WO2017133625A1 - 智能庭院维护系统及其维护方法 - Google Patents

智能庭院维护系统及其维护方法 Download PDF

Info

Publication number
WO2017133625A1
WO2017133625A1 PCT/CN2017/072678 CN2017072678W WO2017133625A1 WO 2017133625 A1 WO2017133625 A1 WO 2017133625A1 CN 2017072678 W CN2017072678 W CN 2017072678W WO 2017133625 A1 WO2017133625 A1 WO 2017133625A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
intelligent
sensing
maintenance system
irrigation
Prior art date
Application number
PCT/CN2017/072678
Other languages
English (en)
French (fr)
Inventor
王家达
何明明
孙根
邵勇
谭一云
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620779480.0U external-priority patent/CN205993268U/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2017133625A1 publication Critical patent/WO2017133625A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering

Definitions

  • the invention relates to an intelligent garden maintenance system and a maintenance method thereof.
  • the conventional home courtyard scene is shown in Figure 1.
  • the entire perimeter of the house (such as the front and rear) is usually laid with a whole lawn, and some bushes or flower beds are arranged sporadically or shaped elsewhere in the courtyard.
  • the lawns, flower beds, shrubs and other vegetation in the courtyard need to be taken care of frequently, such as mowing, irrigating and fertilizing. Therefore, garden maintenance is a difficult task.
  • Vegetation, flower buds, shrubs and other vegetation in different areas of the courtyard may be different depending on the geographical location or due to the shadows of obstructions (such as houses and bushes), so the lawns, flower beds and shrubs in different areas The demand for water and nutrients in vegetation is different.
  • the existing garden maintenance system requires the user to divide the courtyard into multiple areas according to his own experience, and arrange sensors at a certain point in each area to detect the soil moisture or nutrient condition of the area where the sensor is located in real time. .
  • Multiple sensors transmit data to the control center of the garden maintenance system. After analyzing the data, the control center determines which area or areas require water and nutrients. The control center then controls the operation of the actuator, such as irrigation nozzles for irrigation of water or nutrient areas.
  • the cutting device cuts the area where the mowing is required.
  • the senor performs the irrigation strategy for the partitioning of the soil conditions in different regions. Since sensor data can only show soil conditions within a certain area, a home courtyard usually requires a large number of sensors to fully cover the entire courtyard area. The deployment of a large number of sensors requires large capital expenditures and increases the cost of the yard maintenance system. Moreover, the sensor must have a power supply to work. When the number of sensors is large, it is difficult for the user to maintain the energy of each sensor.
  • the technical problem to be solved by the present invention is to provide an intelligent yard maintenance system that can cover the entire courtyard with a small number of sensing devices, thereby performing maintenance according to the actual needs of the plants in the courtyard.
  • an intelligent garden maintenance system comprising: a sensing device for obtaining data related to plant maintenance requirements; a control device receiving data obtained by the sensing device, and The data is analyzed and processed to obtain a control command; a device that receives and executes a control command of the control device to maintain the courtyard; a reference point is provided in the courtyard, the sensing device collects data at a reference point, and the control device uses the data of the reference point to adopt a preset algorithm The speculative data of the other regions is derived, and the control device generates a corresponding control command for the other regions based on the speculative data.
  • the intelligent garden maintenance system is an intelligent irrigation system
  • the sensing device is used to obtain data of a plant's irrigation demand
  • the control device uses a reference point data to calculate a speculation of other irrigation regions by using a preset algorithm.
  • Data the control device generates a corresponding irrigation command for different irrigation regions based on the speculative data
  • the execution device being an irrigation execution device that receives and executes control instructions of the control device to maintain the yard.
  • the number of the sensing devices is one.
  • At least one sampling point is provided in the courtyard, and the reference point is one of sampling points.
  • the plurality of sampling points are disposed in the courtyard, and the reference point is one of a plurality of sampling points, and the sensing device separately samples the sensing device after being sampled at each sampling point.
  • the sensing data is continuously collected at the selected reference point.
  • the control device synchronously adjusts the sensing data of the other sampling points according to the data change of the reference point by using a preset algorithm.
  • the reference point is at least one standard location disposed within the courtyard.
  • the reference point is a plurality of standard positions disposed in the courtyard, and each of the plurality of standard positions is respectively provided with a sensing device, and the sensing device detects data of the standard position and transmits the data to Control device.
  • the standard position is a combination of one or more of a corner of the courtyard, a corner of the house, and a mutation zone.
  • the preset algorithm includes a relative relationship of each standard position to combine the sensing data of all the standard position points to calculate the sensing data of other areas of the courtyard.
  • the preset algorithm includes a variation parameter of the sunshine condition as the geographical position changes, for combining with the sensing data detected by the standard position, and deducing the sensing data of other areas in the courtyard.
  • the type of detection of the sensing device comprises a combination of one or more of soil pH, soil moisture, soil nutrient content, air humidity, temperature or lighting conditions.
  • the execution device comprises a sprinkler device, a drip irrigation device, an irrigation device and a moving water tank a combination of one or more of them.
  • the predetermined algorithm includes a relationship between a geographic location and a plant's maintenance requirements and/or a relationship between different plants and maintenance requirements.
  • the relationship between the geographic location and the plant's maintenance needs includes the relationship between different latitudes and plant maintenance requirements and/or the relationship between different soil and plant maintenance needs.
  • the technical problem to be solved by the present invention is to provide an intelligent yard maintenance system that can cover the entire courtyard with a small number of sensing devices, thereby performing maintenance according to the actual needs of the plants in the courtyard.
  • an intelligent garden maintenance system comprising: a sensing device for obtaining data related to plant maintenance requirements; a control device receiving data obtained by the sensing device, and The data is analyzed and processed to obtain a control instruction; the executing device receives and executes a control instruction of the control device to perform maintenance on the courtyard; the sensing device acquires data of different areas in the courtyard by using a mobile manner, and the control device is configured according to Data in different regions generate corresponding control commands for different regions.
  • the intelligent garden maintenance system is an intelligent irrigation system
  • the sensing device is used to obtain data of a plant's irrigation demand
  • the control device receives the data obtained by the sensing device, and analyzes and processes the data.
  • a control instruction an execution device that receives and executes a control instruction of the control device
  • the sensing device acquires data of different regions in the courtyard by using a mobile manner, and the control device generates corresponding corresponding regions for different irrigation regions according to data in different irrigation regions Irrigation instructions.
  • the moving mode comprises setting the sensing device on a mobile platform, and the sensing device collects data of the corresponding region when the mobile platform moves to different regions.
  • the mobile platform comprises a smart lawn mower.
  • the sensing device comprises a grass analyzer, and the grass analyzer obtains moisture and/or nutrient data of the grass by analyzing the grass cut by the smart lawn mower.
  • the sensing device comprises a capacitive sensor that senses a dielectric constant or an indirect physical quantity of a dielectric constant when the grass is used as a medium.
  • the technical problem to be solved by the present invention is to provide a maintenance method for an intelligent yard maintenance system, so as to cover the entire courtyard with a small number of sensing devices, thereby performing maintenance according to the actual needs of plants in the courtyard.
  • a maintenance method of the intelligent courtyard maintenance system which includes at least the following steps:
  • Step 1 collecting data, collecting relevant sensing data by sampling points set up in the courtyard by at least one sensing device, and transmitting the collected data to the control device;
  • Step 2 analyzing the processed data, the control device receives the sensing data transmitted in step 1, and compares and analyzes the sensing data of the sampling point with a preset threshold to obtain a control instruction;
  • Step 3 Execute the control command, and the executing device receives the control command sent by the control device, and performs maintenance work on the corresponding area of the courtyard.
  • the step 1 further comprises: collecting data, the smart garden maintenance system comprises a mobile platform, the sensing device is movably disposed on the mobile platform, and the sensing device obtains different regions by moving the mobile platform Sensing data and transmitting the sensor data to the control device.
  • the courtyard is provided with at least one sampling point.
  • the step 1 further comprises: collecting data, the number of the sensing devices is one, the plurality of sampling points are arranged in the courtyard, and the sampling points of the plurality of sampling points of the courtyard are first obtained by one sensing device.
  • Sensing data transmitting a plurality of first sensing data to the control device, selecting a reference point among the plurality of sampling points, fixing the sensing device to the reference point to acquire the second sensing data, and continuing to refer to The second sensor data at the point is transmitted to the control device.
  • the step 2 further comprises: analyzing the processed data, the control device receiving the first and second sensing data of the step 1, and according to the first sensing data of the second sensing data at the reference point relative to the reference point
  • the first sensing data of other sampling points is updated and adjusted by using a preset algorithm, so that the sensing data updated by each sampling point is compared with a predetermined threshold value to obtain a control instruction.
  • the sampling point in the step 1 is at least one standard position selected in the courtyard, the number of the sensing devices is the same as the number of selected standard positions, and the sensing device detects the location.
  • the data of the standard position is transmitted to the control unit.
  • control device in the step 2 is provided with a preset algorithm, and the preset algorithm combines the sensing data corresponding to the standard location point to obtain the sensing data information of the courtyard, and the sensing data information is A predetermined threshold is subjected to comparative analysis processing to obtain a control command.
  • the preset algorithm includes a relative relationship between the standard positions and a change parameter of the sunshine condition as the geographical position changes.
  • the standard position is one or a combination of a corner of the courtyard, a corner of the house, and a mutated area.
  • the method of the intelligent garden maintenance system further comprises the step of eliminating error between step 1 and step 2, the step of eliminating the error being a linear regression method or a nonlinear regression method or a least square error elimination method.
  • the preset threshold is standard sensor data information that meets plant maintenance requirements.
  • the intelligent maintenance system is an intelligent irrigation system
  • the execution device comprises a combination of one or more of a sprinkler device, a drip irrigation device, an irrigation device, and a moving water tank.
  • the step 3 further includes: executing a control command, the executing device receives the control command sent by the control device, performing maintenance work on the corresponding area of the courtyard, and the sensing device detects the sensing data of the corresponding area, and transmits the The sense data is fed back to the control device and then to step 2.
  • the intelligent maintenance system is an intelligent irrigation system
  • the control commands issued by the control device include an irrigation amount and/or an irrigation time.
  • the technical problem to be solved by the present invention is to provide an intelligent courtyard maintenance system which uses solar panels to supply power, does not need to arrange cables, and does not need to periodically replace batteries, which reduces costs and is flexible to use.
  • an intelligent courtyard maintenance system including a distributed node subsystem and at least one executing device, the distributed node subsystem includes at least one node, and each of the The node includes a device having a wireless communication function and at least one solar panel that provides power for the operation of the node for wireless communication between nodes or wirelessly with devices external to the distributed node subsystem Communication; one of the nodes is disposed in one of the executing devices and is electrically connected to the executing device, or the node is in wireless communication with the executing device.
  • the node is a movable node and/or a fixed node.
  • the node comprises a sensing device or a control device.
  • the node provides positioning information for the executing device.
  • the execution device is a watering device
  • the node is disposed on the watering device and controls the operation of the watering device.
  • the node further includes a matching circuit, a first end of the matching circuit is connected to an output end of the solar panel, and a second end of the matching circuit is connected to the device, the matching circuit It is used to match the output of the solar panel according to the power demand of the device.
  • the node further comprises a rechargeable battery, and the rechargeable battery is used for the work of the node Provide electrical energy.
  • the node further includes a charge and discharge control unit, the first end of the charge and discharge control unit is connected to the output end of the solar panel, and the second end is connected to the output end of the rechargeable battery.
  • the third end is coupled to the device, and the solar panel charges the rechargeable battery by the charge and discharge control unit.
  • a matching circuit is further disposed between the device and the charge and discharge control unit, a first end of the matching circuit is connected to a third end of the charge and discharge control unit, and a second end of the matching circuit An end is coupled to the device, the matching circuit for matching an output of the solar panel or an output of the rechargeable battery in accordance with a power demand of the device.
  • an input end of the rechargeable battery is connected to an output end of the solar panel, an output end of the rechargeable battery is connected to the device, and the solar panel charges the rechargeable battery
  • the rechargeable battery is used to provide electrical energy for the operation of the node.
  • the node further includes a charge and discharge control unit, the first end of the charge and discharge control unit is connected to an output end of the solar panel, and the second end of the charge and discharge control unit is rechargeable An input end of the battery is connected, and the solar panel charges the rechargeable battery through the charge and discharge control unit.
  • a charge and discharge control unit the first end of the charge and discharge control unit is connected to an output end of the solar panel, and the second end of the charge and discharge control unit is rechargeable An input end of the battery is connected, and the solar panel charges the rechargeable battery through the charge and discharge control unit.
  • a matching circuit is further disposed between the device and the charge and discharge control unit, a first end of the matching circuit is connected to a third end of the charge and discharge control unit, and a second end of the matching circuit
  • the terminal is coupled to the device, the matching circuit for matching the output of the rechargeable battery in accordance with the power requirements of the device.
  • the rechargeable battery is a lithium battery, a nickel hydrogen battery, an electrolytic capacitor or a super capacitor.
  • the matching circuit is configured to adjust an output voltage of the solar panel to an operating voltage of the device.
  • the device is a device having a Bluetooth communication function, a device having an ultra-wideband communication function, a device having a Zigbee communication function, or a device having a wifi communication function.
  • the solar panel is a silicon solar panel, a compound solar panel or an organic solar panel.
  • the intelligent garden maintenance system of the present invention can accurately understand the actual needs of plants in different regions while reducing the number of sensors.
  • the intelligent garden maintenance system uses mobile sensors to collect different regional data or mathematical models to calculate different regional data, to understand the actual needs of plants in different regions, and to implement different maintenance strategies for different regions.
  • the reduction in the number of sensors not only avoids the trouble of user layout, improves the intelligence of the entire system, but also reduces the cost, and also reduces the difficulty for the user to maintain the sensor's battery life.
  • the intelligent garden maintenance system uses solar panels to supply power to the device, does not need to lay cables, does not need to replace the batteries regularly, reduces the cost, is flexible to use, and has a wide range of applications.
  • Figure 1 is a schematic view of a conventional home garden arrangement.
  • FIG. 2 is a block diagram of an intelligent yard maintenance system of an embodiment.
  • 3 is a diagram of a method of intelligent yard maintenance of an embodiment.
  • FIG. 4 is a schematic illustration of the distribution of sampling points and reference points in a courtyard in an embodiment.
  • Figure 5 is a schematic illustration of the distribution of standard locations in a courtyard in an embodiment.
  • FIG. 6 is a schematic structural view of an intelligent courtyard maintenance system in another embodiment
  • Figure 7 is a block diagram of a node in a preferred embodiment of the intelligent yard maintenance system of Figure 6;
  • Figure 8 is a block diagram of a node in a preferred embodiment of the intelligent yard maintenance system of Figure 6;
  • Figure 9 is a block diagram of a node in a preferred embodiment of the intelligent yard maintenance system of Figure 6;
  • Figure 10 is a block diagram of a node in a preferred embodiment of the intelligent yard maintenance system of Figure 6.
  • the intelligent yard maintenance system 100 of the present embodiment includes a sensing device 20, a control device 30 that receives data measured by the sensing device 20, and an executing device 40 that executes instructions issued by the control device 30.
  • the sensing device 20 includes a humidity sensor for testing soil moisture, a sensor for various nutrient contents of the soil (such as a nitrogen content sensor, a phosphorus content sensor, other element content sensors, etc.), a soil pH sensor, a light intensity sensor, and an illumination duration sensor. , air humidity sensors, temperature sensors, or other sensors that affect plant growth indicators.
  • the sensing device 20 of the present embodiment can be one of the specific sensors listed above or a plurality of combinations of the specific sensors listed above. Specifically how to obtain a courtyard using one or a small number of the sensing devices 20 The data of all areas to derive the actual needs of the plant, this article will be introduced in the specific examples.
  • the sensing device 20 listed in this paragraph is only a few ways to obtain actual plant demand data.
  • the sensing device 20 also includes other types of sensors, as listed in the specific embodiments described later herein. Therefore, the types of sensors listed in this paragraph do not constitute a limitation of the present invention.
  • the control device 30 mainly receives the data of the sensing device 20 and performs an analysis process to determine the actual demand of the plants in the specific regions. Specifically, if it is necessary to mowing, requiring moisture or requiring nutrients, the corresponding device 40 is issued accordingly. Control instruction.
  • Data transmission between the control device 30 and the sensing device 20 can be performed by wireless communication, such as a Wi-Fi device, a cellular communication device, a Bluetooth device, a GPS device, a Zigbee device, a 2.4 GHz wireless communication device, and a 433 MHz wireless communication.
  • wireless communication such as a Wi-Fi device, a cellular communication device, a Bluetooth device, a GPS device, a Zigbee device, a 2.4 GHz wireless communication device, and a 433 MHz wireless communication.
  • Device or Z-WAVE wireless communication device etc.
  • the control device 30 includes a fixture that is located somewhere in the yard, such as a device that is located near the water source and has a button or/and a panel or/and a display screen, and the user can perform maintenance work settings and/or work in the viewable area. Situation or / and view work history.
  • the control device 30 includes a mobile platform, specifically, such as a mobile handset, a tablet pad, a personal computer, or a central control server.
  • the corresponding platform maintenance app software is provided on the mobile platform, and the user can perform maintenance work setting or/and can view the working condition of the area or/and view the work history through the app interface.
  • Control device 30 includes an integrated chip, such as a microprocessor.
  • the integrated chip can be directly coupled or mounted within the respective sensing device 20 or mounted on the actuator device 40.
  • the executing device 40 operates the corresponding area in accordance with an instruction issued by the control device 30.
  • the actuator 40 includes a mowing device, a snow sweeping device, an irrigation device, a fertilizing device, an antitheft device, and the like.
  • the specific irrigation mode includes a sprinkler irrigation mode, a drip irrigation mode, an irrigation irrigation mode, or a moving water tank mode.
  • the irrigation pipe is arranged in the courtyard, and the pipe is provided with a nozzle at a certain distance.
  • the nozzle that needs to be opened in the irrigation area or the valve connected to the nozzle is opened for sprinkling; or the nozzle that needs to be opened near the irrigation area or the valve connected to the nozzle is opened, and Sprinkle irrigation in the direction of the desired irrigation area.
  • an irrigation pipe is arranged in the courtyard, and the pipe is provided with a dripper at a certain distance.
  • the actuator 40 receives the irrigation command, it will need to drop the area within the irrigation area.
  • the valve with the head open or connected to the dripper is opened for drip irrigation.
  • a irrigation machine is arranged in the courtyard, and the irrigation machine is connected to the water source.
  • the sprayer's injection angle and water pressure need to be adjusted in the learning mode of the emitter, so that the emitter can memorize the farthest area of the required injection, as well as the different injection angles and water pressure. Spray area.
  • the jetting machine adjusts its own spray angle and water pressure according to the memory in the learning mode so that the spray region corresponds exactly to the irrigation region indicated in the command.
  • a mobile device When the actuator 40 is in the moving water tank mode, a mobile device is disposed in the courtyard, and the mobile device is provided with a water tank.
  • the execution device 40 receives the irrigation command, the mobile device carries the water tank to the desired irrigation area and sprays water within the water tank within the area.
  • the mobile device can automatically move to the water source to extract water.
  • the maintenance process of the intelligent garden maintenance system 100 of this embodiment includes the following steps:
  • Step S11 collecting data. Relevant sensory data is acquired at multiple sampling points in the courtyard (or courtyard) by one or a small number of sensing devices 20. The acquired data is transmitted to the control device 30.
  • Step S12 Analyze the processed data.
  • the control device 30 receives the data transmitted in step S11, and analyzes the processed data to obtain a control command.
  • only one method of analysis processing is used: comparing the data of each sampling point with a preset threshold, and when the comparison result is different from the preset condition, determining whether the area represented by the sampling point or the periphery of the sampling point needs to be performed Irrigation, cleaning, mowing, etc., and issuing control instructions for irrigation, cleaning, mowing, etc. in the area.
  • Step S13 Execute a control command. After receiving the control command issued by the control device 30, the executing device 40 performs irrigation, cleaning, mowing, fertilizing, and the like on the corresponding area.
  • a step of eliminating the error is provided between step S11 and step S12.
  • the sensing device 20 may have errors in the data collected by the sensing device 20 due to hardware reasons or unavoidable environmental interference. Therefore, before analyzing the processed data, the correlation algorithm is used to perform error elimination on the data.
  • the specific error elimination algorithm may be a linear regression method, a nonlinear regression method, a least square error elimination method, or other types of error elimination methods.
  • control device 30 not only issues which areas (areas) need to be irrigated, cleaned, mowing, etc. based on the collected data, but the control device 30 can also be more intelligent in combination with the climate parameters of the area in which the courtyard is located. Irrigation, cleaning, mowing, fertilizing and other instructions.
  • the climate parameter of the area in which the courtyard is located may be a local weather forecast based on the network, or a climate parameter detected by the sensing device. Number, or climate parameters derived from climate change models derived from big data.
  • Smarter irrigation instructions include which area(s) need to perform irrigation, cleaning, mowing or fertilizing, and when it is appropriate to irrigate, clean, mowing or fertilizing based on climate parameters, the amount of irrigation or fertilization required What is the length of the irrigation period or the duration of the cleaning or the length of the mowing or the length of the fertilization.
  • the sensing device detects the irrigation amount data or the fertilizer amount data or the cleaning data or the mowing data of the corresponding region. The data is fed back to the control device, and then the control device analyzes and processes the data, generates a control command, and repeats the loop to continuously perform tracking feedback generation and generate commands.
  • the tracking device continuously tracks, when the irrigation amount or the fertilizer amount or the cleaning condition or the mowing situation meets the plant maintenance demand, the control device can generate the control instruction to stop execution in time, and execute The device receives the control instruction and performs the corresponding maintenance work; when the irrigation amount or the fertilizer amount or the cleaning condition or the mowing situation does not meet the plant maintenance requirement, the control device can generate the control command for increasing or decreasing the execution in time, and the execution device receives the control instruction. Control instructions and perform appropriate maintenance work.
  • the control device can Generate control instructions that stop execution in a timely manner.
  • control device 30 may employ different maintenance strategies based on the characteristics of the plant's wetness or other characteristics.
  • the intelligent yard maintenance system 100 presets to store the variety of plants in different areas, as well as the characteristics of the wet or wet conditions of the plant variety.
  • the control device 30 first matches the characteristics of the plants in the region according to the regional geographic coordinates, and combines the plant characteristics with the sensing data to determine whether the region needs irrigation and irrigation. How much do you need.
  • the user can use existing turf maintenance machines (such as smart mowers, hand mowers, riding lawn mowers, etc.) to maintain the lawn. And which areas of the entire lawn need to be irrigated.
  • the invention only takes the user to use the intelligent lawn mower to obtain which areas in the whole lawn need irrigation in the process of maintaining the lawn.
  • the sensing device 20 described above is movably disposed on a smart lawn mower.
  • a sensing device 20 is provided and the sensing device 20 is movable up and down.
  • the sensing device 20 moves downward, its sensing portion can be inserted into the soil of the lawn to obtain soil-related data (such as moisture, nutrients).
  • the intelligent lawn mower itself carries a positioning device and a wireless communication device.
  • the positioning device may be a GPS device, or a DGPS device, or an inertial navigation device, or an RFID device, or a beacon device or the like. Of course, multiple types of positioning devices can be set simultaneously on the intelligent lawn mower.
  • the data detected by the sensing device 20 and the coordinate position of the detection point are wirelessly transmitted to the control device 30 of the intelligent garden maintenance system 100.
  • the control device 30 analyzes and processes the sensor data to determine whether the lawn in the detection point area needs irrigation, and if the irrigation is required, sends a control command to the execution device 40. After the execution device 40 receives the control command, it performs irrigation to the corresponding region.
  • this embodiment can utilize only one sensing device 20 to obtain sensory data for the entire lawn regarding irrigation requirements.
  • the smart lawn mower is provided with a button related to obtaining irrigation data.
  • the intelligent lawn mower performs the task of collecting data during the mowing process, when the user does not activate the button.
  • the intelligent mower only cuts grass normally.
  • the specific sampling points can be set by software to allow the intelligent mower to collect data at a certain distance or at a certain interval during the mowing process.
  • the sensing device 20 can also use other means to obtain whether the grass in the area has irrigation requirements.
  • the sensing device 20 can be a debris analysis sensor.
  • the grass analysis sensor can analyze the nutrient condition of the grass, or/and the moisture content of the grass, by analyzing the grass, and the reference amount representing the growth of the grass.
  • the sensing device 20 can be a capacitive sensor. Grass as a medium of capacitance, when the nutritional status of the grass is different, the moisture content of the grass is not the same, the medium constant represented by it is also different.
  • a reference amount representing the growth of the grass, such as the nutrient condition of the grass, or/and the moisture content of the grass is obtained by a change in the medium constant or by a change in other physical quantities of the indirect reaction medium constant.
  • the smart lawn mower can also be configured to detect light related or climate related sensors.
  • the control device 30 of the intelligent yard maintenance system 100 utilizes light or climate related numbers It is possible to give more intelligent irrigation control commands such as irrigation duration control and irrigation water volume control.
  • the smart lawn mower can also detect the current/voltage magnitude when the intelligent lawn mower is mowing, and transmit the sampled current/voltage values to the control device 30 of the smart yard maintenance system 100.
  • the control device 30 determines the density of the grass in the sampling point area by analyzing the current/voltage value, thereby judging the amount of water demand in the corresponding area.
  • the sensing device 20 automatically rescales after each data sample to prevent the last detection result from interfering with the next detection.
  • the sensing device 20 can be disposed on a mobile platform.
  • the mobile platform can carry the sensing device 20 to different areas of the courtyard for data collection.
  • different working components can also be integrated on the mobile platform to achieve corresponding work. For example, mowing parts, or snow-sweeping parts, or snow-pushing parts, or monitoring parts, or fertilizing parts can be installed on the mobile platform.
  • a sensing device 20 is first used to sample multiple points in the courtyard, and the sampling point and the coordinates of the sampling point are transmitted to the control device 30, and then the sensing device 20 is fixed.
  • One of the sampling points (called the reference point).
  • the control device 30 synchronously adjusts the sensing data of all sampling points according to the law of the change of the reference point data by using a preset algorithm.
  • the sensing device 20 is provided with a locator for positioning and a wireless transmitter for data transmission. In this way, the control device 30 can also obtain sensor data of different sampling points in the courtyard in real time, thereby judging the actual demand for irrigation of plants in the region corresponding to different sampling points.
  • the predetermined algorithm includes the relationship between geographic location and plant versus maintenance requirements and/or the relationship between different plants and maintenance needs.
  • the preset algorithm is preset in the control device. When the control device receives the sensing device to obtain data, the preset algorithm starts and analyzes the received data to obtain a control command.
  • the relationship between geographical location and plant maintenance needs includes the relationship between different latitudes and plant maintenance needs and/or the relationship between different soil and plant maintenance needs.
  • irrigation is used to illustrate that the planting of plants on the sand requires more water than the plants planted in the woodlands, grasslands, and arable land. The demand for moisture in plants that are wet is greater than the demand for water in the plants.
  • the demand for water in densely planted areas is generally greater than the area where the planting density is poor.
  • the preset algorithm can be combined with different geographical locations, Different plant species and corresponding sensor data are used to calculate whether the corresponding area needs irrigation and how much irrigation is needed.
  • the sensing device 20 is disposed only at a standard position of the courtyard, specifically, at a southeast corner, a southwest corner, a northeast corner, a northwest corner, a corner of the house, and a catastrophic area of the courtyard.
  • a sensing device 20 is provided for each.
  • a small number of sensing devices 20 detect the data of the location in real time and transmit it to the control device 30.
  • the control device 30 is provided with a mathematical model algorithm which estimates the data of the courtyard using the relative relationship of the standard positions and the corresponding sensing data of all standard position points.
  • the data of the standard position is changed in real time, and the control device 30 can calculate the data of other non-standard positions in the courtyard in real time through the mathematical model algorithm, thereby judging the actual demand for irrigation of plants in all areas of the courtyard.
  • the mathematical model algorithm in this embodiment mainly considers the sunshine factor.
  • the network can obtain the sunshine of the area where the courtyard is located on the relevant website (such as the local meteorological bureau website, the NASA website of the United States), and the data source can be used to analyze the sunshine situation of the area along with the geographical location (such as things The pattern of change towards or/and north-south.
  • the mathematical model algorithm reuses the change law and combines the sensor data detected by the standard position to derive the sensor data of all areas in the courtyard.
  • FIG. 6 is a schematic structural diagram of an intelligent courtyard maintenance system in another embodiment.
  • the intelligent yard maintenance system comprises a distributed node subsystem B and at least one execution device C, the distributed node subsystem comprising at least one node A, and each of said nodes A comprising a wireless communication function Apparatus 200 and at least one solar panel 10 that provides electrical energy for operation of node A, said apparatus 200 for wireless communication between nodes A, or wirelessly with devices external to distributed node subsystem B Communication:
  • One of the nodes A is disposed in one of the executing devices C, and is electrically connected to the executing device C, or the node A is in wireless communication with the executing device C. In this way, the traditional laying cable and the fixed battery charging mode can be discarded, and the cost is reduced, and the device 200 is no longer required to be manually managed once installed, saving a lot of labor.
  • the smart yard maintenance system can be a smart lawn mower system, a smart irrigation system, or the like.
  • node A may include sensing means, such as collecting soil information, including soil moisture, nutrients, etc., to control the operation of the performing device.
  • the node A may include a control device, such as when the execution device is poured When filling the equipment, the nodes are set in the watering equipment to control the work of the watering equipment.
  • node A can provide positioning information for the executing device.
  • the node A when the smart garden maintenance system is a smart lawn mower system, the node A may be a movable node or a fixed node, for example, the node A may be disposed on a smart lawn mower, fixed charging station.
  • the node A When the node A is set on the intelligent lawn mower, the node A is a movable node; when the node A is set at a fixed charging station, the node A is a fixed node.
  • the node A when the smart garden maintenance system is an intelligent irrigation system, the node A may be a fixed node, for example, the executing device is a watering device, and the node A is disposed in the watering device. And control the work of the watering equipment.
  • the above two systems such as a smart lawn mower and a smart irrigation system
  • the node A may be a movable node, such as a smart lawn mower, or may be a fixed node.
  • the nodes A can communicate wirelessly or wirelessly with devices outside the distributed node subsystem B.
  • the node A can communicate with the intelligent lawn mower.
  • the intelligent lawn mower can perform wireless communication through the node A disposed on the intelligent lawn mower.
  • the smart mower and the charging station or the irrigation device can also communicate wirelessly through the node A, between the charging stations or the irrigation device. Wireless communication or the like can also be performed through the node A.
  • the node A disposed on the intelligent lawn mower can detect that the soil in the area is relatively dry, then the intelligent lawn mower can Communicating with the irrigation equipment of the area via node A such that the nodes on the respective irrigation equipment (eg, when node A includes the control device) control the irrigation apparatus for irrigation operations; or irrigation equipment (eg, on irrigation equipment)
  • node A includes both the sensing device and the control device, it can also detect the soil in the area and perform irrigation operations.
  • the apparatus 200 can wirelessly communicate with devices external to the distributed node subsystem B, such as communicating with a user terminal, receiving information or control commands provided by the user terminal; and receiving location information, such as a node.
  • A may include a satellite positioning device, receive a satellite positioning signal, and transmit the positioning signal to the executing device C to enable the executing device C to obtain the geographic location
  • the relevant climate parameters either cause the executing device C to determine the working program according to its own position, or when the executing device C is a self-moving device, the control is moved from the mobile device according to the position information.
  • FIG. 7 is a structural diagram of a node in a preferred embodiment.
  • FIG 8 is a block diagram of a node in a preferred embodiment.
  • the node A2 further includes a matching circuit 300, the first end of the matching circuit 300 is connected to the output end of the solar panel 10, and the second end of the matching circuit 300 is The device 200 is connected, and the matching circuit 300 is used to match the output of the solar panel 10 according to the power demand of the device 200, so that the output voltage of the solar panel 10 and the device 200 can be used.
  • the matching circuit 300 can be adjusted when the electrical requirements are not matched.
  • the matching circuit 300 is a voltage matching circuit
  • the output voltage of the solar panel 10 can be adjusted to The device 200 is matched to the voltage.
  • the matching circuit 300 can also be a current matching circuit, a power matching circuit, and the like, and details are not described herein.
  • FIG. 9 is a structural diagram of a node in a preferred embodiment.
  • the node A3 further includes a rechargeable battery 500 that supplies power to the device 200.
  • the device 200 can be powered by the rechargeable battery 500, or the device 200 can be powered by the solar panel 10, so that the solar panel 10 can ensure the device when the weather is fine.
  • the normal operation of 200, and in relatively complicated weather, such as evening or rainy weather, etc., the rechargeable battery 500 can ensure the normal operation of the device 200, so that under the combination of the solar panel 10 and the rechargeable battery 500, it can be guaranteed The normal operation of the device 200.
  • the node A3 further includes a charge and discharge control unit 400, and the first end of the charge and discharge control unit 400 and the solar panel 10
  • the output ends are connected, the second end is connected to the output end of the rechargeable battery 500, the third end is connected to the device 200, and the solar panel 10 is given by the charge and discharge control unit 400
  • the rechargeable battery 500 is charged.
  • the solar panel 10 and the rechargeable battery 500 can be controlled in real time by the charge and discharge control unit 400, and the solar panel 10 and the rechargeable battery 500 can be protected.
  • the charge and discharge control unit 400 can also implement the following Function: When the device 200 is not working or when the solar panel 10 converts too much electrical energy, the electrical energy converted by the solar panel 10 can also charge the rechargeable battery 500. When the apparatus 200 is in operation, the solar panel 10 is used to provide electrical energy for the operation of the node A3, including charging the apparatus 200. And when the solar panel 10 is not in operation, the rechargeable battery 500 can be used to provide electrical energy for the operation of the node A3, including charging the device 200.
  • a matching circuit 300 is further disposed between the device 200 and the charging and discharging control unit 400, and the matching circuit 300 One end is connected to the charge and discharge control unit 400, and the second end of the matching circuit 300 is connected to the device 200, and the matching circuit 300 is used to output the solar panel 10 or the The output of the rechargeable battery 500 is matched in accordance with the power requirements of the device 200.
  • the matching circuit 300 can be adjusted when the output voltage of the solar panel 10 or the output voltage of the rechargeable battery 500 does not match the power demand of the device 200, for example, in one embodiment, the When the matching circuit 300 is a voltage matching circuit, the output voltage of the solar panel 10 or the output voltage of the rechargeable battery can be adjusted to a voltage matching the device 200.
  • the matching circuit 300 can also be a current matching circuit, a power matching circuit, and the like, and details are not described herein.
  • FIG 10 is a block diagram of a node in a preferred embodiment.
  • An input end of the rechargeable battery 500 is connected to an output end of the solar panel 10, an output end of the rechargeable battery 500 is connected to the device 200, and the solar panel 10 supplies the rechargeable battery
  • the battery 500 is charged, and the rechargeable battery 500 is used to provide power to the operation of the node A4, including powering the device 200.
  • the device 200 is always powered by the rechargeable battery 500, which can be charged by the solar panel 10.
  • the node A4 further includes a charge and discharge control unit 400.
  • the first end of the charge and discharge control unit 400 is connected to the output end of the solar panel 10, and the second end of the charge and discharge control unit 400 is rechargeable.
  • the input terminals of the battery 500 are connected, and the solar battery panel 10 charges the rechargeable battery 500 through the charge and discharge control unit 400.
  • the solar panel 10 and the rechargeable battery 500 can be controlled in real time by the charge and discharge control unit 400, and the solar panel 10 and the rechargeable battery 500 can be protected.
  • a matching circuit 300 is further disposed between the device 200 and the charging and discharging control unit 500, and the first end of the matching circuit 300 is connected to the third end of the charging and discharging control unit 400.
  • the second end of the matching circuit 300 is connected to the device 200, and the The mating circuit 300 is configured to match the output of the rechargeable battery 500 in accordance with the power requirements of the device 200.
  • the principle of the matching circuit 300 is as described above, and details are not described herein again.
  • the rechargeable battery 500 may be a device capable of storing a charge such as a lithium battery, a nickel hydrogen battery, an electrolytic capacitor, or a super capacitor.
  • the solar panel 10 may be a silicon solar panel, a compound solar panel, or an organic solar panel.
  • the device 200 may be a device having a Bluetooth communication function, a device having an ultra-wideband communication function, a device having a Zigbee communication function, or a device having a wifi communication function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种智能庭院维护系统,包括传感装置(20)、控制装置(30)和执行装置(40)。智能庭院维护系统通过传感装置(20)采集不同区域数据或者采用预设算法推算不同区域数据,了解不同区域植物的实际需求,进而对不同区域执行不同的策略。传感器数量的减少不仅避免了用户布置的麻烦,提高了整个系统的智能性,还降低了成本,降低了用户维护传感器续航的难度。还公开了一种智能庭院维护系统的维护方法。

Description

智能庭院维护系统及其维护方法 技术领域
本发明涉及一种智能庭院维护系统及其维护方法。
背景技术
常规的家庭庭院场景如图1所示,房屋周边(如前、后)通常会铺设整片的草坪,在庭院的其他地方还会零星或成形地布置一些灌木丛或者花圃。庭院内的草坪、花圃、灌木等植被需要经常打理,如割草、灌溉、施肥,因此,庭院维护是一项艰巨的任务。
庭院内不同区域的草坪、花圃、灌木等植被,由于地理位置的不同或者由于遮挡物(如房屋、灌木丛)阴影遮挡而受到的光照会有所不同,因此不同区域内的草坪、花圃、灌木等植被对水、养分的需求是不一样的。
针对该项需求,现有的花园维护系统需要用户根据自身经验将庭院划分成多个区域,并且在每个区域的某一点布置传感器,用来实时地检测传感器所处区域的土壤湿度或养分情况。多个传感器将数据传输到花园维护系统的控制中心,控制中心分析数据后判断出哪个或者哪些区域需水、养分,控制中心再控制执行机构工作,如灌溉喷头对需水或养分区域进行灌溉、切割装置对需要割草区域进行切割。
现有技术通过传感器对不同区域的土壤情况的采集,实现分区执行灌溉策略。由于传感器数据只能显示一定区域范围内的土壤情况,因此,一个家庭庭院通常需要布置大量的传感器才能完全地覆盖整个庭院区域的情况。大量传感器的布置需要耗费较大的资金,增加庭院维护系统的成本。而且传感器进行工作必须要有电能供应,当传感数量较多时,用户维护每个传感器都有电能续航比较困难。
发明内容
基于此,本发明所要解决的技术问题在于提供一种智能庭院维护系统,以实现用较少数量传感装置就能覆盖整个庭院情况,从而根据庭院内植物实际需求进行维护。
为解决上述问题,本发明可以采用如下技术方案:一种智能庭院维护系统,包括:传感装置,用来获得植物维护需求的相关数据;控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;执行 装置,接收且执行控制装置的控制指令以对庭院进行维护;所述庭院内设有参考点,所述传感装置在参考点采集数据,所述控制装置利用参考点的数据,采用预设算法推算出其他区域的推测数据,所述控制装置根据所述推测数据针对所述其他区域生成相应的控制指令。
优选的,所述智能庭院维护系统为智能灌溉系统,所述传感装置用来获得植物对灌溉需求的数据,所述控制装置利用参考点的数据,采用预设算法推算出其他灌溉区域的推测数据,所述控制装置根据推测数据针对不同灌溉区域生成相应的灌溉指令,所述执行装置为灌溉执行装置,所述灌溉执行装置接收且执行控制装置的控制指令以对庭院进行维护。
优选的,所述传感装置的数量为一个。
优选的,所述庭院内设有至少一个采样点,所述参考点为采样点中的一个。
优选的,所述庭院内设有多个采样点,所述参考点为多个采样点中的一个,所述传感装置在各个采样点上分别采样后,将所述传感装置再固定在选取的参考点上继续采集传感数据,当参考点上的传感数据发生变化时,控制装置根据参考点的数据变化,采用预设算法同步地调整其他采样点的传感数据。
优选的,所述参考点为布设在庭院内的至少一个标准位置。
优选的,所述参考点为布设在庭院内的复数个标准位置,所述复数个标准位置上分别设置一个传感装置,所述传感装置检测所处标准位置的数据,并且将其传输给控制装置。
优选的,所述标准位置为庭院的角落、房屋拐点处、突变区域中的一种或者多种的组合。
优选的,所述预设算法包括各个标准位置的相对关系,以与所有标准位置点的传感数据结合,推算出庭院其他区域的传感数据。
优选的,所述预设算法包括日照情况随着地理位置变化的变化参数,以用于与标准位置所检测得到的传感数据结合,推算出庭院内其他区域的传感数据。
优选的,所述传感装置的检测类型包括土壤ph值、土壤湿度、土壤养分含量、空气湿度、温度或者光照情况的一种或者多种的组合。
优选的,所述执行装置包括喷灌装置、滴灌装置、射灌装置及移动水箱 中的一种或多种的组合。
优选的,所述预设算法包括地理位置与植物对维护需求间的关系和/或不同植物与维护需求间的关系。
优选的,所述地理位置与植物对维护需求间的关系包括不同纬度与植物对维护需求间的关系和/或不同土壤与植物对维护需求间的关系。
本发明所要解决的技术问题在于提供一种智能庭院维护系统,以实现用较少数量传感装置就能覆盖整个庭院情况,从而根据庭院内植物实际需求进行维护。
为解决上述问题,本发明还可以采用如下技术方案:一种智能庭院维护系统,包括:传感装置,用来获得植物维护需求的相关数据;控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;执行装置,接收且执行控制装置的控制指令以对庭院进行维护;所述传感装置采用移动方式获取庭院内不同区域的数据,所述控制装置根据不同区域内的数据针对不同区域生成相应的控制指令。
优选的,所述智能庭院维护系统为智能灌溉系统,所述传感装置用来获得植物对灌溉需求的数据;控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;执行装置,接收且执行控制装置的控制指令;所述传感装置采用移动方式获取庭院内不同区域的数据,所述控制装置根据不同灌溉区域内的数据针对不同灌溉区域生成相应的灌溉指令。
优选的,所述移动方式包括在一移动平台上设置所述传感装置,所述传感装置在移动平台运动到不同区域时,采集相应区域的数据。
优选的,所述移动平台包括智能割草机。
优选的,所述传感装置包括碎草分析器,所述碎草分析器通过分析所述智能割草机割断的碎草得到草的水分和/或养分数据。
优选的,所述传感装置包括电容传感器,所述电容传感器通过感知草作为介质时的介电常数或者介电常数的间接物理量。
本发明所要解决的技术问题在于提供一种智能庭院维护系统的维护方法,以实现用较少数量传感装置就能覆盖整个庭院情况,从而根据庭院内植物实际需求进行维护。
为解决上述问题,本发明还可以采用如下技术方案:一种智能庭院维护系统的维护方法,至少包括如下步骤:
步骤1:采集数据,通过至少一个传感装置对庭院设立的采样点采集相关传感数据,将采集的数据传输给控制装置;
步骤2:分析处理数据,控制装置接收步骤1传输的传感数据,并且将采样点的传感数据与一预设阈值进行比较分析处理,从而得到控制指令;
步骤3:执行控制命令,执行装置接收到控制装置所发的控制指令,对庭院相应区域执行维护工作。
优选的,所述步骤1进一步包括:采集数据,所述智能庭院维护系统包括一移动平台,所述传感装置活动的设置在移动平台上,所述传感装置通过移动平台的移动获得不同区域的传感数据,并将该等传感数据传输给控制装置。
优选的,所述庭院设立有至少一个采样点。
优选的,所述步骤1进一步包括:采集数据,所述传感装置的数量为一个,所述庭院内设有多个采样点,通过一个传感装置对庭院的多个采样点采样得到第一传感数据,将复数个第一传感数据传输给控制装置,再在多个采样点中选取一个参考点,将传感装置再固定到参考点上采集得到第二传感数据,继续将参考点上的第二传感数据传输给控制装置。
优选的,所述步骤2进一步包括:分析处理数据,控制装置接收步骤1的第一、第二传感数据,并根据参考点上第二传感数据相对于该参考点的第一传感数据变化,采用预设的算法同步将其他采样点的第一传感数据进行更新调整,从而将各个采样点更新的传感数据与一预设阈值进行比较分析处理,得到控制指令。
优选的,所述步骤1中的采样点为在庭院内选取的至少一个标准位置,所述传感装置的数量与选取的标准位置的数量相同并一一对应,所述传感装置检测所处标准位置的数据,并将其传输给控制装置。
优选的,所述步骤2中的控制装置内设有预设算法,所述预设算法与标准位置点相应的传感数据结合得到庭院的传感数据信息,并且将该等传感数据信息与一预设阈值进行比较分析处理从而得到控制指令。
优选的,所述预设算法包括标准位置的相对关系及日照情况随着地理位置变化的变化参数。
优选的,所述标准位置为庭院的角落、房屋拐点处、突变区域中的一种或者多种组合。
优选的,所述智能庭院维护系统的方法还包括设置在步骤1与步骤2之间的消除误差步骤,所述消除误差步骤为线性回归法或非线性回归法或最小二乘误差消除法。
优选的,所述预设阈值为满足植物维护需求情况下的标准传感数据信息。
优选的,所述智能维护系统为智能灌溉系统,所述执行装置包括喷灌装置、滴灌装置、射灌装置及移动水箱中的一种或多种的组合。
优选的,所述步骤3进一步包括:执行控制命令,执行装置接收到控制装置所发的控制指令,对庭院相应区域执行维护工作,所述传感装置检测相应区域的传感数据,并将传感数据反馈给控制装置,然后转入步骤2。
优选的,所述智能维护系统为智能灌溉系统,所述控制装置发出的控制指令包括灌溉量和/或灌溉时长。
本发明所要解决的技术问题在于提供一种智能庭院维护系统,其采用太阳能电池板供电,不需要布置电缆,也不需要定期更换电池,降低了成本,使用较为灵活。
为解决上述问题,本发明还可以采用如下技术方案:一种智能庭院维护系统:包括分布式节点子系统和至少一个执行装置,所述分布式节点子系统包括至少一个节点,且每个所述节点包括具有无线通信功能的装置以及至少一块太阳能电池板,所述太阳能电池板为节点的工作提供电能,所述装置用于节点间进行无线通信,或者与分布式节点子系统外部的设备进行无线通讯;一个所述节点设置于一个所述执行装置,并与所述执行装置电性连接,或者所述节点与所述执行装置进行无线通讯。
优选的,所述节点为可移动节点和/或固定节点。
优选的,所述节点包括传感装置或控制装置。
优选的,所述节点为所述执行装置提供定位信息。
优选的,所述执行装置为浇灌设备,所述节点设置于所述浇灌设备,并控制浇灌设备的工作。
优选的,所述节点还包括匹配电路,所述匹配电路的第一端与所述太阳能电池板的输出端相连接,所述匹配电路的第二端与所述装置相连接,所述匹配电路用于将所述太阳能电池板的输出按照所述装置的用电需求进行匹配。
优选的,所述节点还包括可充电电池,所述可充电电池用于为节点的工 作提供电能。
优选的,所述节点还包括充放电控制单元,所述充放电控制单元的第一端与所述太阳能电池板的输出端相连接,第二端与所述可充电电池的输出端相连接,第三端与所述装置相连接,所述太阳能电池板通过所述充放电控制单元给所述可充电电池所述充电。
优选的,所述装置与所述充放电控制单元之间还设置有匹配电路,所述匹配电路的第一端与所述充放电控制单元的第三端相连接,所述匹配电路的第二端与所述装置相连接,所述匹配电路用于将所述太阳能电池板的输出或者所述可充电电池的输出按照所述装置的用电需求进行匹配。
优选的,所述可充电电池的输入端与所述太阳能电池板的输出端相连接,所述可充电电池的输出端与所述装置相连接,所述太阳能电池板给所述可充电电池充电,所述可充电电池用于为节点的工作提供电能。
优选的,所述节点还包括充放电控制单元,所述充放电控制单元的第一端与所述太阳能电池板的输出端相连接,所述充放电控制单元的第二端与所述可充电电池的输入端相连接,所述太阳能电池板通过所述充放电控制单元给所述可充电电池充电。
优选的,所述装置与所述充放电控制单元之间还设置有匹配电路,所述匹配电路的第一端与所述充放电控制单元的第三端相连接,所述匹配电路的第二端与所述装置相连接,所述匹配电路用于将所述可充电电池的输出按照所述装置的用电需求进行匹配。
优选的,所述可充电电池为锂电池、镍氢电池、电解电容或者超级电容。
优选的,所述匹配电路用于将所述太阳能电池板的输出电压调整为所述装置的工作电压。
优选的,所述装置为具有蓝牙通信功能的装置、具有超宽带通信功能的装置、具有Zigbee通信功能的装置或者具有wifi通信功能的装置。
优选的,所述太阳能电池板为硅类太阳能电池板、化合物类太阳能电池板或者有机物类太阳能电池板。
与现有技术相比,本发明的智能庭院维护系统能够在减少传感器数量的情况下,仍然能够准确地了解不同区域植物的实际需求。智能庭院维护系统采用移动式传感器采集不同区域数据或者采用数学模型推算不同区域数据,实现了解不同区域植物的实际需求,进而对不同区域执行不同的维护策略。 传感器数量的减少不仅避免了用户布置的麻烦、提高了整个系统的智能性,而且降低了成本,还降低了用户维护传感器续航的难度。进一步的,该智能庭院维护系统,采用太阳能电池板给装置供电,不需要布置电缆,也不需要定期更换电池,降低了成本,使用较为灵活,应用范围广泛。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面的能够实现本发明的具体实施例的详细描述,同时结合附图描述而清楚地获得。
图1是常规家庭庭院布置示意图。
图2是一实施例的智能庭院维护系统的模块图。
图3是一实施例的智能庭院维护的方法图。
图4是一实施例采样点和参考点在庭院分布的示意图。
图5是一实施例标准位置在庭院分布的示意图。
图6为另一实施例中的智能庭院维护系统的结构示意图;
图7为图6的智能庭院维护系统的一优选的实施例中的节点的结构图;
图8为图6的的智能庭院维护系统的一优选的实施例中的节点的结构图;
图9为图6的的智能庭院维护系统的一优选的实施例中的节点的结构图;
图10为图6的的智能庭院维护系统的一优选的实施例中的节点的结构图。
具体实施方式
下面结合附图对本发明的实施方式进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围作出更为清楚和明确的界定。所附附图仅提供参考与说明,并非用来对本发明加以限制。
请参见图2,本实施例的智能庭院维护系统100包括传感装置20,接收传感装置20所测得数据的控制装置30,以及执行控制装置30所发指令的执行装置40。
传感装置20包括用来测试土壤湿度的湿度传感器、土壤各种养分含量的传感器(如氮含量传感器、磷含量传感器、其他元素含量传感器等)、土壤PH值传感器、光照强度传感器、光照时长传感器、空气湿度传感器、温度传感器、或其他可影响植物生长状况指标的传感器。如本领域人员所知,本实施例中的传感装置20可以是上述所列具体传感器的一种或者上述所列具体传感器的多种组合。具体地如何利用一个或者少量的该传感装置20获得庭院 所有区域的数据,从而得出植物实际需求,本文会在具体的实施例中进行介绍。本段所列传感装置20仅为获取植物实际需求数据的几种方式,在不同的应用场景下,传感装置20还包括其他类型传感器,如本文后续所述具体实施例中所列。因此,本段所列传感器类型不构成对本发明的限制。
控制装置30主要接收传感装置20的数据并且进行分析处理,判断是具体各个区域内的植物的实际需求,具体地,如需要割草、需要水分或者需要养分,进而对执行装置40发出相应的控制指令。
控制装置30与传感装置20之间可以通过无线通讯方式进行数据传输,具体地,如Wi-Fi装置、蜂窝通讯装置、蓝牙装置、GPS装置、Zigbee装置、2.4GHZ无线通信装置、433MHZ无线通信装置或者Z-WAVE无线通信装置等。
控制装置30包括设定在庭院某处的固定装置,如设定在水源附近且带有按钮或/和面板或/和显示屏的装置,用户可以进行维护工作设置或/和可以查看区域的工作情况或/和查看工作历史。
控制装置30包括移动平台,具体地,如移动手机、平板pad、个人电脑、或者中心控制服务器。移动平台上设有相应的庭院维护app软件,用户通过app界面可以进行维护工作设置或/和可以查看区域的工作情况或/和查看工作历史。
控制装置30包括集成芯片,如微处理器。集成芯片可以直接耦合或者安装在相应的传感装置20内或者安装在执行装置40上。
执行装置40按照控制装置30所发指令对相应区域进行工作。执行装置40包括割草装置、扫雪装置、灌溉装置、施肥装置、防盗装置等。当执行装置40为执行灌溉装置时,具体的灌溉方式包括喷灌方式、滴灌方式、射灌方式或者移动水箱方式。
当执行装置40为喷灌方式时,庭院内布置灌溉管道,且管道间隔一定距离会设有喷头。当执行装置40接收到灌溉指令时,会将需要灌溉区域内的喷头打开或者与该喷头连接的阀门打开进行喷灌;或者会将需要灌溉区域附近的喷头打开或者与该喷头连接的阀门打开,且将喷灌方向转至所需灌溉区域的方向进行喷灌。
当执行装置40为滴灌方式时,庭院内布置灌溉管道,且管道间隔一定距离会设有滴头。当执行装置40接收到灌溉指令时,会将需要灌溉区域内的滴 头打开或者与该滴头连接的阀门打开进行滴灌。
当执行装置40为射灌方式时,庭院内布置一射灌机,射灌机与水源连接。用户在启用智能灌溉系统前,需要在射灌机的学习模式下调节射灌机的喷射角度以及水压,使得射灌机记忆其所需喷射的最远区域,以及不同喷射角度以及水压对应的喷射区域。当执行装置40接收到指令时,射灌机根据学习模式下的记忆调整自身的喷射角度以及水压,使得喷射区域刚好对应到指令中所指的灌溉区域。
当执行装置40为移动水箱方式时,庭院内设置一移动装置,该移动装置上设有一水箱。当执行装置40接收到灌溉指令时,所述移动装置携带水箱移动到需要灌溉区域内,并将水箱内的水在该区域内进行喷洒。优选的,当水箱内水用完后,该移动装置能够自动移动至水源处汲取水。
请参见图3,本实施例的智能庭院维护系统100的维护流程包括如下步骤:
步骤S11:采集数据。通过一个或者少量传感装置20在庭院(或庭院)的多个采样点采集相关传感数据。采集的数据传输给控制装置30。
步骤S12:分析处理数据。控制装置30接收步骤S11传输的数据,并且分析处理数据从而得到控制指令。此处仅举一例分析处理的方法:将各个采样点的数据与一预设阈值进行比较,当比较结果不同于预设条件时,则判断该采样点所代表的区域或者该采样点周边需要进行灌溉、清扫、割草等工作,并发出该区域需要灌溉、清扫、割草等的控制指令。
步骤S13:执行控制命令。执行装置40接收到控制装置30所发的控制指令后,对相应区域执行灌溉、清扫、割草、施肥等。
在一优选实施例中,在步骤S11和步骤S12之间设置一消除误差的步骤。在实际应用场景中,传感装置20由于硬件自身原因或不可避免的环境干扰,传感装置20所采集到的数据可能会存在误差。因此,在分析处理数据之前,先利用相关算法对数据进行误差消除。具体的消除误差算法,可以为线性回归法、非线性回归法,最小二乘误差消除法,或者其他类型的误差消除方法。
在一优选实施例中,控制装置30不仅仅基于采集到的数据发出哪些(个)区域需要灌溉、清扫、割草等的指令,控制装置30还可以结合庭院所处地域的气候参数发出更智能的灌溉、清扫、割草、施肥等指令。庭院所处地域的气候参数可以是基于网络获取的当地天气预报,或者传感装置检测的气候参 数,或者基于大数据得出的气候变化模型推算出来的气候参数。更智能的灌溉指令包括哪个(些)区域需要执行灌溉、清扫、割草或施肥等工作,以及基于气候参数得出的适合什么时候灌溉、清扫、割草或施肥等,需要灌溉量或施肥量是多少,或者灌溉时长或者清扫时长或者割草时长或者施肥时长是多久。
在一优选实施例中,当执行装置接收到控制装置所发的控制指令,对庭院相应区域执行维护工作时,传感装置检测相应区域灌溉量数据或施肥量数据或清扫数据或割草数据,并将数据反馈给控制装置,然后控制装置对数据进行分析处理,生成控制指令,如此循环反复,以持续进行追踪反馈生成并生成命令。具体的,在执行装置执行的过程中,通过传感装置持续的追踪,当灌溉量或施肥量或清扫情况或割草情况满足植物维护需求时,控制装置可及时生成停止执行的控制指令,执行装置接收到控制指令,执行相应的维护工作;当灌溉量或施肥量或清扫情况或割草情况不满足植物维护需求时,控制装置可及时生成加大或减少执行的控制指令,执行装置接收到控制指令,执行相应的维护工作。当然在实际应用过程中,由于数据传输及装置反应不免会有滞后性,因此,在实际应用时,当灌溉量或施肥量或清扫情况或割草情况接近满足植物维护需求时,控制装置即可及时生成停止执行的控制指令。
在一优选实施例中,控制装置30会基于植物喜旱喜湿的特点或者其他特点,采取不同的维护策略。具体地,智能庭院维护系统100预设存储不同区域内植物的品种,以及该植物品种的喜湿或喜旱的特性。当不同区域的传感数据传输至控制装置30内时,控制装置30首先根据区域地理坐标匹配该区域内植物的特性,再结合该植物特性与传感数据,判断该区域是否需要灌溉、灌溉量需要多少。
下文具体地介绍,怎样利用少量或者一个传感装置20获得庭院所有区域内的植物实际需求数据。因为当庭院维护为不同工作类型(如灌溉、施肥、割草、扫雪等)时,具体获得所有区域内数据的过程是类似的,因此,本文仅以庭院维护中的灌溉工作作为示例说明。
当智能灌溉系统需要分区控制灌溉的植物仅为草坪时,用户可以利用已有的草坪维护机器(如智能割草机、手推割草机、骑式割草机等)在维护草坪的过程中而获得整个草坪内哪些区域需要灌溉。本发明仅以用户利用智能割草机在维护草坪的过程中获得整个草坪内哪些区域需要灌溉为例。
在一实施例中,将上文所述传感装置20可活动地设置在智能割草机上。具体地,在智能割草机的底部或者壳体上,设有一传感装置20并且该传感装置20能够上下运动。传感装置20在向下运动时,其传感部位能够插入草坪的土壤中而获取土壤相关的数据(如水分、养分)。智能割草机自身携带定位装置及无线通信装置。具体地,定位装置可以为GPS装置、或DGPS装置、或惯导装置、或RFID装置、或beacon装置等。当然,智能割草机上也可以同时设置多种类型的定位装置。传感装置20检测得到的数据以及该检测点的坐标位置通过无线方式传输给智能庭院维护系统100的控制装置30。控制装置30分析处理该传感数据得出该检测点区域内的草坪是否需要灌溉,若需灌溉则向执行装置40发送控制命令。执行装置40接收到控制命令后,向相应区域执行灌溉。
由于智能割草机维护草坪的行走路径可以遍布草坪的所有区域,因此,该实施方式可以仅利用一个传感装置20获得整个草坪有关灌溉需求的传感数据。
通过对智能割草机进行软件或/和硬件改变,可以控制智能割草机何时开始利用传感装置20采集数据以及具体的采集点。具体地,智能割草机上设置一与获取灌溉数据相关的按钮,当用户启动该按钮时,智能割草机在此次割草的过程中就执行采集数据的任务,当用户不启动该按钮时,智能割草机仅正常的割草。具体的采样点可以通过软件设置让智能割草机在割草的过程中,间隔一定距离或者间隔一定时间,在相应割草的地点采集数据。如本领域技术人员所知,该种改变简单且方式有很多种,此处仅举一例。
在上述实施例中,传感装置20还可以采用其他方式获取该区域内的草是否有灌溉需求。在一实施例中,传感装置20可以为碎草分析传感器。碎草分析传感器可以通过分析碎草得知碎草的营养情况、或/和碎草的水分含量等代表草的生长情况的参照量。在另一实施例中,传感装置20可以为电容式传感器。草作为电容的介质,当草的营养情况不同、草的水分含量不一样时,其所代表的介质常量也是不一样的。通过介质常量的变化或者通过间接反应介质常量的其他物理量的变化而得到草的营养情况、或/和草的水分含量等代表草的生长情况的参照量。
在一优选实施例中,智能割草机上还可以在配置检测光照相关或气候相关的传感器。智能庭院维护系统100的控制装置30利用光照或气候相关的数 据可以给出更智能的灌溉控制命令,如灌溉时长控制、灌溉水量控制等命令。
在一优选实施例中,智能割草机上还可以将检测智能割草机割草时的电流/电压大小,并且将采样点出的电流/电压值传输给智能庭院维护系统100的控制装置30。控制装置30通过分析电流/电压值判断该采样点区域的草的疏密,从而判断出相应区域内对水需求量的大小。
在一优选实施例中,传感装置20在每次数据采样后,会自动重新定标,防止上次的检测结果会干扰下次的检测。
在一实施例中,传感装置20可以设置在一移动平台上。该移动平台可以携带传感装置20移动至庭院的不同区域进行数据采集。优选的,该移动平台上也可以集成不同的工作部件,以实现相应的工作。如移动平台上可安有割草部件、或扫雪部件、或推雪部件、或监控部件、或施肥部件等。
当不利用已有的草坪维护机器或者当智能灌溉系统需要分区控制灌溉的植物不仅仅为草坪时,也可以利用少量或者一个传感装置20获得庭院所有区域内的植物实际需求数据。
在一实施例中,如图4所示,首先利用一个传感装置20在庭院内多点采样,并且将采样点及该采样点的坐标传输给控制装置30,再将传感装置20固定在其中一个采样点上(称为参考点)。当参考点上的传感数据发生变化时,控制装置30根据参考点数据变化的规律,采用预设的算法同步地调整所有采样点的传感数据。优选的,传感装置20上配置有用于定位的定位器及用于数据传输的无线传输器。通过这种方式,控制装置30也能够实时得到庭院不同采样点的传感数据,从而判断出不同采样点所对应区域内的植物对灌溉的实际需求。
在一优选实施例中,预设算法包括地理位置与植物对维护需求间的关系和/或不同植物与维护需求间的关系。预设算法为预先设置在控制装置内,当控制装置接收传感装置获得数据,预设算法即启动并对接收的数据进行分析,从而得出控制指令。其中,地理位置与植物对维护需求间的关系包括不同纬度与植物对维护需求间的关系和/或不同土壤与植物对维护需求间的关系。具体的,此处以灌溉来举例说明,种植在沙地上的植物对水分需求会大于种植在林地、草地、耕地上的植物对水分的需求。喜湿的植物对水分的需求会大于喜旱植物对水分的需求。且同一植物种,种植密度密的区域对水分的需求一般会大于种植密度疏的区域。在本发明中,预设算法可结合不同地理位置、 不同植物品种与相应的传感数据,推算出相应区域是否需要灌溉、灌溉量需要多少。
在另一实施例中,如图5所示,只在庭院的标准位置布置传感装置20,具体地,如在庭院的东南角、西南角、东北角、西北角、房屋拐点处、突变区域各设置一个传感装置20。少量传感装置20实时地检测所处地点的数据,并且将其传输给控制装置30。控制装置30内设有数学模型算法,该算法利用标准位置的相对关系,以及所有标准位置点相应的传感数据,估算出庭院的数据信息。标准位置的数据是实时变化的,控制装置30通过数学模型算法可以实时地推算出庭院其他非标准位置的数据,从而判断出庭院所有区域内的植物对灌溉的实际需求。
由于日照是影响植物是否需要灌溉的重要因素,因此在该实施例中的数学模型算法主要考虑日照因素。具体的,通过网络可以在相关的网站(如当地气象局网站、美国NASA网站)获取该庭院所在地区的日照情况,结合该数据源可以分析出该地区的日照情况随着地理位置变化(如东西走向或/和南北走向)的变化规律。数学模型算法再利用该变化规律,结合标准位置所检测得到的传感数据,推算出庭院内所有区域的传感数据。
请参阅图6所示,图6为另一实施例中的智能庭院维护系统的结构示意图。在该实施例中,智能庭院维护系统包括分布式节点子系统B和至少一个执行装置C,所述分布式节点子系统包括至少一个节点A,且每个所述节点A包括具有无线通信功能的装置200以及至少一块太阳能电池板10,所述太阳能电池板10为节点A的工作提供电能,所述装置200用于节点A间进行无线通信,或者与分布式节点子系统B外部的设备进行无线通讯;一个所述节点A设置于一个所述执行装置C,并与所述执行装置C电性连接,或者所述节点A与所述执行装置C进行无线通讯。这样,可以抛弃传统的铺设电缆和固定电池充电方式,减少了成本,同时装置200一经安装就不再需要进行人工管理,节省了大量的人工。
在其中一个实施例中,所述智能庭院维护系统可以为智能割草机系统、智能灌溉系统等。
在其中一个实施例中,节点A可以包括传感装置,例如采集土壤信息,包括土壤水分、养分等,以控制执行装置的工作。
在其中一个实施例中,节点A可以包括控制装置,例如当执行装置为浇 灌设备时,节点设置于浇灌设备,控制浇灌设备的工作。
在其中一个实施例中,节点A可以为执行装置提供定位信息。
下面结合智能割草机系统和智能灌溉系统来对本申请中的智能庭院维护系统进行具体说明:
在一种实施例中,当所述智能庭院维护系统为智能割草机系统时,所述节点A可以为可移动节点或固定节点,例如所述节点A可以设置于智能割草机、固定的充电站。当所述节点A设置于智能割草机上时,该节点A是可移动节点;当所述节点A设置于固定的充电站时,该节点A是固定节点。
在一种实施例中,当所述智能庭院维护系统为智能灌溉系统时,所述节点A可以为固定节点,例如,所述执行装置为浇灌设备,所述节点A设置于所述浇灌设备,并控制浇灌设备的工作上。
在其他的实施方式中,还可以结合上述两个系统,例如智能割草机和智能灌溉系统,其节点A可以是可移动的节点,例如设置于智能割草机,或者可以是固定的节点,例如设置于充电站或灌溉设备,且节点A之间可以进行无线通信,或者与分布式节点子系统B外部的设备进行无线通讯。例如当智能割草机上未设置节点A但智能割草机上设置有相应的通信设备时,该节点A可以与该智能割草机相通信。当智能割草机上设置有节点A时,智能割草机之间可以通过设置在智能割草机上的节点A进行无线通信。当智能割草机、充电站和灌溉设备上均设置有节点A时,智能割草机和充电站或灌溉设备之间也可以通过所述节点A进行无线通信,充电站之间或者灌溉设备之间也可以通过所述节点A进行无线通信等。
在使用中,当智能割草机行走到一区域时,设置在智能割草机上的节点A(例如,该节点包括传感装置时)可以检测到该区域土壤比较干燥,则智能割草机可以通过节点A与该区域的灌溉设备进行通信,以使得相应的灌溉设备上的节点(例如,当节点A包括控制装置时)控制该灌溉设备进行灌溉操作;或者灌溉设备(例如,灌溉设备上的节点A既包括传感装置,又包括控制装置时)也可以检测该区域的土壤的情况,并进行灌溉操作。
在其中一个实施例中,所述装置200可与分布式节点子系统B外部的设备进行无线通讯,例如与用户终端通讯,接收用户终端提供的信息或控制指令;还可以接收定位信息,例如节点A可以包括卫星定位装置,接收卫星定位信号,并将定位信号传输给执行装置C,以使执行装置C获得与地理位置 相关的气候参数,或者使执行装置C根据自身位置决定工作程序,或者当执行装置C为自移动设备时,控制自移动设备根据位置信息来移动。
请参阅图7所示,图7为一优选的实施例中的节点的结构图。在该节点A1中包括具有无线通信功能的装置200以及至少一块太阳能电池板10,该太阳能电池板10用于为节点的工作提供电能,包括给装置200供电,以保证装置200的正常工作。
请参阅图8所示,图8为一优选的实施例中的节点的结构图。在该节点A2中,所述节点A2还包括一匹配电路300,该匹配电路300的第一端与所述太阳能电池板10的输出端相连接,所述匹配电路300的第二端与所述装置200相连接,所述匹配电路300用于将所述太阳能电池板10的输出按照所述装置200的用电需求进行匹配,这样可以当太阳能电池板10的输出电压与所述装置200的用电需求不匹配的时候,该匹配电路300可以进行调节,例如,在一种实施方式中,该匹配电路300为电压匹配电路时,可以将所述太阳能电池板10的输出电压调整到与所述装置200相匹配的电压。在其他的实施方式中,该匹配电路300还可以是电流匹配电路、功率匹配电路等,在此不再赘述。
请参阅图9所示,图9为一优选的实施例中的节点的结构图。在该节点A3中,所述节点A3还包括可充电电池500,所述可充电电池500给所述装置200供电。在该实施例中,既可以通过可充电电池500给所述装置200供电,也可以通过太阳能电池板10给所述装置200供电,这样,当晴好天气时,太阳能电池板10可以保证所述装置200的正常工作,而当相对复杂的天气,例如晚上或者阴雨天气等,可充电电池500可以保证所述装置200的正常工作,从而在太阳能电池板10和可充电电池500的结合下,可以保证装置200的正常工作。
请继续参阅图10所示,在一种更为优选的实施方式中,所述节点A3还包括充放电控制单元400,所述充放电控制单元400的第一端与所述太阳能电池板10的输出端相连接,第二端与所述可充电电池500的输出端相连接,第三端与所述装置200相连接,所述太阳能电池板10通过所述充放电控制单元400给所述可充电电池500所述充电。通过所述充放电控制单元400既可以实时对太阳能电池板10和可充电电池500进行控制,又可以保护该太阳能电池板10和该可充电电池500。且所述充放电控制单元400还可以实现以下 的功能:当装置200不工作时或者当太阳能电池板10转化的电能过多时,太阳能电池板10转化的电能还可以给可充电电池500充电。当装置200工作时,太阳能电池板10用于为节点A3的工作提供电能,包括给所述装置200充电。且当太阳能电池板10不工作时,可充电电池500可以用于为节点A3的工作提供电能,包括对所述装置200进行充电。
请继续参阅图9所示,进一步地,在一种更为优选的实施方式中,所述装置200与所述充放电控制单元400之间还设置有一匹配电路300,所述匹配电路300的第一端与所述充放电控制单元400相连接,所述匹配电路300的第二端与所述装置200相连接,所述匹配电路300用于将所述太阳能电池板10的输出或者所述可充电电池500的输出按照所述装置200的用电需求进行匹配。这样可以当太阳能电池板10的输出电压或者可充电电池500的输出电压与所述装置200的用电需求不匹配的时候,该匹配电路300可以进行调节,例如,在一种实施方式中,该匹配电路300为电压匹配电路时,可以将所述太阳能电池板10的输出电压或者可充电电池的输出电压调整到与所述装置200相匹配的电压。在其他的实施方式中,该匹配电路300还可以是电流匹配电路、功率匹配电路等,在此不再赘述。
请参阅图10所示,图10为一优选的实施例中的节点的结构图。所述可充电电池500的输入端与所述太阳能电池板10的输出端相连接,所述可充电电池500的输出端与所述装置200相连接,所述太阳能电池板10给所述可充电电池500充电,所述可充电电池500用于为节点A4的工作提供电能,包括给所述装置200供电。在该实施例中,始终由可充电电池500给装置200供电,可充电电池500可以由太阳能电池板10充电。
所述节点A4还包括充放电控制单元400,所述充放电控制单元400的第一端与所述太阳能电池板10的输出端相连接,所述充放电控制单元400的第二端与可充电电池500的输入端相连接,所述太阳能电池板10通过所述充放电控制单元400给所述可充电电池500充电。通过所述充放电控制单元400既可以实时对太阳能电池板10和可充电电池500进行控制,又可以保护该太阳能电池板10和该可充电电池500。
在本实施方式中,所述装置200与所述充放电控制单元500之间还设置有匹配电路300,所述匹配电路300的第一端与所述充放电控制单元400的第三端相连接,所述匹配电路300的第二端与所述装置200相连接,所述匹 配电路300用于将所述可充电电池500的输出按照所述装置200的用电需求进行匹配。该匹配电路300的原理如上文所述,在此不再赘述。
此外,所述可充电电池500可以为锂电池、镍氢电池、电解电容或者超级电容等能够存储电荷的装置。所述太阳能电池板10可以为硅类太阳能电池板、化合物类太阳能电池板或者有机物类太阳能电池板。所述装置200可以为具有蓝牙通信功能的装置、具有超宽带通信功能的装置、具有Zigbee通信功能的装置或者具有wifi通信功能的装置。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (34)

  1. 一种智能庭院维护系统,包括:
    传感装置,用来获得植物维护需求的相关数据;
    控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;
    执行装置,接收且执行控制装置的控制指令以对庭院进行维护;
    其特征在于,所述庭院内设有参考点,所述传感装置在参考点采集数据,所述控制装置利用参考点的数据,采用预设算法推算出其他区域的推测数据,所述控制装置根据所述推测数据针对所述其他区域生成相应的控制指令。
  2. 根据权利要求1所述的智能庭院维护系统,其特征在于,所述智能庭院维护系统为智能灌溉系统,所述传感装置用来获得植物对灌溉需求的数据,所述控制装置利用参考点的数据,采用预设算法推算出其他灌溉区域的推测数据,所述控制装置根据推测数据针对不同灌溉区域生成相应的灌溉指令,所述执行装置为灌溉执行装置,所述灌溉执行装置接收且执行控制装置的控制指令以对庭院进行维护。
  3. 根据权利要求1和2任意一项所述的智能庭院维护系统,其特征在于,所述传感装置的数量为一个。
  4. 根据权利要求1和2任意一项所述的智能庭院维护系统,其特征在于,所述庭院内设有至少一个采样点,所述参考点为采样点中的一个。
  5. 根据权利要求4所述的智能庭院维护系统,其特征在于,所述庭院内设有多个采样点,所述参考点为多个采样点中的一个,所述传感装置在各个采样点上分别采样后,将所述传感装置再固定在选取的参考点上继续采集传感数据,当参考点上的传感数据发生变化时,控制装置根据参考点的数据变化,采用预设算法同步地调整其他采样点的传感数据。
  6. 根据权利要求1和2任意一项所述的智能庭院维护系统,其特征在于,所述参考点为布设在庭院内的至少一个标准位置。
  7. 根据权利要求6所述的智能庭院维护系统,其特征在于,所述参考点为布设在庭院内的复数个标准位置,所述复数个标准位置上分别设置一个传感装置,所述传感装置检测所处标准位置的数据,并且将其传输给控制装置。
  8. 根据权利要求6所述的智能庭院维护系统,其特征在于,所述标准位置为庭院的角落、房屋拐点处、突变区域中的一种或者多种的组合。
  9. 根据权利要求6所述的智能庭院维护系统,其特征在于,所述预设算法包括各个标准位置的相对关系,以与所有标准位置点的传感数据结合,推算出庭院其他区域的传感数据。
  10. 根据权利要求9所述的智能庭院维护系统,其特征在于,所述预设算法包括日照情况随着地理位置变化的变化参数,以用于与标准位置所检测得到的传感数据结合,推算出庭院内其他区域的传感数据。
  11. 根据权利要求1至2任意一项所述的智能庭院维护系统,其特征在于,所述传感装置的检测类型包括土壤ph值、土壤湿度、土壤养分含量、空气湿度、温度或者光照情况的一种或者多种的组合。
  12. 根据权利要求1至2任意一项所述的智能庭院维护系统,其特征在于,所述执行装置包括喷灌装置、滴灌装置、射灌装置及移动水箱中的一种或多种的组合。
  13. 根据权利要求1至2任意一项所述的智能庭院维护系统,其特征在于,所述预设算法包括地理位置与植物对维护需求间的关系和/或不同植物与维护需求间的关系。
  14. 根据权利要求13所述的智能庭院维护系统,其特征在于,所述地理位置与植物对维护需求间的关系包括不同纬度与植物对维护需求间的关系和/或不同土壤与植物对维护需求间的关系。
  15. 一种智能庭院维护系统,包括:
    传感装置,用来获得植物维护需求的相关数据;
    控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;
    执行装置,接收且执行控制装置的控制指令以对庭院进行维护;
    其特征在于,所述传感装置采用移动方式获取庭院内不同区域的数据,所述控制装置根据不同区域内的数据针对不同区域生成相应的控制指令。
  16. 根据权利要求15所述的智能庭院维护系统,其特征在于,所述智能庭院维护系统为智能灌溉系统,所述传感装置用来获得植物对灌溉需求的数据;
    控制装置,接收传感装置所获得的数据,并且对该数据进行分析处理,得出控制指令;执行装置,接收且执行控制装置的控制指令;所述传感装置采用移动方式获取庭院内不同区域的数据,所述控制装置根据不同灌溉区域内的数据针对不同灌溉区域生成相应的灌溉指令。
  17. 根据权利要求15至16任意一项所述的智能庭院维护系统,其特征在于,所述移动方式包括在一移动平台上设置所述传感装置,所述传感装置在移动平台运动到不同区域时,采集相应区域的数据。
  18. 根据权利要求17所述的智能庭院维护系统,其特征在于,所述移动平台包括智能割草机。
  19. 根据权利要求15至16任意一项所述的智能庭院维护系统,其特征在于,所述传感装置包括碎草分析器,所述碎草分析器通过分析所述智能割草机割断的碎草得到草的水分和/或养分数据。
  20. 根据权利要求15至16任意一项所述的智能庭院维护系统,其特征在于,所述传感装置包括电容传感器,所述电容传感器通过感知草作为介质时的介电常数或者介电常数的间接物理量。
  21. 一种智能庭院维护系统的维护方法,至少包括如下步骤:
    步骤1:采集数据,通过至少一个传感装置对庭院设立的采样点采集相关传感数据,将采集的数据传输给控制装置;
    步骤2:分析处理数据,控制装置接收步骤1传输的传感数据,并且将采样点的传感数据与一预设阈值进行比较分析处理,从而得到控制指令;
    步骤3:执行控制命令,执行装置接收到控制装置所发的控制指令,对庭院相应区域执行维护工作。
  22. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述步骤1进一步包括:采集数据,所述智能庭院维护系统包括一移动平台,所述传感装置活动的设置在移动平台上,所述传感装置通过移动平台的移动获得不同区域的传感数据,并将该等传感数据传输给控制装置。
  23. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述庭院设立有至少一个采样点。
  24. 根据权利要求23所述的智能庭院维护系统的维护方法,其特征在于,所 述步骤1进一步包括:采集数据,所述传感装置的数量为一个,所述庭院内设有多个采样点,通过一个传感装置对庭院的多个采样点采样得到第一传感数据,将复数个第一传感数据传输给控制装置,再在多个采样点中选取一个参考点,将传感装置再固定到参考点上采集得到第二传感数据,继续将参考点上的第二传感数据传输给控制装置。
  25. 根据权利要求24所述的智能庭院维护系统的维护方法,其特征在于,所述步骤2进一步包括:分析处理数据,控制装置接收步骤1的第一、第二传感数据,并根据参考点上第二传感数据相对于该参考点的第一传感数据变化,采用预设的算法同步将其他采样点的第一传感数据进行更新调整,从而将各个采样点更新的传感数据与一预设阈值进行比较分析处理,得到控制指令。
  26. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述步骤1中的采样点为在庭院内选取的至少一个标准位置,所述传感装置的数量与选取的标准位置的数量相同并一一对应,所述传感装置检测所处标准位置的数据,并将其传输给控制装置。
  27. 根据权利要求26所述的智能庭院维护系统的维护方法,其特征在于,所述步骤2中的控制装置内设有预设算法,所述预设算法与标准位置点相应的传感数据结合得到其他区域的传感数据,并且将该等传感数据与一预设阈值进行比较分析处理从而得到控制指令。
  28. 根据权利要求27所述的智能庭院维护系统的维护方法,其特征在于,所述预设算法包括标准位置的相对关系及日照情况随着地理位置变化的变化参数。
  29. 根据权利要求26所述的智能庭院维护系统的维护方法,其特征在于,所述标准位置为庭院的角落、房屋拐点处、突变区域中的一种或者多种组合。
  30. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述智能庭院维护系统的方法还包括设置在步骤1与步骤2之间的消除误差步骤,所述消除误差步骤为线性回归法或非线性回归法或最小二乘误差消除法。
  31. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述预设阈值为满足植物维护需求情况下的标准传感数据信息。
  32. 根据权利要求21至31任意一项所述的智能庭院维护系统的维护方法, 其特征在于,所述智能维护系统为智能灌溉系统,所述执行装置包括喷灌装置、滴灌装置、射灌装置及移动水箱中的一种或多种的组合。
  33. 根据权利要求21所述的智能庭院维护系统的维护方法,其特征在于,所述步骤3进一步包括:执行控制命令,执行装置接收到控制装置所发的控制指令,对庭院相应区域执行维护工作,所述传感装置检测相应区域的传感数据,并将传感数据反馈给控制装置,然后转入步骤2。
  34. 根据权利要求33所述的智能庭院维护系统的维护方法,其特征在于,所述智能维护系统为智能灌溉系统,所述控制装置发出的控制指令包括灌溉量和/或灌溉时长。
PCT/CN2017/072678 2016-02-01 2017-01-25 智能庭院维护系统及其维护方法 WO2017133625A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610068916.X 2016-02-01
CN201610068916 2016-02-01
CN201620779480.0U CN205993268U (zh) 2016-07-22 2016-07-22 园艺系统
CN201620779480.0 2016-07-22

Publications (1)

Publication Number Publication Date
WO2017133625A1 true WO2017133625A1 (zh) 2017-08-10

Family

ID=59499370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072678 WO2017133625A1 (zh) 2016-02-01 2017-01-25 智能庭院维护系统及其维护方法

Country Status (1)

Country Link
WO (1) WO2017133625A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745962A (zh) * 2019-11-14 2020-02-04 无锡三智生物科技有限公司 一种高盐种养模式下泥鳅水质调控系统
WO2020062037A1 (en) * 2018-09-28 2020-04-02 Tti (Macao Commercial Offshore) Limited A grass maintenance system
CN111833211A (zh) * 2020-07-29 2020-10-27 江苏天水灌排设备有限公司 一种智能化排灌设备的调控方法
CN111937014A (zh) * 2018-03-30 2020-11-13 苏州宝时得电动工具有限公司 自动割草机
US20210059136A1 (en) * 2019-09-04 2021-03-04 Baseline, Inc. Systems and methods of irrigation need assessment
CN114128692A (zh) * 2021-10-11 2022-03-04 江苏天道建材科技有限公司 一种别墅庭院用驱蚊智能管理系统
CN116341948A (zh) * 2023-02-13 2023-06-27 上海华维可控农业科技集团股份有限公司 一种基于设施布控的水源调整管理系统及方法
US11771025B2 (en) * 2018-11-26 2023-10-03 Lindsay Corporation System and method for adjusting irrigation system scheduling based on estimated soil water depletion
US11910760B2 (en) 2020-11-06 2024-02-27 Husqvarna Ab Watering robot and associated watering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111843A (zh) * 2011-01-11 2011-06-29 浙江大学 一种在温室番茄灌溉系统中无线传感节点节能的实现方法
WO2012123877A1 (en) * 2011-03-14 2012-09-20 Idus Controls Ltd. An irrigation control device using an artificial neural network
CN102907300A (zh) * 2012-11-14 2013-02-06 西南大学 庭院远程浇灌系统
CN204031996U (zh) * 2014-09-05 2014-12-24 福建亚润农业综合开发有限公司 智能远程水泵控制器和电磁阀调控系统
CN104904569A (zh) * 2015-05-25 2015-09-16 华南农业大学 一种基于动态含水量估计的智能灌溉调控系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111843A (zh) * 2011-01-11 2011-06-29 浙江大学 一种在温室番茄灌溉系统中无线传感节点节能的实现方法
WO2012123877A1 (en) * 2011-03-14 2012-09-20 Idus Controls Ltd. An irrigation control device using an artificial neural network
CN102907300A (zh) * 2012-11-14 2013-02-06 西南大学 庭院远程浇灌系统
CN204031996U (zh) * 2014-09-05 2014-12-24 福建亚润农业综合开发有限公司 智能远程水泵控制器和电磁阀调控系统
CN104904569A (zh) * 2015-05-25 2015-09-16 华南农业大学 一种基于动态含水量估计的智能灌溉调控系统及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937014A (zh) * 2018-03-30 2020-11-13 苏州宝时得电动工具有限公司 自动割草机
CN112888302A (zh) * 2018-09-28 2021-06-01 创科无线普通合伙 草地维护系统
WO2020062037A1 (en) * 2018-09-28 2020-04-02 Tti (Macao Commercial Offshore) Limited A grass maintenance system
US11771025B2 (en) * 2018-11-26 2023-10-03 Lindsay Corporation System and method for adjusting irrigation system scheduling based on estimated soil water depletion
US20210059136A1 (en) * 2019-09-04 2021-03-04 Baseline, Inc. Systems and methods of irrigation need assessment
WO2021046210A1 (en) * 2019-09-04 2021-03-11 Baseline, Inc. Systems and methods of irrigation need assessment
US20240099206A1 (en) * 2019-09-04 2024-03-28 Baseline, Inc. Systems and methods of irrigation need assessment
CN110745962A (zh) * 2019-11-14 2020-02-04 无锡三智生物科技有限公司 一种高盐种养模式下泥鳅水质调控系统
CN110745962B (zh) * 2019-11-14 2022-09-20 无锡三智生物科技有限公司 一种高盐种养模式下泥鳅水质调控系统
CN111833211A (zh) * 2020-07-29 2020-10-27 江苏天水灌排设备有限公司 一种智能化排灌设备的调控方法
US11910760B2 (en) 2020-11-06 2024-02-27 Husqvarna Ab Watering robot and associated watering system
CN114128692A (zh) * 2021-10-11 2022-03-04 江苏天道建材科技有限公司 一种别墅庭院用驱蚊智能管理系统
CN116341948A (zh) * 2023-02-13 2023-06-27 上海华维可控农业科技集团股份有限公司 一种基于设施布控的水源调整管理系统及方法

Similar Documents

Publication Publication Date Title
WO2017133625A1 (zh) 智能庭院维护系统及其维护方法
US10238026B2 (en) System for monitoring and controlling activities of at least one gardening tool within at least one activity zone
CN115202336A (zh) 自移动园艺机器人及其系统
US8862277B1 (en) Automatic efficient irrigation threshold setting
US8751052B1 (en) Automatic efficient irrigation threshold setting
US8682493B1 (en) Adaptive irrigation control
CN108156918A (zh) 一种规模化农田无线物联网智能滴灌系统及方法
US8302881B1 (en) Method and system for soil and water resources
KR20190013073A (ko) 일체형 스마트 작물 관리 모듈
CN110579987A (zh) 基于lora通讯的智慧果园信息控制系统及方法
CN105389663B (zh) 一种农田灌溉智能决策系统和方法
CN107024910A (zh) 智能庭院维护系统及其维护方法
CN107639640A (zh) 一种多喷头智能喷药机器人
CN112772385B (zh) 全自动化的远程灌溉系统
CN109362312B (zh) 一种茶园、果园智能施肥喷药系统
CN113110036A (zh) 一种基于fod-pid控制方法的农业无线自动化监测控制系统
CN103299845A (zh) 智能化育苗系统
Roy et al. A test-bed on real-time monitoring of agricultural parameters using wireless sensor networks for precision agriculture
WO2015173825A1 (en) Method and system for lawn care
CN104719099A (zh) 一种新型园林智能喷雾系统
CN105613211A (zh) 一种基于无线网络的空气取水灌溉系统
AU2020103942A4 (en) Intelligent solar engery harvesting based irrigation system and its method thereof
CN205756149U (zh) 一种智能水阀控制器
CN110825143A (zh) 一种基于互联网的农业设施控制系统
CN209527415U (zh) 基于ZigBee的自动灌溉控制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746945

Country of ref document: EP

Kind code of ref document: A1