WO2017133350A1 - 一种透镜及照明灯具和机动车远光照明光学系统 - Google Patents

一种透镜及照明灯具和机动车远光照明光学系统 Download PDF

Info

Publication number
WO2017133350A1
WO2017133350A1 PCT/CN2016/112114 CN2016112114W WO2017133350A1 WO 2017133350 A1 WO2017133350 A1 WO 2017133350A1 CN 2016112114 W CN2016112114 W CN 2016112114W WO 2017133350 A1 WO2017133350 A1 WO 2017133350A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
reflective
light
area
exit surface
Prior art date
Application number
PCT/CN2016/112114
Other languages
English (en)
French (fr)
Inventor
霍永峰
黄庸源
Original Assignee
成都恒坤光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都恒坤光电科技有限公司 filed Critical 成都恒坤光电科技有限公司
Publication of WO2017133350A1 publication Critical patent/WO2017133350A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles

Definitions

  • the present invention relates to the field of optical lens technology, and in particular to a lens and a lighting fixture and a high beam illumination optical system of a motor vehicle.
  • the lens is widely used because each side of the lens can be used as a reflecting surface for reflecting light or as a refractive surface for refracting light, and the relative positions of the respective sides are uniform, and have good reliability and Consistency, easy processing and simple manufacturing.
  • LED light source has the advantages of low energy consumption, strong applicability, high stability, short response time, no pollution to the environment, multi-color illuminating, etc., it is gradually replacing traditional light sources and has been widely used in various lighting occasions.
  • the secondary light distribution elements such as lenses must be used to redistribute the light of the light source.
  • the object of the present invention is to provide a high optical height for the current lens, a high injection difficulty and a high risk of shrinkage, and it is difficult to ensure the insufficient illumination effect of the design, thereby providing a method capable of reducing the optical height of the lens, thereby reducing the material cost and reducing the difficulty of injection molding. And shrinkage risk, ensuring the lens structure for designing lighting effects.
  • a lens comprising: an entrance surface for light entering the interior of the lens, an exit surface for emitting light inside the lens, and a reflective area disposed between the incident surface and the exit surface,
  • the reflective area is divided into a first reflective area and a second reflective area, the first reflective area is adjacent to the incident surface, the second reflective area is adjacent to the exit surface, and the first reflective area and the second reflective area are The area forms a step structure,
  • At least a portion of the light entering the lens from the incident surface directly illuminates the first reflective area, and after being totally reflected by the first reflective area, the lens is emitted from the exit surface.
  • At least a part of the light entering the lens from the incident surface is totally reflected by the exit surface and then irradiated on the second reflective area. After being totally reflected by the second reflective area, the lens is emitted from the exit surface.
  • the reflective area of the lens is set as the first reflective area and the second reflective area, and a step structure is formed between the first reflective area and the second reflective area, and the light entering the lens body is respectively reflected by the first After the surface area and the second reflection area are reflected, the lens is emitted from the exit surface, firstly, the lens has improved ability to control the light, and the first reflection area and the second reflection area respectively reflect light of different incident angles, and the lens can be realized.
  • the separate control of the light at different incident angles further improves the control ability and adjustment capability of the lens structure of the present application, which not only makes the illumination area more uniform, but also makes the conventional illumination effect more traditional.
  • a lens with a smaller volume size can be used, which saves the material of the lens manufacturing, and also has Conducive to injection molding and other process operations, reduce the difficulty of injection molding and shrinkage, and reliably ensure the design lighting effect of the lens structure.
  • the second reflective region is composed of two or more reflective layers, and a stepped structure is formed between adjacent reflective layers, and at least a portion of the light entering the lens from the incident surface passes through the exit surface. After being reflected, it is irradiated onto each of the reflective layers of the second reflective region, and after being totally reflected by the respective reflective layers, the lens is emitted from the exit surface.
  • the second reflective region is composed of two or more reflective layers, and a stepped structure is formed between the adjacent reflective layers, thereby further improving the light control capability of the lens structure of the present application.
  • the ability to adjust, so that, when the same lighting effect is achieved, the lens of a smaller volume can be further used than the lens of the conventional structure, which saves the material of the lens manufacturing, and is also advantageous for the process operation such as injection molding, and reduces the difficulty of injection molding. And shrinkage risk, reliable guarantee of the design lighting effect of the lens structure;
  • the control of the reflection angles of the respective reflection layers by the respective reflection layers is further facilitated, and the light is differentially divided and processed by the fine adjustment of the respective parameters of the respective reflection layers, which is not only beneficial for controlling the light of different angles, but further
  • the light control function of the lens structure of the present application is improved, and the light mixing effect of the light is increased, and the uniformity of the illumination area is improved; and the light of different incident angles can be reflected into more angular ranges for each angular range.
  • the light is adjusted to facilitate fine adjustment of the light, thereby further improving the light control capability of the lens structure of the present application.
  • a lower edge of the reflective layer adjacent to the exit surface surrounds an upper edge of the reflective layer adjacent to the incident surface.
  • the lower edge of the reflective layer adjacent to the exit surface surrounds the upper edge of the reflective layer adjacent to the incident surface, that is, the second reflective region is also It is stepped along the direction of the central axis of the lens.
  • the second reflective area is composed of a plurality of reflective units, and the light illuminating the second reflective area is reflected at least twice in the reflective unit of the second reflective area and then exits the lens from the exit surface.
  • the second reflective area is composed of a plurality of reflecting units, and at least a part of the light entering the lens through the incident surface is at least partially reflected by the reflecting surface and totally reflected by the reflecting unit on the second reflecting area.
  • the lens is emitted from the exit surface, so that the optical path of the light is effectively folded.
  • the height of the lens can be further reduced, thereby further saving the lens manufacturing material, and at the same time, Further, it is advantageous for injection molding and other process operations, reducing the difficulty of injection molding and shrinking risks, and reliably ensuring the design lighting effect of the lens structure.
  • the reflective layer is composed of a plurality of reflective units, and the light on the reflective layer is irradiated, and at least two reflections in the reflective unit of the reflective layer are emitted from the exit surface.
  • the light on the reflective layer is irradiated at least twice in the reflective unit of the reflective layer and then emitted from the exit surface, so that the light path of the light irradiated on each of the reflective layers is effective.
  • the folding can further reduce the height of the lens under the premise of achieving the same illumination effect, thereby further saving the lens manufacturing material, and at the same time further facilitating the process operation such as injection molding, reducing the difficulty of injection molding and the risk of shrinkage, and reliable Ensure the design lighting effect of the lens structure.
  • the reflective area is divided into a first reflective area and a second reflective area in a direction along a central axis of the lens, and a second reflective area is adjacent to the lower edge of the incident surface to surround the first reflective area. Outside the upper edge of the exit surface.
  • the reflective region of the lens is divided into a first reflective region and a second reflective region in a direction along a central axis of the lens, the first reflective region is adjacent to the incident surface, the second reflective region is adjacent to the exit surface, and the second reflective region is a lower edge adjacent to the incident surface surrounds the first reflective region outside the upper edge of the exit surface, such that the lens is stepped in a direction along the central axis, and the lens is a lens having a curved surface as the reflective region is It has a smaller volume, which in turn reduces material costs and reduces the risk of injection molding and shrinkage.
  • the number of reflective units on different reflective layers may be the same or different, and the reflective units located on the same reflective layer are axially symmetrically distributed along the central axis of the lens.
  • the number of reflective units on each reflective layer may be the same or different, that is, according to the actual required illumination effect, and further improving the lens's ability to control light, each located on the same reflective layer.
  • the reflection units are axially symmetrically distributed along the central axis of the lens, so that the light irradiated on the reflective layer can be uniformly reflected, the light mixing effect of the light is increased, and the uniformity of the output light of the lens is improved.
  • the reflecting unit consists of at least two scale faces.
  • the reflecting unit is composed of at least two scale faces, so that when the light is irradiated on the reflecting unit, the light can be reflected at least twice in one reflecting unit, thereby improving the lens's ability to control the light, and also Further folding the optical path of the light, reducing the thickness of the lens, saving the lens manufacturing material, at the same time, is also beneficial to the injection molding and other process operations, reducing the difficulty of injection molding and shrinkage, and ensuring reliable design of the lens structure.
  • the scale faces are planar or curved, and the scale faces are axially symmetrically distributed along the central axis of the lens.
  • the scale surface is set to a plane or a curved surface, and the scale surface of different shapes can be selected according to actual needs, thereby further improving the lens structure to control the light, and the scale surface is axisymmetric along the central axis of the lens.
  • the distribution also further ensures the uniformity of the reflected light in the second reflective area.
  • said first reflective area is comprised of a plurality of reflective scale faces that are axially symmetrically distributed along a central axis of the lens.
  • the first reflective area is composed of a plurality of reflective scale faces that are axially symmetrically distributed along the central axis of the lens such that the first reflective area will illuminate the light thereon The reflection is more uniform, improving the illumination effect of the lens of the present application.
  • the exit surface is a continuous surface that is axisymmetric along the central axis of the lens or a discontinuous surface that is axisymmetric along the central axis of the lens.
  • the exit surface can be designed into different shapes according to actual light distribution requirements, and the light control capability of the lens of the present application is further improved.
  • the present application also discloses a lighting fixture that uses the lens described above for light distribution.
  • the lighting fixture of the present application since the above lens is used for light distribution to achieve the same illumination effect, a lens of a smaller volume can be used, and the lens can ensure a reliable design lighting effect, so that the lighting fixture of the present application can adopt more
  • the small-sized lens mounting structure reduces the structural size of the lighting fixture, reduces the manufacturing cost, and can also improve the lighting effect of the lighting fixture.
  • the present application also discloses an automotive high beam illumination optical system that uses the lens described above for light distribution.
  • the high-light illumination optical system of the present application has the same illumination effect by using the above-mentioned lens to achieve the same illumination effect, and a lens with a smaller volume can be used, and the lens can ensure a reliable design illumination effect, so that the machine of the present application
  • the high-light illumination optical system of the motor vehicle can adopt a lens mounting structure of a smaller size, reduce the structural size of the high-light illumination optical system of the motor vehicle, reduce the manufacturing cost, and improve the illumination effect of the high-light illumination optical system of the motor vehicle.
  • Figure 1 is a schematic view showing the structure of a lens of the present application
  • FIG. 2 is a schematic view showing an optical path of the lens structure of FIG. 1;
  • FIG. 3 is another schematic structural view of a lens of the present application.
  • Figure 4 is a schematic view of the optical path of the lens structure of Figure 3;
  • Figure 5 is a perspective view of the lens structure of Figure 3;
  • Figure 6 is a perspective view of another perspective view of the lens structure of Figure 3;
  • Figure 7 is a partial enlarged view of a portion A in Figure 6;
  • Figure 8 is a schematic view of the optical path of the light between the exit surface and the reflecting unit.
  • Embodiment 1 As shown in Figure 1-8,
  • a lens comprising: an entrance surface 1 for light entering the inside of the lens, an exit surface 2 for emitting light inside the lens, and a reflective area disposed between the incident surface 1 and the exit surface 2, the reflective area being divided into a first reflective area 3 and a second reflective area 4, the first reflective area 3 is close to the incident surface 1, and the second reflective area 4 is close to the exit surface 2, which can also be considered in connection with FIG. It is the first reflective area 3 that is closer to the light source than the second reflective area 4.
  • the first reflective area 3 and the second reflective area 4 form a stepped structure, and at least one of the light entering the lens from the incident surface 1 Part of the light is directly incident on the first reflective area 3, and after being totally reflected by the first reflective area 3, the lens is emitted from the exit surface 2, and at least a part of the light entering the lens from the incident surface 1
  • the exit surface 2 is totally reflected and then irradiated onto the second reflection region 4, and after being totally reflected by the second reflection region 4, the lens is emitted from the exit surface 2.
  • the reflective area of the lens is set as the first reflective area 3 and the second reflective area 4, and a step structure is formed between the first reflective area 3 and the second reflective area 4, and the light entering the lens body is formed.
  • the lens After being reflected by the first reflective surface area and the second reflective area 4 respectively, the lens is emitted from the exit surface 2, firstly, the lens has improved ability to control light, and the first reflective area 3 and the second reflective area 4 are respectively incident to different angles. The angle of light is reflected, and the lens can separately control the light of different incident angles.
  • the controllability and adjustment capability of the lens structure of the present embodiment are further improved, which not only makes the illumination area more uniform, but also makes When the same lighting effect is achieved, the lens of a smaller volume can be used than the lens of the conventional structure, which saves the material of the lens manufacturing, and is also advantageous for the process operation such as injection molding, reduces the difficulty of injection molding and the risk of shrinkage, and ensures reliable The lighting effect of the design of the lens structure.
  • at least part of the incident surface may also be set as a tapered torus, and the light source is located on the larger diameter side, as shown in FIG.
  • Embodiment 2 as shown in FIG. 3-8,
  • the second reflective region 4 is composed of two or more reflective layers 6 , and a stepped structure is formed between adjacent reflective layers 6 , and the incident surface 1 enters the lens. At least a part of the light is totally reflected by the exit surface 2 and then irradiated onto the respective reflective layers 6 of the second reflective region 4, and after being totally reflected by the respective reflective layers 6, the lens is emitted from the exit surface 2.
  • the second reflective region 4 is composed of two or more reflective layers 6 and a stepped structure is formed between adjacent reflective layers 6.
  • the lens structure pair of the embodiment is further improved.
  • the ability to control and adjust the light, so that when the same lighting effect is achieved, the lens of a smaller volume can be further used than the lens of the conventional structure, which saves the material of the lens and facilitates the process of injection molding. Operation, reducing the difficulty of injection molding and shrinking risk, reliable protection
  • the control of the reflection angle of the light by each of the reflective layers 6 is further facilitated, and the light is differentially divided and processed by the fine adjustment of the respective parameters of the respective reflective layers 6, which is not only beneficial for regulating different angles.
  • the light further improves the light control ability of the lens structure of the embodiment, and can also increase the light mixing effect of the light and improve the uniformity of the illumination area; and, the light of different incident angles can be reflected into more angular ranges.
  • the light of each angle range is adjusted to facilitate fine adjustment of the light, thereby further improving the light control capability of the lens structure of the embodiment.
  • a lower edge of the reflective layer 6 adjacent to the exit surface 2 between the adjacent two reflective layers 6 of the second reflective region 4 surrounds the upper edge of the reflective layer 6 adjacent to the incident surface 1.
  • the second reflective region 4 is stepped in the direction along the central axis of the lens, thereby further saving the lens manufacturing material, and at the same time further facilitating the process operation such as injection molding, reducing the difficulty of injection molding and the risk of shrinkage, and reliable Ensure the design lighting effect of the lens structure.
  • the second reflective region 4 is composed of a plurality of reflective units 5, and the light illuminating the second reflective region 4 is reflected at least in the reflective unit 5 of the second reflective region 4. The lens is then emitted from the exit surface 2 afterwards.
  • the second reflective area 4 is composed of a plurality of reflecting units 5, and at least a part of the light entering the lens through the incident surface 1 is totally reflected by the exit surface 2 and then irradiated on the second reflective area 4.
  • the reflection unit 5 reflects at least twice and then exits the lens from the exit surface 2, so that the optical path of the portion of the light is effectively folded, and the height of the lens can be further reduced under the premise of achieving the same illumination effect, and further, further It saves lens manufacturing materials, and at the same time, it is further beneficial to injection molding and other process operations, reducing the difficulty of injection molding and shrinking risks, and reliably ensuring the design of lens structure. Ming effect.
  • Embodiment 4 as shown in FIG. 3-8,
  • the reflective layer 6 is composed of a plurality of reflecting units 5, and the light on the reflecting layer 6 is irradiated, at least twice in the reflecting unit 5 of the reflecting layer 6, and then The exit surface 2 exits the lens.
  • the light on the reflective layer 6 is irradiated, at least twice in the reflective unit 5 of the reflective layer 6, and then the lens is emitted from the exit surface 2, so that the light is irradiated on each of the reflective layers 6.
  • the light path of the light is effectively folded, and the height of the lens can be further reduced under the premise of achieving the same illumination effect, thereby further saving the lens manufacturing material, and at the same time, further facilitating the process operation such as injection molding, and reducing the difficulty of injection molding. And the risk of shrinkage, reliable design to ensure the lighting effect of the lens structure.
  • the lower edge surrounds the first reflective area 3 outside the upper edge of the exit surface 2.
  • the reflection area of the lens is divided into the first reflection area 3 and the second reflection area 4 in the direction along the central axis of the lens, the first reflection area 3 is close to the entrance surface 1 and the second reflection area 4 is close to the exit surface.
  • the lower edge of the second reflective region 4 near the incident surface 1 surrounds the first reflective region 3 outside the upper edge of the exit surface 2, that is, the lens is stepped in the direction along the central axis, and the reflective surface is a whole curved surface.
  • the lens has a smaller volume, which in turn reduces material costs and reduces the risk of injection molding and shrinkage.
  • Embodiment 6 as shown in Figure 3-8,
  • the number of the reflective units 5 on the different reflective layers 6 may be the same or different, and the reflection unit 5 on the same reflective layer 6 is along the central axis of the lens.
  • the lines are symmetrically distributed.
  • the number of the reflecting units 5 on each of the reflective layers 6 may be the same or different, that is, according to the actual required lighting effect, and further improving the lens's ability to control the light, located in the same reflective layer 6
  • the respective reflection units 5 are axially symmetrically distributed along the central axis of the lens, so that the light irradiated on the reflective layer 6 can be uniformly reflected, the light mixing effect of the light is increased, and the uniformity of the output light of the lens is improved.
  • the reflecting unit 5 is composed of at least two scale faces 7 such that when the light is irradiated on the reflecting unit 5, the light can be reflected at least twice in one reflecting unit 5, thereby improving the lens to the light. Controlling ability, and further folding the light path of the light, reducing the thickness of the lens, saving the lens manufacturing material, and at the same time, facilitating the process operation such as injection molding, reducing the difficulty of injection molding and shrinking, and ensuring reliable design lighting effect of the lens structure;
  • the scale surface 7 is set as a plane or a curved surface, and the scale surface 7 of different shapes can be selected according to actual needs, further improving the control ability of the lens structure for light, and the scale surface 7 is axially symmetrically distributed along the central axis of the lens, which further ensures
  • the second reflective area 4 reflects the uniformity of the light.
  • the first reflective area 3 is composed of a plurality of reflective scale faces 8, which are axially symmetrically distributed along the central axis of the lens such that the first reflective area 3 will be illuminated thereon. The light is reflected more uniformly, and the illumination effect of the lens of the embodiment is improved.
  • exit surface 2 is a continuous surface that is axisymmetric along the central axis of the lens or a discontinuous surface that is axisymmetric along the central axis of the lens.
  • the exit surface 2 can be designed into different surface types according to actual light distribution requirements, and the light control capability of the lens of the embodiment is further improved.
  • Embodiment 10 as shown in FIG. 1-8,
  • a lighting fixture using the lens of any of embodiments 1-9 as a light distribution lens using the lens of any of embodiments 1-9 as a light distribution lens.
  • the lens since the lens is used for light distribution to achieve the same illumination effect, a lens of a smaller volume can be used, and the lens can ensure a reliable design illumination effect, so that the illumination lamp of the embodiment can
  • the use of a smaller lens mounting structure reduces the structural size of the lighting fixture, reduces manufacturing costs, and also improves the lighting effect of the lighting fixture.
  • the lens can ensure a reliable design illumination effect, so that the embodiment
  • the motor vehicle high beam illumination optical system can adopt a lens mounting structure of a smaller size, reduce the structural size of the high beam illumination optical system of the motor vehicle, reduce the manufacturing cost, and can also improve the illumination effect of the high beam illumination optical system of the motor vehicle. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Arrangements Of Lighting Devices For Vehicle Interiors, Mounting And Supporting Thereof, Circuits Therefore (AREA)

Abstract

一种透镜及照明灯具和机动车远光照明光学系统,所述透镜,包括:用于光线进入透镜内部的入射面(1)、用于透镜内部光线射出的出射面(2)、以及设置于入射面(1)和出射面(2)之间的反射区域,所述反射区域分为第一反射区域(3)和第二反射区域(4),所述第一反射区域(3)靠近所述入射面(1),所述第二反射区域(4)靠近所述出射面(2),所述第一反射区域(3)与第二反射区域(4)形成台阶结构。该透镜使照明区域可以更加均匀,而且还使得,在达到相同照明效果时,较传统结构的透镜而言,可以采用更小体积尺寸的透镜,节约透镜制作材料的同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。

Description

一种透镜及照明灯具和机动车远光照明光学系统 技术领域
本发明涉及光学透镜技术领域,具体涉及一种透镜及照明灯具和机动车远光照明光学系统。
背景技术
在照明技术领域中,为了使光源发出的光线能够按照人们的需要进行分布,通常是需要采用各种光线转换装置对光线进行或反射、或折射、或聚集、或发散,如此改变光线的传播路径,最终得到符合人们实际需要的照明区域。
在目前的光线转换装置中,透镜被广泛的运用,原因在于,透镜的各个侧面即可作为反射光线的反射面或者作为折射光线的折射面,各个侧面的相对位置统一,具有良好的可靠性和一致性,并且加工方便,制造简单。
由于LED光源具有耗能少、适用性强、稳定性高、响应时间短、对环境无污染、多色发光等优点,正逐步取代传统光源,已经广泛应用于各种照明场合。为了满足不同应用场合的需求,要得到想要的照明效果,必须采用二次配光元件如透镜等对光源光线进行再次分配。
传统配光方案尤其是有会聚要求的射灯或汽车前照灯等,是通过将光源发出的中心部分的光线透射和大角度光线经由鳞片或连续面组成的全反射面反射的方式实现对光线的再次分配,这种方案对于光源中心部分的光线和大角度光线的控制能力较弱,而且对于不同发光面、不同发光角度、不同中心光强要求的透镜设计时口径高度不同,为了尽量保证照明区域的均匀性,发光角度越小所需透镜的光学口径越大,中心光强越高所需透镜光学高度越高,其实质也是减少中心部分的出光量,但是这样的代价是增加了材料成本,也增加了注塑的难度和收缩的风险,难以保证所设计的照明效果。
所以,基于上述,目前亟需一种能够减小透镜光学高度,进而降低材料成 本,降低注塑难度和收缩风险,保证设计照明效果的透镜结构。
发明内容
本发明的目的在于:针对目前透镜存在的光学高度高,注塑难度大和收缩风险高,难以保证所设计的照明效果的不足,提供一种能够减小透镜光学高度,进而降低材料成本,降低注塑难度和收缩风险,保证设计照明效果的透镜结构。
一种透镜,包括:用于光线进入透镜内部的入射面、用于透镜内部光线射出的出射面、以及设置于入射面和出射面之间的反射区域,
所述反射区域分为第一反射区域和第二反射区域,所述第一反射区域靠近所述入射面,所述第二反射区域靠近所述出射面,所述第一反射区域与第二反射区域形成台阶结构,
由所述入射面进入透镜的光线中,至少有一部分光线直接照射在所述第一反射区域上,经第一反射区域全反射后,由所述出射面射出透镜,
由所述入射面进入透镜的光线中,至少有一部分光线经出射面全反射后照射在所述第二反射区域上,经第二反射区域全反射后,由所述出射面射出透镜。
在本申请的上述方案中,将透镜的反射区域设置为第一反射区域和第二反射区域,第一反射区域与第二反射区域之间形成台阶结构,进入透镜体的光线分别被第一反射面区域和第二反射区域反射后由出射面射出透镜,首先是提高了透镜对光线的控制能力,并且,第一反射区域和第二反射区域分别对不同入射角度的光线进行反射,可以实现透镜对不同入射角度光线的分别控制,如此,也进一步的提高了本申请透镜结构对光线的控制能力和调整能力,不仅使得照明区域可以更加均匀,而且还使得,在达到相同照明效果时,较传统结构的透镜而言,可以采用更小体积尺寸的透镜,节约透镜制作材料的同时,也有 利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
作为优选,所述第二反射区域由两层或者两层以上的反射层构成,相邻反射层之间形成台阶结构,由所述入射面进入透镜的光线中,至少有一部分光线经出射面全反射后照射在所述第二反射区域的各个反射层上,经各个反射层全反射后,由所述出射面射出透镜。
在本申请上述方案中,将第二反射区域由两层或者两层以上的反射层构成,相邻反射层之间形成台阶结构,如此,进一步的提高了本申请透镜结构对光线的控制能力和调整能力,进而使得,在达到相同照明效果时,较传统结构的透镜而言,可以进一步的采用更小体积尺寸的透镜,节约透镜制作材料的同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果;
而且,通过对各个反射层的控制,进一步的方便各个反射层对光线反射角度的控制,通过各个反射层各个参数的精细调节,将光线进行微分分割处理,不仅有利于调控不同角度的光线,进一步提高本申请透镜结构对光线的控制能力,而且还能够增加光线的混光效果,提高照明区域的均匀性;而且,还可以将不同入射角度的光线反射成更多的角度范围,对各个角度范围的光线进行调整,便于分别细致的调整光线,进一步提高本申请透镜结构对光线的控制能力。
作为优选,所述第二反射区域的相邻两层反射层之间,靠近所述出射面的反射层下缘环绕于靠近所述入射面的反射层上缘外。
在本申请的上述方案中,第二反射区域的相邻两层反射层之间,靠近出射面的反射层下缘环绕于靠近入射面的反射层上缘外,即,也使得第二反射区域在沿透镜的中轴线方向上呈台阶状,如此,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保 证透镜结构的设计照明效果。
作为优选,所述第二反射区域由若干反射单元组成,照射在所述第二反射区域上的光线至少在第二反射区域的反射单元中反射两次后再由所述出射面射出透镜。
在本申请的上述方案中,第二反射区域由若干反射单元组成,经入射面进入透镜的光线中,至少有一部分光线经出射面全反射后照射在第二反射区域上的反射单元中至少反射两次后再由出射面射出透镜,使得这部分光线的光路得到有效的折叠,在达到相同照明效果前提下,可以进一步的减小透镜的高度,进而,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
作为本申请的另一优选,所述反射层由若干反射单元组成,照射所述反射层上的光线,至少在所述反射层的反射单元中反射两次后再由所述出射面射出透镜。
在本申请的上述方案中,照射所述反射层上的光线,至少在反射层的反射单元中反射两次后再由出射面射出透镜,也使得照射在各个反射层上的光线的光路得到有效的折叠,在达到相同照明效果前提下,可以进一步的减小透镜的高度,进而,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
作为优选,所述反射区域在沿透镜中轴线的方向上分为第一反射区域和第二反射区域,所述第二反射区域靠近所述入射面的下缘环绕于所述第一反射区域靠近所述出射面的上缘外。
在上述方案中,将透镜的反射区域在沿透镜中轴线的方向上分为第一反射区域和第二反射区域,第一反射区域靠近入射面,第二反射区域靠近出射面,第二反射区域靠近入射面的下缘环绕于第一反射区域靠近出射面的上缘外,即使得透镜在沿中轴线的方向上呈台阶状,较反射区域为整体曲面的透镜而言, 具有更小的体积,进而降低了材料成本,也降低了注塑难度和收缩风险。
作为优选,不同的所述反射层上的反射单元数量可以相同也可以不同,位于同一所述反射层上的反射单元之间沿透镜的中轴线成轴对称分布。
在上述方案中,各个反射层上的反射单元数量可以相同也可以不同,即,根据实际所需照明效果进行设计,也进一步的提高了透镜对光线的控制能力,位于同一个反射层上的各个反射单元之间沿透镜的中轴线成轴对称分布,使得照射在反射层上的光线能够得到均匀的反射,增加光线的混光效果,提高透镜输出光线的均匀性。
作为优选,所述反射单元由至少两个鳞片面组成。
在本申请的上述方案中,反射单元由至少两个鳞片面组成,使得当光线照射在反射单元时,光线在一个反射单元内即可反射至少两次,提高透镜对光线的控制能力,而且也进一步的折叠光线的光路,降低透镜的厚度,节约透镜制作材料,同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,保证透镜结构可靠的设计照明效果。
作为优选,所述鳞片面为平面或者曲面,所述鳞片面沿透镜的中轴线成轴对称分布。
在本申请的上述方案中,将鳞片面设置为平面或者曲面,可以根据实际需要选用不同形状的鳞片面,进一步的提高透镜结构对光线的控制能力,而鳞片面沿透镜的中轴线成轴对称分布,也进一步保证第二反射区域反射光线的均匀性。
作为优选,所述第一反射区域由若干反射鳞片面组成,所述反射鳞片面沿透镜的中轴线成轴对称分布。
在本申请的上述方案中,第一反射区域由若干反射鳞片面组成,所述反射鳞片面沿透镜的中轴线成轴对称分布,使得第一反射区域将照射在其上的光线 反射得更加均匀,提高本申请透镜的照明效果。
作为优选,所述出射面为沿透镜中轴线轴对称的连续面或者为沿透镜中轴线轴对称的非连续面。
在上述方案中,出射面可以根据实际配光需要设计为不同的面型,进一步的提高本申请透镜的光线控制能力。
本申请还公开了一种照明灯具,其使用上述的透镜进行配光。
本申请的照明灯具,由于采用了上述的透镜进行配光,达到相同的照明效果,可以采用更小体积的透镜,而且透镜能够保证可靠的设计照明效果,使得本申请的照明灯具,能够采用更小尺寸的透镜安装结构,减小照明灯具的结构尺寸,降低制造成本,而且还能够提高照明灯具的照明效果。
本申请还公开了一种机动车远光照明光学系统,其使用上述的透镜进行配光。
本申请的机动车远光照明光学系统,由于采用了上述的透镜进行配光,达到相同的照明效果,可以采用更小体积的透镜,而且透镜能够保证可靠的设计照明效果,使得本申请的机动车远光照明光学系统,能够采用更小尺寸的透镜安装结构,减小机动车远光照明光学系统的结构尺寸,降低制造成本,而且还能够提高机动车远光照明光学系统的照明效果。
综上所述,由于采用了上述技术方案,本申请的有益效果是:
1、提高了透镜对光线的控制能力,可以实现透镜对不同入射角度光线的分别控制,不仅使得照明区域可以更加均匀,而且还使得,在达到相同照明效果时,较传统结构的透镜而言,可以采用更小体积尺寸的透镜,节约透镜制作材料;
2、有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
附图说明
图1为本申请透镜的结构示意图;
图2为图1透镜结构的光路示意图;
图3为本申请透镜的另一结构示意图;
图4为图3透镜结构的光路示意图;
图5为图3透镜结构的立体图;
图6为图3透镜结构另一视角的立体图;
图7为图6中A处的局部放大图;
图8为光线在出射面与反射单元之间的光路示意图,
图中标记:1-入射面,2-出射面,3-第一反射区域,4-第二反射区域,5-反射单元,6-反射层,7-鳞片面,8-反射鳞片面。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:如图1-8所示,
一种透镜,包括:用于光线进入透镜内部的入射面1、用于透镜内部光线射出的出射面2、以及设置于入射面1和出射面2之间的反射区域,所述反射区域分为第一反射区域3和第二反射区域4,所述第一反射区域3靠近所述入射面1,所述第二反射区域4靠近所述出射面2,结合图4来说,我们也可以认为是第一反射区域3比第二反射区域4更靠近光源。所述第一反射区域3与第二反射区域4形成台阶结构,由所述入射面1进入透镜的光线中,至少有一 部分光线直接照射在所述第一反射区域3上,经第一反射区域3全反射后,由所述出射面2射出透镜,由所述入射面1进入透镜的光线中,至少有一部分光线经出射面2全反射后照射在所述第二反射区域4上,经第二反射区域4全反射后,由所述出射面2射出透镜。
在本实施例的上述方案中,将透镜的反射区域设置为第一反射区域3和第二反射区域4,第一反射区域3与第二反射区域4之间形成台阶结构,进入透镜体的光线分别被第一反射面区域和第二反射区域4反射后由出射面2射出透镜,首先是提高了透镜对光线的控制能力,并且,第一反射区域3和第二反射区域4分别对不同入射角度的光线进行反射,可以实现透镜对不同入射角度光线的分别控制,如此,也进一步的提高了本实施例透镜结构对光线的控制能力和调整能力,不仅使得照明区域可以更加均匀,而且还使得,在达到相同照明效果时,较传统结构的透镜而言,可以采用更小体积尺寸的透镜,节约透镜制作材料的同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。在本实施例中,至少有部分入射面也可以设为有锥度的环面,光源位于直径较大的一侧,如图4所示。
实施例2,如图3-8所示,
如实施例1所述的透镜结构,所述第二反射区域4由两层或者两层以上的反射层6构成,相邻反射层6之间形成台阶结构,由所述入射面1进入透镜的光线中,至少有一部分光线经出射面2全反射后照射在所述第二反射区域4的各个反射层6上,经各个反射层6全反射后,由所述出射面2射出透镜。
在本实施例上述方案中,将第二反射区域4由两层或者两层以上的反射层6构成,相邻反射层6之间形成台阶结构,如此,进一步的提高了本实施例透镜结构对光线的控制能力和调整能力,进而使得,在达到相同照明效果时,较传统结构的透镜而言,可以进一步的采用更小体积尺寸的透镜,节约透镜制作材料的同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保 证透镜结构的设计照明效果;
而且,通过对各个反射层6的控制,进一步的方便各个反射层6对光线反射角度的控制,通过各个反射层6各个参数的精细调节,将光线进行微分分割处理,不仅有利于调控不同角度的光线,进一步提高本实施例透镜结构对光线的控制能力,而且还能够增加光线的混光效果,提高照明区域的均匀性;而且,还可以将不同入射角度的光线反射成更多的角度范围,对各个角度范围的光线进行调整,便于分别细致的调整光线,进一步提高本实施例透镜结构对光线的控制能力。
作为优选,所述第二反射区域4的相邻两层反射层6之间,靠近所述出射面2的反射层6下缘环绕于靠近所述入射面1的反射层6上缘外。
在本实施例的上述方案中,第二反射区域4的相邻两层反射层6之间,靠近出射面2的反射层6下缘环绕于靠近入射面1的反射层6上缘外,即,也使得第二反射区域4在沿透镜的中轴线方向上呈台阶状,如此,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
实施例3,如图1和2所示,
如实施例1所述的透镜结构,所述第二反射区域4由若干反射单元5组成,照射在所述第二反射区域4上的光线至少在第二反射区域4的反射单元5中反射两次后再由所述出射面2射出透镜。
在本实施例的上述方案中,第二反射区域4由若干反射单元5组成,经入射面1进入透镜的光线中,至少有一部分光线经出射面2全反射后照射在第二反射区域4上的反射单元5中至少反射两次后再由出射面2射出透镜,使得这部分光线的光路得到有效的折叠,在达到相同照明效果前提下,可以进一步的减小透镜的高度,进而,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照 明效果。
实施例4,如图3-8所示,
如实施例2所述的透镜结构,所述反射层6由若干反射单元5组成,照射所述反射层6上的光线,至少在所述反射层6的反射单元5中反射两次后再由所述出射面2射出透镜。
在本实施例的上述方案中,照射所述反射层6上的光线,至少在反射层6的反射单元5中反射两次后再由出射面2射出透镜,也使得照射在各个反射层6上的光线的光路得到有效的折叠,在达到相同照明效果前提下,可以进一步的减小透镜的高度,进而,进一步的节约透镜制作材料,同时,也进一步的有利于注塑等工艺操作,降低注塑难度和收缩风险,可靠的保证透镜结构的设计照明效果。
实施例5,如图1-8所示,
如实施例1所述的透镜结构,所述反射区域在沿透镜中轴线的方向上分为第一反射区域3和第二反射区域4,所述第二反射区域4靠近所述入射面1的下缘环绕于所述第一反射区域3靠近所述出射面2的上缘外。
在上述方案中,将透镜的反射区域在沿透镜中轴线的方向上分为第一反射区域3和第二反射区域4,第一反射区域3靠近入射面1,第二反射区域4靠近出射面2,第二反射区域4靠近入射面1的下缘环绕于第一反射区域3靠近出射面2的上缘外,即使得透镜在沿中轴线的方向上呈台阶状,较反射区域为整体曲面的透镜而言,具有更小的体积,进而降低了材料成本,也降低了注塑难度和收缩风险。
实施例6,如图3-8所示,
如实施例4所述的透镜结构,不同的所述反射层6上的反射单元5数量可以相同也可以不同,位于同一所述反射层6上的反射单元5之间沿透镜的中轴 线成轴对称分布。
在上述方案中,各个反射层6上的反射单元5数量可以相同也可以不同,即,根据实际所需照明效果进行设计,也进一步的提高了透镜对光线的控制能力,位于同一个反射层6上的各个反射单元5之间沿透镜的中轴线成轴对称分布,使得照射在反射层6上的光线能够得到均匀的反射,增加光线的混光效果,提高透镜输出光线的均匀性。
实施例7,如图1-8所示,
如实施例3或者4或者6所述的透镜结构,所述反射单元5由至少两个鳞片面7组成,所述鳞片面7为平面或者曲面,所述鳞片面7沿透镜的中轴线成轴对称分布。
在本实施例的上述方案中,反射单元5由至少两个鳞片面7组成,使得当光线照射在反射单元5时,光线在一个反射单元5内即可反射至少两次,提高透镜对光线的控制能力,而且也进一步的折叠光线的光路,降低透镜的厚度,节约透镜制作材料,同时,也有利于注塑等工艺操作,降低注塑难度和收缩风险,保证透镜结构可靠的设计照明效果;
将鳞片面7设置为平面或者曲面,可以根据实际需要选用不同形状的鳞片面7,进一步的提高透镜结构对光线的控制能力,而鳞片面7沿透镜的中轴线成轴对称分布,也进一步保证第二反射区域4反射光线的均匀性。
实施例8,如图1-8所示,
如实施例1-7任意一个所述的透镜结构,所述第一反射区域3由若干反射鳞片面8组成,所述反射鳞片面8沿透镜的中轴线成轴对称分布。
在本实施例的上述方案中,第一反射区域3由若干反射鳞片面8组成,所述反射鳞片面8沿透镜的中轴线成轴对称分布,使得第一反射区域3将照射在其上的光线反射得更加均匀,提高本实施例透镜的照明效果。
实施例9,如图1-7所示,
如实施例1-8任意一个所述的透镜结构,所述出射面2为沿透镜中轴线轴对称的连续面或者为沿透镜中轴线轴对称的非连续面。
在上述方案中,出射面2可以根据实际配光需要设计为不同的面型,进一步的提高本实施例透镜的光线控制能力。
实施例10,如图1-8所示,
一种照明灯具,采用如实施例1-9任意一个所述的透镜作为配光透镜。
本实施例的照明灯具,由于采用了上述的透镜进行配光,达到相同的照明效果,可以采用更小体积的透镜,而且透镜能够保证可靠的设计照明效果,使得本实施例的照明灯具,能够采用更小尺寸的透镜安装结构,减小照明灯具的结构尺寸,降低制造成本,而且还能够提高照明灯具的照明效果。
实施例11,如图1-8所示,
一种机动车远光照明光学系统,采用如实施例1-9任意一个所述的透镜作为配光透镜。
本实施例的机动车远光照明光学系统,由于采用了上述的透镜进行配光,达到相同的照明效果,可以采用更小体积的透镜,而且透镜能够保证可靠的设计照明效果,使得本实施例的机动车远光照明光学系统,能够采用更小尺寸的透镜安装结构,减小机动车远光照明光学系统的结构尺寸,降低制造成本,而且还能够提高机动车远光照明光学系统的照明效果。
凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种透镜,包括用于光线进入透镜内部的入射面、用于透镜内部光线射出的出射面、以及设置于入射面和出射面之间的反射区域,其特征在于:
    所述反射区域分为第一反射区域和第二反射区域,所述第一反射区域靠近所述入射面,所述第二反射区域靠近所述出射面,所述第一反射区域与第二反射区域形成台阶结构,
    由所述入射面进入透镜的光线中,至少有一部分光线直接照射在所述第一反射区域上,经第一反射区域全反射后,由所述出射面射出透镜,
    由所述入射面进入透镜的光线中,至少有一部分光线经出射面全反射后照射在所述第二反射区域上,经第二反射区域全反射后,由所述出射面射出透镜。
  2. 根据权利要求1所述的透镜,其特征在于:所述第二反射区域由两层或者两层以上的反射层构成,相邻反射层之间形成台阶结构,由所述入射面进入透镜的光线中,至少有一部分光线经出射面全反射后照射在所述第二反射区域的各个反射层上,经各个反射层全反射后,由所述出射面射出透镜。
  3. 根据权利要求1所述的透镜,其特征在于:所述第二反射区域由若干反射单元组成,照射在所述第二反射区域上的光线至少在第二反射区域的反射单元中反射两次后再由所述出射面射出透镜。
  4. 根据权利要求2所述的透镜,其特征在于:所述反射层由若干反射单元组成,照射在所述反射层上的光线,至少在所述反射层的反射单元中反射两次后再由所述出射面射出透镜。
  5. 根据权利要求4所述的透镜,其特征在于:不同反射层上的反射单元数量可以相同也可以不同,位于同一所述反射层上的反射单元之间沿透镜的中轴线成轴对称分布。
  6. 根据权利要求3-5任意一项所述的透镜,其特征在于:所述反射单元由至少两个鳞片面组成。
  7. 根据权利要求6所述的透镜,其特征在于:所述鳞片面为平面或者曲面,所述鳞片面沿透镜的中轴线成轴对称分布。
  8. 根据权利要求1-7任意一项所述的透镜,其特征在于:所述第一反射区域由若干反射鳞片面组成,所述反射鳞片面沿透镜的中轴线成轴对称分布。
  9. 根据权利要求1-7任意一项所述的透镜,其特征在于:所述出射面为沿透镜 中轴线轴对称的连续面或者非连续面。
  10. 一种照明灯具,其特征在于:采用如权力要求1-9任意一项所述的透镜作为配光透镜。
  11. 一种机动车远光照明光学系统,其特征在于:采用如权力要求1-9任意一项所述的透镜作为配光透镜。
PCT/CN2016/112114 2016-02-01 2016-12-26 一种透镜及照明灯具和机动车远光照明光学系统 WO2017133350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610073520.4A CN105546479A (zh) 2016-02-01 2016-02-01 一种透镜及照明灯具和机动车远光照明光学系统
CN2016100735204 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017133350A1 true WO2017133350A1 (zh) 2017-08-10

Family

ID=55825864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112114 WO2017133350A1 (zh) 2016-02-01 2016-12-26 一种透镜及照明灯具和机动车远光照明光学系统

Country Status (2)

Country Link
CN (1) CN105546479A (zh)
WO (1) WO2017133350A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736032A (zh) * 2019-11-06 2020-01-31 深圳市诚信神火科技有限公司 一种新型复合光学系统
CN114623398A (zh) * 2021-11-18 2022-06-14 欧普照明股份有限公司 光学系统、光学系统设计方法及灯具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546479A (zh) * 2016-02-01 2016-05-04 成都恒坤光电科技有限公司 一种透镜及照明灯具和机动车远光照明光学系统
CN106594674A (zh) * 2016-10-26 2017-04-26 佛山市中山大学研究院 一种基于点光源的准直透镜
CN106764807A (zh) * 2017-01-09 2017-05-31 成都恒坤光电科技有限公司 一种导光装置
CN110985945A (zh) * 2019-12-27 2020-04-10 欧普照明股份有限公司 配光元件及光源模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259153A1 (en) * 2009-04-13 2010-10-14 Takashi Futami Lamp using led light source
CN102313243A (zh) * 2011-05-18 2012-01-11 中国科学院长春光学精密机械与物理研究所 一种结构紧凑型非成像led准直系统
CN102980134A (zh) * 2011-09-02 2013-03-20 三星Led株式会社 会聚透镜以及配备所述会聚透镜的照明装置
CN103827575A (zh) * 2011-06-08 2014-05-28 通用电气照明解决方案有限责任公司 使用tir透镜的薄型灯
CN103836541A (zh) * 2014-02-24 2014-06-04 京东方光科技有限公司 一种导光件及平行光源照明装置
CN204404075U (zh) * 2015-02-14 2015-06-17 成都恒坤光电科技有限公司 一种阶梯型led二次光学透镜
CN105546479A (zh) * 2016-02-01 2016-05-04 成都恒坤光电科技有限公司 一种透镜及照明灯具和机动车远光照明光学系统
CN205535602U (zh) * 2016-02-01 2016-08-31 成都恒坤光电科技有限公司 一种透镜及照明灯具和机动车远光照明光学系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259153A1 (en) * 2009-04-13 2010-10-14 Takashi Futami Lamp using led light source
CN102313243A (zh) * 2011-05-18 2012-01-11 中国科学院长春光学精密机械与物理研究所 一种结构紧凑型非成像led准直系统
CN103827575A (zh) * 2011-06-08 2014-05-28 通用电气照明解决方案有限责任公司 使用tir透镜的薄型灯
CN102980134A (zh) * 2011-09-02 2013-03-20 三星Led株式会社 会聚透镜以及配备所述会聚透镜的照明装置
CN103836541A (zh) * 2014-02-24 2014-06-04 京东方光科技有限公司 一种导光件及平行光源照明装置
CN204404075U (zh) * 2015-02-14 2015-06-17 成都恒坤光电科技有限公司 一种阶梯型led二次光学透镜
CN105546479A (zh) * 2016-02-01 2016-05-04 成都恒坤光电科技有限公司 一种透镜及照明灯具和机动车远光照明光学系统
CN205535602U (zh) * 2016-02-01 2016-08-31 成都恒坤光电科技有限公司 一种透镜及照明灯具和机动车远光照明光学系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736032A (zh) * 2019-11-06 2020-01-31 深圳市诚信神火科技有限公司 一种新型复合光学系统
CN114623398A (zh) * 2021-11-18 2022-06-14 欧普照明股份有限公司 光学系统、光学系统设计方法及灯具

Also Published As

Publication number Publication date
CN105546479A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017133350A1 (zh) 一种透镜及照明灯具和机动车远光照明光学系统
US20180112227A1 (en) Off-axis collimation optics
US7416322B2 (en) Vehicle lighting device
US8757846B2 (en) Lamp unit
JP2012216542A (ja) 広い開口角を有する合成光ビームを生成するための光システム
WO2019196156A1 (zh) 基于光导的远近光系统及车灯
CN105929469A (zh) 一种透镜及照明装置和机动车远光照明光学系统
WO2022105196A1 (zh) 车灯光学系统、车灯模组、车灯及车辆
JP5368233B2 (ja) 車両用灯具
WO2024093061A1 (zh) 反射式光学模组及使用其的照明装置及车辆
CN111503558A (zh) 一种近距安装高均匀度led黑板灯透镜
CN116221647A (zh) 车灯远光照明系统、照明模组及车辆
CN109539163A (zh) 一种光学透镜及具有该光学透镜的光学模组、汽车前照灯
WO2022198721A1 (zh) 车灯光学组件、照明光学装置和车辆
CN109973931B (zh) 一种车灯近光照明分光反射器、光学装置及汽车前照灯总成
CN110454744B (zh) 一种光源模组以及车用前照灯
CN207122859U (zh) 一种光源模组及照明灯
TWI507640B (zh) 可控制光束角之導光元件及燈具
CN205826895U (zh) 一种透镜及照明装置和机动车远光照明光学系统
CN205535602U (zh) 一种透镜及照明灯具和机动车远光照明光学系统
CN109973930B (zh) 一种车灯近光照明分光反射器、光学装置及汽车前照灯总成
US9329374B2 (en) Projection lens and optical surface determination method
CN115127075B (zh) 透镜装置及车灯
CN217482671U (zh) 光学透镜及照明装置
CN218938539U (zh) 一种光学透镜与照明灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889156

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16889156

Country of ref document: EP

Kind code of ref document: A1