WO2017129183A1 - Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test - Google Patents

Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test Download PDF

Info

Publication number
WO2017129183A1
WO2017129183A1 PCT/DE2017/100055 DE2017100055W WO2017129183A1 WO 2017129183 A1 WO2017129183 A1 WO 2017129183A1 DE 2017100055 W DE2017100055 W DE 2017100055W WO 2017129183 A1 WO2017129183 A1 WO 2017129183A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
test object
layer
transmitter
radiation
Prior art date
Application number
PCT/DE2017/100055
Other languages
German (de)
English (en)
Inventor
Marius Thiel
Original Assignee
INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik filed Critical INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority to EP17705783.3A priority Critical patent/EP3408609A1/fr
Publication of WO2017129183A1 publication Critical patent/WO2017129183A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Definitions

  • the invention relates to a measuring method and a measuring device for determining a layer thickness or material thickness of a test object, in particular of plastic.
  • measurements with long-wave radiation in particular in the terahertz or microwave range, are known, in particular as transit time measurements.
  • radiation is generally irradiated along an optical axis onto the measurement object, which is made of a material transparent to radiation, for.
  • a material transparent to radiation for.
  • plastic wherein the material for the radiation has a higher refractive index than air or vacuum.
  • Such a material may in particular a plastic, further z.
  • wood, ceramic or a fiber-reinforced material such as CFRP or GRP (carbon fiber reinforced plastic, glass fiber reinforced plastic) be.
  • a portion of the incident radiation is reflected upon entry into the material layer, and another portion of the radiation entering the material layer is reflected at a subsequent interface, for example, a backside of the material layer upon transition to air.
  • a subsequent interface for example, a backside of the material layer upon transition to air.
  • measurement peaks of the signal amplitude of the radiation reflected at the interfaces can be recorded.
  • the transmission beam is generally perpendicular to the
  • Such layer thickness measurements can be carried out in particular to check the quality of a plastic object after its production, for. B. immediately after the production by the measurement object is transported at the end of a production line directly through the measuring device. Measurements of a specific material thickness, in particular with continuous guidance of the test object, generally require a specific bandwidth, the required bandwidth depending on the layer thickness to be determined.
  • the generation of a transmission beam with sufficient intensity and suitable bandwidth is in the microwave and
  • the invention has for its object to enable with little effort a safe measurement of a measured object and an accurate determination of a layer thickness.
  • the measuring device according to the invention is provided in particular for carrying out the measuring method according to the invention, and the measuring method according to the invention is carried out in particular with use or using the measuring device according to the invention.
  • a measurement thus takes place with non-perpendicular incidence of the radiation on the surface of the layer of the test object, and a subsequent measurement of the reflected partial beams.
  • the partial beams reflected at the top and bottom of the layer are offset from one another along the direction of incidence.
  • these reflected partial beams extend with a lateral offset or offset in the direction perpendicular to the exit direction.
  • the different partial beams can thus be measured.
  • the partial beams of a fixed transmission beam i. with a fixed transmitter
  • a measurement of the emitted radiation over a distance in the geometric direction is possible.
  • the geometric direction is a lateral direction, in particular on the exit side (failure side), i. Direction, or on the incidence side an adjustment angle. This makes it possible to determine the two reflected partial beams as measurement peaks or signal peaks of the signal amplitude.
  • the local or lateral measurement perpendicular to the failure direction can be achieved by different configurations.
  • one sensor or several sensors can be moved continuously in the lateral direction (measuring direction), in particular at a significantly higher speed than a forward speed of the test object.
  • a sensor chain or a linear array of adjacent sensors can be used, ie a static arrangement of the detector device or the receiving line.
  • corresponding detectors can be made small and arranged side by side on a circuit carrier.
  • the layer thickness can subsequently be determined by geometric considerations in which the angle of incidence and the locally resolved signal width, ie the local or lateral distance of the measurement peaks, can be used.
  • the refractive index of the material of the layer of the test object can be used in these geometric investigations.
  • the transmission beam can also be adjusted, for. B. by adjusting, in particular pivoting or tilting of the transmitter, or z. B. by an introduced into the beam path adjustable optical element, for. B. a mirror.
  • the sensor can thus remain fixed or can also be swiveled.
  • z. B. modulated, non-modulated, phase modulated, amplitude modulated or z. B. pulsed radiation can be used.
  • measurements of a layer thickness measurements of several layers are possible.
  • Undesired multiple reflections can be easily recognized as weaker peaks with a larger signal distance and will thus advantageously not be used for further determination.
  • an optic can be used, for. B. in the beam path of the emitted radiation for focusing or focusing, and / or in the beam path of the reflected radiation for fanning and higher resolution of the measurement.
  • FIG. 1 shows a measuring device for determining a layer thickness of a measuring object according to an embodiment
  • FIG. 2 shows a measuring diagram of the sensor, which shows the signal amplitude as a function of the position along the measuring direction x (lateral adjustment direction);
  • FIG. 3 shows a measuring device for determining a layer thickness of a measurement object according to a further embodiment.
  • Fig. 5 is a representation corresponding to Figure 1, taking into account the refraction at the surface.
  • Fig. 6 shows another embodiment with adjustable transmitter and fixed sensor;
  • a measuring device 1 is used for measuring a layer thickness d of a layer 2c of a test object 2.
  • the test object is formed only by the layer 2c, so that the test object can be viewed directly here, but multi-layer systems are also possible.
  • the measuring device 1 has a transmitter 3, the electromagnetic radiation as transmission beam 4 in the frequency range of z. B. 10 GHz to 10 THz, in particular 10 GHz to 3 THz, d. H. in the radar range, microwave range or terahertz range.
  • the test object 2 or its layer 2c consists of an electrically non-conductive material, in particular a plastic, possibly also of z. As ceramics or paper.
  • the transmission beam 4 can advantageously be focused or focused by means of a suitable optical system of the transmitter 8.
  • a diaphragm for forming a sufficiently thin transmission beam 4 may also be provided.
  • the remaining partial beam 4b with the majority of the intensity subsequently enters the test object 2 and arrives at an exit point 6b on the back 2b of the test object 2, ie the lower boundary surface.
  • the test object 2 has a parallel top 2a and back 2b; in particular, a film, i. H. biplanar, continue to be a concentric tube with a cylindrical top 2a and concentric cylindrical bottom 2b, so that the top 2a and bottom 2b each at the inlet 6a and the exit point 6b parallel to each other.
  • the measurement advantageously takes place in the plane formed by the normal N and the tube axis A, ie. H. a diametrical section plane.
  • the transmission beam 4 can advantageously be directed at the pipe axis A at the angle of incidence ⁇ .
  • the second partial reflection beam 4c is reflected back on the lower side 2b and first passes through the test object 2, in turn passes through the upper side 2a (under neglected attenuation here) and subsequently runs parallel to the first partial reflection beam 4a.
  • the partial reflection beams 4a and 4c together form the reflected radiation 7.
  • a closer examination shows that the partial beam 4b is refracted upon entry into the test object 2 according to the refractive index n of the material of the test object 2 down or to the normal, and the second partial reflection beam 4c then broken back on exit from the top 2a is made to be parallel to that of the first partial reflection beam 4a.
  • a receive line 8 allows a measurement of the signal amplitude
  • the receiving line 8 thus serves for locally resolved sensing of the signal amplitude S or the intensity of the radiation as a function of the position on an X-axis, which preferably runs parallel to the transmission beam 4.
  • the receiving line 8 according to the embodiment of FIG. 1 has a sensor 9 which can be displaced in the X direction.
  • the sensor 9 travels the X-axis in a relevant section at a speed v9 which is significantly greater than an adjustment speed v2 of the test object 2.
  • the measurement diagram of the signal amplitude S shown in FIG. 2 is obtained as a function of the x position.
  • an adjusting device 28 for adjusting the sensor 3 of FIG. 1 and receiving the signal amplitude S is a control and computing device 12 is provided.
  • the receiving line has a chain 18 or a linear array of such sensors 9, which are preferably arranged on a common circuit carrier.
  • the embodiment of Fig. 3 allows a static measurement over the x-axis. The measuring method can thus be reproduced by the flowchart of FIG. 4, with the steps:
  • step StO After a start in step StO:
  • St1 emitting radiation, in particular a transmission beam 4 in a microwave or terahertz wave range at a non-perpendicular angle of incidence ⁇ on a surface 2a of a test object 2
  • St2 measurement of the top 2a and after passing through the test object 2 on the bottom 2b of the test object 2 reflected partial reflection beams 4a, 4c as a function of a longitudinal position x, which is not parallel to the direction of exit Ro, in particular along the direction of incidence Ri of the emitted radiation 4 or perpendicular to the direction of exit of the reflected radiation 7,
  • St3 determination of maximum values x1, x2 of the measured reflected radiation 7, 4a, 4c and a signal distance dx of the maximum values x1, x2,
  • St4 determination of the layer thickness d or material thickness from at least the angle of incidence ⁇ and the signal distance dx, preferably additionally the refractive index is involved.
  • Fig. 6 shows a further embodiment in which the transmitter 3 is adjusted, for. B. is adjusted at the angle of incidence ⁇ and the signal amplitude S is measured as a function of the angle of incidence ⁇ and evaluated.
  • a transmission beam 4-1 can be emitted at time t1 at the angle of incidence a1, and the second partial reflection beam 4c-1 reflected on the rear side 2b can be measured, and
  • the first partial reflection beam 4a-2 reflected at the upper side 2a are measured.
  • the layer thickness d can again be determined for geometrical considerations. Furthermore, in Fig. 6 z. B. also the sensor can be pivoted about its axis to keep the sensitivity constant.
  • optical elements in the beam path, z. As mirror, alone or in addition to be adjusted.
  • the measuring device 1 When measuring a tube as the test object 2, the measuring device 1 with transmitter 3 and receiving line 4 can rotate about the tube axis A.
  • the measuring device 1 In the direction of the width of the film 2, d. H. In and out of the plane of Fig. 1, or there are several transmitters 3 and receive lines 8, 18 are provided side by side.
  • the measuring device 1 is particularly suitable for a continuous monitoring process in which the test object 2 in a conveying direction along the axis A, d. H. in particular also parallel to the upper side 2a, with a conveying speed (feed speed v2) and measured continuously with the measuring device 1.
  • a conveying device 10 for conveying the test object 2 is preferably additionally provided, as indicated in FIG.
  • Fig. 1 to 5 provide spatially or in the measuring direction x separate signals; also in Fig. 6, the signals are spatially separated.
  • z. B. in a monolayer tube in a measurement the first two interfaces and subsequently after passing through the tube, the rear two interfaces are detected so that the tube can be measured simultaneously on two opposite wall areas, according to multilayer pipes.
  • the survey can in particular directly after the preparation of the test object 2, z. B. after an extrusion process of a test object 2 made of plastic, in particular still be provided as part of the extrusion device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

L'invention concerne un procédé de mesure et un dispositif de mesure (1) destinés à mesurer un objet de test (2). Le dispositif de mesure comprend : un émetteur (3) destiné à émettre un rayonnement émis (4) dans une gamme micro-ondes ou térahertz à un angle d'incidence (a) non perpendiculaire à un côté supérieur (2a) d'un objet de test (2), une cellule de réception (8) destinée à mesurer à résolution spatiale une amplitude de signal (S) du rayonnement réfléchi (7), qui contient sur le côté supérieur (2a) et, après passage à travers l'objet de test (2), sur le côté inférieure (2b) de l'objet de test (2) des rayons de réflexion partielle réfléchis (4a, 4c), en fonction d'une direction de mesure (x) non parallèle à la direction de sortie du rayonnement réfléchi (7), un moyen de commande et de calcul (12) destiné à déterminer des valeurs maximales (x1, x2) à partir de l'amplitude de signal mesurée (S), déterminer un écart de signal (dx) des valeurs maximales (x1, x2) et calculer une épaisseur de matière (d) ou une épaisseur de couche au moins à partir de l'angle d'incidence (a) et de l'écart de signal (dx).
PCT/DE2017/100055 2016-01-28 2017-01-27 Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test WO2017129183A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17705783.3A EP3408609A1 (fr) 2016-01-28 2017-01-27 Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016101566.0 2016-01-28
DE102016101566.0A DE102016101566A1 (de) 2016-01-28 2016-01-28 Messverfahren und Messvorrichtung zum Ermitteln einer Materialdicke oder Schichtdicke eines Prüfobjektes

Publications (1)

Publication Number Publication Date
WO2017129183A1 true WO2017129183A1 (fr) 2017-08-03

Family

ID=58056935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100055 WO2017129183A1 (fr) 2016-01-28 2017-01-27 Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test

Country Status (3)

Country Link
EP (1) EP3408609A1 (fr)
DE (1) DE102016101566A1 (fr)
WO (1) WO2017129183A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243296A (zh) * 2019-06-21 2019-09-17 上海理工大学 珍珠珠层厚度的无损测量装置及方法
JP2019158744A (ja) * 2018-03-15 2019-09-19 Jfeエンジニアリング株式会社 変位計測装置および変位計測方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122965B4 (de) 2018-09-19 2021-10-14 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik THz-Messgerät und THz-Messverfahren zur Ermittlung von Fehlstellen in Messobjekten
DE102019125362A1 (de) * 2019-09-20 2021-03-25 Ima Schelling Deutschland Gmbh Verfahren zur Bestimmung einer unbestimmten Anzahl von plattenförmigen Erzeugnissen aus Holz oder Holzersatzstoffen
CN111536885B (zh) * 2020-06-02 2022-02-25 莱仪特太赫兹(天津)科技有限公司 一种双入射角度式太赫兹时域光谱涂层测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248552A1 (fr) * 1986-05-14 1987-12-09 Walter Roland Tole Appareil pour la détermination de l'épaisseur de matière
US20090314944A1 (en) * 2008-01-24 2009-12-24 Michael John Evans Terahertz investigative system and method
EP2752287A1 (fr) * 2013-01-02 2014-07-09 Proton Products International Limited Dispositif pour mesurer de produits industriels fabriqués avec des techniques d'extrusion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369766B2 (ja) * 2004-01-29 2009-11-25 新日本製鐵株式会社 表面検査装置
JP2013152220A (ja) * 2011-12-27 2013-08-08 Jfe Steel Corp 表面検査装置及び表面検査方法
JP2013228330A (ja) * 2012-04-26 2013-11-07 Jfe Steel Corp 膜厚測定装置および膜厚測定方法
EP2899499A1 (fr) * 2014-01-28 2015-07-29 ABB Technology AG Système de capteur pour caractériser un revêtement tel qu'un film de peinture par rayonnement THz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248552A1 (fr) * 1986-05-14 1987-12-09 Walter Roland Tole Appareil pour la détermination de l'épaisseur de matière
US20090314944A1 (en) * 2008-01-24 2009-12-24 Michael John Evans Terahertz investigative system and method
EP2752287A1 (fr) * 2013-01-02 2014-07-09 Proton Products International Limited Dispositif pour mesurer de produits industriels fabriqués avec des techniques d'extrusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158744A (ja) * 2018-03-15 2019-09-19 Jfeエンジニアリング株式会社 変位計測装置および変位計測方法
CN110243296A (zh) * 2019-06-21 2019-09-17 上海理工大学 珍珠珠层厚度的无损测量装置及方法

Also Published As

Publication number Publication date
DE102016101566A1 (de) 2017-08-03
EP3408609A1 (fr) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017129183A1 (fr) Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test
DE102015122205B4 (de) Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes
DE19960653B4 (de) Verfahren und Vorrichtung für die Detektion oder Lagebestimmung von Kanten
EP3443297B1 (fr) Dispositif de mesure térahertz pour la mesure d'objets à contrôler et procédé de mesure térahertz
DE102015205826B4 (de) Entfernungsmesssystem mit Lichtlaufzeitpixelzeile
EP2002281B1 (fr) Dispositif de mesure optique de distances
DE102004042466A1 (de) Vorrichtung und Verfahren zur optischen Distanzmessung
EP0472688A1 (fr) Procede et dispositif destines a detecter les feuilles de papier superposees
DE102017116492A1 (de) Verfahren zur Herstellung eines optoelektronischen Sensors
DE69900628T2 (de) Verfahren zum Bestimmen interferometrischer Dickenprofile eines bewegten Materials unter Beibehaltung seiner Flachheit
DE102016103298B4 (de) Terahertz-Messvorrichtung und ein Terahertz-Messverfahren zum Ermitteln mindestens einer Schichtdicke
DE102020109596B4 (de) Optoelektronischer Sensor mit Blende und Herstellungsverfahren dafür
EP1058087B1 (fr) Détermination de la position d'un bord avec des capteurs répartis par la détermination du point tournant
DE102011014518A1 (de) Verfahren und Vorrichtung zur Kalibrierung eines Sensors zur Materialdicken- bzw. flächengewichtsmessung
DE102017205331A1 (de) Dauerstrich-radar mit vibrationserkennung
EP3427004B1 (fr) Procédé et dispositif de mesure pour déterminer une épaisseur de couche d'une feuille en plastique
DE102006023971B4 (de) Optischer Sensor und Verfahren zum Nachweis von Personen, Tieren oder Gegenständen
DE102020120545A1 (de) THz-Messverfahren zur Ermittlung einer Materialeigenschaft eines Messobjektes
AT510605B1 (de) Vorrichtung und verfahren zur optischen messung zumindest einer dimension eines objektes mittels punktförmiger, divergenter lichtquellen
WO2016015833A1 (fr) Détection optique de défauts
DE4438014C2 (de) Vorrichtung zur Messung der Länge von bewegten Teilen
DE102018131362B4 (de) THz- Messvorrichtung und THz- Messverfahren zur Vermessung von geförderten Messobjekten
DE102013100809A1 (de) Verfahren zur Messung von optischen Eigenschaften an transparenten flexiblen Substraten
EP4193121B1 (fr) Procédé de mesure thz et dispositif de mesure thz pour mesurer un objet de mesure
DE102020132330B3 (de) THz-Sensor und THz-Messverfahren zum Vermessen eines Messobjektes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17705783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017705783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017705783

Country of ref document: EP

Effective date: 20180828