5A is a diagram schematically showing an example of the configuration of the photoelectric conversion film constituting the RFB electrode according to the present invention
  • FIG. 5B is another example of the photoelectric conversion film configuration configuring the RFB electrode according to the present invention.
  • the negative electrode 6a shown in FIG. 5A includes a laminated film of a transparent substrate 17 made of polycarbonate (manufactured by Sumitomo Bakelite Co., Ltd.), a transparent electrode 18 made of indium tin oxide, and an exciton splitting photoelectric conversion film 19a containing pentacene molecules. Is done.
  • the pentacene molecule generally has a molecular long axis 25 oriented substantially perpendicular to the surface (plane) of the transparent electrode 18, and the electrons 20 generated by light energy irradiation are in the plane of the transparent electrode 18.
  • substantially vertical direction that is, in a direction in which the molecular long axis 25 extends, reaches the surface 50 of the photoelectric conversion film 19a, and transfers (reduces) electrons to the active material molecule 26 made of an anthracene derivative. ).
  • the angle between the major axis 25 and the ⁇ orbital of pentacene and the surface (plane) of the transparent electrode 18 is preferably less than 90 °, and more preferably 45 ° or less.
  • the ⁇ orbital of the pentacene molecule is exposed on the surface 50 of the photoelectric conversion film 19b, the electron mobility reaches 1000 times that of the embodiment of FIG. 5A, and electrons are efficiently supplied to the active material molecules 26 (reduction). can do.
  • the orientation state of pentacene molecules as shown in FIG. 5B can be realized by interposing the graphene film 28 between the transparent electrode 18 and the photoelectric conversion film 19.
  • an example of a method for forming the photoelectric conversion film 19b on the transparent electrode 18 through a graphene film will be described below.
  • a graphene sheet (manufactured by Graphene Platform Co.) is developed on the surface of the water in the beaker, and the laminated film is pulled up from the water
  • a graphene film 28 can be formed on the surface of the transparent electrode 18. And after natural drying, it heats at 120 degreeC with an oven, and removes a water
  • a p-type photoelectric conversion film 19b containing pentacene molecules having a thickness of 500 nm and having an orientation state shown in FIG. 5B can be formed.
  • the major axis 25 of the pentacene molecule is aligned in parallel with the surface (plane) of the transparent electrode 18 and the shape of the benzene ring can be observed with a probe microscope.
  • a nickel oxide (NiO) film 27 may be provided as a p-type oxide film between the transparent electrode 18 and the graphene sheet 28.
  • This nickel oxide film 27 has the same action as the stacked film of PEDOT: PSS and P3HT (poly (3-hexylthiophene)) described in the following references. That is, when triplet excitons generated by an electron-donating organic semiconductor film made of pentacene molecules reach the interface on the transparent electrode 18 side, only the holes are allowed to pass through the transparent electrode 18 by preventing the passage of electrons. This prevents the recombination annihilation at the interface of the triplet exciton and has an effect of efficiently extracting it as a current.
  • the method for forming the NiO film 27 on the transparent electrode 18 is not particularly limited.
  • the NiO film 27 can be formed on the transparent electrode 18 at room temperature using an RF magnetron sputtering apparatus.
  • a Ni metal target manufactured by Sumitomo Metal Industries
  • O 2 as the sputtering gas
  • the composition of the NiO oxide film 27 can be confirmed by XPS (X-ray Photoelectron Spectroscopy).
  • chromium oxide As the oxide constituting the p-type oxide film, chromium oxide (CrO) may be used in addition to NiO, and the same effect as NiO described above can be obtained.
  • the formation method of the graphene film and the photoelectric conversion film 19 on the NiO film or the CrO film is the same as the formation method on the transparent electrode 18 described above.
  • FIG. 6 is a schematic diagram showing the RFB 1 of FIG.
  • the positive electrode chamber 3 includes a positive electrode 5 made of a zinc (Zn) plate and a positive electrode solution 7 containing an aqueous solution of divalent zinc ions (Zn 2+ ) electrochemically eluted from the positive electrode 5.
  • the negative electrode 6 which comprises the negative electrode chamber 4 is a negative electrode which has the photoelectric converting film mentioned above, and the negative electrode liquid 8 contains AQDS as a negative electrode active material, and contains 2-propanol as an adjuvant.
  • (1) shown in FIG. 6 is an AQDS reaction, and (2) is a 2-propanol reaction.
  • the reverse reaction of Formula (1) requires an electrochemical reaction on the electrode surface.
  • the following reaction occurs in the electrolyte.
  • Formula (2) As described above, by using the negative electrode having the photoelectric conversion film and the negative electrode liquid 8 composed of the anthraquinone derivative active material and the 2-propanol auxiliary, the light energy directly falling on the redox flow battery can be efficiently stored (storage) ).
  • AQDS is an organic molecule having reversible oxidation-reduction reactivity (hereinafter, simply referred to as “organic molecule”), and is water-soluble by having a sulfonic acid group.
  • This organic molecule functions as an active material in the electrolytic solution. Since these organic molecules are bonded and desorbed from protons by transferring electrons, they can be charged and discharged satisfactorily by oxidation-reduction reactions. More specifically, the organic molecule is combined (reduced) with a proton having an electron reactivity (positive ion (H + ) of hydrogen H), and the proton is desorbed (oxidized) under a predetermined condition.
  • organic molecule having reversible oxidation-reduction reactivity
  • the AQDS is reduced by radicalization by sunlight irradiation and the accompanying supply of electrons and protons from auxiliary agents as in this embodiment. Can also be performed reversibly.
  • FIG. 7 is a diagram showing energy levels of the negative electrode liquid active material (AQDS) and the positive electrode liquid active material (Zn) of RFB according to the present invention.
  • AQDS negative electrode liquid active material
  • Zn positive electrode liquid active material
  • H + is desorbed from AQDSH + and AQDS2 + from which electrons have been extracted to return to the original AQDS, and acetone also returns to the original 2-propanol, thereby completing reversible oxidation-reduction (charge / discharge) (reaction in FIG. 6). (D) and (e)). At this time, H + goes back and forth through the diaphragm 2 in order to satisfy the charge neutrality condition.
  • the negative electrode solution 8 in which the active material AQDS and the auxiliary agent 2-propanol are combined, the negative electrode solution 8 can be reversibly charged and discharged by light energy irradiation.
  • the concentration of AQDS and 2-propanol in the negative electrode solution 8 is not particularly limited, but is preferably 1M (mol / L). 1M is the maximum concentration at which AQDS and 2-propanol can be dissolved in water.
  • electrolyte solution is the aqueous solution which melt
  • the positive electrode solution 7 and the negative electrode solution 8 preferably contain a supporting salt as an electrolyte. By including the supporting salt, the electrical conductivity of the electrolytic solution is improved, and the energy density of the battery can be improved.
  • the material of the casing of the negative electrode chamber 4 is made of a material having light permeability, chemical stability, insulation, and high strength in consideration of irradiating light to the electrode and the electrolytic solution. preferable. Specific examples of such a material include polycarbonate resin and acrylic resin.
  • the negative electrode liquid tank 10 and the circulation path 11b connected to the negative electrode liquid tank 10 are made of the above light-transmitting material so that the negative electrode liquid 8 is sufficiently irradiated and absorbed. Is more preferable. Further, the above materials may also be used for the positive electrode chamber 3 and the circulation path 11.
  • the diaphragm 2 is configured to partition the inside of the cell 1 so that the positive electrode solution 7 and the negative electrode solution 8 are not mixed and to allow ions contributing to the charge / discharge reaction to pass therethrough.
  • the diaphragm 2 is preferably made of a material that does not mix the charged electrolyte solution, that is, does not spontaneously discharge.
  • an ion exchange membrane such as NAFION (Nafion, registered trademark of DuPont) is preferable as such a material.
  • the positive electrode 5 preferably has a shape with a large specific surface area in order to facilitate precipitation of metal ions in an aqueous solution. Specifically, considering the balance between precipitation uniformity and high specific surface area, the shape of the positive electrode 5 is preferably a mesh, expanded metal, nonwoven fabric, or the like.
  • FIG. 8 is a graph showing the relationship between the discharge energy and the light irradiation area of the RFB system according to the present invention.
  • FIG. 8 shows the light irradiation region dependency of the discharge energy of RFB 1 according to the present invention when the state in which the negative electrode solution 8 is completely discharged is set as the initial state.
  • region I is not irradiated with light energy
  • region II is irradiated with light energy only on the negative electrode tank
  • region III is irradiated with light energy on the negative electrode cell in addition to the negative electrode tank.
  • the photochargeable active material is directly photocharged to increase discharge energy.
  • the discharge energy further increases. From the above, a charging effect is obtained by sunlight irradiated to the negative electrode cell 4 and the negative electrode tank 10 which occupy about half of the installation area of the RFB system, and the charging efficiency per installation area of the RFB of this embodiment is up to about 150%. It was confirmed that it improved.
  • FIG. 9 is a schematic view showing a second embodiment of the RFB system according to the present invention.
  • the RFB shown in FIG. 9 has a negative electrode 6 ′ and a negative electrode chamber 4 ′ in a flat plate shape so that light is efficiently irradiated to the active material in the photoelectric conversion film and the negative electrode electrolyte 8 ′ constituting the negative electrode 6 ′.
  • the light irradiation area is increased. With such a configuration, more light energy can be taken in with respect to the installation area of the RFB system, and the efficiency of the RFB system can be improved.
  • FIG. 10 is a schematic diagram showing a third embodiment of the RFB system according to the present invention.
  • the RFB system 300 according to FIG. 10 is different from the system shown in FIG. 1 in that the light shielding mechanism 40 connected to the control mechanism 13 is provided.
  • the light shielding mechanism 40 connected to the control mechanism 13 is provided, and when the RFB system is charged, the light shielding mechanism 16 is provided so that the negative electrode chamber 4 and the negative electrode liquid tank 10 are irradiated with sunlight.
  • the negative electrode cell 4 and the negative electrode liquid tank 10 are shielded from light so as to avoid destabilization of the power supply amount depending on the amount of sunlight irradiated with varying discharge output.
  • the mechanism 40 is closed. With such a configuration, it is possible to stabilize the supply of power.
  • the light shielding mechanism 40 has a mechanism for blocking light irradiation to the negative electrode liquid tank 10 storing the negative electrode liquid 8 having the RFB 1 and the photochemical charging function according to an instruction from the control mechanism 13, specifically, a mechanical optical shutter and electro A chromic element or the like can be used.
  • FIG. 11 is a graph showing the irradiation light energy density dependence of the discharge energy of RFB according to the present invention. Measurement was performed by a solar simulator. As shown in FIG. 11, when light with an energy density of 10 W / m 2 is irradiated, a constant discharge energy is obtained with respect to time. This is a result of a balance between charging and discharging of the negative electrode 6 and the negative electrode liquid 8 by irradiation light. On the other hand, when the irradiation light energy density is halved to 5 W / m 2 using the light shielding mechanism 16, the discharge energy is also halved, and it can be seen that the discharge energy is supplied by the negative electrode 6 and the negative electrode liquid 8 charged with the irradiation light energy. This is also clear from the fact that the discharge is reduced to zero when the irradiation light is completely blocked by the light blocking mechanism (0 W / m 2 ).
  • FIG. 12 is a schematic view showing a circulation membrane applicable to the RFB system according to the present invention.
  • the redox flow battery system according to the present invention may have a circulation membrane 29 in which a part of the circulation path is arranged in a meander shape.
  • the circulation path 11b ′ of the circulation film 29 is meandering and densely formed, and has a configuration in which the light irradiation area is increased.
  • the circulation path 11b ′ is connected to the negative electrode liquid tank 10 and the negative electrode liquid 8 containing photoreduction (charge) active material molecules circulates inside.
  • the circulation film 29 can be formed by a method such as a polycarbonate resin (such as a bonding method, injection molding, and a pressing method).
  • Utilization type renewable energy utilization system can be provided.
  • FIG. 13 is a schematic diagram showing an example of the configuration of a solar energy storage system (building solar energy storage system) using the RFB system according to the present invention.
  • the basic configuration of the RFB system is the same as that shown in FIG.
  • the difference from FIG. 1 is that a circulation membrane 29 connected to the negative electrode tank 10 is provided.
  • FIG. 12 an example is shown in which the circulation membrane 29 is attached to the wall surface and the roof of two buildings 31.
  • a redox flow battery and a redox flow battery system capable of realizing system miniaturization while maintaining energy conversion efficiency and reliability equal to or higher than those of the prior art. It was shown that it is possible.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • photoelectric conversion film 20 ... electron, 21 ... hole, 22 ... p Layer, 23 ... n layer, 24 ... exciton splitting p layer, 25 ... exciton splitting molecule, 27 ... NiO film, 28 ... graphene film, 29 ... circulating membrane, 30 ... building (building), 40 ... light shielding mechanism, 50 ... surface of photoelectric conversion film, 60a, 60b ... electrolyte supply device, 70 ... casing, 100, 200, 300 ... RFB system, 400 ... Building solar energy storage system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

エネルギー変換効率および信頼性を従来と同等以上に維持しつつ、システムの小型化を実現することが可能なレドックスフロー電池およびそれを用いたレドックスフロー電池システムを提供する。本発明に係るレドックスフロー電池(1)は、正極(5)を有する正極室(3)と、負極(6)を有する負極室(4)と、前記正極室(3)と前記負極室(4)とを仕切る隔膜(2)と、前記正極室(3)および前記負極室(4)に充填された電解液(7,8)と、前記正極室(3)、前記負極室(4)、前記隔膜(2)および前記電解液(7,8)を収容する筐体(20)と、を備え、 前記負極(6)は、透光性を有する電極と、前記電極の表面に形成され、光電変換材料からなる光電変換膜と、を有する光電変換電極で構成されていることを特徴とするレドックスフロー電池。

Description

レドックスフロー電池およびレドックスフロー電池システム
 本発明は、レドックスフロー電池およびレドックスフロー電池システムに関し、特に光電気化学作用を用いて充放電するレドックスフロー電池およびそれを用いたレドックスフロー電池システムに関する。
 近年、地球温暖化の原因となる二酸化炭素を排出する化石燃料を代替するため、太陽光や風力などの自然エネルギーを用いた再生可能エネルギーの普及が急速に進んでいる。また、究極の自然エネルギー利用形態としての人工光合成システムも、2020年以降の実用化を目指して、世界的に研究が活発化している。
 しかしながら、再生可能エネルギーは変動が大きい日射量や風力を用いるため、原理的に不安定であり、電力系統の安定性を妨げてしまうため直接接続することができない。このため、再生可能エネルギーを一旦蓄積してから電力系統に安定的に接続するための蓄電システムが開発されており、その中でも特にレドックスフロー電池(以下、「RFB」と称する。)システムは大規模蓄電システムとして、再生可能エネルギーと共に普及が広まると予想されている。RFBとは、酸化還元する物質対(活物質)を含む2種類の溶液の夫々を、ポンプを用いてセルの負極および正極に供給して充放電を行うシステムであり、太陽光および風力によって生成した大容量な電力を貯蔵することができる。
 現時点では、大規模蓄電システムとしてはダムを利用した揚水発電が既に普及しているが、立地条件に制約がある。これに対してRFBは立地を選ばない利点がある。したがって、一般的に揚水で位置エネルギーが稼げない平野部に存在する大都市の近郊または内域に太陽光・風力などの再生可能エネルギーが普及することに伴い、RFBおよびRFB蓄電システムが大量に導入されることが期待される。
 RFBの例として、特許文献1には負極電解液を収容し、第1負極が配置された第1室と、ガスを収容し、第1正極及び第2負極が配置された第2室と、正極電解液を収容し、第2正極が配置された第3室と、第1室の負極電解液及び第2室のガスを離隔する、イオン伝導性の第1隔膜と、第3室の正極電解液及び第2室のガスを離隔する、イオン伝導性の第2隔膜と、第1正極及び第2負極を電気的に接続する導電部材とを備え、第1正極は、第1隔膜の第2室側の面に配置され、第2負極は、第2隔膜の第2室側の面に配置されることを特徴とするレドックスフロー電池が開示されている。特許文献1の構成によれば、レドックスフロー電池において、アノライトとカソライトとの混合を防止することができ、アノライト又はカソライトの再生プロセスが不要になるとされている。
 RFBの活物質として、非特許文献1には、バナジウム系や鉄/クロム系等の金属イオンが提案されている。また、低コスト化を目的として、活物質として有機分子を用いた電池も提案されている。具体的には、非特許文献2には、正極電極と、負極電極と、両電極間に介在される隔膜とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池が記載されており、アントラキノンを含有する負極電解液が記載されている。
 一方、光エネルギーを利用した蓄電システムとして、非特許文献3に人工光合成システムが開示されている。人工光合成システムは、太陽電池と触媒電極が一体化された構成を特徴として、太陽光エネルギーで励起された電子、正孔を利用して水を水素と酸素に分解し、更に大気中の二酸化炭素と反応させて炭水化物を合成することで、太陽光エネルギーを化学エネルギーに変換、蓄積して利用するものである。光電変換する太陽電池と水を電気分解する触媒が一体形成されているため、太陽電池とRFBを組み合わせたシステムよりも設備の小型化が期待でき、変換効率および信頼性が向上すれば、水素社会の到来に伴って実用化が進むものと予想される。
特開2013‐254685号公報
柴田ほか:再生可能エネルギー安定化用レドックスフロー電池:住友電工テクニカルレビュー 182, 10(2013). Nature Vol.505,pp.195-198(2014). "平成24年度特許出願技術動向調査-人工光合成-"、[online]、平成25年4月、特許庁、[平成27年8月24日検索]、インターネット〈URL:https://www.jpo.go.jp/shiryou/pdf/gidou-houkoku/24kogosei.pdf〉
 しかし、現行のRFBはエネルギー密度が低く、現在車載用を中心に普及が進むリチウムイオン電池以下のエネルギー密度であるため、設置面積が大きいという課題があり、具体的には非特許文献1の写真1に示されるように1MW級のRFBでは500平方メートル程度になり、充電に用いる太陽電池パネルと同程度の設置面積を必要とする。この場合、RFB設置領域に照射する太陽光エネルギーは充電されることなく、RFBと太陽電池の合計設置面積当たりの充電効率が低減する課題があった。また、人工光合成システムのエネルギー変換効率および信頼性は不十分であり、実用化にはまだ時間を要するという課題があった。
 本発明の目的は、上記事情に鑑み、エネルギー変換効率および信頼性を従来と同等以上に維持しつつ、システムの小型化を実現することが可能なレドックスフロー電池およびレドックスフロー電池システムを提供することにある。
 本発明は、上記目的を達成するため、正極を有する正極室と、負極を有する負極室と、上記正極室と負極室とを仕切る隔膜と、上記正極室および負極室に充填された電解液と、上記正極室、負極室、隔膜および電解液を収容する筐体と、を備え、上記負極は、光電変換材料を有することを特徴とするレドックスフロー電池を提供する。
 本発明によれば、エネルギー変換効率および信頼性を従来と同等以上に維持しつつ、システムの小型化を実現することが可能なレドックスフロー電池およびレドックスフロー電池システムを提供することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明に係るレドックスフロー電池システムの一例を示す模式図である。 本発明に係るRFBの負極の構成の一例を模式的に示す断面図である。 図2の負極を構成する光電変換膜の第1の例のエネルギー準位図である。 図2の負極を構成する光電変換膜の第2の例のエネルギー準位図である。 図2の負極を構成する光電変換膜の第3の例のエネルギー準位図である。 光電変換膜を構成するペンタセンと負極液に含まれるAQDSのエネルギー準位を模式的に示す図である。 本発明に係るRFBの電極を構成する光電変換膜の構成の一例を模式的に示す図である。 本発明に係るRFBの電極を構成する光電変換膜の構成の他の例を模式的に示す図である。 図1のRFB1を示す模式図である。 本発明に係るRFBの負極活物質(AQDS)と正極活物質(Zn)のエネルギー準位図である。 本発明に係るRFBシステムの放電エネルギーと光照射領域の関係を示すグラフである。 本発明に係るRFBシステムの第2の実施形態を示す模式図である。 本発明に係るRFBシステムの第3の実施形態を示す模式図である。 本発明に係るRFBの放電エネルギーの照射光エネルギー密度依存性を示すグラフである。 本発明のRFBに用いる負極液の循環膜の構成を示す図である。 本発明のRFBに用いたビル太陽光蓄電システムの構成を示す図である。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 [RFBシステム(第1の態様)の構成]
 図1は本発明に係るレドックスフロー電池システムの一例を示す模式図である。図1に示すように、本発明に係るレドックスフロー電池システム(以下、「RFBシステム」と称する。)100は、本発明に係るRFB1と、電解液をRFB1の正極室3および負極室4のそれぞれに循環して供給することが可能な電解液供給装置60a,60bと、RFB1に制御装置13を介して接続された負荷15と、RFB1、電解液供給装置60a,60bおよび負荷15を制御する制御装置13を備える。電解液供給装置60a,60bは、RFB1の正極液7を貯蔵する正極液タンク(電解液槽(以下、単に「タンク」とも称する。負極液タンク10についても同様とする。))9および負極液8を貯蔵する負極液タンク10を備える。タンク9および10は、それぞれ循環路(配管)11a,11bおよび循環ポンプ(ケミカルポンプ)12a,12bを介してRFB1に接続されており、タンク9,10とRFB1との間を電解液7,8が循環可能な構成を有している。タンク9,10、循環路11a,bおよび循環ポンプ12a,bを「電解液供給装置」と称する。
 RFBシステム100を構成するRFB1は、正極室(正極セル)3と、負極室(負極セル)4と、正極室3と負極室4との間に設けられた隔膜2と、正極室3および負極室4に充填された電解液7,8と、電解液7に浸漬された正極5および電解液8に浸漬された負極6と、これらを収容する筐体70を備える。正極室3に充填された電解液を正極電解液(正極液)7と称し、負極室4に充填された電解液を負極電解液(負極液)8と称する。
 本発明に係るRFBシステム100は、太陽光などの再生可能エネルギーを利用した発電および蓄電システムである。本発明に係るRFBシステム100はRFB1に照射される光エネルギー(太陽光等)によって直接酸化還元反応可能な構成を有するRFB1を有するため、従来のように発電(太陽光発電および風力発電など)部と蓄電部とをそれぞれ分けて設ける必要が無い。このため、従来よりもシステムを小型化することができる。すなわち、本発明に係るレドックスフロー電池は、RFBシステムの実用性と人工光合成システムのコンパクト性を両立する光電気化学RFBシステムを提供することができる。このように、発電部を有さず、光エネルギーを直接電気エネルギーに変換する構成を有するRFBシステムは従来には無く、新規なものである。
 [負極を構成する光電変換膜]
 RFB1に照射される光エネルギーを直接電気エネルギーに変換するために、本発明に係るRFB1は、負極6として以下の構成を有する光電変換電極を用いる。図2は本発明に係るRFBの負極の構成の一例を模式的に示す断面図であり、図3A~Cは図2の負極を構成する光電変換膜のエネルギー準位を模式的に示す図である。図2に示すように、負極6は、透光性を有する(透明)基板17と、透光性を有する(透明)電極18と、光電変換材料を有する光電変換膜19とがこの順で積層された構成を有する。透明基板17から光電変換膜19に向かって光エネルギーが照射される構成としている。
 透明基板17および透明電極18には、太陽光などの光を透過することが可能な、光透過性を有する材料を用いる。これらの材料および形成方法に特に限定は無いが、例えば透明基板17として厚さ5mmのポリカーボネート樹脂(住友ベークライト社製)を用い、その上に、RF(Radio‐Frequency)マグネトロンスパッタ装置(アネルバ社製)等で1μmのインジウム錫酸化物(ITO)からなる透明電極18を形成することができる。光電変換膜19の材料としては、膜厚500nmで、光エネルギーを高効率で吸収し、電極表面で活物質に電子を受け渡す(活物質を還元する)際の障壁エネルギー(過電圧)が小さい物質を積層したものを用いることができる。
 光電変換膜として、図3A~Cに示すタイプのものを用いることができる。図3Aは、単層膜(p(ホール輸送型)層)を用いた構造(以下、「p層」と称する。)である。図3Aに示す構造の場合、光エネルギー照射で生成した電子‐正孔対を分離するには、外部から電圧を印加して光電変換電極内に電位勾配を設ける必要がある。したがって、この場合は、外部から充電電圧が供給される場合だけ、太陽光照射によって生成された電子正孔対を活物質の充放電(酸化還元)に利用することができる。充電電圧が供給される場合は電子‐正孔対は分離され、夫々正極、負極に移動するが、充電電圧が供給されない場合は電子‐正孔対は再結合消滅して各電極に移動することはない。
 図3Bは上述したp層と電子輸送型のn層との積層構造、または両者が孤立せずに混在した所謂バルクへテロ接合構造有する積層膜を用いた構造である。図3Bに示す構造では、外部電圧がない場合でも光エネルギー照射で生成した電子‐正孔対はバルクへテロ接合界面で自発的に電子20と正孔21に分離されて、夫々正極、負極表面に到達し、負極では電子によって活物質が充電(還元)される。n層としては、C60、C70もしくはこれらの誘導体、硫化鉛およびセレン化鉛のうちの少なくとも1種を含むものを用いることができる。
 ただし、一般的なバルクへテロ接合構成では、光電変換電極で生成される電子‐正孔対は一重項励起状態であるため寿命が短く、再結合消滅する前にヘテロ界面に到達して電荷分離を促進するためは、光電変換電極の膜厚(図3中矢印で示す距離)を約10nmに薄くする必要がある。このため、膜厚を増加して光吸収量を増大することができない。
 これに対して、図3Cに示すように、光エネルギー照射により一重項励起状態よりも約3桁寿命が長い三重項励起状態の電子‐正孔対を生成する材料で光電変換膜(励起子分裂p層24)を構成することで、光電変換膜(励起子分裂p層24)の膜厚を約1μmまで増大して光エネルギーの貯蔵(蓄電)効果を増大することができる。本発明では、図3A~Cに示すいずれの光電変換膜も用いることができるが、光エネルギーの貯蔵(蓄電)効果の観点から、図3Cのタイプの光電変換膜を用いることが最も好ましい。
 本発明では、図3Cに示すように光エネルギー照射によって三重項励起状態となる物質として、芳香族系分子(アントラセン、テトラセン、ペンタセンおよびTIPSペンタセン等)およびその酸化物(アントラキノン、テトラキノン、ペンタキノンおよびペンタテトロン等)およびそれらの誘導体およびカロテノイド系色素を用いることができる。また、上記p層を構成する物質に混合するn層材料として、C60、C70およびこれらの誘導体、硫化鉛(PbS)およびセレン化鉛(PbSe)等を用いることができる。光電変換膜19として、上記p層材料とn層材料のナノ粒子の積層膜およびバルクヘテロ接合膜を用いることができる。
 [負極電解液の活物質]
 負極液8には、上述した光電変換膜19との間で電子の授受を行う活物質が含まれている。活物質は、光電変換膜19との間で電子の授受を行うことができるものであれば特に限定は無いが、光エネルギーの照射により可逆的に酸化還元する物質(活物質)を好ましく用いることができる。その一例として、アントラキノン誘導体、テトラキノン、ペンタキノン、ペンタテトロンおよびこれらの混合物が挙げられる。アントラキノン誘導体の例としては、アントラキノン‐2‐スルホン酸(以下、「AQDS」と称する。)が挙げられる。
 また、負極液8は、上記活物質に電子およびプロトンを供給可能な補助剤を含むことが好ましい。このような補助剤があることで、上記活物質は酸化還元反応を円滑に行うことができる。補助剤としては特に限定は無く、上述した活物質に電子およびプロトンを供給可能なものであればよい。好ましいものとして、例えば、2‐プロパノールが挙げられる。
 以下に、負極6を構成する光電変換膜19としてペンタセンを用い、負極液8として、AQDSからなる活物質と2‐プロパノールからなる補助剤を含むものを用いた場合の負極6および活物質間の酸化還元機構について説明する。図4は光電変換膜19を構成するペンタセンと負極液8に含まれるAQDSのエネルギー準位を模式的に示す図である。図4に示すように、光エネルギーの吸収でペンタセンの基底準位Sから励起準位Sに励起された電子は、瞬時にほぼ100%の確率でエネルギーが約半分の励起子分裂状態の励起準位Tの位置に2個の電子を生成する。このT準位の電子のエネルギーはAQDSの基底準位エネルギーより約1eV高いため、光エネルギー吸収による電子励起で基底準位に正孔が生じたAQDSに到達すると、直ちに負極のT準位からAQDSの正孔に電子が自動的に供給され、さらに水溶液中に存在するプロトンHと結合して活物質AQDSの安定な還元状態AQDSHおよびAQDSH2が生成される。
 光電変換膜と活物質の組み合わせは上述したものに限定されない。光電変換膜および活物質として電子の授受が起きやすい組み合わせを採用することで、活物質を効率的に酸化還元することができる。
 [光電変換膜の構成]
 次に、光電変換膜のより好ましい構成について説明する。図5Aは本発明に係るRFBの電極を構成する光電変換膜の構成の一例を模式的に示す図であり、図5Bは本発明に係るRFBの電極を構成する光電変換膜構成の他の例を模式的に示す図である。
 図5Aに示す負極6aは、ポリカーボネート(住友ベークライト社製)からなる透明基板17、インジウム錫酸化物からなる透明電極18、およびペンタセン分子を含む励起子分裂型の光電変換膜19aの積層膜から構成される。ペンタセン分子は、一般的に図5A示すように分子長軸25が透明電極18の表面(平面)にほぼ垂直に配向しており、光エネルギー照射で生成した電子20は、透明電極18の平面にほぼ垂直な方向(基板鉛直方向)、即ち分子長軸25が伸びる方向に移動して光電変換膜19aの表面50に到達して、アントラセン誘導体からなる活物質分子26に電子を受け渡す(還元する)。
 ところで、一般的に、ペンタセンを含むベンゼン環が連なった芳香族系分子の集合体で構成される光電変換膜(有機半導体膜)では、ベンゼン環平面に対して鉛直方向に広がったπ軌道が重なる方向(図5Aの分子長軸25に対して垂直な方向)に電子(および正孔)は移動しやすい。したがって、図5Bに示すように、ペンタセン分子の分子長軸25が透明電極18の平面にほぼ平行に配向していることが電子伝導性の観点から好ましい。
 したがって、ペンタセンの分子長軸25およびπ軌道が、透明電極18の表面(平面)となす角度が90°未満であることが好ましく、45°以下であることがより好ましい。このようなとき、光電変換膜19bの表面50においてペンタセン分子のπ軌道が露出し、電子移動度が図5Aの態様の1000倍に達し、効率的に活物質分子26に電子を供給(還元)することができる。また、このようにペンタセンを透明電極18の表面に配向させることで、ペンタセンのπ起動が光電変換膜50の表面に露出し、ペンタセン分子と活物質分子の間でお互いのπ軌道が重なる状態を取ることができるため、これによっても本実施例の活物質分子の還元(充電)効率は向上することができる。
 図5Bに示すようなペンタセン分子の配向状態は、透明電極18と光電変換膜19との間にグラフェン膜28を介在させることで実現することが可能である。例えば、グラフェン膜を介して透明電極18上に光電変換膜19bを形成する方法の一例を以下に説明する。
 ビーカーに透明基板17および透明電極18の積層膜を収容して水を充填した後、ビーカー内の水の表面にグラフェンシート(グラフェンプラットフォーム社製)を展開し、上記積層膜を水中から引き上げることによって透明電極18表面にグラフェン膜28を形成することができる。そして、自然乾燥した後、オーブンで120℃で加熱して水分を除去する。このようにして準備したグラフェン膜28が積層された積層膜に、1,2,4‐トリクロロベンゼンを溶媒としたペンタセン分子の分散溶液を窒素雰囲気下でゾーンキャスト法を用いて塗布することで、図5Bに示す配向状態を有する膜厚500nmのペンタセン分子を含むp型の光電変換膜19bを形成することができる。ペンタセン分子の長軸25が透明電極18の表面(平面)と平行に配向していることおよびベンゼン環の形状は、プローブ顕微鏡によって観察することができる。
 また、透明電極18とグラフェンシート28との間に、p型の酸化膜として酸化ニッケル(NiO)膜27を有していてもよい。このニッケル酸化膜27は、以下の参考文献に記載されたPEDOT:PSSとP3HT(ポリ(3‐ヘキシルチオフェン))の積層膜と同じ作用を有する。すなわち、ペンタセン分子からなる電子供与性の有機半導体膜で生成された三重項励起子が透明電極18側の界面に到達した際に、電子の通過を妨げて正孔だけが透明電極18を通過させることで、三重項励起子の界面での再結合消滅を防ぎ、効率的に電流として取り出す作用がある。この結果、NiO膜27を50nm積層した場合、NiO膜27が無い場合と較べて光電変換効率が約50%向上することができる。
参考文献:Congreve(MIT),SCIENCE Vol.340,p.334 (19 April,2013).
 透明電極18上にNiO膜27を形成する方法としては、特に限定は無いが、一例を挙げると、透明電極18の上に膜室温でRFマグネトロンスパッタ装置を用いて形成することができる。Ni金属ターゲット(住友金属工業製)を用い、スパッタガスにOを用い、酸素ガス流量を増加することにより、NiとOの組成比が2対3となるNiのNiO酸化膜27を形成することができる。NiO酸化膜27の組成は、XPS(X-ray Photoelectron Spectroscopy)で確認することができる。
 p型酸化膜を構成する酸化物としては、NiO以外にもクロム酸化物(CrO)を用いてもよく、上記したNiOと同様の効果を得ることができる。NiO膜またはCrO膜上へのグラフェン膜および光電変換膜19の形成方法は、上述した透明電極18上への形成方法と同様である。
 [電池反応]
 図6は、図1のRFB1を示す模式図である。以下に、図6を参照しながら本発明に係るレドックスフロー電池の電池反応について詳細に説明する。図6において、正極室3は、亜鉛(Zn)板からなる正極5と、正極5から電気化学的に溶出した2価亜鉛イオン(Zn2+)の水溶液を含む正極液7で構成されている。また、負極室4を構成する負極6は上述した光電変換膜を有する負極であり、負極液8は負極活物質としてAQDSを含み、補助剤として2‐プロパノールを含む。図6中に示す(1)はAQDSの反応であり、(2)は2‐プロパノールの反応である。
 まず、AQDSの充電は以下のように行われる。光照射により、AQDSのHOMO準位の電子がLUMO準位に励起されてラジカル状態(AQDS**)になる(図6の反応(a))。このAQDSラジカルの空いたHOMO準位に2‐プロパノール補助剤から電子(e)が供給されて、AQDSが負に帯電する(図6の反応(b))。この負帯電したAQDS(AQDS2-)に対して、正帯電した2‐プロパノール補助剤からプロトン(H)が供給されて、アントラセン‐2‐スルホン酸‐ヒドロキノン(AQDSH2)が生成する(図6の反応(c))。一方、電子およびプロトンを順次アントラキノンラジカルに供給した2‐プロパノールは、化学結合状態を自発的に組み換えてアセトンになり安定化する(図6の反応(e))。
 以上の負極での反応をまとめると、下記式(1)のとおりである。式(1)に従って太陽光エネルギーが化学エネルギーとして貯蔵される。
アントラキノン誘導体+2‐プロパノール+光エネルギー→アントラセン‐ヒドロキノン誘導体+アセトン …式(1)
 上記の反応は、電極を介した電気化学作用を必要とせず太陽光がアントラキノン誘導体分子に吸収されることで自発的に進行する。
 一方、式(1)の逆反応には、電極表面での電気化学反応が必要となる。電池に負荷を接続すると、電解液中で以下の反応が起こる。
アントラセン‐ヒドロキノン誘導体+アセトン+電気化学エネルギー→アントラキノン誘導体+2‐プロパノール …式(2)
 このように、光電変換膜を有する負極と、アントラキノン誘導体活物質および2‐プロパノール補助剤から構成される負極液8とを用いることにより、レドックスフロー電池に直接降り注ぐ光エネルギーを効率的に貯蔵(蓄電)することが可能になる。
 AQDSは、可逆的な酸化還元反応性を有する有機分子(以下、単に「有機分子」ということがある)であり、スルホン酸基を有することで水溶性となっている。この有機分子は、電解液中で活物質として機能するものである。この有機分子は、電子の授受によりプロトンとの結合及び脱離が生じるため、酸化還元反応によって良好に充放電を行うことができる。この有機分子はさらに具体的には、電子反応性を有するプロトン(水素Hの正イオン(H))と結合(還元)するとともに、所定の条件下で当該プロトンが脱離(酸化)する。すなわち、前記の可逆的な酸化還元反応がプロトンの授受によって生じるような有機分子である。このような有機分子を用いることで、水系の電解液である水溶液中で電荷の移動(即ち、プロトンの移動)を効率よく行うことができ、高い充放電特性を得ることができる。AQDSの還元は、電極電位と電極から供給される電子(e)による一般的な方法以外に、本実施形態のように太陽光照射によるラジカル化およびそれに伴う補助剤からの電子、プロトンの供給によっても可逆的に行うことができる。
 図7は本発明に係るRFBの負極液活物質(AQDS)と正極液活物質(Zn)のエネルギー準位を示す図である。図7に示すように、光エネルギーの照射によってAQDSの基底準位にある電子が約2.6eV上の励起準位に励起されてAQDS*になると、2‐プロパノールから電子とプロトンが順次供給され、AQDSHとなり還元状態が安定化する。これを2回繰り返すことで、AQDSH2となり、還元反応対が安定化する。一方、2‐プロパノールは、2つの電子とプロトンをAQDSに供給した後、アセトンに化学構造が変化して安定化する。
 図7に示すように、還元(充電)状態のAQDSHおよびAQDSH2のエネルギー状態は、Zn2+のエネルギー状態よりも高いため、正極5と負極6の間に負荷を接続するとAQDSHおよびAQDSH2から電子が引き抜かれる(酸化される)。一方、正極5側では、この電子を受け取った(還元された)Zn2+イオンが金属として正極5上に析出する。電子を引き抜かれたAQDSHおよびAQDS2からHが脱離して元のAQDSに戻り、アセトンも元の2‐プロパノールに戻り、可逆的な酸化還元(充放電)が完了する(図6の反応(d)および(e))。この際、電荷中性条件を満たすため、隔膜2を介してHが行き来する。このように、活物質AQDSと補助剤2‐プロパノールを組み合わせた負極液8を用いることで、光エネルギー照射による負極液8の可逆的な充放電が可能になる。
 負極液8中のAQDSおよび2‐プロパノールの濃度は、特に限定はないが、1M(mol/L)が好ましい。1Mは、AQDSおよび2‐プロパノールが水に溶解可能な最大の濃度である。また、電解液は活物質と補助剤の容量が1:1の混合比で溶解した水溶液であることが好ましい。この混合比は、上述した反応式から決定されるものである。さらに、正極液7および負極液8には、電解質として支持塩を含ませることが好ましい。支持塩が含まれることで、電解液の電気伝導性が向上し、電池のエネルギー密度を向上させることができる。
 [電池のその他の構成]
 以下に、本発明に係るレドックスフロー電池の上記した構成以外の構成について説明する。負極室4の筐体の材質は、電極および電解液に光を照射することを考慮し、光の透過性を有し、かつ化学的安定性、絶縁性および高い強度を有する材料を用いることが好ましい。このような材料として、具体的には、ポリカーボネート樹脂およびアクリル樹脂などが挙げられる。また、負極液8に光が十分照射・吸収されるように、負極液タンク10および負極液タンク10に接続された循環路11bが、上記のような光透過性を有する材料で構成されることがより好ましい。また、正極室3、循環路11についても、上記材料を用いてもよい。
 隔膜2は、正極液7と負極液8とが混ざらないようにセル1の内部を仕切り、かつ充放電反応に寄与するイオンが透過可能な構成とする。また、隔膜2は、充電した電解液が混合しない、すなわち、自然放電しないような材料を用いることが好ましい。このような材料として、具体的には、NAFION(ナフィオン、デュポン社の登録商標)等のイオン交換膜が好ましい。
 正極5は、水溶液中の金属イオンの析出を容易にするため比表面積が大きい形状にすることが好ましい。具体的には、析出の均一性と高比表面積化とのバランスを考慮し、正極5の形状は、メッシュ、エキスパンドメタルおよび不織布等の形状とすることが好ましい。
 図8は、本発明に係るRFBシステムの放電エネルギーと光照射領域の関係を示すグラフである。図8では、負極液8が完全に放電した状態を始状態とした場合の、本発明に係るRFB1の放電エネルギーの光照射領域依存性を示すものである。図8中、領域Iは光エネルギー未照射、領域IIは負極タンクのみに光エネルギーを照射し、領域IIIは負極タンクに加えて負極セルに光エネルギーを照射している。図8に示すように、負極タンク10のみに光エネルギーを照射すると、光充電性活物質が直接光充電されて放電エネルギーが増加し、負極タンク10に加えて負極セル4に光照射すると、光電変換型負極で生成される電子が光励起状態の光充電性活物質(AQDS*)の還元(充電)をさらに促進するため、放電エネルギーがさらに増加する。以上から、RFBシステムの約半分の設置面積を占める負極セル4及び負極タンク10に照射される太陽光によって充電作用が得られ、本実施形態のRFBの設置面積当たりの充電効率が約150%まで向上することが確かめられた。
 [RFBシステム(第2の態様)の構成]
 図9は本発明に係るRFBシステムの第2の実施形態を示す模式図である。図9に示す態様では、RFBシステムを構成するRFB200のみ記載している。図9に示すRFBは、負極6´を構成する光電変換膜および負極電解液8´中の活物質に効率的に光が照射されるように、負極6´および負極室4´を平板形状として光の照射面積が大きくなるように構成している。このような構成とすることで、光エネルギーをRFBシステムの設置面積に対してより多く取り込むことができ、RFBシステムの効率を向上することができる。
 図10は本発明に係るRFBシステムの第3の実施形態を示す模式図である。図10に係るRFBシステム300は、制御機構13と接続された遮光機構40を備える点で図1に示すシステムと異なる。
 第3の実施形態では、制御機構13に接続された遮光機構40を備え、RFBシステムが充電する際には、負極室4および負極液タンク10に太陽光が照射されるように遮光機構16を開き、放電する際には、放電出力が変動する太陽光照射量に依存して電力の供給量が不安定化することを回避するため、負極セル4および負極液タンク10を遮光するように遮光機構40を閉じる。このような構成とすることで、電力の供給の安定化を図ることができる。
 遮光機構40は、制御機構13の指示によってRFB1および光化学充電機能を有する負極液8を貯蔵する負極液タンク10への光照射を遮断する機構を有し、具体的には機械式光シャッタおよびエレクトロクロミック素子などを用いることができる。
 図11は本発明に係るRFBの放電エネルギーの照射光エネルギー密度依存性を示すグラフである。計測は、ソーラーシミュレータによって行った。図11に示すように、エネルギー密度10W/mの光を照射した場合、時間に対して一定の放電エネルギーが得られる。これは、照射光による負極6および負極液8の充電と放電がバランスした結果である。一方、遮光機構16を用いて照射光エネルギー密度を5W/mに半減すると放電エネルギーも半減し、放電エネルギーが照射光エネルギーを充電した負極6および負極液8によって供給されていることがわかる。これは、照射光を遮光機構で完全に遮断した場合(0W/m)、放電が零まで減少することからも明らかである。
 図12は本発明に係るRFBシステムに適用可能な循環膜を示す模式図である。図12に示すように、本発明に係るレドックスフロー電池システムは、循環路の一部がミアンダ状に配置された循環膜29を有していてもよい。循環膜29の循環路11b´は、蛇行して稠密に形成され、光照射面積が大きくなる構成となっている。循環路11b´は、図示しないが、負極液タンク10と接続されて内部を光還元(充電)性の活物質分子を含む負極液8が循環する。このような循環膜29を用いることで、太陽光の照射面積が大きくなるため、循環膜29を太陽光照射量が多い空間(都市ビル建物の壁面など)に設置することで、負極液8を効率的に充電することができる。循環膜29は、ポリカーボネート樹脂(などを、貼り合せ法、射出成形およびプレス法などの方法で形成することができる。
 上述したような循環路を内包するフレキシブルフィルム状の循環膜をRFBシステムの負極タンクに接続し、日射量の大きい建造物(都市ビルなど)の壁面に上記循環路を実装することで、都市空間活用型の再生可能エネルギー利活用システムを提供することができる。
 図13は本発明に係るRFBシステムを用いた太陽光蓄電システム(ビル太陽光蓄電システム)の構成の1例を示す模式図である。RFBシステムの基本構成は図1と同じであるため、説明は省略する。図1と異なる点は、負極タンク10に接続された循環膜29を有している点である。図12に示す構成では、循環膜29が2棟のビル建物31の壁面及び屋上に貼り付けられた例が示されている。このように、RFBシステムの設置容積に制約がある都市空間において、日照条件が良いビル壁面に循環膜29を貼り付けることにより、RFBシステムの容積当たりのエネルギー充電効率を向上することができ、都市空間で効率的な再生可能エネルギー利用が可能になる。
 上記構成により、都市ビル空間に照射される太陽光を効率的に蓄電・利用する都市空間活用型の再生可能エネルギー利活用システムを提供することができる。
 以上、説明したように、本発明によればエネルギー変換効率および信頼性を従来と同等以上に維持しつつ、システムの小型化を実現することが可能なレドックスフロー電池およびレドックスフロー電池システムを提供することが可能であることが示された。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1,1´…RFB、2…隔膜、3…正極室、4,4´…負極室、5…正極、6,6a,6b,6c,6´…負極、7…電解液(正極液)、8,8´…電解液(負極液)、9…正極液タンク、10…負極液タンク、11a,11b,11b´…配管(循環路)、12a,b…循環ポンプ、13…制御機構、14…発電機器(再生可能エネルギーを用いた発電機器)、15…負荷、17…透明基板、18…透明電極、19,19a,19b…光電変換膜、20…電子、21…正孔、22…p層、23…n層、24…励起子分裂p層、25…励起子分裂分子、27…NiO膜、28…グラフェン膜、29…循環膜、30…建造物(ビル)、40…遮光機構、50…光電変換膜の表面、60a,60b…電解液供給装置、70…筐体、100,200,300…RFBシステム、400…ビル太陽光蓄電システム。

Claims (15)

  1.  正極を有する正極室と、負極を有する負極室と、前記正極室と前記負極室とを仕切る隔膜と、前記正極室および前記負極室に充填された電解液と、前記正極室、前記負極室、前記隔膜および前記電解液を収容する筐体と、を備え、
     前記負極は、透光性を有する電極と、前記電極の表面に形成され、光電変換材料からなる光電変換膜と、を有する光電変換電極で構成されていることを特徴とするレドックスフロー電池。
  2.  前記光電変換電極は、透光性を有する基板上に、前記電極と、前記光電変換膜と、がこの順で積層された構成を有することを特徴とする請求項1記載のレドックスフロー電池。
  3.  前記光電変換材料は、光エネルギーの照射によって三重項励起状態となる材料を含むことを特徴とする請求項1記載のレドックスフロー電池。
  4.  前記光エネルギーの照射によって三重項励起状態となる材料は、アントラセン、テトラセン、ペンタセンまたはTIPSペンタセンのうちの少なくとも1種を含む芳香族系分子、前記芳香族系分子の酸化物、前記芳香族系分子の誘導体またはカロテノイド系色素であることを特徴とする請求項3記載のレドックスフロー電池。
  5.  前記光電変換材料はペンタセンを含み、前記ペンタセンの分子長軸と前記電極表面とのなす角が90°未満であることを特徴とする請求項1記載のレドックスフロー電池。
  6.  さらに、前記電極と前記光電変換膜との間にグラフェン膜および酸化ニッケル膜のうちの少なくとも1種を有することを特徴とする請求項1記載のレドックスフロー電池。
  7.  前記光電変換材料は、C60、C70もしくはこれらの誘導体、硫化鉛およびセレン化鉛のうちの少なくとも1種を含むことを特徴とする請求項1記載のレドックスフロー電池。
  8.  さらに、前記電解液が光エネルギーによって可逆的に酸化還元反応を起こす活物質を含むことを特徴とする請求項1記載のレドックスフロー電池。
  9.  さらに、前記電解液が前記活物質に電子およびプロトンを供給可能な補助剤を含むことを特徴とする請求項8記載のレドックスフロー電池。
  10.  前記活物質がアントラキノン‐2‐スルホン酸であり、前記補助剤が2‐プロパノールであることを特徴とする請求項9記載のレドックスフロー電池。
  11.  前記負極と前記負極室が平板形状を有し、光エネルギーの照射面積が大きくなるように構成したことを特徴とする請求項1記載のレドックスフロー電池。
  12.  正極を有する正極室と、負極を有する負極室と、前記正極室と前記負極室とを仕切る隔膜と、前記正極室および前記負極室に充填された電解液と、前記正極室、前記負極室、前記隔膜および前記電解液を収容する筐体と、を備えたレドックスフロー電池と、
     前記電解液を前記正極室および前記負極室のそれぞれに循環して供給することが可能な電解液供給装置と、
     前記レドックスフロー電池に接続された負荷と、
     前記レドックスフロー電池、前記電解液供給装置および前記負荷を制御する制御装置と、を備え、
     前記レドックスフロー電池が、請求項1ないし11のいずれか1項に記載のレドックスフロー電池であることを特徴とするレドックスフロー電池システム。
  13.  さらに、遮光機構を備え、前記レドックスフロー電池が放電する際に、前記遮光機構が前記レドックスフロー電池への光エネルギーの照射を遮断可能に構成されていることを特徴とする請求項12記載のレドックスフロー電池システム。
  14.  前記電解液供給装置と前記負極室を接続する配管の一部がミアンダ状に配置された循環膜を有することを特徴とすることを特徴とする請求項12記載のレドックスフロー電池システム。
  15.  前記レドックスフロー電池システムが、建造物に設けられ、光エネルギーの供給源を太陽光とする太陽光蓄電システムであって、
     前記循環膜が前記建造物の壁面に配置されていることを特徴とする請求項14記載のレドックスフロー電池システム。
PCT/JP2016/053460 2016-02-05 2016-02-05 レドックスフロー電池およびレドックスフロー電池システム WO2017134809A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053460 WO2017134809A1 (ja) 2016-02-05 2016-02-05 レドックスフロー電池およびレドックスフロー電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053460 WO2017134809A1 (ja) 2016-02-05 2016-02-05 レドックスフロー電池およびレドックスフロー電池システム

Publications (1)

Publication Number Publication Date
WO2017134809A1 true WO2017134809A1 (ja) 2017-08-10

Family

ID=59499546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053460 WO2017134809A1 (ja) 2016-02-05 2016-02-05 レドックスフロー電池およびレドックスフロー電池システム

Country Status (1)

Country Link
WO (1) WO2017134809A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133788A (ja) * 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd 電解質溶液
JPS58166681A (ja) * 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
JP2015060948A (ja) * 2013-09-19 2015-03-30 株式会社日立製作所 有機薄膜太陽電池及びそれを用いた有機薄膜太陽電池システム
WO2015120858A1 (en) * 2014-02-12 2015-08-20 Aarhus Universitet A solar rechargeable redox flow cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133788A (ja) * 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd 電解質溶液
JPS58166681A (ja) * 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
JP2015060948A (ja) * 2013-09-19 2015-03-30 株式会社日立製作所 有機薄膜太陽電池及びそれを用いた有機薄膜太陽電池システム
WO2015120858A1 (en) * 2014-02-12 2015-08-20 Aarhus Universitet A solar rechargeable redox flow cell

Similar Documents

Publication Publication Date Title
Ma et al. Iodine redox chemistry in rechargeable batteries
Park et al. A high voltage aqueous zinc–organic hybrid flow battery
Yan et al. Redox‐targeting‐based flow batteries for large‐scale energy storage
Li et al. Metal–organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries
Kato et al. Light-assisted rechargeable lithium batteries: organic molecules for simultaneous energy harvesting and storage
Frischmann et al. Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium–sulfur batteries
Wang et al. Li‐redox flow batteries based on hybrid electrolytes: at the cross road between Li‐ion and redox flow batteries
McKone et al. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery
Mahmood Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells
US7638706B2 (en) Fibril solar cell and method of manufacture
Xu et al. High‐Voltage Rechargeable Alkali–Acid Zn–PbO2 Hybrid Battery
US20140212705A1 (en) Solid dye sensitization type solar cell and solid dye sensitization type solar cell module
JPH0927352A (ja) 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
Paolella et al. Li-ion photo-batteries: challenges and opportunities
Cao et al. Solar redox flow batteries: mechanism, design, and measurement
Mahmoudzadeh et al. A high energy density solar rechargeable redox battery
Yu et al. The applications of semiconductor materials in air batteries
Pei et al. Review of the I−/I3− redox chemistry in Zn-iodine redox flow batteries
Thimmappa et al. Chemically chargeable photo battery
Christudas Dargily et al. A rechargeable hydrogen battery
Ng et al. Understanding Self‐Photorechargeability of WO3 for H2 Generation without Light Illumination
Chai et al. Biphasic, membrane-free Zn/phenothiazine battery: effects of hydrophobicity of redox materials on cyclability
Liu et al. A photo-rechargeable aqueous zinc–tellurium battery enabled by the janus-jointed perovskite/te photocathode
JP2019537498A (ja) 光駆動イオンポンピング膜システム
Gui et al. A solar rechargeable battery based on the sodium ion storage mechanism with Fe 2 (MoO 4) 3 microspheres as anode materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP