WO2017133130A1 - 一种量子棒、量子棒制作方法和显示面板 - Google Patents

一种量子棒、量子棒制作方法和显示面板 Download PDF

Info

Publication number
WO2017133130A1
WO2017133130A1 PCT/CN2016/082429 CN2016082429W WO2017133130A1 WO 2017133130 A1 WO2017133130 A1 WO 2017133130A1 CN 2016082429 W CN2016082429 W CN 2016082429W WO 2017133130 A1 WO2017133130 A1 WO 2017133130A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum rod
nanocrystalline
conductive material
shell
covered
Prior art date
Application number
PCT/CN2016/082429
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/329,352 priority Critical patent/US10505152B2/en
Publication of WO2017133130A1 publication Critical patent/WO2017133130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Definitions

  • the present disclosure relates to a quantum rod, a quantum rod manufacturing method and a display panel, and belongs to the technical field of display device manufacturing.
  • the liquid crystal display device includes a backlight and a display panel, wherein the backlight emits white light.
  • the liquid crystal display panel includes an array substrate, a color filter substrate, and a liquid crystal between the array substrate and the color filter substrate.
  • a lower polarizer and an upper polarizer are respectively disposed on the liquid crystal facing surface of the array substrate and the color filter substrate to perform a function of polarizing and detecting the light emitted by the backlight.
  • a color filter layer is formed on the color filter substrate, and the color film layer generally includes a red (R) film layer, a green (G) film layer, and a blue (B) film layer.
  • the white light emitted by the backlight passes through the color film layer and only displays the light corresponding to the color of the film layer.
  • three sub-pixels in one pixel respectively display three primary colors of red, green, and blue, thereby realizing color display.
  • Such a color display method has a low transmittance of light due to the addition of a color filter, a low utilization rate of the backlight, and a poor display effect.
  • the quantum rod material is a crystalline material having a diameter of several nanometers and a length in the range of 10 to 100 nm. Similar to quantum dots, quantum rods have the same absorption and luminescence properties, ie, luminescence under the excitation of a particular excitation source. And the wavelength of the emitted light can be controlled and adjusted by adjusting the size and type of the quantum rod. The wavelength of the quantum rod is adjustable and covers the entire visible range.
  • the elongated shape of a quantum rod is such that it has optical properties not possessed by quantum dots.
  • the most special optical property of a quantum rod is that it has the property of emitting polarized light, which can emit parallel to its long axis and perpendicular to its short axis. polarized light.
  • This luminescent property of the quantum rod makes it possible to obtain polarized light in the long-axis direction of the quantum rods arranged along a predefined axial direction. Since the orientation of the quantum rod varies with the magnitude of the voltage applied thereto, the polarization direction of the light emitted by the quantum rod can be controlled by controlling the voltage applied to the quantum rod.
  • the quantum rod can replace the liquid crystal in the liquid crystal display panel and also function as a lower polarizer in the liquid crystal display panel.
  • the quantum rod can be made to generate multi-color light (for example, red, green, and blue) when excited, so that the color filter is no longer needed. Since the color filter is no longer required, the light transmittance of the display panel using the quantum rod is improved, and the display effect is improved.
  • the inventors have recognized that the existing quantum rods have a high driving voltage, which is disadvantageous for energy saving, and is particularly problematic when used in a portable display device having a limited amount of electric power.
  • the present disclosure provides a quantum rod, a quantum rod manufacturing method, and a display panel.
  • the present disclosure provides a quantum rod comprising a core and a shell covering the core;
  • the core and/or shell are also covered with a layer of electrically conductive material.
  • the electrically conductive material is a conductive polymer material.
  • the conductive polymer material is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) PEDOT PSS, polyparaphenylene vinylene PPV, polythiophene, polysilane, Any one or more of triphenylmethane, triarylamine, pyrazoline polyacetylene, polypyrrole, polyaniline, polyphenylene, polyphenylene acetylene, and polydiacetylene.
  • the core and/or shell comprises CaS, CaSe.
  • the present disclosure provides a method of fabricating a quantum rod, comprising:
  • a core of the nanocrystalline quantum rod and a shell covered with the layer of the conductive material are formed in the nanocrystalline reaction chamber.
  • the shell covered with the layer of conductive material forming the nanocrystalline quantum rod in the nanocrystalline reaction chamber comprises:
  • the step of forming a core of a nanocrystalline quantum rod and a shell covered with a layer of a conductive material in a nanocrystalline reaction chamber is performed under vacuum.
  • the core of the nanocrystalline quantum rod is covered with a layer of electrically conductive material.
  • reaction temperature of the core forming the nanocrystalline quantum rod covered with the layer of conductive material and the nanocrystalline quantum rod covered with the layer of conductive material is less than 200 °C.
  • the step of forming a core of the nanocrystalline quantum rod covered with the conductive material layer and a shell covered with the conductive material layer in the nanocrystalline reaction chamber comprises:
  • the mixture of the quantum rod material and the conductive polymer solution is stirred and dispersed to form a core of the nanocrystalline quantum rod covered with the conductive material layer and a shell of the nanocrystalline quantum rod covered with the conductive material layer.
  • the ionic liquid is 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-octyl-3-methyl Imidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methyl chloride At least one of the imidazolium salts.
  • the mixing ratio of the conductive polymer material to the ionic liquid is greater than or equal to 1:9.
  • the quantum rod material is mixed with the conductive polymer solution to have a solid content of less than or equal to 15%.
  • the dispersion condition is agitation dispersion at a line speed of 2.5 m/s for 10 min.
  • the pre-dispersion also includes pre-stirring dispersion.
  • the pre-stirring dispersion conditions are as follows:
  • the stirring speed is less than or equal to 100 rpm for 10 min to 30 min.
  • the step of forming a core of a nanocrystalline quantum rod covered with a layer of conductive material and a shell covered with a layer of conductive material in the nanocrystalline reaction chamber is performed under vacuum.
  • the disclosure further provides a display panel comprising: an upper substrate and a lower substrate, wherein the quantum rods are disposed between the upper substrate and the lower substrate.
  • an orientation layer is disposed on a surface of the upper substrate facing the quantum rod.
  • the surface of the lower substrate facing the quantum rod may or may not include an alignment layer.
  • the alignment layers of the upper and lower substrates respectively serve as the polarizing plate and the analyzer; when the lower substrate does not include the alignment layer, the quantum rod itself emits polarized light, so that the quantum rod itself can function as a polarizer.
  • the alignment layer of the upper substrate serves as a polarizer. Since only one layer of the alignment layer is used, the cost of the display panel is lowered.
  • the upper substrate is a color film substrate
  • the quantum rod is stimulated to emit white light.
  • the white light emitted by the quantum rod cooperates with the color film of the color filter substrate to emit light of a plurality of colors.
  • the quantum rod is stimulated to emit light of a plurality of colors.
  • the display panel does not need to include a color film, thereby improving the brightness of the display panel and improving the display effect.
  • the quantum rod, the quantum rod manufacturing method, the display panel and the manufacturing method thereof provided by the present disclosure increase the conductivity of the quantum rod by 180% by greatly improving the surface conductivity of the quantum rod after the synthesis of the quantum rod or after the synthesis of the quantum rod.
  • the driving voltage of the quantum rod reduces power consumption, making the display panel including the quantum rod more suitable for mobile display applications.
  • FIG. 1 is a schematic structural view of a quantum rod in an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a state of a quantum rod scanning electron microscope according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a method for fabricating a quantum rod according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of a nanocrystalline reaction chamber in an embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart of a method for fabricating a display panel according to an embodiment of the present disclosure.
  • the present disclosure provides a quantum rod including a core 1 and a shell 2 covering the core 1 ; the core 1 and/or the shell 2 is further covered with a conductive material layer 10 , 20.
  • the conductive material may be selected as the conductive polymer material.
  • the conductive polymer material includes poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) PEDOT PSS, polyparaphenylenevinylene PPV, polythiophene, polysilane, triphenylmethane, triarylamine, Any one or more of pyrazoline polyacetylene, polypyrrole, polyaniline, polyphenylene, polyphenylene acetylene, and polydiacetylene.
  • both the core and/or the shell of the quantum rod may adopt CaS or CaSe. In this In the disclosure, both the core and the shell of the quantum rod can cover the conductive material.
  • the core of the quantum rod may cover the conductive material alone, or the shell of the quantum rod may cover the conductive material separately.
  • both the core and the shell of the quantum rod are covered with a conductive material, or one of the core and the shell of the quantum rod is covered with a conductive material.
  • a method for fabricating a quantum rod for fabricating the above quantum rod comprises: forming a nanocrystalline reaction chamber on a master; forming a nanocrystal covered with a conductive material layer in the nanocrystalline reaction chamber.
  • the core of the quantum rod and the shell of the nanocrystalline quantum rod covered with a layer of conductive material.
  • the nanocrystalline reaction chamber of the present disclosure is used for synthesizing quantum rod crystals, and the nanocrystalline reaction chamber of the present disclosure can achieve uniformity and uniformity of nanocrystalline quantum rods by temperature control.
  • the core of the nanocrystalline quantum rod covered with the conductive material layer and the nanocrystalline quantum rod covered with the conductive material layer are formed.
  • the reaction temperature of the shell can be below 200 °C.
  • the surface of the nanocrystalline quantum rod is also treated in the reaction while the quantum rod is being fabricated.
  • the surface treatment of the quantum rod in the present disclosure comprises: mixing the conductive polymer material with the ionic liquid to form a conductive polymer solution; mixing the quantum rod material with the conductive polymer solution; and mixing the quantum rod material with the conductive polymer solution Dispersing, forming a core of a nanocrystalline quantum rod covered with a layer of a conductive material and a shell covered with a layer of a conductive material.
  • dispersing it may be dispersed by ultrasonic waves or dispersed by stirring or mechanically stirred.
  • the ionic liquid can be prevented from agglomerating during the reaction by dispersion treatment.
  • the mixing ratio of the conductive polymer material to the ionic liquid may be greater than or equal to 1:9.
  • the ionic liquid is 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-octyl-3-methylimidazolium hexafluorophosphate Phosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium chloride At least one of them.
  • the solid content of the quantum rod material and the conductive polymer solution may be 15% or less.
  • the mixture of the quantum rod material and the conductive polymer solution was dispersed, including pre-dispersion and dispersion at a stirring speed of 100 rpm or less for 10 minutes to 30 minutes, and the dispersion condition was stirred and dispersed at a line speed of 2.5 m/s for 10 minutes.
  • quantum dot materials are sensitive to water, gas, and temperature, the above quantum rods are fabricated.
  • the working conditions are all carried out under vacuum conditions and require environmental conditions with a cleanliness rating of 100.
  • the present disclosure also provides a method for fabricating a quantum rod, comprising: fabricating a nanocrystalline reaction chamber on a master; forming a core of the nanocrystalline quantum rod and a shell covered with the conductive material layer in the nanocrystalline reaction chamber.
  • the surface of the quantum rod that has been formed can be covered with a conductive material to improve the conductivity of the quantum rod and reduce the driving voltage of the quantum rod.
  • the shell covered with the conductive material layer forming the nanocrystalline quantum rod in the nanocrystalline reaction chamber further comprises: a step of surface treating the shell of the nanocrystalline quantum rod in the reaction, and making the shell of the nanocrystalline quantum rod Covered with a layer of conductive material.
  • the present disclosure is not limited to the above method, as long as the method of covering the shell of the quantum rod with the conductive material can achieve the present disclosure.
  • the quantum rod is mixed with the conductive polymer material, and the surface of the quantum rod is further formed into a layer of a conductive material. Since the quantum dot material is sensitive to water, gas and temperature, the steps of forming the core of the nanocrystalline quantum rod and the shell covered with the conductive material layer in the nanocrystalline reaction chamber are performed under vacuum, and the level of cleanliness is required to be 100. Environmental conditions.
  • the present disclosure also provides a display panel comprising: an upper substrate and a lower substrate, wherein the quantum rods are disposed between the upper substrate and the lower substrate.
  • An alignment layer is disposed on a surface of the upper substrate facing the quantum rod.
  • the surface of the lower substrate facing the quantum rod may or may not include an alignment layer.
  • the alignment layers of the upper and lower substrates respectively serve as the polarizing plate and the analyzer; when the lower substrate does not include the alignment layer, the quantum rod itself emits polarized light, so that the quantum rod itself can function as a polarizer.
  • the alignment layer of the upper substrate serves as a polarizer. Since only one layer of the alignment layer is used, the cost of the display panel is lowered.
  • the quantum rods designed between the upper substrate and the lower substrate are mixed by quantum rods of different specifications, and emit white light under excitation of an electric field, and The color film combination of the upper substrate forms a color display.
  • the quantum rods designed between the upper substrate and the lower substrate include corresponding designs respectively on the substrate.
  • a method for manufacturing a display panel includes: cleaning an upper substrate and a lower substrate; forming an alignment layer on the upper substrate and the lower substrate; and implanting a quantum rod between the alignment layers formed on the upper substrate and the lower substrate; The upper substrate and the lower substrate; the quantum rod is the above quantum rod.
  • the processes not mentioned can be completed by the existing process and will not be described again.
  • the drive voltage is tested by brightness adjustment and measured with an oscilloscope.
  • the transmittance was measured using a Model 7200 visible light spectrophotometer.
  • the quantum rod material adopts: CdSe, and the solid content of the quantum rod is 6%;
  • the dispersion process parameters are as follows:
  • Pre-dispersion dispersion process parameters speed 80 rpm, time 25 min;
  • Dispersion process parameters 2.5m / S * 10min.
  • Driving voltage Since the quantum rod is electrically excited to emit light while rotating in the box, the driving voltage is required to be high.
  • the surface treatment process for improving the conductivity of the present disclosure can effectively reduce the driving voltage, and the results are shown in Table 1.
  • Transmittance in quantum rods Strict control of temperature and time during the surface treatment process allows the quantum rods to grow uniformly in proportion, thus obtaining quantum rods of uniform shape and size, so that the rotation angle of the quantum rods in the box can be precisely controlled under voltage driving. Therefore, the transmission of light can be ensured.
  • the present invention provides a quantum rod, a quantum rod manufacturing method, a display panel, and a manufacturing method thereof, which are subjected to surface treatment for improving conductivity during quantum rod re-synthesis or after quantum rod synthesis, because the quantum rod is applied with voltage.
  • the present disclosure performs a surface treatment for improving the conductivity of the quantum rod, and the conductivity of the quantum rod is improved by 180% by surface treatment. , greatly reducing the drive voltage.
  • orientation or positional relationship of the terms “upper”, “lower” and the like is based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the disclosure and the simplified description, rather than indicating or implying that the device or component referred to must be
  • the specific orientation and construction of the specific orientation are not to be construed as limiting the disclosure.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子棒、量子棒制作方法和显示面板,其中,该量子棒,包括核(1)以及壳(2),所述壳(2)覆盖所述核(1);所述核(1)和/或壳(2)上还覆盖有导电性材料层(10、20)。通过对量子棒再合成过程中或者量子棒合成之后进行导电性提升的表面处理,降低量子棒的驱动电压,降低功耗。由于量子棒在施加电压时旋转,从而实现调节CELL的光学性能,对量子棒进行了导电性提升的表面处理,通过表面处理后的量子棒的导电性提升180%,大幅降低了驱动电压。

Description

一种量子棒、量子棒制作方法和显示面板 技术领域
本公开涉及一种量子棒、量子棒制作方法和显示面板,属于显示装置制造技术领域。
背景技术
现有的彩色显示一般通过白光源加彩色滤光片实现。以液晶显示装置为例,液晶显示装置包括背光源和显示面板,其中,背光源发射白光。液晶显示面板包括阵列基板、彩膜基板以及位于阵列基板和彩膜基板之间的液晶。在阵列基板和彩膜基板的面向液晶的表面上分别布置有下偏光片和上偏光片,以起到对背光源所发射的光进行起偏和检偏的作用。在彩膜基板上形成有彩色滤光膜层,彩色膜层一般包括红色(R)膜层、绿色(G)膜层以及蓝色(B)膜层。背光源所发射的白光经彩色膜层后仅显示对应膜层颜色的光。以显示面板上的一个像素包括三个子像素为例,即一个像素中的三个子像素分别显示红、绿、蓝三原色,从而实现彩色显示。这种彩色显示方法由于添加了彩色滤光片而导致光的透过率较低,对背光的利用率较低,显示效果欠佳。
发明内容
量子棒材料是一种直径为几个纳米、而长度在10~100nm范围中的一种晶体材料。同量子点类似,量子棒具有相同的吸收特性和发光特性,即在特定激发源的激发下发光。并且其所发射光的波长可通过调整其量子棒的尺寸、类别来进行控制和调整。量子棒的发光波长是可调的,并且可覆盖整个可见光范围。
量子棒的长形形态使得其具有量子点不具备的光学特性,例如量子棒最特别的光学特性在于其具有发射偏振光的特性,其可以发射平行于其长轴、且垂直于其短轴的偏振光。量子棒的这一发光特性使得可以通过其获得沿着预定义的轴向排布的量子棒的长轴方向的偏振光。由于量子棒的取向随施加在其上的电压大小而变化,因而可以通过控制施加在量子棒上的电压来控制量子棒所发射的光的偏振方向。 因此,量子棒可以代替液晶显示面板中的液晶,并且还起到液晶显示面板中的下偏光片的作用。通过适当选择量子棒的组成,可以使量子棒在受到激发时产生多色光(例如红绿蓝),从而不再需要彩色滤光片。由于不再需要彩色滤光片,因此采用量子棒的显示面板的光的透过率提高,显示效果得以改进。
本发明人认识到,现有的量子棒的驱动电压较高,不利于节能,当使用在具有有限电量的便携式显示设备中时的问题尤为明显。
为此,本公开提供了一种量子棒、量子棒制作方法和显示面板。
一方面,本公开提供一种量子棒,包括核以及壳,所述壳覆盖所述核;
所述核和/或壳上还覆盖有导电性材料层。
在一些实施例中,所述导电性材料是导电聚合物材料。
在一些实施例中,所述导电聚合物材料是聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)PEDOT PSS、聚对苯撑乙烯PPV、聚噻吩、聚硅烷、三苯甲烷、三芳胺、吡唑啉聚乙炔、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的任意一种或多种。
在一些实施例中,所述核和/或壳包括CaS、CaSe。
另一方面,本公开提供一种量子棒制作方法,包括:
在母版上制作纳米晶反应腔;
在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳。
在一些实施例中,所述在纳米晶反应腔内形成纳米晶量子棒的覆盖有导电性材料层的壳包括:
在反应中对纳米晶量子棒的壳的表面处理的步骤,使所述纳米晶量子棒的壳覆盖有导电性材料层。
在一些实施例中,所述在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤是真空下进行的。
在一些实施例中,所述纳米晶量子棒的核覆盖有导电性材料层。
在一些实施例中,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳的反应温度低于200℃。
在一些实施例中,在纳米晶反应腔内形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤包括:
将导电聚合物材料与离子液体混合,形成导电聚合物溶液;
将量子棒材料与所述导电聚合物溶液混合;
将量子棒材料与所述导电聚合物溶液的混合物搅拌分散,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳。
在一些实施例中,所述离子液体为1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中的至少一种。
在一些实施例中,所述导电聚合物材料与离子液体的混合比大于等于1∶9。
在一些实施例中,所述量子棒材料与所述导电聚合物溶液混合比固含量小于等于15%。
在一些实施例中,所述分散条件为以2.5m/s的线速度搅拌分散10min。
在一些实施例中,所述分散之前还包括预搅拌分散。
在一些实施例中,所述预搅拌分散条件如下:
搅拌转速小于等于100rpm,时间10min至30min。
在一些实施例中,在纳米晶反应腔内形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤是真空下进行的。
再一方面,本公开还提供一种显示面板,包括:上基板和下基板,所述上基板和下基板之间设置有上述的量子棒。
在一些实施例中,所述上基板的面向量子棒的表面上设置有取向层。所述下基板的面向量子棒的表面上可以包括取向层,也可以不包括取向层。当下基板包括取向层时,上下基板的取向层分别充当起偏片和检偏片;当下基板不包括取向层时,量子棒本身发射偏振光的性质使得量子棒本身可以起到起偏片的作用,而上基板的取向层充当检偏片。由于仅使用一层取向层,因而显示面板的成本降低。
在一些实施例中,所述上基板为彩膜基板,所述量子棒受激发射白色光。在这种情况下,量子棒所发射的白色光与彩膜基板的彩膜配合,从而发射多种颜色的光。
在一些实施例中,所述量子棒受激发射多种颜色的光。在这种情况下,显示面板不需要包括彩膜,从而提高显示面板的亮度,改进显示效果。
本公开提供的量子棒、量子棒制作方法、显示面板及制作方法,通过对量子棒再合成过程中或者量子棒合成之后进行导电性提升的表面处理,量子棒的导电性提升180%,大幅降低了量子棒的驱动电压,降低功耗,从而使得包括量子棒的显示面板更加适合于移动显示应用。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单的介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一个实施例中的一种量子棒结构示意图;
图2为本公开一个实施例中的一种量子棒扫描电镜下的形态示意图;
图3为本公开一个实施例中的量子棒制作方法流程示意图;
图4为本公开一个实施例中的纳米晶反应腔结构示意图;
图5为本公开一个实施例中的一种显示面板制作方法流程示意图。
具体实施方式
下面结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
如图1、图2所示,本公开提供一种量子棒,该量子棒包括核1以及壳2,壳2覆盖核1;核1和/或壳2上还覆盖有导电性材料层10、20。在本公开中,为了进一步使提高量子棒的导电性能,有效降低量子棒的驱动电压,导电性材料可以选择为导电聚合物材料。该导电聚合物材料包括聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)PEDOT PSS、聚对苯撑乙烯PPV、聚噻吩、聚硅烷、三苯甲烷、三芳胺、吡唑啉聚乙炔、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的任意一种或多种。在本公开中,量子棒的核和/或壳均可以采用CaS、CaSe。在本 公开中,量子棒的核和壳均可以覆盖导电性材料。当然可以理解,本公开不仅限于此,量子棒的核可以单独覆盖导电性材料,或量子棒的壳可以单独覆盖导电性材料。总之无论是量子棒的核和壳均覆盖有导电性材料,还是量子棒的核与壳其中之一覆盖导电性材料均可以实现
如图3所示,提供了一种制作上述量子棒的量子棒制作方法,该方法包括:在母版上制作纳米晶反应腔;在纳米晶反应腔内形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳。通过在量子棒上覆盖导电性材料,可以增加量子棒的导电性能,有效降低量子棒的驱动电压。具体地,如图4所示,本公开的纳米晶反应腔是用于合成量子棒晶体,本公开的纳米晶反应腔可以通过温度的控制实现纳米晶量子棒的均匀、一致。在本公开中,为了有效降低量子棒的驱动电压增加透过率,制作量子棒时,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳的反应温度可以低于200℃。在本公开中,在制作量子棒时,还在反应中对纳米晶量子棒表面处理。
在本公开中对量子棒表面处理,包括:将导电聚合物材料与离子液体混合,形成导电聚合物溶液;将量子棒材料与导电聚合物溶液混合;将量子棒材料与导电聚合物溶液的混合物分散,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的壳。分散时可以采用超声波分散也可以采用搅拌方式分散、机械搅拌方式分散。通过分散处理可以避免离子液体在反应过程中产生团聚现象。
将导电聚合物材料与离子液体混合形成导电聚合物溶液时,导电聚合物材料与离子液体的混合比可以大于等于1∶9。在本公开中,离子液体为1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中的至少一种。
将量子棒材料与导电聚合物溶液混合时,量子棒材料与导电聚合物溶液混合比固含量可以小于等于15%。
将量子棒材料与导电聚合物溶液的混合物分散,包括搅拌转速小于等于100rpm,时间10min至30min的预分散和分散,分散条件为以2.5m/s的线速度搅拌分散10min。
由于量子点材料对水、气和温度比较敏感,因此上述量子棒制作 的工作条件都是在真空环境下进行反应,并且需要洁净等级在百级的环境条件。
本公开还提供一种量子棒制作方法,包括:在母版上制作纳米晶反应腔;在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳。通过本公开可以将已经形成的量子棒表面覆盖导电性材料以提高量子棒的导电性,降低量子棒的驱动电压。所述在纳米晶反应腔内形成纳米晶量子棒的覆盖有导电性材料层的壳还包括:在反应中对纳米晶量子棒的壳的表面处理的步骤,使所述纳米晶量子棒的壳覆盖有导电性材料层。在本公开中,不仅限于上述的方法,只要能使量子棒的壳覆盖导电性材料的方法均可以实现本公开。例如,将量子棒和将导电聚合物材料混合,再进一步使量子棒表面形成导电性材料层。由于量子点材料对水、气和温度比较敏感,在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤是真空下进行的,并且需要洁净等级在百级的环境条件。
本公开还提供一种显示面板,该显示面板包括:上基板和下基板,上基板和下基板之间设置有上述的量子棒。上基板的面向量子棒的表面上设置有取向层。下基板的面向量子棒的表面上可以包括取向层,也可以不包括取向层。当下基板包括取向层时,上下基板的取向层分别充当起偏片和检偏片;当下基板不包括取向层时,量子棒本身发射偏振光的性质使得量子棒本身可以起到起偏片的作用,而上基板的取向层充当检偏片。由于仅使用一层取向层,因而显示面板的成本降低。
在本公开的量子棒显示面板中,当上基板设计彩膜基板时,设计于上基板与下基板之间的量子棒采用不同规格的量子棒混合组成,并且在电场的激发下发射白光,与上基板的彩膜组合形成彩色显示。
可替换地,在本公开的量子棒显示面板中,当上基板设计为非彩膜基板(例如玻璃基板)时,设计于上基板与下基板之间的量子棒包括分别设计在基板上的相应子像素区域的分别受激发而发射多种颜色(例如红、绿、蓝)的量子棒,在电场的作用下,各子像素分别发射红色、绿色和蓝色光,从而实现彩色显示。
如图5所示,显示面板制作方法,包括:清洗上基板和下基板;在上基板和下基板上形成取向层;在上基板和下基板上形成的取向层之间注入量子棒;对盒上基板和下基板;量子棒是上述量子棒。在本 公开中,未提及的工艺均可以采用现有的工艺完成再次就不再一一赘述了。
为了进一步证明本法公开提供的本公开提供的量子棒、量子棒制作方法、显示面板及制作方法的优越性,通过了以下实验证明:
实验条件:
通过亮度调节测试驱动电压,采用示波器测量。采用7200型可见光分光光度计测量透过率。
除上述温度条件外,以上实施例是采用PEDOT PSS溶解在离子液1-辛基-3-甲基咪唑六氟磷酸盐([omim]PF6)和1-乙基-3-甲基咪唑四氟硼酸盐([emim]BF4)中,其中重量比如下:
PEDOT PSS∶1-辛基-3-甲基咪唑六氟磷酸盐([omim]PF6)∶1-乙基-3-甲基咪唑四氟硼酸盐([emim]BF4)=1∶7∶3;
量子棒材料采用:CdSe,量子棒的固含量为6%;
分散工艺参数如下:
预分散分散工艺参数:速度80rpm,时间25min;
分散工艺参数:2.5m/S*10min。
实验结果及分析
表1测试结果
Figure PCTCN2016082429-appb-000001
结果分析:
驱动电压:由于量子棒在进行盒内旋转透光时、同时被电激发发光,因此需要驱动电压较高。采用本公开的提升导电性能的表面处理工艺可以有效降低驱动电压,结果如表1所示。透过率:在量子棒合 成和表面处理过程中严格控制温度和时间可以使得量子棒各向均匀按比例生长,因此获得了一致形状及规格的量子棒,从而在电压驱动下,盒内量子棒的旋转角度可以精确控制,因此可以保证光线的透过。但是,当温度超过本公开设定的温度时,1)量子棒形状的一致性控制精度降低,在电压驱动旋转时,各个量子棒单元的旋转角度不能精确控制,因此透光量不能形成均匀的面光源;2)由于温度过高,量子棒生长过快,不利于导电聚合物对量子棒的表面处理,从而导致不同量子棒之间表面处理程度存在差异、导电性能不一致,从而不能在同样的驱动电压下,精确控制每一个量子棒的旋转形态和角度;另外,为实现量子棒的设定旋转角度和透光量,需要加大驱动电压,此时会造成驱动电压的增大,造成高能耗。
综上所述,本公开提供的量子棒、量子棒制作方法、显示面板及制作方法,通过对量子棒再合成过程中或者量子棒合成之后进行导电性提升的表面处理,因为量子棒在施加电压时旋转,从而实现调节CELL的光学性能,因此为了降低量子棒的驱动电压,降低功耗,本公开对量子棒进行了导电性提升的表面处理,通过表面处理、量子棒的导电性提升180%,大幅降低了驱动电压。本公开的表面改性方法有两种:1)在量子棒合成反应过程中对其进行导电性提升的表面改性,即:在反应槽内加入导电聚合物溶液,合成反应时同步对量子棒进行了嵌入式的改性;导电聚合物在同入反应槽之前需要提前进行溶解,导电聚合物溶液的固含量按本公开的要求进行控制;2)在量子棒合成之后进行表面改性,合成之后的表面改性除了首先要对导电聚合物溶液进行溶解之外,还要同步对量子棒进行分散搅拌,因此需要控制速度、温度、时间和固含量。本公开的量子棒表面处理可以获得均匀处理的量子棒,可以降低驱动电压近50%。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限 制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本公开的说明书中,说明了大量具体细节。然而能够理解的是,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本公开公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释呈反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围,其均应涵盖在本公开的权利要求和说明书的范围当中。

Claims (22)

  1. 一种量子棒,包括核以及壳,所述壳覆盖所述核;
    所述核和/或壳上还覆盖有导电性材料层。
  2. 根据权利要求1所述的量子棒,其中,所述导电性材料是导电聚合物材料。
  3. 根据权利要求2所述的量子棒,其中,所述导电聚合物材料是聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)PEDOT PSS、聚对苯撑乙烯PPV、聚噻吩、聚硅烷、三苯甲烷、三芳胺、吡唑啉聚乙炔、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的任意一种或多种。
  4. 根据权利要求1所述的量子棒,其中,所述核和/或壳包括CaS、CaSe。
  5. 一种量子棒制作方法,包括:
    在母版上制作纳米晶反应腔;
    在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳。
  6. 根据权利要求5所述的量子棒制作方法,其中,所述在纳米晶反应腔内形成纳米晶量子棒的覆盖有导电性材料层的壳包括:
    在反应中对纳米晶量子棒的壳的表面处理的步骤,使所述纳米晶量子棒的壳覆盖有导电性材料层。
  7. 根据权利要求5或6所述的量子棒制作方法,其中,所述在纳米晶反应腔内形成纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤是真空下进行的。
  8. 根据权利要求5所述的量子棒制作方法,其中,所述纳米晶量子棒的核覆盖有导电性材料层。
  9. 根据权利要求8所述的量子棒制作方法,其中,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳的反应温度低于200℃。
  10. 根据权利要求8所述的量子棒制作方法,其中,在纳米晶反应腔内形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤包括:
    将导电聚合物材料与离子液体混合,形成导电聚合物溶液;
    将量子棒材料与所述导电聚合物溶液混合;
    将量子棒材料与所述导电聚合物溶液的混合物搅拌分散,形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的纳米晶量子棒的壳。
  11. 根据权利要求10所述的量子棒制作方法,其中,所述离子液体为1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中的至少一种。
  12. 根据权利要求10所述的量子棒制作方法,其中,所述导电聚合物材料与离子液体的混合比大于等于1∶9。
  13. 根据权利要求10所述的量子棒制作方法,其中,所述量子棒材料与所述导电聚合物溶液混合比固含量小于等于15%。
  14. 根据权利要求10所述的量子棒制作方法,其中,所述分散条件为以2.5m/s的线速度搅拌分散10min。
  15. 根据权利要求10所述的量子棒制作方法,其中,所述分散之前还包括预搅拌分散。
  16. 根据权利要求15所述的量子棒制作方法,其中,所述预搅拌分散条件如下:
    搅拌转速小于等于100rpm,时间10min至30min。
  17. 根据权利要求8所述的量子棒制作方法,其中,在纳米晶反应腔内形成覆盖有导电性材料层的纳米晶量子棒的核和覆盖有导电性材料层的壳的步骤是真空下进行的。
  18. 一种显示面板,包括:上基板和下基板,所述上基板和下基板之间设置有权利要求1-4任意一项所述的量子棒。
  19. 根据权利要求18所述的显示面板,其中所述上基板的面向量子棒的表面上设置有取向层。
  20. 根据权利要求19所述的显示面板,其中所述下基板的面向量子棒的表面上设置有取向层,所述量子棒设置在上下基板的取向层之间。
  21. 根据权利要求18所述的显示面板,其中所述上基板为彩膜基板,所述量子棒受激发射白色光。
  22. 根据权利要求18所述的显示面板,其中所述量子棒受激发射 多种颜色的光。
PCT/CN2016/082429 2016-02-01 2016-05-18 一种量子棒、量子棒制作方法和显示面板 WO2017133130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,352 US10505152B2 (en) 2016-02-01 2016-05-18 Quantum rod, method of manufacturing quantum rod and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610068988.4 2016-02-01
CN201610068988.4A CN105511150A (zh) 2016-02-01 2016-02-01 一种量子棒、量子棒制作方法和显示面板

Publications (1)

Publication Number Publication Date
WO2017133130A1 true WO2017133130A1 (zh) 2017-08-10

Family

ID=55719240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082429 WO2017133130A1 (zh) 2016-02-01 2016-05-18 一种量子棒、量子棒制作方法和显示面板

Country Status (3)

Country Link
US (1) US10505152B2 (zh)
CN (1) CN105511150A (zh)
WO (1) WO2017133130A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板
KR102640897B1 (ko) * 2016-09-13 2024-02-26 엘지디스플레이 주식회사 양자막대, 그 합성 방법 및 양자막대 표시장치
CN106283398B (zh) * 2016-10-26 2019-09-24 南方科技大学 一种利用静电纺丝技术制备量子棒/聚合物纤维膜的方法
KR20180077503A (ko) * 2016-12-29 2018-07-09 엘지디스플레이 주식회사 퀀텀 로드, 퀀텀 로드 필름 및 퀀텀 로드 표시장치
CN107153304A (zh) * 2017-07-20 2017-09-12 武汉华星光电技术有限公司 液晶显示器
CN113122259A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 一种复合材料及其制备方法、偏振片与液晶显示器
CN111592878A (zh) * 2020-05-27 2020-08-28 Tcl华星光电技术有限公司 量子棒及其制作方法、液晶显示面板
CN111722419B (zh) 2020-07-07 2021-11-02 Tcl华星光电技术有限公司 纳米复合颗粒及磁控显示装置
CN112327537A (zh) * 2020-11-03 2021-02-05 重庆惠科金渝光电科技有限公司 彩膜基板及其制备方法和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091892A (zh) * 2011-10-28 2013-05-08 乐金显示有限公司 液晶显示装置
KR20140021735A (ko) * 2012-08-09 2014-02-20 엘지디스플레이 주식회사 나노입자 및 그 제조방법
CN103840052A (zh) * 2012-11-23 2014-06-04 乐金显示有限公司 量子棒及其制造方法
CN105093677A (zh) * 2015-08-11 2015-11-25 深圳市华星光电技术有限公司 液晶显示器及其液晶显示模组
WO2016002434A1 (ja) * 2014-06-30 2016-01-07 富士フイルム株式会社 液晶表示装置
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0404442D0 (en) 2004-02-27 2004-03-31 Trackdale Ltd Composite quantum dot structures
CN101343540B (zh) * 2008-08-28 2011-02-16 上海交通大学 利用超支化聚合物超分子纳米反应器制备量子点的方法
AU2012298650A1 (en) * 2011-08-24 2014-03-27 Tpk Holding Co., Ltd. Patterned transparent conductors and related manufacturing methods
US8350251B1 (en) * 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
WO2013086384A1 (en) 2011-12-08 2013-06-13 Oracle International Corporation Techniques for maintaining column vectors of relational data within volatile memory
US9228717B2 (en) * 2013-11-28 2016-01-05 Lg Display Co., Ltd. Quantum rod compound including electron acceptor and quantum rod luminescent display device including the same
KR20160093140A (ko) * 2015-01-28 2016-08-08 삼성디스플레이 주식회사 액정 표시 장치
CN105068330B (zh) 2015-08-17 2018-04-20 深圳市华星光电技术有限公司 一种液晶显示面板及其制作方法
CN105061732B (zh) * 2015-09-28 2018-01-09 吉林大学 一种含碲导电高分子复合纳米线及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091892A (zh) * 2011-10-28 2013-05-08 乐金显示有限公司 液晶显示装置
KR20140021735A (ko) * 2012-08-09 2014-02-20 엘지디스플레이 주식회사 나노입자 및 그 제조방법
CN103840052A (zh) * 2012-11-23 2014-06-04 乐金显示有限公司 量子棒及其制造方法
WO2016002434A1 (ja) * 2014-06-30 2016-01-07 富士フイルム株式会社 液晶表示装置
CN105093677A (zh) * 2015-08-11 2015-11-25 深圳市华星光电技术有限公司 液晶显示器及其液晶显示模组
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板

Also Published As

Publication number Publication date
CN105511150A (zh) 2016-04-20
US10505152B2 (en) 2019-12-10
US20180212202A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017133130A1 (zh) 一种量子棒、量子棒制作方法和显示面板
Srivastava et al. Luminescent down‐conversion semiconductor quantum dots and aligned quantum rods for liquid crystal displays
Demchyshyn et al. Confining metal-halide perovskites in nanoporous thin films
Chen et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals
Lu et al. Strong Polarized Photoluminescence from Stretched Perovskite‐Nanocrystal‐Embedded Polymer Composite Films
Lin et al. Giant optical anisotropy of perovskite nanowire array films
Chen et al. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity luminescence quantum yield: large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application
Lin et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes
Schmidt et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles
Wang et al. Patterning of red, green, and blue luminescent films based on CaWO4: Eu3+, CaWO4: Tb3+, and CaWO4 phosphors via microcontact printing route
Booker et al. Synthesis, characterization, and morphological control of Cs2CuCl4 nanocrystals
WO2018090858A1 (zh) 一种波段可调谐的红外反射器件及其制备方法
Yang et al. High water resistance of monoclinic CsPbBr3 nanocrystals derived from zero-dimensional cesium lead halide perovskites
Cortecchia et al. Cathodoluminescence of self-organized heterogeneous phases in multidimensional perovskite thin films
CN109656050A (zh) 液晶显示设备及其制造方法
CN1741097A (zh) 透反射式显示装置和制造该透反射式显示装置的方法
WO2017049788A1 (zh) 阵列基板及其制作方法
KR102608422B1 (ko) 액정 표시 장치 및 이의 제조 방법
Bi et al. Efficient quasi-two-dimensional perovskite light-emitting diodes with improved multiple quantum well structure
CN105700222B (zh) 量子点彩膜基板及其制作方法、显示装置
JP2010144032A (ja) 偏光調整型電気光学装置のための液晶ディスプレイ用ナノロッド配合物
Zhou et al. Highly photoluminescent CsPbBr3/CsPb2Br5 NCs@ TEOS nanocomposite in light-emitting diodes
Kurilov et al. Highly luminescent nanocomposites of nematic liquid crystal and hybrid quantum dots CdSe/CdS with ZnS shell
Wu et al. Effect of cation vacancy on lattice and luminescence properties in CsPbBr3 quantum dots
Moon et al. Mixed halide CsPb (Br1-xIx) 3 nanocrystals for green, orange, and red light-emitting diodes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329352

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888952

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16888952

Country of ref document: EP

Kind code of ref document: A1