WO2017131459A1 - 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법 - Google Patents

사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법 Download PDF

Info

Publication number
WO2017131459A1
WO2017131459A1 PCT/KR2017/000939 KR2017000939W WO2017131459A1 WO 2017131459 A1 WO2017131459 A1 WO 2017131459A1 KR 2017000939 W KR2017000939 W KR 2017000939W WO 2017131459 A1 WO2017131459 A1 WO 2017131459A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
base station
transmission
tone
coverage level
Prior art date
Application number
PCT/KR2017/000939
Other languages
English (en)
French (fr)
Inventor
이태진
김윤민
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160011893A external-priority patent/KR20170090917A/ko
Priority claimed from KR1020160025783A external-priority patent/KR20170103249A/ko
Priority claimed from KR1020160154109A external-priority patent/KR102527359B1/ko
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Priority to US15/524,466 priority Critical patent/US10506605B2/en
Priority to CN201780007132.9A priority patent/CN108476539B/zh
Publication of WO2017131459A1 publication Critical patent/WO2017131459A1/ko
Priority to US16/591,704 priority patent/US11064495B2/en
Priority to US17/342,862 priority patent/US11805534B2/en
Priority to US18/469,846 priority patent/US20240008064A1/en
Priority to US18/404,968 priority patent/US20240147549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method of performing random access in an IoT communication terminal or an IoT communication device. More specifically, the random access execution process of an IoT communication terminal or an IoT communication device in a cellular-based Internet of Things (IoT) environment is continuously performed. In case of failure, the present invention relates to a method for selecting an efficient preamble and performing random access.
  • IoT Internet of Things
  • a reliable connection is provided based on wide coverage in a licensed band to provide services of terminals existing at large scale, for example, an IoT terminal or an IoT communication device. Aim.
  • NB-IoT Near Band-IoT
  • MTC machine type communication
  • NB-IoT uses 180kHz- to provide IoT services suitable for sensor-centric applications at low data rates.
  • OFDMA Orthogonal frequency division multiple access
  • very small subcarrier spacing for example, 15 kHz subcarrier spacing can be used.
  • SC-FDMA may be used in the NB-IoT uplink.
  • NB-IoT uplink 3.75 kHz or 15 kHz subcarrier spacing can be used.
  • Random access is a kind of data transmission procedure that the terminal transmits to the base station at any time for connection and data transmission of the base station of the terminal, and serves as a starting point of communication that starts at all terminals.
  • the base station can successfully receive a signal of a random access process transmitted from a very far-end terminal with an extended coverage of 20 dB or more to reflect the NB-IoT service characteristic requiring a wide coverage area, and also receives a response signal for this.
  • LTE random access is used for various purposes such as initial access and scheduling request when establishing a radio link, and the main purpose of random access is to achieve uplink synchronization and prepare for data transmission.
  • the random access can be contention-based random access or contention-free random access.
  • CCs coverage classes
  • CL coverage level
  • MCS modulation and coding scheme
  • NB-IoT may define and support three configurations according to whether subcarrier spacing and / or multi-tone support is used by the UE in uplink transmission. . Performance characteristics for each subcarrier spacing configuration and / or multi-tone configuration for uplink transmission are shown in Table 1.
  • a random access procedure of the UE fails and random access (RAR) for preamble transmission (Preamble, Message1) when the UE performs random access at a selected coverage class (CC) or coverage level (CL). If it fails to receive the Access Response, Message2, or does not receive the Contention Resolution (Message4) that is a response to the connection request (Connection3), it re-executes the random access procedure and starts again from the preamble transmission. . At this time, if the preamble retransmission occurs more than a predetermined number of times in advance, the UE changes to a coverage class (CC) or coverage level (CL) that supports a lower channel state and performs random access again to prepare for data transmission.
  • RAR random access
  • the procedure of performing random access re-execution after changing the coverage class (CC) or coverage level (CL) is increased repetition when the UE performs random access at the changed coverage class (CC) or coverage level (CL). Since the random access procedure needs to be performed again from the beginning in the corresponding PRACH, the operation time and the delay time of the UE are greatly increased.
  • each terminal of the coverage class (CC) or coverage level (CL) corresponding to subcarrier spacing and / or multi-tone configuration is performed.
  • the present invention provides a method of using a sequential preamble resource in a random access process in consideration of step-by-step performance of subcarrier spacing and / or multi-tone configuration.
  • a coverage class (CC) or a coverage level (CL) is primarily used.
  • a cellular-based IoT system e.g., NB-IoT-
  • it is effective to consider coverage class (CC) or coverage level (CL) and uplink subcarrier spacing and / or multi-tone configuration.
  • CC coverage class
  • CL coverage level
  • uplink subcarrier spacing and / or multi-tone configuration Provides a random access method.
  • embodiments of the present invention provides a simplified data transmission method that can reduce delay time and energy consumption of terminals transmitting small data in a cellular-based IoT system.
  • a random access method in a terminal for uplink data transmission in a random access process between a cellular-based MTC terminal and a base station includes: performing a random access process between the MTC terminal and the base station;
  • the random access process includes selecting a physical random access channel (PRACH) resource in consideration of coverage level and multi-tone transmission support.
  • PRACH physical random access channel
  • the step of selecting a random access resource in consideration of the coverage level and multi-tone transmission support includes a message requesting connection for transmission of uplink data by the MTC terminal (Message3). If the transmission is not yet performed, the random access resource may be selected in consideration of the selected coverage level and multi-tone transmission support.
  • selecting a random access resource in consideration of the selected coverage level and multi-tone transmission support may include selecting the MTC terminal. If the number of preamble transmissions exceeds the maximum number of preamble transmissions due to continuous transmission failure or contention resolution failure of Msg3 requesting connection for uplink data transmission, It is possible to select random access resources using subcarrier spacing and / or multi-tone settings used within the same coverage level.
  • the step of selecting a random access resource in consideration of the coverage level and multi-tone transmission support includes a message requesting connection for transmission of uplink data by the MTC terminal (Message3). If the transmission has not yet been performed, the method may include selecting a random access resource corresponding to the selected coverage level and corresponding to the multi-tone transmission support.
  • selecting a random access resource in consideration of the selected coverage level and multi-tone transmission support may include selecting the MTC terminal. If a message (Message3) requesting connection for uplink data transmission has not yet been transmitted, a random access resource using a multi-tone configuration used within the same coverage level as the selected coverage level may be selected.
  • selecting a random access resource in consideration of the selected coverage level and multi-tone transmission support may include selecting the MTC terminal.
  • the method may include performing random access by changing a multi-tone setting at the same coverage level as the selected coverage level.
  • selecting a random access resource in consideration of the selected coverage level and multi-tone transmission support may include selecting the MTC terminal.
  • a random access resource is set in stages in consideration of the coverage level and subcarrier spacing and / or multi-tone transmission support, and When performing random access, the MTC terminal may select a random access resource step by step.
  • random access is performed by changing the subcarrier spacing and / or multi-tone setting at the same coverage level as the selected coverage level.
  • the step of performing the random access by finally changing the selected coverage level when the random access fails after the attempted random access until the last step of the subcarrier spacing and / or multi-tone setting combination provided within the selected coverage level. It may include.
  • the coverage level may include normal coverage, robust coverage, and extreme coverage.
  • the random access procedure between the MTC terminal and the base station may be applied to a cellular-based narrowband (Narrowband) MOT.
  • Narrowband narrowband
  • the MTC terminal may include a NB-IoT terminal that can access a wireless access network using a channel bandwidth of 180 kHz.
  • Whether to support the multi-tone transmission may be whether to support the multi-tone Message 3 transmission.
  • the random access process may further include selecting the coverage level in the MTC terminal.
  • the MTC may perform the first random access preamble transmission.
  • the random access procedure between the MTC terminal and the base station may include transmitting a random access preamble to the base station by the MTC terminal, receiving a random access response (RAR) message from the base station at the MTC terminal; Transmitting a message (Message 3) requesting connection for uplink data transmission from the MTC terminal to the base station, and indicating that the message 3 transmitted from the MTC terminal has been received from the MTC terminal to the base station; Receiving contention resolution may be included.
  • the random access procedure may be performed when a random access preamble to be used is not explicitly signaled from the base station.
  • a MTC terminal performing a random access process for uplink data transmission with a base station for cellular-based MTC communication includes: a transceiver for transmitting or receiving a radio signal with a base station through an antenna, and the transceiver And a processor configured to determine when to transmit the wireless signal, wherein the processor processes a random access process between the MTC terminal and the base station, wherein the random access process includes a coverage level and a multi-tone.
  • the method may include selecting a random access resource in consideration of transmission support.
  • a MTC device performing a random access process for uplink data transmission with a base station for cellular-based MTC communication, includes: a transceiver for transmitting or receiving a base station and a radio signal through an antenna; And a processor configured to control a transceiver to determine when to transmit the wireless signal, wherein the processor processes a random access process between the MTC device and the base station, wherein the random access process comprises a coverage level and a multi-process.
  • the method may include selecting a random access resource in consideration of whether tone transmission is supported.
  • a random access method between a cellular-based MTC terminal and a base station, wherein the base station receives a random access preamble from the MTC terminal and a random access response (RAR) to the MTC terminal. Transmitting a message; receiving, by the base station, a message (Message 3) requesting connection for transmission of uplink data from the MTC terminal; transmitting the MTC terminal from the base station to the M2 terminal And transmitting a Content Resolution Resolution (CR) indicating that a Message 3 has been received to the base station, wherein the random access process selects a random access resource in consideration of a coverage level and multi-tone transmission support.
  • RAR random access response
  • a base station performing a random access process for uplink data transmission with a cellular-based MTC terminal includes a transceiver for transmitting or receiving a radio signal with the MTC terminal through an antenna, and the transceiver. And controlling the processor to determine when to transmit the wireless signal, wherein the processor receives a random access preamble from the MTC terminal and transmits a random access response (RAR) message to the MTC terminal. And receiving a message (Message 3) requesting connection for uplink data transmission from the MTC terminal, and informing that the MTC has received the message 3 transmitted from the MTC terminal to the base station. Processing contention resolution, wherein the random amount is received. 'S coverage level process and a multi-access resource is randomly selected in consideration of whether or not the tone transfer support.
  • the base station sets a criterion for determining whether the small data is small in system information (SI) or downlink control information (DCI). It can be included in the broadcast, the terminal can be determined by defining the criteria in advance.
  • the base station may separately configure a random access channel for a small data transmission terminal and a random access channel for a general terminal, and may transmit a DCI including resource allocation information for uplink / downlink transmission. .
  • Each terminal may transmit data of a predetermined size and operate in a sleep mode until data to be transmitted occurs.
  • the small data transmission support method is largely divided into a small data transmission request process and a small data transmission process of a terminal.
  • the terminal may power on for the first time and generate data to be transmitted.
  • the terminal may first synchronize with the base station and receive system information. After receiving the system information, the terminal can determine whether the small data can be transmitted by comparing the information displayed on the system information or a predefined value. If small data transmission is possible, the UE performs random access for small data transmission request, and performs the small data transmission process in a method optimized for small data transmission after approval of the request. Can be.
  • the UE when the MOT terminal or the MOT device operating in the cellular-based IoT system performs random access, the UE performs an efficient random access process corresponding to the coverage class or coverage level and the subcarrier spacing setting and / or the multi-tone setting. It provides a way to do this.
  • the coverage class (CC) or the coverage level and the subcarrier spacing setting and / or multi- By selecting the PRACH resource and the preamble in consideration of the tone transmission support, the coverage class (CC) or coverage level introduced to support a wide coverage service is further subdivided so that the MTC terminal or the MTC device can obtain data at an optimal setting. Allow to transmit.
  • the IoT communication terminal or an IoT communication device may perform subcarrier spacing and coverage within a coverage class or coverage level. And / or multi-tone setting to maximize utilization of the segmented transmission method, thereby minimizing coverage class or coverage level changes and thus operating time of the MTC terminal or MTC device that occurs when the coverage class or coverage level is changed. And easing the increase in latency can improve energy consumption and latency performance.
  • the present invention provides a transmission protocol that can streamline the operation of the terminal performing small data transmission in the IoT environment.
  • a transmission protocol that can streamline the operation of the terminal performing small data transmission in the IoT environment.
  • FIG. 1 is a conceptual diagram illustrating a PRACH resource configuration in a time-frequency domain in an existing LTE environment.
  • FIG. 2 is a conceptual diagram illustrating uplink single-tone transmission when using 3.75 kHz subcarrier spacing in NB-IoT (Narrow Band-Internet of Thing).
  • FIG. 3 is a conceptual diagram illustrating uplink single-tone transmission or multi-tone transmission when 15 kHz subcarrier spacing is used in NB-IoT (Narrow Band-Internet of Thing).
  • FIG. 4 is a conceptual diagram illustrating a PRACH resource configuration including a single-tone preamble and a multi-tone preamble.
  • FIG. 5 is a flowchart illustrating a random access process between a MTC terminal and a base station in a cellular-based narrowband (MNW) M2C according to an embodiment of the present invention.
  • MNW narrowband
  • 6 is a flowchart illustrating Message 3 collision due to the same preamble selection of a terminal during a random access operation.
  • FIG. 7 is a flowchart illustrating an operation when message 3 transmission is not yet performed in FIG. 6.
  • FIG. 8 is a conceptual diagram illustrating the status and order of PRACH resource usage according to base station environment and coverage level according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a configuration of PRACH preamble resources according to coverage levels of FIG. 8.
  • FIG. 10 is a flowchart illustrating a method of performing random access for uplink data transmission in consideration of a coverage level.
  • 11 is a flowchart illustrating a method of performing random access for uplink data transmission of a terminal in consideration of coverage level, subcarrier spacing, and / or multi-tone configuration according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of performing random access for uplink data transmission of a terminal in consideration of coverage level, subcarrier spacing, and / or multi-tone configuration according to another embodiment of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a resource allocation example for performing random access for uplink data transmission of a terminal in consideration of coverage level and subcarrier spacing configuration according to another embodiment of the present invention.
  • FIG. 14 is a conceptual diagram illustrating a resource allocation example for performing random access for uplink data transmission of a terminal in consideration of coverage level and multi-tone configuration according to another embodiment of the present invention.
  • 15 is a schematic block diagram of an NB-IoT terminal according to an embodiment of the present invention.
  • 16 is a schematic block diagram of an NB-IoT communication system according to an embodiment of the present invention.
  • 17 is a flowchart illustrating a message exchange procedure with a base station for explaining a small data transmission request and a transmission process of an NB-IoT terminal according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the terminal may be a mobile station (MS), user equipment (UE), user terminal (UT), wireless terminal, access terminal (AT), terminal, fixed or mobile subscriber unit, subscriber station (SS) Subscriber Stations, cellular telephones, wireless devices, wireless communication devices, Wireless Transmit / Receive Units (WTRUs), mobile nodes, mobiles, mobile stations, personal digital assistants (PDAs) ), Smartphone, laptop, netbook, personal computer, wireless sensor, consumer electronics (CE) or other terms.
  • MS mobile station
  • UE user equipment
  • UT wireless terminal
  • AT access terminal
  • SS subscriber station
  • WTRUs Wireless Transmit / Receive Units
  • mobile nodes mobiles, mobile stations, personal digital assistants (PDAs)
  • PDAs personal digital assistants
  • Smartphone laptop, netbook, personal computer, wireless sensor, consumer electronics (CE) or other terms.
  • CE consumer electronics
  • Various embodiments of the terminal may be photographed such as a cellular telephone, a smart phone having a wireless communication function, a personal digital assistant (PDA) having a wireless communication function, a wireless modem, a portable computer having a wireless communication function, or a digital camera having a wireless communication function.
  • PDA personal digital assistant
  • a base station generally refers to a fixed point for communicating with a terminal, and includes a base station, a Node-B, an eNode-B, an advanced base station (ABS), HR-BS, site controller, base transceiver system (BTS), access point (AP), or any other type of interfacing device capable of operating in a wireless environment may be included.
  • the base station may include other base stations and / or network elements (not shown), such as a base station controller (BSC), radio network controller (RNC), relay nodes, and the like. It can be part.
  • BSC base station controller
  • RNC radio network controller
  • the base station may be configured to transmit and / or receive wireless signals within a particular geographic area, which may be referred to as a cell (not shown).
  • the cell may also be divided into cell sectors.
  • a cell associated with a base station can be divided into three sectors.
  • the base station may include three transceivers, one transceiver for each sector of the cell.
  • the base station may use multiple-input multiple output (MIMO) technology, and thus may utilize multiple transceivers for each sector of the cell.
  • MIMO multiple-input multiple output
  • the terminal includes a communication terminal for implementing a thing communication by embedding a communication function with a sensor.
  • the MTC terminal may include a Machine Type Communication (MTC) terminal, or a NB-IoT (Narrow band Internet of Thing) terminal.
  • MTC Machine Type Communication
  • NB-IoT Near band Internet of Thing
  • NB-IoT (NB-IoT) terminal refers to a terminal that can access a wireless access network of 180kHz channel bandwidth of NB-IoT, a cellular narrowband technology for realizing a low power IoT network providing extended coverage in a licensed band.
  • the narrow bandwidth can be operated in in-band using a portion of resources in the existing LTE network, guard-band using a guard frequency band, and stand-alone mode using a portion of the GSM band.
  • NB-IoT In the case of NB-IoT, 1 PRB is divided into 12 subcarriers to support IoT service within the 200 kHz band of the existing GSM. However, instead of reducing the existing bandwidth by 1/6, the NB-IoT is increased 6 times in the time domain (6: 1 time). stretch) can be used.
  • NB-IoT may have a plurality of coverage levels or coverage classes, and the coverage level or coverage class may be, for example, basic coverage (144 dB MCL) and robust coverage. , 154dB MCL), and extreme coverage (extreme coverage, 164dB MCL).
  • the NB-PRACH uplink transmission can be performed in frequency hopping together with single-tone transmission capable of guaranteeing performance in an extreme coverage environment and providing low power and low complexity of the UE.
  • NB-PRACH uses 3.75khz subcarrier spacing, providing improved performance in more preamble and extreme coverage environments compared to 15khz, up to 40km cell size Can support
  • the NB-PRACH may be provided with two cyclic prefix (CP) lengths to support different cell sizes.
  • CP cyclic prefix
  • NB-PRACH repetition transmission is a method of configuring NB-PRACH resources for supporting NB-IoT terminals belonging to different coverage classes.
  • the UEs may operate by selecting an NB-PRACH having appropriate repetitive transmission according to the coverage class.
  • the NB-PRACH repeated transmission may be provided a predetermined number of times in a predetermined set ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ , and the eNB may consider the predetermined set in consideration of three coverage classes. Up to three types of NB-PRACH repetitive transmission can be configured.
  • the UE transmits at maximum power in the NB-PRACH except for the lowest repetition level having a high coverage level, and in other cases, the UE is power ramping.
  • the NB-PRACH can be transmitted to implement a low power operation.
  • the NB-IoT terminal may fail to receive Msg4 after Msg3 transmission after RAR reception in a random access process.
  • the UE retransmits Msg3 repeatedly and determines that the coverage class is inconsistent and changes the coverage class when continuous Msg4 reception fails for a specific number of times.
  • the number of retransmissions until the coverage level is changed may be indicated by downlink control information (DCI) in the NB-PDCCH.
  • DCI downlink control information
  • NPRACH is used in the same meaning as NB-PRACH.
  • subcarrier spacing of 3.75 kHz and 15 kHz may be used for uplink (UL) transmission.
  • uplink subcarrier spacing may have 3.75 kHz or 15 kHz, and may indicate 3.75 kHz or 15 kHz with 1 bit information and indicate the UL grant in the RAR message. That is, whether or not to use 3.75 kHz or 15 kHz in NB-IoT may indicate whether subcarrier spacing is used by using 1 bit in UL grant (uplink allocation) in the RAR message transmitted by the base station.
  • two subcarrier spacings of 3.75 kHz or 15 kHz may be specifically used in a random access process through an RAR message.
  • the frequency location in subcarrier offset may have seven values, for example 0, 12, 24, 36, 2, 18, 34, It can be represented by 3 bits.
  • the number of subcarriers may have four values, for example, 12, 24, 36, and 48, and may be represented by 2 bits.
  • NB-PRACH repetition may be made using contiguous subframes within one period. Specifically, NB-PRACH repetitions may be transmitted in succession in successive subframes within one period for NB-PRACH (transmitted back-to-back).
  • the frequency location in subcarrier offset may vary depending on the number of subcarriers (eg, 12, 24, 36, 48). Specifically, the frequency location in subcarrier offset is 0, 12, 24, 36, 2, 18 depending on the number of subcarriers (eg, 12, 24, 36, 48). , 34, and the number of subcarriers and the frequency position within the subcarrier offset may be defined in a predetermined table in advance.
  • the adjustment of the uplink transmission timing may be achieved by the first NB starting at least some time after the end of the corresponding timing advance command transmission, e.g. 12ms. Can be applied from the start of PUSCH transmission.
  • the timing advance command may be included in the RAR and transmitted.
  • NB-PRACH configuration in the NB-IoT up to three NB-PRACH resource configurations can be configured in one cell.
  • PRACH resources can be actually divided for single-tone and multi-tone transmission.
  • the PRACH subcarriers may be divided for single-tone and multi-tone transmission.
  • subcarrier resources to be used in the PRACH may be divided according to single-tone transmission or multi-tone transmission.
  • a subcarrier for single-tone transmission may be guaranteed (can not be zero) in a specific PRACH resource.
  • the ratio of the number of subcarriers to use for single-tone MSG3 transmission may not be zero in at least one resource having at least NB-PRACH repetitions 32, 64, 128.
  • the ratio of the number of subcarriers to be used for the singleton MSG3 transmission cannot be zero in resources having at least 32, 64, and 128 NB-PRACH repetitions.
  • Multi-tone MSG3 transmission may not be supported when the NB-PRACH repetitions are 32, 64, 128.
  • the range of subcarrier resources used for multi-tone transmission can be represented by using 2 bits.
  • a starting subcarrier index of a subcarrier range reserved for a UE supporting multi-tone Msg3 transmission may be indicated through, for example, 2 bits ( ⁇ 0, 1/3, 2/3, 1).
  • ⁇ x N_sc ⁇ NB-PRACH represents the total number of subcarriers
  • 1/3 x N_sc ⁇ NB-PRACH represents one third of the total subcarriers.
  • the subcarrier for single-tone Msg 3 transmission may be used. If the UE selects a reserved resource for the singleton MSG3 message, the MSG3 message may be assigned to the singleton. This means that if all PRACH resources do not have a reserved subcarrier range for use by a UE that supports multitone MSG3 transmission, the UE should use the reserved NB-PRACH resources for singletone MSG3 transmission.
  • subcarriers may be utilized as a range for single tone MSG3 transmission.
  • Msg3 message subcarrier allocation may be equal to UL grant allocation on the NB-PDCCH.
  • the Msg3 repetition number may be equal to the NB-PUSCH repetition number.
  • 3.75 kHz and 15 kHz subcarrier spacing can be robust in poor channel conditions due to the relatively high power spectral density (PSD) performance of 3.75 kHz and 15 kHz subcarrier spacing.
  • PSD power spectral density
  • the uplink transmission rate of the UE can be improved through a relatively wide bandwidth, but use of a good channel state is required. Accordingly, performance improvement can be expected by providing two subcarrier spacings of 3.75 kHz and 15 kHz according to the channel state of the terminal.
  • Multi-tone transmission has the effect of improving the transmission rate compared to single-tone transmission using multiple subcarriers.
  • the following formula used in RAN1 can be reused for power ramping in NB-PRACH. However, a (-10 * log10 (numRepetitionPerPreambleAttempt) term may be added, and the added term may be corrected through the added term.
  • -REAMBLE_RECEIVED_TARGET_POWER is defined as preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER-1) * powerRampingStep-10 * log10 (numRepetitionPerPreambleAttempt), where DELTA_PREAMBLE is 0.
  • NB-IoT channels and signals are calculated according to the physical Cell_ID.
  • -specific reference signals which can occupy REs (Resource Elements).
  • CSI-RS channel state information-reference signals
  • PRS positioning reference signals
  • the NB-PDCCH and NB-PDSCH may be rate matched around LTE Cell-specific reference signals (CRS) for in-band operation.
  • the NB-IoT UE that receives the grant from the NB-PDCCH is between the start of the corresponding NB-PDSCH or NB-PUSCH transmission and the end of the NB-PDCCH scheduling the grant. It is not necessary to additionally monitor the NB-PDCCH for any DL grant or UL grant during the time period.
  • UEs in lower coverage invalidate NB-PRACH opportunities collision with higher coverage level (s). I can treat it as one. UEs can only use NB-PRACH opportunities that are valid for Msg1 transmission.
  • a terminal may start a random access process when link establishment or reconfiguration with a base station eNB (eNodeB) is required for data transmission. Random access may operate in a non-competitive manner or a competitive manner depending on the purpose.
  • eNodeB base station eNB
  • the non-competitive random access process is used only for a special purpose such as a handover, and in general, the UE transmits data by establishing a connection with an eNB through a competitive random access.
  • FIG. 1 is a conceptual diagram illustrating a PRACH resource configuration in a time-frequency domain in an existing LTE environment.
  • a resource for performing random access includes a continuous time-frequency random access resource 12 called a random access (RA) slot, and the terminal transmits a preamble in a RA slot. You can start the request.
  • RA random access
  • a resource on which the preamble is transmitted is called a PRACH (Physical Random Access Channel), and is allocated to a predetermined portion of a PUSCH channel.
  • PRACH Physical Random Access Channel
  • the PRACH resource in the frequency domain has a bandwidth corresponding to six resource blocks (RBs).
  • Each cell provides 64 preambles, some of which are reserved to support non-competitive random access, and the remaining preamble resources are divided into Group A and Group B resources.
  • Group A is used to send small packets
  • Group B is used to send large packets.
  • random access related parameters such as the periodicity of the RA slot, the number of preambles used in contention-based random access, and the maximum message size allowed in Group A are transmitted to the UE through a SIB 2 (System Information Block 2) message.
  • SIB 2 System Information Block 2
  • NB-IoT Near Band-Internet of Thing uplink and random access transmission can be used by allocating a reduced 180 kHz band, single-tone transmission using a single subcarrier and multiple subcarriers It can be divided into multi-tone transmission.
  • FIG. 2 is a conceptual diagram illustrating uplink single-tone transmission when a terminal uses 3.75 kHz subcarrier spacing in NB-IoT (NB-IoT), and FIG. 3 is a narrow band-NoT (NB-IoT).
  • Internet of Thing is a conceptual diagram for explaining uplink single-tone transmission or multi-tone transmission when using 15kHz subcarrier spacing.
  • a single-tone transmission 20 using 3.75 kHz subcarrier spacing as shown in FIG. 2 or a single-tone transmission 30 using 15 kHz subcarrier spacing as shown in FIG. 3 is possible.
  • the data rate is low due to the use of a narrow frequency band, but the power is concentrated in the frequency band, so that the coverage efficiency is high even in a bad channel condition, and the device cost and device complexity are reduced compared to the multi-tone transmission method. Can be.
  • the terminal is capable of multi-tone transmission 35 using 15 kHz subcarrier spacing as shown in FIG.
  • Multi-tone transmission guarantees a high data rate with the use of multiple subcarriers, but requires a relatively wide bandwidth, which requires good channel conditions, which can increase device cost and increase device complexity due to increased signal processing. .
  • FIG. 4 is a conceptual diagram illustrating a PRACH resource configuration including a preamble for performing single-tone and multi-tone Msg3 transmission in an NB-IoT system.
  • the PRACH resources are 0, 1,... , ( -1) single-tone preamble 40 and ( ),... , ( It may be composed of a multi-tone preamble 50 numbered as -1).
  • the PRACH resource may be defined by the following parameters transmitted from the base station to the terminal.
  • FIG. 5 is a flowchart illustrating a random access process between an MTC terminal and a base station in a cellular-based narrowband NM according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating the same preamble selection of a terminal during a random access operation.
  • the following flowchart illustrates Message 3 collision.
  • the NB-IoT terminal starts random access and transmits a preamble to the base station (step 501).
  • the terminal randomly selects one preamble within a resource corresponding to the coverage level and transmits it to the base station.
  • Different preambles transmitted to the base station by orthogonality between the preambles may be received by the base station.
  • the base station may receive the preambles (steps 601 and 603).
  • the base station may receive the preambles (steps 601 and 603).
  • a collision may occur in a subsequent message 3 transmission process of the subsequent terminals.
  • the base station transmits a random access response (RAR) message including resource information (for example, a physical uplink shared channel (PUSCH) resource) for timing alignment (TA) and Message3 transmission.
  • RAR random access response
  • the terminal transmits to the terminal through a shared channel.
  • the terminal may determine whether the preamble reception previously transmitted by the terminal itself is successful by receiving the RAR message. If the preamble transmission has failed, the UE performs the preamble transmission for re-execution of the random access procedure in the new RA slot after the random backoff time. If the preamble transmission fails more than a certain number of times, the UE informs the upper layer of the problem of the random access procedure.
  • the UE After the UE receives the random access response (RAR), the UE transmits a connection request (Message3) in the reserved resource in the PUSCH (Physical Uplink Shared Channel) (505). Message 3 transmission is performed by HARQ method.
  • a connection request (Message3) in the reserved resource in the PUSCH (Physical Uplink Shared Channel) (505).
  • Message 3 transmission is performed by HARQ method.
  • the plurality of terminals A collision occurs by performing Message 3 transmission (steps 611 and 613) on the same PUSCH resource.
  • Message 3 is a message that the terminal performs a connection request to the base station for uplink data transmission.
  • the terminal may perform uplink transmission on the allocated resource.
  • the terminal transmits the preamble for the first time, it is determined that Msg3 has not been transmitted yet (added), and the preamble is selected and transmitted from the PRACH resource corresponding to the coverage level determined by the terminal.
  • the UE determines that the Msg3 retransmission process is in progress, and randomly selects the preamble again from the resource for which the first preamble is selected, and attempts random access. If the preamble transmission exceeds the maximum preamble transmission, the coverage level is changed, and the preamble transmission is reset to 1.
  • the base station receiving the message 3 of the terminal approves the connection request to the terminal in response to Contention Resolution (CR) in the Physical Uplink Shared Channel (PDSCH) (step 507).
  • 6 shows Message 3 collision between two terminals (step 611 or 613).
  • the CR cannot be received from the BS, and the UE performs a new preamble transmission in a new RA slot after a random backoff time. If the preamble transmission fails more than a certain number of times, the UE determines that the network cannot be used.
  • FIG. 7 is a flowchart illustrating a random access operation when Message 3 transmission is not yet performed in FIG. 6.
  • Msg3 Message 3
  • the state in which Msg3 transmission has not yet been performed means a case of performing the first preamble transmission.
  • the PRACH resource is selected in consideration of the coverage level and the multi-tone transmission support (step 720).
  • the PRACH resource may be selected in consideration of the coverage level and subcarrier spacing and / or multi-tone transmission support.
  • Message 3 (Msg3) transmission has not been performed yet, it means a case of starting a random access process and performing a first preamble transmission.
  • the PRACH resource is considered in consideration of the coverage level and whether to support multi-tone Message 3 (Msg3) transmission. Can be selected.
  • the first preamble transmission is performed under other conditions after the preamble transmission frequency is initialized by exceeding the maximum preamble transmission frequency in the MTC terminal or without exceeding the maximum preamble transmission frequency. This is the case where the first random access preamble transmission is performed.
  • Msg3 Message 3
  • FIG. 8 is a conceptual diagram illustrating a state of use of PRACH resources according to base station environment and coverage level according to an embodiment of the present invention.
  • the present invention provides a method for performing random access considering a coverage level (CL), subcarrier spacing, and / or multi-tone configuration in a cellular-based IoT system, for example, an NB-IoT system.
  • CL coverage level
  • subcarrier spacing subcarrier spacing
  • / or multi-tone configuration in a cellular-based IoT system, for example, an NB-IoT system.
  • the base station 880 provides three coverage levels CL and subcarrier spacing and / or multi-tone using PRACH resources utilized for each coverage level CL. Organize resources so that they can be used according to their settings. However, this is only one of the embodiments of resource configuration in the present invention according to the performance characteristics of subcarrier spacing and / or multi-tone settings, and a combination of specific settings may be excluded or added. In the present invention, the present invention will be described in the direction that can maximize the sequential performance according to the subcarrier spacing and / or multi-tone setting.
  • the terminal is 1) 15 kHz, multi-tone, 2) 15 kHz, single- depending on the channel state-for example, cell center, good channel state, extreme coverage state- A combination of three combinations of single-tone, 3) 3.75 kHz, single-tone subcarrier and / or multi-tone can be used.
  • the preamble resource may be configured according to a setting value specifically supported for each coverage level.
  • the preamble resource is a ratio value.
  • the range may be determined according to the like, and the corresponding information may be included in a message indicating information constituting the PRACH resource as in the past and transmitted from the base station to the terminal.
  • CL1 has the best channel condition and therefore uses all three subcarrier and / or multi-tone settings, while CC2 has a relatively good channel condition.
  • the terminal performs synchronization with the base station for uplink data transmission and receives system information from the base station in synchronization with the base station.
  • the terminal may perform CL and subcarrier spacing and / or multi-tone depending on the channel state. Determine the setting.
  • the terminal receives PRACH resource information from the base station.
  • the terminal selects a preamble and transmits the selected signal to the base station in consideration of the selected CL and subcarrier spacing and / or multi-tone configuration.
  • the terminal receives a RAR (Random Access Response) from the base station and receives resource information that can be used for Msg3 transmission requesting a connection for uplink transmission.
  • RAR Random Access Response
  • the UE performs preamble transmission again, and selects and transmits a preamble from the same PRACH resource as the first selected configuration. If the maximum number of preamble retransmissions is exceeded, after changing the coverage level, the preamble is selected from the PRACH resources corresponding to the subcarrier spacing and / or multi-tone configuration possible within the corresponding coverage level and then transmitted.
  • the terminal performs transmission in the HARQ scheme on the allocated resource, and when the HARQ transmission fails due to a change in channel state or the terminal does not receive Msg4 even after the transmission of the Msg3, the terminal performs preamble transmission again.
  • the preamble is selected and transmitted from the same PRACH resource as the first selected configuration. If the maximum number of preamble retransmissions is exceeded, the coverage level, subcarrier spacing and / or multi-tone configuration are changed, and then a preamble is selected from a corresponding PRACH resource and then transmitted.
  • FIG. 10 is a flowchart illustrating a method for performing random access of a terminal for uplink data transmission considering a conventional coverage level
  • FIG. 11 is a diagram illustrating coverage level and subcarrier spacing and / or multi-tone configuration according to an embodiment of the present invention. Is a conceptual diagram illustrating a method of performing random access of a terminal for uplink data transmission in consideration of the present invention.
  • the terminal selects a coverage level and then selects and transmits a corresponding preamble resource.
  • the random access procedure can be completed by receiving the contention resolution which is a response from the base station.
  • the UE retryes random access by performing the preamble transmission process on the same PRACH resource again.
  • the terminal determines that the selected coverage level is not appropriate for the current channel situation, and changes to a coverage level that supports a lower channel state by one step.
  • the preamble is again selected from the PRACH resources to perform a random access procedure.
  • the procedure of performing the random access re-execution after the change of the coverage level (CL) is a process for the UE to wait for the PRACH (Physical RACH) resources for performing random access at the changed coverage level (CL), and random access in the PRACH Since the process must be performed again from the beginning, a problem arises in that the operation time and the delay time of the terminal increase greatly.
  • PRACH Physical RACH
  • the random access preamble is explicitly signaled from the base station (the random access preamble resource to be used is explicitly indicated).
  • the random access preamble is not explicitly signaled from the base station (the random access preamble resource to be used is not explicitly indicated).
  • the random access procedure of FIGS. 11 and 12 may be performed when a random access preamble to be used is not explicitly signaled from the base station.
  • a terminal may receive and use a RAR (Random Access Response) from a base station.
  • Receive resource information step 1101).
  • the terminal transmits a message (Msg3) requesting connection for uplink data transmission to the base station (step 1103), and the terminal checks whether Msg3 transmission fails due to a change in channel state. (Step 1105). If the Msg3 transmission does not fail, it is checked that the uplink transmission is successful (step 1107).
  • the terminal determines whether the number of Msg3 transmission failures is less than the maximum number of retransmissions (step 1109).
  • the maximum number of retransmissions may be included in downlink control information (DCI).
  • step 1101 If the number of Msg3 transmission failures is smaller than the maximum number of retransmissions, the process returns to step 1101 to perform the RACH procedure again to receive uplink resource information available from the base station to receive and use RAR (Random Access Response), and then attempts to transmit Msg3 again.
  • RAR Random Access Response
  • the UE has a sub-rate having a lower one-stage rate within the same coverage level CL according to an embodiment of the present invention instead of changing the existing coverage level CL.
  • the RACH process is performed again to retry the data Msg 3 transmission process.
  • the UE immediately retransmits using the PRACH resource information pre-allocated to the random access response (RAR) in consideration of the subcarrier spacing and / or multi-tone configuration change according to an embodiment of the present invention in the previous RACH process.
  • RAR random access response
  • Option 2 or performing the RACH process again on the PRACH resource (or preamble resource) using subcarrier spacing and / or multi-tone having one step lower transmission rate within the same coverage level (CL)
  • Msg 3 transmission can be attempted. If the UE continuously transmits failure even in the current subcarrier spacing and / or multi-tone configuration, the UE changes the coverage level to another coverage level and receives PRACH resource information corresponding to the corresponding coverage level (CL) before the RACH process. Do this.
  • the terminal selects a preamble resource by setting a 15kHz single-tone of the initial CL2. And a random access response (RAR), which is a response to the preamble transmission, from the base station.
  • RAR random access response
  • the preamble transmission may be attempted again. If the RAR is not received continuously and the number of preamble transmissions is exceeded, the terminal supports the channel state one step lower.
  • the random access procedure may be performed again by selecting a 3.75 kHz, single-tone configuration having a maximum transmission rate and then selecting a preamble from a corresponding PRACH resource.
  • the UE If successive Msg 3 transmission failures exceeding the maximum number of preamble transmissions in the random access process fail, the UE then has a lower transmission rate in the same CL according to an embodiment of the present invention instead of changing the existing coverage level (CL).
  • Subcarrier spacing and / or multi-tone setting 3.75kHz single-tone (single-tone) is selected to perform the RACH process again to retry the Msg 3 transmission process.
  • the UE immediately retransmits the PRACH resource information allocated by the base station to RAR (Random Access Response) in consideration of the subcarrier spacing and / or multi-tone configuration change according to an embodiment of the present invention in the previous RACH process.
  • RAR Random Access Response
  • the RACH process may be performed again in the PRACH resource for the 3.75 kHz single-tone transmission of CL2 (Option 1) to attempt data transmission (Msg 3). If the UE has a continuous Msg3 transmission failure more than the maximum number of preamble transmissions in the random access process even in the 3.75 kHz single-tone configuration, the coverage level is changed to CL3 to correspond to the corresponding coverage level (CL). After receiving the resource information, the RACH process is performed.
  • FIG. 12 is a flowchart illustrating a method of performing random access for uplink data transmission of a terminal in consideration of coverage level, subcarrier spacing, and / or multi-tone configuration according to another embodiment of the present invention.
  • the terminal selects a coverage level for a random access procedure (step 1201) and a corresponding preamble
  • the resource is selected and transmitted (step 1203).
  • uplink resources for Msg3 transmission are obtained together with the RAR, which is a response from the base station.
  • the terminal may perform Msg3 transmission in a HARQ scheme, and when Msg3 is received at the base station, may finally receive a Contention Resolution message from the base station to complete a random access process.
  • the failure of the random access process may be caused by the UE not receiving the RAR, failure of Msg3 transmission or reception of Contention Resolution. In each case, the UE attempts to transmit the preamble again in order to perform the random access procedure again.
  • the random access is re-executed, and it is determined whether the preamble transmission has exceeded the maximum preamble transmission (step 12130). Immediately change to a coverage level that supports the channel state (step 1201). This is because the random access preamble transmission is performed using a 3.75 kHz single-tone configuration, and thus the UE may know that the random access preamble transmission is impossible even at the lowest setting at the corresponding coverage level.
  • the terminal attempts to transmit the Msg3 by the HARQ method (step 1207), and determines whether the transmission is successful by the HARQ method of the Msg3 (step 1209).
  • the HARQ method transmission of the Msg3 is successful, it is determined whether the contention resolution has been received (step 1207). 12110).
  • a random access procedure may be re-run through a method using subcarrier spacing and / or multi-tone setup (steps 1217, 1219, 1203, and 1201).
  • the UE determines whether there is a subcarrier spacing and / or multi-tone setting of one step lower rate that can be changed within the current coverage level (step 1217).
  • the preamble is selected from the corresponding PRACH resource and transmitted (step 1203) to perform the random access procedure again.
  • the UE may restart the random access procedure from preamble transmission according to the embodiments of the present invention (Option 1), or the base station may change the subcarrier spacing and / or multi-tone configuration change of the present invention during the previous random access procedure.
  • HARQ scheme transmission (Option 2) of Msg3 by using uplink resource information allocated to RAR in advance.
  • the terminal changes to a lower coverage level and then PRACH corresponding to the corresponding coverage level. Perform random access on resources.
  • the terminal is 15 kHz of the initial CL2, single-tone
  • the preamble resource is selected and transmitted.
  • the RAR which is a response to the preamble transmission from the base station
  • the preamble transmission may be attempted again. If the RAR has not been received continuously and the preamble transmission frequency exceeds the maximum preamble transmission frequency, the UE immediately goes one step lower.
  • the random access procedure may be performed again by selecting a 3.75 kHz, single-tone configuration having a maximum data rate of CL3 supporting the channel state, and then selecting a preamble from a corresponding PRACH resource.
  • random access may be performed by selecting a preamble from the same PRACH resource as the first selected configuration. If the number of preamble transmissions exceeds the maximum number of preamble transmissions, the UE performs one step within the same coverage level CL according to an embodiment of the present invention instead of changing the existing coverage level CL. A low-rate subcarrier spacing and / or multi-tone setting of 3.75 kHz, single-tone is selected to select a preamble from a corresponding PRACH resource, and then perform a random access process again.
  • the UE is directly uplink Msg3 as uplink resource information allocated by the base station to RAR (Random Access Response) in consideration of the subcarrier spacing and / or multi-tone configuration change according to an embodiment of the present invention.
  • the transmission may be performed (Option 2), or the random access procedure may be performed again in the PRACH resource for 3.75 kHz and single-tone transmission of CL2 (Option 1).
  • the UE continuously fails to receive Msg3 transmission or contention resolution even in the 3.75kHz single-tone configuration, the UE changes the coverage level to CL3 and waits for a PRACH resource corresponding to the corresponding coverage level (CL). After that, a random access procedure is performed.
  • the terminal when it is assumed that a specific terminal, which is a target of a random access method for uplink data transmission, is located outside of the CL1 region, the terminal may be configured with a 15 kHz, multi-tone configuration of the initial CL1. A preamble resource is selected to start a random access process.
  • the UE changes to CL2, which is a coverage level supporting a lower channel state, and then the highest transmission rate in the corresponding CL.
  • CL2 is a coverage level supporting a lower channel state
  • the UE changes to the existing coverage level (CL) instead of another operation of the present invention.
  • the PRACH resource or preamble resource using a 15 kHz single-tone setting, which is a subcarrier spacing and / or a multi-tone setting, having one step lower transmission rate within the same coverage level (CL)
  • the random access can be retried again.
  • the UE instead of transmitting the preamble by using the PRACH resource information preliminarily allocated to the random access response (RAR) by the base station in consideration of the subcarrier spacing and / or multi-tone configuration change according to another embodiment of the present invention, in the previous random access procedure.
  • Message 3 may be retransmitted immediately (Option 2), or as described above, a random access procedure may be performed again on a PRACH resource for 15kHz single-tone transmission of CL1 (Option 1). If the terminal fails to receive continuous Msg3 transmission or contention resolution even in 15kHz single-tone configuration, change to 3.75kHz single-tone configuration and restart in Option 1 or Option 2 operation.
  • the terminal determines that all the settings provided by CL1 cannot be communicated, changes to CL2, and then provides 15kHz single-tone provided by the corresponding CL. -tone) can be used to perform random access or Message 3 transmission.
  • the UE randomly accesses the subcarrier spacing and / or multi-tone combination provided within the current coverage level. In case of failing until the last step of providing subcarrier spacing and / or multi-tone setting, a random access procedure for uplink data transmission may be performed again by finally changing the current coverage level. However, if the number of preamble transmissions due to a random access failure due to non-RAR reception exceeds the maximum number of preamble transmissions, the UE may change the coverage level to support the channel state one step lower and perform the random access procedure again. .
  • the terminal when it is assumed that a specific terminal performing random access of a terminal for uplink data transmission is located outside of the CL1 region, the terminal is in a coverage level using only a change of subcarrier configuration.
  • a random access procedure may be performed in.
  • the same coverage level is changed without changing the coverage level. Change from 15kHz, single-tone setting to 3.75kHz, single-tone setting and try the random access procedure. After that, if the random access fails, you can change the coverage level to CL2 and use 15 kHz, single-tone setting, and if random access fails again, you can try random access with 3.75 kHz, single-tone setting. If random access fails again, you can finally change the coverage level to CL3 and then try random access with a 3.75kHz, single-tone setting.
  • the UE when the random access fails, the UE performs random access and thus the number of retransmissions of the preamble exceeds the maximum number of transmissions due to the failure of Msg3 HARQ transmission failure or contention resolution message. It is defined as having.
  • the terminal when it is assumed that a specific terminal performing random access of the terminal for uplink data transmission is located outside the CL1 region, the terminal uses only the change of the multi-tone configuration to cover the coverage.
  • a random access procedure can be performed within the level.
  • the UE performs random access by selecting 15 kHz and multi-tone setting of the initial CL1, and continuous Msg3 transmission failure or contention resolution is not received, the same coverage level is not changed without changing the coverage level.
  • multi-tone setting of CL1 try changing the subcarrier setting to the 15kHz, single-tone setting.
  • the random access fails, change the coverage level to CL2 and then use 15 kHz, multi-tone settings, and if random access fails again, try a random access with 15 kHz, single-tone settings.
  • the UE when the random access fails, the UE performs random access and thus the number of retransmissions of the preamble exceeds the maximum number of transmissions due to the failure of Msg3 HARQ transmission failure or contention resolution message. It is defined as having.
  • FIG. 15 is a schematic block diagram of an NB-IoT terminal according to an embodiment of the present invention
  • FIG. 16 is a schematic block diagram of an NB-IoT communication system according to an embodiment of the present invention.
  • the NB-IoT terminal 100 is composed of a transceiver 120, a processor 110, an antenna 130, the base station 120 and the embodiments of the present invention as described above
  • a random access procedure according to the present invention and a random access method considering the coverage level and subcarrier spacing and / or multi-tone configuration for uplink data transmission are performed.
  • the transceiver 120 transmits or receives a radio frequency signal with a base station 120 through an antenna 130, and transmits data through a downlink 152 from the base station 120 through the antenna 130. And a control signal, and transmits data and control signals to the base station 120 through an uplink 154.
  • the processor 110 may control the transceiver 100 to determine a time point for transmitting the control signal.
  • the processor 110 performs a random access procedure according to embodiments of the present invention, considering a coverage level and subcarrier spacing and / or multi-tone configuration for uplink data transmission.
  • the MTC terminal for example, an NB-IoT terminal, a Machine Type Communication (MTC) terminal, a terminal in enhanced coverage, includes a transceiver for transmitting or receiving a radio signal with a base station through an antenna, and controlling the transceiver to control the radio signal. It may include a processor for determining a time to transmit.
  • the processor processes a random access process between the MTC terminal and the base station, wherein the random access process selects a physical random access channel (PRACH) resource in consideration of a coverage level and multi-tone transmission support. It may include a step.
  • the random access procedure may include selecting a physical random access channel (PRACH) resource in consideration of a coverage level, subcarrier spacing, and / or multi-tone transmission support.
  • the MTC device may include a transceiver for transmitting or receiving a radio signal with a base station through an antenna, and a processor for controlling the transceiver to determine when to transmit the radio signal.
  • the processor processes a random access process between the MTC device and the base station, wherein the random access process selects a physical random access channel (PRACH) resource in consideration of a coverage level and multi-tone transmission support. It may include a step.
  • the random access procedure may include selecting a physical random access channel (PRACH) resource in consideration of coverage level, subcarrier spacing, and / or multi-tone transmission support.
  • Processor 110 may be a general purpose processor, special purpose processor, conventional processor, digital signal processor (DSP), microprocessor, one or more microprocessors associated with a DSP core, controller, microcontroller, application specific integrated circuit specific integrated circuits (ASICs), field programmable gate array (FPGA) circuits, integrated circuits (ICs), state machines, and the like.
  • the processor 110 may perform signal coding, data processing, power control, input / output processing, and / or any other functionality that enables the terminal to operate in a wireless environment.
  • the processor 110 may be coupled to the transceiver 120.
  • FIG. 14 shows processor 110 and transceiver 120 as separate components, processor 110 and transceiver 120 may be integrated together in an electronic package or chip.
  • antenna 130 may be an antenna configured to transmit and / or receive RF signals.
  • antenna 130 may be, for example, a emitter / detector configured to transmit and / or receive IR, UV, or visible light signals.
  • antenna 130 may be configured to transmit and receive both RF and optical signals.
  • Antenna 130 may be configured to transmit and / or receive any combination of wireless signals.
  • the transceiver 120 may be configured to modulate the signals to be transmitted by the antenna 130 and to demodulate the signals received by the antenna 130.
  • a base station performing a random access process for uplink data transmission with a cellular-based MTC terminal is composed of a transceiver, a processor, and an antenna, and a random access procedure according to the embodiments of the present invention as described above with an NB-IoT terminal;
  • a random access method may be performed in consideration of coverage level, subcarrier spacing, and / or multi-tone configuration for uplink data transmission.
  • a base station performing a random access process for uplink data transmission with a cellular-based MTC terminal includes: a transceiver for transmitting or receiving a radio signal with the MTC terminal through an antenna; and a time point for controlling the transceiver to transmit the radio signal. It may include a processor for determining the. The processor may include receiving a random access preamble from the MTC terminal, transmitting a random access response (RAR) message to the MTC terminal, and requesting a connection for transmitting uplink data from the MTC terminal.
  • RAR random access response
  • the access process may be implemented to configure a Physical Random Access Channel (PRACH) resource in consideration of coverage level and multi-tone configuration.
  • the random access procedure may be implemented to configure a physical random access channel (PRACH) resource in consideration of coverage level and subcarrier spacing and / or multi-tone configuration.
  • the base station can be one or more over an air interface that can be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). Communicate with the terminal.
  • RF radio frequency
  • IR infrared
  • UV ultraviolet
  • visible light etc.
  • the NB-IoT communication system can be a multiple access system and can employ channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like.
  • the RAN base station and the NB-IoT terminal can establish an air interface using wideband CDMA (WCDMA) Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA) Radio technology such as can be implemented.
  • WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and / or Evolved HSPA (HSPA +).
  • HSPA may include High-Speed Downlink Packet Access (HSDPA) and / or High-Speed Uplink Packet Access (ULSPA).
  • the base station and the MTC terminals are Evolved UTRA (Evolved UTRA) that can configure the air interface using Long Term Evolution (LTE) and / or LTE-Advanced (LTE-A); Radio technology such as E-UTRA).
  • Evolved UTRA Evolved UTRA
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • Radio technology such as E-UTRA
  • the base station and NB-IoT terminal may include IEEE 802.16 (i.e., worldwide interoperability for microwave access (WiMAX), CDMA2000, CDMA2000 1X, CDMA 2000 Evolution-Data Optimized (EV-DO), interim standard 2000). (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile communications (GSM), Enhanced Data Rate for GSM Evolution Radio technologies such as Enhanced Data rates for GSM Evolution (EDGE) and GSM / EDGE RAN (GERAN) may be implemented.
  • the base station of FIG. 16 may be, for example, a wireless router, HNB, HeNB, or AP and may utilize any suitable RAT that facilitates wireless access in a localized area, such as a place of business, home, vehicle, campus, or the like. Can be.
  • the base station and NB-IoT terminals may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN).
  • base stations and terminals may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN).
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the base station and the NB-IoT terminals may utilize cellular-based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to configure the picocell or femtocell.
  • the base station can directly access the Internet.
  • the base station may not be required to access the Internet through the core network.
  • 17 is a flowchart illustrating a small data transmission request and a transmission process according to an embodiment of the present invention.
  • a small data transmission request process is shown.
  • the terminal transmits a random access (RA) request message (Msg1) to perform random access, and displays the type or access cause of the modified RA request as a 'small data request' in this process.
  • the base station After receiving the base station, the base station transmits a DCI to inform the resource to transmit the RA Response (Msg2).
  • the base station determines whether resource allocation for small data transmission is possible for the corresponding terminal. Whether to support the small data may be determined by determining a congestion degree of the random access resource for the small data when the request is received.
  • the base station transmits an RA response message (Msg2) by using newly defined Small Data Radio Network Temporary Identifier (SD-RNTI) information instead of the C-RNTI. .
  • SD-RNTI Small Data Radio Network Temporary Identifier
  • the terminal assigned the SD-RNTI can subsequently perform efficient data transmission through the small data transmission process of the present invention.
  • the UE transmits data including SD-RNTI to Msg1 transmitted during random access.
  • the base station receiving the data through the RA Request (Msg1) may transmit the ACK to the corresponding terminal through the subsequent DCI.
  • the conventional data transmission method performs random access to acquire resources for uplink transmission, transmits uplink data, and then receives DCI to confirm whether the transmission is successful.
  • the transmission delay time and power consumption of the terminal can be reduced by including the data during the transmission of Msg1. This process can proceed until the terminal can no longer maintain the SD-RNTI, and the criterion for expiration of the SD-RNTI is previously defined in the network by the number of transmissions, the amount (bits), the allocation time of the terminal, and the like to Msg2. Can be delivered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 과정에서의 상향링크 데이터 전송을 위한 단말에서의 랜덤 액세스 방법이 개시된다. 상기 방법은 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 포함하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함한다. 셀룰러 기반 IoT 시스템에서 동작하는 사물통신 단말 또는 사물통신 디바이스가 랜덤 액세스를 수행할 때 커버리지 레벨, 서브캐리어 스페이싱 설정, 멀티-톤 설정에 대응하여 단말이 효율적인 랜덤 액세스 과정을 수행할 수 있으며, 커버리지 레벨 변경을 최소화하여 커버리지 레벨 변경시 반복전송(Repetition) 횟수의 증가 및 커버리지 레벨에 대응하는 PRACH 자원까지 대기하여 발생하는 단말의 동작시간을 감소시켜, 에너지 소비를 줄이고, 지연시간 성능을 향상시킬 수 있다.

Description

사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법
본 발명은 사물 통신 단말 또는 사물통신 디바이스에서의 랜덤 액세스 수행 방법에 관한 것으로, 더욱 구체적으로는, 셀룰러 기반 IoT(Internet of Things) 환경의 사물통신 단말 또는 사물통신 디바이스가 랜덤 액세스 수행과정이 지속적으로 실패하는 경우 효율적인 프리앰블(Preamble)을 선택하고 랜덤 액세스를 수행하는 방법에 관한 것이다.
사물인터넷 환경 구현을 위한 셀룰러 기반 IoT 시스템에서는 대규모로 존재하는 단말들-예를 들어, 사물통신 단말 또는 사물통신 디바이스-의 서비스 제공을 위해 면허 대역에서의 넓은 커버리지를 바탕으로 신뢰성 있는 연결을 제공을 목표로 하고 있다.
셀룰러 기반 IoT 시스템의 예로서 NB-IoT(Narrow Band-IoT)의 경우 MTC(Machine Type Communication)의 1.4MHz 대역폭보다 감소된 대역폭, 즉 상향링크 및 하향링크 모두 1.4MHz 대역폭보다 감소된 대역폭-예를 들어 180kHz-을 사용하여 저속 데이터 레이트로 센서 중심의 응용에 적합한 IoT 서비스를 제공한다.
NB-IoT에서는 하향링크에서는 OFDMA를 사용하며, 매우 작은 서브캐리어 스페이싱, 예를 들어, 15kHz 서브캐리어 스페이싱을 사용할 수 있다.
NB-IoT 상향링크에서는 SC-FDMA를 사용할 수 있다. NB-IoT 상향링크에서는 3.75 kHz 또는 15kHz 서브캐리어 스페이싱을 사용할 수 있다.
랜덤 액세스는 단말의 기지국의 연결 및 데이터 송신을 위하여 단말이 임의의 시간에 기지국에 전송하는 일종의 데이터전송을 위한 절차로써, 모든 단말에서 시작되는 통신의 시작 역할을 하게 된다. 특히, 넓은 커버리지 영역이 요구되는 NB-IoT 서비스 특성을 반영하기 위해 20dB 이상의 커버리지가 확대된 매우 멀리 떨어진 단말에서 송신되는 랜덤 액세스 과정의 신호를 기지국이 성공적으로 수신할 수 있고 이에 대한 응답신호를 역시 장거리의 해당 단말에 성공적으로 보낼 수 있는 방법이 요구된다.
NB-IoT의 SC-FDMA 기반 상향링크 설계시, NB-IoT 의 감소된 대역폭으로 인하여 LTE 랜덤 액세스 절차를 수행하기 위하여, PRACH(Physical Random Access Channel) 설계에 수정이 필요하고, 이러한 수정은 LTE 랜덤 액세스 절차의 일부에 영향을 미칠 수 있다.
LTE 랜덤 액세스는 무선 링크를 설정할 때의 초기 액세스, 스케쥴링 요청(scheduling request)과 같은 여러 목적으로 사용되며, 랜덤 액세스의 주된 목적은 상향링크 동기화를 달성하여 데이터 전송을 준비하는 것이다. 랜덤 액세스는 경쟁 기반 랜덤 액세스(contention-based random access) 또는 비경쟁 랜덤 액세스(contention-free random access)가 될 수 있다.
셀룰러 기반 IoT 시스템-예를 들어 NB-IoT(Narrow Band-Internet of Thing) 시스템-에서는 단말의 채널상태에 따라 복수의 커버리지 클래스(Coverage Class, CC) 또는 커버리지 레벨(Coverage Level)로 나누어 서비스를 제공하는 방식을 고려하고 있다. 커버리지 클래스(CC) 또는 커버리지 레벨(CL)은 일반적으로 기본 커버리지(normal coverage, 이하 CC1 또는 CL1), 로버스트 커버리지(robust coverage, 이하 CC2 또는 CL2), 극한 커버리지(extreme coverage, 이하 CC3 또는 CL3)로 나뉘며, 기지국은 커버리지 클래스(CC) 또는 커버리지 레벨(CL)에 따라 단말이 사용하는 자원의 위치, 반복전송(repetition) 횟수, MCS(Modulation and Coding Scheme) 등의 파라미터를 차별화하여 각 커버리지 클래스(CC) 또는 커버리지 레벨(CL)에 속하는 단말들이 채널상태에 따라 최적화된 서비스를 제공받을 수 있도록 한다.
또한, NB-IoT에서는 단말이 상향링크 전송시 사용하는 서브캐리어 스페이싱(subcarrier spacing) 및/또는 멀티-톤 전송(multi-tone) 지원여부에 따라 3가지의 설정(Configuration)으로 정의하여 지원할 수 있다. 상향링크 전송시 각각의 서브캐리어 스페이싱 설정, 및/또는 멀티-톤 설정별 성능 특성은 표 1과 같다.
3.75kHz, single-tone 채널상태 나쁨, 낮은 전송률, cell 외곽에 위치한 단말
15kHz, single-tone 채널상태 중간, 중간 전송률, cell 중심에서 약 10km 까지의 반경내 위치한 단말
15kHz, multi-tone 채널상태 좋음, 높은 전송률, cell 중심에 위치한 단말
기존에 논의된 NB-IoT 시스템에서 단말의 랜덤 액세스 과정에서는 실패 및 단말이 선택한 커버리지 클래스(CC) 또는 커버리지 레벨(CL)에서 랜덤 액세스를 수행할 때 프리앰블 전송(Preamble, Message1)에 대한 RAR(Random Access Response, Message2)을 수신하지 못하거나, 연결요청(Connection Request, Message3) 전송에 대한 응답인 경쟁해소(Contention Resolution, Message4)를 수신하지 못하는 경우 랜덤 액세스 과정을 재수행하며, 프리앰블 전송부터 다시 수행한다. 이때 사전에 정의된 특정횟수 이상 연속적인 프리앰블 재전송이 발생하면, 단말은 한 단계 낮은 채널상태를 지원하는 커버리지 클래스(CC) 또는 커버리지 레벨(CL)로 변경하여 다시 랜덤 액세스를 수행하여 데이터 전송을 준비하게 된다. 그러나 이러한 커버리지 클래스(CC) 또는 커버리지 레벨(CL) 변경 후 랜덤 액세스 재수행을 하는 절차는 단말이 변경된 커버리지 클래스(CC) 또는 커버리지 레벨(CL)에서 랜덤 액세스를 수행할 때 증가된 반복전송(Repetition) 횟수로 해당 PRACH에서 랜덤 액세스 과정을 처음부터 다시 수행해야 하기 때문에 단말의 동작시간과 지연시간이 크게 증가하는 문제가 발생하게 된다.
따라서 본 발명에서는 셀룰러 기반의 IoT 시스템-예를 들어 NB-IoT-에서 단말이 랜덤 액세스 수행시 서브캐리어 스페이싱 및/또는 멀티-톤 설정에 대응하여 각 커버리지 클래스(CC) 또는 커버리지 레벨(CL) 내에서 서브캐리어 스페이싱 및/또는 멀티-톤 설정의 단계별 성능을 고려한, 랜덤 액세스 과정에서의 순차적인 프리엠블(Preamble) 자원 사용 방법을 제공한다. 구체적으로, 단말이 랜덤 액세스 과정에서 상향링크 데이터 전송을 위한 연결요청 메시지Message3 전송 실패시 랜덤 액세스를 재수행하는 과정에서 프리앰블 전송을 위한 자원을 선택할 때, 일차적으로 커버리지 클래스(CC) 또는 커버리지 레벨(CL)내에서 사용하는 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 변경하여 재전송을 시도한 뒤 커버리지 클래스(CC) 또는 커버리지 레벨(CL)내에서 제공하는 서브캐리어 스페이싱 및/또는 멀티-톤 설정의 마지막 단계까지 랜덤 액세스 과정을 실패하는 경우 커버리지 클래스(CC) 또는 커버리지 레벨(CL)을 변경하여 랜덤 액세스를 재수행 하는 방법을 제공한다.
본 발명의 실시예들에 따르면, 셀룰러 기반의 IoT 시스템-예를 들어 NB-IoT-에서 커버리지 클래스(CC) 또는 커버리지 레벨(CL)과 상향링크 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 효율적인 랜덤 액세스 방법을 제공한다.
또한, 본 발명의 실시예들에서는 셀룰러 기반의 IoT 시스템에서 스몰 데이터(Small Data)를 전송하는 단말들의 지연시간 및 에너지 소비를 감소시킬 수 있는 간소화된 데이터 전송방법을 제공한다.
본 발명의 일측면에 따른 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 과정에서의 상향링크 데이터 전송을 위한 단말에서의 랜덤 액세스 방법은, 상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 포함하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함한다.
상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택할 수 있다.
상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Msg3)의 전송 실패 또는 경쟁 해소(Contention Resolution)의 미수신이 연속적으로 발생하여 프리엠블 전송 횟수가 프리엠블 최대 전송 횟수를 초과한 경우 선택된 커버리지 레벨과 동일한 커버리지 레벨내에서 사용되는 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 사용하는 랜덤 액세스 자원을 선택할 수 있다.
상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨에 상응하며 상기 멀티-톤 전송 지원에 상응하는 랜덤 액세스 자원을 선택하는 단계를 포함할 수 있다.
상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 동일한 커버리지 레벨내에서 사용되는 멀티-톤 설정을 사용하는 랜덤 액세스 자원을 선택할 수 있다.
상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우 상기 선택된 커버리지 레벨과 동일한 커버리지 레벨에서 멀티-톤 설정을 변경하여 랜덤 액세스를 수행하는 단계를 포함할 수 있다.
상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 상기 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 단계적으로 설정하고, 상기 랜덤 액세스 수행시 상기 사물통신 단말이 랜덤 액세스 자원을 단계적으로 선택할 수 있다.
상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우 상기 선택된 커버리지 레벨과 동일한 커버리지 레벨에서 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 변경하여 랜덤 액세스를 수행하는 단계는 상기 랜덤 액세스를 시도한 뒤 상기 선택된 커버리지 레벨내에서 제공하는 서브캐리어 스페이싱 및/또는 멀티-톤 설정 조합의 마지막 단계까지 실패한 경우 최종적으로 상기 선택된 커버리지 레벨을 변경하여 상기 랜덤 액세스를 수행하는 단계를 포함할 수 있다.
상기 커버리지 레벨은 노멀 커버리지(normal coverage), 로버스트 커버리지(robust coverage), 극한 커버리지(extreme coverage)를 포함할 수 있다.
상기 사물통신 단말과 기지국간의 랜덤 액세스 과정은 셀룰러 기반 협대역(Narrowband) 사물통신에 적용할 수 있다.
상기 사물통신 단말은 180kHz의 채널 대역폭을 사용하는 무선접속망을 액세스 가능한 NB-IoT(Narrowband-Internet of Thing) 단말을 포함할 수 있다.
상기 멀티-톤 전송 지원 여부는 멀티-톤 Message 3 전송 지원 여부가 될 수 있다. 상기 랜덤 액세스 과정은 상기 사물통신 단말에서 상기 커버리지 레벨을 선택하는 단계를 더 포함할 수 있다.
상기 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우는 상기 사물통신 단말에서 첫번째 랜덤액세스 프리엠블 전송을 수행하는 경우가 될 수 있다.
상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정은 상기 사물통신 단말에서 랜덤액세스 프리엠블을 기지국으로 전송하는 단계와, 상기 사물통신 단말에서 기지국으로부터 RAR(Random Access Response) 메시지를 수신하는 단계와, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 상기 기지국으로 전송하는 단계와, 상기 사물통신 단말에서 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 경쟁 해소(Contention Resolution)를 수신하는 단계를 포함할 수 있다. 상기 랜덤 액세스 과정은 사용할 랜덤 액세스 프리엠블이 상기 기지국으로부터 명시적으로 시그널링되지 않은 경우에 수행될 수 있다.
본 발명의 다른 측면에 따른 셀룰러 기반 사물통신을 위한 기지국과의 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 사물통신 단말기는, 안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는 상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 셀룰러 기반 사물통신을 위한 기지국과의 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 사물통신 디바이스는, 안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는 상기 사물통신 디바이스와 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법은, 상기 기지국에서 상기 사물통신 단말로부터 랜덤액세스 프리엠블을 전송받는 단계와, 상기 사물통신 단말로 RAR(Random Access Response) 메시지를 전송하는 단계와, 상기 기지국에서 상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 수신하는 단계와, 상기 기지국에서 상기 사물통신 단말로 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 CR(Contention Resolution)을 전송하는 단계를 포함하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원이 선택된다.
본 발명의 또 다른 측면에 따른 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국은, 안테나를 통하여 상기 사물통신 단말과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는 상기 사물통신 단말로부터 랜덤액세스 프리엠블을 전송받는 단계와, 상기 사물통신 단말로 RAR(Random Access Response) 메시지를 전송하는 단계와, 상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 수신하는 단계와, 상기 사물통신 단말로 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 경쟁 해소(Contention Resolution)를 전송하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원이 선택된다.
본 발명의 또 다른 측면에 따른 스몰 데이터(Small Data) 전송지원 방법에 따르면, 기지국은 스몰 데이터(Small Data) 여부를 판단하는 기준을 시스템 정보(SI, System Information) 혹은 DCI(Downlink Control Information)에 포함하여 브로드캐스트 할 수 있으며, 사전에 기준을 정의하여 단말 스스로 판단할 수 있다. 또한, 기지국은 스몰 데이터(Small Data) 전송 단말을 위한 랜덤 액세스 채널과 일반 단말을 위한 랜덤 액세스 채널을 따로 구성할 수 있으며, 상향/하향링크 전송을 위한 자원할당 정보를 포함하는 DCI를 전송할 수 있다. 각 단말은 일정 크기의 데이터를 전송할 수 있으며, 전송할 데이터가 발생할 때까지 sleep 모드로 동작할 수 있다. 상기 스몰 데이터(Small Data) 전송지원 방법은 크게 단말의 스몰 데이터(Small Data) 전송요청 과정과 스몰 데이터(Small Data) 전송 과정으로 나뉜다. 단말은 처음 전원이 켜지고(Power on) 전송할 데이터를 생성할 수 있다. 데이터 전송을 위해 단말은 먼저 기지국과 동기화를 수행하고, 시스템 정보를 수신할 수 있다. 시스템 정보 수신 후 단말은 시스템 정보 상에 나타난 정보 혹은 사전에 정의된 값과의 비교를 통해 스몰 데이터(Small Data) 전송 가능여부를 판단할 수 있다. 스몰 데이터(Small Data) 전송이 가능한 경우 단말은 스몰 데이터(Small Data) 전송 요청을 위해 랜덤 액세스를 수행하며, 요청승인 후 스몰 데이터(Small Data) 전송에 최적화된 방법으로 스몰 데이터전송 과정을 수행할 수 있다.
본 발명에서는 셀룰러 기반 IoT 시스템에서 동작하는 사물통신 단말 또는 사물통신 디바이스가 랜덤 액세스를 수행할 때 커버리지 클래스 또는 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정에 대응하여 단말이 효율적인 랜덤 액세스 과정을 수행할 수 있는 방법을 제공한다.
사물통신 단말 또는 사물통신 디바이스에서, 랜덤 액세스 과정 시 상향링크 데이터 전송을 수행하기 위한 연결 요청 메시지 Message 3 전송이 아직 안된 경우, 커버리지 클래스(CC) 또는 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 전송 지원 여부를 고려하여 PRACH 자원 및 프리앰블을 선택함으로써, 넓은 커버리지 서비스를 지원하기 위해 도입된 커버리지 클래스(CC) 또는 커버리지 레벨을 추가적으로 세분화하여 사물통신 단말 또는 사물통신 디바이스가 최적의 설정으로 데이터를 전송할 수 있도록 한다. 또한, 커버리지 클래스(CC) 또는 커버리지 레벨 변경을 최소화하여 커버리지 클래스(CC) 또는 커버리지 레벨 변경시 반복전송(Repetition) 횟수의 증가 및 커버리지 클래스(CC) 또는 커버리지 레벨에 대응하는 PRACH 자원까지 대기하여 발생하는 단말의 동작시간을 감소시켜, 에너지 소비를 줄이고, 지연시간 성능을 향상시킬 수 있다.
본 발명의 셀룰러 기반 IoT 시스템에서 동작하는 사물통신 단말 또는 사물통신 디바이스에서의 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법을 통해 사물통신 단말 또는 사물통신 디바이스는 커버리지 클래스 또는 커버리지 레벨내에서 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 통해 세분화된 전송방법의 활용을 최대화할 수 있으며, 이에 따라 커버리지 클래스 또는 커버리지 레벨 변경을 최소화하여 커버리지 클래스 또는 커버리지 레벨 변경시 발생하는 사물통신 단말 또는 사물통신 디바이스의 동작시간 및 지연시간의 증가를 완화하여 에너지 소비와 지연시간 성능을 향상시킬 수 있다.
사물통신 단말 또는 사물통신 디바이스의 서브캐리어 스페이싱 및/또는 멀티-톤 전송 설정을 효율적으로 활용하여 상향링크 데이터 재전송을 위한 랜덤 액세스 수행을 간소화하여 사물통신 단말 또는 사물통신 디바이스에서의 지연시간 및 에너지 소비를 감소시킬 수 있다.
또한, 본 발명에서는 IoT 환경에서 스몰 데이터(Small Data) 전송을 수행하는 단말의 동작을 효율화 할 수 있는 전송 프로토콜을 제공한다. 본 발명에서 제공하는 스몰 데이터(Small Data) 전송방법을 통해 셀룰러 기반의 IoT 시스템에서 스몰 데이터(Small Data)를 전송하는 단말들의 지연시간 및 에너지 소비를 감소시킬 수 있다.
도 1은 기존 LTE 환경에서 시간-주파수 영역에서의 PRACH 자원 구성을 나타낸 개념도이다.
도 2는 NB-IoT(Narrow Band-Internet of Thing)에서 3.75kHz 서브캐리어 스페이싱을 사용하는 경우의 상향 링크 단일-톤 전송을 설명하기 위한 개념도이다.
도 3은 NB-IoT(Narrow Band-Internet of Thing)에서 15kHz 서브캐리어 스페이싱을 사용하는 경우의 상향 링크 싱글-톤 전송 또는 멀티-톤 전송을 설명하기 위한 개념도이다.
도 4는 싱글-톤 프리엠블 및 멀티-톤 프리엠블을 포함하는 PRACH 자원 구성을 나타낸 개념도이다.
도 5은 본 발명의 일실시예에 따른 셀룰러 기반 협대역(Narrowband) 사물통신에서 사물통신 단말과 기지국간의 랜덤 액세스 과정을 설명하기 위한 순서도이다.
도 6은 랜덤 액세스 동작 중 단말의 동일 프리앰블 선택에 의한 Message 3 충돌을 설명하기 위한 순서도이다.
도 7은 도 6에서 Message 3 전송이 아직 안된 경우의 동작을 설명하기 위한 순서도이다.
도 8는 본 발명의 일실시예에 따른 기지국 환경 및 커버리지 레벨에 따른 PRACH 자원사용 현황 및 순서를 나타낸 개념도이다.
도 9는 도 8의 커버리지 레벨별 PRACH 프리엠블 자원 구성의 예를 나타낸 도면이다.
도 10은 커버리지 레벨을 고려한 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법을 나타낸 순서도이다.
도 11은 본 발명의 일실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 단말의 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법을 나타낸 순서도이다.
도 12는 본 발명의 다른 실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 단말의 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법을 나타낸 순서도이다.
도 13은 본 발명의 다른 실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 설정을 고려한 단말의 상향링크 데이터 전송을 위한 랜덤 액세스 수행을 위한 자원할당예시를 나타낸 개념도이다.
도 14는 본 발명의 또 다른 일실시예에 따른 커버리지 레벨과 멀티-톤 설정을 고려한 단말의 상향링크 데이터 전송을 위한 랜덤 액세스 수행을 위한 자원할당예시를 나타낸 개념도이다.
도 15는본 발명의 일실시예에 따른 NB-IoT 단말의 개략적인 블록도이다.
도 16은 본 발명의 일실시예에 따른 NB-IoT 통신 시스템의 개략적인 블록도이다.
도 17은 본 발명의 일실시예에 따른 NB-IoT 단말의 스몰 데이터(Small Data) 전송요청 및 전송 과정을 설명하기 위한 기지국과의 메시지 교환절차 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
단말은 이동국(MS), 사용자 장비(UE; User Equipment), 사용자 터미널(UT; User Terminal), 무선 터미널, 액세스 터미널(AT), 터미널, 고정 또는 이동 가입자 유닛(Subscriber Unit), 가입자 스테이션(SS; Subscriber Station), 셀룰러 전화, 무선 기기(wireless device), 무선 통신 디바이스, 무선송수신유닛(WTRU; Wireless Transmit/Receive Unit), 이동 노드, 모바일, 모바일국, 개인 휴대 정보 단말(personal digital assistant; PDA), 스마트폰, 랩톱, 넷북, 개인용 컴퓨터, 무선 센서, 소비자 전자기기(CE) 또는 다른 용어들로서 지칭될 수 있다.
단말의 다양한 실시예들은 셀룰러 전화기, 무선 통신 기능을 가지는 스마트 폰, 무선 통신 기능을 가지는 개인 휴대용 단말기(PDA), 무선 모뎀, 무선 통신 기능을 가지는 휴대용 컴퓨터, 무선 통신 기능을 가지는 디지털 카메라와 같은 촬영장치, 무선 통신 기능을 가지는 웨어러블 디바이스, 무선 통신 기능을 가지는 게이밍 장치, 무선 통신 기능을 가지는 음악저장 및 재생 가전제품, 무선 인터넷 접속 및 브라우징이 가능한 인터넷 가전제품뿐만 아니라 그러한 기능들의 조합들을 통합하고 있는 휴대형 유닛 또는 단말기들을 포함할 수 있으나, 이에 한정되는 것은 아니다. 기지국은 일반적으로 단말과 통신하는 고정된 지점을 말하며, 베이스 스테이션(base station), 노드-B(Node-B), e노드-B(eNode-B), 어드밴스드 기지국(advanced base station; ABS), HR-BS, 사이트 제어기, BTS(base transceiver system), 액세스 포인트(Access Point, AP) 또는 무선 환경에서 동작할 수 있는 임의의 다른 타입의 인터페이싱 디바이스를 포함할 수 있지만, 이들로 제한되진 않는다.
기지국은 기지국 제어기(base station controller; BSC), 라디오 네트워크 제어기(radio network controller; RNC), 중계 노드들 등과 같은 다른 기지국들 및/또는 네트워크 엘리먼트들(도시되지 않음)을 또한 포함할 수 있는 RAN의 일부일 수 있다. 기지국은 셀(도시되지 않음)로서 지칭될 수 있는 특정한 지리적인 영역 내에서 무선 신호들을 송신 및/또는 수신하도록 구성될 수 있다.
셀은 또한 셀 섹터들로 분할될 수 있다. 예를 들어, 기지국과 연관된 셀은 3개의 섹터들로 분할될 수 있다. 따라서 일 실시예에서, 기지국은 3개의 트랜시버들, 즉 셀의 각 섹터마다 하나의 트랜시버를 포함할 수 있다. 다른 실시예에서, 기지국은 다중-입력 다중 출력(multiple-input multiple output; MIMO) 기술을 이용할 수 있고, 그러므로 셀의 각 섹터에 대해 다수의 트랜시버들을 활용할 수 있다.
이하에서의 단말은 센서와 통신 기능을 내장해 사물 통신을 구현하기 위한 사물통신 단말을 포함한다. 예를 들어 사물통신 단말은 MTC(Machine Type Communication) 단말, 또는 NB-IoT(Narrow band Internet of Thing) 단말을 포함할 수 있다.
NB-IoT(Narrowband-IoT) 단말은 면허대역에서 확장된 커버리지를 제공하는 저전력 IoT 네트워크를 실현하기 위한 셀룰러 협대역 기술인 NB-IoT의 180kHz의 채널 대역폭의 무선접속망에 액세스 가능한 단말을 의미한다. 해당 협대역폭은 기존 LTE 망에서 자원 중 일부를 할당하여 사용하는 in-band, 보호주파수 대역을 활용하는 guard-band, GSM 대역 내 일부를 사용하는 stand-alone 모드로 운용할 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
NB-IoT의 경우 기존 GSM의 200kHz 대역내에서 IoT 서비스를 지원하기 위하여 1 PRB를 12개의 서브캐리어로 나눠서 사용하되 기존 대역폭을 1/6 정도 줄이는 대신 시간 영역으로는 6배 늘려서(6:1 time stretch) 사용할 수 있다. NB-IoT의 경우 복수의 커버리지 레벨 또는 커버리지 등급(coverage level or coverage class)을 가질 수 있으며, 상기 커버리지 레벨 또는 커버리지 등급은 예를 들어 기본 커버리지(basic coverage, 144dB MCL), 로버스트 커버리지(robust coverage, 154dB MCL), 극한 커버리지(extreme coverage, 164dB MCL)의 3가지로 구분될 수 있다.
NB-PRACH 상향링크 전송은 극한 커버리지 환경에서 성능을 보장이 가능하고 단말의 저전력, 저복잡도를 제공할 수 있는 단일-톤(single-tone) 전송과 함께 주파수 호핑으로 이루어질 수 있다.
상기 단일-톤(single-tone) 전송을 위해 NB-PRACH는 3.75khz의 서브캐리어 스페이싱을 사용하며, 이를 통해 15khz 대비 더 많은 프리앰블(preamble) 및 극한 커버리지 환경에서 향상된 성능을 제공하여 최대 40km 셀 크기를 지원할 수 있다.
또한, NB-PRACH는 서로 다른 셀 크기를 지원하기 위하여 2개의 CP(Cyclic prefix) 길이가 제공될 수 있다.
NB-PRACH 반복 전송(repetition transmission)은 상이한 커버리지 등급에 속하는 NB-IoT 단말들을 지원하기 위한 NB-PRACH 자원을 구성하는 방법이다. 단말들은 커버리지 등급에 따라 적절한 반복 전송을 갖는 NB-PRACH를 선택하여 동작할 수 있다.
상기 NB-PRACH 반복전송은 소정의 세트 {1, 2, 4, 8, 16, 32, 64, 128}에서 미리 정해진 횟수만큼 제공될 수 있으며, eNB는 3개의 커버리지 등급을 고려하여 상기 소정의 세트로부터 최대 3 종류의 NB-PRACH 반복전송을 하도록 구성할 수 있다.
NB-PRACH의 Power ramping 관련하여, 셀에서 한번 이상의 반복 레벨이 구성되면, 커버리지 등급이 높은 가장 낮은 반복 레벨을 제외하고 단말은 NB-PRACH에서 최대 파워로 전송하며, 그 외의 경우는 단말은 power ramping을 사용하여 NB-PRACH를 전송하여 저전력 동작을 구현할 수 있다.
NB-IoT 단말은 랜덤 액세스 과정에서 RAR 수신 후 Msg3 전송 뒤 Msg4 수신에 실패할 수 있다. 이때 단말은 Msg3를 반복적으로 재전송하며 특정 횟수동안 연속적인 Msg4 수신을 실패하면 커버리지 등급이 불일치함을 판단하고 커버리지 등급을 변경한다. 상기 커버리지 등급을 변경하기 전까지의 재전송횟수는 NB-PDCCH내의 DCI(Downlink Control Information)에서 지시할 수 있다.
이하, NPRACH는 NB-PRACH와 동일한 의미로 사용된다.
NB-IoT에서 3.75 kHz, 15 kHz 의 서브캐리어 스페이싱(subcarrier spacing)이 상향링크(UL, uplink) 전송시 사용될 수 있다.
UL grant 관련하여, 업링크 서브캐리어 스페이싱(UL subcarrier spacing)은 3.75 kHz 또는 15 kHz을 가질수 있으며, 1bit 정보로 3.75 kHz 또는 15 kHz을 표시하여 RAR 메시지 내의 UL grant에 표시하여 사용할 수 있다. 즉, NB-IoT에서 3.75 kHz 또는 15 kHz 중에서 어떤 서브캐리어 스페이싱을 사용할지 여부를 기지국이 전송하는 RAR 메시지 내 UL grant (상향링크 할당)에 1bit를 활용하여 나타낼 수 있다.
NB-IoT에서 3.75 kHz 또는 15 kHz의 두 가지 서브캐리어 스페이싱이 RAR 메시지를 통해 랜덤 액세스(random access) 과정에서 구체적으로 사용될 수 있다.
NB-PRACH 서브캐리어 위치(subcarrier locations) 관련, 서브캐리어 오프셋내의 주파수 위치(frequency location in subcarrier offset)는 예를 들어 0, 12, 24, 36, 2, 18, 34의 7가지 값을 가질 수 있으며, 3비트로 나타낼 수 있다.
서브캐리어의 개수는 예를 들어, 12, 24, 36, 48의 4가지 값을 가질 수 있으며, 2 비트로 나타낼 수 있다.
NB-PRACH 반복은 한 주기내의 연속적인 서브프레임들(contiguous subframes within one period)을 사용하여 이루어질 수 있다. 구체적으로, NB-PRACH 반복(repetitions)은 NB-PRACH를 위한 한 주기내의 연속적인 서브프레임들 내에서 연속적으로 이어져서 전송될 수 있다(transmitted back-to-back).
NB-PRACH subcarrier locations 관련, 서브캐리어 오프셋내의 주파수 위치(frequency location in subcarrier offset)는 subcarrier의 개수(예를 들어, 12, 24, 36, 48)에 따라서 달라질 수 있다. 구체적으로, 서브캐리어 오프셋내의 주파수 위치(frequency location in subcarrier offset)는 서브캐리어(subcarrier)의 개수(예를 들어, 12, 24, 36, 48)에 따라서 0, 12, 24, 36, 2, 18, 34로 달라질 수 있으며, 서브캐리어(subcarrier)의 개수와 서브캐리어 오프셋내의 주파수 위치를 소정의 테이블에 미리 정의해 두고 사용할 수 있다.
NB-PRACH 관련하여, 업링크 전송 타이밍의 조절(adjustment of the uplink transmission timing)은 대응되는 타이밍 어드밴스 커맨드(timing advance command) 전송의 종료후 적어도 일정 시간-예를 들어 12ms-에 시작되는 제1 NB-PUSCH 전송의 시작부터 적용될 수 있다. 여기서, 타이밍 어드밴스 커맨드는 RAR내에 포함되어 전송될 수 있다.
NB-IoT에서 NB-PRACH configuration과 관련하여, 최대 3개의 NB-PRACH 자원 구성(resource configurations)이 하나의 셀 내에서 구성될 수 있다.
싱글-톤, 멀티-톤 전송을 위해 실제적으로 PRACH 자원을 나누어 사용할 수 있다. 특히, 도 9에서 제시한 커버리지 레벨에 따른 PRACH 구성에서 싱글-톤, 멀티-톤 전송을 위해 PRACH 서브캐리어를 나누어 사용할 수 있다.
싱글-톤, 멀티-톤을 통한 Msg3 전송을 위해 단말이 RACH 절차를 수행할 때 싱글-톤 전송 또는 멀티-톤 전송에 따라 PRACH에서 사용할 서브캐리어 자원을 나누어 사용할 수 있다. 구체적으로, 싱글-톤 전송을 위한 서브캐리어는 특정 PRACH 자원에서는 반드시 보장(0이 될 수 없음) 할 수 있도록 할 수 있다. 예를 들어, 싱글 톤 MSG3 전송에 사용할 서브 캐리어 개수의 비율은 적어도 NB-PRACH 반복횟수가 32, 64, 128 이외인 적어도 하나의 자원들에서 0이 될 수 없다. 또는 싱글 톤 MSG3 전송에 사용할 서브 캐리어 개수의 비율은 적어도 NB-PRACH 반복횟수가 32, 64, 128인 자원에서 0이 될 수 없다.
멀티 톤 MSG3 전송은 NB-PRACH 반복횟수가 32, 64, 128인 경우에는 지원되지 않을 수 있다.
멀티-톤 전송을 위해 사용하는 서브캐리어 자원의 범위를 2bit를 활용하여 나타낼 수 있다. 예들 들어, 멀티 톤 Msg3 전송을 지원하는 UE를 위해 예약된 서브캐리어 범위의 시작 인덱스(starting subcarrier index)는 예를 들어 2 bit를 통해 나타낼 수 있다( {0, 1/3, 2/3, 1} x N_sc^NB-PRACH ). 여기서 N_sc^NB-PRACH는 총 서브캐리어의 개수를 나타내며, 1/3 x N_sc^NB-PRACH는 총 서브캐리어의 1/3을 의미한다.
또한, 멀티-톤 Msg3 전송을 위한 서브캐리어 자원이 없는 경우 싱글-톤 Msg 3 전송을 위한 서브캐리어를 사용하도록 할 수 있다. 만약 UE가 싱글 톤 MSG3 메시지에 대하여 예약된 자원을 선택한 경우, MSG3 메시지는 싱글 톤으로 할당될 수 있다. 이는 모든 PRACH 자원이 멀티 톤 MSG3 전송을 지원하는 UE가 사용할 예약된 서브캐리어 범위(range)가 없을 경우 UE는 싱글 톤 MSG3 전송을 위해 예약된 NB-PRACH 자원(resources)를 사용해야 함을 의미한다.
NB-PRACH 자원에서 다른 서브캐리어들(멀티 톤 전송시 사용할 서브캐리어 이외의 서브캐리어들)은 싱글 톤 MSG3 전송을 위한 범위(range)로 활용될 수 있다.
Msg3 메시지 서브캐리어 할당(subcarrier allocation)은 NB-PDCCH상의 UL grant 할당(allocation)과 동일할 수 있다.
Msg3 반복 횟수(repetition number)는 NB-PUSCH 반복횟수와 동일할 수 있다.
기술적 효과 관점에서, 3.75 kHz, 15 kHz 서브캐리어 스페이싱은, 3.75 kHz 서브캐리어 스페이싱의 경우 PSD(Power Spectral Density) 성능이 상대적으로 좋기 때문에 채널 상태가 좋지 않은 환경에서도 강인하게 동작할 수 있으며, 15 kHz 서브캐리어 스페이싱의 경우 상대적으로 넓은 대역폭을 통해 단말의 상향링크 전송률을 향상시킬 수 있으나 좋은 채널 상태에서의 사용이 요구된다. 따라서, 3.75 kHz, 15 kHz 두 가지의 서브캐리어 스페이싱을 단말의 채널상태에 맞게 제공해 줌으로써 성능향상을 기대할 수 있다. 멀티-톤 전송은 다수 서브캐리어를 사용하여 싱글-톤 전송 대비 전송률을 향상시킬 수 있는 효과가 있다.
RAN1에서 사용되는 아래 수식을 NB-PRACH에서 power ramping 에 재사용할 수 있다. 다만 (-10*log10(numRepetitionPerPreambleAttempt) 항을 추가하고, 상기 추가된 항을 통해 반복전송 효과를 보정하도록 할 수 있다.
-REAMBLE_RECEIVED_TARGET_POWER는 preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER - 1) * powerRampingStep - 10*log10(numRepetitionPerPreambleAttempt)로 정의되며, 이때 DELTA_PREAMBLE 은 0 이다.
전송 충돌(colliding transmissions)와 관련하여, 스탠드얼론(standalone) 오퍼레이션 및 가드밴드(guard band) 오퍼레이션에 대하여, NB-PBCH를 제외한 NB-IoT channels 및 signals은 physical Cell_ID에 따라 계산된 “LTE CRS(Cell-specific reference signals)”에 대응되는 REs(Resource Elements)를 차지할 수 있다. LTE CSI-RS(Channel state information - Reference signals) 또는 PRS(Positioning Reference Signals)의 NB-IoT 시그널링은 존재하지 않는다. NB-PDCCH 및 NB-PDSCH는 in-band operation을 위해 LTE CRS(Cell-specific reference signals) 주변에 레이트 매칭될 수 있다.
충돌 스케쥴링(scheduling collision) 관련하여, NB-PDCCH로부터 grant를 수신한 NB-IoT UE 은 상기 상응하는 NB-PDSCH 또는 NB-PUSCH 전송(transmission) 시작과 상기 grant를 스케쥴하는 NB-PDCCH의 끝 사이의 시간 구간 동안에 추가적으로 임의의 DL grant 또는 UL grant에 대한 NB-PDCCH를 모니터하는 것은 필요하지 않다. 
NB-IoT 를 위한 PRACH 충돌 처리(Collision Handling)와 관련하여, 낮은 커버리지(lower coverage) 내의 UE들은 높은 커버리지 레벨(들)(higher coverage level(s))과의 NB-PRACH opportunities 충돌을 부적합(invalid) 한 것으로 취급할 수 있다. UE들은 Msg1 전송(transmission)에 적합한(valid) NB-PRACH opportunities만을 사용할 수 있다.
LTE(Long Term Evolution) 에서 단말은 데이터 전송을 위해 기지국 eNB(eNodeB)와의 링크 설정 혹은 재설정이 필요한 경우 랜덤 액세스 과정을 시작할 수 있다. 랜덤 액세스는 목적에 따라 비경쟁 방식 또는 경쟁 방식으로 동작할 수 있다.
비경쟁 방식의 랜덤 액세스 과정의 경우 핸드오버(Handover) 와 같은 특수한 목적으로만 사용되며, 일반적인 경우 단말은 경쟁 방식의 랜덤 액세스를 통해 eNB와 연결을 설정하여 데이터를 전송한다.
도 1은 기존 LTE 환경에서 시간-주파수 영역에서의 PRACH 자원 구성을 나타낸 개념도이다.
도 1을 참조하면, 랜덤 액세스를 수행하는 자원은 RA(Random Access) slot으로 불리는 연속적인 시간-주파수의 랜덤 액세스 자원(12)으로 구성되며, 단말은 RA slot에서 프리앰블(Preamble)을 전송하여 전송요청을 시작할 수 있다.
프리앰블이 전송되는 자원을 PRACH(Physical Random Access Channel)이라 하며, PUSCH(Physical Uplink Shared Channel) 채널의 일정 부분으로 할당하여 사용한다. 도 1에 도시된 바와 같이 주파수 영역에서 PRACH 자원은 6개의 자원블록(Resource Block; RB)에 해당하는 대역폭을 가진다.
각 셀(Cell)은 64개의 프리앰블을 제공하며, 이중 일부는 비경쟁 방식의 랜덤 액세스를 지원하기 위해 예약되어 있으며, 나머지 프리앰블 자원은 다시 Group A와 Group B의 자원으로 나뉘게 된다. Group A는 작은(small) 패킷을 전송하기 위해, Group B는 큰(large) 패킷을 전송하기 위해 사용한다. 이외에, RA slot의 주기성, 경쟁 기반 랜덤 액세스 에서 사용하는 프리앰블 수, Group A 에서 최대로 허용되는 메시지 크기 등 랜덤 액세스 관련 파라미터들은 SIB 2(System Information Block 2) 메시지를 통해 단말에게 전달된다.
NB-IoT(Narrow Band-Internet of Thing) 상향링크 및 랜덤 액세스 전송의 경우 축소된 180kHz 대역을 할당하여 사용할 수 있으며, 단일 서브캐리어(subcarrier)를 사용하는 싱글-톤 전송과, 다수의 서브 캐리어를 사용하는 멀티-톤 전송으로 구분 할 수 있다.
도 2는 NB-IoT(Narrow Band-Internet of Thing)에서 단말이 3.75kHz 서브캐리어 스페이싱을 사용하는 경우의 상향 링크 단일-톤 전송을 설명하기 위한 개념도이며, 도 3은 NB-IoT(Narrow Band-Internet of Thing)에서 15kHz 서브캐리어 스페이싱을 사용하는 경우의 상향 링크 싱글-톤 전송 또는 멀티-톤 전송을 설명하기 위한 개념도이다.
싱글-톤 전송의 경우, 도 2와 같은 3.75kHz 서브캐리어 스페이싱을 사용하는 싱글-톤 전송(20) 또는 도 3과 같은 15 kHz 서브캐리어 스페이싱을 사용하는 싱글-톤 전송(30)이 가능하다. 싱글-톤 전송의 경우 좁은 주파수대역 사용으로 데이터 전송률은 낮지만, 주파수 대역에 전력이 집중되어 채널 상태가 좋지 않은 환경에서도 커버리지 효율이 높고, 멀티-톤 전송방식에 비해 디바이스 비용 및 디바이스 복잡도가 감소될 수 있다.
멀티-톤 전송의 경우, 단말은 도 3과 같은 15 kHz 서브캐리어 스페이싱을 사용하는 멀티-톤 전송(35)이 가능하다. 멀티-톤 전송의 경우 다수의 서브캐리어 사용으로 높은 데이터 전송률을 보장하지만, 비교적 넓은 대역폭을 사용하므로 채널 상태가 좋은 환경이어야 하며, 신호처리 증가로 인한 디바이스 비용이 증가하고 디바이스 복잡도가 증가할 수 있다.
도 4는 NB-IoT 시스템에서 싱글-톤 및 멀티-톤 Msg3 전송을 수행하기 위한 프리엠블을 포함하는 PRACH 자원 구성을 나타낸 개념도이다.
도 4를 참조하면, PRACH 자원은 0, 1, …, (
Figure PCTKR2017000939-appb-I000001
Figure PCTKR2017000939-appb-I000002
-1)으로 넘버링된 싱글-톤 프리엠블(40) 및 (
Figure PCTKR2017000939-appb-I000003
Figure PCTKR2017000939-appb-I000004
), …, (
Figure PCTKR2017000939-appb-I000005
-1)으로 넘버링된 멀티-톤 프리엠블(50)으로 구성될 수 있다.
이외에 PRACH 자원은 기지국에서 단말로 전송되는 아래 파라미터들로 정의될 수 있다.
Figure PCTKR2017000939-appb-I000006
: NPRACH 자원 주기(resource periodicity)
Figure PCTKR2017000939-appb-I000007
: 할당된 NPRACH 의 첫 번째 subcarrier의 주파수 위치 (frequency location of the first sub-carrier allocated to NPRACH)
Figure PCTKR2017000939-appb-I000008
: NPRACH에 할당된 서브캐리어 개수(number of sub-carriers allocated to NPRACH)
Figure PCTKR2017000939-appb-I000009
: 각 시도별 NPRACH 반복 개수(number of NPRACH repetition per attempt)
Figure PCTKR2017000939-appb-I000010
: NPRACH 시작 시간(starting time)
Figure PCTKR2017000939-appb-I000011
: 멀티-톤 msg3 전송을 지원하는 UE를 위해 예약된 NPRACH 서브캐리어의 범위의 시작 서브캐리어 인덱스를 계산하기 위한 비율 값(fraction for calculating starting subcarrier index for the range of NPRACH subcarriers reserved for indication of UE support for multi-tone msg3 transmission)
이하, 경쟁 기반의 랜덤 액세스 과정에 대해 도 5 및 도 6을 참조하여 설명한다.
도 5는 본 발명의 일실시예에 따른 셀룰러 기반 협대역(Narrowband) 사물통신에서 사물통신 단말과 기지국간의 랜덤 액세스 과정을 설명하기 위한 순서도 이며, 도 6은 랜덤 액세스 동작 중 단말의 동일 프리앰블 선택에 의한 Message 3 충돌을 설명하기 위한 순서도이다.
1. Message 1 전송 [프리앰블 전송]
도 5를 참조하면, NB-IoT 단말은 랜덤 액세스를 시작하며 프리엠블(Preamble)을 기지국으로 전송한다 (단계 501). 이때 단말은 커버리지 레벨에 대응하는 자원 내에서 프리앰블 하나를 랜덤하게 선택하여 기지국으로 전송한다. 프리앰블 간 직교성에 의해 기지국으로 전송된 서로 다른 프리앰블들은 기지국으로 수신될 수 있다.
또 다른 경우로 도 6을 참조하면, 두 개 이상의 단말(UE 1 550; UE 2 560)이 동시에 동일한 프리앰블을 전송한 경우에도 동일한 신호이므로 기지국에서 프리엠블을 수신할 수 있다 (단계 601, 603). 그러나, 두 개 이상의 단말이 동일한 프리앰블을 선택하는 경우 이어지는 단말의 Message 3 전송과정에서 충돌이 발생할 수 있다.
2. Message 2 전송[Random Access Response 전송]
성공적으로 수신한 Preamble 요청에 대해 기지국은 TA(Timing Alignment) 와 Message3 전송을 위한 자원 정보-예를 들어 PUSCH(Physical Uplink Shared Channel) 자원-을 포함하는 RAR(Random Access Response) 메시지를 PDSCH(Physical Downlink Shared Channel)를 통해 단말로 전송한다(단계 503). 단말은 RAR 메시지를 수신하여 이전에 단말 자신이 전송한 프리앰블 수신의 성공여부를 판단할 수 있다. 프리앰블 전송이 실패한 것으로 나타나면 단말은 random backoff 시간 이후 새 RA slot에서 랜덤 액세스 과정의 재수행을 위해 프리엠블 전송을 수행한다. 만약 프리앰블 전송이 일정 횟수 이상 실패하게 되면, 단말은 상위 계층으로 랜덤 액세스 과정의 문제를 알리게 된다.
3. Message 3 [Connection Request 전송]
단말은 RAR(Random Access Response) 수신 후 단말은 연결 요청(Connection Request)인 Message3를 PUSCH(Physical Uplink Shared Channel)내 예약된 자원에서 전송한다(505). Message 3 전송은 HARQ 방식으로 수행된다. 상기 Message 1 전송단계에서 설명한 대로, 도 6을 참조하면, 복수 단말이 동일한 프리앰블 전송(단계 601, 603)을 하여 기지국이 RAR(Random Access Response)을 전송한 경우(단계 605, 607), 복수 단말이 동일 PUSCH 자원에서 Message 3 전송(단계 611, 613)을 수행하여 충돌이 발생하게 된다.
여기서, Message 3 (Msg3)는 상향링크 데이터 전송을 위해 단말이 기지국으로 연결 요청을 수행하는 메시지이다. Message3 전송 후 기지국으로부터 응답인 Contention Resolution을 수신하면 단말은 할당된 자원에서 상향링크 전송을 수행할 수 있다.
단말이 처음 프리엠블을 전송하는 경우 Msg3 가 아직(추가함) 전송되지 않은 경우로 판단하여, 단말이 결정한 커버리지 레벨에 대응하는 PRACH 자원에서 프리엠블을 선택하여 전송한다. 또는 단말이 Msg3 전송 실패로 인해 프리엠블 전송을 2번째 이상 수행하는 경우 Msg3 재전송 과정 중으로 판단하여, 첫번째 프리엠블을 선택한 자원에서 다시 프리엠블을 랜덤하게 선택하여 랜덤 액세스를 시도한다. 프리앰블 전송횟수가 최대 프리앰블 전송횟수를 초과하는 경우 커버리지 레벨을 변경하며, 다시 프리앰블 전송횟수는 1로 초기화 된다.
4. Message 4 [Contention Resolution 전송]
단말의 Message 3를 수신한 기지국은 PDSCH(Physical Uplink Shared Channel)에서 경쟁 해소(Contention Resolution; CR)로 응답하여 단말로 연결요청을 승인한다(단계 507). 도 6에서는 두 단말의 Message 3 충돌이 나타나 있다(단계 611 또는 613). 이 경우 기지국으로부터 CR(Contention Resolution)을 수신하지 못하게 되며, 단말은 랜덤 백오프(random backoff) 시간 이후 새 프리앰블 전송을 새 RA slot에서 수행한다. 특정 횟수 이상만큼 프리앰블 전송이 실패하는 경우 단말은 네트워크 사용이 불가한 것으로 판단한다.
도 7은 도 6에서 Message 3 전송이 아직 안된 경우의 랜덤 액세스 동작을 설명하기 위한 순서도이다.
도 7을 참조하면, 사물통신 단말에서, 랜덤 액세스 과정 시 Message 3(Msg3) 전송이 아직 안되었는지를 판단한다(단계 710). 이때 Msg3 전송이 아직 안된 상태는 첫번째 프리앰블 전송을 수행하는 경우를 의미한다.
상기 판단 결과, Message 3(Msg3) 전송이 아직 안된 경우, 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 PRACH 자원을 선택한다(단계 720). 또는, 상기 판단 결과, Message 3(Msg3) 전송이 아직 안된 경우, 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 전송 지원 여부를 고려하여 PRACH 자원을 선택할 수 있다. 구체적으로, Message 3(Msg3) 전송이 아직 안된 경우는 랜덤 액세스 과정을 시작하며 첫번째 프리앰블 전송을 수행하는 경우를 의미하며, 커버리지 레벨과 멀티-톤 Message 3(Msg3) 전송 지원 여부를 고려하여 PRACH 자원을 선택할 수 있다. 구체적으로, Message 3(Msg3) 전송이 아직 안된 경우는 사물통신 단말에서 최대 프리앰블 전송횟수를 초과하여 프리앰블 전송횟수가 초기화 된 뒤 다른 조건에서 첫번째 프리앰블 전송이 이루어지는 경우 또는 상기 최대 프리앰블 전송횟수의 초과 없이 첫번째 랜덤 액세스 프리엠블 전송을 수행하는 경우를 의미한다.
도 8는 본 발명의 일실시예에 따른 기지국 환경 및 커버리지 레벨에 따른 PRACH 자원 사용 현황을 나타낸 개념도이다.
본 발명에서는 셀룰러 기반의 IoT 시스템-예를 들어 NB-IoT 시스템-에서 단말이 커버리지 레벨(Coverage Level; CL)과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 수행 방법을 제공한다.
도 8을 참조하면, 본 발명의 일실시예에서 기지국(880)은 3개의 커버리지 레벨(CL)을 제공하며, 각 커버리지 레벨(CL)별로 활용하는 PRACH 자원을 서브캐리어 스페이싱 및/또는 멀티-톤 설정에 따라 나누어서 사용될 수 있도록 자원을 구성한다. 그러나, 이는 서브캐리어 스페이싱 및/또는 멀티-톤 설정의 성능특성에 따른 본 발명에서의 자원구성의 실시예 중 하나일 뿐이며, 특정 설정의 조합이 제외되거나 추가될 수도 있다. 본 발명에서는 서브캐리어 스페이싱 및/또는 멀티-톤 설정에 따른 순차적인 성능을 최대한 활용할 수 있는 방향에서 발명예시를 설명한다.
도 8 및 표 1을 참조하면, 단말은 채널 상태-예를 들어, 셀 중심, 좋은 채널 상태, 극한 커버리지 상태-에 따라서 1) 15kHz, 멀티-톤(multi-tone), 2) 15kHz, 싱글-톤(single-tone), 3) 3.75kHz, 싱글-톤(single-tone)의 서브캐리어 및/또는 멀티-톤 3가지 조합의 설정을 사용할 수 있다.
또한, 이에 대응하여 기지국은 프리앰블 자원역시 커버리지 레벨 별로 구체적으로 지원하는 설정값에 따라 나누어 구성할 수 있다. 이때 프리엠블 자원은 비율값
Figure PCTKR2017000939-appb-I000012
,
Figure PCTKR2017000939-appb-I000013
등 에 따라 범위가 결정될 수 있으며, 해당 정보는 기존과 마찬가지로 PRACH 자원을 구성하는 정보를 나타내는 메시지에 포함되어 기지국으로부터 단말로 전달 될 수 있다. CL1은 가장 좋은 채널상태를 가지므로 위 3가지 모두의 서브캐리어 및/또는 멀티-톤 설정을 사용하며, CC2는 상대적으로 좋은 채널상태를 가지므로 2) 15kHz, 싱글-톤(single-tone), 3) 3.75kHz, 싱글-톤(single-tone)의 2가지 서브캐리어 및/또는 멀티-톤 설정을 사용하며, CC3는 극한의 채널 상태를 가지므로 3.75kHz, 싱글-톤(single-tone)의 1가지 서브캐리어 및/또는 멀티-톤 설정만을 사용하는 것으로 가정한다.
도 8의 일실시예에서는 CL 1 의 프리엠블 자원을 각각 (15kHz, 멀티-톤), (15kHz, 싱글-톤) 및 (3.75kHz, 싱글-톤) 자원으로 분할하기 위해
Figure PCTKR2017000939-appb-I000014
,
Figure PCTKR2017000939-appb-I000015
비율값을 사용하여 분할하였으며, CL 2의 프리엠블 자원을 각각 (15kHz, 싱글-톤), (3.75kHz, 싱글-톤) 자원으로 분할하기 위해
Figure PCTKR2017000939-appb-I000016
비율값을 사용하였다.
단말은 상향링크 데이터 전송을 위해 기지국과의 동기화를 수행하고 기지국과 동기를 맞춘 상태에서 시스템 정보를 기지국으로부터 수신하며, 이 과정에서 단말은 채널상태에 따라 CL과 서브캐리어 스페이싱 및/또는 멀티-톤설정을 결정한다. 이후 해당하는 CL에서 랜덤 액세스를 수행하기 위해 단말은 PRACH 자원정보를 기지국으로부터 수신한다. 랜덤 액세스 과정에서 단말은 선택한 CL과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려하여 Preamble을 선택하여 기지국으로 전송한다. 이후 단말은 기지국으로부터 RAR(Random Access Response)을 수신하여 상향링크 전송을 위해 연결을 요청하는 Msg3 전송에 사용할 수 있는 자원정보를 수신한다. 만약 RAR을 수신하지 못한 경우, 단말은 다시 프리앰블 전송을 수행하며, 첫 번째 선택한 설정과 동일한 PRACH 자원에서 프리앰블을 선택하여 전송한다. 최대 프리앰블 재전송 횟수를 초과하는 경우 커버리지 레벨을 변경한 뒤 해당 커버리지 레벨 내에서 가능한 서브캐리어 스페이싱 및/또는 멀티-톤 설정에 해당하는 PRACH 자원에서 프리엠블을 선택한 뒤 전송한다.
Msg3 전송은 단말이 할당된 자원에서 HARQ 방식으로 전송을 수행하며, 채널상태의 변화로 인해 HARQ 전송이 실패하는 경우나 Msg3 전송 후에도 단말이 Msg4를 수신하지 못하는 경우 단말은 다시 프리엠블 전송을 수행하며, 첫 번째 선택한 설정과 동일한 PRACH 자원에서 프리앰블을 선택하여 전송한다. 최대 프리앰블 재전송 횟수를 초과하는 경우 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 변경한 뒤 해당하는 PRACH 자원에서 프리엠블을 선택한 뒤 전송한다.
모든 경우에 대해, 해당하는 CL에 대해 선택할 수 있는 서브캐리어 스페이싱 및/또는 멀티-톤 설정이 없는 경우 한 단계 낮은 채널상태를 지원하는 CL을 선택한 뒤 이에 해당하는 서브캐리어 및/또는 멀티-톤 설정을 선택하여 대응하는 PRACH 자원에서 전송할 프리엠블 자원을 선택한다.
도 10은 기존의 커버리지 레벨을 고려한 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행방법을 나타낸 순서도이고, 도 11은 본 발명의 일실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행 방법을 나타낸 개념도이다.
도 10을 참조하면, 기존의 커버리지 레벨을 고려한 단말의 랜덤 액세스 수행 방법에서는, 단말이 커버리지 레벨을 선택한 뒤 해당하는 프리앰블 자원을 선택하여 전송한다. 이후 기지국으로부터 RAR을 수신하고, HARQ 방식으로 Msg3 전송하면 기지국으로부터 응답인 Contention Resolution을 수신하여 랜덤 액세스 과정을 완료할 수 있다. 이때, RAR이 미수신 되거나, Msg3 HARQ 전송실패 또는 Contention Resolution 미수신이 발생하면 단말은 동일 PRACH 자원에서 프리앰블 전송과정을 다시 수행하여 랜덤 액세스를 재시도 한다. 이 과정에서 프리앰블 전송횟수가 기지국으로부터 결정된 최대 프리엠블 전송횟수를 초과하는 경우 단말은 선택한 커버리지 레벨이 현 채널상황에 적절하지 않은 것으로 판단하고, 한 단계 낮은 채널상태를 지원하는 커버리지 레벨로 변경하여 대응하는 PRACH 자원에서 다시 프리앰블을 선택하여 랜덤 액세스 절차를 수행한다.
그러나 이러한 커버리지 레벨(CL) 변경 후 랜덤 액세스 재수행을 하는 절차는 단말이 변경된 커버리지 레벨(CL)에서 랜덤 액세스를 수행하기 위한 PRACH(Physical RACH) 자원을 대기하기 위한 과정과, 해당 PRACH에서 랜덤 액세스 과정을 처음부터 다시 수행해야 하기 때문에 단말의 동작시간과 지연시간이 크게 증가하는 문제가 발생하게 된다.
이하, 본 발명의 일실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 단말의 랜덤 액세스 수행방법을 설명한다.
비경쟁 기반 랜덤 액세스 과정의 경우는 랜덤 액세스 프리엠블이 기지국으로부터 명시적으로 시그널링된다(사용할 랜덤 액세스 프리앰블 자원이 명시적으로 표시된다).
경쟁 기반 랜덤 액세스 과정의 경우는 랜덤 액세스 프리엠블이 기지국으로부터 명시적으로 시그널링 되지 않는다(사용할 랜덤 액세스 프리앰블 자원이 명시적으로 표시되지 않는다).
이하, 도 11 및 도 12의 랜덤 액세스 과정은 사용할 랜덤 액세스 프리엠블이 상기 기지국으로부터 명시적으로 시그널링되지 않은 경우에 수행될 수 있다.
도 11을 참조하면, 본 발명의 일실시예에 따른 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행 방법에 따르면, RACH 과정에서 단말은 기지국으로부터 RAR(Random Access Response)을 수신하여 사용할 수 있는 상향링크 자원정보를 수신한다(단계 1101).
할당된 상향링크 자원에서 단말은 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Msg3)를 기지국으로 전송하며(단계 1103), 단말은 채널상태의 변화등으로 인해 Msg3 전송이 실패하는지 여부를 체크한다(단계 1105). Msg3 전송이 실패하지 않은 경우 상향링크 전송이 성공(단계 1107)한 것으로 체크한다.
Msg3 전송이 실패한 경우 단말은 Msg3 전송 실패 횟수가 최대 재전송 횟수보다 작은지 여부를 판단한다(단계 1109). 여기서, 최대 재전송 횟수는 DCI(Downlink Control Information)에 포함될 수 있다.
Msg3 전송 실패 횟수가 최대 재전송 횟수보다 작은 경우에는 단계 1101로 되돌아가 RACH 절차를 다시 수행하여 RAR(Random Access Response)을 수신하여 사용할 수 있는 상향링크 자원정보를 기지국으로부터 수신하고 Msg3 전송을 다시 시도한다.
Msg3 전송 실패 횟수가 최대 재전송 횟수보다 작지 않은 경우에는 단말은 기존의 커버리지 레벨(CL)를 변경하는 동작 대신 본 발명의 일실시예에 따라 동일 커버리지 레벨(CL)내에서 한 단계 낮은 전송률을 갖는 서브캐리어 스페이싱 및/또는 멀티-톤 설정으로 변경하여 다시 RACH 과정을 수행하여 데이터(Msg 3) 전송 과정을 다시 시도한다. 이때 단말은 이전 RACH 과정에서 기지국이 본 발명의 일실시예에 따른 서브캐리어 스페이싱 및/또는 멀티-톤 설정 변경을 고려하여 RAR(Random Access Response)에 예비로 할당한 PRACH 자원정보를 이용하여 바로 재전송을 수행하거나(Option 2), 또는 동일 커버리지 레벨(CL)내에서 한 단계 낮은 전송률을 갖는 서브캐리어 스페이싱 및/또는 멀티-톤을 사용하는 PRACH 자원(또는 프리앰블 자원)에서 RACH 과정을 다시 수행(Option 1)하여 Msg 3 전송을 시도할 수 있다. 만약 단말이 현재 서브캐리어 스페이싱 및/또는 멀티-톤 설정에서도 연속적인 전송 실패가 발생하면, 다른 커버리지 레벨로 커버리지 레벨을 변경하여 해당 커버리지 레벨(CL)에 대응하는 PRACH 자원 정보를 수신한 뒤 RACH 과정을 수행한다.
이하 구체적인 예를 들어 본 발명의 실시 예들에 따른 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행 방법을 설명한다.
본 발명의 일 실시 예에 따른 랜덤 액세스를 수행하는 특정 단말은 CL2 영역에 위치하는 것으로 가정할 경우, 단말은 초기 CL2의 15kHz 싱글-톤(single-tone) 설정으로 프리엠블(Preamble) 자원을 선택하여 전송하고 기지국으로부터 프리엠블 전송에 대한 응답인 RAR(Random Access Response)을 수신한다.
기지국으로부터 프리엠블 전송에 대한 응답인 RAR이 미수신 되어 다시 프리엠블 전송을 시도할 수 있으며, RAR 미수신이 연속적으로 발생하여 프리엠블 전송횟수를 초과한 경우 단말은 바로 한 단계 낮은 채널상태를 지원하는 CL3의 최대 전송률을 갖는 3.75kHz, 싱글-톤 설정을 선택한 뒤 해당하는 PRACH 자원에서 프리엠블을 선택하여 랜덤 액세스 과정을 다시 수행할 수 있다.
랜덤 액세스 과정에서 최대 프리앰블 전송횟수 이상의 연속적인 Msg 3 전송이 실패하면, 이후 단말은 기존의 커버리지 레벨(CL)을 변경하는 동작 대신 본 발명의 일실시예 따라 동일 CL내에서 한 단계 낮은 전송률을 갖는 서브캐리어 스페이싱 및/또는 멀티-톤 설정인 3.75kHz 싱글-톤(single-tone)을 선택하여 다시 RACH 과정을 수행하여 Msg 3 전송 과정을 다시 시도한다. 이때 단말은 이전 RACH 과정에서 기지국이 본 발명의 일실시예에 따른 서브캐리어 스페이싱 및/또는 멀티-톤 설정 변경을 고려하여 RAR(Random Access Response)에 예비로 할당한 PRACH 자원정보로 바로 재전송을 수행하거나(Option 2), CL2의 3.75kHz single-tone 전송을 위한 PRACH 자원에서 RACH 과정을 다시 수행(Option 1)하여 데이터(Msg 3) 전송을 시도할 수 있다. 만약 단말이 3.75kHz 싱글-톤(single-tone) 설정에서도 랜덤 액세스 과정에서 최대 프리앰블 전송횟수 이상의 연속적인 Msg3 전송실패가 발생하면, CL3로 커버리지 레벨을 변경하여 해당 커버리지 레벨(CL)에 대응하는 PRACH 자원 정보를 수신한 뒤 RACH 과정을 수행한다.
도 12는 본 발명의 다른 실시예에 따른 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 단말의 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법을 나타낸 순서도이다.
도 12를 참조하면, 본 발명의 다른 실시예에 따른 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행 방법에 따르면, 랜덤 액세스 과정을 위해 단말은 커버리지 레벨을 선택하고(단계 1201) 이에 해당하는 프리엠블 자원을 선택하여 전송한다(단계 1203). 이후 기지국으로부터 응답인 RAR 과 함께 Msg3 전송을 위한 상향링크 자원을 획득하게 된다. 단말은 HARQ 방식으로 Msg3 전송을 수행할 수 있으며, Msg3 가 기지국에서 수신된 경우 최종적으로 Contention Resolution 메시지를 기지국으로부터 수신하여 랜덤 액세스 과정을 완료할 수 있다.
랜덤 액세스 과정의 실패는 단말이 RAR을 미수신하거나, Msg3 전송실패 혹은 Contention Resolution 의 수신 실패로 발생할 수 있다. 각각의 경우 단말은 랜덤 액세스 과정을 재수행하기 위해 프리앰블 전송을 다시 시도하게 된다.
RAR 미수신한 경우, 즉 프리엠블 전송 실패한 경우, 랜덤 액세스를 재수행하며 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과하였는지를 판단(단계 12130)하여 최대 프리엠블 전송횟수를 초과한 경우 단말은 한 단계 낮은 채널상태를 지원하는 커버리지 레벨로 바로 변경한다(단계 1201). 이는 랜덤 액세스 프리엠블 전송은 3.75kHz, 싱글-톤 설정을 사용하여 이루어지기 때문에 단말이 해당 커버리지 레벨에서 가장 낮은 설정으로도 랜덤 액세스 프리엠블 전송이 불가함을 알 수 있기 때문이다.
단말은 Msg3를 HARQ 방식으로 전송을 시도하고(단계 1207), Msg3의 HARQ 방식으로 전송이 성공하였는지를 판단하여(단계 1209), Msg3의 HARQ 방식 전송이 성공한 경우에는 Contention Resolution이 수신되었는지를 판단(단계 12110) 한다.
Msg3 전송실패(Msg3의 HARQ 방식으로의 전송 실패)한 경우 혹은 Contention Resolution 수신 실패한 경우, 단말의 랜덤 액세스 재수행 과정에서 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과한 것으로 판단되면, 단말은 본 발명의 실시예들에 따른 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 활용하는 방법을 통해 랜덤 액세스 과정을 재수행할 수 있다(단계 1217, 1219, 1203, 1201). 구체적으로, 단말은 현재 커버리지 레벨 내에서 변경 가능한 한 단계 낮은 전송률의 서브캐리어 스페이싱 및/또는 멀티-톤 설정이 존재하는지 판단하여(단계 1217) 존재하는 경우 현재 커버리지 레벨 내에서 변경 가능한 한 단계 낮은 전송률의 서브캐리어 스페이싱 및/또는 멀티-톤 설정으로 변경(단계 1219)한 뒤 대응하는 PRACH 자원에서 프리앰블을 선택하고 전송(단계 1203)하여 랜덤 액세스 과정을 재수행한다. 이때 단말은 본 발명의 실시예들에 따라 랜덤 액세스 과정을 프리엠블 전송부터 다시 시작하거나(Option 1), 이전 랜덤 액세스 수행 과정에서 기지국이 본 발명의 서브캐리어 스페이싱 및/또는 멀티-톤 설정 변경을 고려하여 RAR에 예비로 할당한 상향링크 자원정보를 활용하여 Msg3의 HARQ 방식 전송(Option 2)을 바로 수행할 수 있다. 만약, 단말이 해당 커버리지 레벨 내에서 선택할 수 있는 가장 낮은 전송률을 갖는 설정에서도 연속적인 Msg3 전송실패 혹은 Contention Resolution 수신 실패가 발생하는 경우 단말은 한 단계 낮은 커버리지 레벨로 변경하여 해당 커버리지 레벨에 대응하는 PRACH 자원에서 랜덤 액세스를 수행한다.
이하 구체적인 예를 들어 본 발명의 다른 실시 예에 따른 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 수행 방법을 설명한다.
본 발명의 일 실시 예에 따른 상향링크 데이터 전송을 위한 단말의 랜덤 액세스 과정을 수행하는 특정 단말은 CL2 영역에 위치하는 것으로 가정할 경우, 단말은 초기 CL2의 15kHz, 싱글-톤(single-tone) 설정으로 프리엠블(Preamble) 자원을 선택하여 전송한다. 기지국으로부터 프리엠블 전송에 대한 응답인 RAR이 미수신 되어 다시 프리엠블 전송을 시도할 수 있으며, RAR 미수신이 연속적으로 발생하여 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과한 경우 단말은 바로 한 단계 낮은 채널상태를 지원하는 CL3의 최대 전송률을 갖는 3.75kHz, 싱글-톤 설정을 선택한 뒤 해당하는 PRACH 자원에서 프리엠블을 선택하여 랜덤 액세스 과정을 다시 수행할 수 있다.
RAR(Random Access Response)이 수신된 뒤에 연속적인 Msg3 전송이 실패하거나, Contention Resolution 수신 과정이 실패하면, 첫 번째 선택한 설정과 동일한 PRACH 자원에서 프리앰블을 선택하여 랜덤 액세스를 수행할 수 있다. 만약, 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과하면, 단말은 기존의 커버리지 레벨(CL)을 변경하는 동작 대신 본 발명의 일실시예 따라 동일 커버리지 레벨(CL)(CL2)내에서 한 단계 낮은 전송률을 갖는 서브캐리어 스페이싱 및/또는 멀티-톤 설정인 3.75kHz, 싱글-톤(single-tone)을 선택하여 대응하는 PRACH 자원에서 프리앰블을 선택하여 다시 랜덤 액세스 과정을 수행한다. 이때 단말은 이전 랜덤 액세스 과정에서 기지국이 본 발명의 일실시예에 따른 서브캐리어 스페이싱 및/또는 멀티-톤 설정 변경을 고려하여 RAR(Random Access Response)에 예비로 할당한 상향링크 자원정보로 바로 Msg3 전송을 수행하거나(Option 2), CL2의 3.75kHz, 싱글-톤(single-tone) 전송을 위한 PRACH 자원에서 랜덤 액세스 과정을 다시 수행(Option 1)할 수 있다. 만약 단말이 3.75kHz 싱글-톤(single-tone) 설정에서도 연속적인 Msg3 전송실패 또는 Contention Resolution 미수신이 발생하면, 단말은 CL3로 커버리지 레벨을 변경하여 해당 커버리지 레벨(CL)에 대응하는 PRACH 자원을 대기한 뒤 랜덤 액세스 과정을 수행한다.
본 발명의 다른 실시 예에 따른, 상향링크 데이터 전송을 위한 랜덤 액세스 수행방법의 대상이 되는 특정 단말이 CL1 영역의 외곽에 위치하는 것으로 가정할 경우, 단말은 초기 CL1의 15kHz, 멀티-톤 설정으로 프리엠블(Preamble) 자원을 선택하여 랜덤 액세스 과정을 시작한다.
이때 연속적인 RAR 미수신으로 인한 랜덤 액세스 수행 실패로 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과한 경우 단말은 한 단계 낮은 채널상태를 지원하는 커버리지 레벨인 CL2 로 변경한 뒤 해당 CL에서 가장 높은 전송률을 지원하는 15kHz, 싱글-톤 설정을 선택하여 해당하는 PRACH 자원 (프리엠블 자원)으로 랜덤 액세스를 다시 수행한다.
혹은 RAR 수신이 된 이후 Msg3 HARQ 전송실패 또는 Contention Resolution 실패로 인한 프리엠블 전송횟수가 최대 프리앰블 전송 횟수를 초과한 경우 단말은 기존의 커버리지 레벨(CL)를 변경하는 동작 대신 본 발명의 다른 실시예에 따라 동일 커버리지 레벨(CL)내에서 한 단계 낮은 전송률을 갖는 서브캐리어 스페이싱 및/또는 멀티-톤 설정인 15kHz, 싱글-톤(single-tone) 설정을 사용하는 PRACH 자원(또는 프리앰블 자원)을 선택하여 다시 랜덤 액세스를 재시도할 수 있다. 이때 단말은 이전 랜덤 액세스 과정에서 기지국이 본 발명의 다른 실시예에 따른 서브캐리어 스페이싱 및/또는 멀티-톤 설정 변경을 고려하여 RAR(Random Access Response)에 예비로 할당한 PRACH 자원정보로 프리앰블 전송 대신 Message 3 재전송을 바로 수행하거나(Option 2), 전술한 대로 CL1의 15kHz 싱글-톤(single-tone) 전송을 위한 PRACH 자원에서 랜덤 액세스 과정을 다시 수행(Option 1) 할 수 있다. 만약 단말이 15kHz 싱글-톤(single-tone) 설정에서도 연속적인 Msg3 전송실패 또는 Contention Resolution 미수신이 발생하면, 3.75kHz 싱글-톤(single-tone) 설정으로 변경하여 다시 Option 1 혹은 Option 2 동작으로 재시도 할 수 있다. 3.75kHz 싱글-톤(single-tone) 설정에서도 Message 3 전송이 실패하는 경우 단말은 CL1에서 제공하는 모든 설정이 통신 불가능한 것으로 판단하고, CL2로 변경한 뒤 해당 CL에서 제공하는 15kHz 싱글-톤(single-tone) 설정으로 랜덤 액세스 과정 혹은 Message 3 전송 과정을 재 수행할 수 있다.
즉, 랜덤 액세스 과정 중 Msg3 전송 실패 혹은 Contention Resolution 미수신에 의한 프리엠블 전송횟수가 최대 프리앰블 전송횟수를 초과한 경우 단말은 현재 커버리지 레벨내에서 제공하는 서브캐리어 스페이싱 및/또는 멀티-톤 조합으로 랜덤 액세스를 재수행하며 제공하는 서브캐리어 스페이싱 및/또는 멀티-톤 설정의 마지막 단계까지 실패한 경우 최종적으로 현재 커버리지 레벨을 변경하여 다시 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 단계적으로 수행할 수 있다. 다만, RAR 미수신에 의한 랜덤 액세스 실패로 인한 프리엠블 전송횟수가 최대 프리엠블 전송횟수를 초과한 경우 단말은 바로 한 단계 낮은 채널상태를 지원하는 커버리지 레벨로 변경하여 랜덤 액세스 과정을 다시 수행할 수 있다.
도 8을 참조하면, 본 발명의 일 실시 예에 따른, 상향링크 데이터 전송을 위해 단말에서 랜덤 액세스를 수행하는 경우, Msg3 전송 혹은 Contention Resolution 과정에서 연속적인 랜덤 액세스 실패 후 서브캐리어 스페이싱 및/또는 멀티-톤 설정에 따라 단계적인 성능을 가지도록 화살표 방향으로 순차적으로 PRACH 자원(또는 프리앰블 자원)을 선택하는 예를 나타낸다.
본 발명의 다른 실시 예에 따른, 상향링크 데이터 전송을 위한 단말의 랜덤 액세스를 수행하는 특정 단말이 CL1 영역의 외곽에 위치하는 것으로 가정할 경우, 단말은 서브캐리어 설정의 변경만을 사용하여 커버리지 레벨 내에서 랜덤 액세스 과정을 수행할 수 있다.
즉, 도 13 참조하면, 단말이 초기 CL1의 15kHz, 싱글-톤 설정 선택하여 랜덤 액세스를 수행한 뒤 연속적인 Msg3 전송실패 혹은 Contention Resolution 미수신이 발생하면, 커버리지 레벨을 변경하지 않고 동일한 커버리지 레벨인 CL1의 15kHz, 싱글-톤 설정에서, 3.75kHz, 싱글-톤 설정으로 변경한 후 랜덤 액세스 과정을 시도한다. 그 후에 랜덤 액세스가 실패한 경우 커버리지 레벨을 CL2 로 변경한 뒤 15kHz, 싱글-톤 설정을 사용하고, 다시 랜덤 액세스가 실패한 경우 3.75kHz, 싱글-톤 설정으로 랜덤 액세스를 시도할 수 있다. 다시 랜덤 액세스가 실패한 경우 마지막으로 커버리지 레벨을 CL3로 변경한 뒤 3.75kHz, 싱글-톤 설정으로 랜덤 액세스를 시도할 수 있다. 이때, 랜덤 액세스가 실패한 경우는 단말이 랜덤 액세스를 수행하여 Msg3 HARQ 전송실패 혹은 경쟁 해소(Contention Resolution) 메시지 미수신으로 인해 프리앰블 재전송 횟수가 최대 전송 횟수를 초과한 상태이며, 이후 언급되는 설명에서도 같은 의미를 가지는 것으로 정의한다.
본 발명의 또 다른 실시 예에 따른, 상향링크 데이터 전송을 위한 단말의 랜덤 액세스를 수행하는 특정 단말이 CL1 영역의 외곽에 위치하는 것으로 가정할 경우, 단말은 멀티-톤 설정의 변경만을 사용하여 커버리지 레벨 내에서 랜덤 액세스 과정을 수행할 수 있다.
즉, 도 14를 참조하면, 단말이 초기 CL1의 15kHz, 멀티-톤 설정 선택하여 랜덤 액세스를 수행한 뒤 연속적인 Msg3 전송실패 혹은 Contention Resolution 미수신이 발생하면, 커버리지 레벨을 변경하지 않고 동일한 커버리지 레벨인 CL1의 15kHz, 멀티-톤 설정에서, 15kHz, 싱글-톤 설정으로 서브캐리어 설정의 변경을 시도한다. 그 후에 랜덤 액세스가 실패한 경우 커버리지 레벨을 CL2 로 변경한 뒤 15kHz, 멀티-톤 설정을 사용하고, 다시 랜덤 액세스가 실패한 경우 15kHz, 싱글-톤 설정으로 랜덤 액세스를 시도할 수 있다. 다시 랜덤 액세스가 실패한 경우 마지막으로 CL3의 3.75kHz, 싱글-톤 설정으로 랜덤 액세스를 시도할 수 있다. 이때, 랜덤 액세스가 실패한 경우는 단말이 랜덤 액세스를 수행하여 Msg3 HARQ 전송실패 혹은 경쟁 해소(Contention Resolution) 메시지 미수신으로 인해 프리앰블 재전송 횟수가 최대 전송 횟수를 초과한 상태이며, 이후 언급되는 설명에서도 같은 의미를 가지는 것으로 정의한다.
도 15는 본 발명의 일실시예에 따른 NB-IoT 단말의 개략적인 블록도이고, 도 16은 본 발명의 일실시예에 따른 NB-IoT 통신 시스템의 개략적인 블록도이다.
도 15 및 도 16을 참조하면, NB-IoT 단말(100)은 트랜시버(120), 프로세서(110), 안테나(130)로 구성되어, 기지국(120)과 전술한 바와 같은 본 발명의 실시예들에 따른 랜덤 액세스 절차, 상향링크 데이터 전송을 위한 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법을 수행한다.
트랜시버(120)는 안테나(130)를 통하여 기지국(120)과 무선 신호(Radio frequency signal)를 송신 또는 수신하며, 안테나(130)를 통하여 기지국(120)으로부터 하향링크(downlink, 152)를 통하여 데이터 및 제어 신호를 수신하고, 기지국(120)으로 상향링크(uplink, 154)를 통하여 데이터 및 제어 신호를 전송한다.
프로세서(110)는 트랜시버(100)를 제어하여 제어 신호를 전송할 시점을 결정할 수 있다. 프로세서(110)는 본 발명의 실시예들에 따른 랜덤 액세스 절차, 상향링크 데이터 전송을 위한 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법을 수행한다.
사물통신 단말기-예를 들어 NB-IoT 단말, MTC(Machine Type Communication) 단말, 향상된 커버리지 내의 단말-는, 안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함할 수 있다. 상기 프로세서는 상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함할 수 있다. 구체적으로, 상기 랜덤 액세스 과정은 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 전송 지원 여부를 고려하여PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함할 수 있다.
사물통신 디바이스는, 안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함할 수 있다. 상기 프로세서는 상기 사물통신 디바이스와 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함할 수 있다. 구체적으로, 상기 랜덤 액세스 과정은 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 전송 지원 여부를 고려하여 PRACH(Physical Random Access Channel) 자원을 선택하는 단계를 포함할 수 있다.
프로세서(110)는 범용 프로세서, 특수 목적 프로세서, 종래의 프로세서, 디지털 신호 프로세서(digital signal processor; DSP), 마이크로프로세서, DSP 코어와 연관된 하나 이상의 마이크로프로세서들, 제어기, 마이크로제어기, 주문형 집적 회로(application specific integrated circuit; ASIC)들, 필드 프로그래밍 가능한 게이트 어레이(field programmable gate array; FPGA) 회로들, 집적 회로(integrated circuit; IC), 상태 머신 등일 수 있다. 프로세서(110)는 신호 코딩, 데이터 프로세싱, 전력 제어, 입력/출력 프로세싱, 및/또는 단말이 무선 환경에서 동작하는 것을 가능하게 하는 임의의 다른 기능을 수행할 수 있다. 프로세서(110)는 트랜시버(120)에 결합될 수 있다.
도 14에서는 프로세서(110) 및 트랜시버(120)를 별개의 컴포넌트들로서 도시하지만, 프로세서(110) 및 트랜시버(120)는 전자 패키지 또는 칩에 함께 통합될 수 있다.
예를 들어, 일 실시예에서, 안테나(130)는 RF 신호들을 송신 및/또는 수신하도록 구성되는 안테나일 수 있다. 다른 실시예에서, 안테나(130)는 예를 들어, IR, UV, 또는 가시광 신호들을 송신 및/또는 수신하도록 구성되는 방사체/검출기일 수 있다. 또 다른 실시예에서, 안테나(130)는 RF 및 광 신호들 둘 다를 송신 및 수신하도록 구성될 수 있다. 안테나(130)는 무선 신호들의 임의의 조합을 송신 및/또는 수신하도록 구성될 수 있다. 트랜시버(120)는 안테나(130)에 의해 송신될 신호들을 변조하고 안테나(130)에 의해 수신되는 신호들을 복조하도록 구성될 수 있다.
셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국은 트랜시버, 프로세서, 안테나로 구성되어, NB-IoT 단말과 전술한 바와 같은 본 발명의 실시예들에 따른 랜덤 액세스 절차, 상향링크 데이터 전송을 위한 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법을 수행할 수 있다.
셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국은, 안테나를 통하여 상기 사물통신 단말과 무선 신호를 송신 또는 수신하는 트랜시버와, 상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함할 수 있다. 상기 프로세서는 상기 사물통신 단말로부터 랜덤액세스 프리엠블을 전송받는 단계와, 상기 사물통신 단말로 RAR(Random Access Response) 메시지를 전송하는 단계와, 상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 수신하는 단계와, 상기 사물통신 단말로 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 경쟁 해소(Contention Resolution)를 전송하는 단계를 처리하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 설정을 고려하여 PRACH(Physical Random Access Channel) 자원을 구성하도록 구현될 수 있다. 구체적으로, 상기 랜덤 액세스 과정은 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을를 고려하여 PRACH(Physical Random Access Channel) 자원을 구성하도록 구현될 수 있다.
기지국은 임의의 적합한 무선 통신 링크(예를 들어, 라디오 주파수(radio frequency; RF), 마이크로파, 적외선(infrared; IR), 자외선(ultraviolet; UV), 가시광 등)일 수 있는 공중 인터페이스를 통해 하나 이상의 단말과 통신할 수 있다.
NB-IoT 통신 시스템은 다중 접속 시스템이 될 수 있고, CDMA, TDMA, FDMA,OFDMA, SC-FDMA 등과 같은 채널 액세스 방식들을 채용할 수 있다. 예를 들어, RAN의 기지국 및 NB-IoT 단말은 광대역 CDMA(WCDMA)를 이용하여 공중 인터페이스를 설정할 수 있는 유니버셜 모바일 원격통신 시스템(Universal Mobile Telecommunications System; UMTS) 지상 라디오 액세스(Terrestrial Radio Access; UTRA)와 같은 라디오 기술을 구현할 수 있다. WCDMA는 고속 패킷 액세스(High-Speed Packet Access; HSPA) 및/또는 이볼브드 HSPA(HSPA+)와 같은 통신 프로토콜들을 포함할 수 있다. HSPA는 고속 다운링크(DL) 패킷 액세스(High-Speed Downlink Packet Access; HSDPA) 및/또는 고속 업링크(UL) 패킷 액세스(High-Speed Uplink Packet Access; HSUPA)를 포함할 수 있다. 다른 실시예에서, 기지국 및 MTC 단말들은 롱텀 에볼루션(Long Term Evolution; LTE) 및/또는 LTE-어드밴스드(LTE- Advanced; LTE-A)를 이용하여 공중 인터페이스를 설정할 수 있는 이볼브드 UTRA(Evolved UTRA; E-UTRA)와 같은 라디오 기술을 구현할 수 있다.
다른 실시예들에서, 기지국 및 NB-IoT 단말은 IEEE 802.16(즉, WiMAX(Worldwide Interoperability for Microwave Access)), CDMA2000, CDMA2000 1X, CDMA 2000 에볼루션-데이터 옵티마이즈드(EV-DO), 잠정적인 표준 2000(IS-2000), 잠정적인 표준 95(IS-95), 잠정적인 표준 856(IS-856), 모바일 통신을 위한 글로벌 시스템(Global System for Mobile communications; GSM), GSM 에볼루션을 위한 강화된 데이터 레이트(Enhanced Data rates for GSM Evolution; EDGE), GSM/EDGE RAN(GERAN) 등과 같은 라디오 기술들을 구현할 수 있다.
도 16의 기지국은 예를 들어, 무선 라우터, HNB, HeNB, 또는 AP일 수 있으며 비즈니스, 가정, 차량, 캠퍼스 등의 장소와 같이 로컬화된 영역에서 무선 접속을 용이하게 하는 임의의 적합한 RAT를 활용할 수 있다. 일실시예에서, 기지국 및 NB-IoT 단말들은 무선 로컬 영역 네트워크(wireless local area network; WLAN)를 설정하기 위해 IEEE 802.11과 같은 라디오 기술을 구현할 수 있다. 다른 실시예에서, 기지국 및 단말들은 무선 개인 영역 네트워크(wireless personal area network; WPAN)을 설정하기 위해 IEEE 802.15와 같은 라디오 기술을 구현할 수 있다. 또 다른 실시예에서, 기지국 및 NB-IoT 단말들은 피코셀 또는 펨토셀을 설정하기 위해 셀룰러-기반 RAT(예를 들어, WCDMA, CDMA2000, GSM, LTE, LTE-A 등)를 활용할 수 있다. 기지국은 인터넷에 직접 접속할 수 있다. 따라서 기지국은 코어 네트워크를 통해 인터넷에 액세스하도록 요구되지 않을 수 있다.
도 17은 본 발명의 일실시예에 따른 스몰 데이터(Small Data) 전송요청 및 전송 과정을 설명하기 위한 흐름도이다.
도 17에서는 스몰 데이터(Small Data) 전송요청 과정이 나타나있다. 단말은 랜덤접속을 수행하기 위해 RA(Random Access) Request 메시지(Msg1)를 전송하며, 이 과정에서 수정된 RA Request의 Type 혹은 Access Cause를 'Small Data 요청'으로 표시하여 전송한다. 기지국은 이를 수신한 뒤 RA Response(Msg2)를 전송할 자원을 알리기 위해 DCI를 전송한다. 또한, 기지국은 해당 단말에게 스몰 데이터(Small Data) 전송을 위한 자원할당이 가능한지 여부를 판단한다. 스몰 데이터(Small Data) 지원 가능여부는 요청을 받은 시점에서 스몰 데이터(Small Data)를 위한 랜덤 액세스 자원의 혼잡도를 판단하여 결정될 수 있다. 기지국은 해당 단말에게 스몰 데이터(Small Data) 전송지원을 할 수 있는 경우 C-RNTI 대신 새로 정의된 SD-RNTI(Small Data Radio Network Temporary Identifier)정보를 활용하여여 RA Response 메시지(Msg2)를 전송한다.
SD-RNTI를 할당받은 단말은 이후부터 본 발명의 스몰 데이터(Small Data) 전송과정을 통해 효율적인 데이터 전송을 수행할 수 있다. 구체적으로, 스몰 데이터(Small Data) 전송과정에서 단말은 랜덤 액세스 수행 시 전송하는 Msg1에 SD-RNTI 와 함께 데이터를 포함하여 전송한다. RA Request(Msg1)를 통해 데이터를 수신한 기지국은 이어지는 DCI를 통해 해당 단말로 ACK를 송신할 수 있다.
기존의 데이터 전송방식은 랜덤 액세스를 수행하여 상향링크 전송을 위한 자원을 획득한 뒤 상향링크 데이터를 전송하고 다시 DCI를 수신하여 전송성공 여부를 확인하였다. 본 발명의 스몰 데이터(Small Data) 전송과정은 Msg1 전송시 데이터를 포함하여 전송할 수 있도록 하여 단말의 전송 지연시간 및 전력소비를 줄일 수 있다. 이 과정은 단말이 SD-RNTI를 더 이상 유지할 수 없을 때까지 진행할 수 있으며, SD-RNTI가 만료되는 기준은 단말의 전송횟수, 전송량(비트), 할당시간 등으로 네트워크에서 사전에 정의되어 Msg2로 전달될 수 있다.

Claims (26)

  1. 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 과정에서의 상향링크 데이터 전송을 위한 단말에서의 랜덤 액세스 방법에 있어서,
    상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 포함하되, 상기 랜덤 액세스 과정은,
    커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  2. 제1항에 있어서, 상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  3. 제2항에 있어서, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Msg3)의 HARQ 전송 실패 또는 경쟁 해소(Contention Resolution)의 미수신이 연속적으로 발생하여 프리엠블 전송 횟수가 프리엠블 최대 전송 횟수를 초과한 경우 선택된 커버리지 레벨과 동일한 커버리지 레벨내에서 사용되는 다른 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 사용하는 랜덤 액세스 자원을 선택하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  4. 제1항에 있어서, 상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨에 상응하며 상기 멀티-톤 전송 지원에 상응하는 랜덤 액세스 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  5. 제4항에 있어서, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 동일한 커버리지 레벨내에서 사용되는 멀티-톤 설정을 사용하는 랜덤 액세스 자원을 선택하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  6. 제4항에 있어서, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우 상기 선택된 커버리지 레벨과 동일한 커버리지 레벨에서 멀티-톤 설정을 변경하여 랜덤 액세스를 수행하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  7. 제6항에 있어서, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계는
    상기 기지국이 상기 커버리지 레벨과 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 고려하여 랜덤 액세스 자원을 단계적으로 설정하고, 단말은 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 상기 랜덤 액세스 수행시 상기 사물통신 단말이 랜덤 액세스 자원을 단계적으로 선택하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  8. 제4항에 있어서, 상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우 상기 선택된 커버리지 레벨과 동일한 커버리지 레벨에서 서브캐리어 스페이싱 및/또는 멀티-톤 설정을 변경하여 랜덤 액세스를 수행하는 단계는
    상기 랜덤 액세스를 시도한 뒤 상기 선택된 커버리지 레벨내에서 제공하는 서브캐리어 스페이싱 및/또는 멀티-톤 설정 조합의 마지막 단계까지 실패한 경우 최종적으로 상기 선택된 커버리지 레벨을 변경하여 상기 랜덤 액세스를 수행하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  9. 제1항에 있어서, 상기 커버리지 레벨은 노멀 커버리지(normal coverage), 로버스트 커버리지(robust coverage), 극한 커버리지(extreme coverage)를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  10. 제1항에 있어서, 상기 사물통신 단말과 기지국간의 랜덤 액세스 과정은 셀룰러 기반 협대역(Narrowband) 사물통신에 적용되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  11. 제1항에 있어서, 상기 사물통신 단말은 180kHz의 채널 대역폭을 사용하는 무선접속망을 액세스 가능한 NB-IoT(Narrowband-Internet of Thing) 단말을 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  12. 제1항에 있어서, 상기 멀티-톤 전송 지원 여부는 멀티-톤 Message 3 전송 지원 여부인 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  13. 제1항에 있어서, 상기 랜덤 액세스 과정은
    상기 사물통신 단말에서 상기 커버리지 레벨을 선택하는 단계를 더 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  14. 제1항에 있어서, 상기 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우는 상기 사물통신 단말에서 최대 프리앰블 전송횟수를 초과하여 프리앰블 전송횟수가 초기화 된 뒤 다른 조건에서 첫번째 프리앰블 전송이 이루어지는 경우 또는 상기 최대 프리앰블 전송횟수의 초과 없이 첫번째 랜덤액세스 프리엠블 전송을 수행하는 경우인 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  15. 제1항에 있어서, 상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정은
    상기 사물통신 단말에서 랜덤액세스 프리엠블을 기지국으로 전송하는 단계;
    상기 사물통신 단말에서 기지국으로부터 RAR(Random Access Response) 메시지를 수신하는 단계;
    상기 사물통신 단말에서 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 상기 기지국으로 전송하는 단계; 및
    상기 사물통신 단말에서 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 경쟁 해소(Contention Resolution)를 수신하는 단계
    를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  16. 제1항에 있어서, 상기 랜덤 액세스 과정은 사용할 랜덤 액세스 프리엠블이 상기 기지국으로부터 명시적으로 시그널링되지 않은 경우에 수행되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  17. 셀룰러 기반 사물통신을 위한 기지국과의 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 사물통신 단말기에 있어서, 상기 사물통신 단말기는
    안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버;
    상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는
    상기 사물통신 단말과 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은
    커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신을 위한 기지국과의 랜덤 액세스를 수행하는 사물통신 단말기.
  18. 셀룰러 기반 사물통신을 위한 기지국과의 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 사물통신 디바이스에 있어서, 상기 사물통신 디바이스는
    안테나를 통하여 기지국과 무선 신호를 송신 또는 수신하는 트랜시버;
    상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는
    상기 사물통신 디바이스와 상기 기지국간에 랜덤 액세스 과정을 수행하는 단계를 처리하되, 상기 랜덤 액세스 과정은
    커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신을 위한 기지국과의 랜덤 액세스를 수행하는 사물통신 디바이스.
  19. 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법에 있어서,
    상기 기지국에서 상기 사물통신 단말로부터 랜덤액세스 프리엠블을 전송받는 단계;
    상기 사물통신 단말로 RAR(Random Access Response) 메시지를 전송하는 단계;
    상기 기지국에서 상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 수신하는 단계; 및
    상기 기지국에서 상기 사물통신 단말로 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 CR(Contention Resolution)을 전송하는 단계를 포함하되, 상기 랜덤 액세스 과정은 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원이 선택되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  20. 제19항에 있어서, 상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 Random Access 자원을 구성하는 것은
    상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨에 상응하며 상기 멀티-톤 전송 지원에 상응하는 랜덤 액세스 자원이 선택되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  21. 제20항에 있어서, 상기 멀티-톤 전송 지원 여부는 멀티-톤 Message 3 전송 지원 여부인 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  22. 제20항에 있어서, 상기 랜덤 액세스 과정은
    상기 사물통신 단말에서 상기 커버리지 레벨을 선택하는 단계를 더 포함하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 기지국간의 랜덤 액세스 방법.
  23. 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국에 있어서, 상기 기지국은
    안테나를 통하여 상기 사물통신 단말과 무선 신호를 송신 또는 수신하는 트랜시버;
    상기 트랜시버를 제어하여 상기 무선 신호를 전송할 시점을 결정하는 프로세서를 포함하되, 상기 프로세서는
    상기 사물통신 단말로부터 랜덤액세스 프리엠블을 전송받는 단계;
    상기 사물통신 단말로 RAR(Random Access Response) 메시지를 전송하는 단계;
    상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message 3)를 수신하는 단계; 및
    상기 사물통신 단말로 상기 사물통신 단말이 전송한 Message 3가 상기 기지국에 수신되었음을 알려주는 경쟁 해소(Contention Resolution)를 전송하는 단계를 처리하되, 상기 랜덤 액세스 과정은
    커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원이 선택되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국.
  24. 제23항에 있어서, 상기 커버리지 레벨과 멀티-톤 전송 지원 여부를 고려하여 랜덤 액세스 자원을 선택하는 것은
    상기 사물통신 단말로부터 상향링크 데이터 전송을 위해 연결을 요청하는 메시지(Message3) 전송이 아직 안된 경우, 선택된 커버리지 레벨에 상응하며 상기 멀티-톤 전송 지원에 상응하는 랜덤 액세스 자원이 선택되는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국.
  25. 제23항에 있어서, 상기 멀티-톤 전송 지원 여부는 멀티-톤 Message 3 전송 지원 여부인 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국.
  26. 제23항에 있어서, 상기 커버리지 레벨은 상기 사물통신 단말에서 선택하는 것을 특징으로 하는 셀룰러 기반 사물통신 단말과 상향링크 데이터 전송을 위한 랜덤 액세스 과정을 수행하는 기지국.
PCT/KR2017/000939 2016-01-29 2017-01-26 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법 WO2017131459A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/524,466 US10506605B2 (en) 2016-01-29 2017-01-26 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
CN201780007132.9A CN108476539B (zh) 2016-01-29 2017-01-26 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
US16/591,704 US11064495B2 (en) 2016-01-29 2019-10-03 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US17/342,862 US11805534B2 (en) 2016-01-29 2021-06-09 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US18/469,846 US20240008064A1 (en) 2016-01-29 2023-09-19 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US18/404,968 US20240147549A1 (en) 2016-01-29 2024-01-05 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2016-0011893 2016-01-29
KR1020160011893A KR20170090917A (ko) 2016-01-29 2016-01-29 사물인터넷 환경에서 스몰 데이터 전송 단말의 지연시간, 에너지 소비 감소를 위한 향상된 데이터 전송 방법
KR1020160025783A KR20170103249A (ko) 2016-03-03 2016-03-03 사물인터넷 환경에서 스몰 데이터 전송 단말의 지연시간, 에너지 소비 감소를 위한 향상된 데이터 전송 방법
KR10-2016-0025783 2016-03-03
KR10-2016-0043317 2016-04-08
KR20160043317 2016-04-08
KR10-2016-0058374 2016-05-12
KR20160058374 2016-05-12
KR10-2016-0154109 2016-11-18
KR1020160154109A KR102527359B1 (ko) 2016-04-08 2016-11-18 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/524,466 A-371-Of-International US10506605B2 (en) 2016-01-29 2017-01-26 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US16/591,704 Continuation US11064495B2 (en) 2016-01-29 2019-10-03 Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment

Publications (1)

Publication Number Publication Date
WO2017131459A1 true WO2017131459A1 (ko) 2017-08-03

Family

ID=59398582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000939 WO2017131459A1 (ko) 2016-01-29 2017-01-26 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법

Country Status (2)

Country Link
US (2) US20240008064A1 (ko)
WO (1) WO2017131459A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011078A1 (zh) * 2018-07-13 2020-01-16 电信科学技术研究院有限公司 上行资源分配方法、装置、基站及终端
JP2020505850A (ja) * 2017-01-27 2020-02-20 クアルコム,インコーポレイテッド 適応サブキャリア間隔構成
CN111096049A (zh) * 2017-09-07 2020-05-01 三星电子株式会社 基于移动性的随机接入方法及其装置
CN111345102A (zh) * 2017-11-17 2020-06-26 联发科技股份有限公司 Rar中用于edt的nb-iot prach资源划分和多重授权
CN111386746A (zh) * 2018-05-10 2020-07-07 Lg电子株式会社 在无线通信系统中发送/接收随机接入前导码的方法及其设备
CN111527787A (zh) * 2017-11-08 2020-08-11 Lg电子株式会社 用于在无线通信系统中发送用于执行随机接入过程的消息的方法及其设备
CN112136350A (zh) * 2018-05-11 2020-12-25 华为技术有限公司 资源配置方法及装置
CN114598433A (zh) * 2020-12-07 2022-06-07 维沃移动通信有限公司 Ro的时域资源配置方法、装置及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275305A1 (en) * 2011-04-26 2012-11-01 Industrial Technology Research Institute Prioritized random access method, resource allocation method and collision resolution method
KR20150037757A (ko) * 2012-05-21 2015-04-08 삼성전자주식회사 이동통신 시스템에서 데이터를 송수신하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275305A1 (en) * 2011-04-26 2012-11-01 Industrial Technology Research Institute Prioritized random access method, resource allocation method and collision resolution method
KR20150037757A (ko) * 2012-05-21 2015-04-08 삼성전자주식회사 이동통신 시스템에서 데이터를 송수신하는 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "NB-IoT - NB-PUSCH design", R1-160085, 3GPP TSG RAN WG1 NB-IOT AD-HOC MEETING, 12 January 2016 (2016-01-12), Budapest, Hungary, XP051064700 *
HUAWEI: "Further NB-IoT random access physical layer aspects", R1-160035, 3GPP TSG RAN WG1 NB-IOT AD-HOC MEETING, 12 January 2016 (2016-01-12), Budapest, Hungary, XP051064674 *
HUAWEI: "NB-PRACH design", R1-160025, 3GPP TSG RAN WG1 NB-IOT AD-HOC MEETING, 12 January 2016 (2016-01-12), Budapest, Hungary, XP051064664 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146776B2 (ja) 2017-01-27 2022-10-04 クアルコム,インコーポレイテッド 適応サブキャリア間隔構成
JP2020505850A (ja) * 2017-01-27 2020-02-20 クアルコム,インコーポレイテッド 適応サブキャリア間隔構成
US11497019B2 (en) 2017-01-27 2022-11-08 Qualcomm Incorporated Adaptive subcarrier spacing configuration
CN111096049A (zh) * 2017-09-07 2020-05-01 三星电子株式会社 基于移动性的随机接入方法及其装置
CN111096049B (zh) * 2017-09-07 2023-10-13 三星电子株式会社 基于移动性的随机接入方法及其装置
CN111527787A (zh) * 2017-11-08 2020-08-11 Lg电子株式会社 用于在无线通信系统中发送用于执行随机接入过程的消息的方法及其设备
CN111527787B (zh) * 2017-11-08 2023-08-04 Lg电子株式会社 用于在无线通信系统中发送用于执行随机接入过程的消息的方法及其设备
CN111345102A (zh) * 2017-11-17 2020-06-26 联发科技股份有限公司 Rar中用于edt的nb-iot prach资源划分和多重授权
CN111345102B (zh) * 2017-11-17 2023-10-31 联发科技股份有限公司 Rar中用于edt的nb-iot prach资源划分和多重授权
US11617207B2 (en) 2018-05-10 2023-03-28 Lg Electronics Inc. Method for transmitting and receiving random access preamble in wireless communication system and device therefor
CN111386746B (zh) * 2018-05-10 2023-07-14 Lg电子株式会社 在无线通信系统中发送/接收随机接入前导码的方法及其设备
CN111386746A (zh) * 2018-05-10 2020-07-07 Lg电子株式会社 在无线通信系统中发送/接收随机接入前导码的方法及其设备
CN112136350B (zh) * 2018-05-11 2023-03-24 华为技术有限公司 资源配置方法及装置
CN112136350A (zh) * 2018-05-11 2020-12-25 华为技术有限公司 资源配置方法及装置
WO2020011078A1 (zh) * 2018-07-13 2020-01-16 电信科学技术研究院有限公司 上行资源分配方法、装置、基站及终端
TWI712330B (zh) * 2018-07-13 2020-12-01 大陸商電信科學技術研究院有限公司 上行資源配置方法、基地台、終端及電腦可讀存儲介質
US12022520B2 (en) 2018-07-13 2024-06-25 Datang Mobile Communications Equipment Co., Ltd. Uplink resource allocation method and device, base station, and terminal
CN114598433A (zh) * 2020-12-07 2022-06-07 维沃移动通信有限公司 Ro的时域资源配置方法、装置及电子设备

Also Published As

Publication number Publication date
US20240008064A1 (en) 2024-01-04
US20240147549A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2017131459A1 (ko) 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법
WO2019160316A1 (en) Method and apparatus for performing random access
WO2019160332A1 (ko) 상향링크 데이터를 전송하는 방법 및 장치
WO2018164478A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기
WO2017209570A1 (en) Uplink data transmission method, random access method, and corresponding ue and base station thereof
WO2017023074A1 (ko) 다중 캐리어 신호 전송 방법, 장치 및 시스템
WO2017074160A1 (ko) 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
WO2016143968A1 (ko) Short tti 내 제어 채널의 전송 자원을 감소시키는 방법 및 이를 사용한 기기
WO2012169837A2 (en) Apparatus and method for performing random access in wireless communication system
WO2016114593A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2017164647A1 (ko) 무선 통신 시스템에서 비인가 대역으로의 상향링크 채널 액세스 방법 및 이를 위한 장치
WO2016068668A2 (ko) 이동통신 시스템에서 비면허 대역을 이용한 통신 방법 및 장치
WO2012153960A2 (en) Methods and apparatus for random access procedures with carrier aggregation for lte-advanced systems
WO2018030809A1 (ko) Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
WO2014204202A1 (en) Methods of ul tdm for inter-enodeb carrier aggregation
WO2020167080A1 (en) Method and apparatus for transmitting and receiving uplink reference signal in wireless communication system
WO2019031903A1 (en) METHOD AND APPARATUS FOR MANAGING A BEAM FAILURE RESUME IN A WIRELESS COMMUNICATION SYSTEM
WO2017023066A1 (ko) 랜덤 액세스 수행 방법 및 mtc 기기
WO2017111331A1 (ko) 비면허 대역 채널 액세스 방법, 장치, 및 시스템
WO2019031864A1 (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2019074338A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치
WO2017043876A1 (ko) 협대역을 이용한 통신 방법 및 mtc 기기
WO2012177060A2 (en) Apparatus and method for performing random access in wireless communication system
WO2012108643A2 (en) Apparatus and method for transmitting uplink signal in multiple component carrier system
WO2018217021A1 (en) Method and user equipment for performing random access procedure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15524466

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744580

Country of ref document: EP

Kind code of ref document: A1