WO2017130552A1 - Radiation image capturing device, control method for same, and program - Google Patents

Radiation image capturing device, control method for same, and program Download PDF

Info

Publication number
WO2017130552A1
WO2017130552A1 PCT/JP2016/084985 JP2016084985W WO2017130552A1 WO 2017130552 A1 WO2017130552 A1 WO 2017130552A1 JP 2016084985 W JP2016084985 W JP 2016084985W WO 2017130552 A1 WO2017130552 A1 WO 2017130552A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
pixels
signal
pixel
value
Prior art date
Application number
PCT/JP2016/084985
Other languages
French (fr)
Japanese (ja)
Inventor
晃介 照井
貴司 岩下
翔 佐藤
孔明 石井
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2017130552A1 publication Critical patent/WO2017130552A1/en
Priority to US16/032,384 priority Critical patent/US10779777B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • G06T5/70
    • G06T5/77
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the present invention relates to a radiation imaging apparatus, a control method thereof, and a program.
  • a radiation imaging apparatus using a flat panel detector (FPD) made of a semiconductor material is known as an imaging apparatus used for medical image diagnosis by radiation and nondestructive inspection.
  • Such a radiation imaging apparatus can be used as a digital imaging apparatus for capturing a still image, a moving image, or the like, for example, in medical image diagnosis.
  • Integral sensors that measure the total amount of charges generated by the incidence of radiation are widely known as radiation detection methods used in FPDs.
  • a photon counting type sensor that measures the number of incident radiation photons.
  • Patent Document 1 discloses a direct photon counting type sensor that directly detects radiation photons at each pixel using CdTe or the like.
  • Patent Document 2 discloses an indirect photon counting type sensor that converts incident radiation photons into light by a scintillator and detects light converted from radiation at each pixel.
  • Patent Document 1 discloses that sensitivity correction is performed using a count value of incident radiation photons. However, if the intensity of incident radiation photons is not uniform in the plane of the FPD, the accuracy of correction may be reduced. Further, Patent Document 2 does not disclose sensitivity correction.
  • An object of the present invention is to provide a technique for suppressing deterioration in image quality due to variation in sensitivity for each pixel in a radiation imaging apparatus using a photon counting type sensor.
  • a radiation imaging apparatus is incident on each of a plurality of pixels and a sensor panel including a plurality of pixels each including a conversion element for detecting radiation. And a processing unit that generates an image according to the number of the emitted radiation photons, wherein the processing unit receives radiation photons in an imaging mode that generates an image formed by radiation transmitted through the subject. Correction is performed by correcting the value of the signal output from each conversion element of the plurality of pixels according to the correction coefficient for converting the value of the signal output from the conversion element into a value corresponding to the energy value of the radiation photon. A signal is generated, and an image is generated based on the number of correction signals of pixels on which radiation photons are incident among correction signals of a plurality of pixels.
  • the above means provides a technique for suppressing a decrease in image quality due to variations in sensitivity for each pixel in a radiation imaging apparatus using a photon counting type sensor.
  • the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
  • the figure which shows the structure of the pixel of the radiation imaging device of FIG. The figure which shows the irradiation period and read-out period of the sensor panel of the radiation imaging device of FIG. , ,
  • the figure which shows the 1st process of the radiation imaging device of FIG. The figure which shows the acquisition method of the captured image of the radiation imaging device of FIG. , , ,
  • FIG. 1 The figure which shows the acquisition method of the correction coefficient image of the radiation imaging device of FIG.
  • the figure which shows the output of the signal of one pixel of the radiation imaging device of FIG. The figure which shows the imaging flow of the radiation imaging device of FIG.
  • the figure which shows the modification of the imaging flow of FIG. The figure which shows the modification of the imaging flow of FIG.
  • the figure which shows the modification of the imaging flow of FIG. The figure which shows the modification of the imaging flow of FIG.
  • the radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, ⁇ -rays, ⁇ -rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
  • FIG. 1 shows a configuration example of a radiation imaging apparatus 100 according to the first embodiment of the present invention.
  • the radiation imaging apparatus 100 includes an imaging unit 104 that captures a radiation image and a processing unit 103.
  • the radiation imaging apparatus 100 can constitute a radiation imaging system 110 together with a radiation source 101 that irradiates the radiation imaging apparatus 100 with radiation and an irradiation control unit 102 that controls the radiation source 101.
  • Each of the irradiation control unit 102 and the processing unit 103 can be configured by a computer having a CPU, a memory, and the like.
  • the irradiation control unit 102 and the processing unit 103 are configured separately, but are not limited thereto.
  • the irradiation control unit 102 may be integrated with the processing unit 103 and included in the radiation imaging apparatus 100. That is, the irradiation control unit 102 and the processing unit 103 may be configured by one computer having these functions.
  • the imaging unit 104 of the radiation imaging apparatus 100 includes a sensor panel 106 including a scintillator 105 that converts incident radiation into light and a plurality of pixels 120.
  • the plurality of pixels 120 share the scintillator 105 with each other.
  • Each of the pixels 120 includes a photodetector that detects light converted from radiation by the scintillator 105. That is, in this embodiment, in order to detect the incident radiation, the incident radiation is converted into light by the scintillator 105, and a signal corresponding to the intensity of the light is detected by a photodetector arranged in each of the pixels 120 as a conversion element. An indirect type conversion element that converts to is used.
  • a plurality of pixels 120 are arranged in a two-dimensional array so as to form a plurality of rows and a plurality of columns.
  • Each of the photodetectors of the pixel 120 outputs a signal (optical signal) having a value corresponding to the intensity of light converted by the scintillator 105 from radiation photons incident on the sensor panel 106 to the processing unit 103. Since the intensity of light converted by the scintillator 105 changes according to the energy of each radiation photon of the incident radiation, the value of the signal output from each photodetector of the pixel 120 is the incident radiation photon. It can be a signal value corresponding to the energy of.
  • the radiation imaging apparatus 100 has a configuration for performing photon counting radiation imaging, and measures the number of incident radiation photons based on the light detection result.
  • the processing unit 103 exchanges signals and data with the imaging unit 104. Specifically, the processing unit 103 controls the imaging unit 104 to capture a radiographic image, and receives a signal obtained thereby from the imaging unit 104. receive. This signal includes a measurement value of radiation photons. For example, the processing unit 103 displays image data captured by radiation on a display unit (not shown) such as a display based on the measurement value. Is generated. At this time, the processing unit 103 may perform a predetermined correction process on the image data. The correction process will be described later. Further, the processing unit 103 can supply a signal for starting or ending radiation irradiation to the irradiation control unit 102.
  • FIG. 2 shows an equivalent circuit of the pixel 120 in the sensor panel 106 of the present embodiment.
  • the pixel 120 can include a photoelectric conversion element 201 as a photodetector that detects light converted from radiation photons by the scintillator 105, and an output circuit unit 202.
  • the photoelectric conversion element 201 can typically be a photodiode.
  • the output circuit unit 202 can include an amplifier circuit unit 204, a clamp circuit unit 205, a sample hold circuit unit 207, and a selection circuit unit 208.
  • the photoelectric conversion element 201 includes a charge storage unit, and the charge storage unit is connected to the gate of the MOS transistor 204a of the amplifier circuit unit 204.
  • the source of the MOS transistor 204a is connected to the current source 204c through the MOS transistor 204b.
  • the MOS transistor 204a and the current source 204c constitute a source follower circuit.
  • the MOS transistor 204b is an enable switch that is turned on when the enable signal EN supplied to the gate thereof becomes an active level to bring the source follower circuit into an operating state.
  • the charge storage portion of the photoelectric conversion element 201 and the gate of the MOS transistor 204a constitute a common node, and this node is a charge that converts the charge stored in the charge storage portion into a voltage.
  • Functions as a voltage converter. That is, the voltage V ( Q / C) determined by the charge Q stored in the charge storage unit and the capacitance value C of the charge voltage conversion unit appears in the charge voltage conversion unit.
  • the charge-voltage converter is connected to the reset potential Vres via the reset switch 203. When the reset signal PRES becomes active level, the reset switch 203 is turned on, and the potential of the charge-voltage converter is reset to the reset potential Vres.
  • the clamp circuit unit 206 clamps the noise output from the amplifier circuit unit 204 by the clamp capacitor 206a according to the reset potential of the charge-voltage conversion unit. That is, the clamp circuit unit 206 is a circuit for canceling this noise from the signal output from the source follower circuit in accordance with the electric charge generated by the photoelectric conversion in the photoelectric conversion element 201. This noise may include kTC noise at reset. Clamping is performed by setting the clamp signal PCL to the active level to turn the MOS transistor 206b on, and then setting the clamp signal PCL to the inactive level to turn the MOS transistor 206b off. The output side of the clamp capacitor 206a is connected to the gate of the MOS transistor 206c.
  • the source of the MOS transistor 206c is connected to the current source 206e via the MOS transistor 206d.
  • the MOS transistor 206c and the current source 206e constitute a source follower circuit.
  • the MOS transistor 206d is an enable switch that is turned on when the enable signal EN0 supplied to the gate thereof becomes an active level and puts the source follower circuit into an operating state.
  • a signal output from the clamp circuit unit 206 according to the electric charge generated by the photoelectric conversion in the photoelectric conversion element 201 is written as an optical signal into the capacitor 207Sb via the switch 207Sa when the optical signal sampling signal TS becomes an active level. It is.
  • a signal output from the clamp circuit 206 when the MOS transistor 206b is turned on immediately after resetting the potential of the charge-voltage converter is a clamp voltage.
  • This noise signal is written to the capacitor 207Nb via the switch 207Na when the noise sampling signal TN becomes an active level.
  • This noise signal includes an offset component of the clamp circuit unit 206.
  • the switch 207Sa and the capacitor 207Sb constitute a signal sample / hold circuit 207S
  • the switch 207Na and the capacitor 207Nb constitute a noise sample / hold circuit 207N
  • the sample hold circuit unit 207 includes a signal sample hold circuit 207S and a noise sample hold circuit 207N.
  • the drive circuit unit (not shown) drives the row selection signal VSR to the active level
  • the signal (optical signal) held in the capacitor 207Sb is output to the signal line 25S via the MOS transistor 208Sa and the row selection switch 208Sb.
  • a signal (noise) held in the capacitor 207Nb is output to the signal line 25N via the MOS transistor 208Na and the row selection switch 208Nb.
  • the MOS transistor 208Sa constitutes a constant current source (not shown) provided in the signal line 25S and a source follower circuit.
  • the MOS transistor 208Na forms a source follower circuit and a constant current source (not shown) provided on the signal line 25N.
  • the MOS transistor 208Sa and the row selection switch 208Sb constitute a signal selection circuit unit 208S
  • the MOS transistor 208Na and the row selection switch 208Nb constitute a noise selection circuit unit 208N.
  • the selection circuit unit 208 includes a signal selection circuit unit 208S and a noise selection circuit unit 208N.
  • the pixel 120 may include an addition switch 209 ⁇ / b> S that adds the optical signals of a plurality of adjacent pixels 120.
  • the addition mode signal ADD becomes an active level, and the addition switch 209S is turned on.
  • the capacitors 207Sb of adjacent pixels are connected to each other by the addition switch 209S, and the optical signals are averaged.
  • the pixel 120 may include an addition switch 209N that adds noises of a plurality of adjacent pixels 120. When the addition switch 209N is turned on, the capacitors 207Nb of adjacent pixels are connected to each other by the addition switch 209N, and noise is averaged.
  • Adder 209 includes an addition switch 209S and an addition switch 209N.
  • the pixel 120 may have a sensitivity changing unit 205 for changing the sensitivity.
  • the pixel 120 can include, for example, a first sensitivity conversion switch 205a and a second sensitivity conversion switch 205a 'and circuit elements associated therewith.
  • the first change signal WIDE becomes active level
  • the first sensitivity change switch 205a is turned on, and the capacitance value of the first additional capacitor 205b is added to the capacitance value of the charge-voltage converter. This reduces the sensitivity of the pixel 120.
  • the second change signal WIDE2 becomes an active level
  • the second sensitivity change switch 205a ' is turned on, and the capacitance value of the second additional capacitor 205b' is added to the capacitance value of the charge-voltage converter.
  • the enable signal ENw may be set to active level, and the MOS transistor 204a 'may be operated as a source follower instead of the MOS transistor 204a.
  • the optical signal output from the circuit included in the pixel 120 as described above may be supplied to the processing unit 103 after being converted into a digital value by an AD converter (not shown).
  • the processing unit 103 processes this optical signal as a signal output from each pixel 120.
  • FIG. 3 is a diagram illustrating the drive timing of the radiation imaging apparatus 100.
  • the waveform in FIG. 3 represents a radiation irradiation period and a data DATA reading period with the horizontal axis as time.
  • a radiation irradiation period is a period during which radiation is irradiated from the radiation source 101. During this period, the radiation incident on the sensor panel 106 is converted into light by the scintillator 105, and the photodetector of each pixel 120 outputs a signal corresponding to the intensity of the light.
  • the readout period is a period in which the data DATA obtained during the radiation irradiation period is output from the sensor panel 106 to the processing unit 103.
  • the radiation imaging apparatus 100 acquires a still image or a moving image by alternately performing a radiation irradiation period and a radiation reading period.
  • the radiation imaging apparatus 100 acquires a still image or a moving image with a radiation irradiation period, a radiation reading period, a radiation non-irradiation period, and an offset reading period as one frame.
  • the radiation imaging apparatus 100 can correct unnecessary offset information by subtracting the signal value acquired in the offset reading period from the signal value acquired in the radiation reading period.
  • a first processing method for correcting the value of the signal output from the above will be described.
  • the sensor panel 106 using an indirect type conversion element using the scintillator 105 to detect incident radiation photons the light converted from the radiation photons by the scintillator 105 is diffused in the scintillator 105 and a plurality of pixels 120. Can be detected by a photodetector.
  • FIG. 4A For example, light generated by one radiation photon is detected across a plurality of pixels 120 as shown in FIG. 4A. At this time, an image generated by a signal output from the photodetector of each pixel 120 is an image as shown in FIG. 4B, for example.
  • FIG. 4B an image obtained by light converted from one radiation photon by the scintillator 105 is referred to as a light emission image.
  • the processing unit 103 analyzes the emission image to determine which radiation photon is incident on the scintillator 105 on which pixel 120, and the photodetector of the pixel 120 according to the position where the radiation photon is incident.
  • the signal value output from can be corrected.
  • the processing unit 103 determines whether the value of a signal output from each pixel 120 is a signal having a value larger than a predetermined value.
  • This value can be a threshold value for determining whether or not the radiation photons are incident on the sensor panel 106 and the light converted by the scintillator 105 is detected by each pixel 120.
  • the processing unit 103 identifies an aggregate of the pixels 120 that output a signal indicating that light converted from radiation photons is incident during the same period (frame) among the respective pixels 120.
  • the aggregate includes a plurality of adjacent pixels 120 that output a signal indicating that light has been detected in the same period.
  • the processing unit 103 determines, based on the distribution of the aggregate, which of the pixels 120 included in the aggregate, the radiation photon is incident on the scintillator 105 on which pixel 120.
  • the photodetector of each pixel 120 outputs a signal having a value corresponding to the intensity of incident light. For this reason, for example, the processing unit 103 determines that the pixel 120 that outputs the highest signal value among the pixels 120 included in the aggregate is the pixel 120 at the position where the radiation photons are incident. Also good.
  • the processing unit 103 may determine that the pixel 120 at the geometric gravity center position is the pixel 120 at the position where the radiation photons are incident in the arrangement of the aggregated pixels 120 on the sensor panel 106.
  • a distribution pattern of a light emission image when radiation photons are incident may be stored in the memory 130 of the processing unit 103 in advance.
  • the processing unit 103 may determine the pixel 120 at the position where the radiation photons are incident by pattern matching with the light emission image of the aggregate.
  • the processing unit 103 After determining the pixel 120 at the position where the radiation photon is incident, the processing unit 103 corrects the value of the signal from the photodetector of each pixel 120 included in the aggregate according to the position where the radiation photon is incident. For example, the processing unit 103 performs correction to add the signal values output from the photodetectors of the pixels 120 included in the aggregate to the signal values of the pixels 120 at the positions where the radiation photons are incident. May be. For example, the processing unit 103 adds the signal values of only the pixel 120 determined to be at the position where the radiation photon is incident and the pixel 120 adjacent to the pixel 120 to the position where the radiation photon is incident. You may correct
  • the processing unit 103 corrects the signal from the photodetector of the pixels 120 other than the pixel 120 determined to be at the position where the radiation photons are incident in the aggregate to the same value as when light is not detected. May be.
  • the processing unit 103 determines the pixel 120 at the position where the radiation photon is incident by performing pattern matching, the processing unit 103 further stores the corrected signal value in the light emission image stored in the memory 130.
  • the signal value may be corrected based on this.
  • FIG. 4C an image is generated in which the pixel at the position where the radiation photon is incident is determined and the signal corresponding to the energy of the incident radiation photon is corrected.
  • the image in the stage of FIG. 4C is referred to as a radiation photon position determination image.
  • the processing unit 103 causes the one pixel 120 to be detected.
  • the first process may not be performed.
  • the sensor panel 106 using an indirect type conversion element (photodetector) using the scintillator 105 is used, but the radiation photon is directly converted into a signal corresponding to the energy of the incident radiation photon as the detection element.
  • a direct conversion element for conversion may be used.
  • the processing unit 103 may determine that a pixel that outputs a signal having a value larger than a predetermined value is a pixel on which radiation photons are incident. Since the sensor panel using the direct conversion element does not use the scintillator 105, unlike the sensor panel using the indirect conversion element, light is unlikely to be detected by many pixels. For this reason, when the sensor panel using the direct type conversion element is used, the processing unit 103 may omit the first process.
  • FIGS. 5A and 5B a method for generating a radiation image using the radiation photon position determination image is shown in FIGS. 5A and 5B.
  • the subject In an imaging mode for generating an image formed by radiation transmitted through the subject, the subject is irradiated with radiation from the radiation source 101. For example, imaging is performed over a plurality of frames while the subject is fixed, and the processing unit 103 reads out data DATA for each frame from the sensor panel 106.
  • the read data DATA is subjected to the above first processing by the processing unit 103 to determine the position of the pixel 120 at the position where the radiation photons are incident, and to the signal output from the photodetector of the pixel 120. Correction is performed.
  • a plurality of radiation photon position determination images are obtained for each frame as shown in FIG. 5A.
  • a radiation image shown in FIG. 5B can be generated from the position determination images of the plurality of radiation photons.
  • the processing unit 103 counts the number of times a signal determined to have received a radiation photon is detected in each pixel 120, and the radiation shown in FIG. 5B based on the counted number. Generate an image.
  • each bright spot indicates that a signal determined that the radiation photon has entered the pixel 120 is detected once.
  • the number counted by each of the pixels 120 may be used as the pixel value of each pixel of the radiation image.
  • the processing unit 103 counts the signals output when radiation photons are incident among the signals output from the photodetectors of the respective pixels 120 at a plurality of levels according to the values of the signals. May be.
  • the processing unit 103 may generate a radiographic image based on the number of signals determined to be incident with radiation photons counted at the plurality of levels.
  • the processing unit 103 may change the colors to be output at a plurality of levels, and synthesize a color radiation image having a color corresponding to the energy of each incident radiation photon.
  • the radiation imaging apparatus 100 has energy resolution with respect to incident radiation photons by counting at a plurality of levels corresponding to the values of the signals.
  • a radiographic image is generated by counting the number of signals in which light converted from radiation is detected among signals output from the respective pixels 120.
  • Each of the pixels 120 arranged on the sensor panel 106 does not always have a constant sensitivity to incident radiation energy. For example, due to variations in characteristics within the surface of the scintillator 105 and variations in gain with respect to the light of the photodetectors of the pixels 120, differences in sensitivity to the energy of incident radiation photons may occur in the respective pixels 120. Due to the difference in sensitivity, even when radiation photons having the same energy are incident on the sensor panel 106, a signal having a different value for each photodetector of the pixel 120 can be output.
  • the processing unit 103 follows the correction coefficient determined in the calibration mode to be described later for converting the value of the signal output from the photodetector of the pixel 120 into a value corresponding to the energy value of the incident radiation photon. to correct.
  • the correction coefficient indicates the sensitivity of each pixel 120 to incident radiation photons.
  • a correction coefficient image that is a collection of correction coefficients as shown in FIG. 6D is generated.
  • the processing unit 103 corrects the value of the signal output from the photodetector of each pixel 120.
  • FIG. 6A to 6C show the order in which the processing unit 103 performs correction according to the correction coefficient on the image acquired for each frame to generate a radiation image.
  • FIG. 6A shows the image of the light emission shown in FIG. 4B acquired for each frame.
  • FIG. 6B shows a radiation photon position determination image generated by the first process from the light emission image of FIG. 6A.
  • FIG. 6C shows a radiation image generated from a position determination image of a plurality of radiation photons acquired for each frame.
  • Correction according to the correction coefficient may be performed at any stage of FIGS. 6A to 6C, but may be most effective when performed on the light emission image of FIG. 6A.
  • the processing unit 103 corrects each signal value of the light emission image according to the correction coefficient, and generates a correction signal for each signal.
  • the processing unit 103 determines a correction coefficient for each pixel 120 and acquires a correction coefficient image.
  • the calibration mode is performed without placing a subject between the radiation source 101 and the sensor panel 106 so that radiation having a predetermined energy value enters the sensor panel.
  • the processing unit 103 acquires luminescence images in a plurality of frames while radiation having a predetermined energy value is incident.
  • the processing unit 103 performs a first process from the plurality of light emission images shown in FIG. 7A and generates a radiation photon position determination image shown in FIG. 7B.
  • the processing unit 103 acquires, for each pixel 120, the value of the signal output from the photodetector of the pixel on which the radiation photon is incident from the position determination image of the radiation photon.
  • the processing unit 103 determines a correction coefficient based on the value of the signal from the pixel 120 on which the radiation photon is incident and the value corresponding to the case where the radiation photon having a predetermined energy value is incident.
  • the correction coefficient is determined so that the value of the signal from the pixel 120 on which the radiation photon is incident is converted into a value corresponding to the case where the radiation photon having a predetermined energy value is incident.
  • the value corresponding to the incident radiation photon having a predetermined energy value may be a design value of a signal output from the photodetector of each pixel 120 with respect to the energy value of the incident radiation photon.
  • the value of the energy of the radiation photons incident on the sensor panel 106 can be acquired from, for example, the irradiation control unit 102 that controls the radiation source 101.
  • a collection of correction coefficients determined by the processing unit 103 for each pixel 120 is a correction coefficient image shown in FIG. 7C.
  • the first signal to be acquired may be only a value close to the design value.
  • the correction coefficient By acquiring a value close to the design value, it is possible to prevent the correction coefficient from being determined by noise that is not incident with radiation photons or irregular signals described later.
  • the processing unit 103 In order to determine the correction coefficient of each pixel 120, the processing unit 103 needs to acquire a signal output from the photodetector when radiation photons are incident at least once in each pixel 120. . In addition, the processing unit 103 acquires a plurality of signals output from the photodetector when radiation photons are incident on each pixel 120, and corrects each correction coefficient of the pixel 120 based on the statistics of the plurality of signals. May be determined.
  • FIG. 8 shows a signal output for each frame when attention is paid to one pixel 120 in the radiation photon position determination image of FIG. 7B.
  • the horizontal axis indicates the frame, and the vertical axis indicates the value of the signal output from the photodetector of the pixel 120.
  • the value of the output signal is, for example, 0 (noise level).
  • the processing unit 103 acquires a plurality of values of signals (first signals) when light converted from radiation photons is detected, and obtains statistics of these signals.
  • the statistic for example, an average value, a median value, a mode value, or the like may be used.
  • the obtained statistic indicates the energy sensitivity to the radiation photons of the photodetector of the pixel 120 of interest, and the processing unit 103 converts the obtained statistic value into a value corresponding to a predetermined energy value.
  • the processing unit 103 can acquire a correction coefficient image by determining a correction coefficient based on the statistic for each of the pixels 120 included in the sensor panel 106.
  • the processing unit 103 can acquire a more accurate correction coefficient image. For example, the processing unit 103 may determine a statistic from a signal output from the photodetector when 100 or more radiation photons are incident on each pixel 120.
  • the number of radiation photons incident on each pixel 120 can be adjusted by appropriately setting the radiation dose from the radiation source 101 and the frame rate at which the sensor panel 106 captures an image.
  • the radiation dose and frame rate may be set so as to avoid pileup.
  • Pile-up means that a plurality of radiation photons are simultaneously detected by the photodetector of the same pixel 120 in the sensor panel 106, and the plurality of radiation photons are detected as a single radiation photon.
  • the value of the signal output from the photodetector of the pixel 120 becomes an irregular value different from the value generated by one radiation photon, and an incorrect correction coefficient may be acquired.
  • the frame rate can be set so that the number of radiation photons incident on each pixel 120 is within one during the radiation exposure period of one frame. For example, pile-up can be suppressed by reducing the radiation dose and performing imaging with a high frame rate.
  • the operating frequency of the pixel 120 may be set within a range of 10 kHz to several MHz (for example, about 100 kHz).
  • the radiation dose from the radiation source 101 may be set as a value when the tube voltage is about 100 kV and the tube current is about 10 mA.
  • the operating frequency of the pixel 120 is 100 kHz
  • the plurality of radiation photons are converted into a single radiation photon. A pile up to detect occurs.
  • the statistics may be obtained using all signals output from the photodetector when radiation photons acquired in each of the pixels 120 are incident. Further, the statistic may be obtained by using a signal value for a part of the plurality of acquired signals. For example, the processing unit 103 determines a statistic by using a signal indicating a maximum / minimum value among a plurality of acquired signals or a remaining signal excluding several signals having higher / lower values. May be. Further, for example, when the distribution of a plurality of acquired signal values has a normal distribution, the processing unit 103 may determine a statistic using a signal having a value within a range of 3 ⁇ .
  • the value of an irregular signal that is generated by a direct hit that is directly detected by a photodetector without incident of cosmic rays or incident radiation photons being converted into light by the scintillator 105 affects the statistic. Can be suppressed. Similarly, an irregular signal value due to pile-up can be prevented from affecting the statistics.
  • the calibration mode and the imaging mode may be performed without using the same radiation source.
  • the sensitivity to the energy of the radiation photons is acquired from the output value of the signal obtained by irradiating the monochromatic radiation and detecting the light converted from the radiation photons by the photo detector of the pixel 120. May be.
  • the energy of the radiation incident on each of the pixels 120 is constant, it is only necessary to acquire one signal due to the incidence of the radiation photons, and the statistics need not be obtained.
  • the processing unit 103 can determine an accurate correction coefficient and acquire a correction coefficient image. . Therefore, when determining the correction coefficient, it is not necessary to acquire a signal output from the photodetector when a plurality of radiation photons are incident on each pixel 120, and the calibration mode time can be greatly reduced.
  • a monochromatic radiation source originating from a radioactive substance may be used, and in the imaging mode, the radiation source 101 that generates radiation by bremsstrahlung may be used.
  • the radiation of different energy may be irradiated, and the processing unit 103 may obtain the sensitivity to a plurality of radiation photons of different energy, and obtain a correction coefficient image therefrom.
  • the energy of the radiation photons when acquiring the correction coefficient image may be set in a range equal to or lower than the energy used when imaging the subject.
  • the intensity of radiation incident at the center and the end of the sensor panel 106 when the sensor panel 106 is irradiated with radiation from the radiation source 101, the intensity of radiation incident at the center and the end of the sensor panel 106, in other words, the number of incident radiation photons may be non-uniform.
  • the intensity of the radiation varies within the plane of the sensor panel, as shown in Patent Document 1, if the sensitivity is corrected using the number of radiation photons incident on each pixel, the radiation incident within the plane of the sensor panel. Since the number of photons varies, the accuracy of correction may decrease.
  • the correction coefficient is determined directly from the signal value corresponding to the energy of the incident radiation photon output from each pixel 120.
  • FIG. 9 shows a flow of radiographic image correction according to this embodiment.
  • a correction coefficient is determined and an image is acquired.
  • the processing unit 103 performs a first process S1001 on a light emission image acquired without placing a subject between the radiation source 101 and the sensor panel 106, and a radiation photon position determination image. Is generated.
  • the processing unit 103 acquires a plurality of signals output when the radiation photons are incident on each pixel 120 using the position determination image of the radiation photons, and acquires statistics of the plurality of signals in step S1002.
  • the processing unit 103 determines S1003 for each correction coefficient of the pixel 120 based on the acquired statistic.
  • the correction coefficient (correction coefficient image) determined by the calibration process is stored in, for example, the memory 130 of the processing unit 103 and used for generating a correction signal when generating a radiation image.
  • correction using the correction coefficient image is performed in the imaging process in the imaging mode.
  • the imaging process can be said to be a normal imaging process in which a subject is placed between the radiation source 101 that irradiates the sensor panel 106 with radiation and the sensor panel 106.
  • the processing unit 103 acquires a plurality of light emission images for each frame from the imaging unit 104.
  • the processing unit 103 uses the correction coefficient image for the light emission image to correct the signal output from the photodetector of each pixel 120 and performs correction signal generation S1050. By the process of generating the correction signal, the in-plane characteristic variation of the scintillator 105 and the gain variation of the pixel 120 can be corrected. Thereafter, the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images from the emission image correction signal, and combines the plurality of radiation photon position determination images S1052 to obtain a radiographic image. Is generated. A radiation image as shown in FIG. 6C is obtained by the step of generating the radiation image.
  • the correction coefficient may be determined by operating the calibration mode every time a radiographic image is taken. Further, for example, the determined correction coefficient may be stored in the memory 130 of the processing unit 103, and the correction coefficient may be read from the memory 130 and used when the processing unit 103 operates the imaging mode. By determining the correction coefficient for each radiographic image capture, appropriate correction can be performed for each radiographic image capture. Further, by storing the correction coefficient in the memory 130, it is not necessary to perform the calibration mode every time a radiographic image is captured, and the time required for imaging can be shortened.
  • the correction of the captured image is shown as an example used for the sensor panel 106 using an indirect type conversion element using the pixel 120 that detects light converted from radiation photons by the scintillator 105. It is not limited to this.
  • the correction of the captured image of the present embodiment can also be applied to an imaging apparatus using a sensor panel using a direct conversion element that directly detects radiation photons at each pixel.
  • Second Embodiment A radiation imaging apparatus according to the second embodiment of the present invention will be described with reference to FIGS.
  • a correction coefficient for correcting variation in sensitivity with respect to radiation photons incident on each pixel 120 is determined, and correction according to the correction coefficient is performed when a radiation image is acquired in the imaging mode. did.
  • correction for further suppressing deterioration of the image quality of a radiographic image in a radiation imaging apparatus using an indirect conversion element (photodetector) using a scintillator will be described.
  • the radiation imaging apparatus 100 and the radiation imaging system 110 may be the same as those in the first embodiment described above.
  • FIG. 10 shows correction of a radiographic image that corrects a defective pixel generated by at least one of the scintillator 105 arranged in the sensor panel 106 and the photodetector included in each pixel 120 and suppresses deterioration of the image quality of the radiographic image.
  • the processing unit 103 first acquires coordinate information representing the position of the defective pixel on the sensor panel 106.
  • the coordinate information may be acquired when the processing unit 103 detects a defective pixel in the calibration mode. Further, the coordinate information of the defective pixel detected in advance may be stored in the memory 130 of the processing unit 103, and the processing unit 103 may acquire the coordinate information from the memory 130.
  • the processing unit 103 performs a second process S1004 that replaces the signal of the defective pixel based on the signal output from the photodetector of the pixel 120 adjacent to the defective pixel according to the coordinate information.
  • the defective pixel refers to a pixel 120 that has an abnormality in output due to, for example, an electrical failure such as a photodetector or a switch element that constitutes the pixel 120 or a scratch on the surface of the scintillator 105.
  • a pixel 120 that outputs a signal exceeding a predetermined threshold may be a defective pixel.
  • a pixel 120 in which signal values output to adjacent pixels 120 are separated may be used as a defective pixel.
  • a pixel 120 having a low linearity of a signal value output with respect to a change in incident light intensity may be used as a defective pixel.
  • a pixel that does not always output a signal (a signal value is always a noise level) due to disconnection of a circuit constituting the pixel 120 may be a defective pixel.
  • Defective pixels may be detected by irradiating the sensor panel 106 with light and imaging before mounting the scintillator 105 on the sensor panel 106.
  • defective pixels may be detected by performing imaging without irradiating the sensor panel 106 with light.
  • a pixel that outputs a signal indicating that light has been detected may be a defective pixel.
  • the coordinate information of the defective pixel detected before mounting the scintillator 105 is stored in the memory 130 of the processing unit 103.
  • the defective pixel may be detected after the scintillator 105 is mounted on the sensor panel 106.
  • the processing unit 103 may detect a defective pixel.
  • the coordinate information of the detected defective pixel may be stored in the memory 130.
  • imaging may be performed with or without radiation, and the processing unit 103 may detect a defective pixel using a signal output from the photodetector of each pixel 120. Further, for example, the processing unit 103 may detect a defective pixel by causing the radiation imaging apparatus 100 to perform the same operation as that of the integral radiation imaging apparatus.
  • the processing unit 103 may detect a defective pixel from the total amount of charges generated by irradiating the radiation imaging apparatus 100 with radiation from the radiation source 101 and causing a plurality of radiation photons to enter the respective pixels 120.
  • An advantage of detecting defective pixels using radiation after mounting the scintillator 105 on the sensor panel 106 is that defective pixels generated after mounting the scintillator 105 can be detected.
  • the surface of the scintillator 105 is uneven, and defective pixels may occur when the sensor panel 106 on which the pixels 120 are formed and the scintillator 105 are bonded together. When defective pixels are detected using radiation, defective pixels can be detected more accurately than when defective pixels are detected using light before the scintillator 105 is mounted.
  • the second process S1004 may be performed using coordinate information of defective pixels detected under a plurality of conditions. For example, before mounting the scintillator 105, both the coordinate information of the defective pixel detected by the imaging performed by irradiating light and the defective pixel detected by the imaging performed without irradiating the light and the coordinate information. One coordinate information may be combined with the coordinate information. Further, for example, the second process S1004 may be performed using both the coordinate information before mounting the scintillator 105 and the coordinate information after mounting the scintillator 105.
  • the processing unit 103 uses this coordinate information to perform a second process S1004 for replacing the signal of the defective pixel based on the signal from the photodetector of the pixel 120 adjacent to the defective pixel.
  • the signal of the defective pixel may be replaced with the signal value from the photodetector of the pixel 120 adjacent to the defective pixel, or the average of the signals from the photodetectors of the plurality of pixels 120 adjacent to the defective pixel. It may be replaced with a value.
  • the processing unit 103 determines a correction coefficient S1003 using the signal of the defective pixel replaced by performing the second process S1004 on the light emission image.
  • the processing unit 103 performs correction according to the correction coefficient on the signal of the defective pixel replaced by performing the second processing S1004 on the light emission image, and generates a correction signal S1050. Do. Thereafter, the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images, and combines the plurality of radiation photon position determination images S1052 to generate a radiation image.
  • the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images, and combines the plurality of radiation photon position determination images S1052 to generate a radiation image.
  • FIG. 11 shows a radiographic image correction flow in which the processing unit 103 performs the third process S1005 in which the signal output from each photodetector of the pixel 120 is corrected according to the light sensitivity coefficient.
  • the sensor panel 106 Before mounting the scintillator 105 on the sensor panel 106, the sensor panel 106 is irradiated with light having a predetermined intensity.
  • the photosensitivity coefficient is a coefficient for converting the signal value output from the photodetector of each pixel 120 into a value corresponding to the incident light of a predetermined intensity. That is, the photosensitivity coefficient represents the relationship between the intensity of light incident on the photodetector of the pixel 120 and the value of the optical signal output from the photodetector.
  • the value corresponding to the case where light having a predetermined intensity is incident may be a design value of a signal output from the photodetector of each pixel 120 with respect to the intensity of the incident light.
  • the processing unit 103 Based on the photosensitivity coefficient, the processing unit 103 corrects the variation in the gain of the output signal with respect to the intensity of the incident light of each pixel 120.
  • the respective photosensitivity coefficients of the pixels 120 acquired before mounting the scintillator 105 on the sensor panel 106 are stored in the memory 130 of the processing unit 103, for example.
  • the photosensitivity coefficient, the above-described correction coefficient, coordinate information, and the like are stored in the same memory 130, but different memories may be prepared and stored.
  • the memory 130 is arranged in the processing unit 103, but may be arranged outside the processing unit 103.
  • the processing unit 103 performs a third process S1005 using a light sensitivity coefficient on the light emission image, and corrects the gain of the signal from the photodetector of each pixel 120.
  • correction coefficient determination S1003 is performed using the signal obtained by performing the first process S1001.
  • the processing unit 103 performs correction according to the correction coefficient on the signal corrected by performing the third process S1005 on the light emission image, and generates a correction signal S1051. Since the gain variation of the pixel 120 is corrected by the third process S1005 using the photosensitivity coefficient, the generation S1051 of the correction signal can mainly correct the variation in the characteristics of the scintillator 105.
  • the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images, and combines the plurality of radiation photon position determination images S1052 to generate a radiation image.
  • the third process S1005 for correcting the gain of the pixel 120 before performing the first process S1001, the accuracy of the first process S1001 is improved, and the image quality of the radiation image finally obtained is reduced. Can be suppressed.
  • both the second process S1004 and the third process S1005 may be performed.
  • the order of the second process S1004 and the third process S1005 may be performed first, but as shown in FIG. 12, it is more effective to perform the third process S1005 first. .
  • the second process S1004 for correcting the defective pixel uses the output of the pixel 120 adjacent to the defective pixel when the signal of the defective pixel is replaced. If the gain of the pixel 120 is corrected by the third process S1005 and the sensitivity of each pixel 120 to light is made uniform, the correction by the second process S1004 can be performed with higher accuracy.
  • the correction coefficient determination and the correction using the correction coefficient may all be performed on the software of the processing unit 103.
  • the configuration may be such that the circuit is provided outside the sensor panel 106 instead of software.
  • the circuit may be configured with an FPGA.
  • at least a part of the process performed in the imaging mode may be performed by a circuit provided in each pixel 120 instead of software.
  • at least a part of the processing performed in the calibration mode may be performed by a circuit provided in the pixel 120.
  • a correction signal is generated according to a correction coefficient for a light emission image, and a signal in which light converted from radiation is detected is counted for each level of the value of the signal.
  • a radiographic image may be generated based on the number of signals determined to have entered the counted radiation photons at each level.
  • the first process, the second process, and the third process may be performed on each pixel 120.
  • each pixel 120 may be provided with a memory for storing correction coefficients, coordinate information, light sensitivity coefficients, and the like determined in the calibration mode.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus execute the program. It can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a program that realizes one or more functions of the above-described embodiment to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus execute the program. It can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • ASIC application specific integrated circuit

Abstract

Provided is a radiation image capturing device including a sensor panel on which are arranged a plurality of pixels, each including a conversion element for detecting radiation, and a processing unit which generates an image corresponding to the number of radiation photons incident on each of the plurality of pixels, wherein, in an image capturing mode for generating an image formed by means of radiation that has been transmitted through a subject, the processing unit generates corrected signals by correcting the values of signals output from the conversion elements of each of the plurality of pixels, in accordance with a correction factor for converting the value of the signal output by the conversion element onto which a radiation photon has been incident, into a value corresponding to the energy value of said radiation photon, and generates an image on the basis of the number of corrected signals from pixels onto which radiation photons have been incident, from among the corrected signals from each of the plurality of pixels.

Description

放射線撮像装置、その制御方法及びプログラムRadiation imaging apparatus, control method thereof, and program
 本発明は、放射線撮像装置、その制御方法及びプログラムに関する。 The present invention relates to a radiation imaging apparatus, a control method thereof, and a program.
 放射線による医療画像診断や非破壊検査に用いる撮像装置として、半導体材料によって形成された平面検出器(Flat Panel Detector、以下FPD)を用いた放射線撮像装置が知られている。このような放射線撮像装置は、例えば医療画像診断において、静止画や動画などを撮像するためのデジタル撮像装置として用いられうる。 2. Description of the Related Art A radiation imaging apparatus using a flat panel detector (FPD) made of a semiconductor material is known as an imaging apparatus used for medical image diagnosis by radiation and nondestructive inspection. Such a radiation imaging apparatus can be used as a digital imaging apparatus for capturing a still image, a moving image, or the like, for example, in medical image diagnosis.
 FPDに用いられる放射線の検出方式として、放射線の入射によって発生した電荷の総量を計測する積分型のセンサが広く知られている。他の方式のセンサとして、入射した放射線光子の個数を計測するフォトンカウンティング型のセンサがある。特許文献1には、CdTeなどを用いて放射線光子を各画素で直接検出する直接型のフォトンカウンティング型のセンサが示されている。また、特許文献2には、入射した放射線光子をシンチレータで光に変換し、放射線から変換された光を各画素で検出する間接型のフォトンカウンティング型のセンサが示されている。 Integral sensors that measure the total amount of charges generated by the incidence of radiation are widely known as radiation detection methods used in FPDs. As another type of sensor, there is a photon counting type sensor that measures the number of incident radiation photons. Patent Document 1 discloses a direct photon counting type sensor that directly detects radiation photons at each pixel using CdTe or the like. Patent Document 2 discloses an indirect photon counting type sensor that converts incident radiation photons into light by a scintillator and detects light converted from radiation at each pixel.
特開2011-85479号公報JP 2011-85479 A 特開2001-194460号公報JP 2001-194460 A
 フォトンカウンティング型のセンサを用いた複数の画素が配されたFPDにおいて、入射する放射線光子に対する感度が画素ごとにばらついた場合、撮像された放射線画像の画質が劣化する。放射線画像の画質を向上させるために、画素ごとの放射線光子に対する感度のばらつきを補正する必要がある。特許文献1には、入射した放射線光子のカウント値を用いて感度の補正を行うことが示されている。しかし、入射する放射線光子の強度がFPDの面内で一様ではない場合、補正の精度が低下してしまう可能性がある。また、特許文献2には、感度の補正に関しての開示がされていない。 In an FPD in which a plurality of pixels using a photon counting type sensor are arranged, if the sensitivity to incident radiation photons varies from pixel to pixel, the image quality of the captured radiation image deteriorates. In order to improve the image quality of the radiation image, it is necessary to correct variations in sensitivity to radiation photons for each pixel. Patent Document 1 discloses that sensitivity correction is performed using a count value of incident radiation photons. However, if the intensity of incident radiation photons is not uniform in the plane of the FPD, the accuracy of correction may be reduced. Further, Patent Document 2 does not disclose sensitivity correction.
 本発明は、フォトンカウンティング型のセンサを用いた放射線撮像装置において、画素ごとの感度のばらつきによる画質の低下を抑制する技術を提供することを目的とする。 An object of the present invention is to provide a technique for suppressing deterioration in image quality due to variation in sensitivity for each pixel in a radiation imaging apparatus using a photon counting type sensor.
 上記課題に鑑みて、本発明の一部の実施形態に係る放射線撮像装置は、放射線を検出するための変換素子をそれぞれ含む複数の画素が配されたセンサパネルと、複数の画素のそれぞれに入射した放射線光子の個数に応じた画像を生成する処理部と、を含む放射線撮像装置であって、処理部は、被写体を透過した放射線によって形成される画像を生成する撮像モードにおいて、放射線光子が入射した変換素子の出力する信号の値を当該放射線光子のエネルギ値に対応する値に変換するための補正係数に従って、複数の画素のそれぞれの変換素子から出力される信号の値を補正することによって補正信号を生成し、複数の画素のそれぞれの補正信号のうち放射線光子が入射した画素の補正信号の個数に基づいて画像を生成することを特徴とする。 In view of the above problems, a radiation imaging apparatus according to some embodiments of the present invention is incident on each of a plurality of pixels and a sensor panel including a plurality of pixels each including a conversion element for detecting radiation. And a processing unit that generates an image according to the number of the emitted radiation photons, wherein the processing unit receives radiation photons in an imaging mode that generates an image formed by radiation transmitted through the subject. Correction is performed by correcting the value of the signal output from each conversion element of the plurality of pixels according to the correction coefficient for converting the value of the signal output from the conversion element into a value corresponding to the energy value of the radiation photon. A signal is generated, and an image is generated based on the number of correction signals of pixels on which radiation photons are incident among correction signals of a plurality of pixels.
 上記手段によって、フォトンカウンティング型のセンサを用いた放射線撮像装置において、画素ごとの感度のばらつきによる画質の低下を抑制する技術が提供される。 The above means provides a technique for suppressing a decrease in image quality due to variations in sensitivity for each pixel in a radiation imaging apparatus using a photon counting type sensor.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明に係る放射線撮像装置の構成例を示す図。 図1の放射線撮像装置の画素の構成を示す図。 図1の放射線撮像装置のセンサパネルの照射期間と読出し期間とを示す図。 図1の放射線撮像装置の第1の処理を示す図。 図1の放射線撮像装置の撮像画像の取得方法を示す図。 図1の放射線撮像装置の撮像画像の補正方法を示す図。 図1の放射線撮像装置の補正係数画像の取得方法を示す図。 図1の放射線撮像装置の1つの画素の信号の出力を示す図。 図1の放射線撮像装置の撮像フローを示す図。 図9の撮像フローの変形例を示す図。 図9の撮像フローの変形例を示す図。 図9の撮像フローの変形例を示す図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
The figure which shows the structural example of the radiation imaging device which concerns on this invention. The figure which shows the structure of the pixel of the radiation imaging device of FIG. The figure which shows the irradiation period and read-out period of the sensor panel of the radiation imaging device of FIG. , , The figure which shows the 1st process of the radiation imaging device of FIG. , The figure which shows the acquisition method of the captured image of the radiation imaging device of FIG. , , , The figure which shows the correction method of the captured image of the radiation imaging device of FIG. , , The figure which shows the acquisition method of the correction coefficient image of the radiation imaging device of FIG. The figure which shows the output of the signal of one pixel of the radiation imaging device of FIG. The figure which shows the imaging flow of the radiation imaging device of FIG. The figure which shows the modification of the imaging flow of FIG. The figure which shows the modification of the imaging flow of FIG. The figure which shows the modification of the imaging flow of FIG.
 以下、本発明に係る放射線撮像装置の具体的な実施形態を、添付図面を参照して説明する。なお、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 Hereinafter, specific embodiments of the radiation imaging apparatus according to the present invention will be described with reference to the accompanying drawings. The radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, β-rays, γ-rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
 <第1実施形態>
 図1~9を参照して、本発明の一部の実施形態による放射線撮像装置について説明する。図1は、本発明の第1の実施形態における放射線撮像装置100の構成例を示す。放射線撮像装置100は、放射線画像を撮像する撮像部104と、処理部103とを含む。また、放射線撮像装置100は、放射線撮像装置100に放射線を照射する放射線源101、放射線源101を制御する照射制御部102と共に放射線撮像システム110を構成しうる。照射制御部102及び処理部103はそれぞれ、CPUやメモリなどを有するコンピュータなどによって構成されうる。本実施形態において、照射制御部102及び処理部103が別々に構成されているが、それに限られるものではない。例えば、照射制御部102が、処理部103と一体に構成され、放射線撮像装置100に含まれていてもよい。即ち、照射制御部102及び処理部103が、それらの機能を有する1つのコンピュータで構成されていてもよい。
<First Embodiment>
A radiation imaging apparatus according to some embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration example of a radiation imaging apparatus 100 according to the first embodiment of the present invention. The radiation imaging apparatus 100 includes an imaging unit 104 that captures a radiation image and a processing unit 103. The radiation imaging apparatus 100 can constitute a radiation imaging system 110 together with a radiation source 101 that irradiates the radiation imaging apparatus 100 with radiation and an irradiation control unit 102 that controls the radiation source 101. Each of the irradiation control unit 102 and the processing unit 103 can be configured by a computer having a CPU, a memory, and the like. In the present embodiment, the irradiation control unit 102 and the processing unit 103 are configured separately, but are not limited thereto. For example, the irradiation control unit 102 may be integrated with the processing unit 103 and included in the radiation imaging apparatus 100. That is, the irradiation control unit 102 and the processing unit 103 may be configured by one computer having these functions.
 放射線撮像装置100の撮像部104は、入射した放射線を光に変換するシンチレータ105と、複数の画素120とを含むセンサパネル106を備える。複数の画素120は、シンチレータ105を互いに共有する。画素120のそれぞれは、シンチレータ105によって放射線から変換された光を検出する光検出器を含む。つまり、本実施形態において、入射した放射線を検出するために、シンチレータ105で入射した放射線を光に変換し、変換素子として画素120のそれぞれに配された光検出器で光の強度に応じた信号に変換する間接型の変換素子を用いる。センサパネル106には、複数の画素120が、複数の行及び複数の列を形成するように2次元アレイ状に配列されている。画素120の光検出器それぞれは、センサパネル106に入射した放射線光子からシンチレータ105で変換された光の強度に応じた値を有する信号(光信号)を処理部103に出力する。入射した放射線の1つ1つの放射線光子のエネルギに応じてシンチレータ105で変換される光の強度が変化するため、画素120のそれぞれの光検出器から出力される信号の値は、入射した放射線光子のエネルギに応じた信号値となりうる。放射線撮像装置100は、フォトンカウンティング方式の放射線撮像を行うための構成を有し、光の検出結果に基づいて、入射する放射線光子の個数を計測する。 The imaging unit 104 of the radiation imaging apparatus 100 includes a sensor panel 106 including a scintillator 105 that converts incident radiation into light and a plurality of pixels 120. The plurality of pixels 120 share the scintillator 105 with each other. Each of the pixels 120 includes a photodetector that detects light converted from radiation by the scintillator 105. That is, in this embodiment, in order to detect the incident radiation, the incident radiation is converted into light by the scintillator 105, and a signal corresponding to the intensity of the light is detected by a photodetector arranged in each of the pixels 120 as a conversion element. An indirect type conversion element that converts to is used. In the sensor panel 106, a plurality of pixels 120 are arranged in a two-dimensional array so as to form a plurality of rows and a plurality of columns. Each of the photodetectors of the pixel 120 outputs a signal (optical signal) having a value corresponding to the intensity of light converted by the scintillator 105 from radiation photons incident on the sensor panel 106 to the processing unit 103. Since the intensity of light converted by the scintillator 105 changes according to the energy of each radiation photon of the incident radiation, the value of the signal output from each photodetector of the pixel 120 is the incident radiation photon. It can be a signal value corresponding to the energy of. The radiation imaging apparatus 100 has a configuration for performing photon counting radiation imaging, and measures the number of incident radiation photons based on the light detection result.
 処理部103は、撮像部104との間で信号やデータの授受を行い、具体的には、撮像部104を制御して放射線画像の撮像を行い、それによって得られた信号を撮像部104から受ける。この信号は、放射線光子の計測値を含み、例えば、処理部103は、該計測値に基づいて、例えばディスプレイ等の表示部(不図示)に放射線によって撮像された画像を表示させるための画像データを生成する。このとき、処理部103は、該画像データに対して所定の補正処理を行ってもよい。補正処理に関しては後述する。また、処理部103は、放射線照射を開始または終了するための信号を照射制御部102に供給しうる。 The processing unit 103 exchanges signals and data with the imaging unit 104. Specifically, the processing unit 103 controls the imaging unit 104 to capture a radiographic image, and receives a signal obtained thereby from the imaging unit 104. receive. This signal includes a measurement value of radiation photons. For example, the processing unit 103 displays image data captured by radiation on a display unit (not shown) such as a display based on the measurement value. Is generated. At this time, the processing unit 103 may perform a predetermined correction process on the image data. The correction process will be described later. Further, the processing unit 103 can supply a signal for starting or ending radiation irradiation to the irradiation control unit 102.
 図2に、本実施形態のセンサパネル106における画素120の等価回路を示す。画素120は、シンチレータ105で放射線光子から変換された光を検出する光検出器としての光電変換素子201と、出力回路部202とを含みうる。光電変換素子201は、典型的にはフォトダイオードでありうる。出力回路部202は、増幅回路部204、クランプ回路部205、サンプルホールド回路部207、および選択回路部208を含みうる。 FIG. 2 shows an equivalent circuit of the pixel 120 in the sensor panel 106 of the present embodiment. The pixel 120 can include a photoelectric conversion element 201 as a photodetector that detects light converted from radiation photons by the scintillator 105, and an output circuit unit 202. The photoelectric conversion element 201 can typically be a photodiode. The output circuit unit 202 can include an amplifier circuit unit 204, a clamp circuit unit 205, a sample hold circuit unit 207, and a selection circuit unit 208.
 光電変換素子201は、電荷蓄積部を含み、該電荷蓄積部は、増幅回路部204のMOSトランジスタ204aのゲートに接続されている。MOSトランジスタ204aのソースは、MOSトランジスタ204bを介して電流源204cに接続されている。MOSトランジスタ204aと電流源204cとによってソースフォロア回路が構成されている。MOSトランジスタ204bは、そのゲートに供給されるイネーブル信号ENがアクティブレベルになるとオンしてソースフォロア回路を動作状態にするイネーブルスイッチである。 The photoelectric conversion element 201 includes a charge storage unit, and the charge storage unit is connected to the gate of the MOS transistor 204a of the amplifier circuit unit 204. The source of the MOS transistor 204a is connected to the current source 204c through the MOS transistor 204b. The MOS transistor 204a and the current source 204c constitute a source follower circuit. The MOS transistor 204b is an enable switch that is turned on when the enable signal EN supplied to the gate thereof becomes an active level to bring the source follower circuit into an operating state.
 図2に示す例では、光電変換素子201の電荷蓄積部およびMOSトランジスタ204aのゲートが共通のノードを構成していて、このノードは、該電荷蓄積部に蓄積された電荷を電圧に変換する電荷電圧変換部として機能する。即ち、電荷電圧変換部には、該電荷蓄積部に蓄積された電荷Qと電荷電圧変換部が有する容量値Cとによって定まる電圧V(=Q/C)が現れる。電荷電圧変換部は、リセットスイッチ203を介してリセット電位Vresに接続されている。リセット信号PRESがアクティブレベルになると、リセットスイッチ203がオンして、電荷電圧変換部の電位がリセット電位Vresにリセットされる。 In the example shown in FIG. 2, the charge storage portion of the photoelectric conversion element 201 and the gate of the MOS transistor 204a constitute a common node, and this node is a charge that converts the charge stored in the charge storage portion into a voltage. Functions as a voltage converter. That is, the voltage V (= Q / C) determined by the charge Q stored in the charge storage unit and the capacitance value C of the charge voltage conversion unit appears in the charge voltage conversion unit. The charge-voltage converter is connected to the reset potential Vres via the reset switch 203. When the reset signal PRES becomes active level, the reset switch 203 is turned on, and the potential of the charge-voltage converter is reset to the reset potential Vres.
 クランプ回路部206は、リセットした電荷電圧変換部の電位に応じて増幅回路部204によって出力されるノイズをクランプ容量206aによってクランプする。つまり、クランプ回路部206は、光電変換素子201で光電変換により発生した電荷に応じてソースフォロア回路から出力された信号から、このノイズをキャンセルするための回路である。このノイズはリセット時のkTCノイズを含みうる。クランプは、クランプ信号PCLをアクティブレベルにしてMOSトランジスタ206bをオン状態にした後に、クランプ信号PCLを非アクティブレベルにしてMOSトランジスタ206bをオフ状態にすることによってなされる。クランプ容量206aの出力側は、MOSトランジスタ206cのゲートに接続されている。MOSトランジスタ206cのソースは、MOSトランジスタ206dを介して電流源206eに接続されている。MOSトランジスタ206cと電流源206eとによってソースフォロア回路が構成されている。MOSトランジスタ206dは、そのゲートに供給されるイネーブル信号EN0がアクティブレベルになるとオンしてソースフォロア回路を動作状態にするイネーブルスイッチである。 The clamp circuit unit 206 clamps the noise output from the amplifier circuit unit 204 by the clamp capacitor 206a according to the reset potential of the charge-voltage conversion unit. That is, the clamp circuit unit 206 is a circuit for canceling this noise from the signal output from the source follower circuit in accordance with the electric charge generated by the photoelectric conversion in the photoelectric conversion element 201. This noise may include kTC noise at reset. Clamping is performed by setting the clamp signal PCL to the active level to turn the MOS transistor 206b on, and then setting the clamp signal PCL to the inactive level to turn the MOS transistor 206b off. The output side of the clamp capacitor 206a is connected to the gate of the MOS transistor 206c. The source of the MOS transistor 206c is connected to the current source 206e via the MOS transistor 206d. The MOS transistor 206c and the current source 206e constitute a source follower circuit. The MOS transistor 206d is an enable switch that is turned on when the enable signal EN0 supplied to the gate thereof becomes an active level and puts the source follower circuit into an operating state.
 光電変換素子201で光電変換により発生した電荷に応じてクランプ回路部206から出力される信号は、光信号として、光信号サンプリング信号TSがアクティブレベルになることによってスイッチ207Saを介して容量207Sbに書き込まれる。電荷電圧変換部の電位をリセットした直後にMOSトランジスタ206bをオン状態とした際にクランプ回路部206から出力される信号は、クランプ電圧である。このノイズ信号は、ノイズサンプリング信号TNがアクティブレベルになることによってスイッチ207Naを介して容量207Nbに書き込まれる。このノイズ信号には、クランプ回路部206のオフセット成分が含まれる。スイッチ207Saと容量207Sbによって信号サンプルホールド回路207Sが構成され、スイッチ207Naと容量207Nbによってノイズサンプルホールド回路207Nが構成される。サンプルホールド回路部207は、信号サンプルホールド回路207Sとノイズサンプルホールド回路207Nとを含む。 A signal output from the clamp circuit unit 206 according to the electric charge generated by the photoelectric conversion in the photoelectric conversion element 201 is written as an optical signal into the capacitor 207Sb via the switch 207Sa when the optical signal sampling signal TS becomes an active level. It is. A signal output from the clamp circuit 206 when the MOS transistor 206b is turned on immediately after resetting the potential of the charge-voltage converter is a clamp voltage. This noise signal is written to the capacitor 207Nb via the switch 207Na when the noise sampling signal TN becomes an active level. This noise signal includes an offset component of the clamp circuit unit 206. The switch 207Sa and the capacitor 207Sb constitute a signal sample / hold circuit 207S, and the switch 207Na and the capacitor 207Nb constitute a noise sample / hold circuit 207N. The sample hold circuit unit 207 includes a signal sample hold circuit 207S and a noise sample hold circuit 207N.
 駆動回路部(不図示)が行選択信号VSRをアクティブレベルに駆動すると、容量207Sbに保持された信号(光信号)がMOSトランジスタ208Saおよび行選択スイッチ208Sbを介して信号線25Sに出力される。また、同時に、容量207Nbに保持された信号(ノイズ)がMOSトランジスタ208Naおよび行選択スイッチ208Nbを介して信号線25Nに出力される。MOSトランジスタ208Saは、信号線25Sに設けられた不図示の定電流源とソースフォロア回路を構成する。同様に、MOSトランジスタ208Naは、信号線25Nに設けられた不図示の定電流源とソースフォロア回路を構成する。MOSトランジスタ208Saと行選択スイッチ208Sbとによって信号用選択回路部208Sが構成され、MOSトランジスタ208Naと行選択スイッチ208Nbによってノイズ用選択回路部208Nが構成される。選択回路部208は、信号用選択回路部208Sとノイズ用選択回路部208Nとを含む。 When the drive circuit unit (not shown) drives the row selection signal VSR to the active level, the signal (optical signal) held in the capacitor 207Sb is output to the signal line 25S via the MOS transistor 208Sa and the row selection switch 208Sb. At the same time, a signal (noise) held in the capacitor 207Nb is output to the signal line 25N via the MOS transistor 208Na and the row selection switch 208Nb. The MOS transistor 208Sa constitutes a constant current source (not shown) provided in the signal line 25S and a source follower circuit. Similarly, the MOS transistor 208Na forms a source follower circuit and a constant current source (not shown) provided on the signal line 25N. The MOS transistor 208Sa and the row selection switch 208Sb constitute a signal selection circuit unit 208S, and the MOS transistor 208Na and the row selection switch 208Nb constitute a noise selection circuit unit 208N. The selection circuit unit 208 includes a signal selection circuit unit 208S and a noise selection circuit unit 208N.
 画素120は、隣接する複数の画素120の光信号を加算する加算スイッチ209Sを有してもよい。加算モード時には、加算モード信号ADDがアクティブレベルになり、加算スイッチ209Sがオン状態になる。これにより、隣接する画素の容量207Sbが加算スイッチ209Sによって相互に接続されて、光信号が平均化される。同様に、画素120は、隣接する複数の画素120のノイズを加算する加算スイッチ209Nを有していてもよい。加算スイッチ209Nがオン状態になると、隣接する画素の容量207Nbが加算スイッチ209Nによって相互に接続されて、ノイズが平均化される。加算部209は、加算スイッチ209Sと加算スイッチ209Nとを含む。 The pixel 120 may include an addition switch 209 </ b> S that adds the optical signals of a plurality of adjacent pixels 120. In the addition mode, the addition mode signal ADD becomes an active level, and the addition switch 209S is turned on. Thereby, the capacitors 207Sb of adjacent pixels are connected to each other by the addition switch 209S, and the optical signals are averaged. Similarly, the pixel 120 may include an addition switch 209N that adds noises of a plurality of adjacent pixels 120. When the addition switch 209N is turned on, the capacitors 207Nb of adjacent pixels are connected to each other by the addition switch 209N, and noise is averaged. Adder 209 includes an addition switch 209S and an addition switch 209N.
 画素120は、感度を変更するための感度変更部205を有していてもよい。画素120は、例えば、第1感度変換スイッチ205aおよび第2感度変換スイッチ205a’、並びにそれらに付随する回路素子を含みうる。第1変更信号WIDEがアクティブレベルになると、第1感度変更スイッチ205aがオンして、電荷電圧変換部の容量値に第1付加容量205bの容量値が追加される。これによって画素120の感度が低下する。第2変更信号WIDE2がアクティブレベルになると、第2感度変更スイッチ205a’がオンして、電荷電圧変換部の容量値に第2付加容量205b’の容量値が追加される。これによって画素120の感度が更に低下する。このように画素120の感度を低下させる機能を追加することによって、より大きな光量を受光することが可能となり、ダイナミックレンジを広げることができる。第1変更信号WIDEがアクティブレベルになる場合には、イネーブル信号ENwをアクティブレベルにして、MOSトランジスタ204aに代えてMOSトランジスタ204a’をソースフォロア動作させてもよい。 The pixel 120 may have a sensitivity changing unit 205 for changing the sensitivity. The pixel 120 can include, for example, a first sensitivity conversion switch 205a and a second sensitivity conversion switch 205a 'and circuit elements associated therewith. When the first change signal WIDE becomes active level, the first sensitivity change switch 205a is turned on, and the capacitance value of the first additional capacitor 205b is added to the capacitance value of the charge-voltage converter. This reduces the sensitivity of the pixel 120. When the second change signal WIDE2 becomes an active level, the second sensitivity change switch 205a 'is turned on, and the capacitance value of the second additional capacitor 205b' is added to the capacitance value of the charge-voltage converter. This further reduces the sensitivity of the pixel 120. By adding a function for reducing the sensitivity of the pixel 120 in this way, it becomes possible to receive a larger amount of light and to expand the dynamic range. When the first change signal WIDE becomes active level, the enable signal ENw may be set to active level, and the MOS transistor 204a 'may be operated as a source follower instead of the MOS transistor 204a.
 以上のような画素120に含まれる回路から出力される光信号は、不図示のAD変換器でデジタル値に変換された後、処理部103に供給されてもよい。処理部103は、この光信号をそれぞれの画素120から出力される信号として処理する。 The optical signal output from the circuit included in the pixel 120 as described above may be supplied to the processing unit 103 after being converted into a digital value by an AD converter (not shown). The processing unit 103 processes this optical signal as a signal output from each pixel 120.
 次に、本実施形態における放射線撮像装置100の駆動について説明する。図3は、放射線撮像装置100の駆動タイミングを示す図である。図3の波形は、横軸を時間として放射線の照射期間、及び、データDATAの読み出しの期間を表している。図3において、放射線照射期間は、放射線源101から放射線が照射される期間である。この期間、センサパネル106に入射した放射線がシンチレータ105で光に変換され、それぞれの画素120の光検出器が光の強度に応じた信号を出力する。また読出期間は、放射線照射期間に得られたデータDATAをセンサパネル106から処理部103に出力させる期間である。放射線撮像装置100は、放射線照射期間と放射線読出期間とを交互に行うことによって静止画や動画を取得する。また、本実施形態の放射線撮像装置100は、放射線照射期間、放射線読出期間、放射線非照射期間、オフセット読出期間を1フレームとして、静止画又は動画を取得する。放射線撮像装置100は、放射線読出期間で取得された信号値からオフセット読出期間で取得された信号値を差し引くことで、不要なオフセット情報を補正することが可能となる。 Next, driving of the radiation imaging apparatus 100 in the present embodiment will be described. FIG. 3 is a diagram illustrating the drive timing of the radiation imaging apparatus 100. The waveform in FIG. 3 represents a radiation irradiation period and a data DATA reading period with the horizontal axis as time. In FIG. 3, a radiation irradiation period is a period during which radiation is irradiated from the radiation source 101. During this period, the radiation incident on the sensor panel 106 is converted into light by the scintillator 105, and the photodetector of each pixel 120 outputs a signal corresponding to the intensity of the light. The readout period is a period in which the data DATA obtained during the radiation irradiation period is output from the sensor panel 106 to the processing unit 103. The radiation imaging apparatus 100 acquires a still image or a moving image by alternately performing a radiation irradiation period and a radiation reading period. In addition, the radiation imaging apparatus 100 according to the present embodiment acquires a still image or a moving image with a radiation irradiation period, a radiation reading period, a radiation non-irradiation period, and an offset reading period as one frame. The radiation imaging apparatus 100 can correct unnecessary offset information by subtracting the signal value acquired in the offset reading period from the signal value acquired in the radiation reading period.
 次に図4A~4Cを用いてセンサパネル106の放射線光子の入射した位置にある画素120の判定と、入射した放射線光子からシンチレータ105で変換された光の強度に応じて画素120の光検出器から出力された信号の値の補正とを行う第1の処理の方法を説明する。入射する放射線光子を検出するためにシンチレータ105を用いた間接型の変換素子を用いたセンサパネル106において、放射線光子からシンチレータ105で変換された光は、シンチレータ105内で拡散し、複数の画素120の光検出器によって検出されうる。例えば、1つの放射線光子によって生成された光は、図4Aに示すように複数の画素120にまたがって検出される。このとき、それぞれの画素120の光検出器から出力される信号によって生成される画像は、例えば図4Bに示すような画像となる。本明細書において、図4Bのように、1つの放射線光子からシンチレータ105で変換された光によって得られる画像を発光の画像と呼ぶ。処理部103は、この発光の画像を解析することによって、何れの画素120の上のシンチレータ105に放射線光子が入射したかを判定し、放射線光子が入射した位置に応じて画素120の光検出器から出力される信号値を補正することができる。 Next, the detection of the pixel 120 at the position where the radiation photon is incident on the sensor panel 106 using FIGS. 4A to 4C and the photodetector of the pixel 120 according to the intensity of the light converted by the scintillator 105 from the incident radiation photon. A first processing method for correcting the value of the signal output from the above will be described. In the sensor panel 106 using an indirect type conversion element using the scintillator 105 to detect incident radiation photons, the light converted from the radiation photons by the scintillator 105 is diffused in the scintillator 105 and a plurality of pixels 120. Can be detected by a photodetector. For example, light generated by one radiation photon is detected across a plurality of pixels 120 as shown in FIG. 4A. At this time, an image generated by a signal output from the photodetector of each pixel 120 is an image as shown in FIG. 4B, for example. In this specification, as shown in FIG. 4B, an image obtained by light converted from one radiation photon by the scintillator 105 is referred to as a light emission image. The processing unit 103 analyzes the emission image to determine which radiation photon is incident on the scintillator 105 on which pixel 120, and the photodetector of the pixel 120 according to the position where the radiation photon is incident. The signal value output from can be corrected.
 放射線光子の入射した画素の位置を判定する方法として、まず、処理部103は、それぞれの画素120から出力される信号の値が、所定の値よりも大きい値を有する信号であるかを判定する。この値は、センサパネル106に放射線光子が入射し、シンチレータ105によって変換された光がそれぞれの画素120で検出されたか否かを決定する閾値となりうる。 As a method of determining the position of a pixel on which radiation photons are incident, first, the processing unit 103 determines whether the value of a signal output from each pixel 120 is a signal having a value larger than a predetermined value. . This value can be a threshold value for determining whether or not the radiation photons are incident on the sensor panel 106 and the light converted by the scintillator 105 is detected by each pixel 120.
 次いで処理部103は、それぞれの画素120のうち、同じ期間(フレーム)に放射線光子から変換された光が入射したことを示す信号を出力した画素120の集合体を識別する。集合体は、同じ期間に光を検出したことを示す信号を出力した互いに隣接する複数の画素120によって構成される。 Next, the processing unit 103 identifies an aggregate of the pixels 120 that output a signal indicating that light converted from radiation photons is incident during the same period (frame) among the respective pixels 120. The aggregate includes a plurality of adjacent pixels 120 that output a signal indicating that light has been detected in the same period.
 処理部103は、集合体を識別した後、集合体の分布に基づいて、集合体に含まれる画素120のうち、何れの画素120の上のシンチレータ105に放射線光子が入射したかを判定する。本実施形態において、それぞれの画素120の光検出器は、入射した光の強度に応じた値を有する信号を出力する。このため、処理部103は、例えば、集合体に含まれる画素120の中で、光検出器が最も大きい信号の値を出力した画素120を放射線光子の入射した位置にある画素120と判定してもよい。また例えば、処理部103は、集合体の画素120のセンサパネル106での配置において、幾何学的な重心位置にある画素120を放射線光子の入射した位置にある画素120と判定してもよい。また例えば、放射線光子が入射した際の発光の画像の分布パターンが、処理部103のメモリ130に予め記憶されてもよい。この場合、処理部103は、集合体の発光の画像とパターンマッチングすることによって、放射線光子の入射した位置にある画素120を判定してもよい。 After identifying the aggregate, the processing unit 103 determines, based on the distribution of the aggregate, which of the pixels 120 included in the aggregate, the radiation photon is incident on the scintillator 105 on which pixel 120. In this embodiment, the photodetector of each pixel 120 outputs a signal having a value corresponding to the intensity of incident light. For this reason, for example, the processing unit 103 determines that the pixel 120 that outputs the highest signal value among the pixels 120 included in the aggregate is the pixel 120 at the position where the radiation photons are incident. Also good. Further, for example, the processing unit 103 may determine that the pixel 120 at the geometric gravity center position is the pixel 120 at the position where the radiation photons are incident in the arrangement of the aggregated pixels 120 on the sensor panel 106. In addition, for example, a distribution pattern of a light emission image when radiation photons are incident may be stored in the memory 130 of the processing unit 103 in advance. In this case, the processing unit 103 may determine the pixel 120 at the position where the radiation photons are incident by pattern matching with the light emission image of the aggregate.
 放射線光子の入射した位置にある画素120を判定した後、処理部103は、放射線光子が入射した位置に応じて集合体に含まれる各画素120の光検出器からの信号の値を補正する。例えば、処理部103は、集合体に含まれる画素120の光検出器から出力された信号の値を、それぞれ加算して放射線光子の入射した位置にある画素120の信号の値とする補正を行ってもよい。また例えば、処理部103は、放射線光子が入射した位置にあると判定された画素120と、当該画素120に隣接する画素120のみの信号の値を、それぞれ加算して放射線光子の入射した位置にある画素120から出力された信号の値とする補正を行ってもよい。また、処理部103は、集合体のうち、放射線光子が入射した位置にあると判定された画素120以外の画素120の光検出器からの信号は、光を検出しない場合と同じ値に補正してもよい。また例えば、処理部103は、パターンマッチングすることによって放射線光子の入射した位置にある画素120を判定する場合、メモリ130に保存されている発光の画像に補正後の信号の値を更に記憶しておき、これに基づいて信号の値を補正してもよい。この結果、図4Cに示すような、放射線光子の入射した位置にある画素の判定と、入射した放射線光子の有するエネルギに対応する信号の補正とがされた画像が生成される。本明細書において、図4Cの段階の画像を放射線光子の位置判定画像と呼ぶ。 After determining the pixel 120 at the position where the radiation photon is incident, the processing unit 103 corrects the value of the signal from the photodetector of each pixel 120 included in the aggregate according to the position where the radiation photon is incident. For example, the processing unit 103 performs correction to add the signal values output from the photodetectors of the pixels 120 included in the aggregate to the signal values of the pixels 120 at the positions where the radiation photons are incident. May be. For example, the processing unit 103 adds the signal values of only the pixel 120 determined to be at the position where the radiation photon is incident and the pixel 120 adjacent to the pixel 120 to the position where the radiation photon is incident. You may correct | amend as the value of the signal output from the certain pixel 120. FIG. In addition, the processing unit 103 corrects the signal from the photodetector of the pixels 120 other than the pixel 120 determined to be at the position where the radiation photons are incident in the aggregate to the same value as when light is not detected. May be. In addition, for example, when the processing unit 103 determines the pixel 120 at the position where the radiation photon is incident by performing pattern matching, the processing unit 103 further stores the corrected signal value in the light emission image stored in the memory 130. Alternatively, the signal value may be corrected based on this. As a result, as shown in FIG. 4C, an image is generated in which the pixel at the position where the radiation photon is incident is determined and the signal corresponding to the energy of the incident radiation photon is corrected. In this specification, the image in the stage of FIG. 4C is referred to as a radiation photon position determination image.
 また、光を検出したことを示す信号を出力した1つの画素120に対して、隣接する画素120が何れも光を検出しない場合、当該1つの画素120が放射線光子の入射した位置にある画素120となり、この画素120からの信号の補正の必要性は低くなりうる。このため、光検出器が光を検出したことを示す信号を出力した1つの画素120に対して、隣接する画素120が何れも光を検出しない場合、処理部103は、当該1つの画素120に対して第1の処理を行わなくてもよい。 In addition, when no adjacent pixel 120 detects light with respect to one pixel 120 that has output a signal indicating that light has been detected, the one pixel 120 is located at a position where radiation photons are incident. Therefore, the necessity of correcting the signal from the pixel 120 can be reduced. For this reason, when no adjacent pixel 120 detects light for one pixel 120 that has output a signal indicating that the light detector has detected light, the processing unit 103 causes the one pixel 120 to be detected. However, the first process may not be performed.
 本実施形態では、シンチレータ105を用いた間接型の変換素子(光検出器)を用いたセンサパネル106用いているが、検出素子として放射線光子を直接、入射した放射線光子のエネルギに応じた信号に変換する直接型の変換素子を用いてもよい。直接型の変換素子を用いたセンサパネルを用いる場合、処理部103は、所定の値よりも大きい値を有する信号を出力した画素を、放射線光子が入射した画素と判定してもよい。直接型の変換素子を用いたセンサパネルは、シンチレータ105を用いないため、間接型の変換素子を用いたセンサパネルのように光が拡散し多くの画素で検出される可能性が低い。このため、直接型の変換素子を用いたセンサパネルを用いる場合、処理部103は、第1の処理を省略してもよい。 In this embodiment, the sensor panel 106 using an indirect type conversion element (photodetector) using the scintillator 105 is used, but the radiation photon is directly converted into a signal corresponding to the energy of the incident radiation photon as the detection element. A direct conversion element for conversion may be used. When using a sensor panel using a direct conversion element, the processing unit 103 may determine that a pixel that outputs a signal having a value larger than a predetermined value is a pixel on which radiation photons are incident. Since the sensor panel using the direct conversion element does not use the scintillator 105, unlike the sensor panel using the indirect conversion element, light is unlikely to be detected by many pixels. For this reason, when the sensor panel using the direct type conversion element is used, the processing unit 103 may omit the first process.
 次いで、放射線光子の位置判定画像を用いて放射線画像を生成する方法を図5A、5Bに示す。被写体を透過した放射線によって形成される画像を生成する撮像モードにおいて、放射線源101から被写体に放射線を照射する。例えば、被写体を固定した状態で、複数のフレームに渡って撮像を行い、処理部103は、センサパネル106からそれぞれのフレームごとデータDATAを読み出す。読み出されたデータDATAは、処理部103によって、上述の第1の処理が行われ放射線光子の入射した位置にある画素120の位置の判定と、画素120の光検出器から出力された信号に対する補正が行われる。この処理によって、図5Aに示すような、フレームごとに放射線光子の位置判定画像が複数取得される。これら複数の放射線光子の位置判定画像から、図5Bに示す、放射線画像を生成することができる。放射線画像を生成する方法として、処理部103は、それぞれの画素120において、放射線光子が入射したと判定された信号の検出された回数をカウントし、カウントされた回数に基づいて図5Bに示す放射線画像を生成する。図5Aのフレームごとの放射線光子の位置判定画像において、1つ1つの輝点が、当該画素120において放射線光子が入射したと判定された信号を1回、検出したことを示す。画素120のそれぞれでカウントされた回数を、放射線画像の各画素の画素値としてもよい。また例えば、処理部103は、それぞれの画素120の光検出器から出力される信号のうち放射線光子が入射した際に出力された信号を、信号が有する値に応じて複数のレベルでそれぞれカウントしてもよい。処理部103は、この複数のレベルでそれぞれカウントされた放射線光子が入射したと判定された信号の個数に基づいて、放射線画像を生成してもよい。この場合、処理部103は、複数のレベルでそれぞれ出力する色を変化させ、それぞれ入射した放射線光子のエネルギに応じた色を有するカラーの放射線画像を合成してもよい。信号が有する値に応じた複数のレベルでそれぞれカウントすることによって、放射線撮像装置100は、入射した放射線光子に対してエネルギ分解能を有することになる。 Next, a method for generating a radiation image using the radiation photon position determination image is shown in FIGS. 5A and 5B. In an imaging mode for generating an image formed by radiation transmitted through the subject, the subject is irradiated with radiation from the radiation source 101. For example, imaging is performed over a plurality of frames while the subject is fixed, and the processing unit 103 reads out data DATA for each frame from the sensor panel 106. The read data DATA is subjected to the above first processing by the processing unit 103 to determine the position of the pixel 120 at the position where the radiation photons are incident, and to the signal output from the photodetector of the pixel 120. Correction is performed. By this processing, a plurality of radiation photon position determination images are obtained for each frame as shown in FIG. 5A. A radiation image shown in FIG. 5B can be generated from the position determination images of the plurality of radiation photons. As a method of generating a radiation image, the processing unit 103 counts the number of times a signal determined to have received a radiation photon is detected in each pixel 120, and the radiation shown in FIG. 5B based on the counted number. Generate an image. In the position determination image of the radiation photon for each frame in FIG. 5A, each bright spot indicates that a signal determined that the radiation photon has entered the pixel 120 is detected once. The number counted by each of the pixels 120 may be used as the pixel value of each pixel of the radiation image. Further, for example, the processing unit 103 counts the signals output when radiation photons are incident among the signals output from the photodetectors of the respective pixels 120 at a plurality of levels according to the values of the signals. May be. The processing unit 103 may generate a radiographic image based on the number of signals determined to be incident with radiation photons counted at the plurality of levels. In this case, the processing unit 103 may change the colors to be output at a plurality of levels, and synthesize a color radiation image having a color corresponding to the energy of each incident radiation photon. The radiation imaging apparatus 100 has energy resolution with respect to incident radiation photons by counting at a plurality of levels corresponding to the values of the signals.
 図5A及び後述の図及び説明において、説明の簡単化のためにフレームごとに画像が生成されるように示す。しかしながら、処理部103は、フレームごとに画像を生成しなくてもよい。それぞれの画素120から出力される信号のうち、放射線から変換された光が検出された信号の回数をカウントすることによって放射線画像が生成される。 In FIG. 5A and the drawings and explanations to be described later, for simplification of explanation, an image is shown for each frame. However, the processing unit 103 does not have to generate an image for each frame. A radiographic image is generated by counting the number of signals in which light converted from radiation is detected among signals output from the respective pixels 120.
 次に図6A~6Dを用いて、本実施形態における放射線画像の補正方法を示す。センサパネル106に配された画素120のそれぞれは、入射した放射線のエネルギに対して感度が一定であるとは限らない。例えば、シンチレータの105の面内の特性ばらつきや、画素120の光検出器の光に対するゲインのばらつきに起因し、それぞれの画素120において、入射した放射線光子のエネルギに対する感度の違いが生じうる。感度の違いによって、同じエネルギを有する放射線光子がセンサパネル106に入射した場合であっても、画素120の光検出器ごとに異なる値を有する信号が出力されうる。そこで、処理部103は、画素120の光検出器から出力される信号の値を、入射した放射線光子のエネルギ値に対応する値に変換するための後述するキャリブレーションモードにおいて決定される補正係数に従って補正する。補正係数は、それぞれの画素120の入射する放射線光子に対する感度を示す。センサパネル106に配されたそれぞれの画素120に対して決定された補正係数を画像として表すと、図6Dのような補正係数の集合体である補正係数画像が生成される。この補正係数(補正係数画像)に従って、感度を均一化するために、処理部103は、それぞれの画素120の光検出器から出力される信号の値の補正を行う。 Next, a radiographic image correction method according to this embodiment will be described with reference to FIGS. 6A to 6D. Each of the pixels 120 arranged on the sensor panel 106 does not always have a constant sensitivity to incident radiation energy. For example, due to variations in characteristics within the surface of the scintillator 105 and variations in gain with respect to the light of the photodetectors of the pixels 120, differences in sensitivity to the energy of incident radiation photons may occur in the respective pixels 120. Due to the difference in sensitivity, even when radiation photons having the same energy are incident on the sensor panel 106, a signal having a different value for each photodetector of the pixel 120 can be output. Therefore, the processing unit 103 follows the correction coefficient determined in the calibration mode to be described later for converting the value of the signal output from the photodetector of the pixel 120 into a value corresponding to the energy value of the incident radiation photon. to correct. The correction coefficient indicates the sensitivity of each pixel 120 to incident radiation photons. When the correction coefficients determined for the respective pixels 120 arranged on the sensor panel 106 are represented as an image, a correction coefficient image that is a collection of correction coefficients as shown in FIG. 6D is generated. In order to make the sensitivity uniform according to the correction coefficient (correction coefficient image), the processing unit 103 corrects the value of the signal output from the photodetector of each pixel 120.
 図6A~6Cは、フレームごとに取得される画像に対して、処理部103が補正係数に従った補正を行い、放射線画像を生成する順序を示す。図6Aは、フレームごとに取得した図4Bに示した発光の画像を示す。図6Bは、図6Aの発光の画像から第1の処理によって生成された放射線光子の位置判定画像を示す。図6Cは、フレームごとに取得した複数の放射線光子の位置判定画像から生成された放射線画像を示している。補正係数に従った補正は、図6A~6Cのどの段階で行ってもよいが、図6Aの発光の画像に対して行うのが最も効果的でありうる。発光の画像の各信号値に対し、処理部103は補正係数に従って補正を行い、各信号の補正信号を生成する。この補正信号を用いて、次に第1の処理を行うことによって、放射線光子が入射した画素120の位置の判定と、画素120のそれぞれの光検出器から出力される信号の値の補正とが、より正確に行われうる。このため、放射線光子の位置判定画像から生成される放射線画像の、それぞれの画素120に入射した放射線光子のエネルギに関する情報がより正確になりうる。 6A to 6C show the order in which the processing unit 103 performs correction according to the correction coefficient on the image acquired for each frame to generate a radiation image. FIG. 6A shows the image of the light emission shown in FIG. 4B acquired for each frame. FIG. 6B shows a radiation photon position determination image generated by the first process from the light emission image of FIG. 6A. FIG. 6C shows a radiation image generated from a position determination image of a plurality of radiation photons acquired for each frame. Correction according to the correction coefficient may be performed at any stage of FIGS. 6A to 6C, but may be most effective when performed on the light emission image of FIG. 6A. The processing unit 103 corrects each signal value of the light emission image according to the correction coefficient, and generates a correction signal for each signal. By performing the first processing next using this correction signal, the determination of the position of the pixel 120 on which the radiation photons are incident and the correction of the value of the signal output from each photodetector of the pixel 120 are performed. Can be done more accurately. For this reason, the information regarding the energy of the radiation photon which entered into each pixel 120 of the radiation image generated from the position determination image of the radiation photon can be more accurate.
 上述の補正係数画像の取得方法について、図7A~7Cを用いて説明する。所定のエネルギ値を有する放射線が、放射線撮像装置100のセンサパネル106に入射するキャリブレーションモードにおいて、処理部103は画素120ごとに補正係数を決定し、補正係数画像を取得する。キャリブレーションモードでは、所定のエネルギ値を有する放射線がセンサパネルに入射するように、放射線源101とセンサパネル106との間に被写体を配さずに行われる。 The above-described correction coefficient image acquisition method will be described with reference to FIGS. 7A to 7C. In the calibration mode in which radiation having a predetermined energy value is incident on the sensor panel 106 of the radiation imaging apparatus 100, the processing unit 103 determines a correction coefficient for each pixel 120 and acquires a correction coefficient image. The calibration mode is performed without placing a subject between the radiation source 101 and the sensor panel 106 so that radiation having a predetermined energy value enters the sensor panel.
 まず、処理部103は、所定のエネルギ値を有する放射線が入射する間、複数のフレームにおいて発光の画像を取得する。処理部103は、図7Aに示す複数の発光の画像から、第1の処理を行い図7Bに示す放射線光子の位置判定画像を生成する。次いで、処理部103は、放射線光子の位置判定画像から、それぞれの画素120ごとに、放射線光子が入射した画素の光検出器から出力される信号の値を取得する。次いで、処理部103は、放射線光子が入射した画素120からの信号の値と、所定のエネルギ値を有する放射線光子が入射した場合に対応する値とに基づいて補正係数を決定する。具体的には、放射線光子が入射した画素120からの信号の値を、所定のエネルギ値を有する放射線光子が入射した場合に対応する値に変換するように補正係数を決定する。所定のエネルギ値を有する放射線光子が入射した場合に対応する値とは、入射した放射線光子のエネルギ値に対して、それぞれの画素120の光検出器から出力される信号の設計値でありうる。また、センサパネル106に入射する放射線光子のエネルギの値は、例えば放射線源101を制御する照射制御部102から取得されうる。それぞれの画素120に対して処理部103によって決定された補正係数の集合体が、図7Cに示す補正係数画像となる。また、入射する放射線光子のエネルギが所定の値を有するため、取得する第1の信号は、設計値に近い値だけであってもよい。設計値に近い値を取得することによって、放射線光子が入射していないノイズや後述するイレギュラーな信号によって補正係数が決定されることを防ぐことができる。 First, the processing unit 103 acquires luminescence images in a plurality of frames while radiation having a predetermined energy value is incident. The processing unit 103 performs a first process from the plurality of light emission images shown in FIG. 7A and generates a radiation photon position determination image shown in FIG. 7B. Next, the processing unit 103 acquires, for each pixel 120, the value of the signal output from the photodetector of the pixel on which the radiation photon is incident from the position determination image of the radiation photon. Next, the processing unit 103 determines a correction coefficient based on the value of the signal from the pixel 120 on which the radiation photon is incident and the value corresponding to the case where the radiation photon having a predetermined energy value is incident. Specifically, the correction coefficient is determined so that the value of the signal from the pixel 120 on which the radiation photon is incident is converted into a value corresponding to the case where the radiation photon having a predetermined energy value is incident. The value corresponding to the incident radiation photon having a predetermined energy value may be a design value of a signal output from the photodetector of each pixel 120 with respect to the energy value of the incident radiation photon. Further, the value of the energy of the radiation photons incident on the sensor panel 106 can be acquired from, for example, the irradiation control unit 102 that controls the radiation source 101. A collection of correction coefficients determined by the processing unit 103 for each pixel 120 is a correction coefficient image shown in FIG. 7C. Moreover, since the energy of the incident radiation photon has a predetermined value, the first signal to be acquired may be only a value close to the design value. By acquiring a value close to the design value, it is possible to prevent the correction coefficient from being determined by noise that is not incident with radiation photons or irregular signals described later.
 それぞれの画素120の補正係数を決定するために、処理部103は、それぞれの画素120で少なくとも1回、放射線光子が入射した際に光検出器から出力される信号を取得することが必要となる。また、処理部103は、それぞれの画素120について、放射線光子が入射した際に光検出器から出力される信号を複数取得し、複数の信号の統計量に基づいて、画素120のそれぞれの補正係数を決定してもよい。 In order to determine the correction coefficient of each pixel 120, the processing unit 103 needs to acquire a signal output from the photodetector when radiation photons are incident at least once in each pixel 120. . In addition, the processing unit 103 acquires a plurality of signals output from the photodetector when radiation photons are incident on each pixel 120, and corrects each correction coefficient of the pixel 120 based on the statistics of the plurality of signals. May be determined.
 ここで、複数取得した信号の統計量から補正係数を決定する方法について説明する。図8は、図7Bの放射線光子の位置判定画像において、1つの画素120に着目したときのフレームごとの信号の出力を示している。横軸がフレーム、縦軸が画素120の光検出器から出力された信号の値を示している。画素120が、放射線光子から変換された光を検出していない場合、出力される信号の値は例えば0(ノイズレベル)である。処理部103は、放射線光子から変換された光を検出したときの信号(第1の信号)の値を複数取得し、これらの信号の統計量を求める。統計量として、例えば、平均値、中央値、最頻値などを用いてもよい。得られた統計量は、着目した画素120の光検出器の放射線光子に対するエネルギの感度を示し、処理部103は、得られた統計量の値を、所定のエネルギ値に対応する値に変換するための補正係数を決定する。処理部103は、統計量に基づいた補正係数をセンサパネル106に含まれる画素120のそれぞれに対して決定することによって、補正係数画像を取得できる。 Here, a method for determining a correction coefficient from a plurality of acquired signal statistics will be described. FIG. 8 shows a signal output for each frame when attention is paid to one pixel 120 in the radiation photon position determination image of FIG. 7B. The horizontal axis indicates the frame, and the vertical axis indicates the value of the signal output from the photodetector of the pixel 120. When the pixel 120 does not detect light converted from radiation photons, the value of the output signal is, for example, 0 (noise level). The processing unit 103 acquires a plurality of values of signals (first signals) when light converted from radiation photons is detected, and obtains statistics of these signals. As the statistic, for example, an average value, a median value, a mode value, or the like may be used. The obtained statistic indicates the energy sensitivity to the radiation photons of the photodetector of the pixel 120 of interest, and the processing unit 103 converts the obtained statistic value into a value corresponding to a predetermined energy value. To determine a correction factor. The processing unit 103 can acquire a correction coefficient image by determining a correction coefficient based on the statistic for each of the pixels 120 included in the sensor panel 106.
 それぞれの画素120に対して、放射線光子の入射する回数が多いほど、統計量を求めるためのデータ量が増加するので、処理部103は、より正確な補正係数画像を取得できうる。例えば、処理部103は、それぞれの画素120において、100個以上の放射線光子が入射した際に光検出器から出力される信号から統計量を決定してもよい。 Since the amount of data for obtaining the statistic increases as the number of incident radiation photons on each pixel 120 increases, the processing unit 103 can acquire a more accurate correction coefficient image. For example, the processing unit 103 may determine a statistic from a signal output from the photodetector when 100 or more radiation photons are incident on each pixel 120.
 ここで、それぞれの画素120に入射する放射線光子の数は、放射線源101からの放射線の照射量やセンサパネル106で撮像する際のフレームレートを適宜設定することによって調整できる。また、放射線の照射量やフレームレートは、パイルアップを避けるように設定されるとよい。パイルアップとは、複数の放射線光子が、センサパネル106中の同一の画素120の光検出器によって同時に検出され、複数の放射線光子が単一の放射線光子として検出されることである。この場合、画素120の光検出器から出力される信号の値が、1つの放射線光子によって生成される値と異なるイレギュラーな値となり、誤った補正係数を取得してしまう可能性がある。また、放射線画像を生成する際も、画素120から出力される信号の値がイレギュラーな値となり、放射線画像の画質が劣化してしまう可能性がある。パイルアップを避けるために、それぞれの画素120に入射する放射線光子の数が1つのフレームの放射線照射期間で1個以内となるように、フレームレートは設定されうる。例えば、放射線の線量を低くし、フレームレートの高い撮像を行うことによって、パイルアップを抑制できる。例えば、画素120の動作周波数は、10kHzから数MHzの範囲内(例えば100kHz程度)で設定されてもよい。また、例えば放射線源101からの放射線の照射量は、管電圧を100kV程度とし、管電流を10mA程度としたときの値で設定されてもよい。ここで、例えば画素120の動作周波数が100kHzの場合、0.01ミリ秒の期間に複数の放射線光子によって生じた光が同一の画素120に入射すると、複数の放射線光子を単一の放射線光子として検出するパイルアップが生じる。 Here, the number of radiation photons incident on each pixel 120 can be adjusted by appropriately setting the radiation dose from the radiation source 101 and the frame rate at which the sensor panel 106 captures an image. The radiation dose and frame rate may be set so as to avoid pileup. Pile-up means that a plurality of radiation photons are simultaneously detected by the photodetector of the same pixel 120 in the sensor panel 106, and the plurality of radiation photons are detected as a single radiation photon. In this case, the value of the signal output from the photodetector of the pixel 120 becomes an irregular value different from the value generated by one radiation photon, and an incorrect correction coefficient may be acquired. Also, when generating a radiographic image, the value of the signal output from the pixel 120 becomes an irregular value, and the image quality of the radiographic image may deteriorate. In order to avoid pile-up, the frame rate can be set so that the number of radiation photons incident on each pixel 120 is within one during the radiation exposure period of one frame. For example, pile-up can be suppressed by reducing the radiation dose and performing imaging with a high frame rate. For example, the operating frequency of the pixel 120 may be set within a range of 10 kHz to several MHz (for example, about 100 kHz). Further, for example, the radiation dose from the radiation source 101 may be set as a value when the tube voltage is about 100 kV and the tube current is about 10 mA. Here, for example, when the operating frequency of the pixel 120 is 100 kHz, when light generated by a plurality of radiation photons enters the same pixel 120 in a period of 0.01 milliseconds, the plurality of radiation photons are converted into a single radiation photon. A pile up to detect occurs.
 また、統計量は、画素120のそれぞれで取得した放射線光子が入射した際に光検出器から出力されるすべての信号を用いて求めてもよい。また、統計量は、取得した複数の信号のうち一部を信号の値を用いて求めてもよい。例えば、処理部103は、複数取得した信号のうち、値が最大/最小の値を示す信号や、値が上位/下位数個の信号を除いた残りの信号を用いて、統計量を決定してもよい。また例えば、処理部103は、複数取得した信号の値の分布が正規分布を有する場合、値が3σの範囲内ある信号を用いて統計量を決定してもよい。これによって、例えば宇宙線の入射や、入射した放射線光子がシンチレータ105で光に変換されず、光検出器で直接検出されるダイレクトヒットによって生じる、イレギュラーな信号の値が統計量に影響することを抑制できる。また同様に、パイルアップによるイレギュラーな信号の値が統計量に影響することを抑制できる。 Also, the statistics may be obtained using all signals output from the photodetector when radiation photons acquired in each of the pixels 120 are incident. Further, the statistic may be obtained by using a signal value for a part of the plurality of acquired signals. For example, the processing unit 103 determines a statistic by using a signal indicating a maximum / minimum value among a plurality of acquired signals or a remaining signal excluding several signals having higher / lower values. May be. Further, for example, when the distribution of a plurality of acquired signal values has a normal distribution, the processing unit 103 may determine a statistic using a signal having a value within a range of 3σ. As a result, for example, the value of an irregular signal that is generated by a direct hit that is directly detected by a photodetector without incident of cosmic rays or incident radiation photons being converted into light by the scintillator 105 affects the statistic. Can be suppressed. Similarly, an irregular signal value due to pile-up can be prevented from affecting the statistics.
 本実施形態において、キャリブレーションモードと撮像モードとは、同じ放射線源101を用いて放射線の照射が行われる。しかしながら、キャリブレーションモードと撮像モードとは、同じ放射線源を用いずに行われてもよい。例えば、キャリブレーションモードにおいて、単色の放射線を照射し、画素120の光検出器がシンチレータ105で放射線光子から変換された光を検出した信号の出力の値から、放射線光子の有するエネルギに対する感度を取得してもよい。この場合、画素120のそれぞれに入射する放射線のエネルギが一定のため、放射線光子の入射に起因する信号が1つずつ取得されればよく、統計量を求めなくてもよい。それぞれの画素120の光検出器において、放射線光子が入射したことによって出力される信号を1つ検出することによって、処理部103は、正確な補正係数を決定し補正係数画像を取得することができる。したがって、補正係数の決定に際して、画素120ごとに複数の放射線光子が入射した際に光検出器から出力される信号を取得する必要がなくなり、キャリブレーションモードの時間を大幅に低減することができる。このように、補正係数画像を取得するキャリブレーションモードにおいて、例えば放射性物質起源の単色の放射線源を用い、撮像モードでは制動放射によって放射線が生成される放射線源101を用いてもよい。 In the present embodiment, radiation is performed using the same radiation source 101 in the calibration mode and the imaging mode. However, the calibration mode and the imaging mode may be performed without using the same radiation source. For example, in the calibration mode, the sensitivity to the energy of the radiation photons is acquired from the output value of the signal obtained by irradiating the monochromatic radiation and detecting the light converted from the radiation photons by the photo detector of the pixel 120. May be. In this case, since the energy of the radiation incident on each of the pixels 120 is constant, it is only necessary to acquire one signal due to the incidence of the radiation photons, and the statistics need not be obtained. By detecting one signal output by the incidence of radiation photons in the photodetector of each pixel 120, the processing unit 103 can determine an accurate correction coefficient and acquire a correction coefficient image. . Therefore, when determining the correction coefficient, it is not necessary to acquire a signal output from the photodetector when a plurality of radiation photons are incident on each pixel 120, and the calibration mode time can be greatly reduced. Thus, in the calibration mode for acquiring the correction coefficient image, for example, a monochromatic radiation source originating from a radioactive substance may be used, and in the imaging mode, the radiation source 101 that generates radiation by bremsstrahlung may be used.
 また、例えば、異なるエネルギの放射線を照射し、処理部103は、複数の異なるエネルギの放射線光子に対する感度を求め、これらから補正係数画像を取得してもよい。また、補正係数画像を取得する際の放射線光子のエネルギは、被写体を撮像する際に用いるエネルギ以下の範囲に設定してもよい。 Further, for example, the radiation of different energy may be irradiated, and the processing unit 103 may obtain the sensitivity to a plurality of radiation photons of different energy, and obtain a correction coefficient image therefrom. Further, the energy of the radiation photons when acquiring the correction coefficient image may be set in a range equal to or lower than the energy used when imaging the subject.
 放射線源101からセンサパネル106に放射線を照射したとき、センサパネル106の中心部と端部とで入射する放射線の強度、換言すると入射する放射線光子の数が不均一になる場合がある。放射線の強度がセンサパネルの面内でばらついた場合、特許文献1に示されるように画素それぞれに入射した放射線光子の数を用いて感度の補正を行うと、センサパネルの面内で入射する放射線光子の数がばらつくため、補正の精度が低下してしまう可能性がある。しかしながら、本実施形態において、それぞれの画素120から出力される入射した放射線光子のエネルギに応じた信号値から直接、補正係数が決定される。このため、入射する放射線の強度がセンサパネル106の面内でばらついた場合でも、それぞれの画素120の放射線光子が有するエネルギに対する感度に応じた補正係数を決定することが可能となる。この結果、画素120ごとの感度のばらつきによって放射線画像の画質が低下することが抑制されうる。 When the sensor panel 106 is irradiated with radiation from the radiation source 101, the intensity of radiation incident at the center and the end of the sensor panel 106, in other words, the number of incident radiation photons may be non-uniform. When the intensity of the radiation varies within the plane of the sensor panel, as shown in Patent Document 1, if the sensitivity is corrected using the number of radiation photons incident on each pixel, the radiation incident within the plane of the sensor panel. Since the number of photons varies, the accuracy of correction may decrease. However, in the present embodiment, the correction coefficient is determined directly from the signal value corresponding to the energy of the incident radiation photon output from each pixel 120. For this reason, even when the intensity of the incident radiation varies in the plane of the sensor panel 106, it is possible to determine a correction coefficient according to the sensitivity to the energy of the radiation photons of each pixel 120. As a result, it is possible to suppress degradation of the image quality of the radiation image due to variations in sensitivity for each pixel 120.
 図9に、本実施形態の放射線画像の補正のフローを示す。まず、キャリブレーションモードによるキャリブレーション工程おいて、補正係数を決定し画像を取得する。具体的には、放射線源101とセンサパネル106との間に被写体を配さずに取得した発光の画像に対して、処理部103は、第1の処理S1001を行い、放射線光子の位置判定画像を生成する。次いで、処理部103は、放射線光子の位置判定画像を用いて、それぞれの画素120について、放射線光子が入射した際に出力される信号を複数取得し、複数の信号の統計量を取得S1002する。処理部103は、取得された統計量に基づいて、画素120のそれぞれの補正係数を決定S1003する。このキャリブレーション工程によって決定された補正係数(補正係数画像)は、例えば処理部103のメモリ130に保存され、放射線画像を生成する際の補正信号の生成に用いられる。補正係数画像を取得した後、撮像モードによる撮像工程おいて補正係数画像を用いた補正を行う。撮像工程とは、センサパネル106に放射線を照射する放射線源101とセンサパネル106との間に被写体を配した通常の撮像工程と言える。上述の図6Aで説明したように、処理部103は、撮像部104からフレームごとに複数の発光の画像を取得する。この発光の画像に対して補正係数画像を用いて、処理部103は、それぞれの画素120の光検出器から出力される信号を補正し、補正信号の生成S1050を行う。補正信号を生成する工程によって、シンチレータ105の面内の特性ばらつきと画素120のゲインばらつきとが補正されうる。その後、処理部103は、第1の処理S1001を行い、発光の画像の補正信号から複数の放射線光子の位置判定画像を取得し、複数の放射線光子の位置判定画像を合成S1052することによって放射線画像を生成する。放射線画像を生成する工程によって、図6Cに示すような放射線画像が得られる。 FIG. 9 shows a flow of radiographic image correction according to this embodiment. First, in the calibration process in the calibration mode, a correction coefficient is determined and an image is acquired. Specifically, the processing unit 103 performs a first process S1001 on a light emission image acquired without placing a subject between the radiation source 101 and the sensor panel 106, and a radiation photon position determination image. Is generated. Next, the processing unit 103 acquires a plurality of signals output when the radiation photons are incident on each pixel 120 using the position determination image of the radiation photons, and acquires statistics of the plurality of signals in step S1002. The processing unit 103 determines S1003 for each correction coefficient of the pixel 120 based on the acquired statistic. The correction coefficient (correction coefficient image) determined by the calibration process is stored in, for example, the memory 130 of the processing unit 103 and used for generating a correction signal when generating a radiation image. After acquiring the correction coefficient image, correction using the correction coefficient image is performed in the imaging process in the imaging mode. The imaging process can be said to be a normal imaging process in which a subject is placed between the radiation source 101 that irradiates the sensor panel 106 with radiation and the sensor panel 106. As described above with reference to FIG. 6A, the processing unit 103 acquires a plurality of light emission images for each frame from the imaging unit 104. Using the correction coefficient image for the light emission image, the processing unit 103 corrects the signal output from the photodetector of each pixel 120 and performs correction signal generation S1050. By the process of generating the correction signal, the in-plane characteristic variation of the scintillator 105 and the gain variation of the pixel 120 can be corrected. Thereafter, the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images from the emission image correction signal, and combines the plurality of radiation photon position determination images S1052 to obtain a radiographic image. Is generated. A radiation image as shown in FIG. 6C is obtained by the step of generating the radiation image.
 補正係数の決定は、放射線画像を撮像するたびにキャリブレーションモードを動作させて決定してもよい。また例えば、処理部103のメモリ130に決定した補正係数を記憶しておき、処理部103が撮像モードを動作させるときにメモリ130から補正係数を読み出して使用してもよい。放射線画像の撮像ごとに補正係数を決定することによって、放射線画像の撮像ごとに適切な補正を行うことが可能となる。また、メモリ130に補正係数を記憶することによって、放射線画像の撮像ごとにキャリブレーションモードを行う必要がなくなり、撮像に掛かる時間を短縮することができる。 The correction coefficient may be determined by operating the calibration mode every time a radiographic image is taken. Further, for example, the determined correction coefficient may be stored in the memory 130 of the processing unit 103, and the correction coefficient may be read from the memory 130 and used when the processing unit 103 operates the imaging mode. By determining the correction coefficient for each radiographic image capture, appropriate correction can be performed for each radiographic image capture. Further, by storing the correction coefficient in the memory 130, it is not necessary to perform the calibration mode every time a radiographic image is captured, and the time required for imaging can be shortened.
 本実施形態において、撮像画像の補正は、シンチレータ105で放射線光子から変換された光を検出する画素120を用いた間接型の変換素子を用いたセンサパネル106に対して用いる例を示したが、これに限られるものではない。本実施形態の撮像画像の補正は、放射線光子を各画素で直接検出する直接型の変換素子を用いたセンサパネルを用いた撮像装置に適用することも可能である。 In the present embodiment, the correction of the captured image is shown as an example used for the sensor panel 106 using an indirect type conversion element using the pixel 120 that detects light converted from radiation photons by the scintillator 105. It is not limited to this. The correction of the captured image of the present embodiment can also be applied to an imaging apparatus using a sensor panel using a direct conversion element that directly detects radiation photons at each pixel.
 <第2実施形態>
 図10~12を参照して、本発明の第2の実施形態による放射線撮像装置について説明する。第1実施形態において、画素120ごとに入射する放射線光子に対する感度のばらつきを補正するための補正係数を決定し、撮像モードにおいて放射線画像を取得する際に補正係数に従った補正を行うことを説明した。本実施形態では、シンチレータを用いた間接型の変換素子(光検出器)を用いた放射線撮像装置において、放射線画像の画質が低下することを更に抑制するための補正について説明する。放射線撮像装置100及び放射線撮像システム110は、上述の第1実施形態と同様であってもよい。
Second Embodiment
A radiation imaging apparatus according to the second embodiment of the present invention will be described with reference to FIGS. In the first embodiment, it is described that a correction coefficient for correcting variation in sensitivity with respect to radiation photons incident on each pixel 120 is determined, and correction according to the correction coefficient is performed when a radiation image is acquired in the imaging mode. did. In the present embodiment, correction for further suppressing deterioration of the image quality of a radiographic image in a radiation imaging apparatus using an indirect conversion element (photodetector) using a scintillator will be described. The radiation imaging apparatus 100 and the radiation imaging system 110 may be the same as those in the first embodiment described above.
 図10は、センサパネル106に配されたシンチレータ105及びそれぞれの画素120に含まれる光検出器の少なくとも一方によって生じた欠陥画素に対する補正を行い、放射線画像の画質の低下を抑制する放射線画像の補正のフローを示す。処理部103は、まず欠陥画素のセンサパネル106での位置を表す座標情報を取得する。座標情報は、キャリブレーションモードにおいて、処理部103が、欠陥画素を検出することによって取得してもよい。また、事前に検出した欠陥画素の座標情報を処理部103のメモリ130に記憶しておき、処理部103が、メモリ130から座標情報を取得してもよい。次いで、処理部103は、座標情報に従って欠陥画素の信号を欠陥画素に近接する画素120の光検出器から出力された信号に基づいて置換する第2の処理S1004を行う。 FIG. 10 shows correction of a radiographic image that corrects a defective pixel generated by at least one of the scintillator 105 arranged in the sensor panel 106 and the photodetector included in each pixel 120 and suppresses deterioration of the image quality of the radiographic image. The flow of is shown. The processing unit 103 first acquires coordinate information representing the position of the defective pixel on the sensor panel 106. The coordinate information may be acquired when the processing unit 103 detects a defective pixel in the calibration mode. Further, the coordinate information of the defective pixel detected in advance may be stored in the memory 130 of the processing unit 103, and the processing unit 103 may acquire the coordinate information from the memory 130. Next, the processing unit 103 performs a second process S1004 that replaces the signal of the defective pixel based on the signal output from the photodetector of the pixel 120 adjacent to the defective pixel according to the coordinate information.
 欠陥画素とは、例えば画素120を構成する光検出器やスイッチ素子などの電気的な不良や、シンチレータ105の表面のキズなどによって、出力に異常をきたした画素120のことを指す。例えば、所定の閾値を超える信号を出力した画素120を欠陥画素としてもよい。また例えば、近接する画素120に対して出力される信号値が飛び離れた画素120を欠陥画素としてもよい。また例えば、入射する光の強度の変化に対して出力する信号値のリニアリティの低い画素120を欠陥画素としてもよい。また例えば、画素120を構成する回路の断線などによって常に信号を出力しない(常に信号値がノイズレベル)の画素を欠陥画素としてもよい。 The defective pixel refers to a pixel 120 that has an abnormality in output due to, for example, an electrical failure such as a photodetector or a switch element that constitutes the pixel 120 or a scratch on the surface of the scintillator 105. For example, a pixel 120 that outputs a signal exceeding a predetermined threshold may be a defective pixel. Further, for example, a pixel 120 in which signal values output to adjacent pixels 120 are separated may be used as a defective pixel. Further, for example, a pixel 120 having a low linearity of a signal value output with respect to a change in incident light intensity may be used as a defective pixel. Further, for example, a pixel that does not always output a signal (a signal value is always a noise level) due to disconnection of a circuit constituting the pixel 120 may be a defective pixel.
 欠陥画素の検出は、シンチレータ105をセンサパネル106に実装する前に、センサパネル106に光を照射して撮像を行うことによって検出してもよい。また、シンチレータ105をセンサパネル106に実装する前に、センサパネル106に光を照射せずに撮像を行うことによって欠陥画素を検出してもよい。光を照射せずに撮像した画像において、光を検出したことを示す信号を出力した画素を欠陥画素としてもよい。シンチレータ105を実装する前に検出された欠陥画素の座標情報は、処理部103のメモリ130に記憶される。 Defective pixels may be detected by irradiating the sensor panel 106 with light and imaging before mounting the scintillator 105 on the sensor panel 106. In addition, before mounting the scintillator 105 on the sensor panel 106, defective pixels may be detected by performing imaging without irradiating the sensor panel 106 with light. In an image captured without irradiating light, a pixel that outputs a signal indicating that light has been detected may be a defective pixel. The coordinate information of the defective pixel detected before mounting the scintillator 105 is stored in the memory 130 of the processing unit 103.
 また、欠陥画素の検出は、シンチレータ105をセンサパネル106に実装した後に行ってもよい。この場合、キャリブレーションモードにおいて、処理部103は、欠陥画素を検出してもよい。また、検出された欠陥画素の座標情報は、メモリ130に記憶してもよい。例えば、放射線を照射された状態や照射されていない状態で撮像を行い、それぞれの画素120の光検出器から出力された信号を用いて処理部103が欠陥画素を検出してもよい。また例えば、積分型の放射線撮像装置と同様の動作を放射線撮像装置100に行わせることによって、処理部103が欠陥画素を検出してもよい。つまり、放射線撮像装置100に放射線源101から放射線を照射し、複数の放射線光子がそれぞれの画素120に入射することによって発生した電荷の総量から、処理部103が欠陥画素を検出してもよい。シンチレータ105をセンサパネル106に実装した後に放射線を用いて欠陥画素を検出する利点として、シンチレータ105を実装した後に生じた欠陥画素を検出できることである。シンチレータ105の表面には凹凸があり、画素120の形成されたセンサパネル106とシンチレータ105とを貼り合わせる際、欠陥画素が生じる可能性がある。放射線を用いて欠陥画素の検出を行った場合、シンチレータ105を実装する前に光を用いて欠陥画素を検出した場合よりも正確な欠陥画素の検出が可能となりうる。 Further, the defective pixel may be detected after the scintillator 105 is mounted on the sensor panel 106. In this case, in the calibration mode, the processing unit 103 may detect a defective pixel. The coordinate information of the detected defective pixel may be stored in the memory 130. For example, imaging may be performed with or without radiation, and the processing unit 103 may detect a defective pixel using a signal output from the photodetector of each pixel 120. Further, for example, the processing unit 103 may detect a defective pixel by causing the radiation imaging apparatus 100 to perform the same operation as that of the integral radiation imaging apparatus. That is, the processing unit 103 may detect a defective pixel from the total amount of charges generated by irradiating the radiation imaging apparatus 100 with radiation from the radiation source 101 and causing a plurality of radiation photons to enter the respective pixels 120. An advantage of detecting defective pixels using radiation after mounting the scintillator 105 on the sensor panel 106 is that defective pixels generated after mounting the scintillator 105 can be detected. The surface of the scintillator 105 is uneven, and defective pixels may occur when the sensor panel 106 on which the pixels 120 are formed and the scintillator 105 are bonded together. When defective pixels are detected using radiation, defective pixels can be detected more accurately than when defective pixels are detected using light before the scintillator 105 is mounted.
 また、複数の条件で検出された欠陥画素の座標情報を用いて第2の処理S1004を行ってもよい。例えば、シンチレータ105を実装する前に、光を照射して行った撮像で検出された欠陥画素の座標情報と光を照射せずに行った撮像で検出された欠陥画素と座標情報との両方の座標情報とを組み合わせて1つの座標情報としてもよい。また例えば、シンチレータ105を実装する前の座標情報と、シンチレータ105を実装した後の座標情報との両方を用いて第2の処理S1004を行ってもよい。 Further, the second process S1004 may be performed using coordinate information of defective pixels detected under a plurality of conditions. For example, before mounting the scintillator 105, both the coordinate information of the defective pixel detected by the imaging performed by irradiating light and the defective pixel detected by the imaging performed without irradiating the light and the coordinate information. One coordinate information may be combined with the coordinate information. Further, for example, the second process S1004 may be performed using both the coordinate information before mounting the scintillator 105 and the coordinate information after mounting the scintillator 105.
 この座標情報を用いて、処理部103は、欠陥画素の信号を欠陥画素に近接する画素120の光検出器からの信号に基づいて置換する第2の処理S1004を行う。例えば、欠陥画素の信号を、欠陥画素と互いに隣接する画素120の光検出器からの信号値に置き換えてもよいし、欠陥画素と互いに隣接する複数の画素120の光検出器からの信号の平均値に置き換えてもよい。キャリブレーションモードにおいて、処理部103は、発光の画像に対して第2の処理S1004を行うことによって置換された欠陥画素の信号を用いて補正係数を決定S1003する。また、撮像モードにおいて、処理部103は、発光の画像に第2の処理S1004を行うことによって置換された欠陥画素の信号に対して、補正係数に従った補正を行い、補正信号の生成S1050を行う。その後、処理部103は、第1の処理S1001を行い、複数の放射線光子の位置判定画像を取得し、複数の放射線光子の位置判定画像を合成S1052することによって放射線画像を生成する。第1の処理S1001を行う前に、欠陥画素の信号を置換することによって、第1の処理S1001の精度が向上し、最終的に得られる放射線画像の画質の低下が抑制されうる。 Using this coordinate information, the processing unit 103 performs a second process S1004 for replacing the signal of the defective pixel based on the signal from the photodetector of the pixel 120 adjacent to the defective pixel. For example, the signal of the defective pixel may be replaced with the signal value from the photodetector of the pixel 120 adjacent to the defective pixel, or the average of the signals from the photodetectors of the plurality of pixels 120 adjacent to the defective pixel. It may be replaced with a value. In the calibration mode, the processing unit 103 determines a correction coefficient S1003 using the signal of the defective pixel replaced by performing the second process S1004 on the light emission image. In the imaging mode, the processing unit 103 performs correction according to the correction coefficient on the signal of the defective pixel replaced by performing the second processing S1004 on the light emission image, and generates a correction signal S1050. Do. Thereafter, the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images, and combines the plurality of radiation photon position determination images S1052 to generate a radiation image. By replacing the signal of the defective pixel before performing the first process S1001, the accuracy of the first process S1001 can be improved, and the deterioration of the image quality of the finally obtained radiographic image can be suppressed.
 次に、処理部103が、画素120のそれぞれの光検出器から出力される信号を光感度係数に従って補正する第3の処理S1005を行う放射線画像の補正フローを図11に示す。シンチレータ105をセンサパネル106に実装する前に、所定の強度の光をセンサパネル106に照射する。光感度係数とは、このとき、それぞれの画素120の光検出器から出力される信号値を、所定の強度の光が入射した場合に対応する値に変換するための係数である。つまり、光感度係数は、画素120の光検出器に入射した光の強度と光検出器から出力される光信号の値との関係を表す。所定の強度の光が入射した場合に対応する値とは、入射した光の強度に対して、それぞれの画素120の光検出器から出力される信号の設計値でありうる。光感度係数によって、処理部103は、それぞれの画素120の入射光の強度に対して出力される信号のゲインのばらつきを補正する。センサパネル106にシンチレータ105を実装する前に取得した画素120のそれぞれの光感度係数は、例えば、処理部103のメモリ130に記憶しておく。本実施形態において、光感度係数や上述の補正係数、座標情報など、同じメモリ130に保存されるが、それぞれ別のメモリを準備して保存してもよい。また、第1実施形態及び本実施形態において、メモリ130は処理部103内に配されるが、処理部103の外部に配されていてもよい。 Next, FIG. 11 shows a radiographic image correction flow in which the processing unit 103 performs the third process S1005 in which the signal output from each photodetector of the pixel 120 is corrected according to the light sensitivity coefficient. Before mounting the scintillator 105 on the sensor panel 106, the sensor panel 106 is irradiated with light having a predetermined intensity. The photosensitivity coefficient is a coefficient for converting the signal value output from the photodetector of each pixel 120 into a value corresponding to the incident light of a predetermined intensity. That is, the photosensitivity coefficient represents the relationship between the intensity of light incident on the photodetector of the pixel 120 and the value of the optical signal output from the photodetector. The value corresponding to the case where light having a predetermined intensity is incident may be a design value of a signal output from the photodetector of each pixel 120 with respect to the intensity of the incident light. Based on the photosensitivity coefficient, the processing unit 103 corrects the variation in the gain of the output signal with respect to the intensity of the incident light of each pixel 120. The respective photosensitivity coefficients of the pixels 120 acquired before mounting the scintillator 105 on the sensor panel 106 are stored in the memory 130 of the processing unit 103, for example. In this embodiment, the photosensitivity coefficient, the above-described correction coefficient, coordinate information, and the like are stored in the same memory 130, but different memories may be prepared and stored. Further, in the first embodiment and the present embodiment, the memory 130 is arranged in the processing unit 103, but may be arranged outside the processing unit 103.
 キャリブレーションモードにおいて、処理部103は、発光の画像に対して、光感度係数を用いた第3の処理S1005を行い、それぞれの画素120の光検出器からの信号のゲインを補正する。第3の処理S1005の後、更に第1の処理S1001を行った信号を用いて補正係数の決定S1003を行う。また、撮像モードにおいて、処理部103は、発光の画像に第3の処理S1005を行うことによって補正された信号に対して、補正係数に従った補正を行い補正信号を生成S1051する。光感度係数を用いた第3の処理S1005によって、画素120のゲインばらつきが補正されるため、この補正信号の生成S1051は、主にシンチレータ105の面内の特性のばらつきを補正しうる。その後、処理部103は、第1の処理S1001を行い、複数の放射線光子の位置判定画像を取得し、複数の放射線光子の位置判定画像を合成S1052することによって放射線画像を生成する。第1の処理S1001を行う前に、画素120のゲインを補正する第3の処理S1005を行うことによって、第1の処理S1001の精度が向上し、最終的に得られる放射線画像の画質の低下を抑制することができる。 In the calibration mode, the processing unit 103 performs a third process S1005 using a light sensitivity coefficient on the light emission image, and corrects the gain of the signal from the photodetector of each pixel 120. After the third process S1005, correction coefficient determination S1003 is performed using the signal obtained by performing the first process S1001. In the imaging mode, the processing unit 103 performs correction according to the correction coefficient on the signal corrected by performing the third process S1005 on the light emission image, and generates a correction signal S1051. Since the gain variation of the pixel 120 is corrected by the third process S1005 using the photosensitivity coefficient, the generation S1051 of the correction signal can mainly correct the variation in the characteristics of the scintillator 105. Thereafter, the processing unit 103 performs a first process S1001, acquires a plurality of radiation photon position determination images, and combines the plurality of radiation photon position determination images S1052 to generate a radiation image. By performing the third process S1005 for correcting the gain of the pixel 120 before performing the first process S1001, the accuracy of the first process S1001 is improved, and the image quality of the radiation image finally obtained is reduced. Can be suppressed.
 また、図12に示すように、第2の処理S1004と第3の処理S1005との両方を行ってもよい。第2の処理S1004と第3の処理S1005との順番は、どちらを先に行ってもよいが、図12に示すように、第3の処理S1005を先に行う方が、より効果的である。これは、欠陥画素の補正を行う第2の処理S1004は、欠陥画素の信号の置換をするときに、欠陥画素と互いに隣接する画素120の出力を利用するためである。第3の処理S1005によって画素120のゲインの補正を行い、それぞれの画素120の光に対する感度を均一化した方が、より精度の高い第2の処理S1004による補正ができる。 Also, as shown in FIG. 12, both the second process S1004 and the third process S1005 may be performed. The order of the second process S1004 and the third process S1005 may be performed first, but as shown in FIG. 12, it is more effective to perform the third process S1005 first. . This is because the second process S1004 for correcting the defective pixel uses the output of the pixel 120 adjacent to the defective pixel when the signal of the defective pixel is replaced. If the gain of the pixel 120 is corrected by the third process S1005 and the sensitivity of each pixel 120 to light is made uniform, the correction by the second process S1004 can be performed with higher accuracy.
 <その他の実施形態>
 上述のように、補正係数の決定や補正係数を用いた補正は、処理部103のソフトウェア上で全てを行う形態であってもよい。また例えば、ソフトウェアではなく、センサパネル106の外部に設けられた回路で行う形態にしてもよい。この場合、例えば、当該回路はFPGAで構成されるとよい。また、処理部103で行うそれぞれの処理のうち、例えば撮像モードで行われる処理の少なくとも一部をソフトウェアではなく、それぞれの画素120に設けられた回路で行ってもよい。また、撮像モードで行われる処理だけでなく、キャリブレーションモードで行われる処理の少なくとも一部を、画素120に設けられた回路で行ってもよい。画素120において、例えば、発光の画像に対して、補正係数に従って補正信号を生成し、放射線から変換された光が検出された信号を、信号が有する値のレベルごとにカウントする。カウントされた各レベルの放射線光子が入射したと判定された信号の個数に基づいて放射線画像を生成してもよい。また、第1の処理、第2の処理、第3の処理をそれぞれの画素120で行ってもよい。この場合、それぞれの画素120にキャリブレーションモードで決定された補正係数や座標情報、光感度係数などを保存するメモリなどが配されていてもよい。
<Other embodiments>
As described above, the correction coefficient determination and the correction using the correction coefficient may all be performed on the software of the processing unit 103. Further, for example, the configuration may be such that the circuit is provided outside the sensor panel 106 instead of software. In this case, for example, the circuit may be configured with an FPGA. In addition, among the processes performed by the processing unit 103, for example, at least a part of the process performed in the imaging mode may be performed by a circuit provided in each pixel 120 instead of software. In addition to the processing performed in the imaging mode, at least a part of the processing performed in the calibration mode may be performed by a circuit provided in the pixel 120. In the pixel 120, for example, a correction signal is generated according to a correction coefficient for a light emission image, and a signal in which light converted from radiation is detected is counted for each level of the value of the signal. A radiographic image may be generated based on the number of signals determined to have entered the counted radiation photons at each level. Further, the first process, the second process, and the third process may be performed on each pixel 120. In this case, each pixel 120 may be provided with a memory for storing correction coefficients, coordinate information, light sensitivity coefficients, and the like determined in the calibration mode.
 また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 Further, the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus execute the program. It can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年1月27日提出の日本国特許出願特願2016-013831を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-013831 filed on Jan. 27, 2016, the entire contents of which are incorporated herein by reference.

Claims (19)

  1.  放射線を検出するための変換素子をそれぞれ含む複数の画素が配されたセンサパネルと、前記複数の画素のそれぞれに入射した放射線光子の個数に応じた画像を生成する処理部と、を含む放射線撮像装置であって、
     前記処理部は、
     被写体を透過した放射線によって形成される画像を生成する撮像モードにおいて、
      放射線光子が入射した前記変換素子の出力する信号の値を当該放射線光子のエネルギ値に対応する値に変換するための補正係数に従って、前記複数の画素のそれぞれの前記変換素子から出力される信号の値を補正することによって補正信号を生成し、
      前記複数の画素のそれぞれの前記補正信号のうち放射線光子が入射した画素の前記補正信号の個数に基づいて画像を生成することを特徴とする放射線撮像装置。
    Radiation imaging including a sensor panel in which a plurality of pixels each including a conversion element for detecting radiation are arranged, and a processing unit that generates an image according to the number of radiation photons incident on each of the plurality of pixels A device,
    The processor is
    In an imaging mode that generates an image formed by radiation transmitted through the subject,
    In accordance with a correction coefficient for converting the value of the signal output from the conversion element into which the radiation photon has entered into a value corresponding to the energy value of the radiation photon, the signal output from the conversion element of each of the plurality of pixels Generate a correction signal by correcting the value,
    A radiation imaging apparatus, wherein an image is generated based on the number of correction signals of pixels in which radiation photons are incident among the correction signals of the plurality of pixels.
  2.  前記処理部は、前記複数の画素のうち変換素子が所定の値よりも大きい値を有する信号を出力した画素を、放射線光子が入射した画素と判定することを特徴とする請求項1に記載の放射線撮像装置。 The said processing part determines the pixel which output the signal in which the conversion element has a larger value than a predetermined value among these pixels as the pixel which the radiation photon entered. Radiation imaging device.
  3.  前記処理部は、所定のエネルギ値を有する放射線光子が前記放射線撮像装置に入射するキャリブレーションモードにおいて、
     前記変換素子から出力される信号のうち放射線光子が入射した変換素子からの第1の信号の値と、前記所定のエネルギ値に対応する値と、に基づいて前記補正係数を決定することを特徴とする請求項1又は2に記載の放射線撮像装置。
    In the calibration mode in which a radiation photon having a predetermined energy value is incident on the radiation imaging apparatus, the processing unit
    The correction coefficient is determined based on a value of a first signal from a conversion element on which radiation photons are incident among signals output from the conversion element and a value corresponding to the predetermined energy value. The radiation imaging apparatus according to claim 1 or 2.
  4.  前記処理部は、前記キャリブレーションモードにおいて、
      前記複数の画素のそれぞれについて、
       前記第1の信号を複数取得し、
       複数の前記第1の信号の統計量に基づいて補正係数を決定することを特徴とする請求項3に記載の放射線撮像装置。
    The processing unit is in the calibration mode,
    For each of the plurality of pixels,
    Obtaining a plurality of the first signals;
    The radiation imaging apparatus according to claim 3, wherein a correction coefficient is determined based on a plurality of statistics of the first signals.
  5.  前記処理部は、複数の前記第1の信号の中央値、最頻値及び平均値の何れか1つを前記統計量として用いることを特徴とする請求項4に記載の放射線撮像装置。 5. The radiation imaging apparatus according to claim 4, wherein the processing unit uses any one of a median value, a mode value, and an average value of the plurality of first signals as the statistic.
  6.  前記処理部は、前記複数の画素のそれぞれについて、100個以上の前記第1の信号から、前記統計量を決定することを特徴とする請求項4又は5に記載の放射線撮像装置。 6. The radiation imaging apparatus according to claim 4, wherein the processing unit determines the statistic from 100 or more first signals for each of the plurality of pixels.
  7.  前記複数の画素は、放射線を光に変換するシンチレータを共有し、
     前記複数の画素のそれぞれは、前記光を検出するための光検出器を含み、
     前記光検出器は、前記光検出器に入射した前記光の強度に応じた値を有する光信号を出力し、
     前記光信号を前記変換素子から出力される信号として用いることを特徴とする請求項3乃至6の何れか1項に記載の放射線撮像装置。
    The plurality of pixels share a scintillator that converts radiation into light,
    Each of the plurality of pixels includes a photodetector for detecting the light,
    The photodetector outputs an optical signal having a value corresponding to the intensity of the light incident on the photodetector;
    The radiation imaging apparatus according to claim 3, wherein the optical signal is used as a signal output from the conversion element.
  8.  前記処理部は、
      前記複数の画素のうち、同じ期間に前記光が入射した画素の集合体を識別することと、
      前記集合体の分布に基づいて、前記集合体に含まれる画素のうち、何れの画素の前記シンチレータに放射線光子が入射したかを判定することと、
      前記集合体に含まれる画素のそれぞれについて、放射線光子が入射した位置に応じて画素の光検出器から出力される信号の値を補正することと、を含む第1の処理を更に行い、
      前記キャリブレーションモードにおいて、前記集合体に含まれる画素の光検出器から出力される信号に前記第1の処理を行うことによって、前記第1の信号を決定することを特徴とする請求項7に記載の放射線撮像装置。
    The processor is
    Identifying an aggregate of pixels in which the light is incident during the same period among the plurality of pixels;
    Determining which radiation photons are incident on the scintillator of which of the pixels included in the aggregate based on the distribution of the aggregate;
    For each of the pixels included in the aggregate, further correcting a value of a signal output from the photodetector of the pixel according to a position where radiation photons are incident, and further performing a first process including:
    8. The first signal is determined by performing the first process on a signal output from a photodetector of a pixel included in the aggregate in the calibration mode. The radiation imaging apparatus described.
  9.  前記処理部は、前記撮像モードにおいて、前記補正信号に対して、前記第1の処理を行うことを特徴とする請求項8に記載の放射線撮像装置。 The radiation imaging apparatus according to claim 8, wherein the processing unit performs the first processing on the correction signal in the imaging mode.
  10.  前記処理部は、
      前記シンチレータ及び前記光検出器の少なくとも一方によって生じる欠陥画素の座標情報を取得し、
      前記キャリブレーションモードにおいて、
       前記座標情報に従って、前記欠陥画素の信号を前記欠陥画素に近接する画素の光検出器から出力された信号に基づいて置換する第2の処理を行い、
       前記第2の処理を行うことによって置換された前記欠陥画素の信号を用いて、前記補正係数を決定することを特徴とする請求項7乃至9の何れか1項に記載の放射線撮像装置。
    The processor is
    Obtaining coordinate information of defective pixels caused by at least one of the scintillator and the photodetector;
    In the calibration mode,
    In accordance with the coordinate information, a second process of replacing the signal of the defective pixel based on a signal output from a photodetector of a pixel adjacent to the defective pixel is performed.
    The radiation imaging apparatus according to claim 7, wherein the correction coefficient is determined using a signal of the defective pixel replaced by performing the second processing.
  11.  前記処理部は、前記複数の画素のそれぞれにおいて、放射線が照射された状態で出力された信号、放射線が照射されていない状態で出力された信号、及び、放射線の照射による複数の放射線光子の入射によって発生した電荷の総量の少なくとも1つに基づいて前記欠陥画素を検出することによって、前記座標情報を取得することを特徴とする請求項10に記載の放射線撮像装置。 In each of the plurality of pixels, the processing unit outputs a signal output in a state where radiation is irradiated, a signal output in a state where radiation is not irradiated, and incidence of a plurality of radiation photons due to radiation irradiation. The radiation imaging apparatus according to claim 10, wherein the coordinate information is acquired by detecting the defective pixel based on at least one of a total amount of electric charges generated by.
  12.  前記処理部は、
      前記座標情報を記憶する第1のメモリを備え、
      前記第1のメモリに記憶された前記座標情報に従って前記第2の処理を行うことを特徴とする請求項10又は11に記載の放射線撮像装置。
    The processor is
    A first memory for storing the coordinate information;
    The radiation imaging apparatus according to claim 10 or 11, wherein the second processing is performed according to the coordinate information stored in the first memory.
  13.  前記処理部は、前記撮像モードにおいて、前記第2の処理を行うことによって置換された前記欠陥画素の信号に対して、前記補正係数に従った補正を行うことを特徴とする請求項10乃至12の何れか1項に記載の放射線撮像装置。 The said processing part performs correction | amendment according to the said correction coefficient with respect to the signal of the said defective pixel replaced by performing said 2nd process in the said imaging mode. The radiation imaging apparatus according to any one of the above.
  14.  前記処理部は、
      前記複数の画素のうち前記光検出器に所定の強度の光が入射した光検出器からの信号の値を前記所定の強度の光に対応する値に変換するための光感度係数を記憶する第2のメモリを備え、
      前記第2のメモリに記憶された前記光感度係数に従って、前記複数の画素のそれぞれの光検出器から出力される信号の値を補正する第3の処理を行い、
      前記キャリブレーションモードにおいて、放射線光子が入射した画素の光検出器から出力される信号に前記第3の処理を行うことによって、前記第1の信号を決定することを特徴とする請求項7乃至13の何れか1項に記載の放射線撮像装置。
    The processor is
    A photosensitivity coefficient for converting a value of a signal from a photodetector having light of a predetermined intensity incident on the photodetector among the plurality of pixels into a value corresponding to the light of the predetermined intensity is stored. With two memories,
    In accordance with the photosensitivity coefficient stored in the second memory, a third process of correcting the value of the signal output from each photodetector of the plurality of pixels is performed,
    14. The first signal is determined by performing the third process on a signal output from a photodetector of a pixel on which radiation photons are incident in the calibration mode. The radiation imaging apparatus according to any one of the above.
  15.  前記処理部は、前記撮像モードにおいて、前記第3の処理を行うことによって補正された信号に対して、前記補正係数に従った補正を行うことを特徴とする請求項14に記載の放射線撮像装置。 The radiation imaging apparatus according to claim 14, wherein the processing unit performs correction according to the correction coefficient on a signal corrected by performing the third processing in the imaging mode. .
  16.  前記キャリブレーションモードと前記撮像モードとにおいて、前記センサパネルに放射線を照射する放射線源が、同じ放射線源であることを特徴とする請求項3乃至15の何れか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 3 to 15, wherein, in the calibration mode and the imaging mode, radiation sources that irradiate the sensor panel with radiation are the same radiation source.
  17.  前記処理部は、前記撮像モードにおいて、前記複数の画素のそれぞれについて、
      前記補正信号のうち放射線光子が入射した画素の補正信号を、補正信号が有する値に応じて複数のレベルでそれぞれカウントし、
      前記複数のレベルでそれぞれカウントされた当該補正信号の個数に基づいて放射線画像を生成することを特徴とする請求項1乃至16の何れか1項に記載の放射線撮像装置。
    The processing unit, for each of the plurality of pixels in the imaging mode,
    Among the correction signals, the correction signals of the pixels on which the radiation photons are incident are counted at a plurality of levels according to the values of the correction signals, respectively.
    The radiation imaging apparatus according to claim 1, wherein a radiation image is generated based on the number of the correction signals respectively counted at the plurality of levels.
  18.  放射線を検出するための変換素子をそれぞれ含む複数の画素が配されたセンサパネルを含む放射線撮像装置の制御方法であって、
     被写体を透過した放射線によって形成される画像を形成するために、
      放射線光子が入射した前記変換素子の出力する第1の信号の値を当該放射線光子のエネルギ値に対応する値に変換するための補正係数に従って、前記複数の画素のそれぞれの変換素子から出力される信号の値を補正することによって補正信号を生成する工程と、
      前記複数の画素のそれぞれの前記補正信号のうち放射線光子が入射した画素の前記補正信号の個数に基づいて画像を生成する工程と、
    を有することを特徴とする制御方法。
    A method for controlling a radiation imaging apparatus including a sensor panel in which a plurality of pixels each including a conversion element for detecting radiation is arranged,
    In order to form an image formed by radiation transmitted through the subject,
    According to a correction coefficient for converting the value of the first signal output from the conversion element into which the radiation photon is incident into a value corresponding to the energy value of the radiation photon, the value is output from each conversion element of the plurality of pixels. Generating a correction signal by correcting the value of the signal;
    Generating an image based on the number of the correction signals of pixels in which radiation photons are incident among the correction signals of the plurality of pixels;
    A control method characterized by comprising:
  19.  請求項18に記載の制御方法の各工程をコンピュータに実行させることを特徴とするプログラム。 A program that causes a computer to execute each step of the control method according to claim 18.
PCT/JP2016/084985 2016-01-27 2016-11-25 Radiation image capturing device, control method for same, and program WO2017130552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/032,384 US10779777B2 (en) 2016-01-27 2018-07-11 Radiographic imaging apparatus, control method thereof, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013831A JP6643909B2 (en) 2016-01-27 2016-01-27 Radiation imaging apparatus, control method thereof, and program
JP2016-013831 2016-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/032,384 Continuation US10779777B2 (en) 2016-01-27 2018-07-11 Radiographic imaging apparatus, control method thereof, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2017130552A1 true WO2017130552A1 (en) 2017-08-03

Family

ID=59397617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084985 WO2017130552A1 (en) 2016-01-27 2016-11-25 Radiation image capturing device, control method for same, and program

Country Status (3)

Country Link
US (1) US10779777B2 (en)
JP (1) JP6643909B2 (en)
WO (1) WO2017130552A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974948B2 (en) 2017-02-10 2021-12-01 キヤノン株式会社 Radiation imaging device and radiation imaging method
JP6929104B2 (en) 2017-04-05 2021-09-01 キヤノン株式会社 Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP6788547B2 (en) 2017-05-09 2020-11-25 キヤノン株式会社 Radiation imaging device, its control method, control device, and radiation imaging system
WO2019012846A1 (en) 2017-07-10 2019-01-17 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP6934769B2 (en) 2017-07-28 2021-09-15 キヤノン株式会社 Radiation imaging device and radiation imaging method
JP6912965B2 (en) 2017-08-04 2021-08-04 キヤノン株式会社 How to operate a radiation imaging device, a radiation imaging system, and a radiation imaging device
JP7038506B2 (en) 2017-08-25 2022-03-18 キヤノン株式会社 How to operate a radiation image pickup device, a radiation image pickup system, and a radiation image pickup device
JP6882135B2 (en) 2017-10-06 2021-06-02 キヤノン株式会社 Image processing equipment, image processing methods and programs
JP7045834B2 (en) 2017-11-10 2022-04-01 キヤノン株式会社 Radiation imaging system
JP7067912B2 (en) 2017-12-13 2022-05-16 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP7245001B2 (en) 2018-05-29 2023-03-23 キヤノン株式会社 Radiation imaging device and imaging system
JP7093233B2 (en) 2018-06-07 2022-06-29 キヤノン株式会社 Radiography equipment, radiography methods and programs
WO2020003744A1 (en) 2018-06-27 2020-01-02 キヤノン株式会社 Radiographic imaging apparatus, radiographic imaging method, and program
JP6818724B2 (en) 2018-10-01 2021-01-20 キヤノン株式会社 Radiation imaging device, its control method and radiation imaging system
JP7170497B2 (en) 2018-10-22 2022-11-14 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP7271209B2 (en) * 2019-02-06 2023-05-11 キヤノン株式会社 Radiation imaging apparatus, radiation imaging system, and radiation imaging apparatus control method
JP7361516B2 (en) 2019-07-12 2023-10-16 キヤノン株式会社 Radiography device, radiography system, radiography device control method, and program
JP7378245B2 (en) 2019-08-29 2023-11-13 キヤノン株式会社 Radiation detection device, its control method, and radiation imaging system
JP2022164433A (en) 2021-04-16 2022-10-27 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
US11688046B2 (en) * 2021-04-23 2023-06-27 Varjo Technologies Oy Selective image signal processing
CN114469151A (en) * 2021-12-23 2022-05-13 武汉联影生命科学仪器有限公司 Data correction method, apparatus, computer device, storage medium, and program product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304551A (en) * 1995-04-29 1996-11-22 Shimadzu Corp Position ct equipment
JP2005304818A (en) * 2004-04-22 2005-11-04 Shimadzu Corp Radiation imaging device and radiation detection signal processing method
JP2015019157A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Radiation imaging system
JP2015062657A (en) * 2013-08-30 2015-04-09 株式会社東芝 X-ray computer tomography apparatus and photon-counting ct apparatus
JP2015184116A (en) * 2014-03-24 2015-10-22 株式会社東芝 Radiation measurement instrument and input/output calibration program

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194460A (en) 2000-01-07 2001-07-19 Mitsubishi Electric Corp Radiation monitor
JP5792923B2 (en) 2009-04-20 2015-10-14 キヤノン株式会社 Radiation imaging apparatus, radiation imaging system, control method thereof, and program thereof
JP5517484B2 (en) 2009-05-01 2014-06-11 キヤノン株式会社 Imaging apparatus and imaging system, control method thereof, and program thereof
JP2011085479A (en) 2009-10-15 2011-04-28 Tele Systems:Kk Calibration device for photon counting type radiation detector and calibration method thereof
JP5814621B2 (en) 2011-05-24 2015-11-17 キヤノン株式会社 IMAGING DEVICE, ITS CONTROL METHOD, AND IMAGING SYSTEM
JP5950840B2 (en) 2012-03-16 2016-07-13 キヤノン株式会社 Radiation imaging apparatus and imaging system
JP5986526B2 (en) 2012-04-06 2016-09-06 キヤノン株式会社 Radiation imaging apparatus, control method therefor, and radiation imaging system
JP6162937B2 (en) 2012-08-31 2017-07-12 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and control program
JP6041669B2 (en) 2012-12-28 2016-12-14 キヤノン株式会社 Imaging apparatus and imaging system
JP6016673B2 (en) 2013-02-28 2016-10-26 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP2014168205A (en) 2013-02-28 2014-09-11 Canon Inc Radiation imaging apparatus, radiation inspection apparatus, and signal correction method and program
JP5934128B2 (en) 2013-02-28 2016-06-15 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP5986524B2 (en) 2013-02-28 2016-09-06 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP6161346B2 (en) 2013-03-19 2017-07-12 キヤノン株式会社 Imaging system
JP6238577B2 (en) 2013-06-05 2017-11-29 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
US20140361189A1 (en) 2013-06-05 2014-12-11 Canon Kabushiki Kaisha Radiation imaging system
JP6355387B2 (en) 2014-03-31 2018-07-11 キヤノン株式会社 Imaging apparatus and imaging system
US9737271B2 (en) 2014-04-09 2017-08-22 Canon Kabushiki Kaisha Radiation imaging apparatus and control method of the same
JP6362421B2 (en) 2014-05-26 2018-07-25 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and program
JP6494204B2 (en) 2014-07-17 2019-04-03 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP6385179B2 (en) 2014-07-18 2018-09-05 キヤノン株式会社 Radiation imaging apparatus and driving method thereof
JP6391388B2 (en) 2014-09-24 2018-09-19 キヤノン株式会社 Radiation imaging device
JP6525579B2 (en) 2014-12-22 2019-06-05 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP2016178533A (en) 2015-03-20 2016-10-06 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP6573377B2 (en) 2015-07-08 2019-09-11 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and program
JP6573378B2 (en) 2015-07-10 2019-09-11 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and program
JP6871717B2 (en) 2016-11-10 2021-05-12 キヤノン株式会社 Radiation imaging device, radiation imaging system and radiation imaging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304551A (en) * 1995-04-29 1996-11-22 Shimadzu Corp Position ct equipment
JP2005304818A (en) * 2004-04-22 2005-11-04 Shimadzu Corp Radiation imaging device and radiation detection signal processing method
JP2015019157A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Radiation imaging system
JP2015062657A (en) * 2013-08-30 2015-04-09 株式会社東芝 X-ray computer tomography apparatus and photon-counting ct apparatus
JP2015184116A (en) * 2014-03-24 2015-10-22 株式会社東芝 Radiation measurement instrument and input/output calibration program

Also Published As

Publication number Publication date
JP2017133929A (en) 2017-08-03
US20180317868A1 (en) 2018-11-08
US10779777B2 (en) 2020-09-22
JP6643909B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2017130552A1 (en) Radiation image capturing device, control method for same, and program
US10441238B2 (en) Radiation imaging apparatus, control method thereof, and program
US10063784B2 (en) Imaging apparatus, an electronic device, and imaging method to uniformize distribution of incident light, and a photostimulated luminescence detection scanner
US10197684B2 (en) Radiation imaging apparatus, control method thereof, and non-transitory computer-readable storage medium
US10473801B2 (en) Radiation imaging apparatus, radiation imaging system, method of controlling radiation imaging apparatus, and non-transitory computer-readable storage medium
JP6990986B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP5089210B2 (en) Image sensor image processing method
US8710447B2 (en) Control device for radiation imaging apparatus and control method therefor
JP2017192443A (en) Radiographic imaging device, radiographic imaging system and method for controlling radiographic imaging device
US20070210257A1 (en) Radiation image pickup apparatus
US10742911B2 (en) Radiation imaging apparatus, control method for radiation imaging apparatus, and non-transitory computer-readable storage medium
US11243313B2 (en) Radiation image capturing apparatus and radiation image capturing system
JP7361516B2 (en) Radiography device, radiography system, radiography device control method, and program
US11693131B2 (en) Radiation imaging apparatus and radiation imaging system
JP2014028281A (en) Method for reducing 3d ghost artefacts in x-ray detector
US10641908B2 (en) Radiation imaging apparatus, radiation imaging method, and computer readable storage medium
JP2016223952A (en) Radiation imaging apparatus and control method for same
WO2017085905A1 (en) Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
JP7190360B2 (en) Radiation imaging device and radiation imaging system
US20070165617A1 (en) Method for recording correction frames for high energy images
JP2019146039A (en) Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program
EP4258651B1 (en) X-ray detecting system
JP2018102729A (en) Radiation imaging system
US20230341568A1 (en) Radiation detector, radiation imaging system, radiation image processing method, and storage medium
JP2023115684A (en) Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus and image processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888136

Country of ref document: EP

Kind code of ref document: A1