WO2017133534A1 - 输送系统、输送管及其制造方法 - Google Patents

输送系统、输送管及其制造方法 Download PDF

Info

Publication number
WO2017133534A1
WO2017133534A1 PCT/CN2017/072165 CN2017072165W WO2017133534A1 WO 2017133534 A1 WO2017133534 A1 WO 2017133534A1 CN 2017072165 W CN2017072165 W CN 2017072165W WO 2017133534 A1 WO2017133534 A1 WO 2017133534A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
main pipe
fiber composite
composite material
main
Prior art date
Application number
PCT/CN2017/072165
Other languages
English (en)
French (fr)
Inventor
付玲
刘延斌
蒋凯歌
郭伦文
李飞
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Priority to EP17746854.3A priority Critical patent/EP3412949B1/en
Publication of WO2017133534A1 publication Critical patent/WO2017133534A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/003Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses comprising elements arranged in the hose walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/024Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/024Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes
    • F16L23/028Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes the flanges being held against a shoulder
    • F16L23/0286Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes the flanges being held against a shoulder the shoulder not being formed from the pipe

Definitions

  • the present invention relates to a conveying apparatus, and in particular to a conveying pipe. Further, the present invention relates to a method of manufacturing the delivery tube and a delivery system included in the delivery tube.
  • Pipeline transportation is one of the common transportation methods in the field of material transportation.
  • the concrete pump can be used to drive the concrete to be continuously conveyed to the pouring site through a conveying line connected by the conveying pipe.
  • the performance of the conveying pipe has an important influence on production cost, efficiency, and the like.
  • the above-described ducts disclosed in the prior art generally have a main pipe (a wear-resistant inner tube), a flange provided at both ends of the main pipe, and a fiber composite material layer coated on the outer peripheral surface of the main pipe.
  • the flange may be connected to the main pipe by welding, insert molding, or the like, or may be glued to both ends of the main pipe by a fiber composite material.
  • the supervisor has poor welding performance to ensure wear resistance, and is susceptible to wear resistance due to unreasonable heating; the glue is easily affected by the environment, and is subject to aging and harsh process conditions (requires special surface treatment, Need to heat and pressure curing, etc.).
  • the connection manner of the flange is not reliable.
  • the conveying pipe not only receives the axial friction generated by the movement of the material, but also the axial force generated by the problem of precision control during assembly. These axial forces will increase significantly when the delivery pipe is clogged, and may cause failure of the connection of the flange and the adjacent delivery pipe, thereby affecting production efficiency, increasing maintenance costs, and even causing safety accidents.
  • the technical problem to be solved by the present invention is to provide a conveying pipe whose main pipe and the pipe connecting member have high axial joint strength, and can effectively avoid the connection failure problem caused by the axial force.
  • an aspect of the present invention provides a duct including a main pipe, a pipe joint respectively disposed at both ends of the main pipe, and a fiber composite layer coated on an outer peripheral surface of the main pipe
  • the outer peripheral surface of the pipe connector is provided with a plurality of raised portions, at least a portion of the fiber composite material of the fiber composite material layer is wound around the main pipe and alternately hooked to the tubes respectively located at both ends of the main pipe
  • the raised portion of the connector is configured to be capable of applying an axial tensile force to the tube connector through the raised portion.
  • the fiber composite material comprises a first fiber composite material and a second fiber composite material, wherein a spiral angle ⁇ 1 of the first fiber composite material wound on the main pipe is smaller than that of the second fiber composite material
  • the helix angle ⁇ 2 on the main pipe, the second fiber composite material is coated outside the first fiber composite material, or the first fiber composite material and the second fiber composite material are alternately coated with each other.
  • the delivery tube further includes a wear sleeve, the wear sleeve and the main tube are respectively inserted into the tube connector and abut each other, and the wear sleeve and the tube connector are each away from each other The ends of the main tubes are flush with each other.
  • the wear sleeve has a wall thickness greater than a wall thickness of the main pipe and a step portion is formed on the outer peripheral surface, and the wear sleeve has the same inner diameter as the main pipe.
  • an end of the outer peripheral surface of the pipe joint away from the main pipe is formed with a boss to form a groove for connecting the pipe fitting between the boss and the boss.
  • the pipe connector has a large end facing away from the main pipe and a small end facing the main pipe, and a portion of the outer peripheral surface of the pipe joint near the small end is formed to be tapered in a direction toward the small end.
  • Cone countertop a large end facing away from the main pipe and a small end facing the main pipe, and a portion of the outer peripheral surface of the pipe joint near the small end is formed to be tapered in a direction toward the small end.
  • each of the pipe joints is formed with an odd number of the bosses, and the bosses are evenly arranged along the circumferential direction of the pipe joint.
  • 5 to 45 of the projections are formed on each of the pipe joints.
  • Another aspect of the present invention provides a delivery system comprising a plurality of the delivery tubes provided by the present invention, the delivery tubes being sequentially butted by the tube connectors to form a delivery line.
  • Another aspect of the present invention provides a method of manufacturing a delivery tube including a main pipe, a pipe joint respectively disposed at both ends of the main pipe, and a fiber composite layer coated on an outer peripheral surface of the main pipe.
  • the outer peripheral surface of the pipe connecting member is provided with a plurality of convex portions, and the manufacturing method comprises the following steps:
  • a step of coating the fiber composite layer comprising the substep of: S1-1. fixing the end of the fiber composite to the protrusion of the tube connector at the first end of the main tube S1-2. causing the release end of the fiber composite material to have relative movements in the circumferential and axial directions of the main pipe with respect to the main pipe and the pipe joints disposed at both ends of the main pipe, respectively. Winding the fiber composite from the first end of the main pipe in a direction toward the second end of the main pipe to the main pipe, and at the release end to the pipe joint at the second end of the main pipe a raised portion is hooked to the raised portion to enable axial force to be applied to the tube connector at the second end of the main tube through the raised portion; S1-3.
  • the main tube and the tube connector have relative movements in a circumferential direction and an axial direction of the main tube, respectively, such that the fiber composite material is wound to the main tube in a direction toward the first end of the main tube. And reaching the first at the release end at the release end The boss of the pipe connector is hooked to the boss to enable axial force to be applied to the pipe connector at the first end of the main pipe through the boss; S1- 4. Repeat sub-steps S1-2 and S1-3.
  • the main pipe and the pipe joint are fixed on the mandrel and rotated by the mandrel, and at the same time, the release end is moved in the axial direction, So that the fiber composite is wound to the main pipe, and/or, when the release end reaches the boss of the pipe joint, the release end is stationary while the main pipe and the pipe are made
  • the connector is rotated by the mandrel to wrap the fiber composite material to the raised portion.
  • step S1 the fiber composite material is continuously wound around the main pipe and the hook portion, and after the winding of the fiber composite material layer, each of the convex portions is wound around The fiber composite material.
  • the fiber composite material of the fiber composite material layer is alternately wound around the convex portion of the pipe joint member at both ends of the main pipe, and the pulling force can be applied to the pipe connecting member through the convex portion, and the pulling force can be used
  • the balance between the material to be conveyed and the axial force applied by the adjacent conveying pipe increases the strength of the connection between the main pipe and the pipe connecting member, thereby effectively avoiding problems such as connection failure caused by the axial force.
  • Figure 1 is a cross-sectional view showing the interconnection of the conveying pipes in accordance with a preferred embodiment of the present invention
  • Figure 2 is a schematic view showing the winding manner of the fiber composite layer of the conveying pipe of Figure 1;
  • Figure 3a and Figure 3b are schematic cross-sectional views, respectively, of the tube connector of the delivery tube of Figure 1 in axial and radial directions;
  • Figure 4 is a cross-sectional view of the wear sleeve of the transfer tube of Figure 1;
  • Figure 5 is a cross-sectional view of the pipe fitting for connecting the conveying pipe of Figure 1;
  • 6a and 6b are a perspective view and a cross-sectional view of the main pipe and the wear sleeve inserted into the pipe connecting member;
  • 7a and 7b are respectively a front view and a cross-sectional view thereof after winding the first fiber composite material
  • 8a and 8b are respectively a front view and a cross-sectional view thereof after winding the second fiber composite material
  • Figure 9 is a process flow diagram showing the sub-steps in the step of coating the fiber composite layer.
  • the term “circumferential” used generally means a direction surrounding the center line of the conveying pipe, and “axial direction” generally means a direction parallel to the center line, unless otherwise specified.
  • the terms “first” and “second” are used for convenience of description only and are not intended to define structural differences, for example, the first end and the second end of the main pipe 1 may have identical structures.
  • the present invention is not limited thereto, and for example, the above components may be formed as The prism structure, which can also serve as a conveying pipe for conveying materials, and achieves the corresponding object by the technical solution provided by the present invention.
  • an aspect of the present invention provides a duct comprising a main pipe 1, a pipe joint 2 (e.g., a flange) respectively disposed at both ends of the main pipe 1, and a cover
  • the fiber composite layer 3 on the outer peripheral surface of the main pipe 1.
  • the conveying pipe of such a structure can conveniently utilize the wear resistance of the main pipe 1 and the high specific strength of the fiber composite material layer 3 by appropriate arrangement to ensure the wear resistance and explosion-proof performance of the conveying pipe. Under the premise of achieving weight reduction and other purposes.
  • a plurality of bosses 21 are provided on the outer peripheral surface of the pipe joint 2 provided at both ends of the main pipe 1. At least a portion of the fiber composite material of the fiber composite material layer 3 is wound around the main pipe 1 and alternately hooked onto the boss portions 21 of the pipe joint members 2 (ie, the hook yarns) respectively located at both ends of the main pipe 1 to be able to pass the convex portion
  • the starting portion 21 applies a pulling force in the axial direction to the pipe joint 2. That is, by winding the fiber composite material of the winding main pipe 1 onto the boss portion 21, the fiber composite material can be produced between the main pipe 1 and the pipe joint member 2.
  • the tensile force acts mainly, but not limited to, with a component force along the axial direction of the main pipe 1 to improve the axial connection strength between the main pipe 1 and the pipe joint 2.
  • the above-mentioned component force generated by the fiber composite material can be used to balance the axial force generated by the interaction of the adjacent conveying pipes of the material and have the tendency to separate the main pipe 1 and the pipe connecting member 2, thereby avoiding the failure of the connection between the two. .
  • the present invention is mainly directed to the technical problem of insufficient axial connection strength between the main pipe and the pipe connecting member in the prior art conveying pipe, and the fibrous composite material layer 3 is set in a pioneering manner so that the fiber composite material is alternately wound around the pipe connecting member 2
  • the boss portion 21 is configured such that the main pipe 1 and the pipe connecting members 2 at both ends thereof can be biased to each other in the axial direction, thereby effectively improving the integrity of the conveying pipe, thereby improving the reliability of the conveying system having the conveying pipe and safety.
  • the respective portions in the conveying pipe of the present invention can be formed in various suitable forms and connected to each other in an appropriate manner. This will be explained below mainly in connection with the preferred embodiment of the illustration.
  • the fiber composite material for winding to form the fiber composite material layer 3 may include the first fiber composite material 31 and the second fiber. Composite material 32.
  • the helix angle ⁇ 1 of the first fiber composite material 31 wound on the main pipe 1 is smaller than the helix angle ⁇ 2 of the second fiber composite material 32 wound around the main pipe 1.
  • the helix angle here and below may be represented by the angle between the direction in which the fiber composite extends and the line on the outer peripheral surface of the main pipe 1 parallel to the center line thereof, as shown in Figs. 7a and 7b.
  • first fiber composite material 31 and the second fiber composite material 32 of the present invention are only used to distinguish the difference between the helix angle at the time of winding and the shape after being wound on the main pipe 1, and the two are not limited to Intrinsically different fiber composites, for example, can be the same set of fiber yarns, so that tools such as winding heads do not need to be replaced in the winding process to have higher manufacturing efficiency.
  • a second fiber composite 32 having a relatively high tensile strength may be selected, if desired, for example, when higher explosion-proof properties are required.
  • the fiber composite material 31 can provide a relatively large axial tensile force.
  • the helix angle ⁇ 1 of the first fiber composite material 31 wound on the main pipe 1 is preferably 5° ⁇ ⁇ 1 ⁇ 45°, with a major improvement.
  • the axial joint strength of the duct is preferably 5° ⁇ ⁇ 1 ⁇ 45°, with a major improvement.
  • the fiber composite When the helix angle of the fiber composite is large, the fiber composite can provide a tensile force mainly in the circumferential direction of the main pipe 1, which can restrain the radial expansion of the main pipe 1, thereby improving the explosion-proof performance of the conveying pipe. Therefore, the second fiber composite material 32 can provide a relatively large circumferential pulling force. For this reason, the helix angle ⁇ 2 of the second fiber composite material 32 wound on the main pipe 1 is preferably 45° ⁇ ⁇ 2 ⁇ 90°, mainly for To improve the explosion-proof capacity of the conveying pipe.
  • the second fiber composite material 32 may be coated over the first fiber composite material 31.
  • the desired first fiber composite material 31 is wound around the outer peripheral surface of the main pipe 1, and the first fiber composite material 31 can be reciprocally wound a plurality of times on the main pipe 1 to be formed into a plurality of layers so as to have a desired axial direction.
  • the joint strength; then, the second fiber composite material 32 is wound around the first fiber composite material 31 coated on the outer surface of the main pipe 1 to have the required explosion-proof capability.
  • This arrangement of the delivery tube facilitates the improvement of the winding efficiency since it can be continuously wound separately. Further, by disposing the first fiber composite material 31 having a small helix angle closer to the main pipe 1, the tensile strength can be remarkably exerted to effectively increase the axial joint strength of the conveying pipe.
  • first fiber composite material 31 and the second fiber composite material 32 may be alternately coated with each other. That is, first, one or more layers of the first fiber composite material 31 (or the second fiber composite material 32) are wound on the outer peripheral surface of the main pipe 1, and then the second fiber composite material 32 (or the first fiber composite material) is wound thereon. 31). Since the two are alternately distributed to each other, this makes the entire fiber composite layer 3 more integral and capable of functioning relatively uniformly in the axial and circumferential directions.
  • the first fiber composite material 31 and the second fiber composite material 32 described above may be wound on the main pipe 1 by a similar process, which will be described later in detail.
  • the raised portion 21 for winding the fiber composite material may be formed into a variety of suitable structures. 3a to 3b and 6a to 6b, in a preferred embodiment of the invention, the end face P of the boss 21 on the pipe connector 2 facing away from the main pipe 1 and the boss portion 21 are located.
  • the angle ⁇ ⁇ 90° between the generatrices of the outer peripheral surface portion of the pipe connector 2 is such that the fiber composite material exerts a pulling force through the boss portion 21.
  • the point of application of the tensile force of the fiber composite to the pipe joint 2 is the end face P of the boss 21 of the hook that faces away from the main pipe 1, and the end face P should be able to maintain the fiber composite well, avoiding it at a certain degree. Pulling down.
  • the fiber composite material of the hook can be preferably held, and the force can be easily applied.
  • the angle ⁇ between the raised portion 21 and the bus bar in the preferred embodiment is about 90°, that is, the end face P of the raised portion 21 facing away from the main pipe 1 is substantially along the diameter.
  • the extension also has a good processability.
  • the boss portion 21 of the present invention disposed on the pipe connecting member 2 is mainly used for applying an axial force to the fiber composite material, and the conveying pipe is substantially not subjected to the circumferential force in actual work, and is lightly combined with the conveying pipe.
  • Quantitative requirements and processing techniques can optimize the structure, arrangement and quantity of the bosses 21 on the pipe joint 2 .
  • the axial dimension of the pipe connector 2 itself is large, which is disadvantageous for the weight reduction requirement, and therefore, the axis of the joint face between the boss portion 21 and the outer peripheral surface of the pipe joint 2
  • the dimension L1 is not excessively large; on the other hand, in the case where the axial dimension L1 of the joint surface between the boss portion 21 and the outer peripheral surface of the pipe joint 2 is restricted, in order to ensure sufficient joint strength, It is necessary to increase the circumferential dimension L2 of the joint surface or increase the distribution density of the boss portion 21, However, the circumferential dimension L2 is too large and the excessively disposed projections 21 affect the winding of the fiber composite.
  • the boss portion 21 may be formed in a structure in which the convex portion 21 has a substantially triangular cross section in a cross section passing through the center line, and has a hypotenuse toward the center line in the direction toward the main pipe 1 (the oblique side) It is advantageous to transition to the frustum of the preferred embodiment described below, as shown in Figure 3a; in the section perpendicular to the centerline, the end face P of the boss 21 is generally rectangular, as shown in Figure 3b. Thereby, the stability of the triangle can be utilized, and the boss portion 21 can withstand a large pulling force in the axial direction.
  • the raised portions 21 can be evenly arranged in the circumferential direction, which facilitates uniform winding of the fiber composite.
  • a row of raised portions 21 is formed on each of the tube connectors 2, which not only further improves the uniformity of the wound fiber composite material, but also facilitates the improvement of the winding speed and the improvement of the manufacturing processability.
  • an odd number of the bosses 21 may be formed on each of the pipe connectors 2, and the bosses 21 are evenly arranged along the circumferential direction of the pipe joint 2 so as to be continuously and uniformly wound and capable of being good after winding.
  • the ground applies force in the axial direction.
  • the bosses 21 on each of the pipe connectors 2 are now classified into odd-numbered bosses and even-numbered bosses in order, and the pipe joints 2 at both ends of the main pipe 1 are made to each other.
  • the winding head is moved in the circumferential direction by a predetermined distance and is wound around the nth raised portion (n may be an odd or even number) of the pipe joint 2 at the second end. Thereafter, the winding head is wound from the second end to the first end, and the distance of the circumferential movement when reaching the first end should be equal to the predetermined distance generated during the previous winding from the first end to the second end. That is, the hook is wrapped around the 2n-1th protrusion to ensure the uniformity of the fiber composite.
  • the fiber composite material of any convex portion 21 (such as the above-mentioned nth convex portion) on the pipe connecting member 2 hooked to the second end respectively corresponds to an odd number of convex portions on both sides of the convex portion 21 a part (such as the above-mentioned item 1 and item 2n-1 protrusions) or an even number of protrusions (when the even-numbered protrusions are used as the starting point for winding the fiber composite). If each of the pipe joints 2 is formed with an even number of bosses 21, it is necessary to form a break or use a different wrap head to wrap the fiber composite material on each of the bosses 21, otherwise the maximum performance will not be achieved.
  • the fiber composite material wound on the same convex portion 21 due to uneven winding cannot produce a resultant force in the axial direction.
  • the preferred embodiment of the present invention forms an odd number of raised portions 21, it can be continuously wound because the odd and even number of raised portions will be converted after winding around the tube connector 2 (i.e., during different winding processes, each The raised portion 21 is both an odd-numbered raised portion and an even-numbered raised portion, so that each of the raised portions 21 can be continuously wound with a fiber composite material.
  • the number of the bosses 21 should be specifically selected according to the size (radial or circumferential dimension) of the pipe joint 2 to improve the forming process of the pipe joint 2 while ensuring proper joint strength. And the winding process of the fiber composite.
  • 5 to 45 bosses 21 are formed on each of the pipe connectors 2 to facilitate fiber composite
  • the material forms the desired helix angle and, for a pipe connector 2 of the usual size, the strength of the connection of the boss 21 to the pipe connector 2 is ensured and the pipe connector 2 has a good forming process and And facilitate the winding of the fiber composite.
  • each of the pipe connectors 2 is formed with 7 or 9 bosses.
  • a boss 22 may be formed on an outer peripheral surface of the pipe connecting member 2 away from the end of the main pipe 1 to A groove 23 is formed between the boss 22 and the boss 21 so that adjacent pipe tubes can be butted together by the corresponding pipe clamp 5 being snapped into the groove 23.
  • the tube clamp 5 described herein may be constructed of two (eg, hinged to each other) semi-circular structures to enable placement of adjacent delivery tubes at the docking position. The card is received in the recess 23. This arrangement of the tube connector 2 and the connection between the tubes determined by it allows the tube to have a degree of rotational freedom so that the circumferential stress can be released to reduce or even avoid circumferentially The connection between the pipe connector 2 and the main pipe 1 has an effect.
  • the outer peripheral dimension of the body portion of the pipe connector 2 is generally larger than the outer circumferential dimension of the main pipe 1 in order to facilitate the insertion of the wear sleeve 4 described later, especially when the boss portion 21 is provided, which tends to cause fiber composite It is difficult for the material to conform well to the surface of the main pipe 1 or the pipe joint 2, so that a gap is formed between the fiber composite material layer 3 and the main pipe 1 or the pipe joint 2, which gap will cause the fiber composite material layer 3 to fail to function in the circumferential direction. The explosion-proof performance of the conveying pipe is deteriorated.
  • an end surface of the pipe joint 2 adjacent to the main pipe 1 is formed with a frustum that tapers in a direction toward the main pipe 1, that is, if the end of the pipe joint 2 facing away from the main pipe is defined as a big end, The other end is defined as a small end that is located near the small end and tapers in a direction toward the small end.
  • the conveying pipe having the fiber composite material layer 3 mainly improves the performance of the entire conveying pipe by utilizing the advantages of the respective constituent parts.
  • the main pipe 1 since the main pipe 1 needs to withstand the scouring of the material, the main pipe 1 can be made to have high wear resistance.
  • the material of the main pipe 1 can be high carbon steel; since the fiber composite material has good tensile properties, it can be Wrap it over the main pipe 1 to improve the axial connection strength, explosion-proof performance, etc.; the pipe connector 2 is disposed at the end of the conveying pipe for connecting adjacent conveying pipes, and the pipe connecting member 2 is easy to phase with during operation
  • the adjacent duct or the like collides, and therefore it is required to have a certain toughness.
  • a delivery tube according to a preferred embodiment of the present invention further includes a wear sleeve 4, which is inserted into the tube connector 2 and docked with each other, respectively.
  • the wear sleeve 4 and the pipe connecting member 2 are each away from the main pipe 1 The ends are flush with each other.
  • the material of the wear sleeve 4 may be high carbon steel or wear resistant cast iron.
  • the pipe connector 2 is attached to both ends of the main pipe 1 by means of inserting, the present invention is not limited thereto, and for example, preliminary connection may be performed by spot welding, gluing or the like so that For winding fiber composites.
  • the wall thickness of the wear sleeve 4 can be made larger than the wall thickness of the main pipe 1, and the wear sleeve 4 has the same inner diameter as the main pipe 1.
  • a step portion may be formed on the outer peripheral surface of the side wall of the wear sleeve 4 to position the assembly by the corresponding structural cooperation with the inner circumferential surface of the pipe joint 2 position.
  • the present invention further provides a delivery system including a plurality of the above-mentioned delivery tubes, and the plurality of delivery tubes are sequentially butted through the tube connecting member 2 to Form a conveyor line.
  • the conveyor system can be used for the transport of materials such as concrete.
  • the present invention provides a method of manufacturing the above-described conveying pipe, which will be described in detail below. It will be understood that the above-described conveying pipe is not limited to being manufactured only by the method described below, and may be manufactured by other suitable methods, as appropriate. Further, various technical features in the delivery tube of each of the above preferred embodiments may be used in the manufacturing method provided by the present invention as needed.
  • the conveying pipe to be manufactured includes a pipe 1 , a pipe connecting member 2 respectively disposed at both ends of the main pipe 1 , and a fiber composite material layer 3 coated on the outer circumferential surface of the main pipe 1 , wherein A plurality of bosses 21 are provided on the outer peripheral surface of the pipe connector 2.
  • the manufacturing method of the present invention comprises: S1. a step of coating the fiber composite layer 3. Specifically, as shown in FIG. 9, the step S1 includes the following sub-steps:
  • the piece 2 has a relative movement in the circumferential direction and the axial direction of the main pipe 1 respectively, so that the fiber composite material is wound from the first end of the main pipe 1 in the direction toward the second end of the main pipe 1 to the main pipe 1, and
  • the release end of the fiber composite reaches the convex portion 21 of the pipe joint 2 at the second end of the main pipe 1, it is hooked to the convex portion 21 so as to be able to pass the convex portion 21 to the second portion located at the main pipe 1.
  • the end pipe connector 2 exerts a tensile force in the axial direction which is directed toward the first end of the main pipe 1.
  • Sub-steps S1-2 and S1-3 are repeated until the fiber composite layer 3 is formed.
  • the relative movement between the fiber composite material and the main pipe 1 and the pipe joint 2 can be achieved in various ways, for example, by making one of them stand still, One can rotate around the center line of the main pipe 1 to obtain the required circumferential relative motion, and can move in the axial direction to obtain the required axial relative motion, or both can move simultaneously.
  • the main pipe 1 and the pipe joint 2 are fixed to and rotated by a mandrel (not shown) while the release end of the fiber composite is along the axis Moving so that the fiber composite can be wound onto the main pipe 1 at a predetermined helix angle and/or when the release end of the fiber composite reaches the boss 21 of the pipe joint 2 (ie, axially moving to pass adjacent)
  • the release end is allowed to rest while the main tube 1 and the tube connector 2 are rotated by the mandrel to wrap the fiber composite material around the raised portion 21.
  • the sub-steps S1-2 and S1-3 may have the same relative movement speed to make the wound fiber composite material evenly distributed.
  • the relative movement speed can also be changed to obtain different helix angles.
  • the rotational speed of the main pipe 1 and the pipe joint 2 is kept constant, increasing the axial movement speed of the discharge end of the fiber composite material can make the helix angle small.
  • a preferred embodiment of the present invention provides a winding method of a fiber composite material capable of better providing axial joint strength and explosion-proof performance, and forms a first fiber composite material 31 and a second fiber composite material having different helix angles. 32.
  • the rotation speed of the main pipe 1 and the pipe joint 2 is made smaller than the rotation speed when the second fiber composite material 32 is wound; and/or the movement speed of the release end of the fiber composite material is made larger than The speed of movement when the second fiber composite material 32 is wound so that the helix angle ⁇ 1 of the first fiber composite material 31 wound on the main pipe 1 is smaller than the helix angle ⁇ 2 of the second fiber composite material 32 wound around the main pipe 1.
  • the first fiber composite 31 can be wound first on the main pipe 1 at a helix angle ⁇ 1 with a smaller circumferential relative movement speed and/or a larger axial relative movement speed, and is completed. Thereafter, the second fiber composite 32 is wound around the first fiber composite material 31 at a helix angle ⁇ 2 at a greater circumferential relative speed of movement and/or a smaller axial relative speed of movement.
  • the relative movement speed may be alternately changed during the winding process so that the first fiber composite material 31 and the second fiber composite material 32 are alternately coated with each other.
  • the delivery tube provided by the present invention may include a wear sleeve 4, and the wall thickness of the wear sleeve 4 is greater than
  • the wall thickness of the main pipe 1 is formed with a stepped portion on the outer peripheral surface, and the inner peripheral surface of the pipe joint 2 is formed with a corresponding fitting structure and the pipe connecting member 2 has a large end and a small end.
  • the wear sleeve 4 has the same inner diameter as the main tube 1.
  • the manufacturing method of the present invention further includes: S0. The step of inserting the wear sleeve 4 and the inner tube 1 into the tube connector 2.
  • step S0 is performed before step S1, and the step S0 includes the following sub-steps:
  • the fiber composite material may be continuously wound around the main pipe 1 and the wrap convex portion 21, and after being wound to form the fiber composite material layer 3, each of the convex portions 21 is wound with a fiber composite material.
  • a fiber composite material in order to ensure that the fiber composite material wound around the hook portion 21 has the same helix angle before and after the hook portion of the hook portion 21, to ensure the fiber composite material wound on the main pipe 1 Uniformity and ability to exert its maximum performance, an odd number of bosses 21 can be uniformly disposed in the circumferential direction of each of the pipe joints 2.
  • the fiber composite material can be continuously and efficiently wound without forming a broken or different winding head, and on the other hand, it is convenient to ensure that the conveying pipe has relatively good mechanical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

一种输送系统、输送管及其制造方法,输送管包括主管(1)、分别设置于该主管(1)的两端的管连接件(2)以及包覆于主管(1)的外周面上的纤维复合材料层(3),管连接件(2)的外周面上设置有多个凸起部(21),纤维复合材料层(3)的至少部分纤维复合材料缠绕主管(1)并交替绕勾到分别位于该主管(1)两端的管连接件(2)的凸起部(21)上,以能够通过该凸起部(21)向管连接件(2)施加沿轴向的拉力。该输送管中主管(1)与管连接件(2)的轴向连接强度较高,能够有效避免轴向力导致的连接失效问题。

Description

输送系统、输送管及其制造方法 技术领域
本发明涉及输送设备,具体地,涉及一种输送管。此外,本发明还涉及该输送管的制造方法及包括在输送管的输送系统。
背景技术
管路输送是物料输送领域常用的输送方式之一。例如,在混凝土等粘稠物料的输送中,可以利用混凝土输送泵驱动混凝土,以通过由输送管连接而成的输送线路连续输送至浇注现场。作为如混凝土布料装置等的重要部件,输送管的性能对于生产成本、效率等具有重要影响。
在混凝土等物料输送中,一方面,需要通过输送管将含有硬质颗粒(如石子)物料输送至预定位置(预定高度、预定距离),以满足生产需求;另一方面,输送管承受物料输送的压力、泵送脉冲等作用,而树脂基纤维复合材料具有比强度高、比模量大、抗疲劳性能好、破损安全性能高等优点,因此,在传统技术中主要关注输送管在轻质、耐磨、防爆等方面的性能并利用树脂基纤维复合材料制造输送管,以获得具有相应性能的输送管。例如,中国专利(申请)CN202708358U、CN101660635B、CN201412608Y、CN103115200A分别公开了能够用于混凝土输送的输送管。
具体地,上述现有技术中公开的输送管通常具有主管(耐磨内管)、设置于主管两端的法兰以及包覆于主管外周面上的纤维复合材料层。利用纤维复合材料的比强度高的特性和主管的耐磨特性,可以在保证输送管耐磨、防爆性能等性能的前提下,达到轻量化等目的。其中,法兰可以通过焊接、镶铸等方式连接至主管,或者,通过纤维复合材料胶接至主管两端。然而,主管为保证耐磨性而具有较差的焊接性能,且容易由于不合理地受热而影响耐磨性能;胶接容易受环境影响,存在易老化、工艺条件苛刻(要求特殊的表面处理、需加热加压固化等)等问题。
因此,在现有的设置有纤维复合材料的输送管中,法兰的连接方式并不可靠。特别是,容易被本领域技术人员所忽略地,在工作过程中,输送管不仅承受物料运动产生的轴向摩擦力,而且承受着装配时精度控制等问题产生的轴向力。这些轴向力在输送管堵塞时将显著增大,并可能导致法兰及相邻输送管的连接失效,进而影响生产效率、增加维护成本,甚至发生安全事故。
基于此,有必要提供一种输送管,以解决上述现有技术存在的技术问题。
发明内容
本发明所要解决的技术问题是提供一种输送管,该输送管的主管与管连接件的轴向连接强度较高,能够有效避免轴向力导致的连接失效问题。
为了解决上述技术问题,本发明的一个方面提供一种输送管,该输送管包括主管、分别设置于该主管的两端的管连接件以及包覆于所述主管的外周面上的纤维复合材料层,其中,所述管连接件的外周面上设置有多个凸起部,所述纤维复合材料层的至少部分纤维复合材料缠绕所述主管并交替绕勾到分别位于该主管两端的所述管连接件的所述凸起部上,以能够通过该凸起部向所述管连接件施加沿轴向的拉力。
优选地,所述纤维复合材料包括第一纤维复合材料和第二纤维复合材料,其中,所述第一纤维复合材料缠绕在所述主管上的螺旋角α1小于所述第二纤维复合材料缠绕在所述主管上的螺旋角α2,所述第二纤维复合材料包覆于所述第一纤维复合材料外,或者,所述第一纤维复合材料和第二纤维复合材料彼此交替包覆。
优选地,5°≤α1≤45°,45°≤α2≤90°。
优选地,所述输送管还包括耐磨套,该耐磨套和所述主管分别插装在所述管连接件内并彼此对接,并且,所述耐磨套和所述管连接件各自远离所述主管的端部相互平齐。
优选地,所述耐磨套的壁厚大于所述主管的壁厚并在外周面上形成有台阶部,且该耐磨套与所述主管具有相同的内径。
优选地,所述凸起部的背向所述主管的端面与该凸起部所在的所述管连接件的外周面部分的母线之间的夹角γ≤90°。
优选地,所述管连接件的外周面上远离所述主管的一端形成有凸台,以在该凸台与所述凸起部之间形成用于连接管卡件的凹槽。
优选地,所述管连接件具有背离所述主管的大端和朝向该主管的小端,且该管连接件的外周面上靠近所述小端的部分形成有沿朝向该小端的方向渐缩的锥台面。
优选地,每个所述管连接件上形成有奇数个所述凸起部,且该凸起部沿所述管连接件的周向均匀布置。
优选地,每个所述管连接件上形成有5~45个所述凸起部。
本发明的另一个方面提供一种输送系统,该输送系统包括多个本发明提供的所述输送管,该输送管通过所述管连接件依次对接形成输送线路。
本发明的另一个方面提供一种输送管的制造方法,所述输送管包括主管、分别设置于该主管的两端的管连接件以及包覆于所述主管的外周面上的纤维复合材料层,其中,所述管连接件的外周面上设置有多个凸起部,所述制造方法包括如下步骤:
S1.包覆所述纤维复合材料层的步骤,该步骤包括如下子步骤:S1-1.将纤维复合材料的端头固定至位于所述主管的第一端的所述管连接件的凸起部;S1-2.使得所述纤维复合材料的释放端相对于所述主管和设置于该主管的两端的所述管连接件具有分别沿所述主管的周向和轴向的相对运动,以使所述纤维复合材料从所述主管的第一端沿朝向该主管的第二端的方向缠绕至所述主管,并在所述释放端到达位于所述主管的第二端的所述管连接件的凸起部时绕勾至该凸起部,以能够通过该凸起部向位于所述主管的第二端的所述管连接件施加沿轴向的拉力;S1-3.使得所述释放端相对于所述主管和所述管连接件具有分别沿所述主管的周向和轴向的相对运动,以使所述纤维复合材料沿朝向所述主管的第一端的方向缠绕至所述主管,并在所述释放端到达位于所述主管的第一端的所述管连接件的凸起部时绕勾至该凸起部,以能够通过该凸起部向位于所述主管的第一端的所述管连接件施加沿轴向的拉力;S1-4.重复子步骤S1-2和S1-3。
优选地,在子步骤S1-2和S1-3中,所述主管和所述管连接件固定于芯轴上并在该芯轴带动下旋转,同时,使所述释放端沿轴向运动,以使所述纤维复合材料缠绕至所述主管,并且/或者,当所述释放端到达所述管连接件的凸起部时,所述释放端静止,同时,使所述主管和所述管连接件在所述芯轴带动下旋转,以使所述纤维复合材料绕勾至所述凸起部。
优选地,在步骤S1中,所述纤维复合材料连续地缠绕所述主管和绕勾所述凸起部,并在缠绕形成所述纤维复合材料层后,各个所述凸起部均绕勾有所述纤维复合材料。
通过本发明的上述技术方案,纤维复合材料层的纤维复合材料交替绕勾至主管两端的管连接件的凸起部上,并能够通过该凸起部向管连接件施加拉力,该拉力能够用于平衡输送的物料及相邻输送管施加的轴向力,提高了主管与管连接件之间的连接强度,从而有效避免所述轴向力导致的连接失效等问题。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是根据本发明一种优选实施方式的输送管相互连接的剖视示意图;
图2是表示图1中的输送管的纤维复合材料层的缠绕方式的示意图;
图3a和图3b分别是图1中的输送管的管连接件的沿轴向和径向的剖视示意图;
图4是图1中的输送管的耐磨套的剖视示意图;
图5是图1中的用于连接输送管的管卡件的剖视示意图;
图6a和图6b是主管、耐磨套插装至管连接件后的立体图及剖视示意图;
图7a和图7b分别是缠绕第一纤维复合材料后的主视图及其剖视图;
图8a和图8b分别是缠绕第二纤维复合材料后的主视图及其剖视图;
图9是用于表示包覆纤维复合材料层的步骤中各子步骤的工艺流程图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作特别说明的情况下,使用的方位词“周向”通常是指环绕输送管的中心线的方向,“轴向”通常是指平行于所述中心线的方向。使用的术语“第一”、“第二”仅为了便于说明,并不用于限定结构上的差异,例如,主管1的第一端和第二端可以具有完全相同的结构。
另外,应当理解的是,尽管在图示优选实施方式中,主管1、耐磨套4均在整体上形成为回转体结构,但本发明并不限于此,例如,上述各部件也可以形成为棱柱结构,这同样能够作为用于输送物料的输送管,并由本发明提供的技术方案达到相应的目的。
首先参照图1和图2所示,本发明的一个方面提供一种输送管,该输送管包括主管1、分别设置于该主管1的两端的管连接件2(如法兰)以及包覆于主管1的外周面上的纤维复合材料层3。与传统技术类似地,这种结构的输送管能够通过适当的设置而方便地利用主管1的耐磨性能和纤维复合材料层3的比强度高的特性,以在保证输送管耐磨、防爆性能的前提下,实现轻量化等目的。
重要地,在本发明提供的输送管中,设置于主管1两端的管连接件2的外周面上设置有多个凸起部21。纤维复合材料层3的至少部分纤维复合材料缠绕主管1,并交替地绕勾到分别位于该主管1的两端的管连接件2的凸起部21上(即挂纱),以能够通过该凸起部21向所述管连接件2施加沿轴向的拉力。也即,通过将缠绕主管1的纤维复合材料绕勾到凸起部21上,从而使该纤维复合材料能够在主管1和管连接件2之间产 生拉力作用,该拉力作用主要(但可以不限于)具有沿主管1的轴向的分力,以改善主管1与管连接件2之间的轴向连接强度。在物料输送过程中,纤维复合材料产生的上述分力能够用于平衡物料相邻输送管相互作用产生的、具有使主管1和管连接件2分离趋势的轴向力,从而避免二者连接失效。
本发明主要针对现有技术的输送管中主管与管连接件的轴向连接强度不足的技术问题,开创性地将纤维复合材料层3设置为使纤维复合材料交替绕勾到管连接件2的凸起部21上,以在轴向上使得主管1与位于其两端的管连接件2能够彼此施力,有效提升了输送管的整体性,从而提升具有该输送管的输送系统的可靠性和安全性。
基于此,本发明的输送管中的各个部分可以形成为各种适宜的形式并通过适当的方式彼此连接。以下将主要结合图示优选实施对此进行说明。
结合图1、图7a至图8b所示,在本发明一种优选实施方式的输送管中,用于缠绕形成纤维复合材料层3的纤维复合材料可以包括第一纤维复合材料31和第二纤维复合材料32。其中,第一纤维复合材料31缠绕在主管1上的螺旋角α1小于第二纤维复合材料32缠绕在该主管1上的螺旋角α2。此处及以下所述螺旋角可以由纤维复合材料的延伸方向与主管1的外周面上的平行于其中心线的直线之间的夹角表示,如图7a和图7b所示。通过这种设置,可以方便地兼顾输送管的轴向连接强度和防爆性能。可以理解的是,本发明所述第一纤维复合材料31和第二纤维复合材料32仅用于区别其缠绕时螺旋角和缠绕在主管1上后的形态的不同,并不将二者限定为本质上不同的纤维复合材料,例如,二者可以为同一组纤维纱线,从而在缠绕工艺中无需更换缠丝头等工具,以具有较高的制造效率。或者,在需要时,例如,当要求较高的防爆性能时,可以选用具有相对较高抗拉能力的第二纤维复合材料32。
具体地,以45°为界,当纤维复合材料的螺旋角较小时,该纤维复合材料能够承担较大的轴向拉力,以有效提高主管1与管连接件2之间的轴向连接强度。因此,第一纤维复合材料31能够提供相对较多的轴向拉力,为此,该第一纤维复合材料31缠绕在主管1上的螺旋角α1优选为5°≤α1≤45°,以主要改善输送管的轴向连接强度。
当纤维复合材料的螺旋角较大时,该纤维复合材料能够主要在主管1的周向上提供拉力,该拉力能够束缚主管1的径向膨胀,从而提高输送管的防爆性能。因此,第二纤维复合材料32能够提供相对较多的周向拉力,为此,该第二纤维复合材料32缠绕在主管1上的螺旋角α2优选为45°≤α2≤90°,以主要用于提升输送管的防爆能力。
如图1所示地,第二纤维复合材料32可以包覆于第一纤维复合材料31外。即, 首先将所需的第一纤维复合材料31缠绕在主管1的外周面上,该第一纤维复合材料31可以在主管1上往复缠绕多次,以形成为多层,从而具有所需的轴向连接强度;然后,在该包覆于主管1外表面上的第一纤维复合材料31外缠绕第二纤维复合材料32,以具有所需的防爆能力。由于可以分别连续地缠绕,这种设置的输送管便于提高缠绕效率。另外,将具有较小螺旋角的第一纤维复合材料31设置在更靠近主管1位置,能够显著地发挥其抗拉伸性能,以有效提高输送管的轴向连接强度。
作为另一种选择,第一纤维复合材料31和第二纤维复合材料32可以彼此交替包覆。即,首先在主管1的外周面上缠绕一层或多层第一纤维复合材料31(或第二纤维复合材料32),然后在其上缠绕第二纤维复合材料32(或第一纤维复合材料31)。由于二者彼此交替分布,这使得整个纤维复合材料层3整体性更好,并能够相对均匀地在轴向和周向上发挥作用。
以上所述第一纤维复合材料31和第二纤维复合材料32可以由相似的工艺缠绕在主管1上,这将在随后详细说明。
用于绕勾所述纤维复合材料的凸起部21可以形成为多种适宜的结构。结合图3a至图3b、图6a至图6b所示,在本发明一种优选实施方式中,管连接件2上的凸起部21的背向主管1的端面P与该凸起部21所在的管连接件2的外周面部分的母线之间的夹角γ≤90°,以便于纤维复合材料通过该凸起部21施加拉力。具体地,纤维复合材料对管连接件2施加拉力的施力点为其绕勾的凸起部21的背向主管1的端面P,该端面P应能良好地保持纤维复合材料,避免其在一定拉力下滑脱。若使端面P具有上述夹角γ,则能够较好地保持绕勾的纤维复合材料,且便于施力。例如,从图6b可以看出,图示优选实施方式中的凸起部21与母线之间的夹角γ约为90°,即该凸起部21的背向主管1端面P基本上沿径向延伸,这种结构还具有较好的加工工艺性。
正如以上所述,本发明设置在管连接件2上的凸起部21主要用于纤维复合材料施加轴向力,且输送管在实际工作中基本不承受周向作用力,结合输送管的轻量化需求和加工工艺(管连接件2的成型工艺、纤维复合材料的缠绕工艺等)等方面的考虑,可以对管连接件2上的凸起部21的结构、布置形式及数量等进行优化设计。一方面,为了设置凸起部21,管连接件2自身的轴向尺寸较大,这不利于轻量化要求,因此,凸起部21与管连接件2的外周面之间的连接面的轴向尺寸L1不宜过大;另一方面,在该凸起部21与管连接件2的外周面之间的连接面的轴向尺寸L1受到限制的情况下,为了保证能够提供足够的连接强度,需增大该连接面的周向尺寸L2或增加凸起部21的分布密度, 然而,该周向尺寸L2过大和设置过多的凸起部21均会影响纤维复合材料的缠绕。
为此,可以使凸起部21形成为如下结构:在经过中心线的剖面中,凸起部21的截面大体呈三角形,并沿朝向主管1方向具有向中心线靠拢的斜边(该斜边有利于过渡至下述优选实施方式中的锥台面),如图3a所示;在垂直于中心线的剖面中,凸起部21的端面P大体呈矩形,如图3b所示。从而,可以利用三角形的稳定性,凸起部21能够在轴向上承受较大的拉力。
此外,凸起部21可以在周向均匀布置,这有利于纤维复合材料均匀地缠绕。在图示实施方式中,每个管连接件2上形成有一排凸起部21,这不仅能够进一步改善缠绕的纤维复合材料的均匀性,还便于提高缠绕速度,改善制造工艺性。
进一步地,每个管连接件2上可以形成有奇数个所述凸起部21,该凸起部21沿管连接件2的周向均匀布置,以便连续均匀地实施缠绕并能够在缠绕后良好地在轴向施力。为便于说明,参照图2,现将每个管连接件2上的凸起部21按排序依次分类为奇数项凸起部和偶数项凸起部,并使主管1两端的管连接件2彼此对称设置,假定以位于主管1的第一端的管连接件2上的第1项凸起部作为缠绕纤维复合材料的起点,则当该纤维复合材料缠绕至第二端的管连接件2时,缠丝头在周向移动了预定距离,并绕勾在该第二端的管连接件2的第n项凸起部(n可以为奇数或偶数)上。之后,缠丝头从第二端向第一端缠绕,其到达第一端时在周向移动的距离应与之前的从第一端向第二端缠绕过程中产生的所述预定距离相等,即绕勾在第2n-1项凸起部,以保证纤维复合材料的均匀性。可以看出,绕勾到第二端的管连接件2上的任一凸起部21(如上述第n项凸起部)的纤维复合材料在该凸起部21两侧分别对应奇数项凸起部(如上述第1项和第2n-1项凸起部)或偶数项凸起部(当以偶数项凸起部作为缠绕纤维复合材料的起点时)。若每个管连接件2形成有偶数个凸起部21,则必须形成断头或利用不同缠丝头才能在每个凸起部21上均绕勾纤维复合材料,否则将无法发挥其最大效能,或者,由于缠绕不均而导致缠绕至同一凸起部21上的纤维复合材料不能产生沿轴向的合力。而本发明优选实施方式形成奇数个凸起部21,则能够连续地缠绕,因为在围绕管连接件2缠绕一周后,奇、偶数项凸起部将发生转化(即在不同缠绕进程中,各凸起部21既是奇数项凸起部,又是偶数项凸起部),从而可以连续地使得每个凸起部21上均绕勾有纤维复合材料。
可以理解的是,凸起部21的个数应根据管连接件2的尺寸(径向或周向尺寸)而具体选择,以在保证适当连接强度的情况下改善该管连接件2的成型工艺和纤维复合材料的缠绕工艺。优选地,每个管连接件2上形成有5~45个凸起部21,以便于纤维复合 材料形成所需的螺旋角,并且,对于具有常用尺寸的管连接件2而言,可以保证凸起部21在该管连接件2上的连接强度并使管连接件2具有良好的成型工艺和且方便纤维复合材料的缠绕。每个管连接件2上进一步优选为形成有7个或9个凸起部。
结合图1、图3a及图5所示,为便于通过管连接件2依次对接多个输送管形成输送线路,可以在管连接件2的外周面上远离主管1的一端形成凸台22,以在该凸台22与凸起部21之间形成凹槽23,从而能够通过相应的管卡件5卡接在该凹槽23中而将相邻的输送管对接在一起。尽管未图示,但可以理解的是,此处所述管卡件5可以由两个(如彼此铰接的)半圆形结构构成,从而能够在将相邻的输送管放置于对接位置处时卡接在凹槽23中。管连接件2的这种设置方式及由其确定的输送管之间的这种连接方式可以使输送管具有一定的旋转自由度,从而能够释放周向应力,以减小甚至避免在周向上对管连接件2和主管1之间的连接产生影响。
如图示地,管连接件2的主体部分的外周尺寸通常大于主管1的外周尺寸,以便于插装随后所述的耐磨套4,尤其在设置有凸起部21时,容易导致纤维复合材料难以良好地贴合主管1或管连接件2的表面,使纤维复合材料层3与主管1或管连接件2之间产生间隙,该间隙将导致纤维复合材料层3无法在周向发挥作用,使得输送管的防爆性能变差。为此,在管连接件2的外周面上靠近主管1的一端形成有沿朝向该主管1的方向渐缩的锥台面,即,若将管连接件2的背离主管的一端定义为大端,另一端定义为小端,该锥台面位于靠近小端的位置并沿朝向该小端的方向渐缩。从而,以预定螺旋角缠绕纤维复合材料时能够使其良好地贴合在该锥台面上,并缓慢地过渡到主管1上,避免产生间隙。
具有纤维复合材料层3的输送管主要通过利用各组成部分的优点而改善输送管整体的性能。例如,由于主管1需要承受物料的冲刷,因此可以使主管1具有较高的耐磨性,典型地,主管1的材料可以为高碳钢;由于纤维复合材料具有良好的抗拉性能,因此可以将其包覆在主管1外以提高轴向连接强度、防爆性能等;管连接件2设置在输送管端部用于连接相邻输送管,且该管连接件2在作业过程中容易与相邻输送管等发生碰撞,因此需要具有一定韧性,典型地,该管连接件2的材料可以为低合金高强度钢。然而,在此情形下,管连接件2的耐磨性能则较差,若直接与物料接触,容易被磨损而无法使用。为此,参照图1和图4所示,根据本发明一种优选实施方式的输送管还包括耐磨套4,该耐磨套4和主管1分别插装在管连接件2内并彼此对接,以避免管连接件2与物料直接接触。并且,为便于输送管的连接,耐磨套4和管连接件2各自远离主管1 的端部相互平齐。典型地,该耐磨套4的材料可以为高碳钢或耐磨铸铁。尽管在该优选实施方式中,通过插装的方式将管连接件2连接在主管1两端,但本发明并不限于此,例如,还可以通过点焊、胶接等方式进行初步连接,以便于缠绕纤维复合材料。
在输送管彼此连接的部位,通常会由于连接精度等问题而影响物料的流动,使得物料与耐磨套4之间存在较大的摩擦作用。为此,可以使耐磨套4的壁厚大于主管1的壁厚,并且,耐磨套4与主管1具有相同的内径。另外,为便于在轴向定位耐磨套4,可以在该耐磨套4的侧壁外周面上形成有台阶部,以通过与管连接件2内周面上相应的结构配合而定位其装配位置。
以上对本发明提供的输送管进行了说明,在此基础上,本发明还提供一种输送系统,该输送系统包括多个上述输送管,且该多个输送管通过管连接件2依次对接,以形成输送线路。该输送系统可以用于如混凝土等物料的输送。
此外,本发明还提供一种上述输送管的制造方法,以下将对此详细说明。可以理解的是,上述输送管并不限于仅可以由如下所述的方法制造,在适当情况下,也可以由其他适宜的方法制造。另外,上述各优选实施方式的输送管中的各种技术特征可以在需要时用于本发明提供的制造方法。
参照图6a至图9所示,所要制造的输送管包括主管1、分别设置于该主管1两端的管连接件2以及包覆于该主管1的外周面上的纤维复合材料层3,其中,管连接件2的外周面上设置有多个凸起部21。本发明的制造方法包括:S1.包覆纤维复合材料层3的步骤。具体地,如图9所示,该步骤S1包括如下子步骤:
S1-1.将纤维复合材料的端头固定至位于主管1的第一端的管连接件2的凸起部21,例如,可以通过喷涂快速固化树脂胶的方式将所述端头固定在凸起部21的适当位置。
S1-2.使得所述纤维复合材料的释放端(如从缠丝头释放出的纤维纱线的靠近所述缠丝头的一端)相对于主管1和设置于该主管1的两端的管连接件2具有分别沿主管1的周向和轴向的相对运动,以使所述纤维复合材料从主管1的第一端沿朝向该主管1的第二端的方向缠绕至所述主管1,并在纤维复合材料的释放端到达位于所述主管1的第二端的管连接件2的凸起部21时绕勾至该凸起部21,以能够通过该凸起部21向位于主管1的第二端的管连接件2施加沿轴向的拉力,该拉力朝向主管1的第一端方向。
S1-3.使得纤维复合材料的释放端相对于主管1和管连接件2具有分别沿主管1的周向和轴向的相对运动,以使纤维复合材料沿朝向主管1的第一端的方向缠绕至该主 管1,并在所述释放端到达位于主管1的第一端的管连接件2的凸起部21时绕勾至该凸起部21,以能够通过该凸起部21向位于主管1的第一端的管连接件2施加沿轴向的拉力,该拉力朝向主管1的第二端方向。
S1-4.重复子步骤S1-2和S1-3,直至形成所述纤维复合材料层3。
在上述缠绕过程(即子步骤S1-2和S1-3)中,纤维复合材料与主管1和管连接件2之间的相对运动可以以多种方式实现,例如,使其中一者静止,另一者绕主管1的中心线旋转即可获得所需周向相对运动,沿轴向移动即可获得所需轴向相对运动,或者,二者可以同时运动等。
在根据本发明提供的一种优选实施方式中,主管1和管连接件2固定于芯轴(未示出)上并在该芯轴带动下旋转,同时,使纤维复合材料的释放端沿轴向运动,从而该纤维复合材料能够以预定螺旋角缠绕至主管1上,并且/或者,当纤维复合材料的释放端到达管连接件2的凸起部21时(即轴向运动至通过相邻凸起部21之间的间隔后),使该释放端静止,同时,使主管1和管连接件2在芯轴带动下旋转,以使所述纤维复合材料绕勾至凸起部21。其中,子步骤S1-2和S1-3可以具有相同的相对运动速度,以使得缠绕的纤维复合材料分布均匀。在缠绕过程中,也可以改变该相对运动速度,以获得不同的螺旋角。例如,在上述优选实施方式中,若保持主管1和管连接件2的旋转速度恒定,提高纤维复合材料的释放端的沿轴向的运动速度可以使螺旋角变小。
基于此,本发明的优选实施方式提供了能够较好地提供轴向连接强度和防爆性能的纤维复合材料的缠绕方法,并形成具有不同螺旋角的第一纤维复合材料31和第二纤维复合材料32。具体地,缠绕第一纤维复合材料31时,使得主管1和管连接件2的旋转速度小于缠绕第二纤维复合材料32时的旋转速度;并且/或者,使得纤维复合材料的释放端的运动速度大于缠绕第二纤维复合材料32时的运动速度,以使第一纤维复合材料31缠绕在主管1上的螺旋角α1小于第二纤维复合材料32缠绕在主管1上的螺旋角α2。
结合图7a至图8b所示,可以首先以较小的周向相对运动速度和/或较大的轴向相对运动速度在主管1上以螺旋角α1缠绕第一纤维复合材料31,并在完成后,以较大的周向相对运动速度和/或较小的轴向相对运动速度在该第一纤维复合材料31外以螺旋角α2缠绕第二纤维复合材料32。作为另一种选择,可以在缠绕过程中交替改变上述相对运动速度,从而使第一纤维复合材料31和第二纤维复合材料32彼此交替包覆。
正如以上所述,本发明提供的输送管可以包括耐磨套4,且该耐磨套4的壁厚大于 主管1的壁厚并在外周面上形成有台阶部,管连接件2的内周面上形成有相应的配合结构且该管连接件2具有大端和小端。另外,耐磨套4与主管1具有相同的内径。在此情形下,本发明的制造方法还包括:S0.将耐磨套4和内管1插装至管连接件2内的步骤。
具体地,参照图6a至图6b所示,在步骤S1之前进行上述步骤S0,该步骤S0包括如下子步骤:
S0-1.从管连接件2的大端将耐磨套4过盈配合地压入该管连接件2内,直至所述大端与耐磨套4的一端平齐,此时,耐磨套4的台阶部与管连接件2的内周面上的相应的配合结构恰好接合。
S0-2.从管连接件2的小端将主管1过盈配合地压入该管连接件2内,直至该主管1的端部与耐磨套4的另一端对接,从而该主管1和耐磨套4可以将输送的物料与管连接件2完全隔开,避免管连接件2的磨损。
优选地,在上述步骤S1中,纤维复合材料可以连续地缠绕主管1和绕勾凸起部21,并在缠绕形成纤维复合材料层3后,各个凸起部21均绕勾有纤维复合材料。在此情形下,结合前述分析,为了保证同一凸起部21上绕勾的纤维复合材料在绕勾该凸起部21前后具有相同的螺旋角,以保证缠绕在主管1上的纤维复合材料的均匀性并能够发挥其最大性能,可以在沿各个管连接件2的周向均匀设置奇数个凸起部21。从而,一方面无需形成断头或不同缠丝头即可连续高效地缠绕纤维复合材料,另一方面还便于保证输送管具有相对较好的力学性能。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (14)

  1. 一种输送管,该输送管包括主管(1)、分别设置于该主管(1)的两端的管连接件(2)以及包覆于所述主管(1)的外周面上的纤维复合材料层(3),其特征在于,所述管连接件(2)的外周面上设置有多个凸起部(21),所述纤维复合材料层(3)的至少部分纤维复合材料缠绕所述主管(1)并交替绕勾到分别位于该主管(1)两端的所述管连接件(2)的所述凸起部(21)上,以能够通过该凸起部(21)向所述管连接件(2)施加沿轴向的拉力。
  2. 根据权利要求1所述的输送管,其特征在于,所述纤维复合材料包括第一纤维复合材料(31)和第二纤维复合材料(32),其中,所述第一纤维复合材料(31)缠绕在所述主管(1)上的螺旋角α1小于所述第二纤维复合材料(32)缠绕在所述主管(1)上的螺旋角α2,所述第二纤维复合材料(32)包覆于所述第一纤维复合材料(31)外,或者,所述第一纤维复合材料(31)和第二纤维复合材料(32)彼此交替包覆。
  3. 根据权利要求2所述的输送管,其特征在于,5°≤α1≤45°,45°≤α2≤90°。
  4. 根据权利要求1所述的输送管,其特征在于,所述输送管还包括耐磨套(4),该耐磨套(4)和所述主管(1)分别插装在所述管连接件(2)内并彼此对接,并且,所述耐磨套(4)和所述管连接件(2)各自远离所述主管(1)的端部相互平齐。
  5. 根据权利要求4所述的输送管,其特征在于,所述耐磨套(4)的壁厚大于所述主管(1)的壁厚并在外周面上形成有台阶部,且该耐磨套(4)与所述主管(1)具有相同的内径。
  6. 根据权利要求1所述的输送管,其特征在于,所述凸起部(21)的背向所述主管(1)的端面(P)与该凸起部(21)所在的所述管连接件(2)的外周面部分的母线之间的夹角γ≤90°。
  7. 根据权利要求1所述的输送管,其特征在于,所述管连接件(2)的外周面上 远离所述主管(1)的一端形成有凸台(22),以在该凸台(22)与所述凸起部(21)之间形成用于连接管卡件(5)的凹槽(23)。
  8. 根据权利要求1至7中任意一项所述的输送管,其特征在于,所述管连接件(2)具有背离所述主管(1)的大端和朝向该主管(1)的小端,且该管连接件(2)的外周面上靠近所述小端的部分形成有沿朝向该小端的方向渐缩的锥台面。
  9. 根据权利要求1至7中任意一项所述的输送管,其特征在于,每个所述管连接件(2)上形成有奇数个所述凸起部(21),且该凸起部(21)沿所述管连接件(2)的周向均匀布置。
  10. 根据权利要求9所述的输送管,其特征在于,每个所述管连接件(2)上形成有5~45个所述凸起部(21)。
  11. 一种输送系统,其特征在于,该输送系统包括多个根据权利要求1至10中任意一项所述的输送管,该输送管通过所述管连接件(2)依次对接形成输送线路。
  12. 一种输送管的制造方法,所述输送管包括主管(1)、分别设置于该主管(1)的两端的管连接件(2)以及包覆于所述主管(1)的外周面上的纤维复合材料层(3),其特征在于,所述管连接件(2)的外周面上设置有多个凸起部(21),所述制造方法包括如下步骤:
    S1.包覆所述纤维复合材料层(3)的步骤,该步骤包括如下子步骤:
    S1-1.将纤维复合材料的端头固定至位于所述主管(1)的第一端的所述管连接件(2)的凸起部(21);
    S1-2.使得所述纤维复合材料的释放端相对于所述主管(1)和设置于该主管(1)的两端的所述管连接件(2)具有分别沿所述主管(1)的周向和轴向的相对运动,以使所述纤维复合材料从所述主管(1)的第一端沿朝向该主管(1)的第二端的方向缠绕至所述主管(1),并在所述释放端到达位于所述主管(1)的第二端的所述管连接件(2)的凸起部(21)时绕勾至该凸起部(21),以能够通过该凸起部(21)向位于所述主管(1)的第二端的所述管连接件(2)施加沿轴向的拉力;
    S1-3.使得所述释放端相对于所述主管(1)和所述管连接件(2)具有分别沿所述主管(1)的周向和轴向的相对运动,以使所述纤维复合材料沿朝向所述主管(1)的第一端的方向缠绕至所述主管(1),并在所述释放端到达位于所述主管(1)的第一端的所述管连接件(2)的凸起部(21)时绕勾至该凸起部(21),以能够通过该凸起部(21)向位于所述主管(1)的第一端的所述管连接件(2)施加沿轴向的拉力;
    S1-4.重复子步骤S1-2和S1-3。
  13. 根据权利要求12所述的制造方法,其特征在于,在子步骤S1-2和S1-3中,所述主管(1)和所述管连接件(2)固定于芯轴上并在该芯轴带动下旋转,同时,使所述释放端沿轴向运动,以使所述纤维复合材料缠绕至所述主管(1),并且/或者,当所述释放端到达所述管连接件(2)的凸起部(21)时,所述释放端静止,同时,使所述主管(1)和所述管连接件(2)在所述芯轴带动下旋转,以使所述纤维复合材料绕勾至所述凸起部(21)。
  14. 根据权利要求12或13所述的制造方法,其特征在于,在步骤S1中,所述纤维复合材料连续地缠绕所述主管(1)和绕勾所述凸起部(21),并在缠绕形成所述纤维复合材料层(3)后,各个所述凸起部(21)均绕勾有所述纤维复合材料。
PCT/CN2017/072165 2016-02-05 2017-01-23 输送系统、输送管及其制造方法 WO2017133534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17746854.3A EP3412949B1 (en) 2016-02-05 2017-01-23 Conveyor system, conveyor pipe, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610081835.3A CN105626979B (zh) 2016-02-05 2016-02-05 输送系统、输送管及其制造方法
CN201610081835.3 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017133534A1 true WO2017133534A1 (zh) 2017-08-10

Family

ID=56042173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072165 WO2017133534A1 (zh) 2016-02-05 2017-01-23 输送系统、输送管及其制造方法

Country Status (3)

Country Link
EP (1) EP3412949B1 (zh)
CN (1) CN105626979B (zh)
WO (1) WO2017133534A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524350A (zh) * 2020-12-04 2021-03-19 成都中企动力技术服务有限公司 一种具有高连接强度的中空结构壁缠绕管
CN117120247A (zh) * 2020-12-15 2023-11-24 安诺米海洋技术有限公司 转子帆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626979B (zh) * 2016-02-05 2019-01-18 中联重科股份有限公司 输送系统、输送管及其制造方法
CN107676350A (zh) * 2017-11-15 2018-02-09 杭州友凯船艇有限公司 一种包覆连接两段外周围是凸缘体的连接装置
CN111197670A (zh) * 2018-11-16 2020-05-26 荣冉升 一种纤维增强复合材料与金属复合管
CN111268058B (zh) * 2020-03-07 2022-03-15 西北工业大学 一种碳纤维复合材料壳体舱段机械连接器
CN111609224B (zh) * 2020-05-28 2022-04-01 四川鑫成新材料科技有限公司 改性弹性体、热塑性砂浆/混凝土输送管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660635A (zh) * 2009-10-09 2010-03-03 三一重工股份有限公司 一种输送管、混凝土输送机械及输送管的制作方法
WO2013041948A1 (en) * 2011-09-23 2013-03-28 Cifa Spa Pipe for transferring abrasive materials such as concrete or similar or comparable materials, and method of production
CN103256436A (zh) * 2012-10-09 2013-08-21 成都市新筑路桥机械股份有限公司 一种用于输送混凝土的碳纤维输送管道及其制作方法
CN204267931U (zh) * 2014-11-21 2015-04-15 中联重科股份有限公司 管路连接结构和混凝土泵送设备
CN105626979A (zh) * 2016-02-05 2016-06-01 中联重科股份有限公司 输送系统、输送管及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543525C3 (de) * 1975-09-30 1981-07-02 Rudolf 2000 Hamburg Stender Rohr-Kompensator
GB1584151A (en) * 1976-04-15 1981-02-04 Vredestein Nv Highpressure filament reinforced hose having integral filament-bound couplings and method of making same
JP2002098269A (ja) * 2000-09-21 2002-04-05 Kurimoto Kasei Kogyo Kk 強化プラスチック複合管及びその製造方法並びにその製造装置
FR2899665B1 (fr) * 2006-04-06 2010-09-10 Saltel Ind "conduite flexible a embouts d'extremite integres"
CN202452011U (zh) * 2012-01-06 2012-09-26 三一重工股份有限公司 直管及混凝土输送设备
CN103115200B (zh) * 2013-02-22 2015-10-28 中联重科股份有限公司 混凝土输送管及其制造方法
CN203147083U (zh) * 2013-03-05 2013-08-21 潘小雄 高增强内肋外波纹型塑料管
CN204922232U (zh) * 2015-03-25 2015-12-30 三一汽车制造有限公司 一种混凝土输送管管卡支撑及输送系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660635A (zh) * 2009-10-09 2010-03-03 三一重工股份有限公司 一种输送管、混凝土输送机械及输送管的制作方法
WO2013041948A1 (en) * 2011-09-23 2013-03-28 Cifa Spa Pipe for transferring abrasive materials such as concrete or similar or comparable materials, and method of production
CN103256436A (zh) * 2012-10-09 2013-08-21 成都市新筑路桥机械股份有限公司 一种用于输送混凝土的碳纤维输送管道及其制作方法
CN204267931U (zh) * 2014-11-21 2015-04-15 中联重科股份有限公司 管路连接结构和混凝土泵送设备
CN105626979A (zh) * 2016-02-05 2016-06-01 中联重科股份有限公司 输送系统、输送管及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524350A (zh) * 2020-12-04 2021-03-19 成都中企动力技术服务有限公司 一种具有高连接强度的中空结构壁缠绕管
CN117120247A (zh) * 2020-12-15 2023-11-24 安诺米海洋技术有限公司 转子帆

Also Published As

Publication number Publication date
EP3412949A1 (en) 2018-12-12
CN105626979B (zh) 2019-01-18
CN105626979A (zh) 2016-06-01
EP3412949A4 (en) 2019-10-09
EP3412949B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2017133534A1 (zh) 输送系统、输送管及其制造方法
US8074686B2 (en) Tube for transporting high-viscosity materials
US8113277B2 (en) Sucker rod end fittings and method of using same
US7730938B2 (en) Continuous sucker rod and method of using same
US20080217914A1 (en) Method of assembling sucker rods and end fittings
WO2021032140A1 (zh) 预紧力修复、预紧力和夹具组合修复方法及修复的管道
US20110076397A1 (en) Pipe lining method and apparatus
JP7026362B2 (ja) 異形鉄筋つなぎ金具
JP2020066991A (ja) 対向鉄筋のグラウトレスカップリング機構および該機構に準じたグラウトレススリーブ脚付き定着金物
US20150075663A1 (en) Pipe and method for manufacturing pipe
JP2012229732A (ja) フランジ付管体構造、及びフランジ付管体構造の構築方法
JP2008518171A (ja) 固形物のための搬送管及び搬送管を製造する方法
RU213380U1 (ru) Муфта стеклокомпозитная биаксиальная
CN109629678A (zh) 巨型钢管拼接结构及巨型拼接式钢管
CN109622692A (zh) 弯制不锈钢u形管内撑装置
RU175307U1 (ru) Универсальное соединительное устройство для конического фланцевого соединения
US20230118530A1 (en) Systems and methods for additive manufacturing
JP2013238273A (ja) セラミックスライニングパイプ
JP5610814B2 (ja) 管状複合体およびその製造方法
TWM635288U (zh) 波浪管管平頂接頭
CN204267953U (zh) 弯管、输送管路结构和混凝土泵送设备
CN104565615A (zh) 法兰和输送管道及制造方法、凸缘、管路连接结构和混凝土泵送设备
RU2543921C1 (ru) Линейный элемент сборно-разборного трубопровода
CN118208618A (zh) 一种陶瓷管道以及安装工艺
CN109898748A (zh) 一种旋转自卡式杆件连接器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017746854

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017746854

Country of ref document: EP

Effective date: 20180905