WO2017130272A1 - Wire electric discharge processing machine - Google Patents

Wire electric discharge processing machine Download PDF

Info

Publication number
WO2017130272A1
WO2017130272A1 PCT/JP2016/051994 JP2016051994W WO2017130272A1 WO 2017130272 A1 WO2017130272 A1 WO 2017130272A1 JP 2016051994 W JP2016051994 W JP 2016051994W WO 2017130272 A1 WO2017130272 A1 WO 2017130272A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
voltage
wire
wire electrode
electrode
Prior art date
Application number
PCT/JP2016/051994
Other languages
French (fr)
Japanese (ja)
Inventor
中川 孝幸
智昭 ▲高▼田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680079599.XA priority Critical patent/CN108472755B/en
Priority to JP2016563209A priority patent/JP6076577B1/en
Priority to PCT/JP2016/051994 priority patent/WO2017130272A1/en
Publication of WO2017130272A1 publication Critical patent/WO2017130272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Definitions

  • the wire electrode 1 is stretched between the upper guide 4 and the lower guide 5 so as to face the workpiece W.
  • a machining voltage supplied from the machining power supply 12 is applied between the wire electrode 1 and the workpiece W via the upper guide 4.
  • the wire electrode feed speed determination unit 142 multiplies the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage by the first gain.
  • the wire electrode feed speed determination unit 142 integrates a value obtained by multiplying the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage by the first gain, and further multiplies the second gain.
  • the wire electrode natural vibration frequency is higher than the set value of the frequency spectrum obtained by performing the fast Fourier transform on the time variation of the detection value of the interelectrode voltage. Since the frequency at which the frequency spectrum is maximum except for the frequency is the frequency of vibration of the wire electrode, the influence of the unknown frequency fluctuation can be suppressed without being affected by the known frequency fluctuation.
  • FIG. 21 is a diagram illustrating a configuration in which the function of the control device of the wire electric discharge machine according to the first to seventh embodiments is realized by hardware.
  • the processing circuit 19 incorporates a logic circuit 19 a that realizes an interelectrode voltage command generation unit 141, a wire electrode feed speed determination unit 142, and a motor control unit 143.
  • a storage device 193 is provided for storing the program 19b to be executed as a result. Further, the program 19b can be said to cause the computer to execute the procedures and methods of the electrode voltage command generation unit 141, the wire electrode feed speed determination unit 142, and the motor control unit 143.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Provided is a wire electric discharge processing machine which processes an object to be processed by means of discharge generated by a processing voltage applied between a wire electrode and the object to be processed, and which is provided with: an inter-electrode voltage detection unit that detects an inter-electrode voltage between the wire electrode and the object to be processed; a frequency extraction unit (1421) that extracts a vibrational frequency of the wire electrode on the basis of the detected value of the inter-electrode voltage; and a first gain processing unit (1423) which corrects a first gain to be used for proportional-integral control of a command value of the inter-electrode voltage so that the ratio of the difference between the detected value of the inter-electrode voltage and the command value of the inter-electrode voltage with respect to the feed speed of the wire electrode becomes higher as the vibrational frequency of the wire electrode becomes larger, and becomes lower as the vibrational frequency of the wire electrode becomes lesser.

Description

ワイヤ放電加工機Wire electrical discharge machine
 本発明は、ワイヤ電極と被加工物との間で放電を発生させて被加工物を加工するワイヤ放電加工機に関する。 The present invention relates to a wire electric discharge machine that processes a workpiece by generating an electric discharge between a wire electrode and the workpiece.
 ワイヤ放電加工機は、ワイヤ電極と被加工物との間の極間距離を制御するため、極間距離と相関がある極間電圧を計測し、極間電圧の値が指令値と一致するように、ワイヤ電極と被加工物との相対位置を制御する極間制御系を備えている。ワイヤ電極と被加工物との相対位置の制御は、静止させている被加工物にワイヤ電極近づける方法と、静止させているワイヤ電極に被加工物を近づける方法と、移動方向により両者を使い分ける方法とがある。 The wire electric discharge machine controls the interelectrode distance between the wire electrode and the workpiece, so measure the interelectrode voltage that correlates with the interelectrode distance so that the interelectrode voltage value matches the command value. Further, an inter-electrode control system for controlling the relative position between the wire electrode and the workpiece is provided. The control of the relative position between the wire electrode and the workpiece is performed by using a method in which the wire electrode is brought closer to the stationary workpiece, a method in which the workpiece is brought closer to the stationary wire electrode, and a method in which both are used depending on the moving direction. There is.
 ワイヤ電極と被加工物が接触、すなわち短絡していると、電流が流れるだけで、両者の間に放電は発生しない。また、極間距離が長い場合も放電は発生しない。そのため、ワイヤ放電加工では、放電するために最適な距離を保ち続けることで、放電発生の頻度を向上させることができる。極間距離を保つためには、極間距離が短い場合は素早く極間距離が長くなるように動作させ、極間距離が長い場合は短くなるように動作させることが有効である。 When the wire electrode and the work piece are in contact, that is, short-circuited, only a current flows, and no discharge occurs between them. Also, no discharge occurs when the distance between the electrodes is long. Therefore, in wire electric discharge machining, the frequency of occurrence of electric discharge can be improved by maintaining an optimum distance for electric discharge. In order to maintain the distance between the poles, it is effective to operate so that the distance between the poles is quickly increased when the distance between the poles is short, and to be shortened when the distance between the poles is long.
 被加工物を静止させたままワイヤ電極を移動させる場合、ワイヤガイドの進行に対して、ワイヤ電極の上下方向の中心位置がワイヤガイドよりも遅れる現象が発生する。ワイヤガイドの動きに対してワイヤ電極の高さ方向の中央部が遅れることにより、500Hzから1kHz程度であるワイヤ電極の固有振動とは異なる周波数でワイヤ電極が振動する。以下、ワイヤ電極の上下方向の中央部がワイヤガイドの動きに対して遅れることにより発生する固有振動数とは異なる周波数でのワイヤ電極の振動を、単にワイヤ電極の振動という。ワイヤ電極の振動により、極間電圧に変動が発生するが、上下のワイヤガイドの間隔が広くなれば、ワイヤ電極の上下方向の中央部の遅れがより大きくなるため、機敏な制御が困難になる。 When moving the wire electrode while the workpiece is stationary, a phenomenon occurs in which the center position of the wire electrode in the vertical direction is delayed from the wire guide with respect to the progress of the wire guide. When the central portion of the wire electrode in the height direction is delayed with respect to the movement of the wire guide, the wire electrode vibrates at a frequency different from the natural vibration of the wire electrode that is about 500 Hz to 1 kHz. Hereinafter, the vibration of the wire electrode at a frequency different from the natural frequency generated when the central portion in the vertical direction of the wire electrode is delayed with respect to the movement of the wire guide is simply referred to as vibration of the wire electrode. The electrode voltage fluctuates due to the vibration of the wire electrode. However, if the distance between the upper and lower wire guides is increased, the delay in the central part in the vertical direction of the wire electrode becomes larger, so that agile control becomes difficult. .
 また、ワイヤ放電加工機の極間制御系が極間距離を近づける動作が過剰になるとワイヤ電極と被加工物が接触し、両者の間にアーク放電を発生できなくなる。ワイヤ電極の遅れが小さい場合は、ワイヤ電極を素早く移動させた方が放電発生頻度を高くでき、ワイヤ電極の遅れが大きい場合は、ワイヤ電極の移動を遅くした方が短絡状態と開放状態との繰り返しを防いで放電発生頻度を高くできる。極間制御系は、極間電圧の指令値と極間電圧の検出値との差にゲインを乗算してワイヤ電極送り速度を算出するが、このゲインを変更することによって応答性を調整している。 In addition, if the inter-electrode control system of the wire electric discharge machine is excessively moved to reduce the inter-electrode distance, the wire electrode and the workpiece are brought into contact with each other, and arc discharge cannot be generated between them. When the delay of the wire electrode is small, the frequency of occurrence of discharge can be increased by moving the wire electrode quickly, and when the delay of the wire electrode is large, the movement of the wire electrode is delayed between the short circuit state and the open state. It is possible to prevent repetition and increase the frequency of occurrence of discharge. The inter-electrode control system calculates the wire electrode feed speed by multiplying the difference between the command value of the inter-electrode voltage and the detected value of the inter-electrode voltage, and adjusts the response by changing this gain. Yes.
 加工状態によって最適なゲインが存在するが、従来はユーザの感覚で調整するなど経験が必要であった。 There is an optimum gain depending on the machining state, but in the past, experience such as adjustment by the user's sense was necessary.
 特許文献1には、加工状況の量からゲインを含む加工条件を変更する技術が開示されている。 Patent Document 1 discloses a technique for changing machining conditions including gain from the amount of machining status.
特公平7-41471号公報Japanese Patent Publication No. 7-41471
 しかしながら、ワイヤの動きの振幅、すなわち短絡状態と開放状態とを繰り返す場合にワイヤ電極又は被加工物の動く範囲が同じであっても、ワイヤ電極径及びワイヤ電極材料により、振動状態は異なる。したがって、ワイヤ電極の振動の周波数、すなわちワイヤ電極と被加工物とが短絡状態と開放状態とを繰り返す頻度が高ければ、ワイヤ電極送り速度を早めてもワイヤ電極の振動は大きくなりにくいが、特許文献1に開示される発明は、ワイヤ電極の動きの振幅を考慮するものの、ワイヤ電極の振動の周波数を考慮していなかった。 However, even when the amplitude of the movement of the wire, that is, the range of movement of the wire electrode or workpiece when the short-circuited state and the open state are repeated, the vibration state differs depending on the wire electrode diameter and the wire electrode material. Therefore, if the frequency of vibration of the wire electrode, that is, the frequency at which the wire electrode and the workpiece repeat the short circuit state and the open state is high, even if the wire electrode feed speed is increased, the vibration of the wire electrode is difficult to increase. The invention disclosed in Document 1 considers the amplitude of the movement of the wire electrode, but does not consider the frequency of vibration of the wire electrode.
 本発明は、上記に鑑みてなされたものであって、ワイヤ電極の振動の周波数を考慮してフィードバック制御の内容を変更できるワイヤ放電加工機を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a wire electric discharge machine capable of changing the content of feedback control in consideration of the frequency of vibration of the wire electrode.
 上述した課題を解決し、目的を達成するために、本発明は、ワイヤ電極と被加工物との間に印加する加工電圧による放電で被加工物を加工するワイヤ放電加工機であって、ワイヤ電極と加工物との間の極間電圧を検出する極間電圧検出部と、極間電圧の検出値に基づいてワイヤ電極の振動の周波数を抽出する周波数抽出部を備える。本発明は、極間電圧の検出値と極間電圧の指令値との差とワイヤ電極送り速度との比が、ワイヤ電極の振動の周波数が大きい程大きく、ワイヤ電極の振動の周波数が小さい程小さい値をとるように、極間電圧の指令値の比例積分制御又は比例制御に用いるゲインを補正する補正処理部を備える。 In order to solve the above-mentioned problems and achieve the object, the present invention is a wire electric discharge machine for processing a workpiece by electric discharge by a machining voltage applied between a wire electrode and the workpiece, An inter-electrode voltage detection unit that detects an inter-electrode voltage between the electrode and the workpiece, and a frequency extraction unit that extracts a frequency of vibration of the wire electrode based on a detection value of the inter-electrode voltage. According to the present invention, the ratio between the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage and the wire electrode feed speed is larger as the frequency of vibration of the wire electrode is larger, and the frequency of vibration of the wire electrode is smaller. A correction processing unit is provided for correcting the gain used for proportional-integral control or proportional control of the command value of the interelectrode voltage so as to take a small value.
 本発明に係るワイヤ放電加工機は、ワイヤ電極の振動の周波数を考慮してフィードバック制御の内容を変更できるという効果を奏する。 The wire electric discharge machine according to the present invention has an effect that the content of feedback control can be changed in consideration of the vibration frequency of the wire electrode.
本発明の実施の形態1に係るワイヤ放電加工機の構成を示す図The figure which shows the structure of the wire electric discharge machine which concerns on Embodiment 1 of this invention. 実施の形態1に係るワイヤ放電加工機の制御装置の構成を示す図The figure which shows the structure of the control apparatus of the wire electric discharge machine which concerns on Embodiment 1. FIG. 実施の形態1に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図The figure which shows the structure of the wire electrode feed rate determination part of the wire electric discharge machine which concerns on Embodiment 1. FIG. 実施の形態1に係るワイヤ放電加工機の周波数抽出部の構成を示す図The figure which shows the structure of the frequency extraction part of the wire electric discharge machine which concerns on Embodiment 1. FIG. 実施の形態1に係るワイヤ放電加工機の第1のゲイン処理部のゲイン変更機能を模式的に示す図The figure which shows typically the gain change function of the 1st gain process part of the wire electric discharge machine which concerns on Embodiment 1. FIG. 本発明の実施の形態2に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図The figure which shows the structure of the wire electrode feed rate determination part of the wire electric discharge machine which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るワイヤ放電加工機の周波数抽出部の構成を示す図The figure which shows the structure of the frequency extraction part of the wire electric discharge machine which concerns on Embodiment 3 of this invention. 実施の形態3に係るワイヤ放電加工機の周波数抽出部の周波数抽出機能を模式的に示す図The figure which shows typically the frequency extraction function of the frequency extraction part of the wire electric discharge machine which concerns on Embodiment 3. FIG. 本発明の実施の形態4に係るワイヤ放電加工機の制御装置の構成を示す図The figure which shows the structure of the control apparatus of the wire electric discharge machine which concerns on Embodiment 4 of this invention. 実施の形態4に係るワイヤ放電加工機の板厚推定部の板厚推定機能を模式的に示す図The figure which shows typically the board thickness estimation function of the board thickness estimation part of the wire electric discharge machine which concerns on Embodiment 4. FIG. 実施の形態4に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図The figure which shows the structure of the wire electrode feed rate determination part of the wire electric discharge machine which concerns on Embodiment 4. FIG. 実施の形態4に係るワイヤ放電加工機のワイヤ電極送り速度決定部の第1のゲインの変更機能を模式的に示す図The figure which shows typically the change function of the 1st gain of the wire electrode feed rate determination part of the wire electric discharge machine which concerns on Embodiment 4. FIG. 本発明の実施の形態5に係るワイヤ放電加工機の制御装置の構成を示す図The figure which shows the structure of the control apparatus of the wire electric discharge machine which concerns on Embodiment 5 of this invention. 実施の形態5に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図The figure which shows the structure of the wire electrode feed rate determination part of the wire electric discharge machine which concerns on Embodiment 5. FIG. 実施の形態5に係るワイヤ放電加工機の第1のゲイン処理部の上限値及び下限値の設定機能を模式的に示す図The figure which shows typically the setting function of the upper limit and lower limit of the 1st gain process part of the wire electric discharge machine which concerns on Embodiment 5. FIG. 実施の形態5に係るワイヤ放電加工機の第1のゲイン処理部のゲイン変更機能を模式的に示す図The figure which shows typically the gain change function of the 1st gain process part of the wire electric discharge machine which concerns on Embodiment 5. FIG. 本発明の実施の形態6に係るワイヤ放電加工の周波数抽出部の構成を示す図The figure which shows the structure of the frequency extraction part of the wire electrical discharge machining which concerns on Embodiment 6 of this invention. 実施の形態6に係るワイヤ放電加工機のピーク周波数抽出部の周波数抽出機能を模式的に示す図The figure which shows typically the frequency extraction function of the peak frequency extraction part of the wire electric discharge machine which concerns on Embodiment 6. FIG. 本発明の実施の形態7に係るワイヤ放電加工機の周波数抽出部の構成を示す図The figure which shows the structure of the frequency extraction part of the wire electric discharge machine which concerns on Embodiment 7 of this invention. 実施の形態7に係るワイヤ放電加工機のピーク周波数抽出部の周波数抽出機能を模式的に示す図The figure which shows typically the frequency extraction function of the peak frequency extraction part of the wire electric discharge machine which concerns on Embodiment 7. FIG. 実施の形態1に係るワイヤ放電加工機の制御装置の機能をハードウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control apparatus of the wire electric discharge machine which concerns on Embodiment 1 with hardware. 実施の形態1に係るワイヤ放電加工機の制御装置の機能をソフトウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control apparatus of the wire electric discharge machine which concerns on Embodiment 1 with software.
 以下に、本発明の実施の形態に係るワイヤ放電加工機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a wire electric discharge machine according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1に係るワイヤ放電加工機の構成を示す図である。ワイヤ放電加工機は、ワイヤ電極1を供給するワイヤボビン2、ワイヤ電極1を加工領域に送るワイヤ電極送り機構3、被加工物Wの上方でワイヤ電極1をガイドする上ガイド4、被加工物Wの下方でワイヤ電極1をガイドする下ガイド5、放電加工後のワイヤ電極1を回収箱7へ送るワイヤ電極回収機構6、被加工物Wが設置される定盤8、上ガイド4を上下方向に移動させる上下送り機構9、上ガイド4及び下ガイド5を前後方向に移動させる前後送り機構10、上ガイド4及び下ガイド5を左右方向に移動させる左右送り機構11、ワイヤ電極1と被加工物Wとの間に電圧を印加する加工電源12、被加工物Wとワイヤ電極1との間の電圧である極間電圧を検出する極間電圧検出部13並びに加工プログラムを実行してワイヤ電極1と被加工物Wとの相対移動及びワイヤ電極1と被加工物Wとの間の放電を制御する制御装置14を有する。加工電源12は、上ガイド4と定盤8とに接続されており、上ガイド4及び定盤8を通じてワイヤ電極1と被加工物Wとの間に電圧が印加される。極間電圧検出部13は、下ガイド5を介して極間電圧を検出する。なお、極間電圧は、極間距離と相関を有する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a wire electric discharge machine according to Embodiment 1 of the present invention. The wire electric discharge machine includes a wire bobbin 2 for supplying a wire electrode 1, a wire electrode feeding mechanism 3 for feeding the wire electrode 1 to a machining area, an upper guide 4 for guiding the wire electrode 1 above the workpiece W, and a workpiece W A lower guide 5 that guides the wire electrode 1 below, a wire electrode collection mechanism 6 that sends the wire electrode 1 after electric discharge machining to the collection box 7, a surface plate 8 on which the workpiece W is installed, and an upper guide 4 in the vertical direction A vertical feed mechanism 9 for moving the upper guide 4 and the lower guide 5 in the front-rear direction, a left-right feed mechanism 11 for moving the upper guide 4 and the lower guide 5 in the left-right direction, the wire electrode 1 and the workpiece. A machining power source 12 for applying a voltage between the workpiece W, an inter-electrode voltage detector 13 for detecting an inter-electrode voltage that is a voltage between the workpiece W and the wire electrode 1, and a machining program are executed to execute the machining program. 1 and The relative movement and the wire electrode 1 and the workpiece W has a controller 14 for controlling the discharge between the workpiece W. The machining power source 12 is connected to the upper guide 4 and the surface plate 8, and a voltage is applied between the wire electrode 1 and the workpiece W through the upper guide 4 and the surface plate 8. The interelectrode voltage detection unit 13 detects the interelectrode voltage via the lower guide 5. The interelectrode voltage has a correlation with the interelectrode distance.
 図2は、実施の形態1に係るワイヤ放電加工機の制御装置の構成を示す図である。制御装置14は、数値制御プログラムを処理して極間電圧指令を出力する極間電圧指令生成部141、極間電圧指令と極間電圧の検出値とに基づくフィードバック制御を行ってワイヤ電極送り速度を決定するワイヤ電極送り速度決定部142並びに前後送り機構10及び左右送り機構11のモータに速度指令を出力してワイヤ電極1を被加工物Wに対して相対的に移動させるモータ制御部143を有する。 FIG. 2 is a diagram showing the configuration of the control device for the wire electric discharge machine according to the first embodiment. The control device 14 processes the numerical control program and outputs an inter-electrode voltage command 141. The inter-electrode voltage command generating unit 141 performs feedback control based on the inter-electrode voltage command and the detected inter-electrode voltage value to perform the wire electrode feed speed. A wire electrode feed speed determining unit 142 for determining the speed and a motor control unit 143 for outputting a speed command to the motors of the forward / backward feed mechanism 10 and the left / right feed mechanism 11 to move the wire electrode 1 relative to the workpiece W. Have.
 図3は、実施の形態1に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図である。ワイヤ電極送り速度決定部142は、極間電圧の検出値に基づいてワイヤ電極1の振動の周波数を抽出する周波数抽出部1421、極間電圧の検出値から極間電圧の指令値を減算した結果を出力する減算部1422、極間電圧の変動の周波数に基づいて第1のゲインの値を変更した上で減算部1422の出力に乗算する第1のゲイン処理部1423、第1のゲイン処理部1423の出力に積分処理を行う積分処理部1424、積分処理部1424の出力に第2のゲインを乗算する第2のゲイン処理部1425、及び第1のゲイン処理部1423の出力と第2のゲイン処理部1425の出力とを加算する加算部1426を有する。加算部1426の出力は、モータ制御部143へ出力するワイヤ電極送り速度指令となる。なお、図3中の周波数抽出部1421から出発して第1のゲイン処理部1423を突き抜ける矢印は、第1のゲイン処理部1423が、周波数抽出部1421からの出力に基づいて処理を変化させることを示している。 FIG. 3 is a diagram illustrating a configuration of a wire electrode feed rate determination unit of the wire electric discharge machine according to the first embodiment. The wire electrode feed rate determination unit 142 is a frequency extraction unit 1421 that extracts the frequency of vibration of the wire electrode 1 based on the detection value of the interelectrode voltage, and the result of subtracting the command value of the interelectrode voltage from the detection value of the interelectrode voltage , A first gain processing unit 1423 that multiplies the output of the subtraction unit 1422 after changing the value of the first gain based on the frequency of fluctuation of the inter-electrode voltage, and a first gain processing unit The integration processing unit 1424 that performs integration processing on the output of 1423, the second gain processing unit 1425 that multiplies the output of the integration processing unit 1424 by the second gain, and the output and second gain of the first gain processing unit 1423 An adder 1426 for adding the output of the processing unit 1425 is included. The output of the adding unit 1426 is a wire electrode feed speed command output to the motor control unit 143. Note that the arrow that starts from the frequency extraction unit 1421 and penetrates through the first gain processing unit 1423 in FIG. 3 indicates that the first gain processing unit 1423 changes the processing based on the output from the frequency extraction unit 1421. Is shown.
 実施の形態1において、補正処理部である第1のゲイン処理部1423は、極間電圧の検出値と極間電圧の指令値との差とワイヤ電極送り速度との比が、ワイヤ電極1の振動の周波数が大きい程大きく、ワイヤ電極1の振動の周波数が小さい程小さい値をとるように第1のゲインを補正する。 In the first embodiment, the first gain processing unit 1423 which is a correction processing unit is configured so that the ratio of the difference between the detected value of the interelectrode voltage and the command value of the interelectrode voltage and the wire electrode feed speed is The first gain is corrected so that the larger the vibration frequency is, the smaller the vibration frequency of the wire electrode 1 is.
 図4は、実施の形態1に係るワイヤ放電加工機の周波数抽出部の構成を示す図である。周波数抽出部1421は、極間電圧の検出値に高速フーリエ変換を行う高速フーリエ変換部211と、高速フーリエ変換部211が出力する周波数スペクトルにおけるピーク周波数を抽出するピーク周波数抽出部212とを有する。周波数抽出部1421は、極間電圧の検出値の時間変動信号に対して高速フーリエ変換を行って得られた周波数スペクトルから周波数スペクトルが最大となる周波数を抽出し、ワイヤ電極1の振動の周波数とする。したがって、制御装置14は、ワイヤ電極1の振動の中で周波数スペクトルが最大の振動に基づいてフィードバック制御を行うことができる。通常、極間電圧の検出値の時間変動信号に対して高速フーリエ変換を行って得られた周波数スペクトルが最大となる周波数は、ワイヤ電極1の振動の周波数である。 FIG. 4 is a diagram illustrating a configuration of a frequency extraction unit of the wire electric discharge machine according to the first embodiment. The frequency extraction unit 1421 includes a fast Fourier transform unit 211 that performs a fast Fourier transform on the detected value of the interelectrode voltage, and a peak frequency extraction unit 212 that extracts a peak frequency in the frequency spectrum output by the fast Fourier transform unit 211. The frequency extraction unit 1421 extracts the frequency at which the frequency spectrum becomes maximum from the frequency spectrum obtained by performing the fast Fourier transform on the time-varying signal of the detection value of the interelectrode voltage, and determines the frequency of the vibration of the wire electrode 1. To do. Therefore, the control device 14 can perform feedback control based on the vibration having the maximum frequency spectrum among the vibrations of the wire electrode 1. Usually, the frequency at which the frequency spectrum obtained by performing fast Fourier transform on the time-varying signal of the detected value of the interelectrode voltage is the frequency of the vibration of the wire electrode 1.
 実施の形態1に係るワイヤ放電加工機の第1のゲイン処理部のゲイン変更機能について説明する。図5は、実施の形態1に係るワイヤ放電加工機の第1のゲイン処理部のゲイン変更機能を模式的に示す図である。第1のゲイン処理部1423は、周波数抽出部1421が抽出した周波数が大きいほど入力から出力への倍率であるゲインの値が大きくなり、周波数抽出部1421が抽出した周波数が小さいほどゲインの値が小さくなる関数F1を用いて第1のゲインを算出する。 A gain changing function of the first gain processing unit of the wire electric discharge machine according to the first embodiment will be described. FIG. 5 is a diagram schematically illustrating a gain changing function of the first gain processing unit of the wire electric discharge machine according to the first embodiment. In the first gain processing unit 1423, the gain value, which is the magnification from input to output, increases as the frequency extracted by the frequency extraction unit 1421 increases, and the gain value decreases as the frequency extracted by the frequency extraction unit 1421 decreases. The first gain is calculated using the function F1 that decreases.
 実施の形態1に係るワイヤ放電加工機の動作について説明する。ワイヤ電極1を上ガイド4と下ガイド5の間で張架し、被加工物Wに対向させる。加工電源12から供給する加工電圧を、ワイヤ電極1と被加工物Wとの間に上ガイド4を介して印加する。ワイヤ電極送り速度決定部142は、極間電圧の検出値と極間電圧の指令値との差に第1のゲインを乗算する。その上で、ワイヤ電極送り速度決定部142は、極間電圧の検出値と極間電圧の指令値との差に第1のゲインを乗算した値を積分し更に第2のゲインを乗算した値と、極間電圧の検出値と極間電圧の指令値との差に第1のゲインを乗算した値の和をワイヤ電極送り速度とする。この際には、上記のように、ワイヤ電極送り速度決定部142内の第1のゲイン処理部1423は、極間電圧の変動の周波数に基づいて第1のゲインを変更する。 The operation of the wire electric discharge machine according to Embodiment 1 will be described. The wire electrode 1 is stretched between the upper guide 4 and the lower guide 5 so as to face the workpiece W. A machining voltage supplied from the machining power supply 12 is applied between the wire electrode 1 and the workpiece W via the upper guide 4. The wire electrode feed speed determination unit 142 multiplies the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage by the first gain. In addition, the wire electrode feed speed determination unit 142 integrates a value obtained by multiplying the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage by the first gain, and further multiplies the second gain. And the sum of values obtained by multiplying the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage by the first gain is defined as the wire electrode feed speed. At this time, as described above, the first gain processing unit 1423 in the wire electrode feed speed determination unit 142 changes the first gain based on the frequency of the change in the interelectrode voltage.
 ワイヤ電極送り速度=第1のゲイン×{(極間電圧の検出値-極間電圧の指令値)+第2のゲイン×積分(極間電圧の検出値―極間電圧の指令値)}とする制御は、一般的に、比例積分制御と呼ばれるものである。実施の形態1に係るワイヤ放電加工機は、フィードバック制御のループは、比例積分制御と同様である。すなわち、実施の形態1に係るワイヤ放電加工機の第1のゲインは、比例積分制御のゲインのうちの比例ゲインであり、第2のゲインは、比例積分制御のゲインのうちの積分ゲインである。 Wire electrode feed rate = first gain × {(detection value of interelectrode voltage−command value of interelectrode voltage) + second gain × integration (detection value of interelectrode voltage−command value of interelectrode voltage)} The control to be performed is generally called proportional-integral control. In the wire electric discharge machine according to the first embodiment, the feedback control loop is the same as that of proportional-integral control. That is, the first gain of the wire electric discharge machine according to the first embodiment is a proportional gain of the proportional integral control gain, and the second gain is an integral gain of the proportional integral control gain. .
 実施の形態1に係るワイヤ放電加工機では、ワイヤ電極送り速度決定部142は、比例積分制御によりワイヤ電極送り速度を決定するが、極間電圧の変動の周波数に基づいて第1のゲインの値を変更する。このため、実施の形態1に係るワイヤ放電加工機においては、ワイヤ電極送り速度も極間電圧の変動の周波数に基づいて変更される。すなわち、極間電圧の変動に対するワイヤ電極送り速度の変化の応答性は、極間電圧の振動周波数の大きさに基づいて変更される。よって、ワイヤ電極1と被加工物Wとの距離は放電が発生する範囲内に保たれやすくなり、放電発生頻度を高め、加工速度を向上させることができる。 In the wire electric discharge machine according to the first embodiment, the wire electrode feed rate determination unit 142 determines the wire electrode feed rate by proportional-integral control, but the first gain value is based on the frequency of the interelectrode voltage fluctuation. To change. For this reason, in the wire electric discharge machine according to the first embodiment, the wire electrode feed speed is also changed based on the frequency of fluctuation of the interelectrode voltage. That is, the responsiveness of the change in the wire electrode feed rate with respect to the change in the interelectrode voltage is changed based on the magnitude of the oscillation frequency of the interelectrode voltage. Therefore, the distance between the wire electrode 1 and the workpiece W can be easily maintained within a range where electric discharge occurs, and the frequency of electric discharge generation can be increased and the processing speed can be improved.
 実施の形態1に係るワイヤ放電加工機は、ワイヤ電極1を支える上ガイド4と下ガイド5の距離が加工条件により変動しても、距離に合わせて制御ゲインを調整することで、状況に応じて最も放電発生周波数が高い状態を維持できる。 The wire electric discharge machine according to the first embodiment adjusts the control gain according to the distance according to the situation even if the distance between the upper guide 4 and the lower guide 5 supporting the wire electrode 1 varies depending on the processing conditions. In this way, it is possible to maintain the highest discharge generation frequency.
 上記の説明では、上ガイド4を介して加工電圧を印加したが、下ガイド5を介して印加したり、上ガイド4及び下ガイド5の両方を介して印加しても同様の効果が得られる。また、下ガイド5を介して極間電圧を測定したが、上ガイド4を介して測定しても、上ガイド4及び下ガイド5の両方を介して測定しても同様の効果が得られる。 In the above description, the machining voltage is applied via the upper guide 4, but the same effect can be obtained by applying the machining voltage via the lower guide 5 or both via the upper guide 4 and the lower guide 5. . Moreover, although the interelectrode voltage was measured through the lower guide 5, the same effect can be obtained by measuring through the upper guide 4 or through both the upper guide 4 and the lower guide 5.
 また、上記の説明では、補正処理部である第1のゲイン処理部1423が比例積分制御の第1のゲインを変更したが、制御系の遅れ要素となる積分項のゲインである積分ゲイン、すなわち第2のゲインを変更する補正処理部を設けても同様の効果が得られる。また、ワイヤ電極送り速度=(極間電圧の検出値-極間電圧指令)×ゲインとする比例制御のゲインを変更する補正処理部を設けても同様の効果が得られる。 In the above description, the first gain processing unit 1423 that is the correction processing unit has changed the first gain of the proportional integral control, but the integral gain that is the gain of the integral term that becomes a delay element of the control system, that is, A similar effect can be obtained by providing a correction processing unit that changes the second gain. Further, the same effect can be obtained by providing a correction processing unit for changing the gain of proportional control such that the wire electrode feed rate = (detection value of the interelectrode voltage−interelectrode voltage command) × gain.
 さらに、上記の説明では、ディジタルによる離散時間の処理を述べたが、アナログ回路により連続時間で積分する要素を設けても同様の効果が得られる。 Further, in the above description, the discrete time processing by digital was described, but the same effect can be obtained even if an element for integrating in continuous time is provided by an analog circuit.
 実施の形態1に係るワイヤ放電加工機は、極間電圧の振動周波数の大きさに基づいて極間電圧の変動に対するワイヤ電極送り速度の変化の応答性を変更するため、換言すると、極間電圧の変動の周波数に基づいて第1のゲインの値を変更してフィードバック制御を行えるため、放電発生頻度を高め、加工速度を向上させることが可能である。 The wire electric discharge machine according to the first embodiment changes the responsiveness of the change in the wire electrode feed rate with respect to the fluctuation of the interelectrode voltage based on the magnitude of the vibration frequency of the interelectrode voltage. Since the feedback control can be performed by changing the value of the first gain based on the frequency of the fluctuation, it is possible to increase the discharge occurrence frequency and improve the machining speed.
実施の形態2.
 本発明の実施の形態2に係るワイヤ放電加工機は、実施の形態1に係るワイヤ放電加工機と同様であるが、ワイヤ電極送り速度決定部142の構成が相違している。図6は、本発明の実施の形態2に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図である。ワイヤ電極送り速度決定部142は、極間電圧の検出値に基づいてワイヤ電極1の振動の周波数を抽出する周波数抽出部2421、後述する第3のゲイン処理部2424の出力と極間電圧の指令値とを加算する第1の加算部2422、極間電圧の検出値から第1の加算部2422の出力を減算した結果を出力する減算部2423、ワイヤ電極1の振動の周波数に基づいて第3のゲインの値を変更した上で減算部2423の出力に乗算する第3のゲイン処理部2424、減算部2423の出力に第1のゲインを乗算する第1のゲイン処理部2425、第1のゲイン処理部2425の出力に積分処理を行う積分処理部2426、積分処理部2426の出力に第2のゲインを乗算する第2のゲイン処理部2427、及び第1のゲイン処理部2425の出力と第2のゲイン処理部2427の出力とを加算する第2の加算部2428を有する。第2の加算部2428の出力は、モータ制御部143へ出力するワイヤ電極送り速度指令となる。図6中の周波数抽出部2421から出発して第3のゲイン処理部2424を突き抜ける矢印は、第3のゲイン処理部2424が、周波数抽出部2421からの出力に基づいて処理を変化させることを示している。
Embodiment 2. FIG.
The wire electric discharge machine according to the second embodiment of the present invention is the same as the wire electric discharge machine according to the first embodiment, but the configuration of the wire electrode feed rate determination unit 142 is different. FIG. 6 is a diagram showing a configuration of a wire electrode feed rate determination unit of the wire electric discharge machine according to Embodiment 2 of the present invention. The wire electrode feed speed determination unit 142 extracts a frequency of the vibration of the wire electrode 1 based on the detected value of the interelectrode voltage, an output of a third gain processing unit 2424 described later, and an interpolar voltage command A first addition unit 2422 for adding the value, a subtraction unit 2423 for outputting a result obtained by subtracting the output of the first addition unit 2422 from the detected value of the interelectrode voltage, and a third based on the vibration frequency of the wire electrode 1 A third gain processing unit 2424 that multiplies the output of the subtraction unit 2423 after changing the value of the first gain, a first gain processing unit 2425 that multiplies the output of the subtraction unit 2423 by the first gain, and a first gain. An integration processing unit 2426 that performs integration processing on the output of the processing unit 2425, a second gain processing unit 2427 that multiplies the output of the integration processing unit 2426 by a second gain, and a first gain processing unit 2425. A second adding unit 2428 for adding the outputs of the second gain processing unit 2427. The output of the second addition unit 2428 is a wire electrode feed speed command that is output to the motor control unit 143. The arrow that starts from the frequency extraction unit 2421 and penetrates through the third gain processing unit 2424 in FIG. 6 indicates that the third gain processing unit 2424 changes the processing based on the output from the frequency extraction unit 2421. ing.
 実施の形態2において、補正処理部である第3のゲイン処理部2424は、極間電圧の検出値と極間電圧の指令値との差とワイヤ電極送り速度との比が、ワイヤ電極1の振動の周波数が大きい程大きく、ワイヤ電極1の振動の周波数が小さい程小さい値をとるように極間電圧の指令値を補正する。 In the second embodiment, the third gain processing unit 2424, which is a correction processing unit, determines that the ratio of the difference between the detection value of the interelectrode voltage and the command value of the interelectrode voltage and the wire electrode feed speed is The command value of the interelectrode voltage is corrected so that the larger the vibration frequency is, the smaller the vibration frequency of the wire electrode 1 is.
 第3のゲイン処理部2424が極間電圧の変動の周波数に基づいて第3のゲインの値を変更する方法は、実施の形態1の第1のゲイン処理部1423と同様である。 The method by which the third gain processing unit 2424 changes the value of the third gain based on the frequency of the interelectrode voltage variation is the same as that of the first gain processing unit 1423 of the first embodiment.
 ワイヤ電極送り速度決定部142は、極間電圧の指令値と極間電圧の検出値との差に第3のゲインを乗算して極間電圧の指令値に加算する補正処理を行う。したがって、補正処理後の極間電圧の指令値=補正前の極間電圧の指令値+第3のゲイン×(極間電圧の検出値-補正後の極間電圧の指令値)という関係が成り立つ。したがって、極間電圧の検出値と極間電圧の指令値との差とワイヤ電極送り速度との比が、ワイヤ電極1の振動の周波数が大きい程大きく、ワイヤ電極1の振動の周波数が小さい程小さい値をとるように、極間電圧の指令値は補正される。 The wire electrode feed speed determination unit 142 performs a correction process of multiplying the difference between the command value of the interelectrode voltage and the detected value of the interelectrode voltage by the third gain and adding the result to the command value of the interelectrode voltage. Therefore, the relationship of the command value of the interpolar voltage after the correction process = the command value of the interpolar voltage before the correction + the third gain × (the detected value of the interpolar voltage−the command value of the interpolar voltage after the correction) is established. . Therefore, the ratio between the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage and the wire electrode feed speed is larger as the vibration frequency of the wire electrode 1 is larger and the vibration frequency of the wire electrode 1 is smaller. The command value of the interelectrode voltage is corrected so as to take a small value.
 実施の形態2に係るワイヤ電極送り速度決定部142での補正は、一般的な比例積分制御における第1のゲインを{1/(1+第3のゲイン)}倍することと等価である。したがって、極間電圧の検出値に基づいてワイヤ電極送り速度が変化するため、実施の形態1と同様の効果が得られる。すなわち、極間電圧の変動の周波数に基づいて第3のゲインの値を変更してフィードバック制御を行えるため、放電発生頻度を高め、加工速度を向上させることが可能である。 The correction in the wire electrode feed speed determination unit 142 according to the second embodiment is equivalent to multiplying the first gain in general proportional integral control by {1 / (1 + third gain)}. Therefore, since the wire electrode feed speed changes based on the detected value of the interelectrode voltage, the same effect as in the first embodiment can be obtained. That is, since the feedback control can be performed by changing the value of the third gain based on the frequency of the interelectrode voltage fluctuation, it is possible to increase the frequency of occurrence of electric discharge and improve the machining speed.
 なお、極間電圧の検出値と極間電圧の指令値との差とワイヤ電極送り速度との比が、ワイヤ電極1の振動の周波数が大きい程大きく、ワイヤ電極1の振動の周波数が小さい程小さい値をとるように極間電圧の検出値を補正する補正処理部を設けても良い。この場合には、極間電圧の検出値を、ワイヤ電極1の振動の周波数が大きい程小さく、ワイヤ電極1の振動の周波数が小さい程大きい値をとるように補正する。また、極間電圧の指令値と検出値との両方を補正しても良い。 Note that the ratio between the difference between the detected value of the interpolar voltage and the command value of the interpolar voltage and the wire electrode feed speed is larger as the vibration frequency of the wire electrode 1 is larger, and the vibration frequency of the wire electrode 1 is smaller. You may provide the correction process part which correct | amends the detected value of the voltage between electrodes so that a small value may be taken. In this case, the detection value of the voltage between the electrodes is corrected so as to decrease as the vibration frequency of the wire electrode 1 increases and to increase as the vibration frequency of the wire electrode 1 decreases. Moreover, you may correct | amend both the command value and detection value of a voltage between electrodes.
実施の形態3.
 本発明の実施の形態3に係るワイヤ放電加工機は、実施の形態1に係るワイヤ放電加工機と同様であるが、周波数抽出部1421の構成が相違している。図7は、本発明の実施の形態3に係るワイヤ放電加工機の周波数抽出部の構成を示す図である。図8は、実施の形態3に係るワイヤ放電加工機の周波数抽出部の周波数抽出機能を模式的に示す図である。周波数抽出部1421は、極間電圧の検出値が継続して設定電圧以下となっている時間Tを検出する時間検出部213及び時間検出部213の検出結果の逆数を算出する逆数算出部214を有する。周波数抽出部1421は、極間電圧の検出値が継続して設定電圧以下となっている時間Tを検出し、検出結果の逆数をワイヤ電極1の振動の周波数とする。
Embodiment 3 FIG.
The wire electric discharge machine according to the third embodiment of the present invention is the same as the wire electric discharge machine according to the first embodiment, but the configuration of the frequency extraction unit 1421 is different. FIG. 7 is a diagram showing the configuration of the frequency extraction unit of the wire electric discharge machine according to Embodiment 3 of the present invention. FIG. 8 is a diagram schematically illustrating the frequency extraction function of the frequency extraction unit of the wire electric discharge machine according to the third embodiment. The frequency extraction unit 1421 includes a time detection unit 213 that detects a time T during which the detection value of the interelectrode voltage is continuously less than or equal to the set voltage, and a reciprocal calculation unit 214 that calculates the reciprocal of the detection result of the time detection unit 213. Have. The frequency extraction unit 1421 detects the time T during which the detection value of the interelectrode voltage continues to be equal to or lower than the set voltage, and sets the reciprocal of the detection result as the frequency of vibration of the wire electrode 1.
 ワイヤ電極1の振動の周波数が高いほど、ワイヤ電極1が被加工物Wに接触して極間電圧の検出値が設定電圧以下となる時間Tは短くなり、ワイヤ電極1の振動の周波数が低いほど、ワイヤ電極1が被加工物Wに接触して極間電圧の検出値が設定電圧以下となる時間Tは長くなる。したがって、極間電圧の検出値が継続して設定電圧以下となっている時間Tの逆数をとることで、ワイヤ電極1の振動の周波数を抽出できる。 The higher the frequency of vibration of the wire electrode 1, the shorter the time T when the detected value of the interelectrode voltage is below the set voltage when the wire electrode 1 contacts the workpiece W, and the frequency of vibration of the wire electrode 1 is lower. As the wire electrode 1 comes into contact with the workpiece W, the time T during which the detected value of the interelectrode voltage is equal to or lower than the set voltage becomes longer. Therefore, the frequency of vibration of the wire electrode 1 can be extracted by taking the reciprocal of the time T during which the detected value of the interelectrode voltage is continuously below the set voltage.
 ワイヤ電極1の振動の周波数を抽出する動作以外については、実施の形態1と同様である。 The operation other than the operation of extracting the vibration frequency of the wire electrode 1 is the same as that of the first embodiment.
 実施の形態3によれば、不安定な状態から極間制御系の応答性を検出し、ゲインを変更するため、不安定状態を早期に解消して、放電周波数を高め、加工速度を向上させることができる。 According to the third embodiment, since the response of the inter-pole control system is detected from an unstable state and the gain is changed, the unstable state is eliminated early, the discharge frequency is increased, and the machining speed is improved. be able to.
実施の形態4.
 図9は、本発明の実施の形態4に係るワイヤ放電加工機の制御装置の構成を示す図である。実施の形態4に係るワイヤ放電加工機は、実施の形態1に係るワイヤ放電加工機と同様であるが、制御装置14が板厚推定部144を備えている点で相違している。図10は、実施の形態4に係るワイヤ放電加工機の板厚推定部の板厚推定機能を模式的に示す図である。板厚推定部144は、ワイヤ放電加工中に、被加工物Wの現在加工している部分の板厚の推定値を出力する。被加工物Wの現在加工している部分の板厚を推定する方法には、荒加工時の加工電流又はパルス幅から算出される投入エネルギー及び加工速度から推定するといった公知の手法を適用できる。
Embodiment 4 FIG.
FIG. 9 is a diagram showing a configuration of a control device for a wire electric discharge machine according to Embodiment 4 of the present invention. The wire electric discharge machine according to the fourth embodiment is the same as the wire electric discharge machine according to the first embodiment, but is different in that the control device 14 includes a plate thickness estimation unit 144. FIG. 10 is a diagram schematically illustrating a plate thickness estimation function of the plate thickness estimation unit of the wire electric discharge machine according to the fourth embodiment. The plate thickness estimation unit 144 outputs an estimated value of the plate thickness of the currently processed portion of the workpiece W during wire electric discharge machining. As a method of estimating the plate thickness of the currently processed portion of the workpiece W, a known method of estimating from the input energy calculated from the machining current or the pulse width at the time of rough machining and the machining speed can be applied.
 図11は、実施の形態4に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図である。図12は、実施の形態4に係るワイヤ放電加工機のワイヤ電極送り速度決定部の第1のゲインの変更機能を模式的に示す図である。板厚推定部144の推定結果は、第1のゲイン処理部1423に入力される。第1のゲイン処理部1423は、板厚の推定結果に基づき、板厚の推定値が小さいほどゲインの値が大きくなり、板厚の推定値が大きいほどゲインの値が小さくなる関数F2も用いて第1のゲインの値を変更する。すなわち、実施の形態4では、第1のゲイン処理部1423は、図5に示した関数F1と、板厚の推定値が小さいほどゲインの値が大きくなり、板厚の推定値が大きいほどゲインの値が小さくなる関数F2とを併用して第1のゲインの値を補正する。 FIG. 11 is a diagram illustrating a configuration of a wire electrode feed rate determination unit of the wire electric discharge machine according to the fourth embodiment. FIG. 12 is a diagram schematically illustrating a first gain changing function of the wire electrode feed rate determination unit of the wire electric discharge machine according to the fourth embodiment. The estimation result of the plate thickness estimation unit 144 is input to the first gain processing unit 1423. The first gain processing unit 1423 also uses a function F2 based on the estimation result of the plate thickness, in which the gain value increases as the plate thickness estimation value decreases, and the gain value decreases as the plate thickness estimation value increases. To change the value of the first gain. That is, in the fourth embodiment, the first gain processing unit 1423 increases the gain value as the estimated value of the function F1 and the plate thickness shown in FIG. The value of the first gain is corrected in combination with the function F2 that decreases the value of.
 実施の形態4によれば、事前に板厚情報を設定しなくても、板厚に応じた第1のゲインを設定することができる。その結果、加工状況に応じて最も放電発生周波数が高い状態を維持でき、加工速度を向上させることができる。 According to the fourth embodiment, the first gain according to the plate thickness can be set without setting the plate thickness information in advance. As a result, it is possible to maintain a state in which the discharge frequency is highest depending on the machining state, and to improve the machining speed.
実施の形態5.
 図13は、本発明の実施の形態5に係るワイヤ放電加工機の制御装置の構成を示す図である。実施の形態5に係るワイヤ放電加工機は、実施の形態1に係るワイヤ放電加工機と同様であるが、上ガイド4と下ガイド5との間隔を検出するガイド間隔検出部145を制御装置14が備えている点で相違している。
Embodiment 5 FIG.
FIG. 13 is a diagram showing a configuration of a control device for a wire electric discharge machine according to Embodiment 5 of the present invention. The wire electric discharge machine according to the fifth embodiment is the same as the wire electric discharge machine according to the first embodiment, but includes a guide interval detection unit 145 that detects an interval between the upper guide 4 and the lower guide 5. Is different in that it has.
 図14は、実施の形態5に係るワイヤ放電加工機のワイヤ電極送り速度決定部の構成を示す図である。ガイド間隔検出部145の検出結果は、第1のゲイン処理部1423に入力される。第1のゲイン処理部1423は、ガイド間隔の検出結果に基づいて、上ガイド4と下ガイド5との間隔が大きくなるにつれて値が小さくなる上限値及び下限値を算出する。図15は、実施の形態5に係るワイヤ放電加工機の第1のゲイン処理部の上限値及び下限値の設定機能を模式的に示す図である。図15中の破線は上限値を示し、実線は下限値を示している。 FIG. 14 is a diagram illustrating a configuration of a wire electrode feed rate determination unit of the wire electric discharge machine according to the fifth embodiment. The detection result of the guide interval detection unit 145 is input to the first gain processing unit 1423. The first gain processing unit 1423 calculates an upper limit value and a lower limit value that decrease as the interval between the upper guide 4 and the lower guide 5 increases, based on the detection result of the guide interval. FIG. 15 is a diagram schematically showing an upper limit value and a lower limit value setting function of the first gain processing unit of the wire electric discharge machine according to the fifth embodiment. The broken line in FIG. 15 indicates the upper limit value, and the solid line indicates the lower limit value.
 図16は、実施の形態5に係るワイヤ放電加工機の第1のゲイン処理部のゲイン変更機能を模式的に示す図である。図16中の実線は、実施の形態5に係る第1のゲイン処理部1423が関数F1の代わりに用いる関数F3を示している。なお、図16には、第1のゲインに上限値及び下限値を設定しない実施の形態1で用いた関数F1を破線で示している。関数F3には、ガイド間隔検出部145の検出結果に基づいて第1のゲインに上限値及び下限値が設定されている。したがって、第1のゲイン処理部1423は、算出した上限値と下限値との間で第1のゲインを変更する。 FIG. 16 is a diagram schematically illustrating a gain changing function of the first gain processing unit of the wire electric discharge machine according to the fifth embodiment. A solid line in FIG. 16 indicates a function F3 used by the first gain processing unit 1423 according to Embodiment 5 instead of the function F1. In FIG. 16, the function F1 used in the first embodiment in which the upper limit value and the lower limit value are not set for the first gain is indicated by a broken line. In the function F3, an upper limit value and a lower limit value are set for the first gain based on the detection result of the guide interval detection unit 145. Therefore, the first gain processing unit 1423 changes the first gain between the calculated upper limit value and lower limit value.
 関数F3は、第1のゲインに上限値及び下限値を設けることにより、上限値と下限値との間での周波数-ゲイン線の傾きが、上限値及び下限値を設けない関数F1よりも大きくなっている。したがって、実施の形態1と比較すると、ワイヤ電極の振動の周波数の差異が同じであれば、第1のゲインの変化量が大きくなるため、応答性能を高めることができる。よって、外乱などの影響により第1のゲインが大きくずれることがなく、加工状態の急激な変化が生じてもフィードバック制御を継続することができる。 In the function F3, by setting the upper limit value and the lower limit value for the first gain, the slope of the frequency-gain line between the upper limit value and the lower limit value is larger than the function F1 that does not provide the upper limit value and the lower limit value. It has become. Therefore, as compared with the first embodiment, if the difference in the frequency of vibration of the wire electrode is the same, the amount of change in the first gain is increased, so that the response performance can be improved. Therefore, the first gain is not greatly shifted due to the influence of disturbance or the like, and the feedback control can be continued even if a sudden change in the machining state occurs.
 第1のゲイン処理部1423の動作以外は、実施の形態1と同様である。 Except for the operation of the first gain processing unit 1423, it is the same as the first embodiment.
 ここでは、上ガイド4と下ガイド5との間隔に基づいて第1のゲインに上限値及び下限値を設定する場合を説明したが、下ガイド5の上下方向の位置が変わらない構成となっている場合、上ガイド4の位置をモータに搭載されたエンコーダ又はリニアスケールなどにより測定し、上ガイド4の位置に基づいて第1のゲインに上限値及び下限値を設定しても同様の効果が得られる。 Here, the case where the upper limit value and the lower limit value are set for the first gain based on the distance between the upper guide 4 and the lower guide 5 has been described, but the vertical position of the lower guide 5 does not change. If the position of the upper guide 4 is measured by an encoder or a linear scale mounted on the motor, and the upper limit value and the lower limit value are set to the first gain based on the position of the upper guide 4, the same effect can be obtained. can get.
実施の形態6.
 図17は、本発明の実施の形態6に係るワイヤ放電加工の周波数抽出部の構成を示す図である。周波数抽出部1421は、閾値設定部215を備えている。図18は、実施の形態6に係るワイヤ放電加工機のピーク周波数抽出部の周波数抽出機能を模式的に示す図である。ピーク周波数抽出部212は、閾値設定部215から入力された閾値以上のピークを持つ周波数の中で最も低い周波数成分を抽出する。
Embodiment 6 FIG.
FIG. 17 is a diagram illustrating a configuration of a frequency extraction unit of wire electric discharge machining according to the sixth embodiment of the present invention. The frequency extraction unit 1421 includes a threshold setting unit 215. FIG. 18 is a diagram schematically illustrating the frequency extraction function of the peak frequency extraction unit of the wire electric discharge machine according to the sixth embodiment. The peak frequency extraction unit 212 extracts the lowest frequency component among frequencies having a peak equal to or higher than the threshold input from the threshold setting unit 215.
 閾値設定部215以外は、実施の形態1と同様である。 Other than the threshold setting unit 215 is the same as in the first embodiment.
 実施の形態6においては、極間電圧の検出値の時間変動に対して高速フーリエ変換を行って得られた周波数スペクトルの閾値以上のピークの中で最も低周波のピークの周波数をワイヤ電極1の振動の周波数とするため、複数の周波数成分を持つ制御系であっても、最も剛性が低い状態に合わせて短絡の発生が少ない安定した加工を実現できる。 In the sixth embodiment, the frequency of the lowest frequency of the peaks of the frequency spectrum obtained by performing the fast Fourier transform on the time variation of the detected value of the interelectrode voltage is set to the frequency of the wire electrode 1. Since the vibration frequency is used, even a control system having a plurality of frequency components can realize stable machining with less occurrence of a short circuit in accordance with the state of lowest rigidity.
実施の形態7.
 図19は、本発明の実施の形態7に係るワイヤ放電加工機の周波数抽出部の構成を示す図である。周波数抽出部1421は、ワイヤ電極固有振動数算出部216を備えている。ワイヤ電極固有振動数算出部216は、ワイヤ電極1の張力及び上ガイド4と下ガイド5との距離からワイヤ電極1の固有振動数を算出する。
Embodiment 7 FIG.
FIG. 19 is a diagram showing a configuration of a frequency extraction unit of a wire electric discharge machine according to Embodiment 7 of the present invention. The frequency extraction unit 1421 includes a wire electrode natural frequency calculation unit 216. The wire electrode natural frequency calculator 216 calculates the natural frequency of the wire electrode 1 from the tension of the wire electrode 1 and the distance between the upper guide 4 and the lower guide 5.
 図20は、実施の形態7に係るワイヤ放電加工機のピーク周波数抽出部の周波数抽出機能を模式的に示す図である。ピーク周波数抽出部212は、極間電圧の周波数スペクトルからワイヤ電極固有振動周波数とその周辺を取り除いた結果から周波数を抽出する。図20では、固有振動周波数と一致する中央部の山を除外し、その他で最も大きい成分となる周波数を抽出している。なお、図20中のバツ印は、ワイヤ電極固有振動数のピークを除外していることを示し、図20中の丸印は、周波数を抽出してワイヤ電極1の振動の周波数とすることを示している。 FIG. 20 is a diagram schematically illustrating the frequency extraction function of the peak frequency extraction unit of the wire electric discharge machine according to the seventh embodiment. The peak frequency extraction unit 212 extracts the frequency from the result of removing the wire electrode natural vibration frequency and its periphery from the frequency spectrum of the interelectrode voltage. In FIG. 20, the central peak corresponding to the natural vibration frequency is excluded, and the frequency that is the largest component is extracted. 20 indicates that the peak of the wire electrode natural frequency is excluded, and the circle in FIG. 20 indicates that the frequency is extracted to be the frequency of vibration of the wire electrode 1. Show.
 実施の形態7に係るワイヤ放電加工機は、極間電圧の検出値の時間変動に対して高速フーリエ変換を行って得られた周波数スペクトルの設定値以上のピークの中で、ワイヤ電極固有振動周波数を除いて周波数スペクトルが最大となる周波数をワイヤ電極の振動の周波数とするため、既知な周波数変動に影響されることなく、未知の周波数変動の影響を抑制することができる。 In the wire electric discharge machine according to the seventh embodiment, the wire electrode natural vibration frequency is higher than the set value of the frequency spectrum obtained by performing the fast Fourier transform on the time variation of the detection value of the interelectrode voltage. Since the frequency at which the frequency spectrum is maximum except for the frequency is the frequency of vibration of the wire electrode, the influence of the unknown frequency fluctuation can be suppressed without being affected by the known frequency fluctuation.
 上記の実施の形態1から実施の形態7において、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143の機能は、処理回路19により実現される。すなわち、制御装置14は、数値制御プログラムを処理して極間電圧指令を出力する処理と、極間電圧指令と極間電圧の検出値とに基づくフィードバック制御を行ってワイヤ電極送り速度を決定する処理と、前後送り機構10及び左右送り機構11のモータに速度指令を出力してワイヤ電極1を被加工物Wに対して相対的に移動させる処理とを行う処理回路19を備える。また、処理回路19は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。 In the above-described first to seventh embodiments, the functions of the interelectrode voltage command generation unit 141, the wire electrode feed rate determination unit 142, and the motor control unit 143 are realized by the processing circuit 19. That is, the control device 14 determines the wire electrode feed speed by processing the numerical control program and outputting the inter-electrode voltage command, and performing feedback control based on the inter-electrode voltage command and the detected value of the inter-electrode voltage. A processing circuit 19 is provided for performing processing and processing for moving the wire electrode 1 relative to the workpiece W by outputting a speed command to the motors of the front-rear feed mechanism 10 and the left-right feed mechanism 11. The processing circuit 19 may be dedicated hardware or an arithmetic device that executes a program stored in a storage device.
 処理回路19が専用のハードウェアである場合、処理回路19は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図21は、実施の形態1から実施の形態7に係るワイヤ放電加工機の制御装置の機能をハードウェアで実現した構成を示す図である。処理回路19には、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143を実現する論理回路19aが組み込まれている。なお、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143の各部の機能を別々の処理回路で実現してもよい。 If the processing circuit 19 is dedicated hardware, the processing circuit 19 may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof. Applicable. FIG. 21 is a diagram illustrating a configuration in which the function of the control device of the wire electric discharge machine according to the first to seventh embodiments is realized by hardware. The processing circuit 19 incorporates a logic circuit 19 a that realizes an interelectrode voltage command generation unit 141, a wire electrode feed speed determination unit 142, and a motor control unit 143. In addition, you may implement | achieve the function of each part of the electrode voltage command generation part 141, the wire electrode feed speed determination part 142, and the motor control part 143 with a separate processing circuit.
 処理回路19が演算装置の場合、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。図22は、実施の形態1から実施の形態7に係るワイヤ放電加工機の制御装置の機能をソフトウェアで実現した構成を示す図である。処理回路19は、プログラム19bを実行する演算装置191と、演算装置191がワークエリアに用いるランダムアクセスメモリ192と、プログラム19bを記憶する記憶装置193を有する。記憶装置193に記憶されているプログラム19bを演算装置191がランダムアクセスメモリ192上に展開し、実行することにより極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置193に格納される。処理回路19は、記憶装置193に記憶されたプログラム19bを読み出して実行することにより、各部の機能を実現する。すなわち、制御装置14は、処理回路19により実行されるときに、数値制御プログラムを処理して極間電圧指令を出力するステップと、極間電圧指令と極間電圧の検出値とに基づくフィードバック制御を行ってワイヤ電極送り速度を決定するステップと、前後送り機構10及び左右送り機構11のモータに速度指令を出力してワイヤ電極1を被加工物Wに対して相対的に移動させるステップとが結果的に実行されることになるプログラム19bを格納するための記憶装置193を備える。また、プログラム19bは、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143の手順及び方法をコンピュータに実行させるものであるともいえる。 When the processing circuit 19 is an arithmetic device, the functions of the interelectrode voltage command generation unit 141, the wire electrode feed speed determination unit 142, and the motor control unit 143 are realized by software, firmware, or a combination of software and firmware. FIG. 22 is a diagram illustrating a configuration in which the function of the control device of the wire electric discharge machine according to the first to seventh embodiments is realized by software. The processing circuit 19 includes an arithmetic device 191 that executes the program 19b, a random access memory 192 that the arithmetic device 191 uses as a work area, and a storage device 193 that stores the program 19b. The arithmetic unit 191 develops and executes the program 19b stored in the storage device 193 on the random access memory 192, thereby realizing the inter-electrode voltage command generation unit 141, the wire electrode feed speed determination unit 142, and the motor control unit 143. Is done. Software or firmware is described in a program language and stored in the storage device 193. The processing circuit 19 reads out and executes the program 19b stored in the storage device 193, thereby realizing the function of each unit. That is, when executed by the processing circuit 19, the control device 14 processes a numerical control program and outputs an inter-electrode voltage command, and feedback control based on the inter-electrode voltage command and the detected value of the inter-electrode voltage. To determine the wire electrode feed speed and to output a speed command to the motors of the forward / backward feed mechanism 10 and the left / right feed mechanism 11 to move the wire electrode 1 relative to the workpiece W. A storage device 193 is provided for storing the program 19b to be executed as a result. Further, the program 19b can be said to cause the computer to execute the procedures and methods of the electrode voltage command generation unit 141, the wire electrode feed speed determination unit 142, and the motor control unit 143.
 なお、極間電圧指令生成部141、ワイヤ電極送り速度決定部142及びモータ制御部143の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、極間電圧指令生成部141については専用のハードウェアによる処理回路で機能を実現し、ワイヤ電極送り速度決定部142及びモータ制御部143については処理回路がメモリに格納されたプログラムを読み出して実行することによって機能を実現することが可能である。 The functions of the inter-electrode voltage command generation unit 141, the wire electrode feed speed determination unit 142, and the motor control unit 143 are partly realized by dedicated hardware and partly realized by software or firmware. Also good. For example, the inter-electrode voltage command generation unit 141 is realized by a dedicated hardware processing circuit, and the wire electrode feed speed determination unit 142 and the motor control unit 143 read the program stored in the memory by the processing circuit. It is possible to realize a function by executing.
 このように、処理回路19は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 19 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 ワイヤ電極、2 ワイヤボビン、3 ワイヤ電極送り機構、4 上ガイド、5 下ガイド、6 ワイヤ電極回収機構、7 回収箱、8 定盤、9 上下送り機構、10 前後送り機構、11 左右送り機構、12 加工電源、13 極間電圧検出部、14 制御装置、19 処理回路、19a 論理回路、19b プログラム、141 極間電圧指令生成部、142 ワイヤ電極送り速度決定部、143 モータ制御部、144 板厚推定部、145 ガイド間隔検出部、191 演算装置、192 ランダムアクセスメモリ、193 記憶装置、211 高速フーリエ変換部、212 ピーク周波数抽出部、213 時間検出部、214 逆数算出部、215 閾値設定部、216 ワイヤ電極固有振動数算出部、1421,2421 周波数抽出部、1422,2423 減算部、1423、2425 第1のゲイン処理部、1424,2426 積分処理部、1425,2427 第2のゲイン処理部、1426 加算部、2422 第1の加算部、2424 第3のゲイン処理部、2428 第2の加算部。 1 wire electrode, 2 wire bobbin, 3 wire electrode feed mechanism, 4 upper guide, 5 lower guide, 6 wire electrode collection mechanism, 7 collection box, 8 surface plate, 9 vertical feed mechanism, 10 front / rear feed mechanism, 11 left / right feed mechanism, 12 Processing power supply, 13 Electrode voltage detection unit, 14 Control device, 19 Processing circuit, 19a Logic circuit, 19b Program, 141 Interelectrode voltage command generation unit, 142 Wire electrode feed rate determination unit, 143 Motor control unit, 144 Plate thickness Estimating unit, 145 guide interval detecting unit, 191 arithmetic unit, 192 random access memory, 193 storage unit, 211 fast Fourier transform unit, 212 peak frequency extracting unit, 213 time detecting unit, 214 reciprocal calculating unit, 215 threshold setting unit, 216 Wire electrode natural frequency calculation unit, 1421, 242 Frequency extraction unit, 1422, 2423 subtraction unit, 1423, 2425 first gain processing unit, 1424, 2426 integration processing unit, 1425, 2427 second gain processing unit, 1426 addition unit, 2422 first addition unit, 2424th 3 gain processing section, 2428 second addition section.

Claims (10)

  1.  ワイヤ電極と被加工物との間に印加する加工電圧による放電で被加工物を加工するワイヤ放電加工機であって、
     前記ワイヤ電極と前記被加工物との間の極間電圧を検出する極間電圧検出部と、
     前記極間電圧の検出値に基づいて、前記ワイヤ電極の振動の周波数を抽出する周波数抽出部と、
     前記極間電圧の検出値と前記極間電圧の指令値との差とワイヤ電極送り速度との比が、前記ワイヤ電極の振動の周波数が大きい程大きく、前記ワイヤ電極の振動の周波数が小さい程小さい値をとるように、前記極間電圧の指令値の比例積分制御又は比例制御に用いるゲインを補正する補正処理部とを備えることを特徴とするワイヤ放電加工機。
    A wire electric discharge machine that processes a workpiece by electric discharge by a machining voltage applied between a wire electrode and the workpiece,
    An inter-electrode voltage detector for detecting an inter-electrode voltage between the wire electrode and the workpiece;
    Based on the detected value of the interelectrode voltage, a frequency extraction unit that extracts the frequency of vibration of the wire electrode;
    The ratio between the difference between the detected value of the interelectrode voltage and the command value of the interelectrode voltage and the wire electrode feed speed is larger as the vibration frequency of the wire electrode is larger and the vibration frequency of the wire electrode is smaller. A wire electric discharge machine comprising: a correction processing unit that corrects a gain used for proportional-integral control or proportional control of the command value of the interelectrode voltage so as to take a small value.
  2.  ワイヤ電極と被加工物との間に印加する加工電圧による放電で被加工物を加工するワイヤ放電加工機であって、
     前記ワイヤ電極と前記被加工物との間の極間電圧を検出する極間電圧検出部と、
     前記極間電圧の検出値に基づいて、ワイヤ電極の振動の周波数を抽出する周波数抽出部と、
     前記極間電圧の検出値と前記極間電圧の指令値との差とワイヤ電極送り速度との比が、前記ワイヤ電極の振動の周波数が大きい程大きく、前記ワイヤ電極の振動の周波数が小さい程小さい値をとるように前記極間電圧の検出値と前記極間電圧の指令値との差を補正する補正処理部とを備えることを特徴とするワイヤ放電加工機。
    A wire electric discharge machine that processes a workpiece by electric discharge by a machining voltage applied between a wire electrode and the workpiece,
    An inter-electrode voltage detector for detecting an inter-electrode voltage between the wire electrode and the workpiece;
    Based on the detected value of the interelectrode voltage, a frequency extraction unit that extracts the frequency of vibration of the wire electrode;
    The ratio between the difference between the detected value of the interelectrode voltage and the command value of the interelectrode voltage and the wire electrode feed speed is larger as the vibration frequency of the wire electrode is larger and the vibration frequency of the wire electrode is smaller. A wire electric discharge machine comprising: a correction processing unit that corrects a difference between a detected value of the interpolar voltage and a command value of the interpolar voltage so as to take a small value.
  3.  前記補正処理部は、前記極間電圧の指令値及び前記極間電圧の検出値の少なくとも一方を変化させて、前記極間電圧の検出値と前記極間電圧の指令値との差を補正することを特徴とする請求項2に記載のワイヤ放電加工機。 The correction processing unit changes at least one of the command value of the electrode voltage and the detection value of the electrode voltage, and corrects the difference between the detected value of the electrode voltage and the command value of the electrode voltage. The wire electric discharge machine according to claim 2.
  4.  前記周波数抽出部は、前記極間電圧の検出値の時間変動に対して高速フーリエ変換を行って得られた周波数スペクトルが最大となる周波数を前記ワイヤ電極の振動の周波数とすることを特徴とする請求項1から3のいずれか1項に記載のワイヤ放電加工機。 The frequency extraction unit is characterized in that a frequency at which a frequency spectrum obtained by performing a fast Fourier transform on a time variation of a detection value of the interelectrode voltage is maximized is a frequency of vibration of the wire electrode. The wire electric discharge machine of any one of Claim 1 to 3.
  5.  前記周波数抽出部は、前記極間電圧の検出値が継続して設定電圧以下となっている時間の逆数を前記ワイヤ電極の振動の周波数とすることを特徴とする請求項1から3のいずれか1項に記載のワイヤ放電加工機。 4. The frequency extraction unit according to claim 1, wherein a reciprocal of a time during which the detected value of the interelectrode voltage is continuously equal to or lower than a set voltage is used as the frequency of vibration of the wire electrode. The wire electric discharge machine according to item 1.
  6.  被加工物の板厚を検出する板厚推定部を有し、
     前記補正処理部は、前記板厚の推定結果に基づいて、前記板厚の推定値が大きいほど値が大きく、前記板厚の推定値が小さいほど値が小さくなるように前記ゲインを補正することを特徴とする請求項1に記載のワイヤ放電加工機。
    It has a plate thickness estimation unit that detects the plate thickness of the workpiece,
    The correction processing unit corrects the gain based on the estimation result of the plate thickness so that the larger the estimated value of the plate thickness, the larger the value, and the smaller the estimated value of the plate thickness, the smaller the value. The wire electric discharge machine according to claim 1.
  7.  前記被加工物の上方で前記ワイヤ電極を支持する上ガイドと前記被加工物の下方で前記ワイヤ電極を支持する下ガイドとの間隔を検出するガイド間隔検出部を有し、
     前記補正処理部は、前記ガイド間隔検出部の検出結果に基づいて、前記上ガイドと前記下ガイドとの間隔が大きくなるにつれて値が小さくなる上限値及び下限値を前記ゲインに設定することを特徴とする請求項1に記載のワイヤ放電加工機。
    A guide interval detector that detects an interval between an upper guide that supports the wire electrode above the workpiece and a lower guide that supports the wire electrode below the workpiece;
    The correction processing unit sets, as the gain, an upper limit value and a lower limit value that decrease as the interval between the upper guide and the lower guide increases, based on a detection result of the guide interval detection unit. The wire electric discharge machine according to claim 1.
  8.  前記周波数抽出部は、前記極間電圧の検出値の時間変動に対して高速フーリエ変換を行って得られた周波数スペクトルの設定値以上のピークの中で最も低周波のピークの周波数を前記ワイヤ電極の振動の周波数とすることを特徴とする請求項1から3のいずれか1項に記載のワイヤ放電加工機。 The frequency extraction unit is configured to calculate the frequency of the lowest frequency peak among peaks equal to or higher than a set value of a frequency spectrum obtained by performing a fast Fourier transform on the time variation of the detection value of the interelectrode voltage. The wire electric discharge machine according to any one of claims 1 to 3, wherein a frequency of the vibration is set.
  9.  前記周波数抽出部は、前記極間電圧の検出値の時間変動に対して高速フーリエ変換を行って得られた周波数スペクトルの設定値以上のピークの中で、前記極間電圧の変動の周波数からワイヤ電極固有振動周波数を除いて周波数スペクトルが最大となる周波数を前記ワイヤ電極の振動の周波数とすることを特徴とする請求項1から3のいずれか1項に記載のワイヤ放電加工機。 The frequency extraction unit is configured to calculate a wire from a frequency of the fluctuation of the interpolar voltage in a peak equal to or higher than a set value of a frequency spectrum obtained by performing a fast Fourier transform on a time fluctuation of the detection value of the interpolar voltage. The wire electric discharge machine according to any one of claims 1 to 3, wherein a frequency at which a frequency spectrum is maximum excluding an electrode natural vibration frequency is set as a vibration frequency of the wire electrode.
  10.  ワイヤ電極と被加工物間の極間電圧によりワイヤ電極の送り速度を制御するワイヤ放電加工機において、
     極間電圧の振動周波数の大きさに基づき、極間電圧の変動に対するワイヤ電極の送り速度の変化の応答性を変更することを特徴とするワイヤ放電加工機。
    In a wire electric discharge machine that controls the feed rate of the wire electrode by the voltage between the wire electrode and the workpiece,
    A wire electric discharge machine characterized by changing the responsiveness of the change in the feed speed of the wire electrode to the fluctuation of the interelectrode voltage based on the magnitude of the vibration frequency of the interelectrode voltage.
PCT/JP2016/051994 2016-01-25 2016-01-25 Wire electric discharge processing machine WO2017130272A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680079599.XA CN108472755B (en) 2016-01-25 2016-01-25 Wire electric discharge machine
JP2016563209A JP6076577B1 (en) 2016-01-25 2016-01-25 Wire electric discharge machine
PCT/JP2016/051994 WO2017130272A1 (en) 2016-01-25 2016-01-25 Wire electric discharge processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051994 WO2017130272A1 (en) 2016-01-25 2016-01-25 Wire electric discharge processing machine

Publications (1)

Publication Number Publication Date
WO2017130272A1 true WO2017130272A1 (en) 2017-08-03

Family

ID=57981572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051994 WO2017130272A1 (en) 2016-01-25 2016-01-25 Wire electric discharge processing machine

Country Status (3)

Country Link
JP (1) JP6076577B1 (en)
CN (1) CN108472755B (en)
WO (1) WO2017130272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3815825A4 (en) * 2018-06-27 2022-04-06 Makino Milling Machine Co., Ltd. Wire electrical discharge machining device, method for controlling same, and control program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646119B (en) * 2019-03-28 2022-07-29 三菱电机株式会社 Numerical control device, electric discharge machining device, and electric discharge machining method
JP7343328B2 (en) * 2019-08-02 2023-09-12 ファナック株式会社 Wire electrical discharge machine and control method
CN116348232B (en) * 2021-03-03 2024-02-02 三菱电机株式会社 Wire electric discharge machining apparatus, shape and size compensator, wire electric discharge machining method, learning apparatus, and estimation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637226A (en) * 1986-06-27 1988-01-13 Fanuc Ltd Servo feed system for electric discharge machining
JPH11221718A (en) * 1998-02-05 1999-08-17 Fanuc Ltd Wire electric discharge machine
WO2011161764A1 (en) * 2010-06-22 2011-12-29 三菱電機株式会社 Electro-discharge machining control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253812B2 (en) * 1994-10-17 2002-02-04 松下電器産業株式会社 Electric discharge machine
JP3540474B2 (en) * 1995-11-11 2004-07-07 株式会社ソディック Positioning method and reference device for reference contact position of wire electric discharge machine
JP4580022B2 (en) * 2009-02-27 2010-11-10 ファナック株式会社 Wire electric discharge machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637226A (en) * 1986-06-27 1988-01-13 Fanuc Ltd Servo feed system for electric discharge machining
JPH11221718A (en) * 1998-02-05 1999-08-17 Fanuc Ltd Wire electric discharge machine
WO2011161764A1 (en) * 2010-06-22 2011-12-29 三菱電機株式会社 Electro-discharge machining control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3815825A4 (en) * 2018-06-27 2022-04-06 Makino Milling Machine Co., Ltd. Wire electrical discharge machining device, method for controlling same, and control program
US11890691B2 (en) 2018-06-27 2024-02-06 Makino Milling Machine Co., Ltd. Wire electric discharge machining device, and control method and control program therefor

Also Published As

Publication number Publication date
CN108472755A (en) 2018-08-31
JPWO2017130272A1 (en) 2018-02-01
CN108472755B (en) 2020-05-01
JP6076577B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6076577B1 (en) Wire electric discharge machine
JP5602331B1 (en) Wire electric discharge machining apparatus, wire electric discharge machining method and control apparatus
JP5794401B1 (en) Control device for wire electric discharge machine and control method for wire electric discharge machine
EP2327498B1 (en) Wire-cut electric discharge machine and electric discharge machining method
JP4772138B2 (en) Wire-cut electric discharge machine with a function to suppress the occurrence of local streaks in finishing
JP6227599B2 (en) Wire electrical discharge machine with constant distance between poles
JP6180662B1 (en) Machining control apparatus, wire electric discharge machining apparatus, and wire electric discharge machining method
JP4693933B2 (en) Control device for wire cut electric discharge machine
JP2006158026A (en) Controller
JP2009226504A (en) Wire electric discharge machining device
WO2011049101A1 (en) Wire electro-discharge machining device
KR20190124158A (en) Wire electrical discharge machine and electrical discharge machining method
WO2011145217A1 (en) Wire electric discharge machining device
EP3417971A1 (en) Control device for wire electrical discharge machine and control method of wire electrical discharge machine
JP2018030189A (en) Wire electric discharging machine and measuring method
US20150202704A1 (en) Working fluid supply control apparatus for wire electric discharge machine
JP6466044B1 (en) Electric discharge machining apparatus and jump operation control method
JP6266192B1 (en) Wire electric discharge machine and wire electric discharge machining method
JP2007253260A (en) Electrical discharge machining control method and electrical discharge machining control device
WO2022269847A1 (en) Wire electric discharge machine, and control method for wire electric discharge machine
TWI836480B (en) Wire electrical discharge machine and method of controlling wire electrical discharge machine
JP3736118B2 (en) Electric discharge machining control method and control apparatus
JP5968019B2 (en) Wire electrical discharge machine
JP2007111777A (en) Servo system
KR20210075846A (en) Control device and recording medium having program recorded thereon

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563209

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887859

Country of ref document: EP

Kind code of ref document: A1