WO2017131274A1 - Wavy monowire for cutting - Google Patents

Wavy monowire for cutting Download PDF

Info

Publication number
WO2017131274A1
WO2017131274A1 PCT/KR2016/001338 KR2016001338W WO2017131274A1 WO 2017131274 A1 WO2017131274 A1 WO 2017131274A1 KR 2016001338 W KR2016001338 W KR 2016001338W WO 2017131274 A1 WO2017131274 A1 WO 2017131274A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
monowire
cutting
period
wire
Prior art date
Application number
PCT/KR2016/001338
Other languages
French (fr)
Korean (ko)
Inventor
김종출
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to CN201680000082.7A priority Critical patent/CN107615476B/en
Publication of WO2017131274A1 publication Critical patent/WO2017131274A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices

Definitions

  • the present invention relates to a corrugated monowire for cutting, and more particularly, to a corrugated monowire for cutting semiconductor ingots, ceramics, glass or similar hard materials, which has excellent wear resistance and can improve the surface quality of a workpiece. It is about a wire.
  • Wafers made of silicon (solar substrates, etc.), quartz (used in various industrial fields such as automobiles), gallium arsenide (manufactured by high-frequency electronics), and the like are formed by cutting a cylindrical ingot into a thin disk form (wafer). .
  • the cut surface of the workpiece is usually required to be smooth.
  • a to-be-processed object is cut
  • Korean Patent No. 888026 discloses the residual stress in the length direction of the saw wire in a region in which the wire diameter of the saw wire is in the range of 0.08 mm ⁇ to 0.30 mm ⁇ , and the depth from the surface of the saw wire is in the range of 5 ⁇ m to 10 ⁇ m.
  • This saw wire is disclosed in the range of 400 MPa to 1000 MPa.
  • the patent discloses a straight wire having a residual stress within a certain range to convert the straight shape into a small wavy shape to compensate for the degraded cutting performance caused by the reduction of the wire diameter during the cutting process.
  • it is difficult to precisely control the residual stress of the straight wire so that the surface quality of the workpiece is rather poor.
  • Japanese Laid-Open Patent Publication No. 2012-121101 is a fixed abrasive wire in which an abrasive is fixed to a surface of a wire, the wire being a wave wire in which several wavy curve portions are continuously arranged in the longitudinal direction at a pitch based on the wire wire diameter.
  • the fixed particle wire is disclosed, characterized in that the wave-shaped curved portion is a three-dimensional wave shape that is curved in a spiral, such wire is also difficult to maintain the shape of the waveform during cutting, not only the efficiency of the cutting process is lowered, but also manufactured
  • the problem is that the thickness of the substrate becomes uneven and the flatness of the surface of the workpiece is lowered.
  • the present invention is to solve the problems of the prior art as described above, one object of the present invention is to improve the wear of the wire and the waveform monomer for cutting that can minimize the variation of the thickness of the cut wafer by location during cutting and its It is to provide a manufacturing method.
  • One aspect of the present invention for achieving the above object is a cutting waveform monowire consisting of a single metal wire, a unit waveform having a predetermined period is repeatedly formed in two or more planes along the longitudinal direction, each waveform A straight line section is included at the peak of the wave height, and when the length of the straight line section is S and the period of the waveform is P, the ratio S of the length S of the straight line section to the period P of the waveform (S / P) relates to a cut waveform monowire, characterized in that 5 to 45%.
  • the cutting waveform monowire of the present invention is configured to rotate about one axis other than the axis of the two-dimensional plane on which the waveform is formed on the three-dimensional coordinates on which the waveform is formed, so that the waveform is actually about more planes than the plane on which the waveform is formed. It is configured to be given.
  • the monowire supplied through the supply unit is composed of a pair of gears rotating in opposite directions with waveform irregularities having a straight section at the highest point of the waveform on the surface.
  • the ratio S '/ P' of the length S 'of the straight section to the period P' of the waveform is 5 to 45. It is related with the manufacturing method of the wave-shaped monowire for cutting which is%.
  • the cutting waveform monowire of the present invention can improve the wear of the monowire when cutting, thereby improving the thickness variation of the cut wafer by position when cutting the workpiece, excellent abrasive carrier performance and cutting speed and cutting process The efficiency can be improved.
  • FIG. 1 is a schematic perspective view of a conventional saw wire.
  • Figure 2 is a side schematic view of a cutting waveform monowire according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the waveform structure seen from the central axis of the cutting waveform monowire of an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the waveform imparting device used in the production of the cutting waveform monowire of the present invention.
  • Cutting waveform monowire of an embodiment of the present invention is a cutting waveform monowire consisting of a single metal wire, a unit waveform having a predetermined period is formed repeatedly in two or more planes along the longitudinal direction, the wave height of each waveform A straight section is included at the highest point, and when the length of the straight section is S and the period of the waveform is P, the ratio (S / P) of the length S of the straight section to the period P of the waveform is S / P. Is 5% to 45%.
  • the cutting waveform monowire of the present invention is configured such that two or more waveforms formed in different planes are radially distributed about a central axis.
  • the shape of the waveform is not particularly limited, but may have, for example, a zigzag shape or a sine wave shape.
  • the waveform monowire is configured to rotate about one axis other than the axis of the two-dimensional plane in which the waveform is formed on the three-dimensional coordinates in which the waveform is formed, such that the waveform is given to more planes than the plane in which the waveform is actually formed. It can be effective.
  • the cutting corrugated monowire of an embodiment of the present invention for improving the carrier performance of the abrasive during cutting is a ratio of the height (H) of the waveform to the period (P) of the waveform ( H / P) is in the range of 3% to 12%.
  • H / P value is less than 3%, the abrasive carrier performance is insufficient, so that a saw mark occurs.
  • the H / P value is more than 12%, the abrasive carrier performance is excessive, resulting in wafer thickness variation. Can be.
  • the angle between the first waveform and the second waveform formed in two or more different planes is in the range of 45 to 135 degrees. If the angle is less than 45 degrees, non-uniform residual stress remains in the monowire material itself, and thus linearity is lowered. Therefore, cutting performance may be reduced. Since the stability is lowered, there may be a problem that the decrease in cutting performance is accelerated over time.
  • FIG. 2 is a schematic side view of a cutting waveform monowire according to an embodiment of the present invention
  • Figure 3 is a schematic diagram showing a waveform structure seen from the central axis of the cutting waveform monowire of an embodiment of the present invention.
  • the cutting corrugated monowire 10 in the present invention is typically to improve the adhesion of the abrasive to the surface of the metal material wire, such as steel, including high carbon steel, tungsten, copper, etc.
  • the metal plating layer such as copper or brass has a plated structure.
  • the monowire has an elongation at break of 2.0 to 3.5% at 10 to 40N.
  • the elongation at break of the waveform monowire when the elongation at break of the waveform monowire is less than 2.0%, it does not provide the minimum flexibility required for the cutting waveform monowire, which may lower productivity, whereas the elongation at break of the waveform monowire is 3.5%. If exceeded, the abrasive carrier performance may be insufficient, which may lower the surface quality and productivity of the workpiece.
  • the diameter (d) of the monowire is preferably 0.03 mm to 0.5 mm. If the diameter (d) of the monowire is less than 0.03 mm, the strength required as the cutting wire is not obtained, and if it exceeds 0.5 mm, the cuffs may be large. As a factor that determines the yield of the cutting object using the cutting wire, kerfloss representing the width of the cutting groove generated when the cutting wire digs into the cutting object such as a silicon ingot, And yield are inversely proportional. In order to minimize the cuff, the wire diameter of the cutting wire should be thinned or thinned, and for this purpose, a super high strength monowire having high cutting strength and high toughness is required.
  • the present invention provides a corrugated monowire for cutting thin wires having a diameter of 0.5 mm or less in order to reduce the loss of the workpiece during cutting and to increase the cutting speed.
  • the diameter (d) of the monowire, the height (H) of the waveform, and the period (P) of the waveform satisfy the following conditions.
  • the height (H) of the waveform when the height (H) of the waveform is too low compared to the diameter (d) of the monowire, the distance between the workpiece and the abrasive is not sufficiently secured, and the abrasive carrier performance may be reduced, and conversely, the diameter of the monowire ( If the height H of the waveform is too high as compared with d), the formed waveform is less likely to be accommodated on a single waveform-providing surface, which may degrade the processing surface precision.
  • the cutting corrugated monowire 10 of the present invention contains a carbon content of about 0.7 wt% to 1.2 wt%, and the copper content of the brass plating layer is preferably 60 to 80%, and, if necessary, a third element in the brass plating layer.
  • Phosphorus zinc, tin, nickel, cobalt, chromium or alloys thereof may be added in the range of 0.1 to 6.0%. This alloy plating layer can be improved in corrosion resistance and strength.
  • the coating layer of the cutting corrugated monowire of the present invention may further comprise abrasive particles selected from the group comprising silicon carbide (SiC), diamond, silicon carbide, tungsten carbide or mixtures thereof.
  • the cut waveform monowire 10 of the present invention has a tensile strength of 300 kg / mm 2 to 600 kg / mm 2.
  • the reason for limiting the strength of the cut corrugated monowire of the present invention to 300 kg / mm 2 to 600 kg / mm 2 is to achieve the original purpose of the cut corrugated monowire called cutting and slice of a hard material such as semiconductor, ceramic or cemented carbide. This is to secure the cutting force required for the purpose.
  • a method of increasing the strength by adding alloying elements such as chromium or vanadium to raw materials as well as high-processing freshness of 90% or more can be used. have.
  • the cutting corrugated monowire of the present invention cuts the to-be-processed object by running while contacting the to-be-processed object at an appropriate pressure together with a cutting liquid in which an abrasive and a lubricant such as oil are mixed.
  • the method for forming a wafer by cutting a hard material workpiece using the cutting corrugated monowire of the present invention is as follows. A series of cutting waveform monowire rows is wound on a plurality of rollers having a plurality of grooves at a predetermined pitch, and then the series of cutting waveform monowire rows is driven. The workpiece to be cut is pressed with a predetermined force on such a series of cutting waveform monowire rows. At the same time, a cutting liquid is flowed between the cutting waveform monowire row and the workpiece to cut the workpiece by the cutting action of the abrasive grains, thereby producing a wafer.
  • Another aspect of the invention relates to a method of making a cut monowire for cutting.
  • the monowire having the waveform irregularities having a straight section at the peak of the waveform on the surface supplied through the supply portion is rotated in opposite directions with the waveform irregularities on the surface.
  • a waveform is given by a first waveform imparting device composed of a pair of gears;
  • the monowire imparted with the waveform by the first waveform imparting device is rotated 0.5 to 3 times in the clockwise or counterclockwise direction before being supplied to the second waveform imparting device, and the mono waveform imparted with the waveform by the first waveform imparting device is supplied.
  • the monowire having the waveform is imparted by the second waveform imparting device clockwise or half. Rotate 0.5 to 3 times clockwise.
  • the length of the straight section (S) with respect to the period (P ') of the waveform when the length of the straight section of the wavy unevenness of the first waveform applying device and the second waveform applying device is S' and the period of the waveform is P '.
  • the ratio (S '/ P') of ') is such that a predetermined straight section is formed at the highest point of the waveform of the cut waveform monowire manufactured using a waveform providing device of about 5 to 45%.
  • the first and second waveform imparting devices 20 and 30 include, for example, two gears, and the shape of the gear is formed in the shape of the waveform irregularities having a straight section at the highest point of the waveform.
  • the pair of gears may be configured to engage with each other at a predetermined interval.
  • the size, or spacing, of the teeth of each of the first waveform imparting device 20 and the second waveform imparting device 30 may also be constant or arbitrary, but is not limited thereto.
  • the pitches of the gears of the first waveform applying device 20 and the second waveform applying device 30 may be different from each other, and the pitches of the first waveform applying device 20 and the second waveform applying device 30 are different from each other. May be configured to be smaller than the twisting pitch of the element wire.
  • a waveform having a predetermined pitch can be formed in the cutting waveform monowire 10. That is, the cutting waveform monowire 10 is inserted between the two waveform applying devices 20 and 30, and the cutting waveform monowire 10 passes between the two waveform applying devices 20 and 30.
  • the two waveform imparting devices 20 and 30 may be compressed to have a predetermined waveform.
  • the two waveform imparting device (20, 30) may be arranged in an interlocking form at a predetermined interval to each other so that the cutting waveform monowire (10) can be pressed while passing.
  • the angle of the waveform surface of the first waveform and the waveform surface of the second waveform may be different from each other.
  • the cutting corrugated monowire of the present invention improves the productivity of the cutting process and the surface quality of the workpiece by reducing the abrasive carrier ability and the wafer thickness variation due to the wear of the monowire during the use of the cutting corrugated monowire. Has an effect. Accordingly, the cutting corrugated monowire of the present invention can be used for cutting a workpiece that requires an ultra precision surface.
  • the wire rod having a carbon content of 0.70 to 1.05% and a diameter of 5.5 mm was subjected to two wire drawing processes, heat treated and brass plated, and the final wire was prepared to a wire diameter of 0.115 mm to prepare a mono wire.
  • the wire that is not given a straight wave is passed through the first waveform shaping device and wound 0.5 times at the inlet side of the second waveform feeding device, and 0.5 times wound at the exit side after the waveform is applied by the second waveform feeding device.
  • 156 mm x length 156 mm x length 1,900 mm Wire diameter and wear of the wire used after cutting were measured and the results are shown in Tables 1 and 2 below.
  • the length (S) of the straight section of the waveform of the monowire waveform, the period (P) and the value of the S / P of the waveform was carried out in the same manner as in Example 1 except that as shown in Table 1 and Table 2
  • the waveform for cutting a monowire was prepared, and the physical properties were evaluated, and the results are shown together in Tables 1 and 2 below.
  • a waveform monowire for cutting was prepared in the same manner as in Example 1 except that the period (P), height (H), and H / P value of the waveform were different as shown in Table 3 below. Evaluation of physical properties is shown in Table 3 together.
  • the wafer surface yield rate is visually inspected for wafer breakage, appearance scratches, color differences, and thickness deviations, and there is no gas, color difference, and thickness variation in the appearance of the wafer, and the efficiency of converting light to electricity is 18%.
  • the abnormality was judged as good quality goods. A total of 2000 wafers were inspected and the percentage of goods calculated as wafer surface yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention relates to a wavy monowire for cutting, which is for the purpose of cutting hard materials, such as hard glass, semiconductors, and hard metals, and has an improved abrasion level. The present invention is configured to have an improved abrasion level and improved abrasive material retention performance and thus can improve cutting workability and the quality of cut surfaces.

Description

절단용 파형 모노와이어Waveform Monowire for Cutting
본 발명은 절단용 파형 모노와이어에 관한 것으로, 더욱 상세하게는 반도체 잉곳, 세라믹, 유리 혹은 그와 유사한 경질재를 절단하기 위한 내마모도가 우수하고 피삭체의 표면 품질을 향상시킬 수 있는 절단용 파형 모노와이어에 관한 것이다.The present invention relates to a corrugated monowire for cutting, and more particularly, to a corrugated monowire for cutting semiconductor ingots, ceramics, glass or similar hard materials, which has excellent wear resistance and can improve the surface quality of a workpiece. It is about a wire.
실리콘(태양전지 기판 등), 석영(자동차 등 각종 산업 분야에 이용), 갈륨비소(고주파 일렉트로닉스 제품) 등으로 제조되는 웨이퍼는 원기둥 형태로 제조된 잉곳을 얇은 디스크 형태(웨이퍼)로 절단하여 형성된다. Wafers made of silicon (solar substrates, etc.), quartz (used in various industrial fields such as automobiles), gallium arsenide (manufactured by high-frequency electronics), and the like are formed by cutting a cylindrical ingot into a thin disk form (wafer). .
피삭체의 절단면은, 통상 평활한 것이 요구된다. 피삭체의 절단면 정밀도를 향상시키기 위해, 피삭체와 절단용 와이어의 접촉 부위에 윤활제를 포함하는 절삭액을 분사하면서 피삭체를 절단한다. The cut surface of the workpiece is usually required to be smooth. In order to improve the cutting surface precision of a to-be-processed object, a to-be-processed object is cut | disconnected, spraying the cutting liquid containing a lubricant to the contact part of a workpiece and a cutting wire.
이와 같이 연마입자를 분사하면서 피삭체를 절단하면, 절단용 와이어 자체도 마모되므로, 절단용 와이어의 표면에 요철이 형성된다. 이 요철이 피삭체의 절단면 정밀도를 악화시키고, 또한 절단용 와이어의 단선을 일으킨다. 또한 절단 과정에서 매우 강한 인장 응력이 발생하여, 이에 따라서 와이어의 표면에서부터 마모가 쉽게 발생함에 따라 절단용 와이어의 교체가 빈번해지고, 이로 인해 제조비용이 증가하여 생산성이 저하되는 문제가 있었다.When the workpiece is cut while spraying the abrasive particles in this manner, the cutting wire itself is also worn, so that the unevenness is formed on the surface of the cutting wire. This unevenness deteriorates the accuracy of the cut surface of the workpiece and causes disconnection of the cutting wire. In addition, a very strong tensile stress is generated in the cutting process, accordingly, wear is easily generated from the surface of the wire, the replacement of the cutting wire is frequent, thereby increasing the manufacturing cost, there is a problem that the productivity is lowered.
국내 특허 제888026호는 쏘우 와이어의 선경이 0.08 ㎜Φ 내지 0.30 ㎜Φ의 범위이고, 상기 쏘우 와이어의 표면으로부터의 깊이가 5 ㎛에서 10 ㎛의 범위인 영역에서 상기 쏘우 와이어의 길이 방향의 잔류 응력이 400 MPa에서 1000 MPa의 범위인 쏘우 와이어를 개시하고 있다. 상기 특허는 절단 과정 중에 와이어 직경의 감소에 의해 발생된 열화된 절단 성능을 보충하기 위해 직선 형상을 작은 파형 형상으로 변환하기 위해 특정 범위 내의 잔류 응력을 갖는 직선형 와이어를 개시하고 있다. 그러나 직선형 와이어의 잔류 응력을 정밀하게 제어하는 것이 어려워, 피삭체의 표면 품질이 오히려 나빠지는 문제가 있다. Korean Patent No. 888026 discloses the residual stress in the length direction of the saw wire in a region in which the wire diameter of the saw wire is in the range of 0.08 mmΦ to 0.30 mmΦ, and the depth from the surface of the saw wire is in the range of 5 μm to 10 μm. This saw wire is disclosed in the range of 400 MPa to 1000 MPa. The patent discloses a straight wire having a residual stress within a certain range to convert the straight shape into a small wavy shape to compensate for the degraded cutting performance caused by the reduction of the wire diameter during the cutting process. However, it is difficult to precisely control the residual stress of the straight wire, so that the surface quality of the workpiece is rather poor.
일본 특허 공개 제2012-121101호는 와이어의 표면에 연마재가 고정되는 고정 연마 와이어로서, 상기 와이어가 당해 와이어 선경을 기준으로 한 피치에서 여러 파상 곡선 부위를 길이 방향으로 연속적으로 배열시킨 파상 와이어이며, 해당 파상 곡선 부위가 나선형으로 만곡되어 있는 삼차원 파상인 것을 특징으로 하는 고정 입자 와이어를 개시하고 있으나, 이러한 와이어 역시 절단 시 파형의 형상을 유지하기 어려워 절단 공정의 효율이 저하될 뿐만 아니라 제조된 파삭체의 두께가 균일하지 않게 되고 피삭체 표면의 평탄도가 떨어지는 문제점이 나타나게 된다.Japanese Laid-Open Patent Publication No. 2012-121101 is a fixed abrasive wire in which an abrasive is fixed to a surface of a wire, the wire being a wave wire in which several wavy curve portions are continuously arranged in the longitudinal direction at a pitch based on the wire wire diameter. The fixed particle wire is disclosed, characterized in that the wave-shaped curved portion is a three-dimensional wave shape that is curved in a spiral, such wire is also difficult to maintain the shape of the waveform during cutting, not only the efficiency of the cutting process is lowered, but also manufactured The problem is that the thickness of the substrate becomes uneven and the flatness of the surface of the workpiece is lowered.
본 발명은 상술한 바와 같은 종래 기술의 문제를 해결하기 위한 것으로, 본 발명의 하나의 목적은 와이어 마모도를 개선하여 절단 시 위치별 절단된 웨이퍼의 두께 편차를 최소화할 수 있는 절단용 파형 모노머 및 그의 제조방법을 제공하는 것이다. The present invention is to solve the problems of the prior art as described above, one object of the present invention is to improve the wear of the wire and the waveform monomer for cutting that can minimize the variation of the thickness of the cut wafer by location during cutting and its It is to provide a manufacturing method.
연마재 캐리어 성능 및 잉곳 절단 성능이 우수하여 잉곳 절단 속도를 향상시키고 피삭체의 표면 품질을 향상시킬 수 있는 개량된 절단용 파형 모노와이어 및 그의 제조방법을 제공하는 것이다.It is to provide an improved cutting waveform monowire and its manufacturing method which can improve the ingot cutting speed and the surface quality of the workpiece by excellent abrasive carrier performance and ingot cutting performance.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은 단일 금속 와이어로 구성되고, 소정의 주기를 갖는 단위 파형이 길이 방향을 따라서 반복적으로 두 개 이상의 평면에 형성된 절단용 파형 모노와이어로서, 각 파형의 파고의 최고점에 직선 구간을 포함하고, 이러한 직선 구간의 길이를 S라고 하고, 파형의 주기를 P라고 할 때, 파형의 주기(P)에 대한 직선 구간의 길이(S)의 비(S/P)는 5 내지 45%인 것을 특징으로 하는 절단용 파형 모노와이어에 관한 것이다. One aspect of the present invention for achieving the above object is a cutting waveform monowire consisting of a single metal wire, a unit waveform having a predetermined period is repeatedly formed in two or more planes along the longitudinal direction, each waveform A straight line section is included at the peak of the wave height, and when the length of the straight line section is S and the period of the waveform is P, the ratio S of the length S of the straight line section to the period P of the waveform (S / P) relates to a cut waveform monowire, characterized in that 5 to 45%.
본 발명의 상기 절단용 파형 모노와이어는 파형이 형성된 3차원 좌표 상에서 파형이 형성된 2차원 평면의 축 이외의 나머지 하나의 축에 대해서 회전하도록 구성되어, 실제로 파형이 형성된 평면 보다 더 많은 평면에 대하여 파형이 부여되도록 구성된다.The cutting waveform monowire of the present invention is configured to rotate about one axis other than the axis of the two-dimensional plane on which the waveform is formed on the three-dimensional coordinates on which the waveform is formed, so that the waveform is actually about more planes than the plane on which the waveform is formed. It is configured to be given.
본 발명의 다른 양상은 절단용 파형 모노와이어를 제조함에 있어서, 공급부를 통해서 공급된 모노와이어를 표면에 파형의 최고점에 직선 구간을 갖는 파형 요철이 있는 서로 반대 방향으로 회전하는 한 쌍의 기어로 구성된 제1 파형부여장치에 의해서 파형을 부여하는 단계; 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 제2 파형부여장치에 공급하기 전에 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시키는 단계; 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 상기 제1 파형부여장치에 대해서 45도~135도의 각도로 유지되는 제2 파형부여장치에 의해 파형을 부여하는 단계; 및 제2 파형부여장치에 의해 파형이 부여된 모노와이어를 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시키는 단계를 포함하고, 상기 제1 파형부여장치 및 제2 파형부여장치의 파형 요철의 직선 구간의 길이를 S‘라고 하고, 파형의 주기를 P’라고 할 때, 파형의 주기(P')에 대한 직선 구간의 길이(S’)의 비(S'/P’)는 5 내지 45%인 것을 특징으로 하는 절단용 파형 모노와이어의 제조방법에 관한 것이다.According to another aspect of the present invention, in the manufacture of a cutting waveform monowire, the monowire supplied through the supply unit is composed of a pair of gears rotating in opposite directions with waveform irregularities having a straight section at the highest point of the waveform on the surface. Applying a waveform by the first waveform imparting device; Rotating the monowire imparted by the first waveform imparting device 0.5 to 3 times in a clockwise or counterclockwise direction before supplying it to the second waveform imparting device; Imparting a waveform by the second waveform imparting device, the monowire imparted by the first waveform imparting device at an angle of 45 degrees to 135 degrees with respect to the first waveform imparting device; And rotating the monowire to which the waveform is applied by the second waveform applying device in the clockwise or counterclockwise direction from 0.5 to 3 times. When the length of the straight section is called S 'and the period of the waveform is called P', the ratio S '/ P' of the length S 'of the straight section to the period P' of the waveform is 5 to 45. It is related with the manufacturing method of the wave-shaped monowire for cutting which is%.
본 발명의 절단용 파형 모노와이어는 절단 시 모노와이어의 마모도가 개선되어, 피삭체의 절단 시 위치별 절단된 웨이퍼의 두께 편차를 개선할 수 있고, 연마재 캐리어 성능이 우수하고 절단 속도 및 절단공정의 효율을 향상시킬 수 있다. The cutting waveform monowire of the present invention can improve the wear of the monowire when cutting, thereby improving the thickness variation of the cut wafer by position when cutting the workpiece, excellent abrasive carrier performance and cutting speed and cutting process The efficiency can be improved.
또한, 연마재 캐리어 성능이 향상됨에 따라서 파형 모노와이어의 마모가 감소되어, 본 발명의 절단용 파형 모노와이어는 수명 성능이 향상되고, 다수의 평면에 부여된 파형이 중심축을 중심으로 반경방향으로 분포하게 되어 피삭체의 절단 표면 품질을 개선하는 데 상당한 효과가 있다. 따라서, 본 발명의 파형 모노와이어는 반도체용 잉곳, 세라믹스 및 초경합금과 같은 경질재료의 절단에 적합하며, 특히 피삭체 표면 품질이 우수하여 고정밀도의 표면 평탄도가 요구되는 경질 재료의 절단용으로 유리하게 활용될 수 있다.In addition, as the abrasive carrier performance is improved, the wear of the corrugated monowire is reduced, so that the cutting corrugated monowire of the present invention improves the life performance, and the corrugations given to the plurality of planes are distributed radially about the central axis. This has a significant effect on improving the cut surface quality of the workpiece. Accordingly, the corrugated monowire of the present invention is suitable for cutting hard materials such as semiconductor ingots, ceramics and cemented carbide, and is particularly suitable for cutting hard materials requiring high precision surface flatness due to excellent surface quality of the workpiece. Can be utilized.
도 1은 종래의 쏘 와이어의 개략사시도이다. 1 is a schematic perspective view of a conventional saw wire.
도 2는 본 발명의 일 실시예에 의한 절단용 파형 모노와이어의 측면개략도이다. Figure 2 is a side schematic view of a cutting waveform monowire according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예의 절단용 파형 모노와이어의 중심축에서 본 파형 구조를 도시한 개략도이다. Figure 3 is a schematic diagram showing the waveform structure seen from the central axis of the cutting waveform monowire of an embodiment of the present invention.
도 4는 본 발명의 절단용 파형 모노와이어 제조에 이용되는 파형부여장치의 개략도이다. Figure 4 is a schematic diagram of the waveform imparting device used in the production of the cutting waveform monowire of the present invention.
이하, 첨부된 도면을 참고하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 본 발명을 설명하기에 앞서 관련된 공지 기능 및 구성에 대한 구체적 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 설명은 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Prior to describing the present invention, if it is determined that a detailed description of related known functions and configurations may unnecessarily obscure the subject matter of the present invention, the description thereof will be omitted.
본 발명의 일 실시예의 절단용 파형 모노와이어는 단일 금속 와이어로 구성되고, 소정의 주기를 갖는 단위 파형이 길이 방향을 따라서 반복적으로 두 개 이상의 평면에 형성된 절단용 파형 모노와이어로서, 각 파형의 파고의 최고점에 직선 구간을 포함하고, 이러한 직선 구간의 길이를 S라고 하고, 파형의 주기를 P라고 할 때, 파형의 주기(P)에 대한 직선 구간의 길이(S)의 비(S/P)는 5% 내지 45%이다. Cutting waveform monowire of an embodiment of the present invention is a cutting waveform monowire consisting of a single metal wire, a unit waveform having a predetermined period is formed repeatedly in two or more planes along the longitudinal direction, the wave height of each waveform A straight section is included at the highest point, and when the length of the straight section is S and the period of the waveform is P, the ratio (S / P) of the length S of the straight section to the period P of the waveform is S / P. Is 5% to 45%.
본 발명의 절단용 파형 모노와이어는 도 2 및 도 3에 도시된 바와 같이, 서로 다른 평면에 형성된 2개 이상의 파형이 중심축을 중심으로 반경 방향으로 분포되도록 구성된다. 본 발명에서 파형의 형상은 특별히 제한되지 않으나, 일례로 지그재그 형상이거나 정현파 형상을 가질 수 있다. As shown in FIGS. 2 and 3, the cutting waveform monowire of the present invention is configured such that two or more waveforms formed in different planes are radially distributed about a central axis. In the present invention, the shape of the waveform is not particularly limited, but may have, for example, a zigzag shape or a sine wave shape.
상기 파형 모노와이어는 파형이 형성된 3차원 좌표 상에서 파형이 형성된 2차원 평면의 축 이외의 나머지 하나의 축에 대해서 회전하도록 구성되어, 실제로 파형이 형성된 평면 보다 더 많은 평면에 대하여 파형이 부여된 것과 같은 효과를 발휘할 수 있다. The waveform monowire is configured to rotate about one axis other than the axis of the two-dimensional plane in which the waveform is formed on the three-dimensional coordinates in which the waveform is formed, such that the waveform is given to more planes than the plane in which the waveform is actually formed. It can be effective.
본 발명의 절단용 파형 모노와이어에 있어서, 절단 시 연마재의 캐리어 성능을 향상시키기 위한 본 발명의 일 실시예의 절단용 파형 모노와이어는 파형의 주기(P)에 대한 파형의 높이(H)의 비(H/P)가 3%~12% 범위 내이다. 이때 H/P 값이 3% 미만이면 연마재 캐리어 성능이 부족하게 되어 쏘우 마크(Saw Mark)가 발생하고, H/P 값이 12%를 초과하면 연마재 캐리어 성능이 과도하게 되어 웨이퍼 두께 편차가 발생될 수 있다. In the cutting corrugated monowire of the present invention, the cutting corrugated monowire of an embodiment of the present invention for improving the carrier performance of the abrasive during cutting is a ratio of the height (H) of the waveform to the period (P) of the waveform ( H / P) is in the range of 3% to 12%. At this time, if the H / P value is less than 3%, the abrasive carrier performance is insufficient, so that a saw mark occurs. If the H / P value is more than 12%, the abrasive carrier performance is excessive, resulting in wafer thickness variation. Can be.
또한 2개 이상의 서로 다른 평면에 형성된 제1파형과 제2 파형 사이의 각도는 45~135도 범위이다. 상기 각도가 45도 미만이면 모노와이어 소재 자체 내에 불균일한 잔류응력이 잔존하게 되어 직선성이 저하되므로, 절삭 성능이 저하될 수 있고, 반대로 135도를 초과하면 절단 후 잔류응력이 저하되어 파형의 형태안정성이 저하되므로 시간의 경과에 따라서 절삭 성능의 감소가 가속화되는 문제가 발생할 수 있다. In addition, the angle between the first waveform and the second waveform formed in two or more different planes is in the range of 45 to 135 degrees. If the angle is less than 45 degrees, non-uniform residual stress remains in the monowire material itself, and thus linearity is lowered. Therefore, cutting performance may be reduced. Since the stability is lowered, there may be a problem that the decrease in cutting performance is accelerated over time.
도 2는 본 발명의 일 실시예에 의한 절단용 파형 모노와이어의 측면개략도이고, 도 3은 본 발명의 일 실시예의 절단용 파형 모노와이어의 중심축에서 본 파형 구조를 도시한 개략도이다. 도 2 및 도3을 참고하면, 본 발명에서 절단용 파형 모노와이어(10)는 전형적으로 고탄소 강철, 텅스텐, 구리 등을 포함하는 강철과 같은 금속 소재 와이어의 표면에 연마재의 접착을 개선시키기 위하여 구리 또는 황동과 같은 금속 도금층이 도금된 구조를 갖는다. 2 is a schematic side view of a cutting waveform monowire according to an embodiment of the present invention, Figure 3 is a schematic diagram showing a waveform structure seen from the central axis of the cutting waveform monowire of an embodiment of the present invention. Referring to Figures 2 and 3, the cutting corrugated monowire 10 in the present invention is typically to improve the adhesion of the abrasive to the surface of the metal material wire, such as steel, including high carbon steel, tungsten, copper, etc. The metal plating layer such as copper or brass has a plated structure.
상기 모노와이어는 10~40N에서의 파단신율이 2.0~3.5%이다. 본 발명에서 파형 모노와이어의 파단신율이 2.0% 미만이면, 절단용 파형 모노와이어에 요구되는 최소한의 유연성을 제공하지 못해서 오히려 생산성을 저하시킬 수 있고, 반면에 파형 모노와이어의 파단신율이 3.5%를 초과하면 연마재 캐리어 성능이 부족하여 피절삭체의 표면 품질 및 생산성이 저하될 수 있다. The monowire has an elongation at break of 2.0 to 3.5% at 10 to 40N. In the present invention, when the elongation at break of the waveform monowire is less than 2.0%, it does not provide the minimum flexibility required for the cutting waveform monowire, which may lower productivity, whereas the elongation at break of the waveform monowire is 3.5%. If exceeded, the abrasive carrier performance may be insufficient, which may lower the surface quality and productivity of the workpiece.
본 발명의 절단용 파형 모노와이어에 있어서, 모노와이어의 직경(d)은 0.03 ㎜ 내지 0.5 ㎜인 것이 바람직하다. 모노와이어의 직경(d)이 0.03 ㎜ 미만일 경우 절단용 와이어로서 요구되는 강도가 수득되지 않고, 0.5 ㎜를 초과할 경우 커프로스가 커질 수 있다. 절단용 와이어를 이용한 피절삭체의 절단시 수율을 좌우하는 인자로서 절단용 와이어가 실리콘 잉곳과 같은 피절삭체를 파고 들어가면서 생기는 절단홈의 폭을 나타내는 커프로스(kerfloss)를 들 수 있는데, 커프로스와 수율은 반비례하게 된다. 상기 커프로스의 최소화를 위해서는 절단용 와이어의 선경을 가늘게 하여 세선화 또는 극세선화하여야 하고, 이를 위해서는 높은 절단강도를 지니면서 고인성을 나타내는 초고강도의 모노와이어이 요구된다. 본 발명에서는 절단시 피삭체의 손실을 줄이고 절단 속도를 높이기 위하여 직경 0.5 ㎜ 이하인 세선경 절단용 파형 모노와이어를 제공한다. In the cut waveform monowire of the present invention, the diameter (d) of the monowire is preferably 0.03 mm to 0.5 mm. If the diameter (d) of the monowire is less than 0.03 mm, the strength required as the cutting wire is not obtained, and if it exceeds 0.5 mm, the cuffs may be large. As a factor that determines the yield of the cutting object using the cutting wire, kerfloss representing the width of the cutting groove generated when the cutting wire digs into the cutting object such as a silicon ingot, And yield are inversely proportional. In order to minimize the cuff, the wire diameter of the cutting wire should be thinned or thinned, and for this purpose, a super high strength monowire having high cutting strength and high toughness is required. The present invention provides a corrugated monowire for cutting thin wires having a diameter of 0.5 mm or less in order to reduce the loss of the workpiece during cutting and to increase the cutting speed.
본 발명의 절단용 파형 모노와이어는 모노와이어의 직경(d), 파형의 높이(H) 및 파형의 주기(P)가 아래의 조건을 만족시킨다. In the cutting waveform monowire of the present invention, the diameter (d) of the monowire, the height (H) of the waveform, and the period (P) of the waveform satisfy the following conditions.
P=1~10 ㎜, d=0.03~0.5 ㎜, 및 P = 1-10 mm, d = 0.03-0.5 mm, and
1.2xd (㎜) ≤ H (㎜) ≤ 3.0 x d (㎜) 1.2xd (mm) ≤ H (mm) ≤ 3.0 x d (mm)
본 발명에서 모노와이어의 직경(d)에 비해서 파형의 높이(H)가 너무 낮아지면 피삭체와 연마재 사이의 거리가 충분히 확보되지 않고, 연마재 캐리어 성능이 저하될 수 있고, 반대로 모노와이어의 직경(d)에 비해서 파형의 높이(H)가 너무 높으면, 형성된 파형이 단일의 파형 부여면에 수용되기 어렵게 되어, 가공면 정밀도가 열화될 우려가 있다. In the present invention, when the height (H) of the waveform is too low compared to the diameter (d) of the monowire, the distance between the workpiece and the abrasive is not sufficiently secured, and the abrasive carrier performance may be reduced, and conversely, the diameter of the monowire ( If the height H of the waveform is too high as compared with d), the formed waveform is less likely to be accommodated on a single waveform-providing surface, which may degrade the processing surface precision.
본 발명의 절단용 파형 모노와이어(10)는 탄소함량이 0.7 wt% 내지 1.2 wt% 정도로 포함되며, 황동 도금층 중의 구리 함량은 60~80%가 바람직하고, 필요에 따라서 황동 도금층에 제3의 원소인 아연, 주석, 니켈, 코발트, 크롬 또는 이들의 합금을 0.1~6.0%의 범위로 첨가할 수 있다. 이러한 합금 도금층은 내부식성 및 강도가 개선될 수 있다.The cutting corrugated monowire 10 of the present invention contains a carbon content of about 0.7 wt% to 1.2 wt%, and the copper content of the brass plating layer is preferably 60 to 80%, and, if necessary, a third element in the brass plating layer. Phosphorus zinc, tin, nickel, cobalt, chromium or alloys thereof may be added in the range of 0.1 to 6.0%. This alloy plating layer can be improved in corrosion resistance and strength.
본 발명의 절단용 파형 모노와이어의 코팅층은 탄화 규소(SiC), 다이아몬드, 실리콘 카바이드, 텅스텐 카바이드 또는 이들의 혼합물을 포함하는 그룹으로부터 선택되는 연마 입자를 추가로 포함할 수 있다. The coating layer of the cutting corrugated monowire of the present invention may further comprise abrasive particles selected from the group comprising silicon carbide (SiC), diamond, silicon carbide, tungsten carbide or mixtures thereof.
본 발명의 절단용 파형 모노와이어(10)는 인장강도가 300 kg/㎟~600 kg/㎟이다. 본 발명의 절단용 파형 모노와이어의 강도를 300 kg/㎟ 내지 600 kg/㎟로 한정한 이유는, 반도체, 세라믹 또는 초경합금과 같은 경질 재료의 절단 및 슬라이스라는 절단용 파형 모노와이어 본래의 목적을 달성하기 위해서 필요로 하는 절단력을 확보하기 위해서이다. 그리고, 극세물의 절단용 파형 모노와이어로서 필요한 강도를 얻기 위해서는 90% 이상의 고가공도의 신선가공뿐만 아니라, 필요에 따라서는 원재료에 크롬이나 바나듐과 같은 합금원소를 첨가하여 강도를 증가시키는 방법을 사용할 수 있다.The cut waveform monowire 10 of the present invention has a tensile strength of 300 kg / mm 2 to 600 kg / mm 2. The reason for limiting the strength of the cut corrugated monowire of the present invention to 300 kg / mm 2 to 600 kg / mm 2 is to achieve the original purpose of the cut corrugated monowire called cutting and slice of a hard material such as semiconductor, ceramic or cemented carbide. This is to secure the cutting force required for the purpose. In addition, in order to obtain the strength required as a cutting-edge monowire for cutting fine particles, a method of increasing the strength by adding alloying elements such as chromium or vanadium to raw materials as well as high-processing freshness of 90% or more can be used. have.
본 발명의 절단용 파형 모노와이어는 연마재와 오일 등의 윤활제가 혼합된 절삭액과 함께 피절삭체에 적절한 압력으로 접촉하면서 주행함으로써 피절삭체를 절단한다. 본 발명의 절단용 파형 모노와이어를 이용해 경질 재료 피삭체를 절단하여 웨이퍼를 형성하는 방법은 다음과 같다. 복수 개의 홈을 갖는 복수 개의 롤러에 소정의 피치로 일련의 절단용 파형 모노와이어 열을 권취한 다음 이러한 일련의 절단용 파형 모노와이어 열을 주행시킨다. 이러한 일련의 절단용 파형 모노와이어 열에 절단하고자 하는 피삭체를 소정의 힘으로 누른다. 이와 동시에 절단용 파형 모노와이어 열과 피삭체 사이에 절삭액을 흘려서 연마용 입자의 절삭 작용에 의해 피삭체를 절단하여 웨이퍼를 제조할 수 있다. The cutting corrugated monowire of the present invention cuts the to-be-processed object by running while contacting the to-be-processed object at an appropriate pressure together with a cutting liquid in which an abrasive and a lubricant such as oil are mixed. The method for forming a wafer by cutting a hard material workpiece using the cutting corrugated monowire of the present invention is as follows. A series of cutting waveform monowire rows is wound on a plurality of rollers having a plurality of grooves at a predetermined pitch, and then the series of cutting waveform monowire rows is driven. The workpiece to be cut is pressed with a predetermined force on such a series of cutting waveform monowire rows. At the same time, a cutting liquid is flowed between the cutting waveform monowire row and the workpiece to cut the workpiece by the cutting action of the abrasive grains, thereby producing a wafer.
본 발명의 다른 양상은 절단용 파형 모노와이어의 제조방법에 관한 것이다. 본 발명의 방법에서는 절단용 파형 모노와이어를 제조함에 있어서, 공급부를 통해서 공급된 표면에 파형의 최고점에 직선 구간을 갖는 형상의 파형 요철이 있는 모노와이어를 표면에 파형 요철이 있는 서로 반대 방향으로 회전하는 한 쌍의 기어로 구성된 제1 파형부여장치에 의해서 파형을 부여하고; 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 제2 파형부여장치에 공급하기 전에 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시키고, 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 상기 제1 파형부여장치에 대해서 45도~135°의 각도로 유지되는 제2 파형부여장치에 의해 파형을 부여한 후, 제2 파형부여장치에 의해 파형이 부여된 모노와이어를 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시킨다. 제1 파형부여장치 및 제2 파형부여장치의 파형 요철의 직선 구간의 길이를 S‘라고 하고, 파형의 주기를 P’라고 할 때, 파형의 주기(P')에 대한 직선 구간의 길이(S’)의 비(S'/P’)는 5 내지 45% 정도 되는 파형 부여 장치를 이용하여, 제조되는 절단용 파형 모노와이어의 파형의 최고점에 소정의 직선 구간이 형성되도록 한다. Another aspect of the invention relates to a method of making a cut monowire for cutting. In the method of the present invention, in the manufacture of the cutting waveform monowire, the monowire having the waveform irregularities having a straight section at the peak of the waveform on the surface supplied through the supply portion is rotated in opposite directions with the waveform irregularities on the surface. A waveform is given by a first waveform imparting device composed of a pair of gears; The monowire imparted with the waveform by the first waveform imparting device is rotated 0.5 to 3 times in the clockwise or counterclockwise direction before being supplied to the second waveform imparting device, and the mono waveform imparted with the waveform by the first waveform imparting device is supplied. After the waveform is applied by the second waveform imparting device which is held at an angle of 45 degrees to 135 ° with respect to the first waveform imparting device, the monowire having the waveform is imparted by the second waveform imparting device clockwise or half. Rotate 0.5 to 3 times clockwise. The length of the straight section (S) with respect to the period (P ') of the waveform when the length of the straight section of the wavy unevenness of the first waveform applying device and the second waveform applying device is S' and the period of the waveform is P '. The ratio (S '/ P') of ') is such that a predetermined straight section is formed at the highest point of the waveform of the cut waveform monowire manufactured using a waveform providing device of about 5 to 45%.
제1 및 제2 파형부여장치(20, 30)는, 도 4에 도시된 바와 같이, 예컨대 2 개의 기어를 포함하며, 기어의 형상이 파형의 최고점에 직선 구간을 갖는 형상의 파형 요철이 형성된 것으로, 이러한 한 쌍의 기어들이 서로 소정의 간격을 갖고 맞물리는 형태로 구성될 수 있다. 제1 파형부여장치(20) 및 제2 파형부여장치 (30)의 각각의 톱니부의 크기, 또는 간격 또한 일정하거나 또는 임의일 수 있으며, 이에 한정하지 아니한다. 상기 제1 파형부여장치(20)와 제2 파형부여장치(30)의 기어의 피치는 서로 상이할 수 있으며, 또한 상기 제1 파형부여장치(20) 및 제2 파형부여장치 (30)의 피치는 상기 소선의 꼬임 피치보다 작게 구성될 수 있다.As shown in FIG. 4, the first and second waveform imparting devices 20 and 30 include, for example, two gears, and the shape of the gear is formed in the shape of the waveform irregularities having a straight section at the highest point of the waveform. The pair of gears may be configured to engage with each other at a predetermined interval. The size, or spacing, of the teeth of each of the first waveform imparting device 20 and the second waveform imparting device 30 may also be constant or arbitrary, but is not limited thereto. The pitches of the gears of the first waveform applying device 20 and the second waveform applying device 30 may be different from each other, and the pitches of the first waveform applying device 20 and the second waveform applying device 30 are different from each other. May be configured to be smaller than the twisting pitch of the element wire.
직선상으로 신선된 모노와이어가 파형부여장치를 통과함으로써 절단용 파형 모노와이어(10)에 소정의 피치를 갖는 파형이 구성될 수 있다. 즉, 2 개의 파형부여장치(20, 30) 사이에 절단용 파형 모노와이어(10)가 삽입되고, 상기 절단용 파형 모노와이어(10)는 2 개의 파형부여장치(20, 30) 사이를 통과하면서 2 개의 파형부여장치(20, 30)에 의해서 압착되어 소정의 파형을 가질 수 있다. 이때, 2 개의 파형부여장치(20, 30)는 상기 절단용 파형 모노와이어(10)가 압착되면서 통과할 수 있도록 서로 소정의 간격을 가지며 맞물리는 형태로 배치될 수 있다.As the monowire drawn in a straight line passes through the waveform applying device, a waveform having a predetermined pitch can be formed in the cutting waveform monowire 10. That is, the cutting waveform monowire 10 is inserted between the two waveform applying devices 20 and 30, and the cutting waveform monowire 10 passes between the two waveform applying devices 20 and 30. The two waveform imparting devices 20 and 30 may be compressed to have a predetermined waveform. At this time, the two waveform imparting device (20, 30) may be arranged in an interlocking form at a predetermined interval to each other so that the cutting waveform monowire (10) can be pressed while passing.
제1 파형부여장치(20)와 제2 파형부여장치 (30)의 회전 각도를 조절함으로써 제1 파형의 파형면의 각도 및 제2 파형의 파형면의 각도가 서로 상이할 수 있다. By adjusting the rotation angles of the first waveform applying device 20 and the second waveform applying device 30, the angle of the waveform surface of the first waveform and the waveform surface of the second waveform may be different from each other.
본 발명의 절단용 파형 모노와이어는 절단용 파형 모노와이어의 사용 중에 모노와이어의 마모로 인한 연마재 캐리어 능력의 감소와 웨이퍼의 두께 편차를 개선하여 절삭 공정의 생산성 및 피삭체 표면의 품질을 대폭 향상시키는 효과를 갖는다. 이에 따라, 본 발명의 절단용 파형 모노와이어는 초정밀 표면을 요구하는 피삭체의 절단에 이용될 수 있다.The cutting corrugated monowire of the present invention improves the productivity of the cutting process and the surface quality of the workpiece by reducing the abrasive carrier ability and the wafer thickness variation due to the wear of the monowire during the use of the cutting corrugated monowire. Has an effect. Accordingly, the cutting corrugated monowire of the present invention can be used for cutting a workpiece that requires an ultra precision surface.
이하에서 실시예를 들어 본 발명을 보다 상세히 설명하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are for the purpose of explanation and are not intended to limit the present invention.
실시예Example
실시예 1~12Examples 1-12
탄소 함량이 0.70~1.05%이고 직경이 5.5 ㎜인 와이어 로드를 2번의 신선과정을 거친 후 열처리 및 황동도금을 실시하고 와이어 선경 0.115 ㎜까지 최종신선을 하여 모노와이어를 준비하였다. 이어서 직선으로 신선된 파형이 부여되지 않은 와이어를 제1 파형 부형 장치 통과 후 제2 파형부여장치의 입측에서 0.5회 권취를 실시하고, 제2 파형부여장치에 의해서 파형 부여 이후 출구 측에서 0.5회 권취를 실시하여, 두 개의 다른 평면에 파형을 부여하되, 모노와이어의 파형의 직선 구간의 길이(S), 파형의 주기(P) 및 S/P의 값을 하기 표 1과 같이 변화시키면서 잉곳 (가로 156 ㎜ x 세로 156 ㎜ x 길이 1,900 ㎜) 절단 후 사용된 와이어의 선경 및 마모도를 측정하여 그 결과를 하기 표 1 및 표 2에 나타내었다. The wire rod having a carbon content of 0.70 to 1.05% and a diameter of 5.5 mm was subjected to two wire drawing processes, heat treated and brass plated, and the final wire was prepared to a wire diameter of 0.115 mm to prepare a mono wire. Subsequently, after passing the first waveform shaping device, the wire that is not given a straight wave is passed through the first waveform shaping device and wound 0.5 times at the inlet side of the second waveform feeding device, and 0.5 times wound at the exit side after the waveform is applied by the second waveform feeding device. Impart a waveform to two different planes, while changing the length (S) of the straight section of the waveform of the monowire, the period (P) and S / P of the waveform as shown in Table 1 below. 156 mm x length 156 mm x length 1,900 mm) Wire diameter and wear of the wire used after cutting were measured and the results are shown in Tables 1 and 2 below.
비교예 1~4Comparative Examples 1 to 4
모노와이어의 파형의 직선 구간의 길이(S), 파형의 주기(P) 및 S/P의 값을 하기 표 1 및 표 2에 나타낸 바와 같이 달리한 것을 제외하고는 실시예 1과 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 그 결과를 하기 표 1 및 표 2에 함께 나타내었다. The length (S) of the straight section of the waveform of the monowire waveform, the period (P) and the value of the S / P of the waveform was carried out in the same manner as in Example 1 except that as shown in Table 1 and Table 2 The waveform for cutting a monowire was prepared, and the physical properties were evaluated, and the results are shown together in Tables 1 and 2 below.
구분division 비교예1Comparative Example 1 실시예1Example 1 실시예 2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 비교예2Comparative Example 2
직선 구간 길이 (S, ㎜)Straight section length (S, mm) 0.00.0 0.20.2 0.30.3 0.50.5 0.60.6 1.01.0 1.31.3 1.61.6
파형 주기(P, ㎜)Wave Period (P, mm) 3.23.2 3.23.2 3.23.2 3.23.2 3.23.2 3.23.2 3.23.2 3.23.2
S/P (%)S / P (%) 0%0% 5%5% 10%10% 15%15% 20%20% 30%30% 40%40% 50%50%
절단전 와이어 선경 (㎜)Wire diameter before cutting (mm) 0.11560.1156 0.11580.1158 0.11600.1160 0115401154 0.11620.1162 0.11570.1157 0.11610.1161 0.11580.1158
절단후 와이어 선경(㎜)Wire diameter after cutting (mm) 0.09260.0926 0.10280.1028 0.1040.104 0.10440.1044 0.10620.1062 0.10270.1027 0.10210.1021 단선 발생Disconnection
마모도 (%)Wear (%) 20%20% 11%11% 10%10% 10%10% 9%9% 11%11% 12%12%
구분division 비교예3Comparative Example 3 실시예7Example 7 실시예 8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 비교예4Comparative Example 4
직선구간 길이 (S, ㎜)Straight section length (S, ㎜) 0.60.6 0.60.6 0.60.6 0.60.6 0.60.6 0.60.6 0.60.6 0.60.6
파형 주기 (P, ㎜)Wave Period (P, mm) 1.21.2 1.51.5 2.02.0 2.52.5 3.03.0 4.04.0 8.08.0 20.020.0
S/P (%)S / P (%) 50%50% 40%40% 30%30% 24%24% 20%20% 15%15% 8%8% 3%3%
절단전 와이어 선경 (㎜)Wire diameter before cutting (mm) 0.11560.1156 0.11580.1158 0.11600.1160 0.11540.1154 0.11620.1162 0.11570.1157 0.11610.1161 0.11580.1158
절단후 와이어 선경(㎜)Wire diameter after cutting (mm) 단선 발생 Disconnection 0.10180.1018 0.1030.103 0.10340.1034 0.10620.1062 0.10370.1037 0.10110.1011 0.09280.0928
마모도 (%)Wear (%) 12%12% 11%11% 10%10% 9%9% 10%10% 13%13% 20%20%
실시예 13-17Example 13-17
와이어 선경 0.115 ㎜의 직선상의 와이어에 파형의 주기(P), 파형의 높이 (H)를 아래 표 3과 같이 변화시키면서 HCT-B5 설비에서 반도체 웨이퍼 잉곳 (가로 156 ㎜ x 세로 156 ㎜ x 길이 800 ㎜)을 절단하고, 웨이퍼 표면 양품율을 평가하여 결과를 하기 표 3에 나타내었다. A semiconductor wafer ingot (H 156 mm x 156 mm x 800 mm in length) in a HCT-B5 installation while varying the period (P) and the height (H) of the waveform on a straight wire having a wire diameter of 0.115 mm as shown in Table 3 below. ), The wafer surface yield was evaluated and the results are shown in Table 3 below.
비교예 5~6 Comparative Examples 5-6
파형의 주기(P), 파형의 높이(H) 및 H/P 값을 하기 표 3에 나타낸 바와 같이 달리한 것을 제외하고는 실시예 1과 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 3에 함께 나타내었다. 웨이퍼 표면 양품율은 웨이퍼의 파손 유무, 외관 기스 유무, 색상 차이 유무, 두께 편차 유무를 육안으로 검사하여, 웨이퍼 외관에 기스, 색상 차이 및 두께 편차가 없고, 빛을 전기로 전환하는 효율이 18% 이상인 것을 양품으로 판정하였다. 총 2000 개의 웨이퍼를 검사하여 양품의 퍼센트를 웨이퍼 표면 양품율로 산출하였다. A waveform monowire for cutting was prepared in the same manner as in Example 1 except that the period (P), height (H), and H / P value of the waveform were different as shown in Table 3 below. Evaluation of physical properties is shown in Table 3 together. The wafer surface yield rate is visually inspected for wafer breakage, appearance scratches, color differences, and thickness deviations, and there is no gas, color difference, and thickness variation in the appearance of the wafer, and the efficiency of converting light to electricity is 18%. The abnormality was judged as good quality goods. A total of 2000 wafers were inspected and the percentage of goods calculated as wafer surface yield.
구분division 비교예 5Comparative Example 5 실시예 13Example 13 실시예 14Example 14 실시예 15Example 15 실시예 16Example 16 실시예 17Example 17 비교예 6Comparative Example 6
파형주기 (P, ㎜)Wave Period (P, mm) 6.06.0 5.25.2 3.03.0 2.62.6 2.42.4 2.02.0 2.02.0
파형높이 (H, ㎜)Corrugation height (H, mm) 0.1270.127 0.1550.155 0.1770.177 0.1780.178 0.1840.184 0.2300.230 0.2880.288
H/P (%)H / P (%) 2.12.1 3.03.0 5.95.9 6.96.9 7.77.7 11.511.5 14.414.4
웨이퍼 표면 양품율 (%)Wafer Surface Yield (%) 8282 9090 9292 9494 9595 9191 7272
상기 표 1 내지 표 3의 결과를 통해서 확인되는 바와 같이, 본 발명의 파형 모노와이어를 사용하여 절단된 웨이퍼의 마모도 및 표면 앙품율이 본 발명의 범위 외인 비교예의 모노와이어에 비해 훨씬 높음을 알 수 있다. 또한 본 발명의 실시예에서 실리콘 잉곳을 절단하는 경우는 절단속도도 비교예의 경우에 비해서 빠른 것으로 단위 시간당 생산성을 향상시켜서 원가 절감에 기여할 수 있다.As confirmed through the results of Tables 1 to 3, it can be seen that the wear and surface quality of the wafer cut using the waveform monowire of the present invention is much higher than the monowire of the comparative example outside the scope of the present invention. have. In addition, when cutting the silicon ingot in the embodiment of the present invention is also faster than the cutting speed in the case of the comparative example can improve the productivity per unit time can contribute to cost reduction.
이상에서 본 발명의 바람직한 구현예를 들어 본 발명에 대해서 상세하게 설명하였으나, 본 발명의 정신 및 범위를 벗어나지 않는 범위 내에서 본 발명이 다양하게 변경 또는 변형될 수 있음은 당업자에게 자명하므로, 이러한 모든 변경 및 변형예들도 본 발명의 보호범위에 포함되는 것으로 해석되어야 한다.Although the present invention has been described in detail with reference to preferred embodiments of the present invention, it will be apparent to those skilled in the art that the present invention may be variously changed or modified without departing from the spirit and scope of the present invention. Modifications and variations are also to be construed as being included in the scope of protection of the present invention.

Claims (9)

  1. 단일 금속 와이어로 구성되고, 소정의 주기를 갖는 단위 파형이 길이 방향을 따라서 반복적으로 두 개 이상의 평면에 형성된 절단용 파형 모노와이어로서, 각 파형의 파고의 최고점에 직선 구간을 포함하고, 이러한 직선 구간의 길이를 S라고 하고, 파형의 주기를 P라고 할 때, 파형의 주기(P)에 대한 직선 구간의 길이(S)의 비(S/P)는 5 내지 45%인 것을 특징으로 하는 절단용 파형 모노와이어.A cutting waveform monowire composed of a single metal wire and having a predetermined period in which a unit waveform having a predetermined period is repeatedly formed in two or more planes, including a straight section at the highest point of the wave height of each waveform. When the length of S is S and the period of the waveform is P, the ratio S / P of the length S of the straight section to the period P of the waveform is 5 to 45%. Waveform monowires.
  2. 제1항에 있어서, 상기 절단용 파형 모노와이어는 서로 다른 평면에 형성된 2개 이상의 파형이 중심축을 중심으로 반경 방향으로 분포되는 것을 특징으로 하는 절단용 파형 모노와이어. The cutting waveform monowire according to claim 1, wherein the cutting waveform monowire has two or more waveforms formed in different planes in a radial direction about a central axis.
  3. 제1항에 있어서, 상기 절단용 파형 모노와이어의 파형의 주기(P)에 대한 파형의 높이(H)의 비(H/P)가 3 내지 12%인 것을 특징으로 하는 절단용 파형 모노와이어. The cutting waveform monowire according to claim 1, wherein a ratio (H / P) of the height (H) of the waveform to the period (P) of the waveform of the cutting waveform monowire is 3 to 12%.
  4. 제1항에 있어서, 상기 절단용 파형 모노와이어는 파형의 주기(P), 파형의 높이(H), 및 모노와이어의 선경(d)이 아래의 조건을 만족하도록 구성되는 것을 특징으로 하는 절단용 파형 모노와이어. The cutting waveform monowire according to claim 1, wherein the cutting waveform monowire is configured such that the period P of the waveform, the height H of the waveform, and the wire diameter d of the monowire satisfy the following conditions. Waveform monowires.
    P=1~10 ㎜, d=0.03~0.5 ㎜, 및 H=1.2×d~3.0×d, P = 1-10 mm, d = 0.03-0.5 mm, and H = 1.2xd-3.0xd,
  5. 제1항에 있어서, 상기 절단용 파형 모노와이어의 파단신율이 2.0~3.5%인 것을 특징으로 하는 절단용 파형 모노와이어. The breaking wave monowire according to claim 1, wherein the breaking wave monowire has an elongation at break of 2.0 to 3.5%.
  6. 제1항에 있어서, 상기 절단용 파형 모노와이어는 탄소강에 황동 도금을 한 와이어로서, 탄소함량이 0.7~1.2 wt%이고, 황동 도금층 중 구리성분이 60%~80%인 것을 특징으로 하는 절단용 파형 모노와이어.The cutting corrugated monowire according to claim 1, wherein the corrugated monowire is a steel plated with brass, and the carbon content is 0.7 to 1.2 wt% and the copper component is 60% to 80%. Waveform monowires.
  7. 제1항에 있어서, 상기 절단용 파형 모노와이어의 표면은 구리, 아연, 주석, 니켈, 코발트, 크롬 또는 이들의 합금을 포함하는 그룹 중에서 선택되는 하나 이상의 재료로 표면코팅된 것을 특징으로 하는 절단용 파형 모노와이어. The cutting surface of claim 1, wherein the surface of the cutting corrugated monowire is surface-coated with at least one material selected from the group consisting of copper, zinc, tin, nickel, cobalt, chromium, or alloys thereof. Waveform monowires.
  8. 제7항에 있어서, 상기 표면 코팅 재료는 다이아몬드 또는 탄화 규소(SiC) 연마재 또는 이들의 혼합물을 추가로 포함하는 것을 특징으로 하는 절단용 파형 모노와이어.8. The cutting corrugated monowire of claim 7, wherein the surface coating material further comprises diamond or silicon carbide (SiC) abrasive or a mixture thereof.
  9. 절단용 파형 모노와이어를 제조함에 있어서, 공급부를 통해서 공급된 모노와이어를 표면에 파형의 최고점에 직선 구간을 갖는 파형 요철이 있는 서로 반대 방향으로 회전하는 한 쌍의 기어로 구성된 제1 파형부여장치에 의해서 파형을 부여하는 단계; 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 제2 파형부여장치에 공급하기 전에 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시키는 단계; 제1 파형부여장치에 의해 파형이 부여된 모노와이어를 상기 제1 파형부여장치에 대해서 45도~135도의 각도로 유지되는 제2 파형부여장치에 의해 파형을 부여하는 단계; 및 제2 파형부여장치에 의해 파형이 부여된 모노와이어를 시계방향 혹은 반시계 방향으로 0.5회 내지 3회 회전시키는 단계를 포함하고, 상기 제1 파형부여장치 및 제2 파형부여장치의 파형 요철의 직선 구간의 길이를 S‘라고 하고, 파형의 주기를 P’라고 할 때, 파형의 주기(P')에 대한 직선 구간의 길이(S’)의 비(S'/P’)는 5 내지 45%인 것을 특징으로 하는 절단용 파형 모노와이어의 제조방법.In manufacturing a cutting waveform monowire, a first waveform imparting device consisting of a pair of gears rotated in opposite directions with a waveform irregularities having a straight section at the highest point of the waveform on the surface. Imparting a waveform by means of; Rotating the monowire imparted by the first waveform imparting device 0.5 to 3 times in a clockwise or counterclockwise direction before supplying it to the second waveform imparting device; Imparting a waveform by the second waveform imparting device, the monowire imparted by the first waveform imparting device at an angle of 45 degrees to 135 degrees with respect to the first waveform imparting device; And rotating the monowire to which the waveform is applied by the second waveform applying device in the clockwise or counterclockwise direction from 0.5 to 3 times. When the length of the straight section is called S 'and the period of the waveform is called P', the ratio S '/ P' of the length S 'of the straight section to the period P' of the waveform is 5 to 45. The method for producing a cut waveform monowire, characterized in that%.
PCT/KR2016/001338 2016-01-29 2016-02-05 Wavy monowire for cutting WO2017131274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680000082.7A CN107615476B (en) 2016-01-29 2016-02-05 Cutting ripple monofilament shaped steel wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0011696 2016-01-29
KR1020160011696A KR101736657B1 (en) 2016-01-29 2016-01-29 Corrugated monowire for cutting

Publications (1)

Publication Number Publication Date
WO2017131274A1 true WO2017131274A1 (en) 2017-08-03

Family

ID=59035352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001338 WO2017131274A1 (en) 2016-01-29 2016-02-05 Wavy monowire for cutting

Country Status (4)

Country Link
KR (1) KR101736657B1 (en)
CN (1) CN107615476B (en)
TW (1) TWI610757B (en)
WO (1) WO2017131274A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514821B1 (en) * 2018-11-15 2019-05-15 トクセン工業株式会社 Saw wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243492A (en) * 2003-02-14 2004-09-02 Kanai Hiroaki Saw wire for single wire saw
JP2008114318A (en) * 2006-11-02 2008-05-22 Eiko Yamada Saw wire and wire saw
KR20120077801A (en) * 2010-12-31 2012-07-10 주식회사 효성 Heteropreform high shrinkage monowire
KR101427554B1 (en) * 2014-04-29 2014-08-08 주식회사 효성 Wavy-patterned Monowire for Cutting
KR20150047507A (en) * 2012-09-07 2015-05-04 엔브이 베카에르트 에스에이 A shaped sawing wire with subsurface tensile residual stresses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91126B1 (en) * 2004-12-23 2006-06-26 Trefilarbed Bettembourg S A Monofilament metal saw wire
JP2012121101A (en) 2010-12-08 2012-06-28 Japan Fine Steel Co Ltd Fixed abrasive grain wire
FR2988023A1 (en) 2012-03-16 2013-09-20 Sodetal Sas SAW WIRE, METHOD FOR MANUFACTURING SUCH WIRE, AND USE
CN103660053B (en) * 2012-09-07 2017-05-10 江阴贝卡尔特合金材料有限公司 Forming saw wire capable of stretching downward-pulling residual stress on surface
CN203579917U (en) * 2013-10-31 2014-05-07 苏闽(张家港)新型金属材料科技有限公司 Cutting steel wire capable of improving cutting efficiency and production equipment thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243492A (en) * 2003-02-14 2004-09-02 Kanai Hiroaki Saw wire for single wire saw
JP2008114318A (en) * 2006-11-02 2008-05-22 Eiko Yamada Saw wire and wire saw
KR20120077801A (en) * 2010-12-31 2012-07-10 주식회사 효성 Heteropreform high shrinkage monowire
KR20150047507A (en) * 2012-09-07 2015-05-04 엔브이 베카에르트 에스에이 A shaped sawing wire with subsurface tensile residual stresses
KR101427554B1 (en) * 2014-04-29 2014-08-08 주식회사 효성 Wavy-patterned Monowire for Cutting

Also Published As

Publication number Publication date
TW201726306A (en) 2017-08-01
CN107615476B (en) 2018-09-28
TWI610757B (en) 2018-01-11
KR101736657B1 (en) 2017-05-16
CN107615476A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
KR101427554B1 (en) Wavy-patterned Monowire for Cutting
WO2017131273A1 (en) Wavy monowire for cutting
EP2578343B1 (en) Electrode wire for electrical discharge machining
EP3582920B1 (en) Wire saw and method for simultaneously separating a plurality of discs from a rod
DE112008001108B4 (en) Wafer holder, vertical heat treatment boat including a wafer holder and method for manufacturing a wafer holder
WO2017131274A1 (en) Wavy monowire for cutting
JPH0860352A (en) Ito sputtering target
JP5102750B2 (en) Saw wire
WO2015119344A1 (en) Structured saw wire maintaining crimp property under slicing tension
KR101311346B1 (en) A saw wire
JP2007044794A (en) Wire for wire saw
EP3730245A1 (en) Abrasive member
JPH1161395A (en) Ito sputtering target
CN113611440A (en) High-strength damping special-shaped copper alloy ultra-micro wire harness and production process thereof
KR101114684B1 (en) Method for Manufacturing Saw Wire and Saw?Wire Manufactured Therefrom
KR101060888B1 (en) Prefabricated Scale Breaker Roll with Excellent Wear Resistance
WO2011145856A2 (en) Wire tool
WO2017073843A1 (en) Crimped saw wire with a flat shape
KR101069557B1 (en) Cable saw having excellent cuttability
TWI784706B (en) Wire electrode for spark erosion cutting
KR20180015483A (en) Saw wire having excellent machinability and manufacturing method there of
CN117583392A (en) High-deflection rolled copper foil and production method thereof
KR101824529B1 (en) Scribing wheel
CN116176020A (en) Teflon belt production process
JPH04322911A (en) Graphite material for electrode, suitable for wire electric discharge machining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888250

Country of ref document: EP

Kind code of ref document: A1