WO2017130685A1 - Method for producing three-dimensional model and modeling material - Google Patents

Method for producing three-dimensional model and modeling material Download PDF

Info

Publication number
WO2017130685A1
WO2017130685A1 PCT/JP2017/000519 JP2017000519W WO2017130685A1 WO 2017130685 A1 WO2017130685 A1 WO 2017130685A1 JP 2017000519 W JP2017000519 W JP 2017000519W WO 2017130685 A1 WO2017130685 A1 WO 2017130685A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
dimensional structure
liquid
composition
mass
Prior art date
Application number
PCT/JP2017/000519
Other languages
French (fr)
Japanese (ja)
Inventor
務 塩山
淳 大西
充 山田
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2017502900A priority Critical patent/JP6220477B1/en
Publication of WO2017130685A1 publication Critical patent/WO2017130685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional structure and a modeling material.
  • Polyurethane, polyurethaneurea and polyurea are obtained by a curing reaction between an isocyanate component such as polyisocyanate and a polyol component such as a long-chain polyol and / or a polyamine component such as a long-chain polyamine.
  • an isocyanate component such as polyisocyanate
  • a polyol component such as a long-chain polyol and / or a polyamine component such as a long-chain polyamine.
  • It is a synthetic resin, and it is easy to adjust physical properties such as elastic modulus and hardness, and is excellent in wear resistance and moldability. For this reason, molded articles made of polyurethane or the like are used in various products such as shoe soles, grips of motorcycles and motorcycles, personal use products such as glasses, masks, and ornaments, artificial limbs, and training equipment.
  • a polyurethane layer having a desired shape can be laminated on the support base by the above-described method. Therefore, it is said that a polyurethane three-dimensional structure can be manufactured by repeating the lamination of the polyurethane layer.
  • the manufacturing method of three-dimensional shaped objects such as polyurethane using such a 3D printer is a single item such as manufacturing tailor-made products tailored to the demands of each customer, and manufacturing prototype parts required when designing assembly products. It is considered useful for the production of
  • the above-described conventional method changes the composition of the first liquid composition, the composition of the second liquid composition, the mixing ratio of the first liquid composition and the second liquid composition, etc. It is considered that the present invention can be applied to the production of three-dimensional shaped objects that differ from part to part, in particular, functionally graded material whose physical properties continuously change from part to part.
  • the discharge amount of the second liquid composition tends to be significantly larger than the discharge amount of the first liquid composition (for example, more than 2.5 times).
  • the mixing ratio or composition of the first liquid composition and the second liquid composition is changed during modeling in order to manufacture a three-dimensional model with different physical properties for each part, There is a possibility that the discharge amount of the two-component composition further increases.
  • the discharge amounts of the first liquid composition and the second liquid composition are significantly different, they cannot be mixed uniformly, and as a result, there is a risk of causing poor curing.
  • desired physical properties may not be obtained.
  • the three-dimensional structure obtained by the above-described conventional manufacturing method may cause a variation in physical properties for each part and a desired characteristic may not be obtained, or stress may be easily concentrated on a part where the physical property is changed. Therefore, there is a risk that the macro damage resistance is lowered.
  • the present invention has been made in view of these requirements, and a method for easily and reliably producing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using a 3D printer, and a modeling material used therefor It is an issue to provide.
  • the invention made in order to solve the above-mentioned problems is a method for producing a three-dimensional structure mainly comprising polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by mixing.
  • the first liquid composition and the second liquid composition react with each other by a pseudo prepolymer method.
  • the manufacturing method of the three-dimensional structure has a step of sequentially laminating a synthetic resin layer on a support by discharging a first liquid composition and a second liquid composition that react by mixing,
  • the 1st liquid composition and the 2nd liquid composition are mixed immediately before or immediately after discharging, and the 1st liquid composition and the 2nd liquid composition react by the pseudo prepolymer method.
  • the pseudo prepolymer method means that in the synthesis of polyurethane or the like, a part of the long-chain polyol and / or long-chain polyamine to be used is pre-reacted with a polyisocyanate, and this prepolymer is combined with the polyisocyanate to form an isocyanate. It is a method used as a component.
  • the manufacturing method of the said three-dimensional structure uses the 1st liquid composition and the 2nd liquid composition by using the 1st liquid composition and the 2nd liquid composition which react with a pseudo prepolymer method as a modeling material. Since the mixing volume ratio of the product can be in a range relatively close to 1: 1, the first liquid composition and the second liquid composition can be uniformly mixed and reliably cured. As a result, the method for manufacturing a three-dimensional structure can easily and reliably manufacture a three-dimensional structure having polyurethane or the like as a main component using a 3D printer.
  • the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is preferably 100: 250 or more and 100: 40 or less. Since the specific gravity of the first liquid composition and the second liquid composition is generally substantially the same, by setting the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in the above range, the volume ratio is Can be closer to 1: 1. Thereby, a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly, As a result, the three-dimensional molded item which has a polyurethane etc. as a main component can be manufactured more easily and reliably.
  • the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition in the sequential lamination step. Good.
  • the manufacturing method of the three-dimensional structure is formed by sequentially changing the discharge amount of the first liquid composition and the second liquid composition in the laminating step and changing the density of the synthetic resin layer for each part.
  • the physical properties such as tensile properties and wear resistance of the three-dimensional structure to be manufactured can be changed for each part. Therefore, according to the method for manufacturing a three-dimensional structure, a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part can be easily and reliably manufactured.
  • the porous region may be formed in at least a part of the synthetic resin layer in the sequential lamination step.
  • the manufacturing method of the three-dimensional structure can sequentially change the density of the synthetic resin layer by forming the porous region in at least a part of the synthetic resin layer in the sequential lamination process, As a result, it is possible to more reliably manufacture a three-dimensional structure having different physical properties for each part.
  • the porosity of the porous region may be changed in the range of more than 0% by volume and 45% by volume or less in the sequential lamination step.
  • the manufacturing method of the said three-dimensional structure changes the porosity of a porous area
  • the first liquid composition includes at least one prepolymer of a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, and a polyisocyanate
  • the second liquid composition includes a long chain polyol and a long chain. It is good to contain at least 1 sort (s) of soft segment components among polyamines and at least 1 sort (s) of hard segment components among a chain extender and a crosslinking agent.
  • the reaction by the pseudo prepolymer method is more reliably performed. Can be made.
  • moderate elasticity modulus, hardness, etc. can be provided to the three-dimensional structure to be formed because the second liquid composition contains a hard segment component.
  • At least one of the first liquid composition and the second liquid composition may further contain a plasticizer.
  • at least one of the first liquid composition and the second liquid composition further contains a plasticizer, thereby reducing the viscosity of the first liquid composition and / or the second liquid composition, Mixing can be promoted, and as a result, a three-dimensional structure mainly composed of polyurethane or the like can be produced more easily and reliably.
  • the manufacturing method of the said three-dimensional structure is the said sequential lamination process, The composition of the said 1st liquid composition, the composition of the said 2nd liquid composition, the said 1st liquid composition, and the said 2nd liquid composition It is preferable to change at least one of the mixing ratio.
  • the manufacturing method of the said three-dimensional structure is a sequential lamination process, the composition of the first liquid composition, the composition of the second liquid composition, and the mixing of the first liquid composition and the second liquid composition.
  • the first liquid composition and the second liquid composition are modeling materials whose mixing volume ratio that reacts by the pseudo prepolymer method is relatively close to 1: 1, the composition and the mixing ratio are changed during modeling. However, the mixing volume ratio is extremely difficult to deviate from 1: 1. Therefore, according to the method for manufacturing a three-dimensional structure, a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part can be easily and reliably manufactured.
  • the second liquid composition further includes a plasticizer, and the plasticizer content in the second liquid composition may be changed in the sequential lamination step.
  • the second liquid composition further includes a plasticizer that is a component having a relatively small influence on the curing reaction, and is cured by sequentially changing the content of the plasticizer in the second liquid composition in the laminating step.
  • the physical properties of the formed three-dimensional modeling material can be changed for each part without significantly affecting the reaction. Thereby, it is possible to more easily and reliably manufacture a three-dimensional structure having polyurethane as a main component and different physical properties for each part.
  • the first liquid composition and the second liquid composition further include a plasticizer, and in the sequential lamination step, the composition of the first liquid composition and the second liquid composition. It is preferable to change at least one of the composition of the product so that the mass ratio of the discharge amount of the first liquid composition and the second liquid composition is 100: 110 or more and 100: 90 or less.
  • the manufacturing method of the three-dimensional structure is a three-dimensional structure formed by changing at least one of the composition of the first liquid composition and the composition of the second liquid composition in the sequential lamination step. The physical properties of the material can be changed for each part.
  • the plasticizer included in the first liquid composition and the second liquid composition is a component that has a relatively small influence on the curing reaction and can be blended in a relatively large amount
  • the first liquid composition and the second liquid composition It can be suitably used for adjusting the bulk of the two-component composition. Therefore, the first liquid composition and the second liquid composition contain a plasticizer, and by adjusting the content of this plasticizer, the discharge amount of the first liquid composition and the second liquid composition can be adjusted during modeling. It is possible to maintain the mass ratio in the above range, that is, to maintain the mixing volume ratio in a range closer to 1: 1. Thereby, it is possible to more easily and reliably manufacture a three-dimensional structure having polyurethane as a main component and different physical properties for each part.
  • At least one of the prepolymer composition of the first liquid composition and the hard segment component composition of the second liquid composition may be changed in the sequential lamination step.
  • the manufacturing method of the three-dimensional structure changes at least one of the prepolymer composition of the first liquid composition and the hard segment component composition of the second liquid composition in the sequential lamination step.
  • the variation of the physical property change for every part of the formed three-dimensional modeling material can be abundant.
  • Another invention made in order to solve the above-mentioned problems is a modeling material of a three-dimensional modeled object mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by mixing.
  • a liquid composition and a second liquid composition are provided, and the first liquid composition and the second liquid composition are reacted by a pseudo prepolymer method.
  • the mixing volume ratio may be set to a range relatively close to 1: 1 so as to facilitate uniform mixing. it can. Therefore, the modeling material can easily and reliably manufacture a three-dimensional modeled product mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.
  • the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.
  • discharge amount means the discharge volume amount of the modeling material discharged during the formation of the synthetic resin layer having a predetermined area (area including pores when a porous region is formed).
  • Porous region means that 100 mg samples are taken from any 10 locations of the three-dimensional structure, the apparent volume calculated from the dimensions of each sample is V A [mm 3 ], and the mass of each sample is When the actual volume (volume excluding voids) calculated by dividing by the true density is V B [mm 3 ], it means a value obtained by 100 ⁇ (V A ⁇ V B ) / VA .
  • composition refers to the type of component to be contained and its content.
  • Voltiscosity refers to a value measured using a B-type viscometer (for example, “BMII” manufactured by Toki Sangyo Co., Ltd.).
  • gel time refers to a value measured by the gel time A method in accordance with JIS-K6910: 2007 “Phenolic resin test method”. Further, the mixing mass ratio of the first liquid composition and the second liquid composition used as a sample in the above measurement is set to match the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition.
  • the manufacturing method and modeling material of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.
  • the modeling material is a modeling material used in a method for manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using an ink jet 3D printer, and the first liquid composition and the first liquid that react by mixing are used.
  • a two-liquid composition is provided, and the first liquid composition and the second liquid composition react by a pseudo prepolymer method.
  • the first liquid composition is an isocyanate component
  • the second liquid composition is a polyol component and / or a polyamine component.
  • a 1st liquid composition contains at least 1 sort (s) of prepolymer among a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, and polyisocyanate.
  • the modeling material contains a prepolymer such as a urethane prepolymer corresponding to a component in which the curing reaction between the isocyanate component and the polyol component and / or the polyamine component partially proceeds.
  • the usage amount of the second liquid composition with respect to the usage amount of the composition can be reduced, whereby the mixing volume ratio of the first liquid composition and the second liquid composition can be made close to 1: 1.
  • the said modeling material is the 1st liquid composition because a 1st liquid composition contains the said prepolymer, ie, a part of hardening reaction with an isocyanate component, a polyol component, and / or a polyamine component is completed beforehand.
  • the curing rate after mixing the first liquid composition and the second liquid composition is fast.
  • the first liquid composition contains a polyisocyanate having a molecular weight smaller than that of the prepolymer, the viscosity can be lowered as compared with a composition containing only the prepolymer.
  • the upper limit of the viscosity of the first liquid composition at 80 ° C. is preferably 400 mPa ⁇ s, and more preferably 300 mPa ⁇ s.
  • the lower limit of the viscosity of the first liquid composition at 80 ° C. is not particularly limited, but is, for example, 50 mPa ⁇ s.
  • the urethane prepolymer used for the modeling material is an oligomer having a urethane bond (—NHCOO—) in the main chain, and can be obtained by reacting, for example, a polyisocyanate and a long chain polyol.
  • the urethane prepolymer usually has isocyanate groups (—N ⁇ C ⁇ O) at both ends.
  • the lower limit of the number average molecular weight of the urethane prepolymer is preferably 800, more preferably 1,000.
  • the upper limit of the number average molecular weight of the urethane prepolymer is preferably 5,000, more preferably 2,000.
  • the number average molecular weight of the urethane prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may be reduced, and the productivity in manufacturing the three-dimensional structure may be reduced. is there.
  • the number average molecular weight of the urethane prepolymer exceeds the upper limit, the viscosity of the first liquid composition increases and it may be difficult to mix with the second liquid composition.
  • the “number average molecular weight” is in accordance with JIS-K7252-1: 2008 “Plastics—Method for obtaining average molecular weight and molecular weight distribution of polymers by size exclusion chromatography—Part 1: General rules”, and polystyrene as a standard. The value measured using the gel permeation chromatography (GPC) made into a substance is pointed out.
  • GPC gel permeation chromatography
  • a polyisocyanate is a compound having two or more isocyanate groups in the molecule.
  • the polyisocyanate used in the first liquid composition include aliphatic polyisocyanates (including alicyclic polyisocyanates), aromatic polyisocyanates, and the like.
  • the said polyisocyanate does not have a urethane bond and a urea bond normally in a principal chain.
  • Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, isopropylidenebis (4-cyclohexylisocyanate), norbornane diisocyanate, modified products and multimers thereof.
  • Examples of the aromatic isocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, modified products and multimers thereof, and the like. As said polyisocyanate, aromatic polyisocyanate is preferable and diphenylmethane diisocyanate is more preferable.
  • the long-chain polyol is a compound having a molecular weight of 300 or more having two or more hydroxyl groups (—OH) in the molecule.
  • Examples of the long-chain polyol used in the first liquid composition include polyether polyol, polycarbonate polyol, and polyester polyol.
  • polyether polyol examples include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene ether glycol, polytetramethylene ether triol, co-condensates thereof, and side chains thereof. And derivatives having a branched structure and modified products.
  • polycarbonate polyol and polyester polyol include compounds described in paragraphs [0017] to [0020] of JP-A-2015-209538, for example.
  • polyether polyol is preferable, and polytetramethylene ether glycol is more preferable.
  • the lower limit of the number average molecular weight of the long-chain polyol can be appropriately changed according to the use of the three-dimensional structure to be formed, but 500 is preferable, and 800 is more preferable.
  • the upper limit of the number average molecular weight of the long-chain polyol is preferably 5,000, and more preferably 2,500.
  • the urethane urea prepolymer used for the modeling material is an oligomer having a urethane bond and a urea bond (-NHCONH-) in the main chain, and can be obtained by reacting, for example, a polyisocyanate, a long chain polyol, and a long chain polyamine. .
  • the urethane urea prepolymer usually has isocyanate groups at both ends. Examples of the polyisocyanate and long-chain polyol used for the synthesis of the urethane urea prepolymer include the same polyisocyanates and long-chain polyols exemplified as the raw material of the urethane prepolymer.
  • the lower limit of the number average molecular weight of the urethane urea prepolymer is preferably 1,000, and more preferably 1,500.
  • the upper limit of the number average molecular weight of the urethane urea prepolymer is preferably 15,000 and more preferably 10,000.
  • the number average molecular weight of the urethane urea prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may be reduced, and the productivity in manufacturing the three-dimensional structure may be reduced. There is.
  • the number average molecular weight of the urethane urea prepolymer exceeds the upper limit, the viscosity of the first liquid composition may increase and it may be difficult to mix with the second liquid composition.
  • the long-chain polyamine is a compound having a molecular weight of 300 or more having two or more amino groups (including an alkylamino group, a dialkylamino group and an imino group) in the molecule.
  • long-chain polyamine examples include poly (ethylene glycol) diamine, poly (propylene glycol) diamine, poly (tetramethylene ether glycol) diamine, and a long chain such as a diamine of a polycondensate of polytetramethylene ether glycol and polypropylene glycol.
  • examples include diamines, and long-chain triamines such as poly (ethylene glycol) triamine and poly (propylene glycol) triamine.
  • the long-chain polyamine is preferably a long-chain diamine, more preferably a diamine of a copolymer of polytetramethylene ether glycol and polypropylene glycol or polypropylene glycol diamine.
  • the lower limit of the number average molecular weight of the long-chain polyamine can be appropriately changed according to the use of the three-dimensional structure to be formed, but 500 is preferable, and 800 is more preferable.
  • the upper limit of the number average molecular weight of the long-chain polyamine is preferably 5,000, and more preferably 2,500.
  • the urea prepolymer used in the first liquid composition is an oligomer having a urea bond in the main chain, and is obtained, for example, by reacting a polyisocyanate and a long-chain polyamine.
  • the urea prepolymer usually has isocyanate groups at both ends.
  • Examples of the polyisocyanate and the long-chain polyamine used for the synthesis of the urea prepolymer include the same polyisocyanates and long-chain polyamines exemplified as the raw materials for the urethane prepolymer and the urethane urea prepolymer.
  • the lower limit of the number average molecular weight of the urea prepolymer is preferably 1,000, and more preferably 1,500.
  • the upper limit of the number average molecular weight of the urea prepolymer is preferably 15,000, and more preferably 10,000.
  • the number average molecular weight of the urea prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may decrease, and the productivity in the production of the three-dimensional structure may decrease. is there.
  • the number average molecular weight of the urea prepolymer exceeds the upper limit, the viscosity of the first liquid composition increases and it may be difficult to mix with the second liquid composition.
  • the lower limit of the content of the prepolymer in the first liquid composition is preferably 10% by mass, more preferably 20% by mass, further preferably 35% by mass, 40% by mass is particularly preferred.
  • the upper limit of the content is preferably 80% by mass, more preferably 70% by mass, still more preferably 60% by mass, and particularly preferably 50% by mass.
  • the content is smaller than the lower limit, the polyol component and / or the polyamine component necessary for curing the first liquid composition is increased, so that the volume of the second liquid composition is increased and the first liquid composition is increased. May be difficult to mix with.
  • the content exceeds the upper limit the content of the polyisocyanate in the first liquid composition is decreased, which may increase the viscosity and make it difficult to mix with the second liquid composition.
  • the lower limit of the content of the prepolymer in the modeling material is preferably 10% by mass, more preferably 15% by mass, and even more preferably 20% by mass.
  • the upper limit of the content is preferably 45% by mass, and more preferably 30% by mass.
  • Polyisocyanate As a polyisocyanate used for a 1st liquid composition, the thing similar to the polyisocyanate illustrated as a raw material of the said urethane prepolymer, etc. can be mentioned, for example. However, the polyisocyanate contained in the first liquid composition may be the same as or different from the polyisocyanate used in the synthesis of the prepolymer contained in the first liquid composition.
  • the lower limit of the content of the polyisocyanate in the first liquid composition is preferably 20% by mass, more preferably 30% by mass, further preferably 35% by mass, 40% by mass is particularly preferred.
  • an upper limit of content of the said polyisocyanate 90 mass% is preferable, 80 mass% is more preferable, and 60 mass% is further more preferable.
  • content of the said polyisocyanate is smaller than the said minimum, the viscosity of a 1st liquid composition increases and there exists a possibility that it may become difficult to mix a 1st liquid composition and a 2nd liquid composition.
  • the content of the polyisocyanate exceeds the upper limit, the polyol component and / or the polyamine component necessary for curing the first liquid composition increases, so that the volume of the second liquid composition increases. Therefore, it may be difficult to mix with the first liquid composition.
  • the lower limit of the content of the polyisocyanate in the modeling material is preferably 10% by mass, more preferably 15% by mass, and even more preferably 20% by mass.
  • an upper limit of content of the said polyisocyanate 50 mass% is preferable, 35 mass% is more preferable, and 30 mass% is further more preferable.
  • content of the said polyisocyanate is smaller than the said minimum, the hardening rate after mixing of a 1st liquid composition and a 2nd liquid composition may become too quick, and manufacture of the three-dimensional molded item by the said modeling material may become difficult. There is.
  • the content of the polyisocyanate exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition is decreased, and the productivity in manufacturing the three-dimensional structure may be decreased. There is.
  • the first liquid composition can be obtained, for example, by a method in which the long-chain polyol and / or the long-chain polyamine is reacted with an excess amount of the polyisocyanate with respect to the long-chain polyol and / or the long-chain polyamine. it can.
  • the first liquid composition can also be obtained by separately preparing the prepolymer and mixing the prepolymer and the polyisocyanate. In addition, what is necessary is just to add arbitrary components, such as a plasticizer mentioned later, at arbitrary timing as needed.
  • the second liquid composition preferably contains at least one soft segment component of a long-chain polyol and a long-chain polyamine and at least one hard segment component of a chain extender and a crosslinking agent.
  • the upper limit of the viscosity at 80 ° C. of the second liquid composition is preferably 400 mPa ⁇ s, more preferably 300 mPa ⁇ s.
  • the lower limit of the viscosity of the second liquid composition at 80 ° C. is not particularly limited, but is, for example, 50 mPa ⁇ s.
  • Examples of the long-chain polyol and the long-chain polyamine used in the second liquid composition include the same as the long-chain polyol and the long-chain polyamine exemplified as the raw material for the prepolymer.
  • the long-chain polyol and the long-chain polyamine contained in the second liquid composition may be the same as or different from the long-chain polyol and the long-chain polyamine used for the synthesis of the prepolymer contained in the first liquid composition.
  • the lower limit of the content of the soft segment component in the second liquid composition is preferably 30% by mass, more preferably 35% by mass, and further 45% by mass
  • 70% by mass is particularly preferable
  • 80% by mass is even more particularly preferable
  • the upper limit of the content is preferably 97% by mass, more preferably 95% by mass, further preferably 93% by mass, particularly preferably 90% by mass, still more preferably 85% by mass, and most preferably 80% by mass. preferable.
  • the content is smaller than the lower limit, the volume of the second liquid composition necessary for curing the first liquid composition increases, and it is difficult to mix the first liquid composition and the second liquid composition. There is a risk of becoming.
  • the content of the chain extender, the crosslinking agent, etc. in the second liquid composition is lowered, and it is difficult to adjust the physical properties of the three-dimensional structure formed by the modeling material. There is a risk.
  • the second liquid composition contains the long-chain polyamine as the soft segment component and the content exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition May become too fast, and it may be difficult to manufacture a three-dimensional structure using the modeling material.
  • the lower limit of the content of the soft segment component in the modeling material is preferably 10% by mass, more preferably 15% by mass, further preferably 20% by mass, and 25% by mass. % Is particularly preferable, and 35% by mass is further particularly preferable.
  • the upper limit of the content is preferably 65% by mass, more preferably 55% by mass, further preferably 50% by mass, and particularly preferably 45% by mass.
  • the chain extender used for the second liquid composition improves the toughness of a three-dimensional structure formed from the modeling material.
  • the chain extender for example, a short chain diol, a short chain diamine or the like can be used.
  • a short chain diol used as a chain extender is a compound having a molecular weight of less than 300 and having two hydroxyl groups in the molecule.
  • Examples of the short-chain diol include aliphatic diols such as 1,4-butanediol, and compounds described in paragraph [0018] of JP-A-2015-209538.
  • As the short chain diol an aliphatic diol is preferable, and 1,4-butanediol is more preferable.
  • the short chain diamine used as the chain extender is a compound having two amino groups in the molecule and having a molecular weight of less than 300.
  • Examples of the short chain diamine include diethylmethylbenzenediamine (DETDA) and compounds described in paragraph [0040] of JP-T-2015-533383.
  • DETDA diethylmethylbenzenediamine
  • the lower limit of the content of the chain extender in the second liquid composition is preferably 1% by mass, more preferably 3% by mass, and further more preferably 5% by mass. 10% by mass is preferable.
  • the upper limit of the content of the chain extender is preferably 50% by mass, more preferably 40% by mass, further preferably 35% by mass, particularly preferably 30% by mass, and particularly preferably 20% by mass.
  • content of the said chain extension agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material.
  • the content of the chain extender exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced.
  • the lower limit of the content of the chain extender in the modeling material is preferably 0.5% by mass, and more preferably 3% by mass.
  • the upper limit of the content of the chain extender is preferably 30% by mass, more preferably 20% by mass, further preferably 15% by mass, and particularly preferably 8% by mass.
  • content of the said chain extension agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material.
  • the content of the chain extender exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced or the chain extender may bleed out.
  • the crosslinking agent used for the second liquid composition reduces the elastic modulus of the three-dimensional structure formed by the modeling material.
  • the crosslinking agent for example, a short chain triol, a short chain tetraol, a short chain triamine, or the like can be used.
  • the short chain triol used as a crosslinking agent is a compound having a molecular weight of less than 300 and having three hydroxyl groups in the molecule.
  • Examples of the short chain triol include trimethylolpropane, trimethylolethane, glycerin, hexanetriol and the like. Of these, trimethylolpropane is preferred as the short-chain triol.
  • the short-chain tetraol used as a crosslinking agent is a compound having a molecular weight of less than 300 and having four hydroxyl groups in the molecule.
  • Examples of the short-chain tetraol include pentaerythritol.
  • the short chain triamine used as a crosslinking agent is a compound having a molecular weight of less than 300 and having three amino groups in the molecule.
  • Examples of the short chain triamine include diethylenetriamine, iminobispropylamine, and bishexamethylenetriamine.
  • the lower limit of the content of the cross-linking agent in the second liquid composition is preferably 0.5% by mass, more preferably 1.5% by mass, and 3% by mass. Is more preferable.
  • the upper limit of the content of the crosslinking agent is preferably 15% by mass, and more preferably 5% by mass.
  • the lower limit of the content of the crosslinking agent in the modeling material is preferably 0.1% by mass, more preferably 0.3% by mass, and further 0.8% by mass. Preferably, 1.5 mass% is especially preferable.
  • an upper limit of content of the said crosslinking agent 8 mass% is preferable, 5 mass% is more preferable, and 3 mass% is further more preferable.
  • content of the said crosslinking agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material.
  • the content of the crosslinking agent exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced, or the crosslinking agent may bleed out.
  • the first liquid composition and / or the second liquid composition may further include a plasticizer as a suitable optional component.
  • the plasticizer used for the modeling material decreases the viscosity of the first liquid composition and / or the second liquid composition, and facilitates mixing of the first liquid composition and the second liquid composition.
  • the said plasticizer adjusts the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material.
  • the plasticizer is a component that has a relatively small influence on the curing reaction and can be blended in a relatively large amount, by adjusting the content thereof, the physical properties of the formed three-dimensional structure can be improved. Can adjust the volume of the first liquid composition and / or the second liquid composition without much influence. Thereby, the mixing volume ratio of the first liquid composition and the second liquid composition can be made closer to 1: 1.
  • plasticizer examples include diethyl hexyl phthalate, diisononyl phthalate (DINP), dibutyl phthalate, trischloroethyl phosphate, trischloropropyl phosphate (TCPP), 1,2-cyclohexanedicarboxylic acid diisononyl ester, and the like.
  • DINP diisononyl phthalate
  • TCPP trischloropropyl phosphate
  • 1,2-cyclohexanedicarboxylic acid diisononyl ester 1,2-cyclohexanedicarboxylic acid diisononyl ester is preferable.
  • both the 1st liquid composition and the 2nd liquid composition contain a plasticizer
  • the lower limit of the plasticizer content in the modeling material is preferably 3% by mass, more preferably 5% by mass, and even more preferably 10% by mass.
  • an upper limit of content of the said plasticizer 40 mass% is preferable, 30 mass% is more preferable, 20 mass% is further more preferable, 15 mass% is especially preferable.
  • content of the said plasticizer is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material.
  • the mixing volume ratio of the first liquid composition and the second liquid composition is sufficient. There is also a possibility that it may not be close to 1: 1.
  • the content of the plasticizer exceeds the upper limit, bleeding out may occur in the three-dimensional structure formed by the method for manufacturing the three-dimensional structure.
  • the lower limit of the plasticizer content in the first liquid composition is preferably 0.5% by mass, and more preferably 2% by mass.
  • an upper limit of content of the said plasticizer 50 mass% is preferable and 30 mass% is more preferable.
  • the lower limit of the content of the plasticizer in the second liquid composition is preferably 0.1% by mass, more preferably 0.5% by mass, and 5% by mass. Is more preferable, and 10% by mass is particularly preferable.
  • the upper limit of the content of the plasticizer is preferably 50% by mass, more preferably 40% by mass, further preferably 35% by mass, particularly preferably 30% by mass, further particularly preferably 25% by mass, and 20% by mass. % Is most preferred.
  • the mixing volume ratio of the second liquid composition can be made closer to 1: 1.
  • content of the said plasticizer is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material.
  • the content of the plasticizer exceeds the upper limit, the second liquid necessary for curing the first liquid composition by reducing the content of the long-chain polyol and / or the long-chain polyamine.
  • the volume of the composition increases, and it may be difficult to uniformly mix the first liquid composition and the second liquid composition.
  • the second liquid composition preferably further contains a catalyst.
  • the second liquid composition may further contain optional components such as a colorant, a light stabilizer, a heat stabilizer, an antioxidant, an antifungal agent, and a flame retardant.
  • the said arbitrary component is normally contained in a 2nd liquid composition from a viewpoint of the storage stability of an isocyanate component, it may be contained in the 1st liquid composition.
  • the catalyst used for the second liquid composition accelerates the curing reaction between the polyisocyanate component of the first liquid composition and the polyol component of the second liquid composition.
  • the catalyst include organic tin compounds such as di-n-butyltin dilaurate, dimethyltin dilaurate, dibutyltin oxide, and stannous octylate, organic titanium compounds, organic zirconium compounds, and carboxylate tin salts.
  • amine-based catalysts such as bismuth carboxylate and triethylenediamine.
  • catalysts other than an amine catalyst are preferable, an organic tin compound is more preferable, and dimethyl tin dilaurate is further more preferable.
  • the lower limit of the content of the catalyst in the second liquid composition is preferably 0.005% by mass, and more preferably 0.02% by mass.
  • the upper limit of the content of the catalyst in the second liquid composition is preferably 0.2% by mass, more preferably 0.1% by mass, further preferably 0.05% by mass, and particularly preferably 0.1% by mass. preferable.
  • the modeling material includes the catalyst, the lower limit of the content of the catalyst in the modeling material is preferably 0.003 mass%, more preferably 0.006 mass%, and further 0.01 mass%. preferable.
  • the upper limit of the content of the catalyst in the modeling material is preferably 0.15% by mass, more preferably 0.07% by mass, further preferably 0.05% by mass, and particularly preferably 0.025% by mass. .
  • content of the said catalyst is smaller than the said minimum, the cure rate after mixing of a 1st liquid composition and a 2nd liquid composition falls, and there exists a possibility that the productivity in manufacture of a three-dimensional molded item may fall.
  • the content of the catalyst exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition becomes too fast, and it is difficult to produce a three-dimensional structure using the modeling material. There is a risk.
  • the lower limit of the mass ratio of the first liquid composition and the second liquid composition (first liquid composition: second liquid composition) in the modeling material is preferably 100: 250, more preferably 100: 180, and 100. : 120 is more preferable, 100: 110 is particularly preferable, and 100: 105 is further particularly preferable.
  • the upper limit of the mass ratio is preferably 100: 40, more preferably 100: 70, still more preferably 100: 90, and particularly preferably 100: 95.
  • a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly by making the said mass ratio into the said range.
  • the second liquid composition can be obtained by, for example, a method of stirring and mixing a long-chain polyol, a long-chain polyamine, or a combination thereof, a chain extender, a crosslinking agent, or a combination thereof, and an optional component.
  • the stirring time can be, for example, 30 seconds or more and 3 minutes or less.
  • the prepolymer of the first liquid composition is a urethane prepolymer
  • the soft segment component of the second liquid composition is a long chain polyol
  • the hard segment component of the second liquid composition is a short chain diol as a chain extender and a crosslinker It is good that it is a short chain triol.
  • the prepolymer of the first liquid composition is a urethane prepolymer
  • the soft segment component of the second liquid composition is a long chain polyol
  • the hard segment component of the second liquid composition is a short chain diol as a chain extender
  • a short-chain triol as a cross-linking agent
  • the prepolymer of the first liquid composition is a urethane prepolymer
  • the soft segment component of the second liquid composition is a long chain polyol and a long chain polyamine
  • the hard segment component of the second liquid composition is a short chain diamine as a chain extender.
  • the prepolymer of the first liquid composition is a urethane prepolymer
  • the soft segment component of the second liquid composition is a long chain polyol and a long chain polyamine
  • the hard segment component of the second liquid composition is a chain extender.
  • the modeling material is easy to mix the first liquid composition and the second liquid composition, the modeling material can be suitably used in a method for manufacturing the three-dimensional structure to be described later.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition. In the sequential laminating step, the first liquid composition and the second liquid composition are discharged by a 3D printer. Mix immediately before starting.
  • the support base A ⁇ b> 1 that is a support having a flat upper surface is disposed downward in the vertical direction so as to face the upper surface of the support base A ⁇ b> 1.
  • An ink jet 3D printer mainly including the mixed liquid discharge nozzle A2 is used.
  • the method of mixing immediately before discharging the first liquid composition and the second liquid composition in this step is not particularly limited.
  • the first liquid composition and the second liquid composition are mixed from their dedicated tanks or the like. Examples include a method of joining pipes supplied to the discharge portion of the liquid discharge nozzle A2 inside the mixed liquid discharge nozzle A2. Accordingly, the first liquid composition and the second liquid composition are mixed immediately before being discharged from the mixed liquid discharge nozzle A2 of the 3D printer.
  • first liquid composition: second liquid composition a mass ratio of the discharge amounts of the first liquid composition and the second liquid composition Is preferably 100: 250, more preferably 100: 180, still more preferably 100: 120, particularly preferably 100: 110, and still more preferably 100: 105.
  • the upper limit of the mass ratio is preferably 100: 40, more preferably 100: 70, still more preferably 100: 90, and particularly preferably 100: 95.
  • the mixing volume ratio can be made closer to 1: 1 by setting the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in the above range. Thereby, a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly.
  • the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in this step is preferably kept substantially constant during modeling.
  • the mass ratio of the discharge amount is “substantially constant” when R A / R B is 0 when the maximum value of the mass ratio of the discharge amount is 100: R A and the minimum value is 100: R B. .95 or more.
  • the lower limit of the gelation time at 80 ° C. after mixing the first liquid composition and the second liquid composition is preferably 3 seconds and more preferably 5 seconds.
  • the upper limit of the gelation time is preferably 10 seconds and more preferably 8 seconds.
  • the mixed liquid of the first liquid composition and the second liquid composition mixed is discharged from the mixed liquid discharge nozzle A2 immediately after mixing.
  • the support base A1 is moved while discharging the mixed liquid droplet X1 of the first liquid composition and the second liquid composition from the mixed liquid discharge nozzle A2 to the upper surface of the support base A1.
  • the mixed droplet X1 is landed on the upper surface of the support base A1, and the synthetic resin layer Y1 is formed by curing the landed mixed droplet X1.
  • the three-dimensional structure can be formed by sequentially laminating the synthetic resin layer Y1 having a planar shape that matches the cross-sectional shape of the three-dimensional structure to be formed.
  • the shape of the synthetic resin layer Y1 to be formed is based on the cross-sectional shape data of the three-dimensional structure created based on, for example, CAD (Computer Aided Design) data, and the movement of the support base A1 and the mixed liquid discharge nozzle A2 It is adjusted by controlling the discharge timing of the mixed droplet X1.
  • CAD Computer Aided Design
  • the lower limit of the average volume of the mixed droplet X1 discharged from the mixed liquid discharge nozzle A2 in this step is preferably 1 nL, and more preferably 5 nL.
  • the upper limit of the average volume is preferably 20 ⁇ L, and more preferably 1 ⁇ L.
  • the lower limit of the discharge interval of the mixed droplet X1 in this step is preferably 2 msec, and more preferably 5 msec.
  • the upper limit of the discharge interval is preferably 50 msec, and more preferably 20 msec.
  • the lower limit of the nozzle diameter of the mixed liquid discharge nozzle A2 is preferably 0.01 mm, and more preferably 0.05 mm.
  • the upper limit of the nozzle diameter of the mixed liquid discharge nozzle A2 is preferably 0.5 mm, and more preferably 0.3 mm.
  • the nozzle diameter exceeds the upper limit, the average volume of the mixed droplet X1 to be discharged becomes too large, so that the shape of the synthetic resin layer Y1 becomes rough. As a result, the three-dimensional structure to be formed is formed. There is a possibility that the modeling accuracy is lowered.
  • the lower limit of the discharge pressure of the mixed droplet X1 is preferably 0.02 MPa, more preferably 0.05 MPa.
  • the upper limit of the discharge pressure of the mixed droplet X1 is preferably 0.5 MPa, and more preferably 0.2 MPa.
  • the liquid temperature of the first liquid composition and the second liquid composition discharged in this step can be set to 20 ° C. or more and 60 ° C. or less, for example. Moreover, as temperature of support stand A1, it can be set as 15 to 150 degreeC, for example.
  • the average thickness of one layer of the synthetic resin layer Y1 formed in this step can be, for example, 0.05 mm or more and 2 mm or less.
  • the manufacturing method of the three-dimensional structure uses a first liquid composition and a second liquid composition that react with each other by a pseudo prepolymer method, so that the mixing volume ratio of the first liquid composition and the second liquid composition is 1. Since it can be in a range relatively close to 1, the first liquid composition and the second liquid composition can be uniformly mixed and reliably cured. As a result, the manufacturing method of the three-dimensional structure can easily and reliably manufacture the three-dimensional structure. Therefore, the manufacturing method of the three-dimensional structure is to manufacture a three-dimensional structure used for personal use products such as shoe soles, grips of motorcycles and bicycles, glasses, masks, ornaments, artificial limbs, training equipment, and the like. It can be used suitably.
  • the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the third embodiment to be described later, and after the first liquid composition and the second liquid composition are sufficiently mixed by a line mixer or the like, the mixed liquid is discharged. Since it can discharge with nozzle A2, a three-dimensional structure can be manufactured more reliably. Furthermore, since the manufacturing method of the three-dimensional structure is easier to reduce the average volume of the mixed droplet X1 than the manufacturing method of the third embodiment described later, the modeling accuracy of the formed three-dimensional structure is more improved. Can be improved.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition, and the first liquid composition and the second liquid composition are mixed immediately after discharging in the sequential laminating step. To do.
  • the manufacturing method of the three-dimensional structure is characterized in that in the manufacturing method of the second embodiment, instead of mixing immediately before discharging the first liquid composition and the second liquid composition, mixing is performed immediately after discharging.
  • the support base A11 having a flat upper surface, and the first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b disposed above the support base A11.
  • Inkjet 3D printers are mainly used.
  • the first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b are arranged obliquely downward in the vertical direction so that virtual straight lines passing through the respective central axes merge immediately above the support base A11.
  • the first liquid composition is discharged by the first liquid discharge nozzle A12a
  • the second liquid composition is discharged by the second liquid discharge nozzle A12b.
  • the first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b are supported while discharging the first liquid composition droplet X11a and the second liquid composition droplet X11b onto the upper surface of the support base A11.
  • the table A11 is moved.
  • the discharged liquid droplet X11a of the first liquid composition and the liquid droplet X11b of the second liquid composition are combined at the same spot on the upper surface of the support base A11 to form a mixed liquid droplet X11c.
  • the synthetic resin layer Y11 is formed by curing the droplet X11c.
  • the three-dimensional structure can be formed by sequentially laminating the synthetic resin layer Y11 having a planar shape that matches the cross-sectional shape of the three-dimensional structure to be formed. .
  • the average volume of the mixed droplet X11c formed in this step can be the same as the average volume of the mixed droplet X1 discharged from the mixed liquid discharge nozzle A2 in the manufacturing method of the second embodiment, for example.
  • the method for manufacturing the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition that are excellent in reactivity are used.
  • the manufacturing method of the said three-dimensional molded item suppresses a droplet compared with the manufacturing method which collides the droplet of a 1st liquid composition and the 2nd liquid composition in the air in other embodiment mentioned later in the air. it can.
  • the manufacturing method of the three-dimensional structure is a method of manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by a pseudo prepolymer method by mixing.
  • the support base A21 that is a support having a flat upper surface and a mixture that is disposed downward in the vertical direction so as to face the upper surface of the support base A21.
  • An ink jet 3D printer mainly including the liquid discharge nozzle A22 is used.
  • the mixed liquid of the first liquid composition and the second liquid composition is discharged immediately after mixing by the mixed liquid discharge nozzle A22 of the 3D printer, and the synthetic resin layer Y21 is sequentially stacked on the support base A21.
  • the support base A21 is moved while discharging the mixed droplet X21 of the first liquid composition and the second liquid composition from the mixed liquid discharge nozzle A22 onto the upper surface of the support base A21.
  • the mixed liquid droplet X21 is landed on the upper surface of the support base A21, and the synthetic liquid layer Y21 is formed by curing the landed mixed liquid droplet X21.
  • a mixed droplet X21 is discharged on the formed synthetic resin layer Y21 by the same operation, and a plurality of synthetic resin layers are sequentially stacked.
  • the density of the synthetic resin layer Y21 to be formed is changed for each part by changing the discharge pitch in three stages of low pitch, medium pitch or high pitch in the middle. Specifically, at a certain stage during the formation of the synthetic resin layer Y21, the first liquid composition and the second liquid composition are sufficiently discharged by lowering the discharge pitch, and a high density in which no void is formed. The low pitch area Y21a is formed. In another stage, the discharge pitch of the first liquid composition and the second liquid composition is decreased by increasing the discharge pitch as compared with the formation of the low pitch region Y21a, and the medium density with some voids formed. The middle pitch region Y21b is formed.
  • the discharge amount of the first liquid composition and the second liquid composition is further reduced by increasing the discharge pitch as compared with the formation of the middle pitch region Y21b, and a low density in which a large number of voids are formed.
  • High pitch region Y21c is formed.
  • the medium pitch region Y21b and the high pitch region Y21c which are porous regions, are formed in a part of the synthetic resin layer Y21.
  • the synthetic resin layer Y21 having three types of regions having different densities and void ratios, that is, the low pitch region Y21a, the middle pitch region Y21b, and the high pitch region Y21c can be formed.
  • the “ejection pitch” means an average interval between the centers of the plurality of mixed droplets X21 landed on the support base A21 in a plan view.
  • the three-dimensional structure includes a synthetic resin portion Z and pores H dispersed in the synthetic resin portion Z, and is derived from a nonporous region Za derived from the low pitch region Y21a and a medium pitch region Y21b. It is comprised by three types of area
  • Each region of the three-dimensional structure has different physical properties such as tensile properties and wear resistance due to differences in density and porosity.
  • the tensile properties and the wear resistance decrease in a region having a lower density, that is, a region having a higher porosity. Therefore, the three-dimensional structure has the same constituent material but different physical properties for each part. Specifically, the tensile properties and wear resistance of the three-dimensional structure are maximized in the nonporous region Za, minimized in the high porosity region Zc, and non-porous region Za and high in the low porosity region Zb. It is in the middle of the porosity region Zc.
  • the one step shown in FIG. 3 is merely an example of a method of changing the discharge amount of the first liquid composition and the second liquid composition in the manufacturing method of the three-dimensional structure.
  • the discharge amount of the first liquid composition and the second liquid composition was changed by changing the discharge pitch, but the size of the liquid droplets to be discharged was changed.
  • the discharge amount of the first liquid composition and the second liquid composition may be changed.
  • three types of regions having different densities and porosity are formed by changing the discharge amounts of the first liquid composition and the second liquid composition in three stages. May be changed in two steps, or may be changed in four or more steps.
  • the functionally gradient material whose physical properties continuously change can be formed by continuously changing the discharge amount.
  • the density and the porosity are changed in the planar direction of the synthetic resin layer Y21 (left and right direction in FIG. 3), but the thickness direction of the synthetic resin layer Y21 (up and down in FIG. 3). Direction) and the density and porosity may be varied.
  • the porous region is formed only on a part of the synthetic resin layer Y21. However, the porous region may be formed on the entire synthetic resin layer Y21.
  • the shape of the hole H of the three-dimensional structure is substantially circular in cross section, but the shape of the hole is not particularly limited.
  • a spherical shape, an elliptical shape, a rectangular parallelepiped shape, a cylindrical shape, a polygonal column, and the like can do.
  • the porosity may be changed by changing the diameter of the holes H to be introduced, and the number of holes H per volume of the three-dimensional structure is changed. The porosity may be changed.
  • the lower limit of the discharge pitch in this step is preferably 0.1 mm, and more preferably 0.2 mm.
  • the upper limit of the discharge pitch is preferably 1.2 mm, more preferably 0.9 mm.
  • the lower limit of the discharge pitch change magnification in this step is preferably 2 times, more preferably 2.5 times.
  • the upper limit of the discharge pitch change magnification is preferably 5 times, and more preferably 4 times.
  • change rate of discharge pitch means a value obtained by dividing the maximum discharge pitch [mm] during modeling by the minimum discharge pitch [mm].
  • the porosity of the porous region may be changed in the range of more than 0 volume% and 45 volume% or less.
  • the porosity exceeds the upper limit, the strength of the three-dimensional structure may be partially insufficient.
  • the apparent density of the three-dimensional structure to be formed may be changed in the range of 0.5 g / cm 3 to 1.2 g / cm 3 .
  • porosity is smaller than the lower limit, the strength of the three-dimensional structure may be partially insufficient.
  • apparent density means that a sample of 100 mg is taken from any 10 locations of a three-dimensional structure, and the mass (100 mg) is divided by the apparent volume [mm 3 ] calculated from the dimensions of this sample. Means a value calculated by
  • the sample with the maximum mass that can be collected is used.
  • the lower limit of the average porosity of the three-dimensional structure to be formed is preferably 1% by volume, and more preferably 5% by volume.
  • the upper limit of the average porosity is preferably 30% by volume, more preferably 20% by volume.
  • the average diameter of the holes H of the three-dimensional structure formed in this step is not particularly limited, but the lower limit is preferably 10 ⁇ m and more preferably 50 ⁇ m.
  • the upper limit of the average diameter of the holes H is preferably 1 mm, and more preferably 200 ⁇ m.
  • the lower limit of the average diameter of the holes H is smaller than the lower limit, the change width of each part of the physical properties of the three-dimensional structure may be small.
  • the lower limit of the average diameter of the holes H exceeds the upper limit, the strength of the three-dimensional structure may be insufficient.
  • the “average diameter of the holes” means that the cross-section of the three-dimensional structure is observed with a microscope or the like, and the arithmetic average value of the diameters in a perfect circle having the same area as that of any 10 holes. Say.
  • the manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site
  • the physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color.
  • the elongation modulus (M50) when stretched 50% is 3 MPa or more and 40 MPa or less
  • the tensile strength (TB) is 5 MPa or more and 60 MPa or less
  • M50 elongation modulus
  • TB tensile strength
  • EB elongation at break
  • the elongation modulus, tensile strength, and elongation at break when 50% are stretched are values measured in accordance with JIS-K7312: 1996 “Physical Test Method for Thermosetting Polyurethane Elastomer Moldings”, respectively.
  • the JIS-A hardness is a value measured in accordance with the former JIS-K6301: 1995 “Vulcanized Rubber Physical Test Method”.
  • the DIN wear amount is a value measured in accordance with JIS-K6264-2: 2005 “vulcanized rubber and thermoplastic rubber—determination of wear resistance—part 2: test method”.
  • the manufacturing method of the three-dimensional structure can be suitably used for manufacturing personal use products such as shoe soles, grips of motorcycles and motorcycles, glasses, masks, ornaments, artificial limbs, training equipment, and the like.
  • personal use products such as shoe soles, grips of motorcycles and motorcycles, glasses, masks, ornaments, artificial limbs, training equipment, and the like.
  • the manufacturing method of the said three-dimensional structure can be used especially suitably for manufacture of a shoe sole.
  • the manufacturing method of the said three-dimensional structure can manufacture easily and reliably the three-dimensional structure which has a polyurethane, a polyurethane urea, or a polyurea as a main component, and a physical property differs for every site
  • the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the fifth embodiment to be described later, and after the first liquid composition and the second liquid composition are sufficiently mixed by a line mixer or the like, the mixed liquid is discharged. Since it can discharge with nozzle A22, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X21, it is possible to further improve the modeling accuracy of the formed three-dimensional structure.
  • the manufacturing method of the said three-dimensional structure is compared with the manufacturing method from 6th Embodiment to 9th Embodiment mentioned later, and mix volume ratio of a 1st liquid composition and a 2nd liquid composition during modeling. Even if it is not changed, the physical properties of the three-dimensional structure to be formed can be changed for each part, so that it is possible to suppress poor curing due to a change in the mixing volume ratio.
  • the manufacturing method of the three-dimensional structure is a method of manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by a pseudo prepolymer method by mixing.
  • the manufacturing method of the three-dimensional structure is characterized in that in the manufacturing method of the fourth embodiment, instead of mixing the first liquid composition and the second liquid composition immediately before discharge, they are mixed immediately after discharge. To do.
  • the method for manufacturing the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition having excellent reactivity are used.
  • the manufacturing method of the three-dimensional structure is a manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, and reacts by mixing with a pseudo prepolymer method, which will be described later.
  • a step of sequentially laminating a synthetic resin layer on the support by discharging the composition and the second liquid composition (sequential laminating step), and immediately before discharging the first liquid composition and the second liquid composition in the sequential laminating step To mix.
  • part is manufactured by changing the mixing ratio of a 1st liquid composition and a 2nd liquid composition in a lamination
  • the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the fourth embodiment, instead of sequentially changing the discharge amounts of the first liquid composition and the second liquid composition in the stacking step.
  • the difference is that the mixing ratio of the composition and the second liquid composition is changed.
  • the first liquid composition used in the manufacturing method of the three-dimensional structure includes at least one prepolymer of urethane prepolymer, urethane urea prepolymer, and urea prepolymer, and polyisocyanate.
  • the second liquid composition contains at least one soft segment component of a long-chain polyol and a long-chain polyamine, and at least one hard segment component of a chain extender and a crosslinking agent.
  • 3D printer In the manufacturing method of the three-dimensional structure, a 3D printer in which the modeling material supply system Z1 shown in FIG. 5 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment is used. Can do.
  • the modeling material supply system Z1 in FIG. 5 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer.
  • This modeling material supply system Z1 mainly includes a second liquid tank B and a first liquid tank C.
  • a second liquid supply line b is connected to the second liquid tank B.
  • a first liquid supply line c is connected to the first liquid tank C.
  • the end of the second liquid supply line b opposite to the second liquid tank B and the end of the first liquid line c opposite to the first liquid tank C are one end of the mixed liquid supply line d. It is connected to the.
  • the other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
  • the second liquid composition stored in the second liquid tank B and the first liquid composition stored in the first liquid tank C are respectively connected via the second liquid supply line b or the first liquid supply line c. It is supplied to the mixed solution supply line d.
  • the first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG.
  • the mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
  • the modeling material supply system Z1 is configured to increase or decrease the supply amounts of the first liquid composition supplied from the first liquid tank C and the second liquid composition supplied from the second liquid tank B, respectively.
  • the mixing ratio of the first liquid composition and the second liquid composition in the mixed liquid supplied to A2 can be changed.
  • the first liquid composition and the second liquid composition are mixed by the above-described modeling material supply system Z1 and discharged immediately thereafter to form a synthetic resin layer on the support.
  • the mixing ratio of the first liquid composition and the second liquid composition is changed by increasing or decreasing the supply amount of the first liquid composition and the second liquid composition. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part.
  • the number of times of changing the mixing ratio of the first liquid composition and the second liquid composition in this step may be only once or may be multiple times.
  • the mixing ratio of the first liquid composition and the second liquid composition may be changed stepwise, or may be gradually changed, but is preferably changed gradually.
  • the gradient functional material can be formed by gradually changing the mixing ratio of the first liquid composition and the second liquid composition in this step.
  • the lower limit of the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling is preferably 3%, and more preferably 7%.
  • the upper limit of the change ratio of the mixing ratio is preferably 20%, and more preferably 12%.
  • the mixing ratio change rate is smaller than the lower limit, the width of change for each part of the physical properties of the formed three-dimensional structure may be reduced.
  • the mixing ratio change rate exceeds the upper limit, one of the isocyanate component and the polyol component and / or the polyamine component is excessive in the mixed liquid of the first liquid composition and the second liquid composition, and the curing reaction May become insufficient.
  • the “mixing ratio change rate” refers to the minimum value of the mixing mass ratio (first liquid composition / second liquid composition) of the first liquid composition and the second liquid composition during modeling “R min ”.
  • a value represented by the following formula when the maximum value is “R max ”.
  • Rate of change in mixing ratio (%) 100 ⁇ (R max ⁇ R min ) / R min
  • the manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site
  • the physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color.
  • the elongation modulus (M50) at 50% elongation is 1.5 MPa to 12 MPa
  • the tensile strength (TB) is 5 MPa to 60 MPa
  • elongation at break ( EB) may be changed within a range of 200% to 400%, a JIS-A hardness of 50 ° to 100 °, and a DIN wear amount of 120 mm 3 or less.
  • composition of the first liquid composition and the second liquid composition, other conditions, applications, and the like in the method for manufacturing the three-dimensional structure can be the same as those in the manufacturing method of the second embodiment.
  • the manufacturing method of the said three-dimensional structure can change the physical property of the formed three-dimensional structure for every site
  • the manufacturing method of the said three-dimensional structure uses the 1st liquid composition and 2nd liquid composition which react with a pseudo prepolymer method as a modeling material, even if it changes a mixing ratio during modeling, its mixing volume It is easy to maintain the ratio in a range relatively close to 1: 1. Therefore, the manufacturing method of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part.
  • the manufacturing method of the three-dimensional structure is simpler than the structure of the modeling material supply system of the 3D printer to be used, as compared with the seventh embodiment, the eighth embodiment, the tenth embodiment, and the eleventh embodiment described later. Therefore, it is easy to reduce the equipment cost. Furthermore, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the ninth embodiment to be described later, and the first liquid composition and the second liquid composition are reliably mixed and then discharged by the mixed liquid discharge nozzle A2. Therefore, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X1, the modeling accuracy of the formed three-dimensional structure can be further improved.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately before discharging the first liquid composition and the second liquid composition in the sequential lamination step To do.
  • at least one of the composition of the first liquid composition and the composition of the second liquid composition is changed in a sequential lamination step.
  • the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the sixth embodiment, instead of sequentially changing the mixing ratio of the first liquid composition and the second liquid composition in the stacking step, the first liquid composition.
  • part differs.
  • the composition may be changed and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
  • the first liquid composition and / or the first liquid composition is preliminarily mixed with a 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment by premixing plural kinds of raw materials.
  • a 3D printer to which a modeling material supply system for preparing a two-component composition is applied can be used. An example of such a modeling material supply system is shown in FIG.
  • the modeling material supply system Z2 in FIG. 6 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer.
  • This modeling material supply system Z2 mainly includes two second liquid material tanks E and a first liquid tank C.
  • a second liquid material supply line e1 is connected to each of the two second liquid material tanks E.
  • the ends of the two second liquid material supply lines e1 opposite to the second liquid material tank E are connected to the line mixer F, respectively.
  • a second liquid supply line e2 is connected to the line mixer F.
  • a first liquid supply line c is connected to the first liquid tank C.
  • An end of the second liquid supply line e2 opposite to the line mixer F and an end of the first liquid line c opposite to the first liquid tank C are connected to one end of the mixed liquid supply line d.
  • the other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
  • the two second liquid raw material tanks E two kinds of raw materials constituting the second liquid composition are respectively stored.
  • the two kinds of raw materials are respectively supplied to the line mixer F via the second liquid raw material supply line e1.
  • the two types of raw materials supplied to the line mixer F are mixed to prepare a second liquid composition, and then supplied to the mixed liquid supply line d via the second liquid supply line e2.
  • the first liquid composition stored in the first liquid tank C is supplied to the mixed liquid supply line d via the first liquid supply line c.
  • the first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG.
  • the mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
  • the modeling material supply system Z2 changes the composition of the second liquid composition supplied to the mixed liquid supply line d by changing the supply amounts of the two kinds of raw materials supplied from the two second liquid raw material tanks E. Can be made.
  • the raw material constituting the second liquid composition is not particularly limited as long as it can be prepared into the second liquid composition by mixing, and may include only one component among the components included in the second liquid composition. In addition, it may contain two or more components.
  • the raw material may include a soft segment component and a hard segment component, and may be a composition that can be used alone or as the second liquid composition.
  • the line mixer F is preferably a microstatic mixer which is a kind of static mixer without a drive unit from the viewpoint of efficiently mixing the raw materials constituting the second liquid composition.
  • the modeling material supply system Z ⁇ b> 2 that stores the two kinds of raw materials constituting the second liquid composition in separate tanks and prepares the second liquid composition by mixing the two kinds of raw materials has been described.
  • other modeling material supply systems can be applied to the 3D printer.
  • three or more kinds of raw materials constituting the second liquid composition may be stored in separate tanks, and the second liquid composition may be prepared by mixing these three or more kinds of raw materials.
  • two or more kinds of raw materials constituting the first liquid composition are stored in separate tanks, and the first liquid composition is mixed by mixing the two or more kinds of raw materials. May be adjusted.
  • one prepared by mixing two or more kinds of raw materials stored in separate tanks may be supplied. And may be supplied in a constant composition.
  • the line mixer F may be omitted.
  • the first liquid composition and / or the second liquid composition prepared by premixing two or more kinds of raw materials, and the first liquid composition or the second liquid composition separately prepared as necessary.
  • a synthetic resin layer is formed on the support by further mixing the product and discharging immediately after that.
  • the composition of the first liquid composition and / or the second liquid composition is changed by changing the blending amount of the two or more kinds of raw materials to be premixed. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part.
  • the number of times of changing the composition of the first liquid composition and / or the second liquid composition in this step may be only once or may be multiple.
  • the composition of the first liquid composition and / or the second liquid composition may be changed stepwise or may be gradually changed. From the above, it is preferable to change gradually.
  • the composition of the first liquid composition and / or the second liquid composition may be changed, and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
  • Examples of the method of changing the composition of the first liquid composition and / or the second liquid composition in this step include (A) a method of changing the composition of the prepolymer of the first liquid composition, and (B) the second liquid.
  • a method of changing the composition of the soft segment component of the composition (C) a method of changing the composition of the hard segment component of the second liquid composition, (D) any of the first liquid composition and / or the second liquid composition Examples thereof include a method for changing the composition of the components.
  • the methods (A) to (D) can be performed alone or in combination.
  • Examples of the method for changing the composition of the prepolymer of the first liquid composition include a method of preparing two or more kinds of prepolymers having different number average molecular weights and changing the blending ratio of the two or more kinds of prepolymers. It is done.
  • (B) Pattern for changing the composition of the soft segment component of the second liquid composition As a method for changing the composition of the soft segment component of the second liquid composition, for example, two or more types of soft segment components having different number average molecular weights are prepared, and the mixing ratio of the two or more types of soft segment components is changed. Or a method of increasing or decreasing the content of one kind of soft segment component.
  • the lower limit of the change width of the content of the specific one kind of soft segment component in the second liquid composition is 5% by mass.
  • the upper limit of the change width is preferably 50% by mass, and more preferably 35% by mass.
  • the “change width of the content” means that the content [mass%] when the content of the specific component in the first liquid composition or the second liquid composition is maximized in the sequential lamination step, from the above A value obtained by subtracting the content [% by mass] when the content of a specific component is minimized.
  • (C) Method of changing the composition of the hard segment component of the second liquid composition As a method for changing the composition of the hard segment component of the second liquid composition, for example, a chain extender and a crosslinking agent are prepared as the hard segment component, and the blending ratio of the chain extender and the crosslinking agent is changed. The method of increasing / decreasing content of a hard segment component of a seed
  • the lower limit of the change width of the chain extender content in the second liquid composition is preferably 2% by mass, and more preferably 8% by mass.
  • the upper limit of the change width of the chain extender content is preferably 25% by mass, and more preferably 15% by mass.
  • the upper limit of the change width of the content of the crosslinking agent is preferably 15% by mass and more preferably 7% by mass.
  • (D) Method of changing the composition of optional components of the first liquid composition and / or the second liquid composition As a method of changing the composition of the optional components of the first liquid composition and / or the second liquid composition, for example, a method of including a plasticizer in the second liquid composition and changing the content of the plasticizer, Examples thereof include a method of adding a pigment to the second liquid composition and changing the content of the pigment.
  • the lower limit of the change width of the plasticizer content in the second liquid composition is preferably 3% by mass, and 10% by mass. % Is more preferable.
  • the upper limit of the change width of the plasticizer content is preferably 35% by mass, and more preferably 20% by mass.
  • the pre-treatment of the first liquid composition is performed.
  • a method of changing at least one of the composition of the polymer and the composition of the soft segment component of the first liquid composition is preferable.
  • a method in which a plasticizer is included in the second liquid composition and the content of the plasticizer is changed is also preferable.
  • the mixing ratio of the first liquid composition and the second liquid composition usually changes by changing the composition of the first liquid composition and the second liquid composition.
  • the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling may be reduced.
  • the mixing ratio change rate is most preferably 0%.
  • the upper limit of the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling is preferably 100%, and more preferably 30%.
  • composition of the first liquid composition and the second liquid composition, other conditions, usage, and the like in the method for manufacturing a three-dimensional structure can be the same as those in the manufacturing method of the sixth embodiment.
  • the manufacturing method of the three-dimensional structure has abundant variations of physical property changes for each part of the formed three-dimensional structure. Moreover, since the manufacturing method of the said three-dimensional molded item is easy to maintain the molar ratio of an isocyanate component, a polyol component, and / or a polyamine component in modeling within modeling compared with the manufacturing method of 6th Embodiment. It is easy to suppress local curing failure of the formed three-dimensional structure.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately before discharging the first liquid composition and the second liquid composition in the sequential lamination step To do.
  • part is manufactured by changing the mixing ratio of a 1st liquid composition and a 2nd liquid composition in a lamination
  • the manufacturing method of the three-dimensional structure is a manufacturing method in which the modeling material supply system used for the 3D printer is different in the manufacturing method of the seventh embodiment.
  • 3D printer In the manufacturing method of the three-dimensional structure, a 3D printer in which the modeling material supply system Z3 shown in FIG. 7 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment is used. Can do.
  • the modeling material supply system Z3 shown in FIG. 7 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer.
  • This modeling material supply system Z3 mainly includes three second liquid tanks G and a first liquid tank C.
  • a second liquid supply subline g1 is connected to each of the three second liquid tanks G.
  • the three second liquid supply sublines g1 are joined together to form one second liquid supply line g2.
  • a first liquid supply line c is connected to the first liquid tank C.
  • the end of the second liquid supply line g2 opposite to the second liquid supply subline g1 and the end of the first liquid line c opposite to the first liquid tank C are one end of the mixed liquid supply line d. Connected to the department.
  • the other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
  • the mixed liquid supply line d In the three second liquid tanks G, three kinds of second liquid compositions having different compositions are respectively stored and supplied to the mixed liquid supply line d via the second liquid supply subline g1 and the second liquid supply line g2.
  • the first liquid composition stored in the first liquid tank C is supplied to the mixed liquid supply line d via the first liquid supply line c.
  • the first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG.
  • the mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
  • the modeling material supply system Z3 supplies the second liquid composition from one specific second liquid tank G among the three second liquid tanks G to the mixed liquid supply line d. Further, the modeling material supply system Z3 arbitrarily switches the second liquid tank G supplying the second liquid composition during modeling, and thereby the composition of the second liquid composition supplied to the mixed liquid supply line d. Can be changed in three ways.
  • FIG. 7 demonstrated the modeling material supply system Z3 which stores three types of 2nd liquid compositions in a separate tank, and changes the composition of the 2nd liquid composition to supply in three ways
  • the said three-dimensional It is also possible to employ other configurations in the manufacturing method of the shaped article.
  • two or four or more second liquid compositions may be stored in separate tanks, and the composition of the supplied second liquid composition may be changed to two or four or more.
  • two or more kinds of first liquid compositions may be stored in separate tanks, and the composition of the first liquid composition may be changed in two or more by switching the tank that supplies the first liquid composition.
  • two or more kinds of second liquid compositions are stored in separate tanks, and the composition is changed in two or more by switching the tank that supplies the second liquid composition.
  • the composition may be constant by storing in one tank.
  • the first liquid composition and the second liquid composition are mixed and discharged immediately thereafter to form a synthetic resin layer on the support.
  • the composition of the 1st liquid composition and / or 2nd liquid composition which are provided for mixing is changed by switching the tank which supplies a 1st liquid composition and a 2nd liquid composition.
  • the number of times of changing the composition of the first liquid composition and / or the two-liquid composition in this step may be only once or may be multiple times.
  • the composition of the first liquid composition and / or the second liquid composition may be changed, and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
  • examples of the method for changing the composition of the first liquid composition and the second liquid composition include the same methods as those described in the seventh embodiment.
  • composition of the first liquid composition and the second liquid composition, the other conditions, the use, and the like in the manufacturing method of the three-dimensional structure can be the same as those of the manufacturing method of the seventh embodiment.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition, and the first liquid composition and the second liquid composition are mixed immediately after discharging in the sequential laminating step. .
  • the manufacturing method of the said three-dimensional structure is a sequential lamination process, among the composition of a 1st liquid composition, the composition of a 2nd liquid composition, and the mixing ratio of a 1st liquid composition and a 2nd liquid composition. Change at least one.
  • the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the sixth to eighth embodiments, instead of mixing the first liquid composition and the second liquid composition immediately before discharging, immediately after discharging. It differs in that it is mixed.
  • a modeling material used in the manufacturing method of the sixth to eighth embodiments for the 3D printer used in one step of FIG. 2 described in the manufacturing method of the third embodiment for example, a modeling material used in the manufacturing method of the sixth to eighth embodiments for the 3D printer used in one step of FIG. 2 described in the manufacturing method of the third embodiment.
  • a 3D printer to which a modeling material supply system in which the mixed liquid supply line is omitted from the supply system can be used. That is, for example, end portions of the first liquid supply line and the second liquid supply line of the modeling material supply system used in the manufacturing method of the sixth embodiment to the eighth embodiment are the first liquid discharge nozzle A12a and the second liquid in FIG.
  • a 3D printer connected to each of the discharge nozzles A12b can be used.
  • composition of the first liquid composition and the second liquid composition, other conditions, applications, etc. in this step can be the same as in the manufacturing method of the sixth embodiment to the eighth embodiment.
  • the manufacturing method of the three-dimensional structure is a manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, and reacts by mixing with a pseudo prepolymer method, which will be described later.
  • a step of sequentially laminating a synthetic resin layer on the support by discharging the composition and the second liquid composition (sequential laminating step), and immediately before discharging the first liquid composition and the second liquid composition in the sequential laminating step To mix.
  • the first liquid composition used in the method for producing a three-dimensional structure includes at least one prepolymer among a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, a polyisocyanate, and a plasticizer.
  • the second liquid composition contains at least one soft segment component of a long-chain polyol and a long-chain polyamine, at least one hard segment component of a chain extender and a crosslinking agent, and a plasticizer.
  • the manufacturing method of the three-dimensional structure requires a plasticizer in the first liquid composition and the second liquid composition as compared with the manufacturing methods of the seventh embodiment and the eighth embodiment, and sequentially stacks the steps.
  • the difference is that the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is 100: 110 or more and 100: 90 or less.
  • the 3D model manufacturing method uses a 3D printer in which the modeling material supply system Z4 shown in FIG. 8 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment. Can do.
  • the modeling material supply system Z4 shown in FIG. 8 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer.
  • This modeling material supply system Z4 mainly includes a soft segment component tank I, a hard segment component tank J, a plasticizer tank K, and a first liquid raw material tank L.
  • a soft segment component supply line i is connected to the soft segment component tank I.
  • a hard segment component supply line j is connected to the hard segment component tank J.
  • Two plasticizer supply lines k are connected to the plasticizer tank K.
  • a first liquid material supply line 1 is connected to the first liquid material tank L.
  • the end of the soft segment component supply line i opposite to the soft segment component tank I, the end of the hard segment component supply line j opposite to the hard segment component tank J, and the one plasticizer supply line k The end opposite to the plasticizer tank K is connected to the second liquid mixing line mixer M.
  • a second liquid supply line m is connected to the second liquid mixing line mixer M.
  • the end of the other plasticizer supply line k opposite to the plasticizer tank K and the end of the first liquid raw material supply line l opposite to the first liquid raw material tank L are the first liquid mixing line. It is connected to the mixer N.
  • a first liquid supply line n is connected to the first liquid mixing line mixer N.
  • An end of the second liquid supply line m opposite to the second liquid mixing line mixer M and an end of the first liquid supply line n opposite to the first liquid mixing line mixer N are mixed liquid supply. It is connected to one end of the line d. The other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
  • the mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
  • a soft segment component or a hard segment component constituting a part of the second liquid composition is stored in the soft segment component tank I and the hard segment component tank J.
  • the plasticizer tank K stores a plasticizer constituting a part of the first liquid composition and the second liquid composition.
  • the first liquid raw material tank L stores a mixed liquid of a prepolymer and a polyisocyanate constituting a part of the first liquid composition.
  • the soft segment component, the hard segment component and the plasticizer constituting the second liquid composition are the soft segment component supply line i and the hard segment component supply line from the soft segment component tank I, the hard segment component tank J or the plasticizer tank K, respectively.
  • j or a plasticizer supply line k to be supplied to the second liquid mixing line mixer M.
  • Each component supplied to the second liquid mixing line mixer M is prepared by mixing into a second liquid composition, and then supplied to the mixed liquid supply line d via the second liquid supply line m.
  • the plasticizer constituting the first liquid composition and the mixed liquid are supplied from the plasticizer tank K or the first liquid raw material tank L through the plasticizer supply line k or the first liquid raw material supply line l, respectively. Supplied to the mixer N.
  • Each component supplied to the first liquid mixing line mixer N is prepared into a first liquid composition by mixing, and then supplied to the mixed liquid supply line d via the first liquid supply line n.
  • the first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG.
  • the modeling material supply system Z4 increases or decreases the supply amount of each component supplied from the soft segment component tank I, the hard segment component tank J, the plasticizer tank K, and the first liquid raw material tank L, thereby allowing the mixed liquid discharge nozzle A2 to The composition of the first liquid composition and / or the second liquid composition in the supplied mixed liquid can be changed.
  • the modeling material supply system used in the method for manufacturing the three-dimensional structure can adopt other configurations besides the one described in FIG.
  • the raw materials constituting the second liquid composition may be stored in two or four or more tanks, respectively.
  • the second liquid mixing line mixer M and the first liquid mixing line mixer N may be omitted.
  • the plasticizer used for the preparation of the first liquid composition and the plasticizer used for the preparation of the second liquid composition may be stored in separate tanks.
  • the raw material constituting the first liquid composition and the raw material constituting the second liquid composition are not particularly limited as long as they can be prepared into the first liquid composition and the second liquid composition by mixing. Only the seed component may be included, or two or more components may be included. In addition, the raw material may be a composition that can be used alone as the first liquid composition or the second liquid composition.
  • a micro static mixer which is a kind of static mixer without a drive unit is preferable.
  • the first liquid composition and / or the second liquid composition prepared by premixing two or more kinds of raw materials, and the first liquid composition or the second liquid composition separately prepared as necessary.
  • a synthetic resin layer is formed on the support by further mixing the product and discharging immediately after that.
  • the composition of the first liquid composition and / or the second liquid composition is changed by changing the blending amount of the two or more kinds of raw materials. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part.
  • the number of times of changing the composition of the first liquid composition and / or the second liquid composition in this step may be only once or may be multiple.
  • the composition of the first liquid composition and / or the second liquid composition may be changed stepwise or may be gradually changed. From the above, it is preferable to change gradually.
  • Examples of the method for changing the composition of the first liquid composition and / or the second liquid composition in this step include (a) a method of changing the type and / or content of the prepolymer of the first liquid composition, ( b) a method of changing the type and / or content of the plasticizer of the first liquid composition, (c) a method of changing the type and / or content of the soft segment component of the second liquid composition, (d) the first.
  • Examples thereof include a method of changing the type and / or content of the hard segment component of the two-component composition, and (e) a method of changing the type and / or content of the plasticizer of the second solution composition.
  • the methods (a) to (e) can be performed alone or in combination.
  • the composition of the first liquid composition and the second liquid composition is changed by a method such as (a), (c), (d) in this step, the first liquid composition and / or the second liquid composition It is preferable to suppress the change in the mixing volume ratio of the first liquid composition and the second liquid composition by increasing or decreasing the content of the plasticizer. That is, in this step, the first liquid composition and the second liquid composition are obtained by combining the methods (a), (c), (d) and the like and the methods (b) and / or (e). It is preferable to change the composition of the product.
  • the plasticizer content of the first liquid composition is reduced, and / or Or it is good to suppress the change of the mixing volume ratio of a 1st liquid composition and a 2nd liquid composition by the increase in content of the plasticizer of a 2nd liquid composition.
  • the plasticizer content of the first liquid composition is increased and / or the second liquid composition
  • the change in the mixing volume ratio of the first liquid composition and the second liquid composition may be suppressed by reducing the plasticizer content of the product.
  • (A) Method of changing the type and / or content of the prepolymer of the first liquid composition As a method of changing the kind and / or content of the prepolymer of the first liquid composition, for example, two or more kinds of prepolymers having different number average molecular weights are prepared, and the blending ratio of the two or more kinds of prepolymers is changed. And a method of replacing a specific prepolymer contained in the first liquid composition with another type of prepolymer.
  • (B) Method of changing the type and / or content of the plasticizer of the first liquid composition for example, a method of increasing or decreasing the content of one kind of plasticizer, or a specific plasticizer contained in the first liquid composition A method of replacing with another type of plasticizer is included.
  • a method of changing the kind and / or content of the plasticizer of the first liquid composition for example, a method of increasing or decreasing the content of one kind of plasticizer, or a specific plasticizer contained in the first liquid composition A method of replacing with another type of plasticizer is included.
  • the upper limit of the change width is preferably 35% by mass, and more preferably 25% by mass.
  • the mixing volume ratio of the first liquid composition and the second liquid composition is close to 1: 1 when combined with the methods (a), (c), (d), etc. Easy to maintain in range.
  • content of the plasticizer in a 1st liquid composition may be temporarily 0 mass% by reducing the content of the plasticizer of a 1st liquid composition.
  • (C) Method of changing the type and / or content of the soft segment component of the second liquid composition As a method for changing the type and / or content of the soft segment component of the second liquid composition, for example, two or more types of soft segment components having different number average molecular weights are prepared, and the combination of the two or more types of soft segment components is prepared. Examples include a method of changing the ratio, a method of increasing or decreasing the content of one kind of soft segment component, a method of replacing a specific soft segment component contained in the second liquid composition with another type of soft segment component, and the like. .
  • the lower limit of the change width of the content is preferably 5% by mass, more preferably 20% by mass.
  • the upper limit of the change width is preferably 50% by mass, and more preferably 40% by mass.
  • (D) Method of changing the type and / or content of the hard segment component of the second liquid composition As a method of changing the type and / or content of the hard segment component of the second liquid composition, for example, a method of increasing or decreasing the content of one chain extender or the content of one type of crosslinking agent is increased or decreased. Examples thereof include a method and a method of replacing a specific hard segment component contained in the second liquid composition with another type of hard segment component.
  • the lower limit of the change width of the content is preferably 1% by mass, more preferably 7% by mass.
  • the upper limit of the change width of the content of the chain extender is preferably 25% by mass, and more preferably 18% by mass.
  • the lower limit of the change width of the content is preferably 0.5% by mass, and more preferably 2% by mass.
  • the upper limit of the change width of the content of the crosslinking agent is preferably 15% by mass and more preferably 7% by mass.
  • Examples of the method for changing the type and / or content of the plasticizer in the second liquid composition include, for example, a method for increasing or decreasing the content of one type of plasticizer, and a specific plasticizer contained in the second liquid composition. And a method of replacing with a plasticizer of the above type.
  • the lower limit of the change width of the content is preferably 5% by mass, and more preferably 10% by mass.
  • the upper limit of the change width is preferably 35% by mass, and more preferably 25% by mass.
  • the mixing volume ratio of the first liquid composition and the second liquid composition is close to 1: 1 when combined with the methods (a), (c), (d), etc. Easy to maintain in range.
  • content of the plasticizer in a 2nd liquid composition may be temporarily 0 mass% by reducing the content of the plasticizer contained in a 2nd liquid composition.
  • the total content of plasticizers contained in the first liquid composition and the second liquid composition is constant. That is, when the content of the plasticizer contained in one of the first liquid composition and the second liquid composition is increased by a specific amount, the content of the plasticizer contained in the other composition is It is good to reduce a specific amount.
  • the total content of the plasticizers contained in the first liquid composition and the second liquid composition is constant, it is possible to suppress the occurrence of local bleed out in the formed three-dimensional structure. it can.
  • the content of one of the hard segment component and the soft segment component contained in the second liquid composition may be increased and the content of the other component may be decreased.
  • the content of the plasticizer contained in one of the first liquid composition and the second liquid composition is increased by a specific amount.
  • the lower limit of the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition to be mixed in this step is 100: 110, and 100: 105 is preferable.
  • the upper limit of the mass ratio is 100: 90, preferably 100: 95.
  • the variation rate of the mass ratio of the discharge amount is preferably within 5%, and more preferably within 1%.
  • the “rate of change in the mass ratio of the discharge amount” is the maximum of the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition (first liquid composition / second liquid composition) in this step.
  • the value is represented by the following formula when the value is R max and the minimum value is R min .
  • Variation rate of mass ratio of discharge amount 100 ⁇ (R max ⁇ R min ) / R min
  • the manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site
  • the physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color.
  • the elongation modulus (M50) when stretched 50% is 3 MPa or more and 25 MPa or less
  • the tensile strength (TB) is 10 MPa or more and 60 MPa or less
  • the manufacturing method of the said three-dimensional structure is compared with the manufacturing method of 11th Embodiment mentioned later, and after mixing a 1st liquid composition and a 2nd liquid composition fully with a line mixer etc., liquid mixture discharge Since it can discharge with nozzle A2, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X1, the modeling accuracy of the formed three-dimensional structure can be further improved.
  • the method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately after discharging the first liquid composition and the second liquid composition in the sequential lamination step To do.
  • this embodiment is different from the manufacturing method of the tenth embodiment in that the first liquid composition and the second liquid composition are mixed immediately after discharge instead of being mixed immediately before discharge.
  • a mixed liquid is supplied from the modeling material supply system used in the manufacturing method of the tenth embodiment to the 3D printer used in one step of FIG. 2 described in the manufacturing method of the third embodiment.
  • a 3D printer to which a modeling material supply system in which the line is omitted can be used. That is, for example, end portions of the first liquid supply line and the second liquid supply line of the modeling material supply system used in the manufacturing method of the sixth embodiment to the eighth embodiment are the first liquid discharge nozzle A12a and the second liquid in FIG.
  • a 3D printer connected to each of the discharge nozzles A12b can be used.
  • composition of the first liquid composition and the second liquid composition, other conditions, applications, etc. in this step can be the same as in the manufacturing method of the tenth embodiment.
  • the manufacturing method of the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition that are excellent in reactivity are used.
  • the first liquid discharge nozzle and the second liquid discharge nozzle included in the 3D printer used in one step of FIG. 2 are arranged obliquely downward in the vertical direction so that a virtual straight line passing through the central axis merges immediately above the support base.
  • the virtual straight line may be arranged obliquely downward in the vertical direction so as to join in the air above the support base. That is, after the discharged droplets of the first liquid composition and the liquid droplets of the second liquid composition collide with each other in the air, the formed mixed liquid droplets may land on the upper surface of the support base.
  • the 3D printer used in one step of FIG. It is preferable to form mixed droplets by simultaneously landing droplets of the two-component composition on the same location on the upper surface of the support base.
  • the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition in the sequential lamination process. You may let them.
  • the support base is moved in a state in which the mixed liquid discharge nozzles or the first liquid discharge nozzle and the second liquid discharge nozzle are fixed in sequential lamination.
  • each nozzle may be moved in a state where the support base is fixed.
  • the liquid of the first liquid composition discharged from the first liquid discharge nozzle and the second liquid discharge nozzle in sequential lamination are mixed by simultaneously landing the droplet and the second liquid composition on the same location, but the droplets are landed on the same location with a time difference.
  • the first liquid composition and the second liquid composition may be mixed.
  • Urethane prepolymer Urethane prepolymer included in Mitsui Chemicals' “L5299” (reaction product of polytetramethylene ether glycol (PTMG) and 4,4′-diphenylmethane diisocyanate (4,4′-MDI))
  • Polyisocyanate 1 4,4'-MDI contained in "L5299” of Mitsui Chemicals
  • Polyisocyanate 2 Pure MDI from Mitsui Chemicals
  • Long chain polyol Long chain polyol: “TERATHANE® 1000” from INVISTA, polytetramethylene ether glycol (PTMG) polyol, number average molecular weight 1,000 Long-chain polyamine 1: “ELASTAMINE (registered trademark) RT1000” manufactured by HANTSMAN, diamine of a copolymer of PTMG and polypropylene glycol, number average molecular weight 1,000 Long-chain polyamine 2: “JEFFAMINE (registered trademark) D2000” from HANTSMAN, polypropylene glycol diamine, number average molecular weight 2,000
  • Chain extender 1 (short chain diol): Mitsubishi Chemical's “1,4 butanediol”, 1,4 butanediol Chain extender 2 (short chain diamine): Ihara Chemical Industry's “Heart Cure 10”, diethylmethyl Benzenediamine (DETDA)
  • Cross-linking agent (short-chain triol): "Trimethylolpropane” from Mitsubishi Gas Chemical Company, Trimethylolpropane (TMP)
  • Plasticizer and catalyst Plasticizer: “DINCH®” from BASF, 1,2-cyclohexanedicarboxylic acid diisononyl ester Catalyst: “Fomrez catalyst UL-28” from Momentive, dimethyltin dilaurate
  • “L5299” is prepared by reacting PTMG having a number average molecular weight of 1,000 with 4,4′-MDI having a molecular weight of 250 and adjusting the isocyanate group content (NCO content) to 20% by mass. is there. Most of the urethane prepolymers contained in this “L5299” are considered to have 4,4′-MDI bonded to both ends of PTMG, so the number average molecular weight is estimated to be about 1,500.
  • the isocyanate group content of “L5299” can be represented by the following formula (1).
  • the first liquid composition and the second liquid composition described above were put into dedicated tanks of a desktop coating robot “SHOTMASTER (registered trademark) 300DS-S” of Musashi Engineering. Thereafter, the first liquid composition and the second liquid composition are discharged from the two nozzles of the desktop type application robot under the following discharge conditions, and each droplet is landed on the same position on the table as a support base. The mixture was reacted to form a cured product. This was repeated to form a 150 mm ⁇ 150 mm ⁇ 2 mm sheet-like shaped article.
  • the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition was 100 parts by mass: 86.73 parts by mass.
  • Test Examples 2 to 8 A sheet-like shaped article was formed in the same manner as in Test Example 1 except that the components having the types and contents shown in Table 1 were used. In the table, “-” indicates that the component was not used.
  • the mass ratio of the discharge amount substantially matches the volume ratio of the discharge amount.
  • the first liquid composition and the second liquid composition used in Test Examples 1 to 4 react by a pseudo prepolymer method.
  • the first liquid composition and the second liquid composition used in Test Examples 5 to 8 react by a so-called one-shot method in which a polyisocyanate and a long-chain polyol and / or a long-chain polyamine are directly reacted.
  • the elongation at break [%] can be evaluated as “pass” when 105% or more and “fail” when less than 105%. These tensile characteristics can be evaluated to be a shaped product obtained by curing the uniformly mixed first liquid composition and second liquid composition when it is acceptable, and uniform when it is unacceptable. It can be evaluated that the molded product is obtained by curing the first liquid composition and the second liquid composition which are not mixed in the first liquid composition.
  • Hardness Using a JIS-A hardness meter, the hardness of the sheet-like shaped article was measured in accordance with the former JIS-K6301: 1995 “Vulcanized Rubber Physical Test Method”. Hardness [°] indicates that the larger the value, the harder it is. When it is 60 ° or more and 95 ° or less, it is moderately hard and can be evaluated as “pass”, and when it is less than 60 °, it is too soft and evaluated as “fail”. If it exceeds 95 °, it is too hard and can be evaluated as “failed”.
  • the sheet-like shaped articles formed in Test Examples 1 to 4 passed all of the elongation modulus, tensile strength, elongation at break, hardness, wear resistance, and molding state. From this, in the manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, the first liquid composition and the second liquid composition that react by the pseudo prepolymer method are used. The volume ratio of the discharge amount can be made close to 1: 1, and as a result, it is determined that a three-dimensional structure can be manufactured easily and reliably.
  • the sheet-like shaped articles formed in Test Examples 5 to 8 failed in the molding state. This is because the first liquid composition and the second liquid composition that react by the one-shot method are used, so the difference in the discharge amount becomes large, and a part of the discharged first liquid composition and the second liquid composition It is determined that this is because of a mixing failure.
  • Test Example 9 The sheet-like shaped article of Test Example 9 was manufactured in the same manner as in Test Example 1 except that the composition and discharge amount of each component were as shown in Table 3 and the discharge pitch of the mixed droplets was 0.25 mm. .
  • the 1st liquid composition and 2nd liquid composition which are shown in Table 3 are modeling materials which react with a pseudo prepolymer method.
  • the specific gravity of the first liquid composition and the second liquid composition is about 1.1, the mass ratio and the volume ratio of the discharge amount are substantially the same.
  • Test Examples 10 to 11 Except that the discharge pitch was changed as shown in Table 4, the same operation as in Test Example 9 was performed, and the sheet-like shaped articles of Test Examples 10 to 11 were formed.
  • the apparent density [g / cm 3 ] of the sheet-shaped molded article was obtained by dividing the mass by the apparent volume calculated from the overall dimensions.
  • the porosity of the above-mentioned sheet-like shaped product is [volume%] obtained by dividing the apparent volume calculated from the overall dimensions by V a [mm 3 ] and the mass by the true density (1.1 g / cm 3 ).
  • V a ⁇ V b ) / V a was calculated by substituting each numerical value for 100 ⁇ (V a ⁇ V b ) / V a, where V b [mm 3 ] is the actual volume calculated in (1).
  • Test Examples 9 to 11 by changing the discharge pitch for each test example, three types of sheets having good formability and different density, porosity, and various physical properties are shown. A shaped object could be manufactured. From these test examples, in the manufacturing method of the three-dimensional structure, the discharge amount of the first liquid composition and the second liquid composition is changed during modeling, and the density of the formed three-dimensional structure is changed for each part. By doing so, it is determined that the physical properties can be changed for each part while maintaining a good molding state.
  • Test Examples 12 to 19 instead of changing the composition or mixing ratio of the first liquid composition and the second liquid composition during modeling, the composition of the first liquid composition, the composition of the second liquid composition, Using a plurality of types of modeling materials in which at least one of the mixing ratios of the first liquid composition and the second liquid composition is different, a plurality of types of sheet-shaped modeling objects having different constituent materials were manufactured.
  • Test Examples 12 to 19 Except that the composition of each component was as shown in Table 5 and Table 6, the same operation as in Test Example 1 was carried out to produce sheet-like shaped articles of Test Examples 12 to 19. In Test Examples 12 to 15, a plurality of modeling materials having different compositions or mixing ratios of the first liquid composition and the second liquid composition are used.
  • the first liquid composition and the second liquid composition of Test Examples 12 to 19 both have a specific gravity of about 1.1, the mass of the discharge amounts of the first liquid composition and the second liquid composition The ratio substantially coincides with the volume ratio of the discharge amount.
  • the first liquid composition and the second liquid composition used in Test Examples 12 to 15 are modeling materials that react by a pseudo prepolymer method.
  • the first liquid composition and the second liquid composition used in Test Examples 16 to 19 are modeling materials that react by a so-called one-shot method in which a polyisocyanate and a long-chain polyol and / or a long-chain polyamine are directly reacted. is there.
  • Test Examples 12 to 15 in Table 7 using the first liquid composition and the second liquid composition that react by the pseudo prepolymer method as the modeling material, the composition of the first liquid composition and the second liquid composition By changing at least one of the composition of the product and the mixing ratio of the first liquid composition and the second liquid composition, it is possible to produce sheet-like shaped articles having different physical properties while maintaining a good molding state. It was.
  • Test Examples 12 to 15 will be described in detail.
  • the blends 12a to 12c of Test Example 12 the blends 13a and 13b of Test Example 13, the blends 14a, 14c and 14d of Test Example 14, and the blends 15a and 15b of Test Example 15, the first liquid composition
  • the physical properties such as tensile properties can be maintained while maintaining a good molding state. I was able to change it.
  • the tensile strength is maintained while maintaining a good molding state by changing the mixing ratio while keeping the compositions of the first liquid composition and the second liquid composition constant.
  • the physical properties such as characteristics could be changed.
  • the composition of the second liquid composition while keeping the composition of the first liquid composition and the mixing ratio of the first liquid composition and the second liquid composition constant. It was possible to change physical properties such as tensile properties while maintaining a good molding state.
  • the sheet-like shaped articles formed in Test Examples 16 to 19 using the first liquid composition and the second liquid composition that react by the one-shot method as the modeling material failed in the molding state.
  • the first liquid composition and the second liquid composition that react by the one-shot method are used, and thus the difference in the discharge amount between the first liquid composition and the second liquid composition becomes large, and the discharged first liquid composition It is determined that a part of the product and the second liquid composition caused poor mixing. Therefore, when the 1st liquid composition and the 2nd liquid composition which react by a one shot method are used, it is judged that it is naturally difficult to manufacture the three-dimensional molded item from which a physical property differs for every site
  • Test Examples 20 to 22 instead of changing the composition of the first liquid composition and the second liquid composition during modeling, a plurality of types of modeling with different compositions of the first liquid composition and / or the second liquid composition By using the material, a plurality of types of sheet-shaped objects having different constituent materials were manufactured.
  • the first liquid composition and the second liquid composition of Test Examples 20 to 22 each have a specific gravity of about 1.1, the mass of the discharge amounts of the first liquid composition and the second liquid composition The ratio substantially coincides with the volume ratio of the discharge amount.
  • the first liquid composition and the second liquid composition used in Test Examples 20 and 21 are modeling materials that react by the pseudo prepolymer method.
  • the first liquid composition and the second liquid composition used in Test Example 22 are modeling materials that react by the one-shot method.
  • the composition of the first liquid composition / and the second liquid composition is changed, and the discharge amounts of the first liquid composition and the second liquid composition are made substantially equal.
  • the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is in the range of 100: 110 or more and 100: 90 or less, a good molding state is maintained. I was able to.
  • a plasticizer is contained in the first liquid composition and the second liquid composition that react by the pseudo prepolymer method, and the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is 100. : It is determined that the physical properties can be changed for each part while maintaining a good molding state by adjusting to 110 or more and 100: 90 or less.
  • the manufacturing method and modeling material of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.

Abstract

The purpose of the present invention is to provide a method for easily and surely producing a three-dimensional model, said three-dimensional model comprising polyurethane, polyurethane urea or polyurea as a main component, using a 3D printer. The method according to the present invention for producing a three-dimensional model, whereby a three-dimensional model comprising polyurethane, polyurethane urea or polyurea as a main component is produced using an ink-jet type 3D printer, comprises a step for successively laminating on a substrate synthetic resin layers by jetting a first liquid composition and a second liquid composition which react with each other upon mixing, said method being characterized in that, in the successive lamination step, the first liquid composition and the second liquid composition are mixed together immediately before or immediately after jetting so that the first liquid composition reacts with the second liquid composition by a pseudo-prepolymer method. The ratio by mass of the jet amount of the first liquid composition to the jet amount of the second liquid composition preferably ranges from 100:250 to 100:40 inclusive.

Description

3次元造形物の製造方法及び造形材料Manufacturing method and modeling material of three-dimensional structure
 本発明は、3次元造形物の製造方法及び造形材料に関する。 The present invention relates to a method for manufacturing a three-dimensional structure and a modeling material.
 ポリウレタン、ポリウレタンウレア及びポリウレア(以下、「ポリウレタン等」ともいう)は、ポリイソシアネート等のイソシアネート成分と、長鎖ポリオール等のポリオール成分及び/又は長鎖ポリアミン等のポリアミン成分との硬化反応により得られる合成樹脂であり、弾性率、硬度等の物性を調整し易く、かつ耐摩耗性及び成形性に優れる。そのため、ポリウレタン等から形成された成形体は、靴底、バイクや自動二輪車のグリップ、メガネ、マスク、装飾品等のパーソナルユース商品や、義肢、トレーニング器具などの様々な製品に用いられている。 Polyurethane, polyurethaneurea and polyurea (hereinafter also referred to as “polyurethane”) are obtained by a curing reaction between an isocyanate component such as polyisocyanate and a polyol component such as a long-chain polyol and / or a polyamine component such as a long-chain polyamine. It is a synthetic resin, and it is easy to adjust physical properties such as elastic modulus and hardness, and is excellent in wear resistance and moldability. For this reason, molded articles made of polyurethane or the like are used in various products such as shoe soles, grips of motorcycles and motorcycles, personal use products such as glasses, masks, and ornaments, artificial limbs, and training equipment.
 ポリウレタン等を用いて立体的な成形体を製造する方法としては、金型を用いた反応射出成形法や注型成型法が一般的である。一方、近年、3Dプリンタを用いた上記ポリウレタン等の3次元造形物の製造方法も提案されている(特開2005-35299号公報及び特表2003-506228号公報参照)。これらの文献に記載の製造方法では、ポリイソシアネートを含む第1液組成物の液滴とポリオールを含む第2液組成物の液滴とをそれぞれインクジェット方式で噴射し、空中で2種の液滴を衝突混合させて支持台上に着弾させるか、又は支持台上に着弾した2種の液滴を混合させる。上記文献によれば、上述の方法により、支持台上に所望の形状のポリウレタン層を積層できるため、このポリウレタン層の積層を繰り返すことでポリウレタンの3次元造形物を製造できるとされる。このような3Dプリンタを用いたポリウレタン等の3次元造形物の製造方法は、各需要者の要求にあわせたテーラーメイド製品の製造や、アセンブリ製品の設計時に必要となる試作パーツの製造等の一品物の製造に有用であると考えられる。 As a method for producing a three-dimensional molded body using polyurethane or the like, a reaction injection molding method using a mold or a casting molding method is generally used. On the other hand, in recent years, a method for producing a three-dimensional structure such as polyurethane using a 3D printer has also been proposed (see JP-A-2005-35299 and JP-T-2003-506228). In the production methods described in these documents, droplets of a first liquid composition containing polyisocyanate and liquid droplets of a second liquid composition containing a polyol are each ejected by an ink jet method, and two kinds of droplets are in the air. Are collided and landed on the support base, or two kinds of droplets landed on the support base are mixed. According to the above document, a polyurethane layer having a desired shape can be laminated on the support base by the above-described method. Therefore, it is said that a polyurethane three-dimensional structure can be manufactured by repeating the lamination of the polyurethane layer. The manufacturing method of three-dimensional shaped objects such as polyurethane using such a 3D printer is a single item such as manufacturing tailor-made products tailored to the demands of each customer, and manufacturing prototype parts required when designing assembly products. It is considered useful for the production of
 また、上記従来の方法は、造形中に第1液組成物の組成、第2液組成物の組成、第1液組成物及び第2液組成物の混合比等を変化させることにより、物性が部位毎に異なる3次元造形物、特に物性が部位毎に連続的に変化する傾斜機能材料(functionally gradient material)の製造に応用できると考えられる。 In addition, the above-described conventional method changes the composition of the first liquid composition, the composition of the second liquid composition, the mixing ratio of the first liquid composition and the second liquid composition, etc. It is considered that the present invention can be applied to the production of three-dimensional shaped objects that differ from part to part, in particular, functionally graded material whose physical properties continuously change from part to part.
 しかし、ポリウレタン、ポリウレタンウレア及びポリウレアの合成反応には、通常ポリオール成分及び/又はポリアミン成分をイソシアネート成分よりも体積量で多く使用する必要がある。そのため、上記従来の製造方法では、第1液組成物の吐出量よりも第2液組成物の吐出量が大幅に大きくなる傾向にある(例えば2.5倍超)。特に、上記従来の方法において、物性が部位毎に異なる3次元造形物を製造するために第1液組成物及び第2液組成物の混合比や組成等を造形中に変化させた場合、第2液組成物の吐出量がさらに増大する可能性がある。ここで、上記従来の方法において、第1液組成物及び第2液組成物のそれぞれの吐出量が大幅に異なる場合、これらを均一に混合することができず、その結果、硬化不良を生じるおそれや、所望の物性が得られないおそれがある。そのため、上記従来の製造方法により得られる3次元造形物は、部位ごとに物性のバラつきが生じて所望の特性が得られないおそれや、物性が変化している部位に応力が集中し易くなることでマクロな破壊耐性が低下するおそれがある。 However, in the synthesis reaction of polyurethane, polyurethane urea and polyurea, it is usually necessary to use a polyol component and / or a polyamine component in a larger volume than an isocyanate component. Therefore, in the conventional manufacturing method, the discharge amount of the second liquid composition tends to be significantly larger than the discharge amount of the first liquid composition (for example, more than 2.5 times). In particular, in the above-described conventional method, when the mixing ratio or composition of the first liquid composition and the second liquid composition is changed during modeling in order to manufacture a three-dimensional model with different physical properties for each part, There is a possibility that the discharge amount of the two-component composition further increases. Here, in the above-described conventional method, when the discharge amounts of the first liquid composition and the second liquid composition are significantly different, they cannot be mixed uniformly, and as a result, there is a risk of causing poor curing. In addition, desired physical properties may not be obtained. For this reason, the three-dimensional structure obtained by the above-described conventional manufacturing method may cause a variation in physical properties for each part and a desired characteristic may not be obtained, or stress may be easily concentrated on a part where the physical property is changed. Therefore, there is a risk that the macro damage resistance is lowered.
特開2005-35299号公報JP 2005-35299 A 特表2003-506228号公報Special table 2003-506228 gazette
 本発明は、これらの要求に鑑みてなされたものであり、3Dプリンタを用いてポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物を容易かつ確実に製造する方法と、それに用いる造形材料とを提供することを課題とする。 The present invention has been made in view of these requirements, and a method for easily and reliably producing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using a 3D printer, and a modeling material used therefor It is an issue to provide.
 上記課題を解決するためになされた発明は、インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の製造方法であって、混合により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程を備え、上記順次積層工程で、上記第1液組成物及び上記第2液組成物を吐出する直前又は直後に混合し、上記第1液組成物及び上記第2液組成物が擬似プレポリマー法により反応することを特徴とする。 The invention made in order to solve the above-mentioned problems is a method for producing a three-dimensional structure mainly comprising polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by mixing. A step of sequentially laminating a synthetic resin layer on a support by discharging a product and a second liquid composition, and immediately before or immediately after discharging the first liquid composition and the second liquid composition in the sequential layering step. And the first liquid composition and the second liquid composition react with each other by a pseudo prepolymer method.
 当該3次元造形物の製造方法は、混合により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程を有し、順次積層工程で、第1液組成物及び第2液組成物を吐出する直前又は直後に混合し、第1液組成物及び第2液組成物が擬似プレポリマー法により反応する。ここで、擬似プレポリマー法とは、ポリウレタン等の合成において、使用する長鎖ポリオール及び/又は長鎖ポリアミンの一部を予めポリイソシアネートと反応させてプレポリマーにし、このプレポリマーをポリイソシアネートと共にイソシアネート成分として用いる方法である。この擬似プレポリマー法では、長鎖ポリオール及び/又は長鎖ポリアミンの一部をプレポリマーの合成に用い、このプレポリマーをイソシアネート成分として用いるため、使用する造形材料におけるポリオール成分及び/又はポリアミン成分と、イソシアネート成分との体積比を1:1に近づけることができる。このように、当該3次元造形物の製造方法は、擬似プレポリマー法により反応する第1液組成物及び第2液組成物を造形材料として用いることで、第1液組成物及び第2液組成物の混合体積比を1:1に比較的近い範囲とすることができるため、第1液組成物及び第2液組成物を均一に混合して確実に硬化させることができる。その結果、当該3次元造形物の製造方法は、3Dプリンタを用いてポリウレタン等を主成分とする3次元造形物を容易かつ確実に製造できる。 The manufacturing method of the three-dimensional structure has a step of sequentially laminating a synthetic resin layer on a support by discharging a first liquid composition and a second liquid composition that react by mixing, The 1st liquid composition and the 2nd liquid composition are mixed immediately before or immediately after discharging, and the 1st liquid composition and the 2nd liquid composition react by the pseudo prepolymer method. Here, the pseudo prepolymer method means that in the synthesis of polyurethane or the like, a part of the long-chain polyol and / or long-chain polyamine to be used is pre-reacted with a polyisocyanate, and this prepolymer is combined with the polyisocyanate to form an isocyanate. It is a method used as a component. In this pseudo prepolymer method, since a part of the long-chain polyol and / or long-chain polyamine is used for the synthesis of the prepolymer and this prepolymer is used as the isocyanate component, the polyol component and / or the polyamine component in the modeling material to be used The volume ratio with the isocyanate component can be close to 1: 1. Thus, the manufacturing method of the said three-dimensional structure uses the 1st liquid composition and the 2nd liquid composition by using the 1st liquid composition and the 2nd liquid composition which react with a pseudo prepolymer method as a modeling material. Since the mixing volume ratio of the product can be in a range relatively close to 1: 1, the first liquid composition and the second liquid composition can be uniformly mixed and reliably cured. As a result, the method for manufacturing a three-dimensional structure can easily and reliably manufacture a three-dimensional structure having polyurethane or the like as a main component using a 3D printer.
 上記第1液組成物及び上記第2液組成物の吐出量の質量比(第1液組成物:第2液組成物)としては、100:250以上100:40以下が好ましい。第1液組成物及び第2液組成物の比重は通常略同一であるため、第1液組成物及び第2液組成物の吐出量の質量比を上記範囲とすることで、その体積比をより1:1に近づけることができる。これにより、第1液組成物及び第2液組成物をより均一に混合することができ、その結果、ポリウレタン等を主成分とする3次元造形物をより容易かつ確実に製造できる。 The mass ratio of the discharge amounts of the first liquid composition and the second liquid composition (first liquid composition: second liquid composition) is preferably 100: 250 or more and 100: 40 or less. Since the specific gravity of the first liquid composition and the second liquid composition is generally substantially the same, by setting the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in the above range, the volume ratio is Can be closer to 1: 1. Thereby, a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly, As a result, the three-dimensional molded item which has a polyurethane etc. as a main component can be manufactured more easily and reliably.
 当該3次元造形物の製造方法は、上記順次積層工程で、上記第1液組成物及び上記第2液組成物の吐出量を変化させることで上記合成樹脂層の密度を部位毎に変化させるとよい。このように、当該3次元造形物の製造方法が順次積層工程で第1液組成物及び第2液組成物の吐出量を変化させ、合成樹脂層の密度を部位毎に変化させることで、形成される3次元造形物の引張特性、耐摩耗性等の物性を部位毎に変化させることができる。そのため、当該3次元造形物の製造方法により、ポリウレタン等を主成分とし、部位毎に物性が異なる3次元造形物を容易かつ確実に製造することができる。 In the manufacturing method of the three-dimensional structure, the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition in the sequential lamination step. Good. In this way, the manufacturing method of the three-dimensional structure is formed by sequentially changing the discharge amount of the first liquid composition and the second liquid composition in the laminating step and changing the density of the synthetic resin layer for each part. The physical properties such as tensile properties and wear resistance of the three-dimensional structure to be manufactured can be changed for each part. Therefore, according to the method for manufacturing a three-dimensional structure, a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part can be easily and reliably manufactured.
 当該3次元造形物の製造方法は、上記順次積層工程で、上記合成樹脂層の少なくとも一部に多孔質領域を形成するとよい。このように、当該3次元造形物の製造方法が順次積層工程で合成樹脂層の少なくとも一部に多孔質領域を形成することで、合成樹脂層の密度をより確実に変化させることができ、その結果、部位毎に物性が異なる3次元造形物をより確実に製造することができる。 In the manufacturing method of the three-dimensional structure, the porous region may be formed in at least a part of the synthetic resin layer in the sequential lamination step. In this way, the manufacturing method of the three-dimensional structure can sequentially change the density of the synthetic resin layer by forming the porous region in at least a part of the synthetic resin layer in the sequential lamination process, As a result, it is possible to more reliably manufacture a three-dimensional structure having different physical properties for each part.
 当該3次元造形物の製造方法は、上記順次積層工程で、上記多孔質領域の空隙率を0体積%超45体積%以下の範囲で変化させるとよい。このように、当該3次元造形物の製造方法が順次積層工程で多孔質領域の空隙率を上記範囲で変化させることで、形成される3次元造形物の強度を確保しつつ部位毎の物性を容易に変化させることができる。 In the manufacturing method of the three-dimensional structure, the porosity of the porous region may be changed in the range of more than 0% by volume and 45% by volume or less in the sequential lamination step. Thus, the manufacturing method of the said three-dimensional structure changes the porosity of a porous area | region in the said range by a lamination | stacking process one by one, and the physical property for every part is ensured, ensuring the intensity | strength of the three-dimensional structure formed. It can be easily changed.
 上記第1液組成物が、ウレタンプレポリマー、ウレタンウレアプレポリマー及びウレアプレポリマーのうち少なくとも1種のプレポリマーと、ポリイソシアネートとを含み、上記第2液組成物が、長鎖ポリオール及び長鎖ポリアミンのうち少なくとも1種のソフトセグメント成分と、鎖延長剤及び架橋剤のうち少なくとも1種のハードセグメント成分とを含むとよい。このように、プレポリマー及びポリイソシアネートを含む第1液組成物と、ソフトセグメント成分及びハードセグメント成分を含有する第2液組成物とを用いることで、より確実に擬似プレポリマー法による反応を行わせることができる。また、第2液組成物がハードセグメント成分を含有することで、形成される3次元造形物に適度な弾性率、硬度等を付与できる。 The first liquid composition includes at least one prepolymer of a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, and a polyisocyanate, and the second liquid composition includes a long chain polyol and a long chain. It is good to contain at least 1 sort (s) of soft segment components among polyamines and at least 1 sort (s) of hard segment components among a chain extender and a crosslinking agent. Thus, by using the first liquid composition containing the prepolymer and the polyisocyanate and the second liquid composition containing the soft segment component and the hard segment component, the reaction by the pseudo prepolymer method is more reliably performed. Can be made. Moreover, moderate elasticity modulus, hardness, etc. can be provided to the three-dimensional structure to be formed because the second liquid composition contains a hard segment component.
 上記第1液組成物及び上記第2液組成物のうち少なくとも一方が可塑剤をさらに含有するとよい。このように、第1液組成物及び第2液組成物のうち少なくとも一方が可塑剤をさらに含有することで、第1液組成物及び/又は第2液組成物の粘度を低下させて両者の混合を促進することができ、その結果、ポリウレタン等を主成分とする3次元造形物をより容易かつ確実に製造できる。 At least one of the first liquid composition and the second liquid composition may further contain a plasticizer. Thus, at least one of the first liquid composition and the second liquid composition further contains a plasticizer, thereby reducing the viscosity of the first liquid composition and / or the second liquid composition, Mixing can be promoted, and as a result, a three-dimensional structure mainly composed of polyurethane or the like can be produced more easily and reliably.
 当該3次元造形物の製造方法は、上記順次積層工程で、上記第1液組成物の組成と、上記第2液組成物の組成と、上記第1液組成物及び上記第2液組成物の混合比とのうち少なくとも1つを変化させるとよい。このように、当該3次元造形物の製造方法が、順次積層工程で、第1液組成物の組成と、第2液組成物の組成と、第1液組成物及び第2液組成物の混合比とのうち少なくとも1つを変化させることで、形成される3次元造形物の構成材料を部位毎に変化させることができ、ひいては物性を部位毎に変化させることができる。また、第1液組成物及び第2液組成物は、擬似プレポリマー法で反応する混合体積比が1:1に比較的近い造形材料であるため、造形中に組成や混合比を変化させても混合体積比が1:1から極端に外れ難い。そのため、当該3次元造形物の製造方法により、ポリウレタン等を主成分とし、部位毎に物性が異なる3次元造形物を容易かつ確実に製造することができる。 The manufacturing method of the said three-dimensional structure is the said sequential lamination process, The composition of the said 1st liquid composition, the composition of the said 2nd liquid composition, the said 1st liquid composition, and the said 2nd liquid composition It is preferable to change at least one of the mixing ratio. Thus, the manufacturing method of the said three-dimensional structure is a sequential lamination process, the composition of the first liquid composition, the composition of the second liquid composition, and the mixing of the first liquid composition and the second liquid composition. By changing at least one of the ratios, the constituent material of the three-dimensional structure to be formed can be changed for each part, and the physical properties can be changed for each part. In addition, since the first liquid composition and the second liquid composition are modeling materials whose mixing volume ratio that reacts by the pseudo prepolymer method is relatively close to 1: 1, the composition and the mixing ratio are changed during modeling. However, the mixing volume ratio is extremely difficult to deviate from 1: 1. Therefore, according to the method for manufacturing a three-dimensional structure, a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part can be easily and reliably manufactured.
 上記第2液組成物が可塑剤をさらに含み、上記順次積層工程で上記第2液組成物における可塑剤の含有量を変化させるとよい。このように、第2液組成物が硬化反応への影響が比較的少ない成分である可塑剤をさらに含み、順次積層工程で第2液組成物における可塑剤の含有量を変化させることで、硬化反応にあまり影響を及ぼすことなく、形成される3次元造形材料の物性を部位毎に変化させることができる。これにより、ポリウレタン等を主成分とし、部位毎に物性が異なる3次元造形物をより容易かつ確実に製造することができる。 The second liquid composition further includes a plasticizer, and the plasticizer content in the second liquid composition may be changed in the sequential lamination step. As described above, the second liquid composition further includes a plasticizer that is a component having a relatively small influence on the curing reaction, and is cured by sequentially changing the content of the plasticizer in the second liquid composition in the laminating step. The physical properties of the formed three-dimensional modeling material can be changed for each part without significantly affecting the reaction. Thereby, it is possible to more easily and reliably manufacture a three-dimensional structure having polyurethane as a main component and different physical properties for each part.
 当該3次元造形物の製造方法は、上記第1液組成物及び上記第2液組成物が可塑剤をさらに含み、上記順次積層工程で、上記第1液組成物の組成及び上記第2液組成物の組成のうち少なくとも一方を変化させ、上記第1液組成物及び上記第2液組成物の吐出量の質量比を100:110以上100:90以下とするとよい。このように、当該3次元造形物の製造方法が、順次積層工程で、第1液組成物の組成及び第2液組成物の組成のうち少なくとも一方を変化させることで、形成される3次元造形物の物性を部位毎に変化させることができる。また、第1液組成物及び第2液組成物が含む可塑剤は、硬化反応への影響が比較的少なく、かつ比較的多く配合することができる成分であるため、第1液組成物及び第2液組成物の嵩調整に好適に用いることができる。そのため、第1液組成物及び第2液組成物が可塑剤を含有し、この可塑剤の含有量を調整することで、造形中に第1液組成物及び第2液組成物の吐出量の質量比を上記範囲とすること、つまり混合体積比をより1:1に近い範囲に維持することができる。これにより、ポリウレタン等を主成分とし、部位毎に物性が異なる3次元造形物をより容易かつ確実に製造することができる。 In the manufacturing method of the three-dimensional structure, the first liquid composition and the second liquid composition further include a plasticizer, and in the sequential lamination step, the composition of the first liquid composition and the second liquid composition. It is preferable to change at least one of the composition of the product so that the mass ratio of the discharge amount of the first liquid composition and the second liquid composition is 100: 110 or more and 100: 90 or less. As described above, the manufacturing method of the three-dimensional structure is a three-dimensional structure formed by changing at least one of the composition of the first liquid composition and the composition of the second liquid composition in the sequential lamination step. The physical properties of the material can be changed for each part. In addition, since the plasticizer included in the first liquid composition and the second liquid composition is a component that has a relatively small influence on the curing reaction and can be blended in a relatively large amount, the first liquid composition and the second liquid composition It can be suitably used for adjusting the bulk of the two-component composition. Therefore, the first liquid composition and the second liquid composition contain a plasticizer, and by adjusting the content of this plasticizer, the discharge amount of the first liquid composition and the second liquid composition can be adjusted during modeling. It is possible to maintain the mass ratio in the above range, that is, to maintain the mixing volume ratio in a range closer to 1: 1. Thereby, it is possible to more easily and reliably manufacture a three-dimensional structure having polyurethane as a main component and different physical properties for each part.
 当該3次元造形物の製造方法は、上記順次積層工程で上記第1液組成物のプレポリマーの組成及び上記第2液組成物のハードセグメント成分の組成のうち少なくとも1種を変化させるとよい。このように、当該3次元造形物の製造方法が上記順次積層工程で第1液組成物のプレポリマーの組成及び第2液組成物のハードセグメント成分の組成のうち少なくとも1種を変化させることで、形成される3次元造形材料の部位毎の物性変化のバリエーションを豊富にできる。 In the method for producing the three-dimensional structure, at least one of the prepolymer composition of the first liquid composition and the hard segment component composition of the second liquid composition may be changed in the sequential lamination step. In this way, the manufacturing method of the three-dimensional structure changes at least one of the prepolymer composition of the first liquid composition and the hard segment component composition of the second liquid composition in the sequential lamination step. The variation of the physical property change for every part of the formed three-dimensional modeling material can be abundant.
 上記課題を解決するためになされた別の発明は、インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の造形材料であって、混合により反応する第1液組成物及び第2液組成物を備え、上記第1液組成物及び上記第2液組成物が擬似プレポリマー法により反応することを特徴とする。 Another invention made in order to solve the above-mentioned problems is a modeling material of a three-dimensional modeled object mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by mixing. A liquid composition and a second liquid composition are provided, and the first liquid composition and the second liquid composition are reacted by a pseudo prepolymer method.
 当該造形材料が備える第1液組成物及び第2液組成物は、擬似プレポリマー法により反応するため、均一に混合し易いように混合体積比を1:1に比較的近い範囲とすることができる。そのため、当該造形材料は、3Dプリンタを用いてポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物を容易かつ確実に製造できる。 Since the first liquid composition and the second liquid composition included in the modeling material react by the pseudo prepolymer method, the mixing volume ratio may be set to a range relatively close to 1: 1 so as to facilitate uniform mixing. it can. Therefore, the modeling material can easily and reliably manufacture a three-dimensional modeled product mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.
 ここで「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分を指す。「吐出量」とは、所定の面積(多孔質領域が形成されている場合は空孔を含む面積)の合成樹脂層を形成する間に吐出した造形材料の吐出体積量を意味する。「空隙率」とは、3次元造形物の任意の10箇所からそれぞれ100mgの試料を採取し、各試料の寸法から算出される見かけの体積をV[mm]、上記各試料の質量を真密度で除すことで算出される実際の体積(空隙を除いた体積)をV[mm]とした時に100×(V-V)/Vで求められる値を意味する。なお、上記3次元造形物の任意の10箇所からそれぞれ100mgの試料を採取できない場合、採取可能な最大質量の試料を用いるものとする。「組成」とは、含有する成分の種類及びその含有量を指す。「粘度」とは、B型粘度計(例えば東機産業社の「BMII」)を用いて測定した値を指す。「ゲル化時間」とは、JIS-K6910:2007「フェノール樹脂試験方法」に準拠し、ゲル化時間A法で測定した値を指す。また、上記測定で試料として用いる第1液組成物及び第2液組成物の混合質量比は、第1液組成物及び第2液組成物の吐出量の質量比にあわせるものとする。 Here, the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more. “Discharge amount” means the discharge volume amount of the modeling material discharged during the formation of the synthetic resin layer having a predetermined area (area including pores when a porous region is formed). “Porosity” means that 100 mg samples are taken from any 10 locations of the three-dimensional structure, the apparent volume calculated from the dimensions of each sample is V A [mm 3 ], and the mass of each sample is When the actual volume (volume excluding voids) calculated by dividing by the true density is V B [mm 3 ], it means a value obtained by 100 × (V A −V B ) / VA . In addition, when a sample of 100 mg cannot be collected from any 10 locations of the three-dimensional structure, the sample with the maximum mass that can be collected is used. “Composition” refers to the type of component to be contained and its content. “Viscosity” refers to a value measured using a B-type viscometer (for example, “BMII” manufactured by Toki Sangyo Co., Ltd.). The “gel time” refers to a value measured by the gel time A method in accordance with JIS-K6910: 2007 “Phenolic resin test method”. Further, the mixing mass ratio of the first liquid composition and the second liquid composition used as a sample in the above measurement is set to match the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition.
 当該3次元造形物の製造方法及び造形材料は、3Dプリンタを用いてポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物を容易かつ確実に製造できる。 The manufacturing method and modeling material of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.
本発明の第2実施形態の3次元造形物の製造方法の一工程を示す模式的正面図である。It is a typical front view showing one process of a manufacturing method of a three-dimensional structure of a 2nd embodiment of the present invention. 本発明の第3実施形態の3次元造形物の製造方法の一工程を示す模式的正面図である。It is a typical front view which shows 1 process of the manufacturing method of the three-dimensional structure according to the third embodiment of the present invention. 本発明の第4実施形態の3次元造形物の製造方法の一工程を示す模式的正面図である。It is a typical front view showing one process of a manufacturing method of a three-dimensional structure of a 4th embodiment of the present invention. 図3の製造方法により製造される3次元造形物を示す模式的断面図である。It is typical sectional drawing which shows the three-dimensional structure manufactured with the manufacturing method of FIG. 本発明の第6実施形態に用いる造形材料供給システムの1例を示す概念図である。It is a conceptual diagram which shows one example of the modeling material supply system used for 6th Embodiment of this invention. 本発明の第7実施形態に用いる造形材料供給システムの1例を示す概念図である。It is a conceptual diagram which shows one example of the modeling material supply system used for 7th Embodiment of this invention. 本発明の第8実施形態に用いる造形材料供給システムの1例を示す概念図である。It is a conceptual diagram which shows one example of the modeling material supply system used for 8th Embodiment of this invention. 本発明の第10実施形態に用いる造形材料供給システムの1例を示す概念図である。It is a conceptual diagram which shows an example of the modeling material supply system used for 10th Embodiment of this invention.
 以下、本発明の実施の形態について、適宜図面を参酌しつつ説明する。なお、以下において例示する材料は、特に断りがない限り、単独で使用しても、複数を併用してもよい。 Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. In addition, the material illustrated below may be used independently or may use multiple, unless there is particular notice.
[第1実施形態]
<造形材料>
 当該造形材料は、インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の製造方法に用いる造形材料であって、混合により反応する第1液組成物及び第2液組成物を備え、第1液組成物及び第2液組成物が擬似プレポリマー法により反応する。当該造形材料は、例えば第1液組成物がイソシアネート成分であり、第2液組成物がポリオール成分及び/又はポリアミン成分である。
[First Embodiment]
<Modeling material>
The modeling material is a modeling material used in a method for manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using an ink jet 3D printer, and the first liquid composition and the first liquid that react by mixing are used. A two-liquid composition is provided, and the first liquid composition and the second liquid composition react by a pseudo prepolymer method. In the modeling material, for example, the first liquid composition is an isocyanate component, and the second liquid composition is a polyol component and / or a polyamine component.
[第1液組成物]
 第1液組成物は、ウレタンプレポリマー、ウレタンウレアプレポリマー及びウレアプレポリマーのうち少なくとも1種のプレポリマーと、ポリイソシアネートとを含むことが好ましい。当該造形材料は、第1液組成物がイソシアネート成分とポリオール成分及び/又はポリアミン成分との硬化反応が部分的に進行した成分に相当するウレタンプレポリマー等のプレポリマーを含むことで、第1液組成物の使用量に対する第2液組成物の使用量を減少させることができ、これにより第1液組成物及び第2液組成物の混合体積比を1:1に近づけることができる。また、当該造形材料は、第1液組成物が上記プレポリマーを含むこと、つまりイソシアネート成分とポリオール成分及び/又はポリアミン成分との硬化反応の一部を予め済ませておくことで、第1液組成物にポリイソシアネートのみが含まれる造形材料と比較し、第1液組成物及び第2液組成物の混合後の硬化速度が速い。さらに、第1液組成物が上記プレポリマーよりも分子量の小さいポリイソシアネートを含むことで、上記プレポリマーのみを含む組成物と比較し、粘度を低くすることができる。
[First liquid composition]
It is preferable that a 1st liquid composition contains at least 1 sort (s) of prepolymer among a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, and polyisocyanate. The modeling material contains a prepolymer such as a urethane prepolymer corresponding to a component in which the curing reaction between the isocyanate component and the polyol component and / or the polyamine component partially proceeds. The usage amount of the second liquid composition with respect to the usage amount of the composition can be reduced, whereby the mixing volume ratio of the first liquid composition and the second liquid composition can be made close to 1: 1. Moreover, the said modeling material is the 1st liquid composition because a 1st liquid composition contains the said prepolymer, ie, a part of hardening reaction with an isocyanate component, a polyol component, and / or a polyamine component is completed beforehand. Compared with the modeling material in which only polyisocyanate is contained in the product, the curing rate after mixing the first liquid composition and the second liquid composition is fast. Furthermore, when the first liquid composition contains a polyisocyanate having a molecular weight smaller than that of the prepolymer, the viscosity can be lowered as compared with a composition containing only the prepolymer.
 第1液組成物の80℃での粘度の上限としては、400mPa・sが好ましく、300mPa・sがより好ましい。一方、第1液組成物の80℃での粘度の下限としては、特に限定されないが、例えば50mPa・sである。第1液組成物の80℃での粘度が上記上限を超える場合、第2液組成物と混合し難くなり、その結果、形成される3次元造形物において硬化が不十分になるおそれや、所望の物性が得られないおそれがある。 The upper limit of the viscosity of the first liquid composition at 80 ° C. is preferably 400 mPa · s, and more preferably 300 mPa · s. On the other hand, the lower limit of the viscosity of the first liquid composition at 80 ° C. is not particularly limited, but is, for example, 50 mPa · s. When the viscosity at 80 ° C. of the first liquid composition exceeds the above upper limit, it is difficult to mix with the second liquid composition, and as a result, the formed three-dimensional structure may be insufficiently cured or desired. The physical properties may not be obtained.
(ウレタンプレポリマー)
 当該造形材料に用いるウレタンプレポリマーは、主鎖中にウレタン結合(-NHCOO-)を有するオリゴマーであり、例えばポリイソシアネート及び長鎖ポリオールを反応させることで得られる。上記ウレタンプレポリマーは、通常両末端にイソシアネート基(-N=C=O)を有する。
(Urethane prepolymer)
The urethane prepolymer used for the modeling material is an oligomer having a urethane bond (—NHCOO—) in the main chain, and can be obtained by reacting, for example, a polyisocyanate and a long chain polyol. The urethane prepolymer usually has isocyanate groups (—N═C═O) at both ends.
 上記ウレタンプレポリマーの数平均分子量の下限としては、800が好ましく、1,000がより好ましい。一方、上記ウレタンプレポリマーの数平均分子量の上限としては、5,000が好ましく、2,000がより好ましい。上記ウレタンプレポリマーの数平均分子量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。逆に、上記ウレタンプレポリマーの数平均分子量が上記上限を超える場合、第1液組成物の粘度が増大し、第2液組成物と混合し難くなるおそれがある。ここで「数平均分子量」とは、JIS-K7252-1:2008「プラスチック-サイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方-第1部:通則」に準拠し、ポリスチレンを標準物質とするゲル浸透クロマトグラフィー(GPC)を用いて測定される値を指す。 The lower limit of the number average molecular weight of the urethane prepolymer is preferably 800, more preferably 1,000. On the other hand, the upper limit of the number average molecular weight of the urethane prepolymer is preferably 5,000, more preferably 2,000. When the number average molecular weight of the urethane prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may be reduced, and the productivity in manufacturing the three-dimensional structure may be reduced. is there. On the other hand, when the number average molecular weight of the urethane prepolymer exceeds the upper limit, the viscosity of the first liquid composition increases and it may be difficult to mix with the second liquid composition. Here, the “number average molecular weight” is in accordance with JIS-K7252-1: 2008 “Plastics—Method for obtaining average molecular weight and molecular weight distribution of polymers by size exclusion chromatography—Part 1: General rules”, and polystyrene as a standard. The value measured using the gel permeation chromatography (GPC) made into a substance is pointed out.
(ポリイソシアネート)
 ポリイソシアネートは、分子中に2個以上のイソシアネート基を有する化合物である。第1液組成物に用いるポリイソシアネートとしては、例えば脂肪族ポリイソシアネート(脂環族ポリイソシアネートを含む)、芳香族ポリイソシアネート等が挙げられる。なお、上記ポリイソシアネートは、通常主鎖中にウレタン結合及びウレア結合を有さない。
(Polyisocyanate)
A polyisocyanate is a compound having two or more isocyanate groups in the molecule. Examples of the polyisocyanate used in the first liquid composition include aliphatic polyisocyanates (including alicyclic polyisocyanates), aromatic polyisocyanates, and the like. In addition, the said polyisocyanate does not have a urethane bond and a urea bond normally in a principal chain.
 上記脂肪族ポリイソシアネートとしては、例えばヘキサメチレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、ノルボルナンジイソシアネート、これらの変性体や多量体等が挙げられる。上記芳香族イソシアネートとしては、例えばトリレンジイソシアネート、ジフェニルメタンジイソシアネート、これらの変性体や多量体等が挙げられる。上記ポリイソシアネートとしては、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネートがより好ましい。 Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, isopropylidenebis (4-cyclohexylisocyanate), norbornane diisocyanate, modified products and multimers thereof. Examples of the aromatic isocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, modified products and multimers thereof, and the like. As said polyisocyanate, aromatic polyisocyanate is preferable and diphenylmethane diisocyanate is more preferable.
(長鎖ポリオール)
 上記長鎖ポリオールは、分子中に2個以上の水酸基(-OH)を有する分子量300以上の化合物である。第1液組成物に用いる長鎖ポリオールとしては、例えばポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール等が挙げられる。
(Long chain polyol)
The long-chain polyol is a compound having a molecular weight of 300 or more having two or more hydroxyl groups (—OH) in the molecule. Examples of the long-chain polyol used in the first liquid composition include polyether polyol, polycarbonate polyol, and polyester polyol.
 上記ポリエーテルポリオールとしては、例えばポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、ポリプロピレンテトラオール、ポリテトラメチレンエーテルグリコール、ポリテトラメチレンエーテルトリオール、これらの共縮合体等のポリオキシアルキレングリコールや、これらに側鎖や分岐構造を導入した誘導体、変性体などが挙げられる。 Examples of the polyether polyol include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene ether glycol, polytetramethylene ether triol, co-condensates thereof, and side chains thereof. And derivatives having a branched structure and modified products.
 上記ポリカーボネートポリオール及びポリエステルポリオールの具体例としては、例えば特開2015-209538号公報の段落[0017]~段落[0020]に記載の化合物等が挙げられる Specific examples of the polycarbonate polyol and polyester polyol include compounds described in paragraphs [0017] to [0020] of JP-A-2015-209538, for example.
 上記長鎖ポリオールとしては、ポリエーテルポリオールが好ましく、ポリテトラメチレンエーテルグリコールがより好ましい。 As the long-chain polyol, polyether polyol is preferable, and polytetramethylene ether glycol is more preferable.
 上記長鎖ポリオールの数平均分子量の下限としては、形成する3次元造形物の用途等に応じて適宜変更可能であるが、500が好ましく、800がより好ましい。一方、上記長鎖ポリオールの数平均分子量の上限としては、5,000が好ましく、2,500がより好ましい。このように、上記長鎖ポリオールの数平均分子量を上記範囲とすることで、成形性と、形成される3次元造形物の弾性率、硬度、耐摩耗性、成形性等の物性とをバランスよく向上できる。 The lower limit of the number average molecular weight of the long-chain polyol can be appropriately changed according to the use of the three-dimensional structure to be formed, but 500 is preferable, and 800 is more preferable. On the other hand, the upper limit of the number average molecular weight of the long-chain polyol is preferably 5,000, and more preferably 2,500. Thus, by setting the number average molecular weight of the long-chain polyol within the above range, the moldability and the physical properties such as the elastic modulus, hardness, wear resistance, and moldability of the formed three-dimensional structure are balanced. Can be improved.
(ウレタンウレアプレポリマー)
 当該造形材料に用いるウレタンウレアプレポリマーは、主鎖中にウレタン結合及びウレア結合(-NHCONH-)を有するオリゴマーであり、例えばポリイソシアネートと長鎖ポリオール及び長鎖ポリアミンとを反応させることで得られる。上記ウレタンウレアプレポリマーは、通常両末端にイソシアネート基を有する。上記ウレタンウレアプレポリマーの合成に使用するポリイソシアネート及び長鎖ポリオールとしては、例えば上記ウレタンプレポリマーの原料として例示したポリイソシアネート及び長鎖ポリオールと同様のもの等を挙げることができる。
(Urethane urea prepolymer)
The urethane urea prepolymer used for the modeling material is an oligomer having a urethane bond and a urea bond (-NHCONH-) in the main chain, and can be obtained by reacting, for example, a polyisocyanate, a long chain polyol, and a long chain polyamine. . The urethane urea prepolymer usually has isocyanate groups at both ends. Examples of the polyisocyanate and long-chain polyol used for the synthesis of the urethane urea prepolymer include the same polyisocyanates and long-chain polyols exemplified as the raw material of the urethane prepolymer.
 上記ウレタンウレアプレポリマーの数平均分子量の下限としては、1,000が好ましく、1,500がより好ましい。一方、上記ウレタンウレアプレポリマーの数平均分子量の上限としては、15,000が好ましく、10,000がより好ましい。上記ウレタンウレアプレポリマーの数平均分子量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。逆に、上記ウレタンウレアプレポリマーの数平均分子量が上記上限を超える場合、第1液組成物の粘度が増大し、第2液組成物と混合し難くなるおそれがある。 The lower limit of the number average molecular weight of the urethane urea prepolymer is preferably 1,000, and more preferably 1,500. On the other hand, the upper limit of the number average molecular weight of the urethane urea prepolymer is preferably 15,000 and more preferably 10,000. When the number average molecular weight of the urethane urea prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may be reduced, and the productivity in manufacturing the three-dimensional structure may be reduced. There is. On the other hand, when the number average molecular weight of the urethane urea prepolymer exceeds the upper limit, the viscosity of the first liquid composition may increase and it may be difficult to mix with the second liquid composition.
(長鎖ポリアミン)
 上記長鎖ポリアミンは、分子中に2以上のアミノ基(アルキルアミノ基、ジアルキルアミノ基及びイミノ基を含む)を有する分子量300以上の化合物である。
(Long chain polyamine)
The long-chain polyamine is a compound having a molecular weight of 300 or more having two or more amino groups (including an alkylamino group, a dialkylamino group and an imino group) in the molecule.
 上記長鎖ポリアミンとしては、例えばポリ(エチレングリコール)ジアミン、ポリ(プロピレングリコール)ジアミン、ポリ(テトラメチレンエーテルグリコール)ジアミン、ポリテトラメチレンエーテルグリコールとポリプロピレングリコールとの共縮合体のジアミン等の長鎖ジアミンや、ポリ(エチレングリコール)トリアミン、ポリ(プロピレングリコール)トリアミン等の長鎖トリアミンなどが挙げられる。 Examples of the long-chain polyamine include poly (ethylene glycol) diamine, poly (propylene glycol) diamine, poly (tetramethylene ether glycol) diamine, and a long chain such as a diamine of a polycondensate of polytetramethylene ether glycol and polypropylene glycol. Examples include diamines, and long-chain triamines such as poly (ethylene glycol) triamine and poly (propylene glycol) triamine.
 上記長鎖ポリアミンとしては、長鎖ジアミンが好ましく、ポリテトラメチレンエーテルグリコールとポリプロピレングリコールとの共重合体のジアミン及びポリプロピレングリコールジアミンがより好ましい。 The long-chain polyamine is preferably a long-chain diamine, more preferably a diamine of a copolymer of polytetramethylene ether glycol and polypropylene glycol or polypropylene glycol diamine.
 上記長鎖ポリアミンの数平均分子量の下限としては、形成する3次元造形物の用途等に応じて適宜変更可能であるが、500が好ましく、800がより好ましい。一方、上記長鎖ポリアミンの数平均分子量の上限としては、5,000が好ましく、2,500がより好ましい。このように、上記長鎖ポリアミンの数平均分子量を上記範囲とすることで、成形性と、形成される3次元造形物の弾性率、硬度、耐摩耗性等の物性とをバランスよく向上できる。 The lower limit of the number average molecular weight of the long-chain polyamine can be appropriately changed according to the use of the three-dimensional structure to be formed, but 500 is preferable, and 800 is more preferable. On the other hand, the upper limit of the number average molecular weight of the long-chain polyamine is preferably 5,000, and more preferably 2,500. Thus, by setting the number average molecular weight of the long-chain polyamine within the above range, the moldability and the physical properties such as the elastic modulus, hardness, and wear resistance of the formed three-dimensional structure can be improved in a balanced manner.
(ウレアプレポリマー)
 第1液組成物に用いるウレアプレポリマーは、主鎖中にウレア結合を有するオリゴマーであり、例えばポリイソシアネートと長鎖ポリアミンとを反応させることで得られる。上記ウレアプレポリマーは、通常両末端にイソシアネート基を有する。上記ウレアプレポリマーの合成に使用するポリイソシアネート及び長鎖ポリアミンとしては、上記ウレタンプレポリマー及びウレタンウレアプレポリマーの原料として例示したポリイソシアネート及び長鎖ポリアミンと同様のもの等を挙げることができる。
(Urea prepolymer)
The urea prepolymer used in the first liquid composition is an oligomer having a urea bond in the main chain, and is obtained, for example, by reacting a polyisocyanate and a long-chain polyamine. The urea prepolymer usually has isocyanate groups at both ends. Examples of the polyisocyanate and the long-chain polyamine used for the synthesis of the urea prepolymer include the same polyisocyanates and long-chain polyamines exemplified as the raw materials for the urethane prepolymer and the urethane urea prepolymer.
 上記ウレアプレポリマーの数平均分子量の下限としては、1,000が好ましく、1,500がより好ましい。一方、上記ウレアプレポリマーの数平均分子量の上限としては、15,000が好ましく、10,000がより好ましい。上記ウレアプレポリマーの数平均分子量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。逆に、上記ウレアプレポリマーの数平均分子量が上記上限を超える場合、第1液組成物の粘度が増大し、第2液組成物と混合し難くなるおそれがある。 The lower limit of the number average molecular weight of the urea prepolymer is preferably 1,000, and more preferably 1,500. On the other hand, the upper limit of the number average molecular weight of the urea prepolymer is preferably 15,000, and more preferably 10,000. When the number average molecular weight of the urea prepolymer is smaller than the lower limit, the curing rate after mixing the first liquid composition and the second liquid composition may decrease, and the productivity in the production of the three-dimensional structure may decrease. is there. On the other hand, when the number average molecular weight of the urea prepolymer exceeds the upper limit, the viscosity of the first liquid composition increases and it may be difficult to mix with the second liquid composition.
 第1液組成物が上記プレポリマーを含む場合、第1液組成物における上記プレポリマーの含有量の下限としては、10質量%が好ましく、20質量%がより好ましく、35質量%がさらに好ましく、40質量%が特に好ましい。一方、上記含有量の上限としては、80質量%が好ましく、70質量%がより好ましく、60質量%がさらに好ましく、50質量%が特に好ましい。上記含有量が上記下限より小さい場合、第1液組成物を硬化させるために必要なポリオール成分及び/又はポリアミン成分が増加するため、第2液組成物の体積が増大して第1液組成物と混合し難くなるおそれがある。逆に、上記含有量が上記上限を超える場合、第1液組成物における上記ポリイソシアネートの含有量が低下することで粘度が増大し、第2液組成物と混合し難くなるおそれがある。 When the first liquid composition contains the prepolymer, the lower limit of the content of the prepolymer in the first liquid composition is preferably 10% by mass, more preferably 20% by mass, further preferably 35% by mass, 40% by mass is particularly preferred. On the other hand, the upper limit of the content is preferably 80% by mass, more preferably 70% by mass, still more preferably 60% by mass, and particularly preferably 50% by mass. When the content is smaller than the lower limit, the polyol component and / or the polyamine component necessary for curing the first liquid composition is increased, so that the volume of the second liquid composition is increased and the first liquid composition is increased. May be difficult to mix with. On the other hand, when the content exceeds the upper limit, the content of the polyisocyanate in the first liquid composition is decreased, which may increase the viscosity and make it difficult to mix with the second liquid composition.
 当該造形材料が上記プレポリマーを含む場合、当該造形材料における上記プレポリマーの含有量の下限としては、10質量%が好ましく、15質量%がより好ましく、20質量%がさらに好ましい。一方、上記含有量の上限としては、45質量%が好ましく、30質量%がより好ましい。上記含有量が上記下限より小さい場合、ポリオール成分及び/又はポリアミン成分の含有量が増加するため、第1液組成物及び第2液組成物の混合後の硬化速度が速くなりすぎ、当該造形材料による3次元造形物の製造が困難となるおそれがある。逆に、上記含有量が上記上限を超える場合、ポリオール成分及び/又はポリアミン成分の含有量が低下するため、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。 When the modeling material contains the prepolymer, the lower limit of the content of the prepolymer in the modeling material is preferably 10% by mass, more preferably 15% by mass, and even more preferably 20% by mass. On the other hand, the upper limit of the content is preferably 45% by mass, and more preferably 30% by mass. When the content is smaller than the lower limit, the content of the polyol component and / or the polyamine component increases, so that the curing speed after mixing the first liquid composition and the second liquid composition becomes too high, and the modeling material There is a risk that it may be difficult to manufacture a three-dimensional structure. On the contrary, when the content exceeds the upper limit, the content of the polyol component and / or the polyamine component is decreased, so that the curing rate after mixing the first liquid composition and the second liquid composition is decreased, and 3 There is a possibility that the productivity in the production of the three-dimensional structure decreases.
(ポリイソシアネート)
 第1液組成物に用いるポリイソシアネートとしては、例えば上記ウレタンプレポリマーの原料として例示したポリイソシアネートと同様のもの等を挙げることができる。但し、第1液組成物の含むポリイソシアネートは、第1液組成物の含むプレポリマーの合成に用いられたポリイソシアネートと同一でも異なっていてもよい。
(Polyisocyanate)
As a polyisocyanate used for a 1st liquid composition, the thing similar to the polyisocyanate illustrated as a raw material of the said urethane prepolymer, etc. can be mentioned, for example. However, the polyisocyanate contained in the first liquid composition may be the same as or different from the polyisocyanate used in the synthesis of the prepolymer contained in the first liquid composition.
 第1液組成物が上記ポリイソシアネートを含む場合、第1液組成物における上記ポリイソシアネートの含有量の下限としては、20質量%が好ましく、30質量%がより好ましく、35質量%がさらに好ましく、40質量%が特に好ましい。一方、上記ポリイソシアネートの含有量の上限としては、90質量%が好ましく、80質量%がより好ましく、60質量%がさらに好ましい。上記ポリイソシアネートの含有量が上記下限より小さい場合、第1液組成物の粘度が増大し、第1液組成物及び第2液組成物を混合し難くなるおそれがある。逆に、上記ポリイソシアネートの含有量が上記上限を超える場合、第1液組成物を硬化させるために必要なポリオール成分及び/又はポリアミン成分が増加するため、第2液組成物の体積が増加して第1液組成物と混合し難くなるおそれがある。 When the first liquid composition contains the polyisocyanate, the lower limit of the content of the polyisocyanate in the first liquid composition is preferably 20% by mass, more preferably 30% by mass, further preferably 35% by mass, 40% by mass is particularly preferred. On the other hand, as an upper limit of content of the said polyisocyanate, 90 mass% is preferable, 80 mass% is more preferable, and 60 mass% is further more preferable. When content of the said polyisocyanate is smaller than the said minimum, the viscosity of a 1st liquid composition increases and there exists a possibility that it may become difficult to mix a 1st liquid composition and a 2nd liquid composition. On the other hand, when the content of the polyisocyanate exceeds the upper limit, the polyol component and / or the polyamine component necessary for curing the first liquid composition increases, so that the volume of the second liquid composition increases. Therefore, it may be difficult to mix with the first liquid composition.
 当該造形材料が上記ポリイソシアネートを含む場合、当該造形材料における上記ポリイソシアネートの含有量の下限としては、10質量%が好ましく、15質量%がより好ましく、20質量%がさらに好ましい。一方、上記ポリイソシアネートの含有量の上限としては、50質量%が好ましく、35質量%がより好ましく、30質量%がさらに好ましい。上記ポリイソシアネートの含有量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が速くなりすぎ、当該造形材料による3次元造形物の製造が困難となるおそれがある。逆に、上記ポリイソシアネートの含有量が上記上限を超える場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。 When the modeling material contains the polyisocyanate, the lower limit of the content of the polyisocyanate in the modeling material is preferably 10% by mass, more preferably 15% by mass, and even more preferably 20% by mass. On the other hand, as an upper limit of content of the said polyisocyanate, 50 mass% is preferable, 35 mass% is more preferable, and 30 mass% is further more preferable. When content of the said polyisocyanate is smaller than the said minimum, the hardening rate after mixing of a 1st liquid composition and a 2nd liquid composition may become too quick, and manufacture of the three-dimensional molded item by the said modeling material may become difficult. There is. On the other hand, when the content of the polyisocyanate exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition is decreased, and the productivity in manufacturing the three-dimensional structure may be decreased. There is.
[第1液組成物の製造方法]
 第1液組成物は、例えば上記長鎖ポリオール及び/又は上記長鎖ポリアミンと、この長鎖ポリオール及び/又は上記長鎖ポリアミンに対して過剰量の上記ポリイソシアネートとを反応させる方法で得ることができる。また、第1液組成物は、上記プレポリマーを別途用意し、このプレポリマーと上記ポリイソシアネートとを混合する方法でも得ることができる。なお、後述する可塑剤等の任意成分は、必要に応じて任意のタイミングで添加すればよい。
[Method for producing first liquid composition]
The first liquid composition can be obtained, for example, by a method in which the long-chain polyol and / or the long-chain polyamine is reacted with an excess amount of the polyisocyanate with respect to the long-chain polyol and / or the long-chain polyamine. it can. The first liquid composition can also be obtained by separately preparing the prepolymer and mixing the prepolymer and the polyisocyanate. In addition, what is necessary is just to add arbitrary components, such as a plasticizer mentioned later, at arbitrary timing as needed.
[第2液組成物]
 第2液組成物は、長鎖ポリオール及び長鎖ポリアミンのうち少なくとも1種のソフトセグメント成分と、鎖延長剤及び架橋剤のうち少なくとも1種のハードセグメント成分とを含むことが好ましい。
[Second liquid composition]
The second liquid composition preferably contains at least one soft segment component of a long-chain polyol and a long-chain polyamine and at least one hard segment component of a chain extender and a crosslinking agent.
 第2液組成物の80℃での粘度の上限としては、400mPa・sが好ましく、300mPa・sがより好ましい。一方、第2液組成物の80℃での粘度の下限としては、特に限定されないが、例えば50mPa・sである。第2液組成物の80℃での粘度が上記上限を超える場合、第1液組成物と混合し難くなるおそれがある。 The upper limit of the viscosity at 80 ° C. of the second liquid composition is preferably 400 mPa · s, more preferably 300 mPa · s. On the other hand, the lower limit of the viscosity of the second liquid composition at 80 ° C. is not particularly limited, but is, for example, 50 mPa · s. When the viscosity at 80 ° C. of the second liquid composition exceeds the above upper limit, it may be difficult to mix with the first liquid composition.
(長鎖ポリオール及び長鎖ポリアミン)
 第2液組成物に用いる長鎖ポリオール及び長鎖ポリアミンとしては、例えば上記プレポリマーの原料として例示した長鎖ポリオール及び長鎖ポリアミンと同様のもの等を挙げることができる。なお、第2液組成物が含む長鎖ポリオール及び長鎖ポリアミンは、第1液組成物が含むプレポリマーの合成に用いられた長鎖ポリオール及び長鎖ポリアミンと同一でも異なっていてもよい。
(Long chain polyol and long chain polyamine)
Examples of the long-chain polyol and the long-chain polyamine used in the second liquid composition include the same as the long-chain polyol and the long-chain polyamine exemplified as the raw material for the prepolymer. The long-chain polyol and the long-chain polyamine contained in the second liquid composition may be the same as or different from the long-chain polyol and the long-chain polyamine used for the synthesis of the prepolymer contained in the first liquid composition.
 第2液組成物が上記ソフトセグメント成分を含む場合、第2液組成物における上記ソフトセグメント成分の含有量の下限としては、30質量%が好ましく、35質量%がより好ましく、45質量%がさらに好ましく、70質量%が特に好ましく、80質量%がさらに特に好ましい。一方、上記含有量の上限としては、97質量%が好ましく、95質量%がより好ましく、93質量%がさらに好ましく、90質量%が特に好ましく、85質量%がさらに特に好ましく、80質量%が最も好ましい。上記含有量が上記下限より小さい場合、第1液組成物を硬化させるために必要な第2液組成物の体積が増加し、第1液組成物及び第2液組成物を混合することが困難となるおそれがある。逆に、上記含有量が上記上限を超える場合、第2液組成物における鎖延長剤、架橋剤等の含有量が低下し、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。また、特に、第2液組成物が上記ソフトセグメント成分として上記長鎖ポリアミンを含有し、その含有量が上記上限を超える場合、第1液組成物及び第2液組成物の混合後の硬化速度が速くなりすぎ、当該造形材料による3次元造形物の製造が困難となるおそれもある。 When the second liquid composition contains the soft segment component, the lower limit of the content of the soft segment component in the second liquid composition is preferably 30% by mass, more preferably 35% by mass, and further 45% by mass Preferably, 70% by mass is particularly preferable, and 80% by mass is even more particularly preferable. On the other hand, the upper limit of the content is preferably 97% by mass, more preferably 95% by mass, further preferably 93% by mass, particularly preferably 90% by mass, still more preferably 85% by mass, and most preferably 80% by mass. preferable. When the content is smaller than the lower limit, the volume of the second liquid composition necessary for curing the first liquid composition increases, and it is difficult to mix the first liquid composition and the second liquid composition. There is a risk of becoming. On the other hand, when the content exceeds the upper limit, the content of the chain extender, the crosslinking agent, etc. in the second liquid composition is lowered, and it is difficult to adjust the physical properties of the three-dimensional structure formed by the modeling material. There is a risk. In particular, when the second liquid composition contains the long-chain polyamine as the soft segment component and the content exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition May become too fast, and it may be difficult to manufacture a three-dimensional structure using the modeling material.
 当該造形材料が上記ソフトセグメント成分を含む場合、当該造形材料における上記ソフトセグメント成分の含有量の下限としては、10質量%が好ましく、15質量%がより好ましく、20質量%がさらに好ましく、25質量%が特に好ましく、35質量%がさらに特に好ましい。一方、上記含有量の上限としては、65質量%が好ましく、55質量%がより好ましく、50質量%がさらに好ましく、45質量%が特に好ましい。上記含有量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。逆に、上記含有量が上記上限を超える場合、上記プレポリマー、鎖延長剤、架橋剤等の含有量が低下し、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。 When the modeling material includes the soft segment component, the lower limit of the content of the soft segment component in the modeling material is preferably 10% by mass, more preferably 15% by mass, further preferably 20% by mass, and 25% by mass. % Is particularly preferable, and 35% by mass is further particularly preferable. On the other hand, the upper limit of the content is preferably 65% by mass, more preferably 55% by mass, further preferably 50% by mass, and particularly preferably 45% by mass. When the said content is smaller than the said minimum, the hardening rate after mixing of a 1st liquid composition and a 2nd liquid composition falls, and there exists a possibility that the productivity in manufacture of a three-dimensional structure may fall. On the other hand, when the content exceeds the upper limit, the content of the prepolymer, chain extender, crosslinking agent, etc. may be reduced, making it difficult to adjust the physical properties of the three-dimensional structure formed by the modeling material. There is.
(鎖延長剤)
 第2液組成物に用いる鎖延長剤は、当該造形材料により形成される3次元造形物の靭性等を向上する。上記鎖延長剤としては、例えば短鎖ジオール、短鎖ジアミン等を用いることができる。
(Chain extender)
The chain extender used for the second liquid composition improves the toughness of a three-dimensional structure formed from the modeling material. As the chain extender, for example, a short chain diol, a short chain diamine or the like can be used.
 鎖延長剤として用いる短鎖ジオールは、分子中に2個の水酸基を有する分子量300未満の化合物である。上記短鎖ジオールとしては、例えば1,4-ブタンジオール等の脂肪族ジオールや、特開2015-209538号公報の段落[0018]に記載の化合物などが挙げられる。上記短鎖ジオールとしては、脂肪族ジオールが好ましく、1,4-ブタンジオールがより好ましい。 A short chain diol used as a chain extender is a compound having a molecular weight of less than 300 and having two hydroxyl groups in the molecule. Examples of the short-chain diol include aliphatic diols such as 1,4-butanediol, and compounds described in paragraph [0018] of JP-A-2015-209538. As the short chain diol, an aliphatic diol is preferable, and 1,4-butanediol is more preferable.
 鎖延長剤として用いる短鎖ジアミンは、分子中に2個のアミノ基を有する分子量300未満の化合物である。上記短鎖ジアミンとしては、例えばジエチルメチルベンゼンジアミン(DETDA)や、特表2015-533383号の段落[0040]に記載の化合物等が挙げられる。上記短鎖ジアミンとしては、DETDAが好ましい。 The short chain diamine used as the chain extender is a compound having two amino groups in the molecule and having a molecular weight of less than 300. Examples of the short chain diamine include diethylmethylbenzenediamine (DETDA) and compounds described in paragraph [0040] of JP-T-2015-533383. As the short chain diamine, DETDA is preferable.
 第2液組成物が上記鎖延長剤を含む場合、第2液組成物における上記鎖延長剤の含有量の下限としては、1質量%が好ましく、3質量%がより好ましく、5質量%がさらに好ましく、10質量%が特に好ましい。一方、上記鎖延長剤の含有量の上限としては、50質量%が好ましく、40質量%がより好ましく、35質量%がさらに好ましく、30質量%が特に好ましく、20質量%がさらに特に好ましい。上記鎖延長剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。逆に、上記鎖延長剤の含有量が上記上限を超える場合、当該造形材料により形成される3次元造形物の柔軟性が低下するおそれがある。 When the second liquid composition contains the chain extender, the lower limit of the content of the chain extender in the second liquid composition is preferably 1% by mass, more preferably 3% by mass, and further more preferably 5% by mass. 10% by mass is preferable. On the other hand, the upper limit of the content of the chain extender is preferably 50% by mass, more preferably 40% by mass, further preferably 35% by mass, particularly preferably 30% by mass, and particularly preferably 20% by mass. When content of the said chain extension agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material. Conversely, if the content of the chain extender exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced.
 当該造形材料が上記鎖延長剤を含む場合、当該造形材料における上記鎖延長剤の含有量の下限としては、0.5質量%が好ましく、3質量%がより好ましい。一方、上記鎖延長剤の含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、15質量%がさらに好ましく、8質量%が特に好ましい。上記鎖延長剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。逆に、上記鎖延長剤の含有量が上記上限を超える場合、当該造形材料により形成される3次元造形物の柔軟性が低下するおそれや上記鎖延長剤がブリードアウトするおそれがある。 When the modeling material contains the chain extender, the lower limit of the content of the chain extender in the modeling material is preferably 0.5% by mass, and more preferably 3% by mass. On the other hand, the upper limit of the content of the chain extender is preferably 30% by mass, more preferably 20% by mass, further preferably 15% by mass, and particularly preferably 8% by mass. When content of the said chain extension agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material. On the other hand, when the content of the chain extender exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced or the chain extender may bleed out.
(架橋剤)
 第2液組成物に用いる架橋剤は、当該造形材料により形成される3次元造形物の弾性率を低下させる。上記架橋剤としては、例えば短鎖トリオール、短鎖テトラオール、短鎖トリアミン等を用いることができる。
(Crosslinking agent)
The crosslinking agent used for the second liquid composition reduces the elastic modulus of the three-dimensional structure formed by the modeling material. As the crosslinking agent, for example, a short chain triol, a short chain tetraol, a short chain triamine, or the like can be used.
 架橋剤として用いる短鎖トリオールは、分子中に3個の水酸基を有する分子量300未満の化合物である。上記短鎖トリオールとしては、例えばトリメチロールプロパン、トリメチロールエタン、グリセリン、ヘキサントリオール等が挙げられる。上記短鎖トリオールとしては、これらの中で、トリメチロールプロパンが好ましい。 The short chain triol used as a crosslinking agent is a compound having a molecular weight of less than 300 and having three hydroxyl groups in the molecule. Examples of the short chain triol include trimethylolpropane, trimethylolethane, glycerin, hexanetriol and the like. Of these, trimethylolpropane is preferred as the short-chain triol.
 架橋剤として用いる短鎖テトラオールは、分子中に4個の水酸基を有する分子量300未満の化合物である。上記短鎖テトラオールとしては、例えばペンタエリスリトール等が挙げられる。 The short-chain tetraol used as a crosslinking agent is a compound having a molecular weight of less than 300 and having four hydroxyl groups in the molecule. Examples of the short-chain tetraol include pentaerythritol.
 架橋剤として用いる短鎖トリアミンは、分子中に3個のアミノ基を有する分子量300未満の化合物である。上記短鎖トリアミンとしては、例えばジエチレントリアミン、イミノビスプロピルアミン、ビスヘキサメチレントリアミン等が挙げられる。 The short chain triamine used as a crosslinking agent is a compound having a molecular weight of less than 300 and having three amino groups in the molecule. Examples of the short chain triamine include diethylenetriamine, iminobispropylamine, and bishexamethylenetriamine.
 第2液組成物が上記架橋剤を含む場合、第2液組成物における上記架橋剤の含有量の下限としては、0.5質量%が好ましく、1.5質量%がより好ましく、3質量%がさらに好ましい。一方、上記架橋剤の含有量の上限としては、15質量%が好ましく、5質量%がより好ましい。上記架橋剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。逆に、上記架橋剤の含有量が上記上限を超える場合、当該造形材料により形成される3次元造形物の柔軟性が低下するおそれがある。 When the second liquid composition contains the cross-linking agent, the lower limit of the content of the cross-linking agent in the second liquid composition is preferably 0.5% by mass, more preferably 1.5% by mass, and 3% by mass. Is more preferable. On the other hand, the upper limit of the content of the crosslinking agent is preferably 15% by mass, and more preferably 5% by mass. When content of the said crosslinking agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material. Conversely, when the content of the crosslinking agent exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced.
 当該造形材料が上記架橋剤を含む場合、当該造形材料における上記架橋剤の含有量の下限としては、0.1質量%が好ましく、0.3質量%がより好ましく、0.8質量%がさらに好ましく、1.5質量%が特に好ましい。一方、上記架橋剤の含有量の上限としては、8質量%が好ましく、5質量%がより好ましく、3質量%がさらに好ましい。上記架橋剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の物性を調整し難くなるおそれがある。逆に、上記架橋剤の含有量が上記上限を超える場合、当該造形材料により形成される3次元造形物の柔軟性が低下するおそれや、上記架橋剤がブリードアウトするおそれがある。 When the modeling material contains the crosslinking agent, the lower limit of the content of the crosslinking agent in the modeling material is preferably 0.1% by mass, more preferably 0.3% by mass, and further 0.8% by mass. Preferably, 1.5 mass% is especially preferable. On the other hand, as an upper limit of content of the said crosslinking agent, 8 mass% is preferable, 5 mass% is more preferable, and 3 mass% is further more preferable. When content of the said crosslinking agent is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the physical property of the three-dimensional molded item formed with the said modeling material. On the other hand, when the content of the crosslinking agent exceeds the upper limit, the flexibility of the three-dimensional structure formed by the modeling material may be reduced, or the crosslinking agent may bleed out.
(可塑剤)
 第1液組成物及び/又は第2液組成物は、好適な任意成分として、可塑剤をさらに含むとよい。当該造形材料に用いる可塑剤は、第1液組成物及び/又は第2液組成物の粘度を低下させ、第1液組成物及び第2液組成物を混合し易くする。また、上記可塑剤は、当該造形材料により形成される3次元造形物の弾性率等を調整する。さらに、上記可塑剤は、硬化反応への影響が比較的少なく、かつ比較的多く配合することができる成分であるため、その含有量を調整することによって、形成される3次元造形物の物性にはあまり影響を与えずに第1液組成物及び/又は第2液組成物の嵩を調整することもできる。これにより、第1液組成物及び第2液組成物の混合体積比をより1:1に近づけることができる。
(Plasticizer)
The first liquid composition and / or the second liquid composition may further include a plasticizer as a suitable optional component. The plasticizer used for the modeling material decreases the viscosity of the first liquid composition and / or the second liquid composition, and facilitates mixing of the first liquid composition and the second liquid composition. Moreover, the said plasticizer adjusts the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material. Furthermore, since the plasticizer is a component that has a relatively small influence on the curing reaction and can be blended in a relatively large amount, by adjusting the content thereof, the physical properties of the formed three-dimensional structure can be improved. Can adjust the volume of the first liquid composition and / or the second liquid composition without much influence. Thereby, the mixing volume ratio of the first liquid composition and the second liquid composition can be made closer to 1: 1.
 上記可塑剤としては、例えばジエチルヘキシルフタレート、ジイソノニルフタレート(DINP)、ジブチルフタレート、トリスクロロエチルホスフェート、トリスクロロプロピルホスフェート(TCPP)、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル等が挙げられる。上記可塑剤としては、1,2-シクロヘキサンジカルボン酸ジイソノニルエステルが好ましい。 Examples of the plasticizer include diethyl hexyl phthalate, diisononyl phthalate (DINP), dibutyl phthalate, trischloroethyl phosphate, trischloropropyl phosphate (TCPP), 1,2-cyclohexanedicarboxylic acid diisononyl ester, and the like. As the plasticizer, 1,2-cyclohexanedicarboxylic acid diisononyl ester is preferable.
 第1液組成物及び第2液組成物の両方が可塑剤を含む場合、第1液組成物及び第2液組成物は、同種の可塑剤を含むことが好ましい。 When both the 1st liquid composition and the 2nd liquid composition contain a plasticizer, it is preferred that the 1st liquid composition and the 2nd liquid composition contain the same kind of plasticizer.
 当該造形材料が上記可塑剤を含む場合、当該造形材料における上記可塑剤の含有量の下限としては、3質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。一方、上記可塑剤の含有量の上限としては、40質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。上記可塑剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の弾性率等を調整し難くなるおそれがある。また、上記可塑剤の含有量の調整によって第1液組成物及び/又は第2液組成物の嵩を調整する場合には、第1液組成物及び第2液組成物の混合体積比を十分に1:1に近づけることができないおそれもある。逆に、上記可塑剤の含有量が上記上限を超える場合、当該3次元造形物の製造方法により形成される3次元造形物にブリードアウトが生じるおそれがある。 When the modeling material contains the plasticizer, the lower limit of the plasticizer content in the modeling material is preferably 3% by mass, more preferably 5% by mass, and even more preferably 10% by mass. On the other hand, as an upper limit of content of the said plasticizer, 40 mass% is preferable, 30 mass% is more preferable, 20 mass% is further more preferable, 15 mass% is especially preferable. When content of the said plasticizer is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material. In addition, when adjusting the volume of the first liquid composition and / or the second liquid composition by adjusting the content of the plasticizer, the mixing volume ratio of the first liquid composition and the second liquid composition is sufficient. There is also a possibility that it may not be close to 1: 1. Conversely, when the content of the plasticizer exceeds the upper limit, bleeding out may occur in the three-dimensional structure formed by the method for manufacturing the three-dimensional structure.
 第1液組成物が上記可塑剤を含む場合、第1液組成物における上記可塑剤の含有量の下限としては、0.5質量%が好ましく、2質量%がより好ましい。一方、上記可塑剤の含有量の上限としては、50質量%が好ましく、30質量%がより好ましい。上記可塑剤の含有量を上記範囲とすることで、上記可塑剤の含有量の調整によって第1液組成物の嵩を調整する場合に、第1液組成物及び第2液組成物の混合体積比をより1:1に近づけることができる。 When the first liquid composition contains the plasticizer, the lower limit of the plasticizer content in the first liquid composition is preferably 0.5% by mass, and more preferably 2% by mass. On the other hand, as an upper limit of content of the said plasticizer, 50 mass% is preferable and 30 mass% is more preferable. When the volume of the first liquid composition is adjusted by adjusting the content of the plasticizer by adjusting the content of the plasticizer within the above range, the mixed volume of the first liquid composition and the second liquid composition The ratio can be closer to 1: 1.
 第2液組成物が上記可塑剤を含む場合、第2液組成物における上記可塑剤の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、5質量%がさらに好ましく、10質量%が特に好ましい。一方、上記可塑剤の含有量の上限としては、50質量%が好ましく、40質量%がより好ましく、35質量%がさらに好ましく、30質量%が特に好ましく、25量%がさらに特に好ましく、20質量%が最も好ましい。上記可塑剤の含有量の調整によって第1液組成物及び/又は第2液組成物の液量を調整する場合に、上記可塑剤の含有量を上記範囲とすることで、第1液組成物及び第2液組成物の混合体積比をより1:1に近づけることができる。上記可塑剤の含有量が上記下限より小さい場合、当該造形材料により形成される3次元造形物の弾性率等を調整し難くなるおそれがある。逆に、上記可塑剤の含有量が上記上限を超える場合、上記長鎖ポリオール及び/又は上記長鎖ポリアミンの含有量が低下することで第1液組成物を硬化させるために必要な第2液組成物の体積が増加し、第1液組成物及び第2液組成物を均一に混合することが困難となるおそれがある。 When the second liquid composition contains the plasticizer, the lower limit of the content of the plasticizer in the second liquid composition is preferably 0.1% by mass, more preferably 0.5% by mass, and 5% by mass. Is more preferable, and 10% by mass is particularly preferable. On the other hand, the upper limit of the content of the plasticizer is preferably 50% by mass, more preferably 40% by mass, further preferably 35% by mass, particularly preferably 30% by mass, further particularly preferably 25% by mass, and 20% by mass. % Is most preferred. When adjusting the liquid amount of the first liquid composition and / or the second liquid composition by adjusting the content of the plasticizer, the content of the plasticizer is within the above range so that the first liquid composition is within the above range. And the mixing volume ratio of the second liquid composition can be made closer to 1: 1. When content of the said plasticizer is smaller than the said minimum, there exists a possibility that it may become difficult to adjust the elasticity modulus etc. of the three-dimensional structure formed with the said modeling material. Conversely, when the content of the plasticizer exceeds the upper limit, the second liquid necessary for curing the first liquid composition by reducing the content of the long-chain polyol and / or the long-chain polyamine. The volume of the composition increases, and it may be difficult to uniformly mix the first liquid composition and the second liquid composition.
(任意成分)
 第2液組成物は、触媒をさらに含有することが好ましい。また、第2液組成物は、着色剤、光安定剤、熱安定剤、酸化防止剤、防黴剤、難燃剤等の任意成分をさらに含有してもよい。なお、上記任意成分は、イソシアネート成分の貯蔵安定性の観点から、通常第2液組成物に含まれるが、第1液組成物に含まれていてもよい。
(Optional component)
The second liquid composition preferably further contains a catalyst. The second liquid composition may further contain optional components such as a colorant, a light stabilizer, a heat stabilizer, an antioxidant, an antifungal agent, and a flame retardant. In addition, although the said arbitrary component is normally contained in a 2nd liquid composition from a viewpoint of the storage stability of an isocyanate component, it may be contained in the 1st liquid composition.
(触媒)
 第2液組成物に用いる触媒は、第1液組成物のポリイソシアネート成分と第2液組成物のポリオール成分との硬化反応を促進する。上記触媒としては、例えばジラウリル酸ジ-n-ブチル錫、ジラウリル酸ジメチル錫、ジブチル錫オキシド、オクチル酸第一錫等の有機錫化合物や、有機チタン化合物や、有機ジルコニウム化合物や、カルボン酸錫塩や、カルボン酸ビスマス塩や、トリエチレンジアミン等のアミン系触媒などが挙げられる。上記触媒としては、当該造形材料により形成される3次元造形物の変色を抑制する観点から、アミン系触媒以外の触媒が好ましく、有機錫化合物がより好ましく、ジラウリル酸ジメチル錫がさらに好ましい。
(catalyst)
The catalyst used for the second liquid composition accelerates the curing reaction between the polyisocyanate component of the first liquid composition and the polyol component of the second liquid composition. Examples of the catalyst include organic tin compounds such as di-n-butyltin dilaurate, dimethyltin dilaurate, dibutyltin oxide, and stannous octylate, organic titanium compounds, organic zirconium compounds, and carboxylate tin salts. And amine-based catalysts such as bismuth carboxylate and triethylenediamine. As said catalyst, from a viewpoint of suppressing discoloration of the three-dimensional structure formed with the said modeling material, catalysts other than an amine catalyst are preferable, an organic tin compound is more preferable, and dimethyl tin dilaurate is further more preferable.
 第2液組成物が上記触媒を含む場合、第2液組成物における上記触媒の含有量の下限としては、0.005質量%が好ましく、0.02質量%がより好ましい。一方、第2液組成物における触媒の含有量の上限としては、0.2質量%が好ましく、0.1質量%がより好ましく、0.05質量%がさらに好ましく、0.1質量%が特に好ましい。また、当該造形材料が上記触媒を含む場合、当該造形材料における上記触媒の含有量の下限としては、0.003質量%が好ましく、0.006質量%がより好ましく、0.01質量%がさらに好ましい。一方、当該造形材料における上記触媒の含有量の上限としては、0.15質量%が好ましく、0.07質量%がより好ましく、0.05質量%がさらに好ましく、0.025質量%が特に好ましい。上記触媒の含有量が上記下限より小さい場合、第1液組成物及び第2液組成物の混合後の硬化速度が低下し、3次元造形物の製造における生産性が低下するおそれがある。逆に、上記触媒の含有量が上記上限を超える場合、第1液組成物及び第2液組成物の混合後の硬化速度が速くなりすぎ、当該造形材料による3次元造形物の製造が困難となるおそれがある。 When the second liquid composition contains the catalyst, the lower limit of the content of the catalyst in the second liquid composition is preferably 0.005% by mass, and more preferably 0.02% by mass. On the other hand, the upper limit of the content of the catalyst in the second liquid composition is preferably 0.2% by mass, more preferably 0.1% by mass, further preferably 0.05% by mass, and particularly preferably 0.1% by mass. preferable. When the modeling material includes the catalyst, the lower limit of the content of the catalyst in the modeling material is preferably 0.003 mass%, more preferably 0.006 mass%, and further 0.01 mass%. preferable. On the other hand, the upper limit of the content of the catalyst in the modeling material is preferably 0.15% by mass, more preferably 0.07% by mass, further preferably 0.05% by mass, and particularly preferably 0.025% by mass. . When content of the said catalyst is smaller than the said minimum, the cure rate after mixing of a 1st liquid composition and a 2nd liquid composition falls, and there exists a possibility that the productivity in manufacture of a three-dimensional molded item may fall. On the contrary, when the content of the catalyst exceeds the upper limit, the curing rate after mixing the first liquid composition and the second liquid composition becomes too fast, and it is difficult to produce a three-dimensional structure using the modeling material. There is a risk.
 当該造形材料における第1液組成物及び第2液組成物の質量比(第1液組成物:第2液組成物)の下限としては、100:250が好ましく、100:180がより好ましく、100:120がさらに好ましく、100:110が特に好ましく、100:105がさらに特に好ましい。一方、上記質量比の上限としては、100:40が好ましく、100:70がより好ましく、100:90がさらに好ましく、100:95が特に好ましい。このように、上記質量比を上記範囲とすることで、第1液組成物及び第2液組成物をより均一に混合できる。 The lower limit of the mass ratio of the first liquid composition and the second liquid composition (first liquid composition: second liquid composition) in the modeling material is preferably 100: 250, more preferably 100: 180, and 100. : 120 is more preferable, 100: 110 is particularly preferable, and 100: 105 is further particularly preferable. On the other hand, the upper limit of the mass ratio is preferably 100: 40, more preferably 100: 70, still more preferably 100: 90, and particularly preferably 100: 95. Thus, a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly by making the said mass ratio into the said range.
[第2液組成物の製造方法]
 第2液組成物は、例えば長鎖ポリオール、長鎖ポリアミン又はこれらの組み合わせと、鎖延長剤、架橋剤又はこれらの組み合わせと、任意成分とを攪拌混合する方法等により得ることができる。この場合、攪拌時間としては、例えば30秒以上3分以下とすることができる。
[Method for producing second liquid composition]
The second liquid composition can be obtained by, for example, a method of stirring and mixing a long-chain polyol, a long-chain polyamine, or a combination thereof, a chain extender, a crosslinking agent, or a combination thereof, and an optional component. In this case, the stirring time can be, for example, 30 seconds or more and 3 minutes or less.
 第1液組成物のプレポリマーがウレタンプレポリマー、第2液組成物のソフトセグメント成分が長鎖ポリオール、第2液組成物のハードセグメント成分が鎖延長剤としての短鎖ジオール及び架橋剤としての短鎖トリオールであるとよい。このように、第1液組成物のプレポリマーがウレタンプレポリマー、第2液組成物のソフトセグメント成分が長鎖ポリオール、第2液組成物のハードセグメント成分が鎖延長剤としての短鎖ジオール及び架橋剤としての短鎖トリオールであることで、当該造形材料によりポリウレタンを主成分とする3次元造形物を容易かつ確実に製造できる。 The prepolymer of the first liquid composition is a urethane prepolymer, the soft segment component of the second liquid composition is a long chain polyol, the hard segment component of the second liquid composition is a short chain diol as a chain extender and a crosslinker It is good that it is a short chain triol. Thus, the prepolymer of the first liquid composition is a urethane prepolymer, the soft segment component of the second liquid composition is a long chain polyol, the hard segment component of the second liquid composition is a short chain diol as a chain extender, and By being a short-chain triol as a cross-linking agent, a three-dimensional structure having polyurethane as a main component can be easily and reliably manufactured using the modeling material.
 第1液組成物のプレポリマーがウレタンプレポリマー、第2液組成物のソフトセグメント成分が長鎖ポリオール及び長鎖ポリアミン、第2液組成物のハードセグメント成分が鎖延長剤としての短鎖ジアミンであるとよい。このように、第1液組成物のプレポリマーがウレタンプレポリマー、第2液組成物のソフトセグメント成分が長鎖ポリオール及び長鎖ポリアミン、第2液組成物のハードセグメント成分が鎖延長剤としての短鎖ジアミンであることで、当該造形材料によりポリウレタンウレアを主成分とする3次元造形物を容易かつ確実に製造できる。 The prepolymer of the first liquid composition is a urethane prepolymer, the soft segment component of the second liquid composition is a long chain polyol and a long chain polyamine, and the hard segment component of the second liquid composition is a short chain diamine as a chain extender. There should be. Thus, the prepolymer of the first liquid composition is a urethane prepolymer, the soft segment component of the second liquid composition is a long chain polyol and a long chain polyamine, and the hard segment component of the second liquid composition is a chain extender. By being a short-chain diamine, a three-dimensional structure having polyurethane urea as a main component can be easily and reliably manufactured with the modeling material.
<利点>
 当該造形材料は、第1液組成物及び第2液組成物を混合し易いため、後述する当該3次元造形物の製造方法に好適に用いることができる。
<Advantages>
Since the modeling material is easy to mix the first liquid composition and the second liquid composition, the modeling material can be suitably used in a method for manufacturing the three-dimensional structure to be described later.
[第2実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合によって擬似プレポリマー法により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で、第1液組成物及び第2液組成物を3Dプリンタで吐出する直前に混合する。
[Second Embodiment]
<Method for manufacturing a three-dimensional structure>
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition. In the sequential laminating step, the first liquid composition and the second liquid composition are discharged by a 3D printer. Mix immediately before starting.
(3Dプリンタ)
 図1に示すように、当該3次元造形物の製造方法では、上面が平坦な支持体である支持台A1と、この支持台A1の上面と対向するように鉛直方向下向きに配設されている混合液吐出ノズルA2とを主に備えるインクジェット方式の3Dプリンタを用いる。
(3D printer)
As shown in FIG. 1, in the manufacturing method of the three-dimensional structure, the support base A <b> 1 that is a support having a flat upper surface is disposed downward in the vertical direction so as to face the upper surface of the support base A <b> 1. An ink jet 3D printer mainly including the mixed liquid discharge nozzle A2 is used.
[順次積層工程]
 本工程で第1液組成物及び第2液組成物を吐出する直前に混合する方法としては、特に限定されないが、例えば第1液組成物及び第2液組成物をそれぞれの専用タンク等から混合液吐出ノズルA2の吐出部に供給する各配管を混合液吐出ノズルA2の内部で合流させる方法等が挙げられる。これにより、上記3Dプリンタの混合液吐出ノズルA2から吐出される直前に第1液組成物及び第2液組成物が混合する。
[Sequential lamination process]
The method of mixing immediately before discharging the first liquid composition and the second liquid composition in this step is not particularly limited. For example, the first liquid composition and the second liquid composition are mixed from their dedicated tanks or the like. Examples include a method of joining pipes supplied to the discharge portion of the liquid discharge nozzle A2 inside the mixed liquid discharge nozzle A2. Accordingly, the first liquid composition and the second liquid composition are mixed immediately before being discharged from the mixed liquid discharge nozzle A2 of the 3D printer.
 本工程における第1液組成物及び第2液組成物の混合質量比(第1液組成物:第2液組成物)、つまり第1液組成物及び第2液組成物の吐出量の質量比の下限としては、100:250が好ましく、100:180がより好ましく、100:120がさらに好ましく、100:110が特に好ましく、100:105がさらに特に好ましい。一方、上記質量比の上限としては、100:40が好ましく、100:70がより好ましく、100:90がさらに好ましく、100:95が特に好ましい。このように、第1液組成物及び第2液組成物の吐出量の質量比を上記範囲とすることで、その混合体積比をより1:1に近づけることができる。これにより、第1液組成物及び第2液組成物をより均一に混合することができる。 Mixing mass ratio of the first liquid composition and the second liquid composition in this step (first liquid composition: second liquid composition), that is, a mass ratio of the discharge amounts of the first liquid composition and the second liquid composition Is preferably 100: 250, more preferably 100: 180, still more preferably 100: 120, particularly preferably 100: 110, and still more preferably 100: 105. On the other hand, the upper limit of the mass ratio is preferably 100: 40, more preferably 100: 70, still more preferably 100: 90, and particularly preferably 100: 95. Thus, the mixing volume ratio can be made closer to 1: 1 by setting the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in the above range. Thereby, a 1st liquid composition and a 2nd liquid composition can be mixed more uniformly.
 本工程における第1液組成物及び第2液組成物の吐出量の質量比は、造形中に略一定に保つことが好ましい。ここで上記吐出量の質量比が「略一定」とは、上記吐出量の質量比の最大値を100:R、最小値を100:Rとしたときに、R/Rが0.95以上であることをいう。 The mass ratio of the discharge amounts of the first liquid composition and the second liquid composition in this step is preferably kept substantially constant during modeling. Here, the mass ratio of the discharge amount is “substantially constant” when R A / R B is 0 when the maximum value of the mass ratio of the discharge amount is 100: R A and the minimum value is 100: R B. .95 or more.
 第1液組成物及び第2液組成物の混合後の80℃でのゲル化時間の下限としては、3秒が好ましく、5秒がより好ましい。一方、上記ゲル化時間の上限としては、10秒が好ましく、8秒がより好ましい。上記ゲル化時間が上記下限より小さい場合、第1液組成物及び第2液組成物が十分に混合する前に硬化が始まり、その結果、混合の均一性が低下するおそれがある。また、第1液組成物及び第2液組成物を混合してから混合液吐出ノズルA2で吐出する場合に、この混合液吐出ノズルA2が詰まり易くなるおそれもある。逆に、上記ゲル化時間が上記上限を超える場合、3次元造形物の製造における生産性が低下するおそれがある。 The lower limit of the gelation time at 80 ° C. after mixing the first liquid composition and the second liquid composition is preferably 3 seconds and more preferably 5 seconds. On the other hand, the upper limit of the gelation time is preferably 10 seconds and more preferably 8 seconds. When the gelation time is smaller than the lower limit, curing starts before the first liquid composition and the second liquid composition are sufficiently mixed, and as a result, the uniformity of mixing may be reduced. In addition, when the first liquid composition and the second liquid composition are mixed and then discharged by the mixed liquid discharge nozzle A2, the mixed liquid discharge nozzle A2 may be easily clogged. On the contrary, when the gelation time exceeds the upper limit, the productivity in the production of the three-dimensional structure may be reduced.
 本工程では、混合した第1液組成物及び第2液組成物の混合液を混合直後に混合液吐出ノズルA2で吐出する。具体的には、混合液吐出ノズルA2から支持台A1の上面に第1液組成物及び第2液組成物の混合液滴X1を吐出しながら、支持台A1を移動させる。その結果、支持台A1の上面に混合液滴X1が着弾し、この着弾した混合液滴X1が硬化することで合成樹脂層Y1が形成される。 In this step, the mixed liquid of the first liquid composition and the second liquid composition mixed is discharged from the mixed liquid discharge nozzle A2 immediately after mixing. Specifically, the support base A1 is moved while discharging the mixed liquid droplet X1 of the first liquid composition and the second liquid composition from the mixed liquid discharge nozzle A2 to the upper surface of the support base A1. As a result, the mixed droplet X1 is landed on the upper surface of the support base A1, and the synthetic resin layer Y1 is formed by curing the landed mixed droplet X1.
 本工程で、形成する3次元造形物の断面形状に一致する平面形状を有する合成樹脂層Y1を順次積層することにより、上記3次元造形物を形成できる。形成する合成樹脂層Y1の形状は、例えばCAD(Computer Aided Design)データ等に基づいて作成した上記3次元造形物の断面形状データに基づき、支持台A1の移動と、混合液吐出ノズルA2からの混合液滴X1の吐出タイミングとを制御することで調整される。 In this step, the three-dimensional structure can be formed by sequentially laminating the synthetic resin layer Y1 having a planar shape that matches the cross-sectional shape of the three-dimensional structure to be formed. The shape of the synthetic resin layer Y1 to be formed is based on the cross-sectional shape data of the three-dimensional structure created based on, for example, CAD (Computer Aided Design) data, and the movement of the support base A1 and the mixed liquid discharge nozzle A2 It is adjusted by controlling the discharge timing of the mixed droplet X1.
 本工程で混合液吐出ノズルA2から吐出する混合液滴X1の平均体積の下限としては、1nLが好ましく、5nLがより好ましい。一方、上記平均体積の上限としては、20μLが好ましく、1μLがより好ましい。上記平均体積が上記下限より小さい場合、静電気等の影響で混合液滴X1の着弾位置の制御が困難となり、その結果、形成される3次元造形物の造形精度が低下するおそれがある。逆に、上記平均体積が上記上限を超える場合、合成樹脂層Y1の形状が粗雑になり、その結果、形成される3次元造形物の造形精度が低下するおそれがある。 The lower limit of the average volume of the mixed droplet X1 discharged from the mixed liquid discharge nozzle A2 in this step is preferably 1 nL, and more preferably 5 nL. On the other hand, the upper limit of the average volume is preferably 20 μL, and more preferably 1 μL. When the average volume is smaller than the lower limit, it is difficult to control the landing position of the mixed droplet X1 due to the influence of static electricity or the like, and as a result, the modeling accuracy of the formed three-dimensional model may be lowered. On the other hand, when the average volume exceeds the upper limit, the shape of the synthetic resin layer Y1 becomes rough, and as a result, the modeling accuracy of the formed three-dimensional structure may be lowered.
 本工程における混合液滴X1の吐出間隔の下限としては、2msecが好ましく、5msecがより好ましい。一方、上記吐出間隔の上限としては、50msecが好ましく、20msecがより好ましい。上記吐出間隔が上記下限より小さい場合、複数の混合液滴X1が吐出後に合体することで着弾位置の制御が困難となり、その結果、形成される3次元造形物の造形精度が低下するおそれがある。逆に、上記吐出間隔が上記上限を超える場合、3次元造形物の製造における生産性が低下するおそれがある。 The lower limit of the discharge interval of the mixed droplet X1 in this step is preferably 2 msec, and more preferably 5 msec. On the other hand, the upper limit of the discharge interval is preferably 50 msec, and more preferably 20 msec. When the discharge interval is smaller than the lower limit, it is difficult to control the landing position by combining the plurality of mixed droplets X1 after discharge, and as a result, the modeling accuracy of the formed three-dimensional structure may be lowered. . On the other hand, when the discharge interval exceeds the upper limit, productivity in manufacturing a three-dimensional structure may be reduced.
 混合液吐出ノズルA2のノズル径の下限としては、0.01mmが好ましく、0.05mmがより好ましい。一方、混合液吐出ノズルA2のノズル径の上限としては、0.5mmが好ましく、0.3mmがより好ましい。上記ノズル径が上記下限より小さい場合、吐出する混合液滴X1の平均体積が小さくなり過ぎることで3次元造形物の製造における生産性が低下するおそれや、混合液滴X1の吐出圧力が高くなり過ぎることで着弾後に周囲に飛散し、形成される3次元造形物の造形精度が低下するおそれがある。逆に、上記ノズル径が上記上限を超える場合、吐出する混合液滴X1の平均体積が大きくなり過ぎることで合成樹脂層Y1の形状が粗雑になり、その結果、形成される3次元造形物の造形精度が低下するおそれがある。 The lower limit of the nozzle diameter of the mixed liquid discharge nozzle A2 is preferably 0.01 mm, and more preferably 0.05 mm. On the other hand, the upper limit of the nozzle diameter of the mixed liquid discharge nozzle A2 is preferably 0.5 mm, and more preferably 0.3 mm. When the nozzle diameter is smaller than the above lower limit, the average volume of the mixed droplet X1 to be discharged becomes too small, which may reduce the productivity in manufacturing the three-dimensional structure, and the discharge pressure of the mixed droplet X1 increases. If it passes, it will scatter to the circumference after landing, and there is a possibility that the modeling accuracy of the formed three-dimensional model may fall. On the contrary, when the nozzle diameter exceeds the upper limit, the average volume of the mixed droplet X1 to be discharged becomes too large, so that the shape of the synthetic resin layer Y1 becomes rough. As a result, the three-dimensional structure to be formed is formed. There is a possibility that the modeling accuracy is lowered.
 混合液滴X1の吐出圧力の下限としては、0.02MPaが好ましく、0.05MPaがより好ましい。一方、混合液滴X1の吐出圧力の上限としては、0.5MPaが好ましく、0.2MPaがより好ましい。混合液滴X1の吐出圧力が上記下限より小さい場合、静電気等によって混合液滴X1の着弾位置に誤差が生じ易くなり、その結果、形成される3次元造形物の造形精度が低下するおそれがある。逆に、混合液滴X1の吐出圧力が上記上限を超える場合、混合液滴X1が着弾後に周囲に飛散し、形成される3次元造形物の造形精度が低下するおそれがある。 The lower limit of the discharge pressure of the mixed droplet X1 is preferably 0.02 MPa, more preferably 0.05 MPa. On the other hand, the upper limit of the discharge pressure of the mixed droplet X1 is preferably 0.5 MPa, and more preferably 0.2 MPa. When the discharge pressure of the mixed droplet X1 is smaller than the lower limit, an error is likely to occur in the landing position of the mixed droplet X1 due to static electricity or the like, and as a result, the modeling accuracy of the formed three-dimensional structure may be lowered. . On the contrary, when the discharge pressure of the mixed droplet X1 exceeds the upper limit, the mixed droplet X1 may scatter around after landing and the modeling accuracy of the formed three-dimensional structure may be lowered.
 本工程において吐出する第1液組成物及び第2液組成物の液温としては、例えば20℃以上60℃以下とすることができる。また、支持台A1の温度としては、例えば15℃以上150℃以下とすることができる。 The liquid temperature of the first liquid composition and the second liquid composition discharged in this step can be set to 20 ° C. or more and 60 ° C. or less, for example. Moreover, as temperature of support stand A1, it can be set as 15 to 150 degreeC, for example.
 本工程で形成する合成樹脂層Y1の1層の平均厚さとしては、例えば0.05mm以上2mm以下とすることができる。 The average thickness of one layer of the synthetic resin layer Y1 formed in this step can be, for example, 0.05 mm or more and 2 mm or less.
<利点>
 当該3次元造形物の製造方法は、擬似プレポリマー法により反応する第1液組成物及び第2液組成物を用いることで、第1液組成物及び第2液組成物の混合体積比を1:1に比較的近い範囲とすることができるため、第1液組成物及び第2液組成物を均一に混合して確実に硬化させることができる。その結果、当該3次元造形物の製造方法は、3次元造形物を容易かつ確実に製造できる。そのため、当該3次元造形物の製造方法は、靴底、自動二輪車や自転車のグリップ、メガネ、マスク、装飾品などのパーソナルユースの商品や、義肢、トレーニング器具等に用いる3次元造形物の製造に好適に用いることができる。
<Advantages>
The manufacturing method of the three-dimensional structure uses a first liquid composition and a second liquid composition that react with each other by a pseudo prepolymer method, so that the mixing volume ratio of the first liquid composition and the second liquid composition is 1. Since it can be in a range relatively close to 1, the first liquid composition and the second liquid composition can be uniformly mixed and reliably cured. As a result, the manufacturing method of the three-dimensional structure can easily and reliably manufacture the three-dimensional structure. Therefore, the manufacturing method of the three-dimensional structure is to manufacture a three-dimensional structure used for personal use products such as shoe soles, grips of motorcycles and bicycles, glasses, masks, ornaments, artificial limbs, training equipment, and the like. It can be used suitably.
 また、当該3次元造形物の製造方法は、後述する第3実施形態の製造方法と比較し、第1液組成物及び第2液組成物をラインミキサー等で十分に混合してから混合液吐出ノズルA2で吐出できるため、より確実に3次元造形物を製造できる。さらに、当該3次元造形物の製造方法は、後述する第3実施形態の製造方法と比較し、混合液滴X1の平均体積を小さくし易いため、形成される3次元造形物の造形精度をより向上できる。 In addition, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the third embodiment to be described later, and after the first liquid composition and the second liquid composition are sufficiently mixed by a line mixer or the like, the mixed liquid is discharged. Since it can discharge with nozzle A2, a three-dimensional structure can be manufactured more reliably. Furthermore, since the manufacturing method of the three-dimensional structure is easier to reduce the average volume of the mixed droplet X1 than the manufacturing method of the third embodiment described later, the modeling accuracy of the formed three-dimensional structure is more improved. Can be improved.
[第3実施形態]
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合によって擬似プレポリマー法により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で、第1液組成物及び第2液組成物を吐出直後に混合する。
[Third Embodiment]
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition, and the first liquid composition and the second liquid composition are mixed immediately after discharging in the sequential laminating step. To do.
 すなわち、当該3次元造形物の製造方法は、第2実施形態の製造方法において、第1液組成物及び第2液組成物を吐出する直前に混合する替わりに、吐出直後に混合することを特徴とする。 That is, the manufacturing method of the three-dimensional structure is characterized in that in the manufacturing method of the second embodiment, instead of mixing immediately before discharging the first liquid composition and the second liquid composition, mixing is performed immediately after discharging. And
(3Dプリンタ)
 図2に示すように、当該3次元造形物の製造方法では、上面が平坦な支持台A11と、この支持台A11の上方に配設される第1液吐出ノズルA12a及び第2液吐出ノズルA12bとを主に備えるインクジェット方式の3Dプリンタを用いる。第1液吐出ノズルA12a及び第2液吐出ノズルA12bは、それぞれの中心軸を通る仮想直線が支持台A11直上で合流するように鉛直方向斜め下向きに配設されている。
(3D printer)
As shown in FIG. 2, in the manufacturing method of the three-dimensional structure, the support base A11 having a flat upper surface, and the first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b disposed above the support base A11. Inkjet 3D printers are mainly used. The first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b are arranged obliquely downward in the vertical direction so that virtual straight lines passing through the respective central axes merge immediately above the support base A11.
[順次積層工程]
 本工程では、第1液組成物を第1液吐出ノズルA12aで吐出し、第2液組成物を第2液吐出ノズルA12bで吐出する。具体的には、第1液吐出ノズルA12a及び第2液吐出ノズルA12bから第1液組成物の液滴X11a及び第2液組成物の液滴X11bを支持台A11の上面に吐出しながら、支持台A11を移動させる。吐出された第1液組成物の液滴X11a及び第2液組成物の液滴X11bは、支持台A11の上面の同一箇所に同時に着弾することで合体して混合液滴X11cとなり、この混合液滴X11cが硬化することで合成樹脂層Y11を形成する。
[Sequential lamination process]
In this step, the first liquid composition is discharged by the first liquid discharge nozzle A12a, and the second liquid composition is discharged by the second liquid discharge nozzle A12b. Specifically, the first liquid discharge nozzle A12a and the second liquid discharge nozzle A12b are supported while discharging the first liquid composition droplet X11a and the second liquid composition droplet X11b onto the upper surface of the support base A11. The table A11 is moved. The discharged liquid droplet X11a of the first liquid composition and the liquid droplet X11b of the second liquid composition are combined at the same spot on the upper surface of the support base A11 to form a mixed liquid droplet X11c. The synthetic resin layer Y11 is formed by curing the droplet X11c.
 本工程では、第2実施形態の製造方法と同様に、形成する3次元造形物の断面形状に一致する平面形状を有する合成樹脂層Y11を順次積層することにより、上記3次元造形物を形成できる。 In this step, as in the manufacturing method of the second embodiment, the three-dimensional structure can be formed by sequentially laminating the synthetic resin layer Y11 having a planar shape that matches the cross-sectional shape of the three-dimensional structure to be formed. .
 本工程で形成される混合液滴X11cの平均体積としては、例えば第2実施形態の製造方法において混合液吐出ノズルA2から吐出する混合液滴X1の平均体積と同様とすることができる。 The average volume of the mixed droplet X11c formed in this step can be the same as the average volume of the mixed droplet X1 discharged from the mixed liquid discharge nozzle A2 in the manufacturing method of the second embodiment, for example.
 当該3次元造形物の製造方法における他の条件や用途は、第2実施形態の製造方法における各条件と同様とすることができる。 Other conditions and applications in the manufacturing method of the three-dimensional structure can be the same as the conditions in the manufacturing method of the second embodiment.
<利点>
 当該3次元造形物の製造方法は、第2実施形態の製造方法と比較し、反応性に優れる第1液組成物及び第2液組成物を使用してもノズルの詰まりを抑制できる。
<Advantages>
Compared with the manufacturing method of the second embodiment, the method for manufacturing the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition that are excellent in reactivity are used.
 また、当該3次元造形物の製造方法は、後述するその他の実施形態における空中で第1液組成物の液滴及び第2液組成物を衝突させて合体させる製造方法と比較し、飛沫を抑制できる。 Moreover, the manufacturing method of the said three-dimensional molded item suppresses a droplet compared with the manufacturing method which collides the droplet of a 1st liquid composition and the 2nd liquid composition in the air in other embodiment mentioned later in the air. it can.
[第4実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の製造方法であって、混合によって擬似プレポリマー法により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で、第1液組成物及び第2液組成物を吐出する直前に混合する。また、順次積層工程で、第1液組成物及び第2液組成物の吐出量を変化させることで合成樹脂層の密度を部位毎に変化させ、これにより部位毎に物性が異なる3次元造形物を製造する。
[Fourth Embodiment]
<Method for manufacturing a three-dimensional structure>
The manufacturing method of the three-dimensional structure is a method of manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by a pseudo prepolymer method by mixing. A step (sequential lamination step) of sequentially laminating a synthetic resin layer on the support by discharging the one-liquid composition and the second liquid composition, and in the sequential lamination step, the first liquid composition and the second liquid composition Mix immediately before dispensing. Also, in the sequential laminating process, the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition, and thereby the three-dimensional structure having different physical properties for each part. Manufacturing.
(3Dプリンタ)
 図3に示すように、当該3次元造形物の製造方法では、上面が平坦な支持体である支持台A21と、この支持台A21の上面と対向するように鉛直方向下向きに配設される混合液吐出ノズルA22とを主に備えるインクジェット方式の3Dプリンタを用いる。
(3D printer)
As shown in FIG. 3, in the manufacturing method of the three-dimensional structure, the support base A21 that is a support having a flat upper surface and a mixture that is disposed downward in the vertical direction so as to face the upper surface of the support base A21. An ink jet 3D printer mainly including the liquid discharge nozzle A22 is used.
[順次積層工程]
 本工程では、第1液組成物及び第2液組成物の混合液を混合直後に3Dプリンタの混合液吐出ノズルA22で吐出し、支持台A21上に合成樹脂層Y21を順次積層する。具体的には、混合液吐出ノズルA22から支持台A21の上面に第1液組成物及び第2液組成物の混合液滴X21を吐出しながら、支持台A21を移動させる。その結果、支持台A21の上面に混合液滴X21が着弾し、この着弾した混合液滴X21が硬化することで合成樹脂層Y21が形成される。次に、形成された合成樹脂層Y21上に、同様の操作で混合液滴X21の吐出を行い、複数の合成樹脂層を順次積層する。
[Sequential lamination process]
In this step, the mixed liquid of the first liquid composition and the second liquid composition is discharged immediately after mixing by the mixed liquid discharge nozzle A22 of the 3D printer, and the synthetic resin layer Y21 is sequentially stacked on the support base A21. Specifically, the support base A21 is moved while discharging the mixed droplet X21 of the first liquid composition and the second liquid composition from the mixed liquid discharge nozzle A22 onto the upper surface of the support base A21. As a result, the mixed liquid droplet X21 is landed on the upper surface of the support base A21, and the synthetic liquid layer Y21 is formed by curing the landed mixed liquid droplet X21. Next, a mixed droplet X21 is discharged on the formed synthetic resin layer Y21 by the same operation, and a plurality of synthetic resin layers are sequentially stacked.
 本工程では、途中で吐出ピッチを低ピッチ、中ピッチ又は高ピッチの3段階で変化させることにより、形成される合成樹脂層Y21の密度を部位毎に変化させる。具体的には、合成樹脂層Y21の形成時のある段階では、吐出ピッチを低くすることで第1液組成物及び第2液組成物を十分に吐出し、空隙が形成されていない高密度の低ピッチ領域Y21aを形成する。別の段階では、低ピッチ領域Y21aの形成時よりも吐出ピッチを増大することで第1液組成物及び第2液組成物の吐出量を低下させ、多少の空隙が形成されている中密度の中ピッチ領域Y21bを形成する。さらに別の段階では、中ピッチ領域Y21bの形成時よりも吐出ピッチを増大させることで第1液組成物及び第2液組成物の吐出量をさらに低下させ、多数の空隙が形成された低密度の高ピッチ領域Y21cを形成する。このように、合成樹脂層Y21の一部に多孔質領域である中ピッチ領域Y21b及び高ピッチ領域Y21cを形成する。これにより、低ピッチ領域Y21a、中ピッチ領域Y21b及び高ピッチ領域Y21cという密度及び空隙率の異なる3種類の領域を有する合成樹脂層Y21を形成できる。ここで「吐出ピッチ」とは、平面視において支持台A21上に着弾した複数の混合液滴X21の中心の平均間隔をいう。 In this step, the density of the synthetic resin layer Y21 to be formed is changed for each part by changing the discharge pitch in three stages of low pitch, medium pitch or high pitch in the middle. Specifically, at a certain stage during the formation of the synthetic resin layer Y21, the first liquid composition and the second liquid composition are sufficiently discharged by lowering the discharge pitch, and a high density in which no void is formed. The low pitch area Y21a is formed. In another stage, the discharge pitch of the first liquid composition and the second liquid composition is decreased by increasing the discharge pitch as compared with the formation of the low pitch region Y21a, and the medium density with some voids formed. The middle pitch region Y21b is formed. In yet another stage, the discharge amount of the first liquid composition and the second liquid composition is further reduced by increasing the discharge pitch as compared with the formation of the middle pitch region Y21b, and a low density in which a large number of voids are formed. High pitch region Y21c is formed. Thus, the medium pitch region Y21b and the high pitch region Y21c, which are porous regions, are formed in a part of the synthetic resin layer Y21. Thereby, the synthetic resin layer Y21 having three types of regions having different densities and void ratios, that is, the low pitch region Y21a, the middle pitch region Y21b, and the high pitch region Y21c can be formed. Here, the “ejection pitch” means an average interval between the centers of the plurality of mixed droplets X21 landed on the support base A21 in a plan view.
 このようにして形成した3次元造形物の一例を図4に示す。この3次元造形物は、合成樹脂部Zと、この合成樹脂部Z中に分散する空孔Hとを備え、低ピッチ領域Y21aに由来する無孔質領域Zaと、中ピッチ領域Y21bに由来する低空隙率領域Zbと、高ピッチ領域Y21cに由来する高空隙率領域Zcとからなる空隙率の異なる3種類の領域により構成されている。この3次元造形物の各領域は、密度及び空隙率の違いにより、引張特性、耐摩耗性等の物性が異なる。具体的には、密度が低い領域、すなわち空隙率の高い領域ほど、引張特性及び耐摩耗性が低下する。そのため、上記3次元造形物は、構成材料は同一であるが、部位毎に異なる物性を有する。具体的には、上記3次元造形物の引張特性及び耐摩耗性は、無孔質領域Zaにおいて最大となり、高空隙率領域Zcにおいて最小となり、低空隙率領域Zbでは無孔質領域Za及び高空隙率領域Zcの中間となる。 An example of the three-dimensional structure formed in this way is shown in FIG. The three-dimensional structure includes a synthetic resin portion Z and pores H dispersed in the synthetic resin portion Z, and is derived from a nonporous region Za derived from the low pitch region Y21a and a medium pitch region Y21b. It is comprised by three types of area | regions from which the porosity differs from the low porosity area | region Zb and the high porosity area | region Zc originating in the high pitch area | region Y21c. Each region of the three-dimensional structure has different physical properties such as tensile properties and wear resistance due to differences in density and porosity. Specifically, the tensile properties and the wear resistance decrease in a region having a lower density, that is, a region having a higher porosity. Therefore, the three-dimensional structure has the same constituent material but different physical properties for each part. Specifically, the tensile properties and wear resistance of the three-dimensional structure are maximized in the nonporous region Za, minimized in the high porosity region Zc, and non-porous region Za and high in the low porosity region Zb. It is in the middle of the porosity region Zc.
 但し、図3に示す一工程は当該3次元造形物の製造方法において第1液組成物及び第2液組成物の吐出量を変化させる方法の一例に過ぎない。具体的には、図3に示す一工程では吐出ピッチを変化させることで第1液組成物及び第2液組成物の吐出量を変化させたが、吐出する液滴のサイズを変化させることで第1液組成物及び第2液組成物の吐出量を変化させてもよい。また、図3に示す一工程では、第1液組成物及び第2液組成物の吐出量を3段階に変化させることで密度及び空隙率の異なる3種類の領域を形成したが、上記吐出量は2段階に変化させてもよく、4段階以上に変化させてもよい。また、上記吐出量を連続的に変化させることにより、物性が連続的に変化する傾斜機能材料を形成することもできる。 However, the one step shown in FIG. 3 is merely an example of a method of changing the discharge amount of the first liquid composition and the second liquid composition in the manufacturing method of the three-dimensional structure. Specifically, in one step shown in FIG. 3, the discharge amount of the first liquid composition and the second liquid composition was changed by changing the discharge pitch, but the size of the liquid droplets to be discharged was changed. The discharge amount of the first liquid composition and the second liquid composition may be changed. Further, in one step shown in FIG. 3, three types of regions having different densities and porosity are formed by changing the discharge amounts of the first liquid composition and the second liquid composition in three stages. May be changed in two steps, or may be changed in four or more steps. Moreover, the functionally gradient material whose physical properties continuously change can be formed by continuously changing the discharge amount.
 さらに、図3に示す一工程では、合成樹脂層Y21の平面方向(図3中の左右方向)において密度及び空隙率を変化させたが、合成樹脂層Y21の厚さ方向(図3中の上下方向)において密度及び空隙率を変化させてもよい。さらに、図3に示す一工程では、合成樹脂層Y21の一部のみに多孔質領域を形成したが、合成樹脂層Y21の全体に多孔質領域を形成してもよい。さらに、図4では3次元造形物の空孔Hの形状が断面略円形であるが、上記空孔の形状は特に限定されず、例えば球状、楕円球状、直方体状、円柱状、多角柱等とすることができる。また、当該3次元造形物の製造方法では、例えば正六角柱状の空孔を等間隔で導入することでハニカム構造を形成してもよい。さらに、当該3次元造形物の製造方法では、導入する空孔Hの径を変動させることで空隙率を変化させてもよく、3次元造形物の体積当たりの空孔Hの数を変動させることで空隙率を変化させてもよい。 Further, in one step shown in FIG. 3, the density and the porosity are changed in the planar direction of the synthetic resin layer Y21 (left and right direction in FIG. 3), but the thickness direction of the synthetic resin layer Y21 (up and down in FIG. 3). Direction) and the density and porosity may be varied. Further, in one step shown in FIG. 3, the porous region is formed only on a part of the synthetic resin layer Y21. However, the porous region may be formed on the entire synthetic resin layer Y21. Furthermore, in FIG. 4, the shape of the hole H of the three-dimensional structure is substantially circular in cross section, but the shape of the hole is not particularly limited. For example, a spherical shape, an elliptical shape, a rectangular parallelepiped shape, a cylindrical shape, a polygonal column, and the like can do. Moreover, in the manufacturing method of the said three-dimensional structure, for example, you may form a honeycomb structure by introduce | transducing a regular hexagonal column-shaped hole at equal intervals. Furthermore, in the manufacturing method of the three-dimensional structure, the porosity may be changed by changing the diameter of the holes H to be introduced, and the number of holes H per volume of the three-dimensional structure is changed. The porosity may be changed.
 本工程における吐出ピッチの下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、上記吐出ピッチの上限としては、1.2mmが好ましく、0.9mmがより好ましい。上記吐出ピッチを上記範囲とすることで、3次元造形物の強度を確保しつつ物性を確実に変化させることができる。上記吐出ピッチが上記上限を超える場合、形成される3次元造形物の強度が不十分となるおそれがある。 The lower limit of the discharge pitch in this step is preferably 0.1 mm, and more preferably 0.2 mm. On the other hand, the upper limit of the discharge pitch is preferably 1.2 mm, more preferably 0.9 mm. By making the said discharge pitch into the said range, a physical property can be changed reliably, ensuring the intensity | strength of a three-dimensional molded item. When the said discharge pitch exceeds the said upper limit, there exists a possibility that the intensity | strength of the three-dimensional structure formed may become inadequate.
 本工程における吐出ピッチの変化倍率の下限としては、2倍が好ましく、2.5倍がより好ましい。一方、上記吐出ピッチの変化倍率の上限としては、5倍が好ましく、4倍がより好ましい。上記吐出ピッチの変化倍率が上記下限より小さい場合、形成される3次元造形物の物性を部位毎に十分に変化させることができないおそれがある。逆に、上記吐出ピッチの変化倍率が上記上限を超える場合、形成される3次元造形物の一部の密度が極端に低くなり、その部位を起点とする破壊が生じ易くなるおそれがある。ここで「吐出ピッチの変化倍率」とは、造形中の最大吐出ピッチ[mm]を最小吐出ピッチ[mm]で除した値をいう。 The lower limit of the discharge pitch change magnification in this step is preferably 2 times, more preferably 2.5 times. On the other hand, the upper limit of the discharge pitch change magnification is preferably 5 times, and more preferably 4 times. When the change rate of the said discharge pitch is smaller than the said minimum, there exists a possibility that the physical property of the three-dimensional structure to be formed cannot fully be changed for every site | part. Conversely, when the change rate of the discharge pitch exceeds the upper limit, the density of a part of the formed three-dimensional structure becomes extremely low, and there is a possibility that breakage starting from that part is likely to occur. Here, “change rate of discharge pitch” means a value obtained by dividing the maximum discharge pitch [mm] during modeling by the minimum discharge pitch [mm].
 本工程では、多孔質領域の空隙率を0体積%超45体積%以下の範囲で変化させるとよい。上記空隙率が上記上限を超える場合、3次元造形物の強度が部分的に不十分となるおそれがある。 In this step, the porosity of the porous region may be changed in the range of more than 0 volume% and 45 volume% or less. When the porosity exceeds the upper limit, the strength of the three-dimensional structure may be partially insufficient.
 本工程では、形成される3次元造形物の見かけの密度を0.5g/cm以上1.2g/cm以下の範囲で変化させるとよい。上記空隙率が上記下限より小さい場合、3次元造形物の強度が部分的に不十分となるおそれがある。ここで「見かけの密度」とは、3次元造形物の任意の10箇所からそれぞれ100mgの試料を採取し、この試料の寸法から算出される見かけの体積[mm]で質量(100mg)を除すことで算出される値を意味する。なお、上記3次元造形物の任意の10箇所からそれぞれ100mgの試料を採取できない場合、採取可能な最大質量の試料を用いるものとする。 In this step, the apparent density of the three-dimensional structure to be formed may be changed in the range of 0.5 g / cm 3 to 1.2 g / cm 3 . When the porosity is smaller than the lower limit, the strength of the three-dimensional structure may be partially insufficient. Here, “apparent density” means that a sample of 100 mg is taken from any 10 locations of a three-dimensional structure, and the mass (100 mg) is divided by the apparent volume [mm 3 ] calculated from the dimensions of this sample. Means a value calculated by In addition, when a sample of 100 mg cannot be collected from any 10 locations of the three-dimensional structure, the sample with the maximum mass that can be collected is used.
 また、形成される3次元造形物の平均空隙率の下限としては、1体積%が好ましく、5体積%がより好ましい。一方、上記平均空隙率の上限としては、30体積%が好ましく、20体積%がより好ましい。上記平均空隙率が上記下限より小さい場合、上記3次元造形物の物性の部位毎の変化幅が小さくなるおそれがある。逆に、上記平均空隙率が上記上限を超える場合、上記3次元造形物の強度が不十分となるおそれがある。ここで「平均空隙率」とは、10箇所で測定した上記空隙率の算術平均値を意味する。 Further, the lower limit of the average porosity of the three-dimensional structure to be formed is preferably 1% by volume, and more preferably 5% by volume. On the other hand, the upper limit of the average porosity is preferably 30% by volume, more preferably 20% by volume. When the said average porosity is smaller than the said minimum, there exists a possibility that the change width for every site | part of the physical property of the said three-dimensional structure may become small. On the contrary, when the average porosity exceeds the upper limit, the strength of the three-dimensional structure may be insufficient. Here, the “average porosity” means an arithmetic average value of the porosity measured at 10 locations.
 本工程で形成される上記3次元造形物の空孔Hの平均径としては、特に限定されないが、その下限としては、10μmが好ましく、50μmがより好ましい。一方、上記空孔Hの平均径の上限としては、1mmが好ましく、200μmがより好ましい。空孔Hの平均径の下限が上記下限より小さい場合、上記3次元造形物の物性の部位毎の変化幅が小さくなるおそれがある。逆に、空孔Hの平均径の下限が上記上限を超える場合、上記3次元造形物の強度が不十分となるおそれがある。ここで「空孔の平均径」とは、上記3次元造形物の断面を顕微鏡等で観察し、任意の10個の空孔において、その面積と等面積の真円における径の算術平均値をいう。 The average diameter of the holes H of the three-dimensional structure formed in this step is not particularly limited, but the lower limit is preferably 10 μm and more preferably 50 μm. On the other hand, the upper limit of the average diameter of the holes H is preferably 1 mm, and more preferably 200 μm. When the lower limit of the average diameter of the holes H is smaller than the lower limit, the change width of each part of the physical properties of the three-dimensional structure may be small. On the contrary, when the lower limit of the average diameter of the holes H exceeds the upper limit, the strength of the three-dimensional structure may be insufficient. Here, the “average diameter of the holes” means that the cross-section of the three-dimensional structure is observed with a microscope or the like, and the arithmetic average value of the diameters in a perfect circle having the same area as that of any 10 holes. Say.
 当該3次元造形物の製造方法における他の条件は、第2実施形態や第3実施形態と同様とすることができる。 Other conditions in the manufacturing method of the three-dimensional structure can be the same as those in the second embodiment and the third embodiment.
[用途]
 当該3次元造形物の製造方法は、物性が部位毎に異なる成形体の製造に好適に用いることができる。上記変化させる物性としては、特に限定されないが、例えば弾性率、硬度、耐摩耗性、色等が挙げられる。具体的には、例えばシート状造形物を製造する場合、50%伸長した際の伸長モジュラス(M50)を3MPa以上40MPa以下、引張強さ(TB)を5MPa以上60MPa以下、切断時伸び(EB)を100%以上400%以下、JIS-A硬度を60°以上100°以下、DIN摩耗量を200mm以下の範囲内で変化させるとよい。
[Usage]
The manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site | part. The physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color. Specifically, for example, when producing a sheet-like shaped article, the elongation modulus (M50) when stretched 50% is 3 MPa or more and 40 MPa or less, the tensile strength (TB) is 5 MPa or more and 60 MPa or less, and the elongation at break (EB). May be changed within a range of 100% to 400%, a JIS-A hardness of 60 ° to 100 °, and a DIN wear amount of 200 mm 3 or less.
 ここで、上記50%伸長した際の伸長モジュラス、引張強さ及び切断時伸びは、それぞれJIS-K7312:1996「熱硬化性ポリウレタンエラストマー成形物の物理試験方法」に準拠して測定される値をいう。また、上記JIS-A硬度は、旧JIS-K6301:1995「加硫ゴム物理試験方法」に準拠して測定される値をいう。さらに、上記DIN摩耗量は、JIS-K6264-2:2005「加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第2部:試験方法」に準拠して測定される値をいう。 Here, the elongation modulus, tensile strength, and elongation at break when 50% are stretched are values measured in accordance with JIS-K7312: 1996 “Physical Test Method for Thermosetting Polyurethane Elastomer Moldings”, respectively. Say. The JIS-A hardness is a value measured in accordance with the former JIS-K6301: 1995 “Vulcanized Rubber Physical Test Method”. Further, the DIN wear amount is a value measured in accordance with JIS-K6264-2: 2005 “vulcanized rubber and thermoplastic rubber—determination of wear resistance—part 2: test method”.
 当該3次元造形物の製造方法は、例えば靴底、バイクや自動二輪車のグリップ、メガネ、マスク、装飾品等のパーソナルユース商品や、義肢、トレーニング器具などの製造に好適に用いることができる。これらの中で、靴底は、部位毎に物性を変化させる必要があり、また使用者に合わせて形状や物性等を変化させるテーラーメイド化の要求がある。そのため、当該3次元造形物の製造方法は、靴底の製造に特に好適に用いることができる。 The manufacturing method of the three-dimensional structure can be suitably used for manufacturing personal use products such as shoe soles, grips of motorcycles and motorcycles, glasses, masks, ornaments, artificial limbs, training equipment, and the like. Among these, it is necessary to change the physical properties of each shoe sole for each part, and there is a demand for tailor-made to change the shape, physical properties, etc. according to the user. Therefore, the manufacturing method of the said three-dimensional structure can be used especially suitably for manufacture of a shoe sole.
<利点>
 当該3次元造形物の製造方法は、ポリウレタン、ポリウレタンウレア又はポリウレアを主成分とし、物性が部位毎に異なる3次元造形物を容易かつ確実に製造できる。
<Advantages>
The manufacturing method of the said three-dimensional structure can manufacture easily and reliably the three-dimensional structure which has a polyurethane, a polyurethane urea, or a polyurea as a main component, and a physical property differs for every site | part.
 また、当該3次元造形物の製造方法は、後述する第5実施形態の製造方法と比較し、第1液組成物及び第2液組成物をラインミキサー等で十分に混合してから混合液吐出ノズルA22で吐出できるため、より確実に3次元造形物を製造できる。さらに、当該3次元造形物の製造方法は、混合液滴X21の平均体積を小さくし易いため、形成される3次元造形物の造形精度をより向上できる。 In addition, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the fifth embodiment to be described later, and after the first liquid composition and the second liquid composition are sufficiently mixed by a line mixer or the like, the mixed liquid is discharged. Since it can discharge with nozzle A22, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X21, it is possible to further improve the modeling accuracy of the formed three-dimensional structure.
 さらに、当該3次元造形物の製造方法は、後述する第6実施形態から第9実施形態までの製造方法と比較し、造形中に第1液組成物及び第2液組成物の混合体積比を変化させなくても形成される3次元造形物の物性を部位毎に変化させることができるため、混合体積比の変動に起因する硬化不良を抑制できる。 Furthermore, the manufacturing method of the said three-dimensional structure is compared with the manufacturing method from 6th Embodiment to 9th Embodiment mentioned later, and mix volume ratio of a 1st liquid composition and a 2nd liquid composition during modeling. Even if it is not changed, the physical properties of the three-dimensional structure to be formed can be changed for each part, so that it is possible to suppress poor curing due to a change in the mixing volume ratio.
[第5実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の製造方法であって、混合によって擬似プレポリマー法により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で、第1液組成物及び第2液組成物を吐出直後に混合する。また、順次積層工程で、上記第1液組成物及び第2液組成物の吐出量を変化させることで合成樹脂層の密度を部位毎に変化させ、これにより部位毎に物性が異なる3次元造形物を製造する。
[Fifth Embodiment]
<Method for manufacturing a three-dimensional structure>
The manufacturing method of the three-dimensional structure is a method of manufacturing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an ink jet 3D printer, and reacts by a pseudo prepolymer method by mixing. A step (sequential lamination step) of sequentially laminating a synthetic resin layer on the support by discharging the one-liquid composition and the second liquid composition, and in the sequential lamination step, the first liquid composition and the second liquid composition Mix immediately after discharge. Further, in the sequential lamination process, the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition, and thereby the three-dimensional modeling having different physical properties for each part. Manufacturing things.
 すなわち、当該3次元造形物の製造方法は、第4実施形態の製造方法において、第1液組成物及び第2液組成物を吐出直前に混合する替わりに、吐出直後に混合することを特徴とする。 That is, the manufacturing method of the three-dimensional structure is characterized in that in the manufacturing method of the fourth embodiment, instead of mixing the first liquid composition and the second liquid composition immediately before discharge, they are mixed immediately after discharge. To do.
 当該3次元造形物の製造方法における他の条件や用途は、第2実施形態から第4実施形態の製造方法と同様とすることができる。 Other conditions and applications in the manufacturing method of the three-dimensional structure can be the same as those in the manufacturing method of the second to fourth embodiments.
<利点>
 当該3次元造形物の製造方法は、第4実施形態の製造方法と比較し、反応性に優れる第1液組成物及び第2液組成物を使用してもノズルの詰まりを抑制できる。
<Advantages>
Compared with the manufacturing method of the fourth embodiment, the method for manufacturing the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition having excellent reactivity are used.
[第6実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する後述する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出する直前に混合する。また、当該3次元造形物の製造方法では、順次積層工程で第1液組成物及び第2液組成物の混合比を変化させることで、部位毎に物性が異なる3次元造形物を製造する。
[Sixth Embodiment]
<Method for manufacturing a three-dimensional structure>
The manufacturing method of the three-dimensional structure is a manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, and reacts by mixing with a pseudo prepolymer method, which will be described later. A step of sequentially laminating a synthetic resin layer on the support by discharging the composition and the second liquid composition (sequential laminating step), and immediately before discharging the first liquid composition and the second liquid composition in the sequential laminating step To mix. Moreover, in the manufacturing method of the said three-dimensional structure, the three-dimensional structure from which a physical property differs for every site | part is manufactured by changing the mixing ratio of a 1st liquid composition and a 2nd liquid composition in a lamination | stacking process one by one.
 すなわち、当該3次元造形物の製造方法は、第4実施形態の製造方法と比較し、順次積層工程で第1液組成物及び第2液組成物の吐出量を変化させる替わりに、第1液組成物及び第2液組成物の混合比を変化させる点が相違する。 That is, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the fourth embodiment, instead of sequentially changing the discharge amounts of the first liquid composition and the second liquid composition in the stacking step. The difference is that the mixing ratio of the composition and the second liquid composition is changed.
 当該3次元造形物の製造方法に用いる第1液組成物は、ウレタンプレポリマー、ウレタンウレアプレポリマー及びウレアプレポリマーのうち少なくとも1種のプレポリマーと、ポリイソシアネートとを含む。また、第2液組成物は、長鎖ポリオール及び長鎖ポリアミンのうち少なくとも1種のソフトセグメント成分と、鎖延長剤及び架橋剤のうち少なくとも1種のハードセグメント成分とを含む。 The first liquid composition used in the manufacturing method of the three-dimensional structure includes at least one prepolymer of urethane prepolymer, urethane urea prepolymer, and urea prepolymer, and polyisocyanate. The second liquid composition contains at least one soft segment component of a long-chain polyol and a long-chain polyamine, and at least one hard segment component of a chain extender and a crosslinking agent.
(3Dプリンタ)
 当該3次元造形物の製造方法には、第2実施形態の製造方法で説明した図1の一工程で用いられる3Dプリンタに、図5に示す造形材料供給システムZ1を適用した3Dプリンタを用いることができる。
(3D printer)
In the manufacturing method of the three-dimensional structure, a 3D printer in which the modeling material supply system Z1 shown in FIG. 5 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment is used. Can do.
 図5の造形材料供給システムZ1は、上記3Dプリンタの混合液吐出ノズルA2に第1液組成物及び第2液組成物の混合液を供給する。この造形材料供給システムZ1は、第2液タンクBと、第1液タンクCとを主に備える。第2液タンクBには第2液供給ラインbが接続されている。第1液タンクCには第1液供給ラインcが接続されている。第2液供給ラインbにおける第2液タンクBと反対側の端部と、第1液ラインcにおける第1液タンクCと反対側の端部とは、混合液供給ラインdの一方の端部に接続されている。この混合液供給ラインdは、他方の端部が図1における混合液吐出ノズルA2に接続されている。第2液タンクBに貯蔵される第2液組成物と、第1液タンクCに貯蔵される第1液組成物とは、それぞれ第2液供給ラインb又は第1液供給ラインcを介して混合液供給ラインdに供給される。混合液供給ラインdに供給された第1液組成物及び第2液組成物は、混合液供給ラインd内で混合された後、図1における混合液吐出ノズルA2に供給される。混合液供給ラインdには、必要に応じてマイクロスタティックミキサー等のラインミキサーを途中に設けてもよい。 The modeling material supply system Z1 in FIG. 5 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer. This modeling material supply system Z1 mainly includes a second liquid tank B and a first liquid tank C. A second liquid supply line b is connected to the second liquid tank B. A first liquid supply line c is connected to the first liquid tank C. The end of the second liquid supply line b opposite to the second liquid tank B and the end of the first liquid line c opposite to the first liquid tank C are one end of the mixed liquid supply line d. It is connected to the. The other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG. The second liquid composition stored in the second liquid tank B and the first liquid composition stored in the first liquid tank C are respectively connected via the second liquid supply line b or the first liquid supply line c. It is supplied to the mixed solution supply line d. The first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG. The mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
 造形材料供給システムZ1は、第1液タンクCから供給される第1液組成物及び第2液タンクBから供給される第2液組成物の供給量をそれぞれ増減することで、混合液吐出ノズルA2に供給される混合液における第1液組成物及び第2液組成物の混合比を変化させることができる。 The modeling material supply system Z1 is configured to increase or decrease the supply amounts of the first liquid composition supplied from the first liquid tank C and the second liquid composition supplied from the second liquid tank B, respectively. The mixing ratio of the first liquid composition and the second liquid composition in the mixed liquid supplied to A2 can be changed.
[順次積層工程]
 本工程では、上述の造形材料供給システムZ1により、第1液組成物及び第2液組成物を混合し、その直後に吐出することで支持体上に合成樹脂層を形成する。また、本工程では、第1液組成物及び第2液組成物の供給量の増減により、第1液組成物及び第2液組成物の混合比を変化させる。これにより、形成される3次元造形物の物性を部位毎に変化させることができる。
[Sequential lamination process]
In this step, the first liquid composition and the second liquid composition are mixed by the above-described modeling material supply system Z1 and discharged immediately thereafter to form a synthetic resin layer on the support. In this step, the mixing ratio of the first liquid composition and the second liquid composition is changed by increasing or decreasing the supply amount of the first liquid composition and the second liquid composition. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part.
 本工程で第1液組成物及び第2液組成物の混合比を変化させる回数としては、1回のみでもよく、複数回でもよい。また、本工程では、第1液組成物及び第2液組成物の混合比を段階的に変化させてもよく、漸次的に変化させてもよいが、漸次的に変化させることが好ましい。このように、本工程で第1液組成物及び第2液組成物の混合比を漸次的に変化させることで、傾斜機能材料を形成することが可能となる。 The number of times of changing the mixing ratio of the first liquid composition and the second liquid composition in this step may be only once or may be multiple times. In this step, the mixing ratio of the first liquid composition and the second liquid composition may be changed stepwise, or may be gradually changed, but is preferably changed gradually. As described above, the gradient functional material can be formed by gradually changing the mixing ratio of the first liquid composition and the second liquid composition in this step.
 本工程で第1液組成物及び第2液組成物の混合比を変化させる方法としては、第1液組成物及び第2液組成物のうち一方の供給量を一定としつつ他方を増減させる方法や、両方の供給量を増減させる方法等が挙げられる。 As a method of changing the mixing ratio of the first liquid composition and the second liquid composition in this step, a method of increasing or decreasing the other while keeping one supply amount constant among the first liquid composition and the second liquid composition And a method of increasing or decreasing both supply amounts.
 造形中の第1液組成物及び第2液組成物の混合比変化率の下限としては、3%が好ましく、7%がより好ましい。一方、上記混合比変化率の上限としては、20%が好ましく、12%がより好ましい。上記混合比変化率が上記下限より小さい場合、形成される3次元造形物の物性の部位毎の変化幅が低下するおそれがある。逆に、上記混合比変化率が上記上限を超える場合、第1液組成物及び第2液組成物の混合液においてイソシアネート成分とポリオール成分及び/又はポリアミン成分とのうち一方が過剰となり、硬化反応が不十分となるおそれがある。ここで「混合比変化率」とは、造形中の第1液組成物及び第2液組成物の混合質量比(第1液組成物/第2液組成物)の最小値を「Rmin」、最大値を「Rmax」としたときに下記式で表される値をいう。
 混合比変化率(%)=100×(Rmax-Rmin)/Rmin
The lower limit of the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling is preferably 3%, and more preferably 7%. On the other hand, the upper limit of the change ratio of the mixing ratio is preferably 20%, and more preferably 12%. When the mixing ratio change rate is smaller than the lower limit, the width of change for each part of the physical properties of the formed three-dimensional structure may be reduced. On the contrary, when the mixing ratio change rate exceeds the upper limit, one of the isocyanate component and the polyol component and / or the polyamine component is excessive in the mixed liquid of the first liquid composition and the second liquid composition, and the curing reaction May become insufficient. Here, the “mixing ratio change rate” refers to the minimum value of the mixing mass ratio (first liquid composition / second liquid composition) of the first liquid composition and the second liquid composition during modeling “R min ”. , A value represented by the following formula when the maximum value is “R max ”.
Rate of change in mixing ratio (%) = 100 × (R max −R min ) / R min
[用途]
 当該3次元造形物の製造方法は、物性が部位毎に異なる成形体の製造に好適に用いることができる。上記変化させる物性としては、特に限定されないが、例えば弾性率、硬度、耐摩耗性、色等が挙げられる。具体的には、例えばシート状造形物を製造する場合、50%伸長した際の伸長モジュラス(M50)を1.5MPa以上12MPa以下、引張強さ(TB)を5MPa以上60MPa以下、切断時伸び(EB)を200%以上400%以下、JIS-A硬度を50°以上100°以下、DIN摩耗量を120mm以下の範囲内で変化させるとよい。
[Usage]
The manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site | part. The physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color. Specifically, for example, when producing a sheet-like shaped article, the elongation modulus (M50) at 50% elongation is 1.5 MPa to 12 MPa, the tensile strength (TB) is 5 MPa to 60 MPa, and elongation at break ( EB) may be changed within a range of 200% to 400%, a JIS-A hardness of 50 ° to 100 °, and a DIN wear amount of 120 mm 3 or less.
 当該3次元造形物の製造方法における第1液組成物及び第2液組成物の組成、他の条件、用途等は、第2実施形態の製造方法と同様とすることができる。 The composition of the first liquid composition and the second liquid composition, other conditions, applications, and the like in the method for manufacturing the three-dimensional structure can be the same as those in the manufacturing method of the second embodiment.
<利点>
 当該3次元造形物の製造方法は、造形中に第1液組成物及び第2液組成物の混合比を変化させることで、形成される3次元造形物の物性を部位毎に変化させることができる。また、当該3次元造形物の製造方法は、擬似プレポリマー法で反応する第1液組成物及び第2液組成物を造形材料として用いるため、造形中に混合比を変化させてもその混合体積比を1:1に比較的近い範囲で維持し易い。そのため、当該3次元造形物の製造方法は、ポリウレタン等を主成分とし、物性が部位毎に異なる3次元造形物を容易かつ確実に製造できる。
<Advantages>
The manufacturing method of the said three-dimensional structure can change the physical property of the formed three-dimensional structure for every site | part by changing the mixing ratio of a 1st liquid composition and a 2nd liquid composition during modeling. it can. Moreover, since the manufacturing method of the said three-dimensional structure uses the 1st liquid composition and 2nd liquid composition which react with a pseudo prepolymer method as a modeling material, even if it changes a mixing ratio during modeling, its mixing volume It is easy to maintain the ratio in a range relatively close to 1: 1. Therefore, the manufacturing method of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part.
 さらに、当該3次元造形物の製造方法は、後述する第7実施形態、第8実施形態、第10実施形態及び第11実施形態と比較し、使用する3Dプリンタの造形材料供給システムの構造を簡便化できるため、設備コストを低減し易い。さらに、当該3次元造形物の製造方法は、後述する第9実施形態の製造方法と比較し、第1液組成物及び第2液組成物を確実に混合してから混合液吐出ノズルA2で吐出できるため、より確実に3次元造形物を製造できる。さらに、当該3次元造形物の製造方法は、混合液滴X1の平均体積を小さくし易いため、形成される3次元造形物の造形精度をより向上できる。 Further, the manufacturing method of the three-dimensional structure is simpler than the structure of the modeling material supply system of the 3D printer to be used, as compared with the seventh embodiment, the eighth embodiment, the tenth embodiment, and the eleventh embodiment described later. Therefore, it is easy to reduce the equipment cost. Furthermore, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the ninth embodiment to be described later, and the first liquid composition and the second liquid composition are reliably mixed and then discharged by the mixed liquid discharge nozzle A2. Therefore, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X1, the modeling accuracy of the formed three-dimensional structure can be further improved.
[第7実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出する直前に混合する。当該3次元造形物の製造方法は、順次積層工程で、第1液組成物の組成及び第2液組成物の組成のうち少なくとも1つを変化させる。
[Seventh Embodiment]
<Method for manufacturing a three-dimensional structure>
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately before discharging the first liquid composition and the second liquid composition in the sequential lamination step To do. In the manufacturing method of the three-dimensional structure, at least one of the composition of the first liquid composition and the composition of the second liquid composition is changed in a sequential lamination step.
 当該3次元造形物の製造方法は、第6実施形態の製造方法と比較し、順次積層工程で第1液組成物及び第2液組成物の混合比を変化させる替わりに、第1液組成物の組成及び/又は第2液組成物の組成を変化させることにより形成される3次元造形物の物性を部位毎に変化させる点が相違する。但し、本実施形態では、上記組成を変化させると共に第1液組成物及び第2液組成物の混合比を変化させてもよい。 The manufacturing method of the three-dimensional structure is compared with the manufacturing method of the sixth embodiment, instead of sequentially changing the mixing ratio of the first liquid composition and the second liquid composition in the stacking step, the first liquid composition. The point which changes the physical property of the three-dimensional structure formed by changing the composition of this and / or the composition of a 2nd liquid composition for every site | part differs. However, in the present embodiment, the composition may be changed and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
(3Dプリンタ)
 当該3次元造形物の製造方法には、第2実施形態の製造方法で説明した図1の一工程で用いられる3Dプリンタに、複数種の原料の予備混合によって第1液組成物及び/又は第2液組成物を調製する造形材料供給システムを適用した3Dプリンタを用いることができる。このような造形材料供給システムの1例を図6に示す。
(3D printer)
In the manufacturing method of the three-dimensional structure, the first liquid composition and / or the first liquid composition is preliminarily mixed with a 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment by premixing plural kinds of raw materials. A 3D printer to which a modeling material supply system for preparing a two-component composition is applied can be used. An example of such a modeling material supply system is shown in FIG.
 図6の造形材料供給システムZ2は、上記3Dプリンタの混合液吐出ノズルA2に第1液組成物及び第2液組成物の混合液を供給する。この造形材料供給システムZ2は、2つの第2液原料タンクEと、第1液タンクCとを主に備える。2つの第2液原料タンクEには、それぞれ第2液原料供給ラインe1が接続されている。2本の第2液原料供給ラインe1における第2液原料タンクEと反対側の端部は、それぞれラインミキサーFに接続されている。ラインミキサーFには、第2液供給ラインe2が接続されている。第1液タンクCには第1液供給ラインcが接続されている。第2液供給ラインe2におけるラインミキサーFと反対側の端部と、第1液ラインcにおける第1液タンクCと反対側の端部とは、混合液供給ラインdの一方の端部に接続されている。この混合液供給ラインdは、他方の端部が図1における混合液吐出ノズルA2に接続されている。 The modeling material supply system Z2 in FIG. 6 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer. This modeling material supply system Z2 mainly includes two second liquid material tanks E and a first liquid tank C. A second liquid material supply line e1 is connected to each of the two second liquid material tanks E. The ends of the two second liquid material supply lines e1 opposite to the second liquid material tank E are connected to the line mixer F, respectively. A second liquid supply line e2 is connected to the line mixer F. A first liquid supply line c is connected to the first liquid tank C. An end of the second liquid supply line e2 opposite to the line mixer F and an end of the first liquid line c opposite to the first liquid tank C are connected to one end of the mixed liquid supply line d. Has been. The other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
 2つの第2液原料タンクEには、第2液組成物を構成する2種の原料がそれぞれ貯蔵される。上記2種の原料は、それぞれ第2液原料供給ラインe1を介してラインミキサーFに供給される。ラインミキサーFに供給された上記2種の原料は、混合されて第2液組成物へと調製された後、第2液供給ラインe2を介して混合液供給ラインdに供給される。第1液タンクCに貯蔵される第1液組成物は、第1液供給ラインcを介して混合液供給ラインdに供給される。混合液供給ラインdに供給された第1液組成物及び第2液組成物は、混合液供給ラインd内で混合された後、図1における混合液吐出ノズルA2に供給される。なお、混合液供給ラインdには、必要に応じてマイクロスタティックミキサー等のラインミキサーを途中に設けてもよい。 In the two second liquid raw material tanks E, two kinds of raw materials constituting the second liquid composition are respectively stored. The two kinds of raw materials are respectively supplied to the line mixer F via the second liquid raw material supply line e1. The two types of raw materials supplied to the line mixer F are mixed to prepare a second liquid composition, and then supplied to the mixed liquid supply line d via the second liquid supply line e2. The first liquid composition stored in the first liquid tank C is supplied to the mixed liquid supply line d via the first liquid supply line c. The first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG. The mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
 造形材料供給システムZ2は、2つの第2液原料タンクEから供給する上記2種の原料の供給量を変化させることで、混合液供給ラインdに供給される第2液組成物の組成を変化させることができる。 The modeling material supply system Z2 changes the composition of the second liquid composition supplied to the mixed liquid supply line d by changing the supply amounts of the two kinds of raw materials supplied from the two second liquid raw material tanks E. Can be made.
 第2液組成物を構成する原料としては、混合により第2液組成物に調製できるものであれば特に限定されず、第2液組成物に含まれる成分のうち1種の成分のみを含んでもよく、2種以上の成分を含んでもよい。また、上記原料は、ソフトセグメント成分及びハードセグメント成分を含み、単独でも第2液組成物として使用可能な組成物であってもよい。 The raw material constituting the second liquid composition is not particularly limited as long as it can be prepared into the second liquid composition by mixing, and may include only one component among the components included in the second liquid composition. In addition, it may contain two or more components. The raw material may include a soft segment component and a hard segment component, and may be a composition that can be used alone or as the second liquid composition.
 ラインミキサーFとしては、第2液組成物を構成する原料を効率的に混合する観点から、駆動部のない静止型混合器の一種であるマイクロスタティックミキサーが好ましい。 The line mixer F is preferably a microstatic mixer which is a kind of static mixer without a drive unit from the viewpoint of efficiently mixing the raw materials constituting the second liquid composition.
 なお、図6では、第2液組成物を構成する2種の原料を別々のタンクに貯蔵し、この2種の原料の混合により第2液組成物を調製する造形材料供給システムZ2について説明したが、上記3Dプリンタには他の造形材料供給システムを適用可能である。具体的には、第2液組成物を構成する3種以上の原料を別々のタンクに貯蔵し、この3種以上の原料の混合により第2液組成物を調製してもよい。また、第1液組成物の組成を変化させるために、第1液組成物を構成する2種以上の原料を別々のタンクに貯蔵し、この2種以上の原料の混合により第1液組成物を調整してもよい。この場合、第2液組成物については、組成を変化させるため、別々のタンクに貯蔵した2種以上の原料を混合して調製したものを供給してもよく、予め調製したものを1つのタンクに貯蔵し、一定の組成で供給してもよい。また、ラインミキサーFは省略してもよい。 In FIG. 6, the modeling material supply system Z <b> 2 that stores the two kinds of raw materials constituting the second liquid composition in separate tanks and prepares the second liquid composition by mixing the two kinds of raw materials has been described. However, other modeling material supply systems can be applied to the 3D printer. Specifically, three or more kinds of raw materials constituting the second liquid composition may be stored in separate tanks, and the second liquid composition may be prepared by mixing these three or more kinds of raw materials. In order to change the composition of the first liquid composition, two or more kinds of raw materials constituting the first liquid composition are stored in separate tanks, and the first liquid composition is mixed by mixing the two or more kinds of raw materials. May be adjusted. In this case, in order to change the composition of the second liquid composition, one prepared by mixing two or more kinds of raw materials stored in separate tanks may be supplied. And may be supplied in a constant composition. Further, the line mixer F may be omitted.
[順次積層工程]
 本工程では、2種以上の原料を予備混合することで調製した第1液組成物及び/又は第2液組成物と、必要に応じて別途用意される第1液組成物又は第2液組成物とをさらに混合し、その直後に吐出することで支持体上に合成樹脂層を形成する。また、本工程では、予備混合する上記2種以上の原料の配合量を変更することで、第1液組成物及び/又は第2液組成物の組成を変化させる。これにより、形成される3次元造形物の物性を部位毎に変化させることができる。本工程で第1液組成物及び/又は第2液組成物の組成を変化させる回数としては、1回のみでもよく、複数回でもよい。また、本工程では、第1液組成物及び/又は第2液組成物の組成を段階的に変化させてもよく、漸次的に変化させてもよいが、傾斜機能材料を形成可能とする観点から、漸次的に変化させることが好ましい。なお、本工程では、第1液組成物及び/又は第2液組成物の組成を変化させると共に、第1液組成物及び第2液組成物の混合比を変化させてもよい。
[Sequential lamination process]
In this step, the first liquid composition and / or the second liquid composition prepared by premixing two or more kinds of raw materials, and the first liquid composition or the second liquid composition separately prepared as necessary. A synthetic resin layer is formed on the support by further mixing the product and discharging immediately after that. In this step, the composition of the first liquid composition and / or the second liquid composition is changed by changing the blending amount of the two or more kinds of raw materials to be premixed. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part. The number of times of changing the composition of the first liquid composition and / or the second liquid composition in this step may be only once or may be multiple. Further, in this step, the composition of the first liquid composition and / or the second liquid composition may be changed stepwise or may be gradually changed. From the above, it is preferable to change gradually. In this step, the composition of the first liquid composition and / or the second liquid composition may be changed, and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
 本工程で第1液組成物及び/又は第2液組成物の組成を変化させる方法としては、例えば(A)第1液組成物のプレポリマーの組成を変化させる方法、(B)第2液組成物のソフトセグメント成分の組成を変化させる方法、(C)第2液組成物のハードセグメント成分の組成を変化させる方法、(D)第1液組成物及び/又は第2液組成物の任意成分の組成を変化させる方法等が挙げられる。本工程では、(A)から(D)の方法を単独で又は組み合わせて行うことができる。 Examples of the method of changing the composition of the first liquid composition and / or the second liquid composition in this step include (A) a method of changing the composition of the prepolymer of the first liquid composition, and (B) the second liquid. A method of changing the composition of the soft segment component of the composition, (C) a method of changing the composition of the hard segment component of the second liquid composition, (D) any of the first liquid composition and / or the second liquid composition Examples thereof include a method for changing the composition of the components. In this step, the methods (A) to (D) can be performed alone or in combination.
((A)第1液組成物のプレポリマーの組成を変化させる方法)
 第1液組成物のプレポリマーの組成を変化させる方法としては、例えば数平均分子量の異なる2種以上のプレポリマーを用意し、この2種以上のプレポリマーの配合比を変化させる方法等が挙げられる。
((A) Method of changing composition of prepolymer of first liquid composition)
Examples of the method for changing the composition of the prepolymer of the first liquid composition include a method of preparing two or more kinds of prepolymers having different number average molecular weights and changing the blending ratio of the two or more kinds of prepolymers. It is done.
((B)第2液組成物のソフトセグメント成分の組成を変化させるパターン)
 第2液組成物のソフトセグメント成分の組成を変化させる方法としては、例えば数平均分子量の異なる2種以上のソフトセグメント成分を用意し、この2種以上のソフトセグメント成分の配合比を変化させる方法や、1種のソフトセグメント成分の含有量を増減させる方法等が挙げられる。
((B) Pattern for changing the composition of the soft segment component of the second liquid composition)
As a method for changing the composition of the soft segment component of the second liquid composition, for example, two or more types of soft segment components having different number average molecular weights are prepared, and the mixing ratio of the two or more types of soft segment components is changed. Or a method of increasing or decreasing the content of one kind of soft segment component.
 第2液組成物の2種以上のソフトセグメント成分の配合比を変化させる場合、第2液組成物における特定の1種のソフトセグメント成分の含有量の変化幅の下限としては、5質量%が好ましく、15質量%がより好ましい。一方、上記変化幅の上限としては、50質量%が好ましく、35質量%がより好ましい。上記変化幅を上記範囲とすることで、形成される3次元造形物の物性を適度に変化させることができる。ここで「含有量の変化幅」とは、順次積層工程において、第1液組成物又は第2液組成物における特定成分の含有量を最大とした際のその含有量[質量%]から、上記特定成分の含有量を最小とした際のその含有量[質量%]を減じた値をいう。 When changing the blending ratio of two or more kinds of soft segment components of the second liquid composition, the lower limit of the change width of the content of the specific one kind of soft segment component in the second liquid composition is 5% by mass. Preferably, 15 mass% is more preferable. On the other hand, the upper limit of the change width is preferably 50% by mass, and more preferably 35% by mass. By making the said change width into the said range, the physical property of the three-dimensional structure to be formed can be changed moderately. Here, the “change width of the content” means that the content [mass%] when the content of the specific component in the first liquid composition or the second liquid composition is maximized in the sequential lamination step, from the above A value obtained by subtracting the content [% by mass] when the content of a specific component is minimized.
((C)第2液組成物のハードセグメント成分の組成を変化させる方法)
 第2液組成物のハードセグメント成分の組成を変化させる方法としては、例えばハードセグメント成分として鎖延長剤及び架橋剤を用意し、この鎖延長剤及び架橋剤の配合比を変化させる方法や、1種のハードセグメント成分の含有量を増減させる方法等が挙げられる。
((C) Method of changing the composition of the hard segment component of the second liquid composition)
As a method for changing the composition of the hard segment component of the second liquid composition, for example, a chain extender and a crosslinking agent are prepared as the hard segment component, and the blending ratio of the chain extender and the crosslinking agent is changed. The method of increasing / decreasing content of a hard segment component of a seed | species etc. is mentioned.
 第2液組成物のハードセグメント成分の組成を変化させる場合、第2液組成物における鎖延長剤の含有量の変化幅の下限としては、2質量%が好ましく、8質量%がより好ましい。一方、上記鎖延長剤の含有量の変化幅の上限としては、25質量%が好ましく、15質量%がより好ましい。また、第2液組成物における架橋剤の含有量の変化幅の下限としては、0.5質量%が好ましく、2質量%がより好ましい。一方、上記架橋剤の含有量の変化幅の上限としては、15質量%が好ましく、7質量%がより好ましい。上記鎖延長剤及び架橋剤の変化幅を上記範囲とすることで、形成される3次元造形物の物性を適度に変化させることができる。 When changing the composition of the hard segment component of the second liquid composition, the lower limit of the change width of the chain extender content in the second liquid composition is preferably 2% by mass, and more preferably 8% by mass. On the other hand, the upper limit of the change width of the chain extender content is preferably 25% by mass, and more preferably 15% by mass. Moreover, as a minimum of the change width of content of the crosslinking agent in a 2nd liquid composition, 0.5 mass% is preferable and 2 mass% is more preferable. On the other hand, the upper limit of the change width of the content of the crosslinking agent is preferably 15% by mass and more preferably 7% by mass. By setting the change width of the chain extender and the crosslinking agent in the above range, the physical properties of the formed three-dimensional structure can be appropriately changed.
((D)第1液組成物及び/又は第2液組成物の任意成分の組成を変化させる方法)
 第1液組成物及び/又は第2液組成物の任意成分の組成を変化させる方法としては、例えば第2液組成物に可塑剤を含ませ、この可塑剤の含有量を変化させる方法や、第2液組成物に顔料を含ませ、この顔料の含有量を変化させる方法等が挙げられる。
((D) Method of changing the composition of optional components of the first liquid composition and / or the second liquid composition)
As a method of changing the composition of the optional components of the first liquid composition and / or the second liquid composition, for example, a method of including a plasticizer in the second liquid composition and changing the content of the plasticizer, Examples thereof include a method of adding a pigment to the second liquid composition and changing the content of the pigment.
 第2液組成物に可塑剤を含ませ、この可塑剤の含有量を変化させる場合、第2液組成物における可塑剤の含有量の変化幅の下限としては、3質量%が好ましく、10質量%がより好ましい。一方、上記可塑剤の含有量の変化幅の上限としては、35質量%が好ましく、20質量%がより好ましい。上記可塑剤の変化幅を上記範囲とすることで、形成される3次元造形物の物性を適度に変化させることができる。 When the plasticizer is included in the second liquid composition and the content of the plasticizer is changed, the lower limit of the change width of the plasticizer content in the second liquid composition is preferably 3% by mass, and 10% by mass. % Is more preferable. On the other hand, the upper limit of the change width of the plasticizer content is preferably 35% by mass, and more preferably 20% by mass. By setting the change width of the plasticizer within the above range, the physical properties of the formed three-dimensional structure can be appropriately changed.
 第1液組成物及び/又は第2液組成物の組成を変化させる方法としては、形成される3次元造形材料の部位毎の物性の変化幅を大きくする観点から、第1液組成物のプレポリマーの組成及び第1液組成物のソフトセグメント成分の組成のうち少なくとも1種を変化させる方法が好ましい。また、硬化反応への影響を抑える観点から、第2液組成物に可塑剤を含ませ、この可塑剤の含有量を変化させる方法も好ましい。 As a method of changing the composition of the first liquid composition and / or the second liquid composition, from the viewpoint of increasing the change width of the physical property for each part of the formed three-dimensional modeling material, the pre-treatment of the first liquid composition is performed. A method of changing at least one of the composition of the polymer and the composition of the soft segment component of the first liquid composition is preferable. Further, from the viewpoint of suppressing the influence on the curing reaction, a method in which a plasticizer is included in the second liquid composition and the content of the plasticizer is changed is also preferable.
 本工程では、第1液組成物及び第2液組成物の組成を変化させることにより、通常、第1液組成物及び第2液組成物の混合比も変化する。但し、本工程では、第1液組成物及び第2液組成物をより確実に混合する観点から、造形中の第1液組成物及び第2液組成物の混合比変化率を低減することが好ましく、混合比変化率を0%とすることが最も好ましい。一方、造形中の第1液組成物及び第2液組成物の混合比変化率の上限としては、100%が好ましく、30%がより好ましい。上記混合比変化率が上記上限を超える場合、第1液組成物及び第2液組成物の吐出量の差が増大し、第1液組成物及び第2液組成物の混合が困難となるおそれがある。 In this step, the mixing ratio of the first liquid composition and the second liquid composition usually changes by changing the composition of the first liquid composition and the second liquid composition. However, in this step, from the viewpoint of more reliably mixing the first liquid composition and the second liquid composition, the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling may be reduced. Preferably, the mixing ratio change rate is most preferably 0%. On the other hand, the upper limit of the mixing ratio change rate of the first liquid composition and the second liquid composition during modeling is preferably 100%, and more preferably 30%. When the change ratio of the mixing ratio exceeds the upper limit, the difference in discharge amount between the first liquid composition and the second liquid composition increases, and it may be difficult to mix the first liquid composition and the second liquid composition. There is.
 当該3次元造形物の製造方法における第1液組成物及び第2液組成物の組成、他の条件、用途等は、第6実施形態の製造方法と同様とすることができる。 The composition of the first liquid composition and the second liquid composition, other conditions, usage, and the like in the method for manufacturing a three-dimensional structure can be the same as those in the manufacturing method of the sixth embodiment.
<利点>
 当該3次元造形物の製造方法は、第6実施形態及び第8実施形態の製造方法と比較し、形成される3次元造形物の部位毎の物性変化のバリエーションが豊富である。また、当該3次元造形物の製造方法は、第6実施形態の製造方法と比較し、造形中にイソシアネート成分と、ポリオール成分及び/又はポリアミン成分とのモル比を一定範囲内に維持し易いため、形成される3次元造形物の局所的な硬化不良を抑制し易い。
<Advantages>
Compared with the manufacturing method of the sixth embodiment and the eighth embodiment, the manufacturing method of the three-dimensional structure has abundant variations of physical property changes for each part of the formed three-dimensional structure. Moreover, since the manufacturing method of the said three-dimensional molded item is easy to maintain the molar ratio of an isocyanate component, a polyol component, and / or a polyamine component in modeling within modeling compared with the manufacturing method of 6th Embodiment. It is easy to suppress local curing failure of the formed three-dimensional structure.
[第8実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出する直前に混合する。また、当該3次元造形物の製造方法では、順次積層工程で第1液組成物及び第2液組成物の混合比を変化させることで、部位毎に物性が異なる3次元造形物を製造する。
[Eighth Embodiment]
<Method for manufacturing a three-dimensional structure>
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately before discharging the first liquid composition and the second liquid composition in the sequential lamination step To do. Moreover, in the manufacturing method of the said three-dimensional structure, the three-dimensional structure from which a physical property differs for every site | part is manufactured by changing the mixing ratio of a 1st liquid composition and a 2nd liquid composition in a lamination | stacking process one by one.
 当該3次元造形物の製造方法は、第7実施形態の製造方法において、3Dプリンタに用いる造形材料供給システムを相違させた製造方法である。 The manufacturing method of the three-dimensional structure is a manufacturing method in which the modeling material supply system used for the 3D printer is different in the manufacturing method of the seventh embodiment.
(3Dプリンタ)
 当該3次元造形物の製造方法には、第2実施形態の製造方法で説明した図1の一工程で用いられる3Dプリンタに、図7に示す造形材料供給システムZ3を適用した3Dプリンタを用いることができる。
(3D printer)
In the manufacturing method of the three-dimensional structure, a 3D printer in which the modeling material supply system Z3 shown in FIG. 7 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment is used. Can do.
 図7に示す造形材料供給システムZ3は、上記3Dプリンタの混合液吐出ノズルA2に第1液組成物及び第2液組成物の混合液を供給する。この造形材料供給システムZ3は、3つの第2液タンクGと、第1液タンクCとを主に備える。3つの第2液タンクGには、それぞれ第2液供給サブラインg1が接続されている。3本の第2液供給サブラインg1は、途中で合流し、1本の第2液供給ラインg2を形成する。第1液タンクCには第1液供給ラインcが接続されている。第2液供給ラインg2における第2液供給サブラインg1と反対側の端部と、第1液ラインcにおける第1液タンクCと反対側の端部とは、混合液供給ラインdの一方の端部に接続されている。この混合液供給ラインdは、他方の端部が図1における混合液吐出ノズルA2に接続されている。 The modeling material supply system Z3 shown in FIG. 7 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer. This modeling material supply system Z3 mainly includes three second liquid tanks G and a first liquid tank C. A second liquid supply subline g1 is connected to each of the three second liquid tanks G. The three second liquid supply sublines g1 are joined together to form one second liquid supply line g2. A first liquid supply line c is connected to the first liquid tank C. The end of the second liquid supply line g2 opposite to the second liquid supply subline g1 and the end of the first liquid line c opposite to the first liquid tank C are one end of the mixed liquid supply line d. Connected to the department. The other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG.
 3つの第2液タンクGには、組成の異なる3種の第2液組成物がそれぞれ貯蔵され、第2液供給サブラインg1及び第2液供給ラインg2を介して混合液供給ラインdに供給される。第1液タンクCに貯蔵される第1液組成物は、第1液供給ラインcを介して混合液供給ラインdに供給される。混合液供給ラインdに供給された第1液組成物及び第2液組成物は、混合液供給ラインd内で混合された後、図1における混合液吐出ノズルA2に供給される。なお、混合液供給ラインdには、必要に応じてマイクロスタティックミキサー等のラインミキサーを途中に設けてもよい。 In the three second liquid tanks G, three kinds of second liquid compositions having different compositions are respectively stored and supplied to the mixed liquid supply line d via the second liquid supply subline g1 and the second liquid supply line g2. The The first liquid composition stored in the first liquid tank C is supplied to the mixed liquid supply line d via the first liquid supply line c. The first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG. The mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
 造形材料供給システムZ3は、3つの第2液タンクGのうち、特定の1つの第2液タンクGから第2液組成物を混合液供給ラインdに供給する。また、造形材料供給システムZ3は、造形中に第2液組成物を供給している第2液タンクGを任意に切り替え、これにより混合液供給ラインdに供給される第2液組成物の組成を3通りに変化させることができる。 The modeling material supply system Z3 supplies the second liquid composition from one specific second liquid tank G among the three second liquid tanks G to the mixed liquid supply line d. Further, the modeling material supply system Z3 arbitrarily switches the second liquid tank G supplying the second liquid composition during modeling, and thereby the composition of the second liquid composition supplied to the mixed liquid supply line d. Can be changed in three ways.
 なお、図7では、3種の第2液組成物を別々のタンクに貯蔵し、供給する第2液組成物の組成を3通りに変化させる造形材料供給システムZ3について説明したが、当該3次元造形物の製造方法では他の構成を採用することも可能である。具体的には、2種又は4種以上の第2液組成物を別々のタンクに貯蔵し、供給する第2液組成物の組成を2通り又は4通り以上に変化させてもよい。また、2種以上の第1液組成物を別々のタンクに貯蔵し、第1液組成物を供給するタンクを切り替えることで第1液組成物の組成を2通り以上に変化させてもよい。この場合、第2液組成物については、2種以上の第2液組成物を別々のタンクに貯蔵し、第2液組成物を供給するタンクを切り替えることで組成を2通り以上に変化させてもよく、1つのタンクに貯蔵して組成を一定としてもよい。 In addition, although FIG. 7 demonstrated the modeling material supply system Z3 which stores three types of 2nd liquid compositions in a separate tank, and changes the composition of the 2nd liquid composition to supply in three ways, the said three-dimensional It is also possible to employ other configurations in the manufacturing method of the shaped article. Specifically, two or four or more second liquid compositions may be stored in separate tanks, and the composition of the supplied second liquid composition may be changed to two or four or more. Further, two or more kinds of first liquid compositions may be stored in separate tanks, and the composition of the first liquid composition may be changed in two or more by switching the tank that supplies the first liquid composition. In this case, with respect to the second liquid composition, two or more kinds of second liquid compositions are stored in separate tanks, and the composition is changed in two or more by switching the tank that supplies the second liquid composition. Alternatively, the composition may be constant by storing in one tank.
[順次積層工程]
 本工程では、第1液組成物及び第2液組成物を混合し、その直後に吐出することで支持体上に合成樹脂層を形成する。また、本工程では、第1液組成物及び第2液組成物を供給するタンクを切り替えることにより、混合に供される第1液組成物及び/又は第2液組成物の組成を変化させる。これにより、形成される3次元造形物の物性を部位毎に変化させることができる。本工程で第1液組成物及び/又は2液組成物の組成を変化させる回数としては、1回のみでもよく、複数回でもよい。なお、本工程では、第1液組成物及び/又は第2液組成物の組成を変化させると共に、第1液組成物及び第2液組成物の混合比を変化させてもよい。
[Sequential lamination process]
In this step, the first liquid composition and the second liquid composition are mixed and discharged immediately thereafter to form a synthetic resin layer on the support. Moreover, in this process, the composition of the 1st liquid composition and / or 2nd liquid composition which are provided for mixing is changed by switching the tank which supplies a 1st liquid composition and a 2nd liquid composition. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part. The number of times of changing the composition of the first liquid composition and / or the two-liquid composition in this step may be only once or may be multiple times. In this step, the composition of the first liquid composition and / or the second liquid composition may be changed, and the mixing ratio of the first liquid composition and the second liquid composition may be changed.
 本工程で、第1液組成物及び第2液組成物の組成を変化させる方法としては、例えば第7実施形態で説明したものと同様の方法等が挙げられる。 In this step, examples of the method for changing the composition of the first liquid composition and the second liquid composition include the same methods as those described in the seventh embodiment.
 当該3次元造形物の製造方法における第1液組成物及び第2液組成物の組成、他の条件、用途等は、第7実施形態の製造方法と同様とすることができる。 The composition of the first liquid composition and the second liquid composition, the other conditions, the use, and the like in the manufacturing method of the three-dimensional structure can be the same as those of the manufacturing method of the seventh embodiment.
[利点]
 当該3次元造形物の製造方法は、第7実施形態の製造方法と比較し、第1液組成物及び/又は第2液組成物を2種以上の原料の混合により調製する必要がないため、上記原料の混合不良に起因する第1液組成物及び/又は第2液組成物の成分変動のおそれがない。
[advantage]
Since the manufacturing method of the said three-dimensional structure does not need to prepare the 1st liquid composition and / or the 2nd liquid composition by mixing 2 or more types of raw materials compared with the manufacturing method of 7th Embodiment, There is no risk of component fluctuations in the first liquid composition and / or the second liquid composition due to poor mixing of the raw materials.
[第9実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出直後に混合する。当該3次元造形物の製造方法は、順次積層工程で、第1液組成物の組成と、第2液組成物の組成と、第1液組成物及び第2液組成物の混合比とのうち少なくとも1つを変化させる。
[Ninth Embodiment]
<Method for manufacturing a three-dimensional structure>
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support (sequential laminating step) by discharging the second liquid composition, and the first liquid composition and the second liquid composition are mixed immediately after discharging in the sequential laminating step. . The manufacturing method of the said three-dimensional structure is a sequential lamination process, among the composition of a 1st liquid composition, the composition of a 2nd liquid composition, and the mixing ratio of a 1st liquid composition and a 2nd liquid composition. Change at least one.
 つまり、当該3次元造形物の製造方法は、第6実施形態から第8実施形態の製造方法と比較し、第1液組成物及び第2液組成物を吐出直前に混合する替わりに、吐出直後に混合する点で相違する。 That is, the manufacturing method of the three-dimensional structure is compared with the manufacturing method of the sixth to eighth embodiments, instead of mixing the first liquid composition and the second liquid composition immediately before discharging, immediately after discharging. It differs in that it is mixed.
(3Dプリンタ)
 当該3次元造形物の製造方法には、例えば第3実施形態の製造方法で説明した図2の一工程で用いられる3Dプリンタに、第6実施形態から第8実施形態の製造方法に用いる造形材料供給システムから混合液供給ラインを省略した造形材料供給システムを適用した3Dプリンタを用いることができる。すなわち、例えば第6実施形態から第8実施形態の製造方法に用いる造形材料供給システムの第1液供給ライン及び第2液供給ラインの端部を図2における第1液吐出ノズルA12a及び第2液吐出ノズルA12bにそれぞれ接続した3Dプリンタを用いることができる。
(3D printer)
For the manufacturing method of the three-dimensional structure, for example, a modeling material used in the manufacturing method of the sixth to eighth embodiments for the 3D printer used in one step of FIG. 2 described in the manufacturing method of the third embodiment. A 3D printer to which a modeling material supply system in which the mixed liquid supply line is omitted from the supply system can be used. That is, for example, end portions of the first liquid supply line and the second liquid supply line of the modeling material supply system used in the manufacturing method of the sixth embodiment to the eighth embodiment are the first liquid discharge nozzle A12a and the second liquid in FIG. A 3D printer connected to each of the discharge nozzles A12b can be used.
 本工程における第1液組成物及び第2液組成物の組成、他の条件、用途等は、第6実施形態から第8実施形態の製造方法と同様とすることができる。 The composition of the first liquid composition and the second liquid composition, other conditions, applications, etc. in this step can be the same as in the manufacturing method of the sixth embodiment to the eighth embodiment.
<利点>
 当該3次元造形物の製造方法は、第6実施形態から第8実施形態の製造方法と比較し、反応性に優れる第1液組成物及び第2液組成物を使用しても、ノズルの詰まりを抑制できる。
<Advantages>
Even if the manufacturing method of the said three-dimensional structure uses the 1st liquid composition and 2nd liquid composition which are excellent in the reactivity compared with the manufacturing method of 6th Embodiment-8th Embodiment, it is clogged with a nozzle. Can be suppressed.
[第10実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する後述する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出する直前に混合する。また、当該3次元造形物の製造方法では、順次積層工程で第1液組成物の組成及び第2液組成物の組成のうち少なくとも一方を変化させることで、部位毎に物性が異なる3次元造形物を製造する。さらに、当該3次元造形物の製造方法では、順次積層工程で第1液組成物及び第2液組成物の吐出量の質量比を100:110以上100:90以下とする。
[Tenth embodiment]
<Method for manufacturing a three-dimensional structure>
The manufacturing method of the three-dimensional structure is a manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, and reacts by mixing with a pseudo prepolymer method, which will be described later. A step of sequentially laminating a synthetic resin layer on the support by discharging the composition and the second liquid composition (sequential laminating step), and immediately before discharging the first liquid composition and the second liquid composition in the sequential laminating step To mix. Moreover, in the manufacturing method of the said three-dimensional structure, three-dimensional modeling from which a physical property differs for every site | part by changing at least one among the composition of a 1st liquid composition and a composition of a 2nd liquid composition in a lamination | stacking process one by one. Manufacturing things. Furthermore, in the manufacturing method of the said three-dimensional structure, let mass ratio of the discharge amount of a 1st liquid composition and a 2nd liquid composition be 100: 110 or more and 100: 90 or less in a lamination | stacking process one by one.
 当該3次元造形物の製造方法に用いる第1液組成物は、ウレタンプレポリマー、ウレタンウレアプレポリマー及びウレアプレポリマーのうち少なくとも1種のプレポリマーと、ポリイソシアネートと、可塑剤とを含む。また、第2液組成物は、長鎖ポリオール及び長鎖ポリアミンのうち少なくとも1種のソフトセグメント成分と、鎖延長剤及び架橋剤のうち少なくとも1種のハードセグメント成分と、可塑剤とを含む。 The first liquid composition used in the method for producing a three-dimensional structure includes at least one prepolymer among a urethane prepolymer, a urethane urea prepolymer, and a urea prepolymer, a polyisocyanate, and a plasticizer. The second liquid composition contains at least one soft segment component of a long-chain polyol and a long-chain polyamine, at least one hard segment component of a chain extender and a crosslinking agent, and a plasticizer.
 すなわち、当該3次元造形物の製造方法は、第7実施形態及び第8実施形態の製造方法と比較し、第1液組成物及び第2液組成物において可塑剤を必須とし、かつ順次積層工程で第1液組成物及び第2液組成物の吐出量の質量比を100:110以上100:90以下とする点が相違する。 That is, the manufacturing method of the three-dimensional structure requires a plasticizer in the first liquid composition and the second liquid composition as compared with the manufacturing methods of the seventh embodiment and the eighth embodiment, and sequentially stacks the steps. However, the difference is that the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is 100: 110 or more and 100: 90 or less.
(3Dプリンタ)
 当該3次元造形物の製造方法には、第2実施形態の製造方法で説明した図1の一工程で用いられる3Dプリンタに、図8に示す造形材料供給システムZ4を適用した3Dプリンタを用いることができる。
(3D printer)
The 3D model manufacturing method uses a 3D printer in which the modeling material supply system Z4 shown in FIG. 8 is applied to the 3D printer used in one step of FIG. 1 described in the manufacturing method of the second embodiment. Can do.
 図8に示す造形材料供給システムZ4は上記3Dプリンタの混合液吐出ノズルA2に第1液組成物及び第2液組成物の混合液を供給する。この造形材料供給システムZ4は、ソフトセグメント成分タンクIと、ハードセグメント成分タンクJと、可塑剤タンクKと、第1液原料タンクLとを主に備える。ソフトセグメント成分タンクIにはソフトセグメント成分供給ラインiが接続されている。ハードセグメント成分タンクJにはハードセグメント成分供給ラインjが接続されている。可塑剤タンクKには2つの可塑剤供給ラインkが接続されている。第1液原料タンクLには第1液原料供給ラインlが接続されている。 The modeling material supply system Z4 shown in FIG. 8 supplies the mixed liquid of the first liquid composition and the second liquid composition to the mixed liquid discharge nozzle A2 of the 3D printer. This modeling material supply system Z4 mainly includes a soft segment component tank I, a hard segment component tank J, a plasticizer tank K, and a first liquid raw material tank L. A soft segment component supply line i is connected to the soft segment component tank I. A hard segment component supply line j is connected to the hard segment component tank J. Two plasticizer supply lines k are connected to the plasticizer tank K. A first liquid material supply line 1 is connected to the first liquid material tank L.
 ソフトセグメント成分供給ラインiにおけるソフトセグメント成分タンクIとは反対側の端部と、ハードセグメント成分供給ラインjにおけるハードセグメント成分タンクJとは反対側の端部と、一方の可塑剤供給ラインkにおける可塑剤タンクKとは反対側の端部とは、第2液混合ラインミキサーMに接続されている。第2液混合ラインミキサーMには第2液供給ラインmが接続されている。他方の可塑剤供給ラインkにおける可塑剤タンクKとは反対側の端部と、第1液原料供給ラインlにおける第1液原料タンクLとは反対側の端部とは、第1液混合ラインミキサーNに接続されている。第1液混合ラインミキサーNには第1液供給ラインnが接続されている。第2液供給ラインmにおける第2液混合ラインミキサーMとは反対側の端部と、第1液供給ラインnにおける第1液混合ラインミキサーNとは反対側の端部とは、混合液供給ラインdの一方の端部に接続されている。この混合液供給ラインdは、他方の端部が図1における混合液吐出ノズルA2に接続されている。なお、混合液供給ラインdには、必要に応じてマイクロスタティックミキサー等のラインミキサーを途中に設けてもよい。 The end of the soft segment component supply line i opposite to the soft segment component tank I, the end of the hard segment component supply line j opposite to the hard segment component tank J, and the one plasticizer supply line k The end opposite to the plasticizer tank K is connected to the second liquid mixing line mixer M. A second liquid supply line m is connected to the second liquid mixing line mixer M. The end of the other plasticizer supply line k opposite to the plasticizer tank K and the end of the first liquid raw material supply line l opposite to the first liquid raw material tank L are the first liquid mixing line. It is connected to the mixer N. A first liquid supply line n is connected to the first liquid mixing line mixer N. An end of the second liquid supply line m opposite to the second liquid mixing line mixer M and an end of the first liquid supply line n opposite to the first liquid mixing line mixer N are mixed liquid supply. It is connected to one end of the line d. The other end of the mixed liquid supply line d is connected to the mixed liquid discharge nozzle A2 in FIG. The mixed solution supply line d may be provided with a line mixer such as a microstatic mixer in the middle as necessary.
 ソフトセグメント成分タンクI及びハードセグメント成分タンクJには、第2液組成物の一部を構成するソフトセグメント成分又はハードセグメント成分がそれぞれ貯蔵される。可塑剤タンクKには第1液組成物及び第2液組成物の一部を構成する可塑剤が貯蔵される。第1液原料タンクLには第1液組成物の一部を構成するプレポリマー及びポリイソシアネートの混合液が貯蔵される。第2液組成物を構成するソフトセグメント成分、ハードセグメント成分及び可塑剤は、それぞれソフトセグメント成分タンクI、ハードセグメント成分タンクJ又は可塑剤タンクKからソフトセグメント成分供給ラインi、ハードセグメント成分供給ラインj又は可塑剤供給ラインkを介して第2液混合ラインミキサーMに供給される。第2液混合ラインミキサーMに供給された各成分は、混合により第2液組成物へと調製された後、第2液供給ラインmを介して混合液供給ラインdに供給される。第1液組成物を構成する可塑剤及び上記混合液は、それぞれ可塑剤タンクK又は第1液原料タンクLから可塑剤供給ラインk又は第1液原料供給ラインlを介して第1液混合ラインミキサーNに供給される。第1液混合ラインミキサーNに供給された各成分は、混合により第1液組成物へと調製された後、第1液供給ラインnを介して混合液供給ラインdに供給される。混合液供給ラインdに供給された第1液組成物及び第2液組成物は、混合液供給ラインd内で混合された後、図1における混合液吐出ノズルA2に供給される。 In the soft segment component tank I and the hard segment component tank J, a soft segment component or a hard segment component constituting a part of the second liquid composition is stored. The plasticizer tank K stores a plasticizer constituting a part of the first liquid composition and the second liquid composition. The first liquid raw material tank L stores a mixed liquid of a prepolymer and a polyisocyanate constituting a part of the first liquid composition. The soft segment component, the hard segment component and the plasticizer constituting the second liquid composition are the soft segment component supply line i and the hard segment component supply line from the soft segment component tank I, the hard segment component tank J or the plasticizer tank K, respectively. j or a plasticizer supply line k to be supplied to the second liquid mixing line mixer M. Each component supplied to the second liquid mixing line mixer M is prepared by mixing into a second liquid composition, and then supplied to the mixed liquid supply line d via the second liquid supply line m. The plasticizer constituting the first liquid composition and the mixed liquid are supplied from the plasticizer tank K or the first liquid raw material tank L through the plasticizer supply line k or the first liquid raw material supply line l, respectively. Supplied to the mixer N. Each component supplied to the first liquid mixing line mixer N is prepared into a first liquid composition by mixing, and then supplied to the mixed liquid supply line d via the first liquid supply line n. The first liquid composition and the second liquid composition supplied to the mixed liquid supply line d are mixed in the mixed liquid supply line d, and then supplied to the mixed liquid discharge nozzle A2 in FIG.
 造形材料供給システムZ4は、ソフトセグメント成分タンクI、ハードセグメント成分タンクJ、可塑剤タンクK及び第1液原料タンクLから供給する各成分の供給量を増減することで、混合液吐出ノズルA2に供給される混合液中の第1液組成物及び/又は第2液組成物の組成を変化させることができる。 The modeling material supply system Z4 increases or decreases the supply amount of each component supplied from the soft segment component tank I, the hard segment component tank J, the plasticizer tank K, and the first liquid raw material tank L, thereby allowing the mixed liquid discharge nozzle A2 to The composition of the first liquid composition and / or the second liquid composition in the supplied mixed liquid can be changed.
 なお、当該3次元造形物の製造方法で用いる造形材料供給システムは、図8で説明したもの以外にも、他の構成を採用することが可能である。具体的には、第2液組成物を構成する原料は、2個又は4個以上のタンクにそれぞれ貯蔵してもよい。また、第1液組成物を構成する原料は、3個以上のタンクにそれぞれ貯蔵してもよい。さらに、第2液混合ラインミキサーM及び第1液混合ラインミキサーNは省略してもよい。さらに、第1液組成物の調製に用いる可塑剤と第2液組成物の調製に用いる可塑剤とは、それぞれ別々のタンクに貯蔵してもよい。 It should be noted that the modeling material supply system used in the method for manufacturing the three-dimensional structure can adopt other configurations besides the one described in FIG. Specifically, the raw materials constituting the second liquid composition may be stored in two or four or more tanks, respectively. Moreover, you may store the raw material which comprises a 1st liquid composition in three or more tanks, respectively. Further, the second liquid mixing line mixer M and the first liquid mixing line mixer N may be omitted. Further, the plasticizer used for the preparation of the first liquid composition and the plasticizer used for the preparation of the second liquid composition may be stored in separate tanks.
 上述の第1液組成物を構成する原料及び第2液組成物を構成する原料としては、混合により第1液組成物及び第2液組成物に調製できるものであれば特に限定されず、1種の成分のみを含んでもよく、2種以上の成分を含んでもよい。また、上記原料は、単独で第1液組成物又は第2液組成物として使用可能な組成物であってもよい。 The raw material constituting the first liquid composition and the raw material constituting the second liquid composition are not particularly limited as long as they can be prepared into the first liquid composition and the second liquid composition by mixing. Only the seed component may be included, or two or more components may be included. In addition, the raw material may be a composition that can be used alone as the first liquid composition or the second liquid composition.
 ラインミキサーとしては、効率的に混合する観点から、駆動部のない静止型混合器の一種であるマイクロスタティックミキサーが好ましい。 As the line mixer, from the viewpoint of efficient mixing, a micro static mixer which is a kind of static mixer without a drive unit is preferable.
[順次積層工程]
 本工程では、2種以上の原料を予備混合することで調製した第1液組成物及び/又は第2液組成物と、必要に応じて別途用意される第1液組成物又は第2液組成物とをさらに混合し、その直後に吐出することで支持体上に合成樹脂層を形成する。本工程では、上記2種以上の原料の配合量を変更することで、第1液組成物及び/又は第2液組成物の組成を変化させる。これにより、形成される3次元造形物の物性を部位毎に変化させることができる。本工程で第1液組成物及び/又は第2液組成物の組成を変化させる回数としては、1回のみでもよく、複数回でもよい。また、本工程では、第1液組成物及び/又は第2液組成物の組成を段階的に変化させてもよく、漸次的に変化させてもよいが、傾斜機能材料を形成可能とする観点から、漸次的に変化させることが好ましい。
[Sequential lamination process]
In this step, the first liquid composition and / or the second liquid composition prepared by premixing two or more kinds of raw materials, and the first liquid composition or the second liquid composition separately prepared as necessary. A synthetic resin layer is formed on the support by further mixing the product and discharging immediately after that. In this step, the composition of the first liquid composition and / or the second liquid composition is changed by changing the blending amount of the two or more kinds of raw materials. Thereby, the physical property of the three-dimensional structure to be formed can be changed for each part. The number of times of changing the composition of the first liquid composition and / or the second liquid composition in this step may be only once or may be multiple. Further, in this step, the composition of the first liquid composition and / or the second liquid composition may be changed stepwise or may be gradually changed. From the above, it is preferable to change gradually.
 本工程で第1液組成物及び/又は第2液組成物の組成を変化させる方法としては、例えば(a)第1液組成物のプレポリマーの種類及び/又は含有量を変化させる方法、(b)第1液組成物の可塑剤の種類及び/又は含有量を変化させる方法、(c)第2液組成物のソフトセグメント成分の種類及び/又は含有量を変化させる方法、(d)第2液組成物のハードセグメント成分の種類及び/又は含有量を変化させる方法、(e)第2液組成物の可塑剤の種類及び/又は含有量を変化させる方法等が挙げられる。本工程では、(a)から(e)の方法を単独で又は組み合わせて行うことができる。 Examples of the method for changing the composition of the first liquid composition and / or the second liquid composition in this step include (a) a method of changing the type and / or content of the prepolymer of the first liquid composition, ( b) a method of changing the type and / or content of the plasticizer of the first liquid composition, (c) a method of changing the type and / or content of the soft segment component of the second liquid composition, (d) the first. Examples thereof include a method of changing the type and / or content of the hard segment component of the two-component composition, and (e) a method of changing the type and / or content of the plasticizer of the second solution composition. In this step, the methods (a) to (e) can be performed alone or in combination.
 本工程で第1液組成物及び第2液組成物の組成を(a)、(c)、(d)等の方法で変化させる場合、第1液組成物及び/又は第2液組成物の可塑剤の含有量を増減させることで第1液組成物及び第2液組成物の混合体積比の変化を抑制することが好ましい。すなわち、本工程では、(a)、(c)、(d)等の方法と、(b)及び/又は(e)の方法とを組み合わせた方法により、第1液組成物及び第2液組成物の組成を変化させることが好ましい。具体的には、例えば本工程で第2液組成物のハードセグメント成分及びソフトセグメント成分の合計含有量を低減させた場合には、第1液組成物の可塑剤の含有量の低減、及び/又は第2液組成物の可塑剤の含有量の増加により、第1液組成物及び第2液組成物の混合体積比の変化を抑制するとよい。また、逆に第2液組成物のハードセグメント成分及びソフトセグメント成分の合計含有量を増加させた場合には、第1液組成物の可塑剤の含有量の増加、及び/又は第2液組成物の可塑剤の含有量の低減により、第1液組成物及び第2液組成物の混合体積比の変化を抑制するとよい。 In the case where the composition of the first liquid composition and the second liquid composition is changed by a method such as (a), (c), (d) in this step, the first liquid composition and / or the second liquid composition It is preferable to suppress the change in the mixing volume ratio of the first liquid composition and the second liquid composition by increasing or decreasing the content of the plasticizer. That is, in this step, the first liquid composition and the second liquid composition are obtained by combining the methods (a), (c), (d) and the like and the methods (b) and / or (e). It is preferable to change the composition of the product. Specifically, for example, when the total content of the hard segment component and the soft segment component of the second liquid composition is reduced in this step, the plasticizer content of the first liquid composition is reduced, and / or Or it is good to suppress the change of the mixing volume ratio of a 1st liquid composition and a 2nd liquid composition by the increase in content of the plasticizer of a 2nd liquid composition. Conversely, when the total content of the hard segment component and the soft segment component of the second liquid composition is increased, the plasticizer content of the first liquid composition is increased and / or the second liquid composition The change in the mixing volume ratio of the first liquid composition and the second liquid composition may be suppressed by reducing the plasticizer content of the product.
((a)第1液組成物のプレポリマーの種類及び/又は含有量を変化させる方法)
 第1液組成物のプレポリマーの種類及び/又は含有量を変化させる方法としては、例えば数平均分子量の異なる2種以上のプレポリマーを用意し、この2種以上のプレポリマーの配合比を変化させる方法、第1液組成物に含まれる特定のプレポリマーを別の種類のプレポリマーで置き換える方法等が挙げられる。
((A) Method of changing the type and / or content of the prepolymer of the first liquid composition)
As a method of changing the kind and / or content of the prepolymer of the first liquid composition, for example, two or more kinds of prepolymers having different number average molecular weights are prepared, and the blending ratio of the two or more kinds of prepolymers is changed. And a method of replacing a specific prepolymer contained in the first liquid composition with another type of prepolymer.
((b)第1液組成物の可塑剤の種類及び/又は含有量を変化させる方法)
 第1液組成物の可塑剤の種類及び/又は含有量を変化させる方法としては、例えば1種の可塑剤の含有量を増減させる方法や、第1液組成物に含まれる特定の可塑剤を別の種類の可塑剤で置き換える方法等が挙げられる。第1液組成物に含まれる特定の1種の可塑剤の含有量を増減させる場合、その含有量の変化幅の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記変化幅の上限としては、35質量%が好ましく、25質量%がより好ましい。上記変動幅を上記範囲とすることで、(a)、(c)、(d)等の方法と組み合わせる場合に第1液組成物及び第2液組成物の混合体積比を1:1に近い範囲で維持し易くなる。なお、本工程では、第1液組成物の可塑剤の含有量を減少させることにより、一時的に第1液組成物における可塑剤の含有量が0質量%となってもよい。
((B) Method of changing the type and / or content of the plasticizer of the first liquid composition)
As a method of changing the kind and / or content of the plasticizer of the first liquid composition, for example, a method of increasing or decreasing the content of one kind of plasticizer, or a specific plasticizer contained in the first liquid composition A method of replacing with another type of plasticizer is included. When increasing / decreasing content of the specific 1 type of plasticizer contained in a 1st liquid composition, 5 mass% is preferable as a minimum of the change width of the content, and 10 mass% is more preferable. On the other hand, the upper limit of the change width is preferably 35% by mass, and more preferably 25% by mass. By making the fluctuation range within the above range, the mixing volume ratio of the first liquid composition and the second liquid composition is close to 1: 1 when combined with the methods (a), (c), (d), etc. Easy to maintain in range. In addition, in this process, content of the plasticizer in a 1st liquid composition may be temporarily 0 mass% by reducing the content of the plasticizer of a 1st liquid composition.
((c)第2液組成物のソフトセグメント成分の種類及び/又は含有量を変化させる方法)
 第2液組成物のソフトセグメント成分の種類及び/又は含有量を変化させる方法としては、例えば数平均分子量の異なる2種以上のソフトセグメント成分を用意し、この2種以上のソフトセグメント成分の配合比を変化させる方法や、1種のソフトセグメント成分の含有量を増減させる方法や、第2液組成物に含まれる特定のソフトセグメント成分を別の種類のソフトセグメント成分で置き換える方法等が挙げられる。
((C) Method of changing the type and / or content of the soft segment component of the second liquid composition)
As a method for changing the type and / or content of the soft segment component of the second liquid composition, for example, two or more types of soft segment components having different number average molecular weights are prepared, and the combination of the two or more types of soft segment components is prepared. Examples include a method of changing the ratio, a method of increasing or decreasing the content of one kind of soft segment component, a method of replacing a specific soft segment component contained in the second liquid composition with another type of soft segment component, and the like. .
 本工程で第2液組成物に含まれる特定の1種のソフトセグメント成分の含有量を増減させる場合、その含有量の変化幅の下限としては、5質量%が好ましく、20質量%がより好ましい。一方、上記変化幅の上限としては、50質量%が好ましく、40質量%がより好ましい。上記変化幅を上記範囲とすることで、形成される3次元造形物の物性を適度に変化させることができる。 In the case where the content of the specific one kind of soft segment component contained in the second liquid composition is increased or decreased in this step, the lower limit of the change width of the content is preferably 5% by mass, more preferably 20% by mass. . On the other hand, the upper limit of the change width is preferably 50% by mass, and more preferably 40% by mass. By making the said change width into the said range, the physical property of the three-dimensional structure to be formed can be changed moderately.
((d)第2液組成物のハードセグメント成分の種類及び/又は含有量を変化させる方法)
 第2液組成物のハードセグメント成分の種類及び/又は含有量を変化させる方法としては、例えば1種の鎖延長剤の含有量を増減させる方法や、1種の架橋剤の含有量を増減させる方法や、第2液組成物に含まれる特定のハードセグメント成分を別の種類のハードセグメント成分で置き換える方法等が挙げられる。
((D) Method of changing the type and / or content of the hard segment component of the second liquid composition)
As a method of changing the type and / or content of the hard segment component of the second liquid composition, for example, a method of increasing or decreasing the content of one chain extender or the content of one type of crosslinking agent is increased or decreased. Examples thereof include a method and a method of replacing a specific hard segment component contained in the second liquid composition with another type of hard segment component.
 本工程で第2液組成物に含まれる特定の1種の鎖延長剤の含有量を増減させる場合、その含有量の変化幅の下限としては、1質量%が好ましく、7質量%がより好ましい。一方、上記鎖延長剤の含有量の変化幅の上限としては、25質量%が好ましく、18質量%がより好ましい。また、第2液組成物に含まれる特定の1種の架橋剤の含有量を増減させる場合、その含有量の変化幅の下限としては、0.5質量%が好ましく、2質量%がより好ましい。一方、上記架橋剤の含有量の変化幅の上限としては、15質量%が好ましく、7質量%がより好ましい。上記鎖延長剤及び架橋剤の変化幅を上記範囲とすることで、形成される3次元造形物の物性を適度に変化させることができる。 When increasing or decreasing the content of the specific one kind of chain extender contained in the second liquid composition in this step, the lower limit of the change width of the content is preferably 1% by mass, more preferably 7% by mass. . On the other hand, the upper limit of the change width of the content of the chain extender is preferably 25% by mass, and more preferably 18% by mass. Further, when the content of the specific one kind of crosslinking agent contained in the second liquid composition is increased or decreased, the lower limit of the change width of the content is preferably 0.5% by mass, and more preferably 2% by mass. . On the other hand, the upper limit of the change width of the content of the crosslinking agent is preferably 15% by mass and more preferably 7% by mass. By setting the change width of the chain extender and the crosslinking agent in the above range, the physical properties of the formed three-dimensional structure can be appropriately changed.
((e)第2液組成物の可塑剤の種類及び/又は含有量を変化させる方法)
 第2液組成物の可塑剤の種類及び/又は含有量を変化させる方法としては、例えば1種の可塑剤の含有量を増減させる方法、第2液組成物に含まれる特定の可塑剤を別の種類の可塑剤で置き換える方法等が挙げられる。本工程で第2液組成物に含まれる特定の1種の可塑剤の含有量を増減させる場合、その含有量の変化幅の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記変化幅の上限としては、35質量%が好ましく、25質量%がより好ましい。上記変動幅を上記範囲とすることで、(a)、(c)、(d)等の方法と組み合わせる場合に第1液組成物及び第2液組成物の混合体積比を1:1に近い範囲で維持し易くなる。なお、本工程では、第2液組成物に含まれる可塑剤の含有量を減少させることにより、一時的に第2液組成物における可塑剤の含有量が0質量%となってもよい。
((E) Method of changing the type and / or content of the plasticizer of the second liquid composition)
Examples of the method for changing the type and / or content of the plasticizer in the second liquid composition include, for example, a method for increasing or decreasing the content of one type of plasticizer, and a specific plasticizer contained in the second liquid composition. And a method of replacing with a plasticizer of the above type. In the case where the content of the specific one type of plasticizer contained in the second liquid composition is increased or decreased in this step, the lower limit of the change width of the content is preferably 5% by mass, and more preferably 10% by mass. On the other hand, the upper limit of the change width is preferably 35% by mass, and more preferably 25% by mass. By making the fluctuation range within the above range, the mixing volume ratio of the first liquid composition and the second liquid composition is close to 1: 1 when combined with the methods (a), (c), (d), etc. Easy to maintain in range. In addition, in this process, content of the plasticizer in a 2nd liquid composition may be temporarily 0 mass% by reducing the content of the plasticizer contained in a 2nd liquid composition.
 本工程では、第1液組成物及び第2液組成物に含まれる可塑剤の合計含有量を一定とすることが好ましい。つまり、第1液組成物及び第2液組成物のうちの一方の組成物に含まれる可塑剤の含有量を特定量増加させた場合、他方の組成物に含まれる可塑剤の含有量を上記特定量減少させるとよい。このように、第1液組成物及び第2液組成物に含まれる可塑剤の合計含有量を一定とすることで、形成される3次元造形物で局所的なブリードアウトが発生することを抑制できる。 In this step, it is preferable that the total content of plasticizers contained in the first liquid composition and the second liquid composition is constant. That is, when the content of the plasticizer contained in one of the first liquid composition and the second liquid composition is increased by a specific amount, the content of the plasticizer contained in the other composition is It is good to reduce a specific amount. Thus, by making the total content of the plasticizers contained in the first liquid composition and the second liquid composition constant, it is possible to suppress the occurrence of local bleed out in the formed three-dimensional structure. it can.
 本工程では、第2液組成物に含まれるハードセグメント成分及びソフトセグメント成分のうちの一方の成分の含有量を増加させると共に他方の成分の含有量を減少させるとよい。また、上記ハードセグメント成分及び/又はソフトセグメント成分の含有量を増減させる場合、第1液組成物及び第2液組成物のうち一方の組成物に含まれる可塑剤の含有量を特定量増加させると共に他方の組成物に含まれる可塑剤の含有量を特定量減少させることで第1液組成物及び第2液組成物の混合体積比の変動を抑制するとよい。つまり、上述の(b)及び(e)の方法と、(c)及び/又は(d)の方法とを組み合わせて第1液組成物及び第2液組成物の組成を変化させるとよい。このように第1液組成物及び第2液組成物の組成を変化させることで、形成される3次元造形物の成形状態の良好さと、部位毎の物性変化の大きさとをバランスよく両立させることができる。 In this step, the content of one of the hard segment component and the soft segment component contained in the second liquid composition may be increased and the content of the other component may be decreased. In addition, when increasing or decreasing the content of the hard segment component and / or the soft segment component, the content of the plasticizer contained in one of the first liquid composition and the second liquid composition is increased by a specific amount. Moreover, it is good to suppress the fluctuation | variation of the mixing volume ratio of a 1st liquid composition and a 2nd liquid composition by reducing specific content of the plasticizer contained in the other composition. That is, the composition of the first liquid composition and the second liquid composition may be changed by combining the methods (b) and (e) described above and the methods (c) and / or (d). In this way, by changing the composition of the first liquid composition and the second liquid composition, both the good molding state of the formed three-dimensional structure and the magnitude of physical property change for each part are balanced. Can do.
 本工程で混合する第1液組成物及び第2液組成物の吐出量の質量比(第1液組成物:第2液組成物)の下限としては、100:110であり、100:105が好ましい。一方、上記質量比の上限としては、100:90であり、100:95が好ましい。このように、上記質量比を上記範囲とすることで、第1液組成物及び第2液組成物の吐出量の体積比を1:1に比較的近い範囲に調整することができ、その結果、第1液組成物及び第2液組成物をより均一に混合できる。 The lower limit of the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition to be mixed in this step (first liquid composition: second liquid composition) is 100: 110, and 100: 105 is preferable. On the other hand, the upper limit of the mass ratio is 100: 90, preferably 100: 95. Thus, by setting the mass ratio within the above range, the volume ratio of the discharge amounts of the first liquid composition and the second liquid composition can be adjusted to a range relatively close to 1: 1. The first liquid composition and the second liquid composition can be mixed more uniformly.
 また、本工程では、上記吐出量の質量比を略一定に保つことが好ましい。具体的には、本工程において、上記吐出量の質量比の変動率を5%以内に収めることが好ましく、1%以内に収めることがより好ましい。このように、上記吐出量の質量比の変動率を上記範囲とすることで、得られる造形物の品質を安定化することができる。ここで「吐出量の質量比の変動率」とは、本工程において第1液組成物及び第2液組成物の吐出量の質量比(第1液組成物/第2液組成物)の最大値をRmax、最小値をRminとしたときに下記式で表される値をいう。
 吐出量の質量比の変動率=100×(Rmax-Rmin)/Rmin
Further, in this step, it is preferable to keep the mass ratio of the discharge amount substantially constant. Specifically, in this step, the variation rate of the mass ratio of the discharge amount is preferably within 5%, and more preferably within 1%. Thus, the quality of the modeling thing obtained can be stabilized by making the fluctuation rate of the mass ratio of the said discharge amount into the said range. Here, the “rate of change in the mass ratio of the discharge amount” is the maximum of the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition (first liquid composition / second liquid composition) in this step. The value is represented by the following formula when the value is R max and the minimum value is R min .
Variation rate of mass ratio of discharge amount = 100 × (R max −R min ) / R min
[用途]
 当該3次元造形物の製造方法は、物性が部位毎に異なる成形体の製造に好適に用いることができる。上記変化させる物性としては、特に限定されないが、例えば弾性率、硬度、耐摩耗性、色等が挙げられる。具体的には、例えばシート状造形物を製造する場合、50%伸長した際の伸長モジュラス(M50)を3MPa以上25MPa以下、引張強さ(TB)を10MPa以上60MPa以下、切断時伸び(EB)を200%以上400%以下、JIS-A硬度を60°以上100°以下、DIN摩耗量を100mm以下の範囲内で変化させるとよい。
[Usage]
The manufacturing method of the said three-dimensional structure can be used suitably for manufacture of the molded object from which a physical property differs for every site | part. The physical properties to be changed are not particularly limited, and examples thereof include elastic modulus, hardness, abrasion resistance, and color. Specifically, for example, when producing a sheet-like shaped article, the elongation modulus (M50) when stretched 50% is 3 MPa or more and 25 MPa or less, the tensile strength (TB) is 10 MPa or more and 60 MPa or less, and the elongation at break (EB). May be changed within a range of 200% to 400%, a JIS-A hardness of 60 ° to 100 °, and a DIN wear amount of 100 mm 3 or less.
 当該3次元造形物の製造方法における他の条件、用途等は、第7実施形態及び第8実施形態の製造方法と同様とすることができる。 Other conditions, uses, etc. in the method for manufacturing the three-dimensional structure can be the same as those in the manufacturing method of the seventh embodiment and the eighth embodiment.
<利点>
 当該3次元造形物の製造方法は、第7実施形態及び第8実施形態の製造方法と比較し、造形中に第1液組成物及び/又は第2液組成物の組成を変化させたとしても、可塑剤の含有量の調節によって混合体積比をより1:1に近い範囲で維持できる。そのため、当該3次元造形物の製造方法は、ポリウレタン等を主成分とし、部位毎に物性が異なる3次元造形物をより容易かつ確実に製造することができる。
<Advantages>
Even if the manufacturing method of the said three-dimensional structure compared with the manufacturing method of 7th Embodiment and 8th Embodiment, and changed the composition of a 1st liquid composition and / or a 2nd liquid composition during modeling. The mixing volume ratio can be maintained in a range closer to 1: 1 by adjusting the plasticizer content. Therefore, the manufacturing method of the three-dimensional structure can more easily and reliably manufacture a three-dimensional structure having polyurethane or the like as a main component and having different physical properties for each part.
 さらに、当該3次元造形物の製造方法は、後述する第11実施形態の製造方法と比較し、第1液組成物及び第2液組成物をラインミキサー等で十分に混合してから混合液吐出ノズルA2で吐出できるため、より確実に3次元造形物を製造できる。さらに、当該3次元造形物の製造方法は、混合液滴X1の平均体積を小さくし易いため、形成される3次元造形物の造形精度をより向上できる。 Furthermore, the manufacturing method of the said three-dimensional structure is compared with the manufacturing method of 11th Embodiment mentioned later, and after mixing a 1st liquid composition and a 2nd liquid composition fully with a line mixer etc., liquid mixture discharge Since it can discharge with nozzle A2, a three-dimensional structure can be manufactured more reliably. Furthermore, since the method for manufacturing the three-dimensional structure easily reduces the average volume of the mixed droplet X1, the modeling accuracy of the formed three-dimensional structure can be further improved.
[第11実施形態]
<3次元造形物の製造方法>
 当該3次元造形物の製造方法は、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法であって、混合により擬似プレポリマー法によって反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程(順次積層工程)を備え、順次積層工程で第1液組成物及び第2液組成物を吐出した直後に混合する。また、当該3次元造形物の製造方法では、順次積層工程で第1液組成物の組成及び第2液組成物の組成のうち少なくとも一方を変化させることで、部位毎に物性が異なる3次元造形物を製造する。さらに、当該3次元造形物の製造方法では、順次積層工程で第1液組成物及び第2液組成物の吐出量の質量比を100:110以上100:90以下とする。
[Eleventh embodiment]
<Method for manufacturing a three-dimensional structure>
The method for producing a three-dimensional structure is a method for producing a three-dimensional structure mainly composed of polyurethane or the like using an inkjet 3D printer, and is a first liquid composition that reacts by a pseudo prepolymer method by mixing. And a step of sequentially laminating a synthetic resin layer on the support by discharging the second liquid composition (sequential lamination step), and mixing immediately after discharging the first liquid composition and the second liquid composition in the sequential lamination step To do. Moreover, in the manufacturing method of the said three-dimensional structure, three-dimensional modeling from which a physical property differs for every site | part by changing at least one among the composition of a 1st liquid composition and a composition of a 2nd liquid composition in a lamination process sequentially. Manufacturing things. Furthermore, in the manufacturing method of the said three-dimensional structure, let mass ratio of the discharge amount of a 1st liquid composition and a 2nd liquid composition be 100: 110 or more and 100: 90 or less in a lamination process sequentially.
 つまり、本実施形態は、第10実施形態の製造方法と比較し、第1液組成物及び第2液組成物を吐出直前に混合する替わりに、吐出直後に混合する点で相違する。 That is, this embodiment is different from the manufacturing method of the tenth embodiment in that the first liquid composition and the second liquid composition are mixed immediately after discharge instead of being mixed immediately before discharge.
(3Dプリンタ)
 当該3次元造形物の製造方法には、第3実施形態の製造方法で説明した図2の一工程で用いられる3Dプリンタに、第10実施形態の製造方法に用いる造形材料供給システムから混合液供給ラインを省略した造形材料供給システムを適用した3Dプリンタを用いることができる。すなわち、例えば第6実施形態から第8実施形態の製造方法に用いる造形材料供給システムの第1液供給ライン及び第2液供給ラインの端部を図2における第1液吐出ノズルA12a及び第2液吐出ノズルA12bにそれぞれ接続した3Dプリンタを用いることができる。
(3D printer)
In the manufacturing method of the three-dimensional structure, a mixed liquid is supplied from the modeling material supply system used in the manufacturing method of the tenth embodiment to the 3D printer used in one step of FIG. 2 described in the manufacturing method of the third embodiment. A 3D printer to which a modeling material supply system in which the line is omitted can be used. That is, for example, end portions of the first liquid supply line and the second liquid supply line of the modeling material supply system used in the manufacturing method of the sixth embodiment to the eighth embodiment are the first liquid discharge nozzle A12a and the second liquid in FIG. A 3D printer connected to each of the discharge nozzles A12b can be used.
 本工程における第1液組成物及び第2液組成物の組成、他の条件、用途等は、第10実施形態の製造方法と同様とすることができる。 The composition of the first liquid composition and the second liquid composition, other conditions, applications, etc. in this step can be the same as in the manufacturing method of the tenth embodiment.
<利点>
 当該3次元造形物の製造方法は、第10実施形態の製造方法と比較し、反応性に優れる第1液組成物及び第2液組成物を使用してもノズルの詰まりを抑制できる。
<Advantages>
Compared with the manufacturing method of the tenth embodiment, the manufacturing method of the three-dimensional structure can suppress clogging of the nozzle even when the first liquid composition and the second liquid composition that are excellent in reactivity are used.
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
 例えば、図2の一工程に用いられる3Dプリンタの備える第1液吐出ノズル及び第2液吐出ノズルは、その中心軸を通る仮想直線が支持台直上で合流するように鉛直方向斜め下向きに配設されているが、上記仮想直線が支持台上方の空中で合流するように鉛直方向斜め下向きに配設されていてもよい。つまり、吐出された第1液組成物の液滴及び第2液組成物の液滴を空中で衝突させて合体させてから、形成される混合液滴を支持台の上面に着弾させてもよい。但し、第1液組成物及び第2液組成物の衝突による飛沫の発生を抑制する観点から、図2の一工程に用いられる3Dプリンタにより、吐出された第1液組成物の液滴及び第2液組成物の液滴を支持台の上面の同一箇所に同時に着弾させることで混合液滴を形成する方が好ましい。 For example, the first liquid discharge nozzle and the second liquid discharge nozzle included in the 3D printer used in one step of FIG. 2 are arranged obliquely downward in the vertical direction so that a virtual straight line passing through the central axis merges immediately above the support base. However, the virtual straight line may be arranged obliquely downward in the vertical direction so as to join in the air above the support base. That is, after the discharged droplets of the first liquid composition and the liquid droplets of the second liquid composition collide with each other in the air, the formed mixed liquid droplets may land on the upper surface of the support base. . However, from the viewpoint of suppressing the generation of splashes due to the collision of the first liquid composition and the second liquid composition, the 3D printer used in one step of FIG. It is preferable to form mixed droplets by simultaneously landing droplets of the two-component composition on the same location on the upper surface of the support base.
 また、第6実施形態から第11実施形態の製造方法では、順次積層工程で、第1液組成物及び第2液組成物の吐出量を変化させることで合成樹脂層の密度を部位毎に変化させてもよい。 Further, in the manufacturing methods of the sixth embodiment to the eleventh embodiment, the density of the synthetic resin layer is changed for each part by changing the discharge amount of the first liquid composition and the second liquid composition in the sequential lamination process. You may let them.
 さらに、第2実施形態から第11実施形態の製造方法では、順次積層で混合液吐出ノズル、又は第1液吐出ノズル及び第2液吐出ノズルを固定した状態で支持台を移動させているが、替わりに支持台を固定した状態で各ノズルを移動させてもよい。但し、吐出精度の観点から、各ノズルを固定した状態で支持台を移動させる方が好ましい。 Furthermore, in the manufacturing method of the second embodiment to the eleventh embodiment, the support base is moved in a state in which the mixed liquid discharge nozzles or the first liquid discharge nozzle and the second liquid discharge nozzle are fixed in sequential lamination. Instead, each nozzle may be moved in a state where the support base is fixed. However, from the viewpoint of ejection accuracy, it is preferable to move the support base with each nozzle fixed.
 さらに、第3実施形態、第5実施形態、第9実施形態及び第11実施形態の製造方法では、順次積層において第1液吐出ノズル及び第2液吐出ノズルから吐出した第1液組成物の液滴及び第2液組成物の液滴を同一箇所に同時に着弾させることで第1液組成物及び第2液組成物を混合したが、これらの液滴を同一箇所に時間差を付けて着弾させることで第1液組成物及び第2液組成物を混合してもよい。 Furthermore, in the manufacturing methods of the third embodiment, the fifth embodiment, the ninth embodiment, and the eleventh embodiment, the liquid of the first liquid composition discharged from the first liquid discharge nozzle and the second liquid discharge nozzle in sequential lamination. The first liquid composition and the second liquid composition are mixed by simultaneously landing the droplet and the second liquid composition on the same location, but the droplets are landed on the same location with a time difference. The first liquid composition and the second liquid composition may be mixed.
 以下、実施例を挙げて本発明をさらに詳述する。但し、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[原料]
 まず、本試験例でポリウレタン及びポリウレタンウレアの原料として用いた化合物を以下に示す。
[material]
First, the compounds used as raw materials for polyurethane and polyurethane urea in this test example are shown below.
(ポリイソシアネート及びウレタンプレポリマー)
 ウレタンプレポリマー:三井化学社の「L5299」に含まれるウレタンプレポリマー(ポリテトラメチレンエーテルグリコール(PTMG)及び4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)の反応産物)
 ポリイソシアネート1:三井化学社の「L5299」に含まれる4,4’-MDI
 ポリイソシアネート2:三井化学社のピュアMDI
(Polyisocyanate and urethane prepolymer)
Urethane prepolymer: Urethane prepolymer included in Mitsui Chemicals' “L5299” (reaction product of polytetramethylene ether glycol (PTMG) and 4,4′-diphenylmethane diisocyanate (4,4′-MDI))
Polyisocyanate 1: 4,4'-MDI contained in "L5299" of Mitsui Chemicals
Polyisocyanate 2: Pure MDI from Mitsui Chemicals
(長鎖ポリオール及び長鎖ポリアミン)
 長鎖ポリオール:INVISTA社の「TERATHANE(登録商標)1000」、ポリテトラメチレンエーテルグリコール(PTMG)ポリオール、数平均分子量1,000
 長鎖ポリアミン1:HANTSMAN社の「ELASTAMINE(登録商標)RT1000」、PTMGとポリプロピレングリコールとの共重合体のジアミン、数平均分子量1,000
 長鎖ポリアミン2:HANTSMAN社の「JEFFAMINE(登録商標)D2000」、ポリプロピレングリコールジアミン、数平均分子量2,000
(Long chain polyol and long chain polyamine)
Long chain polyol: “TERATHANE® 1000” from INVISTA, polytetramethylene ether glycol (PTMG) polyol, number average molecular weight 1,000
Long-chain polyamine 1: “ELASTAMINE (registered trademark) RT1000” manufactured by HANTSMAN, diamine of a copolymer of PTMG and polypropylene glycol, number average molecular weight 1,000
Long-chain polyamine 2: “JEFFAMINE (registered trademark) D2000” from HANTSMAN, polypropylene glycol diamine, number average molecular weight 2,000
(鎖延長剤及び架橋剤)
 鎖延長剤1(短鎖ジオール):三菱化学社の「1,4ブタンジオール」、1,4ブタンジオール
 鎖延長剤2(短鎖ジアミン):イハラケミカル工業社の「ハートキュア10」、ジエチルメチルベンゼンジアミン(DETDA)
 架橋剤(短鎖トリオール):三菱ガス化学社の「トリメチロールプロパン」、トリメチロールプロパン(TMP)
(Chain extender and crosslinker)
Chain extender 1 (short chain diol): Mitsubishi Chemical's “1,4 butanediol”, 1,4 butanediol Chain extender 2 (short chain diamine): Ihara Chemical Industry's “Heart Cure 10”, diethylmethyl Benzenediamine (DETDA)
Cross-linking agent (short-chain triol): "Trimethylolpropane" from Mitsubishi Gas Chemical Company, Trimethylolpropane (TMP)
(可塑剤及び触媒)
 可塑剤:BASF社の「DINCH(登録商標)」、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル
 触媒:Momentive社の「Fomrez catalyst UL-28」、ジラウリル酸ジメチル錫
(Plasticizer and catalyst)
Plasticizer: “DINCH®” from BASF, 1,2-cyclohexanedicarboxylic acid diisononyl ester Catalyst: “Fomrez catalyst UL-28” from Momentive, dimethyltin dilaurate
<造形物の製造(その1)>
 以下の試験例1~8では、卓上型塗布ロボットを用いてポリウレタン等を主成分とするシート状造形物を製造した。これらの試験例により、擬似プレポリマー法により反応する造形材料を用いることで、インクジェット方式の3Dプリンタを用いて3次元造形物を容易かつ確実に製造できることを確認した。
<Manufacture of shaped objects (1)>
In Test Examples 1 to 8 below, a sheet-like molded article mainly composed of polyurethane or the like was manufactured using a desktop coating robot. From these test examples, it was confirmed that by using a modeling material that reacts by the pseudo prepolymer method, it is possible to easily and reliably manufacture a three-dimensional structure using an inkjet 3D printer.
[試験例1]
 ウレタンプレポリマー及びポリイソシアネート1を含有する三井化学社の「L5299」を第1液組成物とした。また、長鎖ポリオールを73.97質量部と、鎖延長剤1を8.93質量部と、架橋剤を3.8質量部と、触媒を0.037質量部とを島崎エンジニアリング社の往復回転式攪拌機「アジター(登録商標)」で1分30秒間の攪拌混合を行い、得られた混合物を第2液組成物とした。
[Test Example 1]
“L5299” of Mitsui Chemicals, which contains a urethane prepolymer and polyisocyanate 1, was used as the first liquid composition. Further, 73.97 parts by mass of the long-chain polyol, 8.93 parts by mass of the chain extender 1, 3.8 parts by mass of the crosslinking agent, and 0.037 parts by mass of the catalyst are reciprocated by Shimazaki Engineering Co., Ltd. The mixture was stirred and mixed for 1 minute and 30 seconds with an agitator “Agitator (registered trademark)”, and the resulting mixture was used as the second liquid composition.
 なお、「L5299」は、数平均分子量が1,000のPTMGと分子量が250の4,4’-MDIとを反応させ、イソシアネート基含有率(NCO含有率)を20質量%に調整したものである。この「L5299」が含有するウレタンプレポリマーは、大半がPTMGの両末端に4,4’-MDIが結合したものであると考えられるため、その数平均分子量は1,500程度であると推測される。ここで、「L5299」のイソシアネート基含有率は、下記式(1)で表すことができる。下記式(1)でイソシアネート基の分子量を42、ウレタンプレポリマーの数平均分子量を1,500と見做して計算すると、「L5299」は、ウレタンプレポリマーの含有量が約49質量%、4,4’-MDIの含有量が約51質量%であると推測される。 “L5299” is prepared by reacting PTMG having a number average molecular weight of 1,000 with 4,4′-MDI having a molecular weight of 250 and adjusting the isocyanate group content (NCO content) to 20% by mass. is there. Most of the urethane prepolymers contained in this “L5299” are considered to have 4,4′-MDI bonded to both ends of PTMG, so the number average molecular weight is estimated to be about 1,500. The Here, the isocyanate group content of “L5299” can be represented by the following formula (1). According to the following formula (1), when the molecular weight of the isocyanate group is 42 and the number average molecular weight of the urethane prepolymer is 1,500, “L5299” has a urethane prepolymer content of about 49% by mass, 4 , 4′-MDI content is estimated to be about 51 mass%.
 (ウレタンプレポリマーの含有量[質量%]×2個のイソシアネート基の分子量/ウレタンプレポリマーの数平均分子量)+(MDIの含有量[質量%]×2個のイソシアネート基の分子量/MDIの分子量)=イソシアネート基含有率[質量%]・・・(1) (Content of urethane prepolymer [% by mass] × molecular weight of two isocyanate groups / number average molecular weight of urethane prepolymer) + (content of MDI [mass%] × molecular weight of two isocyanate groups / molecular weight of MDI) ) = Isocyanate group content [% by mass] (1)
 武蔵エンジニアリング社の卓上型塗布ロボット「SHOTMASTER(登録商標)300DS-S」の専用タンクに上述の第1液組成物及び第2液組成物をそれぞれ投入した。その後、上記卓上型塗布ロボットの2つのノズルから以下の吐出条件で第1液組成物及び第2液組成物を吐出し、支持台としてのテーブル上の同一位置に各液滴を着弾させることで混合して反応させ、硬化物を形成させた。これを繰り返し、150mm×150mm×2mmのシート状造形物を形成した。第1液組成物及び第2液組成物の吐出量の質量比(第1液組成物:第2液組成物)は、100質量部:86.73質量部とした。 The first liquid composition and the second liquid composition described above were put into dedicated tanks of a desktop coating robot “SHOTMASTER (registered trademark) 300DS-S” of Musashi Engineering. Thereafter, the first liquid composition and the second liquid composition are discharged from the two nozzles of the desktop type application robot under the following discharge conditions, and each droplet is landed on the same position on the table as a support base. The mixture was reacted to form a cured product. This was repeated to form a 150 mm × 150 mm × 2 mm sheet-like shaped article. The mass ratio of the discharge amounts of the first liquid composition and the second liquid composition (first liquid composition: second liquid composition) was 100 parts by mass: 86.73 parts by mass.
(吐出条件)
 ノズル径:0.2mm
 吐出圧力:0.1MPa
 液温:30℃
 テーブル温度:20℃
 吐出間隔:10msec
 混合液滴の平均体積:~10pL
(Discharge condition)
Nozzle diameter: 0.2mm
Discharge pressure: 0.1 MPa
Liquid temperature: 30 ° C
Table temperature: 20 ° C
Discharge interval: 10msec
Average volume of mixed droplets: ~ 10 4 pL
[試験例2~8]
 表1に示す種類及び含有量の成分を用いた以外は試験例1と同様に操作し、シート状造形物を形成した。なお、表中の「-」は、その成分を使用しなかったことを示す。
[Test Examples 2 to 8]
A sheet-like shaped article was formed in the same manner as in Test Example 1 except that the components having the types and contents shown in Table 1 were used. In the table, “-” indicates that the component was not used.
 ここで、試験例1~8の第1液組成物及び第2液組成物は、いずれも比重が約1.1であるため、吐出量の質量比は、吐出量の体積比と略一致する。 Here, since the first liquid composition and the second liquid composition of Test Examples 1 to 8 both have a specific gravity of about 1.1, the mass ratio of the discharge amount substantially matches the volume ratio of the discharge amount. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、試験例1~4に用いた第1液組成物及び第2液組成物は、擬似プレポリマー法により反応する。一方、試験例5~8に用いた第1液組成物及び第2液組成物は、ポリイソシアネートと長鎖ポリオール及び/又は長鎖ポリアミンとを直接反応させる所謂ワンショット法により反応する。 Here, the first liquid composition and the second liquid composition used in Test Examples 1 to 4 react by a pseudo prepolymer method. On the other hand, the first liquid composition and the second liquid composition used in Test Examples 5 to 8 react by a so-called one-shot method in which a polyisocyanate and a long-chain polyol and / or a long-chain polyamine are directly reacted.
<評価(その1)>
 試験例1~4で形成したシート状造形物の引張特性(伸長モジュラス、引張強さ及び切断時伸び)、硬度、耐摩耗性並びに成形状態を以下の方法によって評価した。試験例5~8で形成したシート状造形物は、表面が完全に硬化していなかったため、成形状態の評価のみを行なった。評価結果を表2に示す。
<Evaluation (Part 1)>
The tensile properties (elongation modulus, tensile strength and elongation at break), hardness, abrasion resistance, and molding state of the sheet-like shaped articles formed in Test Examples 1 to 4 were evaluated by the following methods. Since the surface of the sheet-like shaped articles formed in Test Examples 5 to 8 was not completely cured, only the molded state was evaluated. The evaluation results are shown in Table 2.
[引張特性]
 JIS-K7312:1996「熱硬化性ポリウレタンエラストマー成形物の物理試験方法」に準拠し、シート状造形物における50%伸長した際の伸長モジュラス(M50)、引張強さ(TB)及び切断時伸び(EB)を測定した。50%伸長した際の伸長モジュラス[MPa]は、1.5MPa以上の場合を「合格」、1.5MPa未満の場合を「不合格」と評価できる。引張強さ[MPa]は、5MPa以上の場合を「合格」、5MPa未満の場合を「不合格」と評価できる。切断時伸び[%]は、105%以上の場合を「合格」、105%未満の場合を「不合格」と評価できる。これらの引張特性は、合格である場合には均一に混合された第1液組成物及び第2液組成物の硬化で得られた造形物であると評価でき、不合格である場合には均一に混合されていない第1液組成物及び第2液組成物の硬化で得られた造形物であると評価できる。
[Tensile properties]
In accordance with JIS-K7312: 1996 “Physical Test Method for Thermosetting Polyurethane Elastomer Moldings”, the elongation modulus (M50), tensile strength (TB) and elongation at break (50%) of the sheet-shaped molded article ( EB) was measured. The elongation modulus [MPa] when stretched by 50% can be evaluated as “pass” when 1.5 MPa or more and “fail” when less than 1.5 MPa. The tensile strength [MPa] can be evaluated as “pass” when 5 MPa or more and “fail” when less than 5 MPa. The elongation at break [%] can be evaluated as “pass” when 105% or more and “fail” when less than 105%. These tensile characteristics can be evaluated to be a shaped product obtained by curing the uniformly mixed first liquid composition and second liquid composition when it is acceptable, and uniform when it is unacceptable. It can be evaluated that the molded product is obtained by curing the first liquid composition and the second liquid composition which are not mixed in the first liquid composition.
[硬度]
 JIS-A硬度計を用い、旧JIS-K6301:1995「加硫ゴム物理試験方法」に準拠してシート状造形物の硬度を測定した。硬度[°]は、数値が大きいほど硬いことを示し、60°以上95°以下の場合は適度に硬いため「合格」と評価でき、60°未満の場合は柔らかすぎるため「不合格」と評価でき、95°超の場合は硬すぎるため「不合格」と評価できる。
[hardness]
Using a JIS-A hardness meter, the hardness of the sheet-like shaped article was measured in accordance with the former JIS-K6301: 1995 “Vulcanized Rubber Physical Test Method”. Hardness [°] indicates that the larger the value, the harder it is. When it is 60 ° or more and 95 ° or less, it is moderately hard and can be evaluated as “pass”, and when it is less than 60 °, it is too soft and evaluated as “fail”. If it exceeds 95 °, it is too hard and can be evaluated as “failed”.
[耐摩耗性]
 JIS-K6264-2:2005「加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第2部:試験方法」に準拠してシート状造形物のDIN摩耗試験を行い、摩耗量を測定した。DIN摩耗試験における摩耗量[mm]は、その数値が小さいほど耐摩耗性に優れることを示し、160mm以下の場合を「合格」、160mm超の場合を「不合格」と評価できる。
[Abrasion resistance]
A DIN abrasion test was performed on a sheet-like shaped article in accordance with JIS-K6264-2: 2005 “Vulcanized rubber and thermoplastic rubber – Determination of wear resistance – Part 2: Test method”, and the amount of wear was measured. . Wear amount in DIN abrasion test [mm 3] indicates that excellent wear resistance higher the number is less, "pass" in the case of 160 mm 3 or less, the case of 160 mm 3 than can be evaluated as "fail".
[成形状態]
 目視によりシート状造形物の外観を観察し、評価した。成形状態は、表面が完全に硬化している場合を「合格(A)」、表面の少なくとも一部がゲル状である場合を「不合格(B)」と評価した。
[Molded state]
The appearance of the sheet-like shaped product was visually observed and evaluated. The molding state was evaluated as “pass (A)” when the surface was completely cured, and “failed (B)” when at least a part of the surface was in a gel form.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試験例1~4で形成したシート状造形物は、伸長モジュラス、引張強さ、切断時伸び、硬度、耐摩耗性及び成形状態の全てに合格した。このことから、インクジェット方式の3Dプリンタを用いたポリウレタン等を主成分とする3次元造形物の製造方法において、擬似プレポリマー法により反応する第1液組成物及び第2液組成物を用いることで、その吐出量の体積比を1:1に近づけることができ、その結果、容易かつ確実に3次元造形物を製造できると判断される。 As shown in Table 2, the sheet-like shaped articles formed in Test Examples 1 to 4 passed all of the elongation modulus, tensile strength, elongation at break, hardness, wear resistance, and molding state. From this, in the manufacturing method of a three-dimensional structure mainly composed of polyurethane or the like using an ink jet 3D printer, the first liquid composition and the second liquid composition that react by the pseudo prepolymer method are used. The volume ratio of the discharge amount can be made close to 1: 1, and as a result, it is determined that a three-dimensional structure can be manufactured easily and reliably.
 一方、試験例5~8で形成したシート状造形物は、成形状態が不合格であった。これは、ワンショット法により反応する第1液組成物及び第2液組成物を用いたため、その吐出量の差が大きくなり、吐出した第1液組成物及び第2液組成物の一部が混合不良を生じたためであると判断される。 On the other hand, the sheet-like shaped articles formed in Test Examples 5 to 8 failed in the molding state. This is because the first liquid composition and the second liquid composition that react by the one-shot method are used, so the difference in the discharge amount becomes large, and a part of the discharged first liquid composition and the second liquid composition It is determined that this is because of a mixing failure.
<造形物の製造(その2)>
 以下の試験例9~11では、造形中に第1液組成物及び第2液組成物の吐出量を変化させることで、部位毎に物性が異なる3次元造形物を製造できることを確認した。試験例9~11では、造形中に第1液組成物及び第2液組成物の吐出量を変化させる替わりに、試験例毎に第1液組成物及び第2液組成物の吐出量を変更し、これにより密度及び空隙率が相違する3種類のシート状造形物を製造した。
<Manufacture of shaped objects (2)>
In the following Test Examples 9 to 11, it was confirmed that a three-dimensional structure with different physical properties can be manufactured for each part by changing the discharge amounts of the first liquid composition and the second liquid composition during modeling. In Test Examples 9 to 11, instead of changing the discharge amounts of the first liquid composition and the second liquid composition during modeling, the discharge amounts of the first liquid composition and the second liquid composition are changed for each test example. As a result, three types of sheet-shaped objects having different densities and void ratios were produced.
[試験例9]
 各成分の組成及び吐出量を表3に示す通りとし、かつ混合液滴の吐出ピッチを0.25mmとした以外は試験例1と同様に操作し、試験例9のシート状造形物を製造した。なお、表3に示す第1液組成物及び第2液組成物は、擬似プレポリマー法により反応する造形材料である。また、この第1液組成物及び第2液組成物は、比重が約1.1であるため、その吐出量の質量比と体積比とは略一致する。
[Test Example 9]
The sheet-like shaped article of Test Example 9 was manufactured in the same manner as in Test Example 1 except that the composition and discharge amount of each component were as shown in Table 3 and the discharge pitch of the mixed droplets was 0.25 mm. . In addition, the 1st liquid composition and 2nd liquid composition which are shown in Table 3 are modeling materials which react with a pseudo prepolymer method. Moreover, since the specific gravity of the first liquid composition and the second liquid composition is about 1.1, the mass ratio and the volume ratio of the discharge amount are substantially the same.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[試験例10~11]
 吐出ピッチを表4に示すように変化させた以外は試験例9と同様に操作し、試験例10~11のシート状造形物を形成した。
[Test Examples 10 to 11]
Except that the discharge pitch was changed as shown in Table 4, the same operation as in Test Example 9 was performed, and the sheet-like shaped articles of Test Examples 10 to 11 were formed.
<測定(その2)>
 試験例9~11で形成したシート状造形物の見かけの密度、空隙率、引張特性(伸長モジュラス、引張強さ及び切断時伸び)、耐摩耗性並びに成形状態を測定した。見かけの密度及び空隙率は、以下の方法によって測定した。引張特性、耐摩耗性及び成形状態は、試験例1~8と同様の方法によって測定した。評価結果を表4に示す。
<Measurement (2)>
The apparent density, porosity, tensile properties (elongation modulus, tensile strength and elongation at break), abrasion resistance, and molding state of the sheet-like shaped articles formed in Test Examples 9 to 11 were measured. Apparent density and porosity were measured by the following methods. Tensile properties, abrasion resistance and molding conditions were measured by the same methods as in Test Examples 1-8. The evaluation results are shown in Table 4.
[見かけの密度]
 上記シート状造形物の見かけの密度[g/cm]は、全体の寸法から算出される見かけの体積でその質量を除すことで求めた。
[Apparent density]
The apparent density [g / cm 3 ] of the sheet-shaped molded article was obtained by dividing the mass by the apparent volume calculated from the overall dimensions.
[空隙率]
 上記シート状造形物の空隙率は[体積%]は、全体の寸法から算出される見かけの体積をV[mm]、その質量を真密度(1.1g/cm)で除すことで算出される実際の体積(空隙を除いた体積)をV[mm]とし、100×(V-V)/Vに各数値を代入することにより求めた。
[Porosity]
The porosity of the above-mentioned sheet-like shaped product is [volume%] obtained by dividing the apparent volume calculated from the overall dimensions by V a [mm 3 ] and the mass by the true density (1.1 g / cm 3 ). Was calculated by substituting each numerical value for 100 × (V a −V b ) / V a, where V b [mm 3 ] is the actual volume calculated in (1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試験例9~11では、試験例毎に吐出ピッチを変更することで、成形性が良好であり、かつ密度及び空隙率と各種物性とがそれぞれ相違する3種のシート状造形物を製造できた。これらの試験例から、3次元造形物の製造方法において、第1液組成物及び第2液組成物の吐出量を造形中に変化させ、形成される3次元造形物の密度を部位毎に変化させることで、良好な成形状態を維持しつつ物性を部位毎に変化させることが可能であると判断される。 As shown in Table 4, in Test Examples 9 to 11, by changing the discharge pitch for each test example, three types of sheets having good formability and different density, porosity, and various physical properties are shown. A shaped object could be manufactured. From these test examples, in the manufacturing method of the three-dimensional structure, the discharge amount of the first liquid composition and the second liquid composition is changed during modeling, and the density of the formed three-dimensional structure is changed for each part. By doing so, it is determined that the physical properties can be changed for each part while maintaining a good molding state.
<造形物の製造(その3)>
 以下の試験例12~19では、擬似プレポリマー法により反応する第1液組成物及び第2液組成物を用いた3次元造形物の製造方法において、造形中に第1液組成物及び第2液組成物の組成や混合比を変化させることで、部位毎に物性が異なる3次元造形物を製造できることを確認した。試験例12~19では、造形中に第1液組成物及び第2液組成物の組成又は混合比を変化させる替わりに、第1液組成物の組成と、第2液組成物の組成と、第1液組成物及び第2液組成物の混合比とのうち少なくとも1つが異なる複数種の造形材料を用い、これにより構成材料の異なる複数種のシート状造形物を製造した。
<Manufacture of shaped objects (3)>
In Test Examples 12 to 19 below, in the method for producing a three-dimensional structure using the first liquid composition and the second liquid composition that react by the pseudo prepolymer method, the first liquid composition and the second liquid composition are formed during modeling. It was confirmed that by changing the composition and mixing ratio of the liquid composition, it is possible to produce a three-dimensional structure having different physical properties for each part. In Test Examples 12 to 19, instead of changing the composition or mixing ratio of the first liquid composition and the second liquid composition during modeling, the composition of the first liquid composition, the composition of the second liquid composition, Using a plurality of types of modeling materials in which at least one of the mixing ratios of the first liquid composition and the second liquid composition is different, a plurality of types of sheet-shaped modeling objects having different constituent materials were manufactured.
[試験例12~19]
 各成分の組成を表5及び表6に示す通りとした以外は、試験例1と同様に操作し、試験例12~19のシート状造形物を製造した。試験例12~15は、第1液組成物及び第2液組成物の組成又は混合比が異なる複数の造形材料が用いられている。
[Test Examples 12 to 19]
Except that the composition of each component was as shown in Table 5 and Table 6, the same operation as in Test Example 1 was carried out to produce sheet-like shaped articles of Test Examples 12 to 19. In Test Examples 12 to 15, a plurality of modeling materials having different compositions or mixing ratios of the first liquid composition and the second liquid composition are used.
 ここで、試験例12~19の第1液組成物及び第2液組成物は、いずれも比重が約1.1であるため、第1液組成物及び第2液組成物の吐出量の質量比は、吐出量の体積比と略一致する。 Here, since the first liquid composition and the second liquid composition of Test Examples 12 to 19 both have a specific gravity of about 1.1, the mass of the discharge amounts of the first liquid composition and the second liquid composition The ratio substantially coincides with the volume ratio of the discharge amount.
 試験例12~15に用いた第1液組成物及び第2液組成物は、擬似プレポリマー法により反応する造形材料である。一方、試験例16~19に用いた第1液組成物及び第2液組成物は、ポリイソシアネートと長鎖ポリオール及び/又は長鎖ポリアミンとを直接反応させる所謂ワンショット法により反応する造形材料である。 The first liquid composition and the second liquid composition used in Test Examples 12 to 15 are modeling materials that react by a pseudo prepolymer method. On the other hand, the first liquid composition and the second liquid composition used in Test Examples 16 to 19 are modeling materials that react by a so-called one-shot method in which a polyisocyanate and a long-chain polyol and / or a long-chain polyamine are directly reacted. is there.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<評価(その3)>
 試験例12~19で形成したシート状造形物の引張特性(伸長モジュラス、引張強さ及び切断時伸び)、硬度、耐摩耗性並びに成形状態を試験例1~8における評価と同様の方法によって評価した。試験例16~19で形成したシート状造形物は、表面が完全に硬化していなかったため、成形状態の評価のみを行なった。評価結果を表7に示す。
<Evaluation (Part 3)>
Evaluation of tensile properties (elongation modulus, tensile strength and elongation at break), hardness, abrasion resistance, and molding state of the sheet-like shaped articles formed in Test Examples 12 to 19 by the same methods as in Test Examples 1 to 8 did. Since the surface of the sheet-like shaped articles formed in Test Examples 16 to 19 was not completely cured, only the molded state was evaluated. Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の試験例12~15に示すように、造形材料として擬似プレポリマー法により反応する第1液組成物及び第2液組成物を用い、第1液組成物の組成と、第2液組成物の組成と、第1液組成物及び第2液組成物の混合比とのうち少なくとも1つを変化させることにより、良好な成形状態を維持しつつ物性がそれぞれ異なるシート状造形物を製造できた。以下、試験例12~15について詳説する。 As shown in Test Examples 12 to 15 in Table 7, using the first liquid composition and the second liquid composition that react by the pseudo prepolymer method as the modeling material, the composition of the first liquid composition and the second liquid composition By changing at least one of the composition of the product and the mixing ratio of the first liquid composition and the second liquid composition, it is possible to produce sheet-like shaped articles having different physical properties while maintaining a good molding state. It was. Hereinafter, Test Examples 12 to 15 will be described in detail.
 試験例12の配合12a~12cと、試験例13の配合13a及び13bと、試験例14の配合14a、14c及び14dと、試験例15の配合15a及び15bとから分かるように、第1液組成物の組成を一定としつつ第2液組成物の組成と第1液組成物及び第2液組成物の混合比とを変化させることで、良好な成形状態を維持しつつ引張特性等の物性を変化させることができた。また、試験例14の配合14a及び14bから分かるように、第1液組成物及び第2液組成物の組成を一定としつつその混合比を変化させることで、良好な成形状態を維持しつつ引張特性等の物性を変化させることができた。さらに、試験例14の配合14b及び14cから分かるように、第1液組成物の組成と、第1液組成物及び第2液組成物の混合比とを一定としつつ第2液組成物の組成を変化させることで、良好な成形状態を維持しつつ引張特性等の物性を変化させることができた。 As can be seen from the blends 12a to 12c of Test Example 12, the blends 13a and 13b of Test Example 13, the blends 14a, 14c and 14d of Test Example 14, and the blends 15a and 15b of Test Example 15, the first liquid composition By changing the composition of the second liquid composition and the mixing ratio of the first liquid composition and the second liquid composition while keeping the composition constant, the physical properties such as tensile properties can be maintained while maintaining a good molding state. I was able to change it. Further, as can be seen from the blends 14a and 14b of Test Example 14, the tensile strength is maintained while maintaining a good molding state by changing the mixing ratio while keeping the compositions of the first liquid composition and the second liquid composition constant. The physical properties such as characteristics could be changed. Further, as can be seen from the blends 14b and 14c of Test Example 14, the composition of the second liquid composition while keeping the composition of the first liquid composition and the mixing ratio of the first liquid composition and the second liquid composition constant. It was possible to change physical properties such as tensile properties while maintaining a good molding state.
 以上から、当該3次元造形物の製造方法によれば、ポリウレタン等を主成分とし、物性が部位毎に異なる3次元造形物を容易かつ確実に製造できると判断される。 From the above, according to the method for manufacturing a three-dimensional structure, it is determined that a three-dimensional structure having polyurethane as a main component and having different physical properties for each part can be easily and reliably manufactured.
 一方、造形材料としてワンショット法により反応する第1液組成物及び第2液組成物を用いた試験例16~19で形成したシート状造形物は、成形状態が不合格であった。これは、ワンショット法により反応する第1液組成物及び第2液組成物を用いたため、第1液組成物及び第2液組成物の吐出量の差が大きくなり、吐出した第1液組成物及び第2液組成物の一部が混合不良を生じたためであると判断される。そのため、ワンショット法により反応する第1液組成物及び第2液組成物を用いた場合、物性が部位毎に異なる3次元造形物を製造することは当然に困難であると判断される。 On the other hand, the sheet-like shaped articles formed in Test Examples 16 to 19 using the first liquid composition and the second liquid composition that react by the one-shot method as the modeling material failed in the molding state. This is because the first liquid composition and the second liquid composition that react by the one-shot method are used, and thus the difference in the discharge amount between the first liquid composition and the second liquid composition becomes large, and the discharged first liquid composition It is determined that a part of the product and the second liquid composition caused poor mixing. Therefore, when the 1st liquid composition and the 2nd liquid composition which react by a one shot method are used, it is judged that it is naturally difficult to manufacture the three-dimensional molded item from which a physical property differs for every site | part.
<造形物の製造(その4)>
 以下の試験例20~22では、擬似プレポリマー法により反応する第1液組成物及び第2液組成物を用いた3次元造形物の製造方法において、造形中に第1液組成物及び第2液組成物の組成を変化させる場合に、第1液組成物及び第2液組成物に可塑剤を配合し、その吐出量の質量比を特定範囲に調節することで、部位毎に物性が異なる3次元造形物をより容易かつ確実に製造できることを確認した。試験例20~22では、造形中に第1液組成物及び第2液組成物の組成を変化させる替わりに、第1液組成物及び/又は第2液組成物の組成が異なる複数種の造形材料を用い、これにより構成材料の異なる複数種のシート状造形物を製造した。
<Manufacture of shaped objects (4)>
In Test Examples 20 to 22 below, in the method for producing a three-dimensional structure using the first liquid composition and the second liquid composition that react by the pseudo prepolymer method, the first liquid composition and the second liquid composition are formed during modeling. When changing the composition of the liquid composition, a plasticizer is blended with the first liquid composition and the second liquid composition, and the physical properties are different for each part by adjusting the mass ratio of the discharge amount to a specific range. It was confirmed that a three-dimensional structure can be manufactured more easily and reliably. In Test Examples 20 to 22, instead of changing the composition of the first liquid composition and the second liquid composition during modeling, a plurality of types of modeling with different compositions of the first liquid composition and / or the second liquid composition By using the material, a plurality of types of sheet-shaped objects having different constituent materials were manufactured.
[試験例20~22]
 各成分の組成を表8及び9に示す通りとした以外は、試験例1と同様に操作して、試験例20~22のシート状造形物を形成した。なお、第1液組成物を複数の原料の配合で調製する場合、その攪拌混合の条件は第2液組成物の攪拌混合の条件と同一とした。
[Test Examples 20 to 22]
Except that the composition of each component was as shown in Tables 8 and 9, operation was performed in the same manner as in Test Example 1 to form sheet-like shaped articles of Test Examples 20 to 22. When the first liquid composition was prepared by blending a plurality of raw materials, the stirring and mixing conditions were the same as the stirring and mixing conditions of the second liquid composition.
 これらの試験例により、第1液組成物及び第2液組成物の混合比と、形成される造形物の成形状態との関係を確認した。 These test examples confirmed the relationship between the mixing ratio of the first liquid composition and the second liquid composition and the molding state of the formed object.
 ここで、試験例20~22の第1液組成物及び第2液組成物は、いずれも比重が約1.1であるため、第1液組成物及び第2液組成物の吐出量の質量比は、吐出量の体積比と略一致する。 Here, since the first liquid composition and the second liquid composition of Test Examples 20 to 22 each have a specific gravity of about 1.1, the mass of the discharge amounts of the first liquid composition and the second liquid composition The ratio substantially coincides with the volume ratio of the discharge amount.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 なお、試験例20及び21に用いた第1液組成物及び第2液組成物は、擬似プレポリマー法により反応する造形材料である。また、試験例22で用いた第1液組成物及び第2液組成物は、ワンショット法により反応する造形材料である。 The first liquid composition and the second liquid composition used in Test Examples 20 and 21 are modeling materials that react by the pseudo prepolymer method. The first liquid composition and the second liquid composition used in Test Example 22 are modeling materials that react by the one-shot method.
<評価>
 試験例20~22で形成したシート状造形物の引張特性(伸長モジュラス、引張強さ及び切断時伸び)、硬度、耐摩耗性並びに成形状態を試験例1~8と同様の方法によって評価した。試験例22で形成したシート状造形物は、表面が完全に硬化していなかったため、成形状態の評価のみを行なった。評価結果を表10に示す。
<Evaluation>
The tensile properties (elongation modulus, tensile strength and elongation at break), hardness, abrasion resistance, and molding state of the sheet-like shaped articles formed in Test Examples 20 to 22 were evaluated by the same methods as in Test Examples 1 to 8. Since the surface of the sheet-shaped article formed in Test Example 22 was not completely cured, only the molded state was evaluated. Table 10 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10の試験例20に示すように、第1液組成物/及び第2液組成物の組成を変化させ、かつ第1液組成物及び第2液組成物の吐出量を略等量とすることにより、良好な成形状態を維持しつつ引張特性等の物性がそれぞれ異なるシート状造形物を製造できることが確認できた。また、試験例21に示すように、第1液組成物及び第2液組成物の吐出量の質量比は、100:110以上100:90以下の範囲であれば良好な成形状態を維持することができた。 As shown in Test Example 20 of Table 10, the composition of the first liquid composition / and the second liquid composition is changed, and the discharge amounts of the first liquid composition and the second liquid composition are made substantially equal. Thus, it was confirmed that sheet-like shaped articles having different physical properties such as tensile properties can be produced while maintaining a good molded state. Moreover, as shown in Test Example 21, if the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is in the range of 100: 110 or more and 100: 90 or less, a good molding state is maintained. I was able to.
 一方、試験例22に示すように、ワンショット法により反応する第1液組成物及び第2液組成物を用いた場合、第1液組成物及び第2液組成物の吐出量の差が大きくなるため第1液組成物及び第2液組成物を十分に混合することができず、その結果、成形状態が不合格となった。 On the other hand, as shown in Test Example 22, when the first liquid composition and the second liquid composition that react by the one-shot method are used, the difference in the discharge amounts of the first liquid composition and the second liquid composition is large. Therefore, the first liquid composition and the second liquid composition could not be sufficiently mixed, and as a result, the molding state was rejected.
 これらの試験例から、擬似プレポリマー法により反応する第1液組成物及び第2液組成物に可塑剤を含有させ、第1液組成物及び第2液組成物の吐出量の質量比を100:110以上100:90以下に調節することで、良好な成形状態を維持しつつ物性を部位毎に変化させることが可能であると判断される。 From these test examples, a plasticizer is contained in the first liquid composition and the second liquid composition that react by the pseudo prepolymer method, and the mass ratio of the discharge amounts of the first liquid composition and the second liquid composition is 100. : It is determined that the physical properties can be changed for each part while maintaining a good molding state by adjusting to 110 or more and 100: 90 or less.
 当該3次元造形物の製造方法及び造形材料は、3Dプリンタを用いてポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物を容易かつ確実に製造できる。 The manufacturing method and modeling material of the three-dimensional structure can easily and reliably manufacture a three-dimensional structure mainly composed of polyurethane, polyurethane urea, or polyurea using a 3D printer.
A1、A11、A21 支持台
A2、A12、A22 混合液吐出ノズル
A12a 第1液吐出ノズル
A12b 第2液吐出ノズル
B 第2液タンク
C 第1液タンク
b 第2液供給ライン
c 第1液供給ライン
d 混合液供給ライン
E 第2液原料タンク
F ラインミキサー
e1 第2液原料供給ライン
e2 第2液供給ライン
G 第2液タンク
g1 第2液供給サブライン
g2 第2液供給ライン
X1、X11c、X21 混合液滴
X11a 第1液組成物の液滴
X11b 第2液組成物の液滴
Y1、Y11、Y21 合成樹脂層
Y21a 低ピッチ領域
Y21b 中ピッチ領域
Y21c 高ピッチ領域
Z 合成樹脂部
Za 無孔質領域
Zb 低空隙率領域
Zc 高空隙率領域
H 空孔
Z1、Z2、Z3、Z4 造形材料供給システム
A1, A11, A21 Supports A2, A12, A22 Mixed liquid discharge nozzle A12a First liquid discharge nozzle A12b Second liquid discharge nozzle B Second liquid tank C First liquid tank b Second liquid supply line c First liquid supply line d Mixed liquid supply line E Second liquid raw material tank F Line mixer e1 Second liquid raw material supply line e2 Second liquid supply line G Second liquid tank g1 Second liquid supply subline g2 Second liquid supply lines X1, X11c, X21 Droplet X11a Droplet X11b of the first liquid composition Droplets Y1, Y11, Y21 of the second liquid composition Synthetic resin layer Y21a Low pitch area Y21b Medium pitch area Y21c High pitch area Z Synthetic resin part Za Nonporous area Zb Low porosity region Zc High porosity region H Holes Z1, Z2, Z3, Z4 Modeling material supply system

Claims (12)

  1.  インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の製造方法であって、
     混合により反応する第1液組成物及び第2液組成物の吐出により支持体上に合成樹脂層を順次積層する工程を備え、
     上記順次積層工程で、上記第1液組成物及び上記第2液組成物を吐出する直前又は直後に混合し、
     上記第1液組成物及び上記第2液組成物が擬似プレポリマー法により反応することを特徴とする3次元造形物の製造方法。
    A method for producing a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an inkjet 3D printer,
    A step of sequentially laminating a synthetic resin layer on a support by discharging a first liquid composition and a second liquid composition that react by mixing;
    In the sequential lamination step, mixing immediately before or after discharging the first liquid composition and the second liquid composition,
    The method for producing a three-dimensional structure, wherein the first liquid composition and the second liquid composition are reacted by a pseudo prepolymer method.
  2.  上記第1液組成物及び上記第2液組成物の吐出量の質量比が100:250以上100:40以下である請求項1に記載の3次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 1, wherein a mass ratio of discharge amounts of the first liquid composition and the second liquid composition is 100: 250 or more and 100: 40 or less.
  3.  上記順次積層工程で、上記第1液組成物及び上記第2液組成物の吐出量を変化させることで上記合成樹脂層の密度を部位毎に変化させる請求項1又は請求項2に記載の3次元造形物の製造方法。 The density | concentration of the said synthetic resin layer is changed for every site | part by changing the discharge amount of the said 1st liquid composition and the said 2nd liquid composition at the said sequential lamination process. A manufacturing method of a three-dimensional structure.
  4.  上記順次積層工程で、上記合成樹脂層の少なくとも一部に多孔質領域を形成する請求項3に記載の3次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 3, wherein a porous region is formed in at least a part of the synthetic resin layer in the sequential lamination step.
  5.  上記順次積層工程で、上記多孔質領域の空隙率を0体積%超45体積%以下の範囲で変化させる請求項4に記載の3次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 4, wherein the porosity of the porous region is changed in the range of more than 0% by volume and 45% by volume or less in the sequential lamination step.
  6.  上記第1液組成物が、ウレタンプレポリマー、ウレタンウレアプレポリマー及びウレアプレポリマーのうち少なくとも1種のプレポリマーと、ポリイソシアネートとを含み、
     上記第2液組成物が、長鎖ポリオール及び長鎖ポリアミンのうち少なくとも1種のソフトセグメント成分と、鎖延長剤及び架橋剤のうち少なくとも1種のハードセグメント成分とを含む請求項1から請求項5のいずれか1項に記載の3次元造形物の製造方法。
    The first liquid composition includes at least one prepolymer of urethane prepolymer, urethane urea prepolymer and urea prepolymer, and polyisocyanate,
    The said 2nd liquid composition contains at least 1 sort (s) of soft segment components among a long chain polyol and a long chain polyamine, and at least 1 sort (s) hard segment component among a chain extender and a crosslinking agent. 5. The method for producing a three-dimensional structure according to claim 5.
  7.  上記第1液組成物及び上記第2液組成物のうち少なくとも一方が可塑剤をさらに含有する請求項6に記載の3次元造形物の製造方法。 The method for producing a three-dimensional structure according to claim 6, wherein at least one of the first liquid composition and the second liquid composition further contains a plasticizer.
  8.  上記順次積層工程で、上記第1液組成物の組成と、上記第2液組成物の組成と、上記第1液組成物及び上記第2液組成物の混合比とのうち少なくとも1つを変化させる請求項6に記載の3次元造形物の製造方法。 In the sequential lamination step, at least one of the composition of the first liquid composition, the composition of the second liquid composition, and the mixing ratio of the first liquid composition and the second liquid composition is changed. The manufacturing method of the three-dimensional structure according to claim 6.
  9.  上記第2液組成物が可塑剤をさらに含み、
     上記順次積層工程で上記第2液組成物における可塑剤の含有量を変化させる請求項8に記載の3次元造形物の製造方法。
    The second liquid composition further comprises a plasticizer,
    The method for producing a three-dimensional structure according to claim 8, wherein the content of the plasticizer in the second liquid composition is changed in the sequential lamination step.
  10.  上記第1液組成物及び上記第2液組成物が可塑剤をさらに含み、
     上記順次積層工程で、上記第1液組成物の組成及び上記第2液組成物の組成のうち少なくとも一方を変化させ、
     上記第1液組成物及び上記第2液組成物の吐出量の質量比を100:110以上100:90以下とする請求項8に記載の3次元造形物の製造方法。
    The first liquid composition and the second liquid composition further include a plasticizer,
    In the sequential lamination step, at least one of the composition of the first liquid composition and the composition of the second liquid composition is changed,
    The method for producing a three-dimensional structure according to claim 8, wherein a mass ratio of discharge amounts of the first liquid composition and the second liquid composition is 100: 110 or more and 100: 90 or less.
  11.  上記順次積層工程で、上記第1液組成物のプレポリマーの組成及び上記第2液組成物のハードセグメント成分の組成のうち少なくとも1種を変化させる請求項8又は請求項10に記載の3次元造形物の製造方法。 The three-dimensional according to claim 8 or 10, wherein in the sequential lamination step, at least one of a prepolymer composition of the first liquid composition and a hard segment component composition of the second liquid composition is changed. Manufacturing method of a model.
  12.  インクジェット方式の3Dプリンタを用いたポリウレタン、ポリウレタンウレア又はポリウレアを主成分とする3次元造形物の造形材料であって、
     混合により反応する第1液組成物及び第2液組成物を備え、
     上記第1液組成物及び上記第2液組成物が擬似プレポリマー法により反応することを特徴とする3次元造形物の造形材料。
    A modeling material for a three-dimensional structure mainly composed of polyurethane, polyurethane urea or polyurea using an inkjet 3D printer,
    Comprising a first liquid composition and a second liquid composition that react by mixing;
    A modeling material for a three-dimensional structure, wherein the first liquid composition and the second liquid composition are reacted by a pseudo prepolymer method.
PCT/JP2017/000519 2016-01-28 2017-01-10 Method for producing three-dimensional model and modeling material WO2017130685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017502900A JP6220477B1 (en) 2016-01-28 2017-01-10 Manufacturing method of three-dimensional structure

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-014928 2016-01-28
JP2016014928 2016-01-28
JP2016-062883 2016-03-25
JP2016062883 2016-03-25
JP2016093237 2016-05-06
JP2016-093237 2016-05-06
JP2016128215 2016-06-28
JP2016-128215 2016-06-28

Publications (1)

Publication Number Publication Date
WO2017130685A1 true WO2017130685A1 (en) 2017-08-03

Family

ID=59398088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000519 WO2017130685A1 (en) 2016-01-28 2017-01-10 Method for producing three-dimensional model and modeling material

Country Status (2)

Country Link
JP (2) JP6220477B1 (en)
WO (1) WO2017130685A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019199481A1 (en) * 2018-04-10 2019-10-17 The Procter & Gamble Company Polymeric materials and articles manufactured there from
JP2019534169A (en) * 2017-08-10 2019-11-28 上海冪方電子科技有限公司 3D printer
WO2019235547A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
WO2019235544A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
WO2019235546A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
US10543639B2 (en) 2016-08-19 2020-01-28 The Procter & Gamble Company Method for manufacturing a three-dimensional object
CN111087571A (en) * 2019-12-27 2020-05-01 黄山中泽新材料有限公司 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof
CN111605184A (en) * 2019-02-26 2020-09-01 精工爱普生株式会社 Three-dimensional modeling device and method for modeling three-dimensional modeled object
CN113166355A (en) * 2018-12-21 2021-07-23 Sika技术股份公司 3D printing method of two-component polyurethane composition
CN113661046A (en) * 2019-02-11 2021-11-16 Ppg工业俄亥俄公司 Co-reactive three-dimensional printing of parts
JP2022109208A (en) * 2021-01-14 2022-07-27 国立台湾科技大学 Three-dimensional inkjet printing method, and three-dimensional printing kit
US11634599B2 (en) 2014-11-24 2023-04-25 Ppg Industries Ohio, Inc. Coreactive materials and methods for three-dimensional printing
US11723875B2 (en) 2018-04-10 2023-08-15 The Procter & Gamble Company Polymeric materials and articles manufactured there from

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077462A1 (en) 2017-10-20 2019-04-25 Chevron Japan Ltd. Low viscosity lubricating oil composition
CA3116716A1 (en) 2018-10-19 2020-07-09 Inkbit, LLC High-speed metrology
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
WO2020093030A1 (en) 2018-11-02 2020-05-07 Inkbit, LLC Intelligent additive manufacturing
AU2019378044A1 (en) * 2018-11-16 2021-05-27 Inkbit, LLC Inkjet 3D printing of multi-component resins
CA3124884A1 (en) 2019-01-08 2020-07-16 Inkbit, LLC Depth reconstruction in additive fabrication
AU2020205973A1 (en) 2019-01-08 2021-07-15 Inkbit, LLC Reconstruction of surfaces for additive manufacturing
KR20210113657A (en) * 2019-02-04 2021-09-16 피피지 인더스트리즈 오하이오 인코포레이티드 Rubber replacement articles and their use as components of footwear
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
US10994477B1 (en) 2019-11-01 2021-05-04 Inkbit, LLC Optical scanning for industrial metrology
US10926473B1 (en) 2020-02-20 2021-02-23 Inkbit, LLC Multi-material scanning for additive fabrication
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740445A (en) * 1992-07-31 1995-02-10 Texas Instr Inc <Ti> Method and device for making computer control of three-dimensional object from computer data
JPH0885717A (en) * 1994-09-16 1996-04-02 Mitsui Toatsu Chem Inc Production of urethane elastomer
JP2001172360A (en) * 1999-12-15 2001-06-26 Nippon Polyurethane Ind Co Ltd Composition for elastomer-forming spray and preparation process for coat using this composition
JP2003506228A (en) * 1999-08-10 2003-02-18 バイエル アクチェンゲゼルシャフト Method for manufacturing three-dimensional structure or flat structure
JP2006500243A (en) * 2002-09-06 2006-01-05 ノバルティス アクチエンゲゼルシャフト Method for manufacturing an ophthalmic device
JP2007261002A (en) * 2006-03-28 2007-10-11 Nagoya Institute Of Technology Shaping apparatus using foaming resin
JP2012212059A (en) * 2011-03-31 2012-11-01 Toyo Tire & Rubber Co Ltd Cleaning blade for image forming apparatus
WO2014070007A1 (en) * 2012-10-31 2014-05-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for making tangible products by layerwise manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014005A1 (en) * 2003-07-18 2005-01-20 Laura Kramer Ink-jettable reactive polymer systems for free-form fabrication of solid three-dimensional objects

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740445A (en) * 1992-07-31 1995-02-10 Texas Instr Inc <Ti> Method and device for making computer control of three-dimensional object from computer data
JPH0885717A (en) * 1994-09-16 1996-04-02 Mitsui Toatsu Chem Inc Production of urethane elastomer
JP2003506228A (en) * 1999-08-10 2003-02-18 バイエル アクチェンゲゼルシャフト Method for manufacturing three-dimensional structure or flat structure
JP2001172360A (en) * 1999-12-15 2001-06-26 Nippon Polyurethane Ind Co Ltd Composition for elastomer-forming spray and preparation process for coat using this composition
JP2006500243A (en) * 2002-09-06 2006-01-05 ノバルティス アクチエンゲゼルシャフト Method for manufacturing an ophthalmic device
JP2007261002A (en) * 2006-03-28 2007-10-11 Nagoya Institute Of Technology Shaping apparatus using foaming resin
JP2012212059A (en) * 2011-03-31 2012-11-01 Toyo Tire & Rubber Co Ltd Cleaning blade for image forming apparatus
WO2014070007A1 (en) * 2012-10-31 2014-05-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for making tangible products by layerwise manufacturing

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634599B2 (en) 2014-11-24 2023-04-25 Ppg Industries Ohio, Inc. Coreactive materials and methods for three-dimensional printing
US11920046B2 (en) 2014-11-24 2024-03-05 Ppg Industries Ohio, Inc. Coreactive materials and methods for three-dimensional printing
US11529760B2 (en) 2016-08-19 2022-12-20 The Procter & Gamble Company Polymeric materials and articles manufactured there from
US10543639B2 (en) 2016-08-19 2020-01-28 The Procter & Gamble Company Method for manufacturing a three-dimensional object
JP2019534169A (en) * 2017-08-10 2019-11-28 上海冪方電子科技有限公司 3D printer
WO2019199481A1 (en) * 2018-04-10 2019-10-17 The Procter & Gamble Company Polymeric materials and articles manufactured there from
US11723875B2 (en) 2018-04-10 2023-08-15 The Procter & Gamble Company Polymeric materials and articles manufactured there from
WO2019235546A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
JPWO2019235547A1 (en) * 2018-06-05 2021-06-17 株式会社ブリヂストン Porous structure, manufacturing method of porous structure, and data for 3D modeling
JPWO2019235546A1 (en) * 2018-06-05 2021-06-17 株式会社ブリヂストン Porous structure, manufacturing method of porous structure, and data for 3D modeling
JPWO2019235544A1 (en) * 2018-06-05 2021-07-15 株式会社ブリヂストン Porous structure, manufacturing method of porous structure, and data for 3D modeling
JP7389026B2 (en) 2018-06-05 2023-11-29 株式会社アーケム Porous structure, porous structure manufacturing method, and 3D printing data
JP7389025B2 (en) 2018-06-05 2023-11-29 株式会社アーケム Porous structure, porous structure manufacturing method, and 3D printing data
WO2019235544A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
JP7389024B2 (en) 2018-06-05 2023-11-29 株式会社アーケム Porous structure, porous structure manufacturing method, and 3D printing data
WO2019235547A1 (en) * 2018-06-05 2019-12-12 株式会社ブリヂストン Porous structure, production method for porous structure, and 3d modeling data
CN113166355A (en) * 2018-12-21 2021-07-23 Sika技术股份公司 3D printing method of two-component polyurethane composition
CN113166355B (en) * 2018-12-21 2023-12-22 Sika技术股份公司 3D printing method of two-component polyurethane composition
CN113661046A (en) * 2019-02-11 2021-11-16 Ppg工业俄亥俄公司 Co-reactive three-dimensional printing of parts
JP7206405B2 (en) 2019-02-11 2023-01-17 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Co-reactive 3D printing of parts
JP2022521684A (en) * 2019-02-11 2022-04-12 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Coreactive 3D printing of parts
CN111605184A (en) * 2019-02-26 2020-09-01 精工爱普生株式会社 Three-dimensional modeling device and method for modeling three-dimensional modeled object
CN111087571A (en) * 2019-12-27 2020-05-01 黄山中泽新材料有限公司 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof
JP2022109208A (en) * 2021-01-14 2022-07-27 国立台湾科技大学 Three-dimensional inkjet printing method, and three-dimensional printing kit

Also Published As

Publication number Publication date
JPWO2017130685A1 (en) 2018-02-08
JP2018024249A (en) 2018-02-15
JP6220477B1 (en) 2017-10-25
JP6220476B1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6220476B1 (en) Manufacturing method of three-dimensional structure
CN114889117B (en) Manufacture of three-dimensional objects from thermoset materials
US11608408B2 (en) Polyurethane comprising graphene nano structure
US20190039310A1 (en) 3d printing methods using mixing nozzles
CN105531296B (en) Isocyanate prepolymer composition and the polyurethane of crosslinking prepared therefrom
CN107075338A (en) Two liquid type polyurethane system adhesive composite
JPS6257467A (en) Coating agent composition
EP3464402B1 (en) Method for improving the surface finish of additive manufactured articles
EP1707584A1 (en) Novel polyurea isocyanates
KR102145163B1 (en) Fast-curing polyurethane resin composition for rotary casting
TWI697510B (en) Buffer material, buffer material for automatic motion device for painting, automatic motion device with buffer material, and automatic motion device for buffer material
US20240009921A1 (en) Additive manufacturing with dual precusor resins
JP2019025672A (en) Method of producing three-dimensional molded article and molding material
JP2019064070A (en) Method for producing three-dimensional shaped object
US11472934B2 (en) Elastomeric composite polyurethane skins
US11458671B2 (en) Additive manufacturing process using several thermoplastic polyurethanes
CN107920665A (en) Flexibel polyurethane expansion-molded article and seat cushion
JP2019064068A (en) Three-dimensional shaping apparatus and method for producing three-dimensional shaped object
JP2019064069A (en) Method for producing three-dimensional shaped object and three-dimensional shaping apparatus
JP2020044784A (en) Molding material and manufacturing method of three-dimensional molding article
US20220219380A1 (en) Depositing thermosetting material on a three dimensional object
US20230330918A1 (en) Method for three dimensional printing of parts with overhang
JP7440241B2 (en) polyurethane foam
EP4017891B1 (en) A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof
CN108115555A (en) For manufacturing chemical-mechanical planarization(CMP)Polishing pad without aerosolization method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017502900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743916

Country of ref document: EP

Kind code of ref document: A1