WO2017129183A1 - Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test - Google Patents
Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test Download PDFInfo
- Publication number
- WO2017129183A1 WO2017129183A1 PCT/DE2017/100055 DE2017100055W WO2017129183A1 WO 2017129183 A1 WO2017129183 A1 WO 2017129183A1 DE 2017100055 W DE2017100055 W DE 2017100055W WO 2017129183 A1 WO2017129183 A1 WO 2017129183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- test object
- layer
- transmitter
- radiation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
Definitions
- the invention relates to a measuring method and a measuring device for determining a layer thickness or material thickness of a test object, in particular of plastic.
- measurements with long-wave radiation in particular in the terahertz or microwave range, are known, in particular as transit time measurements.
- radiation is generally irradiated along an optical axis onto the measurement object, which is made of a material transparent to radiation, for.
- a material transparent to radiation for.
- plastic wherein the material for the radiation has a higher refractive index than air or vacuum.
- Such a material may in particular a plastic, further z.
- wood, ceramic or a fiber-reinforced material such as CFRP or GRP (carbon fiber reinforced plastic, glass fiber reinforced plastic) be.
- a portion of the incident radiation is reflected upon entry into the material layer, and another portion of the radiation entering the material layer is reflected at a subsequent interface, for example, a backside of the material layer upon transition to air.
- a subsequent interface for example, a backside of the material layer upon transition to air.
- measurement peaks of the signal amplitude of the radiation reflected at the interfaces can be recorded.
- the transmission beam is generally perpendicular to the
- Such layer thickness measurements can be carried out in particular to check the quality of a plastic object after its production, for. B. immediately after the production by the measurement object is transported at the end of a production line directly through the measuring device. Measurements of a specific material thickness, in particular with continuous guidance of the test object, generally require a specific bandwidth, the required bandwidth depending on the layer thickness to be determined.
- the generation of a transmission beam with sufficient intensity and suitable bandwidth is in the microwave and
- the invention has for its object to enable with little effort a safe measurement of a measured object and an accurate determination of a layer thickness.
- the measuring device according to the invention is provided in particular for carrying out the measuring method according to the invention, and the measuring method according to the invention is carried out in particular with use or using the measuring device according to the invention.
- a measurement thus takes place with non-perpendicular incidence of the radiation on the surface of the layer of the test object, and a subsequent measurement of the reflected partial beams.
- the partial beams reflected at the top and bottom of the layer are offset from one another along the direction of incidence.
- these reflected partial beams extend with a lateral offset or offset in the direction perpendicular to the exit direction.
- the different partial beams can thus be measured.
- the partial beams of a fixed transmission beam i. with a fixed transmitter
- a measurement of the emitted radiation over a distance in the geometric direction is possible.
- the geometric direction is a lateral direction, in particular on the exit side (failure side), i. Direction, or on the incidence side an adjustment angle. This makes it possible to determine the two reflected partial beams as measurement peaks or signal peaks of the signal amplitude.
- the local or lateral measurement perpendicular to the failure direction can be achieved by different configurations.
- one sensor or several sensors can be moved continuously in the lateral direction (measuring direction), in particular at a significantly higher speed than a forward speed of the test object.
- a sensor chain or a linear array of adjacent sensors can be used, ie a static arrangement of the detector device or the receiving line.
- corresponding detectors can be made small and arranged side by side on a circuit carrier.
- the layer thickness can subsequently be determined by geometric considerations in which the angle of incidence and the locally resolved signal width, ie the local or lateral distance of the measurement peaks, can be used.
- the refractive index of the material of the layer of the test object can be used in these geometric investigations.
- the transmission beam can also be adjusted, for. B. by adjusting, in particular pivoting or tilting of the transmitter, or z. B. by an introduced into the beam path adjustable optical element, for. B. a mirror.
- the sensor can thus remain fixed or can also be swiveled.
- z. B. modulated, non-modulated, phase modulated, amplitude modulated or z. B. pulsed radiation can be used.
- measurements of a layer thickness measurements of several layers are possible.
- Undesired multiple reflections can be easily recognized as weaker peaks with a larger signal distance and will thus advantageously not be used for further determination.
- an optic can be used, for. B. in the beam path of the emitted radiation for focusing or focusing, and / or in the beam path of the reflected radiation for fanning and higher resolution of the measurement.
- FIG. 1 shows a measuring device for determining a layer thickness of a measuring object according to an embodiment
- FIG. 2 shows a measuring diagram of the sensor, which shows the signal amplitude as a function of the position along the measuring direction x (lateral adjustment direction);
- FIG. 3 shows a measuring device for determining a layer thickness of a measurement object according to a further embodiment.
- Fig. 5 is a representation corresponding to Figure 1, taking into account the refraction at the surface.
- Fig. 6 shows another embodiment with adjustable transmitter and fixed sensor;
- a measuring device 1 is used for measuring a layer thickness d of a layer 2c of a test object 2.
- the test object is formed only by the layer 2c, so that the test object can be viewed directly here, but multi-layer systems are also possible.
- the measuring device 1 has a transmitter 3, the electromagnetic radiation as transmission beam 4 in the frequency range of z. B. 10 GHz to 10 THz, in particular 10 GHz to 3 THz, d. H. in the radar range, microwave range or terahertz range.
- the test object 2 or its layer 2c consists of an electrically non-conductive material, in particular a plastic, possibly also of z. As ceramics or paper.
- the transmission beam 4 can advantageously be focused or focused by means of a suitable optical system of the transmitter 8.
- a diaphragm for forming a sufficiently thin transmission beam 4 may also be provided.
- the remaining partial beam 4b with the majority of the intensity subsequently enters the test object 2 and arrives at an exit point 6b on the back 2b of the test object 2, ie the lower boundary surface.
- the test object 2 has a parallel top 2a and back 2b; in particular, a film, i. H. biplanar, continue to be a concentric tube with a cylindrical top 2a and concentric cylindrical bottom 2b, so that the top 2a and bottom 2b each at the inlet 6a and the exit point 6b parallel to each other.
- the measurement advantageously takes place in the plane formed by the normal N and the tube axis A, ie. H. a diametrical section plane.
- the transmission beam 4 can advantageously be directed at the pipe axis A at the angle of incidence ⁇ .
- the second partial reflection beam 4c is reflected back on the lower side 2b and first passes through the test object 2, in turn passes through the upper side 2a (under neglected attenuation here) and subsequently runs parallel to the first partial reflection beam 4a.
- the partial reflection beams 4a and 4c together form the reflected radiation 7.
- a closer examination shows that the partial beam 4b is refracted upon entry into the test object 2 according to the refractive index n of the material of the test object 2 down or to the normal, and the second partial reflection beam 4c then broken back on exit from the top 2a is made to be parallel to that of the first partial reflection beam 4a.
- a receive line 8 allows a measurement of the signal amplitude
- the receiving line 8 thus serves for locally resolved sensing of the signal amplitude S or the intensity of the radiation as a function of the position on an X-axis, which preferably runs parallel to the transmission beam 4.
- the receiving line 8 according to the embodiment of FIG. 1 has a sensor 9 which can be displaced in the X direction.
- the sensor 9 travels the X-axis in a relevant section at a speed v9 which is significantly greater than an adjustment speed v2 of the test object 2.
- the measurement diagram of the signal amplitude S shown in FIG. 2 is obtained as a function of the x position.
- an adjusting device 28 for adjusting the sensor 3 of FIG. 1 and receiving the signal amplitude S is a control and computing device 12 is provided.
- the receiving line has a chain 18 or a linear array of such sensors 9, which are preferably arranged on a common circuit carrier.
- the embodiment of Fig. 3 allows a static measurement over the x-axis. The measuring method can thus be reproduced by the flowchart of FIG. 4, with the steps:
- step StO After a start in step StO:
- St1 emitting radiation, in particular a transmission beam 4 in a microwave or terahertz wave range at a non-perpendicular angle of incidence ⁇ on a surface 2a of a test object 2
- St2 measurement of the top 2a and after passing through the test object 2 on the bottom 2b of the test object 2 reflected partial reflection beams 4a, 4c as a function of a longitudinal position x, which is not parallel to the direction of exit Ro, in particular along the direction of incidence Ri of the emitted radiation 4 or perpendicular to the direction of exit of the reflected radiation 7,
- St3 determination of maximum values x1, x2 of the measured reflected radiation 7, 4a, 4c and a signal distance dx of the maximum values x1, x2,
- St4 determination of the layer thickness d or material thickness from at least the angle of incidence ⁇ and the signal distance dx, preferably additionally the refractive index is involved.
- Fig. 6 shows a further embodiment in which the transmitter 3 is adjusted, for. B. is adjusted at the angle of incidence ⁇ and the signal amplitude S is measured as a function of the angle of incidence ⁇ and evaluated.
- a transmission beam 4-1 can be emitted at time t1 at the angle of incidence a1, and the second partial reflection beam 4c-1 reflected on the rear side 2b can be measured, and
- the first partial reflection beam 4a-2 reflected at the upper side 2a are measured.
- the layer thickness d can again be determined for geometrical considerations. Furthermore, in Fig. 6 z. B. also the sensor can be pivoted about its axis to keep the sensitivity constant.
- optical elements in the beam path, z. As mirror, alone or in addition to be adjusted.
- the measuring device 1 When measuring a tube as the test object 2, the measuring device 1 with transmitter 3 and receiving line 4 can rotate about the tube axis A.
- the measuring device 1 In the direction of the width of the film 2, d. H. In and out of the plane of Fig. 1, or there are several transmitters 3 and receive lines 8, 18 are provided side by side.
- the measuring device 1 is particularly suitable for a continuous monitoring process in which the test object 2 in a conveying direction along the axis A, d. H. in particular also parallel to the upper side 2a, with a conveying speed (feed speed v2) and measured continuously with the measuring device 1.
- a conveying device 10 for conveying the test object 2 is preferably additionally provided, as indicated in FIG.
- Fig. 1 to 5 provide spatially or in the measuring direction x separate signals; also in Fig. 6, the signals are spatially separated.
- z. B. in a monolayer tube in a measurement the first two interfaces and subsequently after passing through the tube, the rear two interfaces are detected so that the tube can be measured simultaneously on two opposite wall areas, according to multilayer pipes.
- the survey can in particular directly after the preparation of the test object 2, z. B. after an extrusion process of a test object 2 made of plastic, in particular still be provided as part of the extrusion device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
L'invention concerne un procédé de mesure et un dispositif de mesure (1) destinés à mesurer un objet de test (2). Le dispositif de mesure comprend : un émetteur (3) destiné à émettre un rayonnement émis (4) dans une gamme micro-ondes ou térahertz à un angle d'incidence (a) non perpendiculaire à un côté supérieur (2a) d'un objet de test (2), une cellule de réception (8) destinée à mesurer à résolution spatiale une amplitude de signal (S) du rayonnement réfléchi (7), qui contient sur le côté supérieur (2a) et, après passage à travers l'objet de test (2), sur le côté inférieure (2b) de l'objet de test (2) des rayons de réflexion partielle réfléchis (4a, 4c), en fonction d'une direction de mesure (x) non parallèle à la direction de sortie du rayonnement réfléchi (7), un moyen de commande et de calcul (12) destiné à déterminer des valeurs maximales (x1, x2) à partir de l'amplitude de signal mesurée (S), déterminer un écart de signal (dx) des valeurs maximales (x1, x2) et calculer une épaisseur de matière (d) ou une épaisseur de couche au moins à partir de l'angle d'incidence (a) et de l'écart de signal (dx).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17705783.3A EP3408609A1 (fr) | 2016-01-28 | 2017-01-27 | Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016101566.0 | 2016-01-28 | ||
DE102016101566.0A DE102016101566A1 (de) | 2016-01-28 | 2016-01-28 | Messverfahren und Messvorrichtung zum Ermitteln einer Materialdicke oder Schichtdicke eines Prüfobjektes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017129183A1 true WO2017129183A1 (fr) | 2017-08-03 |
Family
ID=58056935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2017/100055 WO2017129183A1 (fr) | 2016-01-28 | 2017-01-27 | Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3408609A1 (fr) |
DE (1) | DE102016101566A1 (fr) |
WO (1) | WO2017129183A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110243296A (zh) * | 2019-06-21 | 2019-09-17 | 上海理工大学 | 珍珠珠层厚度的无损测量装置及方法 |
JP2019158744A (ja) * | 2018-03-15 | 2019-09-19 | Jfeエンジニアリング株式会社 | 変位計測装置および変位計測方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018122965B4 (de) | 2018-09-19 | 2021-10-14 | INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik | THz-Messgerät und THz-Messverfahren zur Ermittlung von Fehlstellen in Messobjekten |
DE102019125362A1 (de) * | 2019-09-20 | 2021-03-25 | Ima Schelling Deutschland Gmbh | Verfahren zur Bestimmung einer unbestimmten Anzahl von plattenförmigen Erzeugnissen aus Holz oder Holzersatzstoffen |
CN111536885B (zh) * | 2020-06-02 | 2022-02-25 | 莱仪特太赫兹(天津)科技有限公司 | 一种双入射角度式太赫兹时域光谱涂层测量方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0248552A1 (fr) * | 1986-05-14 | 1987-12-09 | Walter Roland Tole | Appareil pour la détermination de l'épaisseur de matière |
US20090314944A1 (en) * | 2008-01-24 | 2009-12-24 | Michael John Evans | Terahertz investigative system and method |
EP2752287A1 (fr) * | 2013-01-02 | 2014-07-09 | Proton Products International Limited | Dispositif pour mesurer de produits industriels fabriqués avec des techniques d'extrusion |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4369766B2 (ja) * | 2004-01-29 | 2009-11-25 | 新日本製鐵株式会社 | 表面検査装置 |
JP2013152220A (ja) * | 2011-12-27 | 2013-08-08 | Jfe Steel Corp | 表面検査装置及び表面検査方法 |
JP2013228330A (ja) * | 2012-04-26 | 2013-11-07 | Jfe Steel Corp | 膜厚測定装置および膜厚測定方法 |
EP2899499A1 (fr) * | 2014-01-28 | 2015-07-29 | ABB Technology AG | Système de capteur pour caractériser un revêtement tel qu'un film de peinture par rayonnement THz |
-
2016
- 2016-01-28 DE DE102016101566.0A patent/DE102016101566A1/de not_active Ceased
-
2017
- 2017-01-27 WO PCT/DE2017/100055 patent/WO2017129183A1/fr active Application Filing
- 2017-01-27 EP EP17705783.3A patent/EP3408609A1/fr not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0248552A1 (fr) * | 1986-05-14 | 1987-12-09 | Walter Roland Tole | Appareil pour la détermination de l'épaisseur de matière |
US20090314944A1 (en) * | 2008-01-24 | 2009-12-24 | Michael John Evans | Terahertz investigative system and method |
EP2752287A1 (fr) * | 2013-01-02 | 2014-07-09 | Proton Products International Limited | Dispositif pour mesurer de produits industriels fabriqués avec des techniques d'extrusion |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158744A (ja) * | 2018-03-15 | 2019-09-19 | Jfeエンジニアリング株式会社 | 変位計測装置および変位計測方法 |
CN110243296A (zh) * | 2019-06-21 | 2019-09-17 | 上海理工大学 | 珍珠珠层厚度的无损测量装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102016101566A1 (de) | 2017-08-03 |
EP3408609A1 (fr) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017129183A1 (fr) | Procédé de mesure et dispositif de mesure pour determiner un épaisseur de matière ou une épaisseur de couche d'un objet de test | |
DE102015122205B4 (de) | Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes | |
DE19960653B4 (de) | Verfahren und Vorrichtung für die Detektion oder Lagebestimmung von Kanten | |
EP3443297B1 (fr) | Dispositif de mesure térahertz pour la mesure d'objets à contrôler et procédé de mesure térahertz | |
DE102015205826B4 (de) | Entfernungsmesssystem mit Lichtlaufzeitpixelzeile | |
EP2002281B1 (fr) | Dispositif de mesure optique de distances | |
DE102004042466A1 (de) | Vorrichtung und Verfahren zur optischen Distanzmessung | |
EP0472688A1 (fr) | Procede et dispositif destines a detecter les feuilles de papier superposees | |
DE102017116492A1 (de) | Verfahren zur Herstellung eines optoelektronischen Sensors | |
DE69900628T2 (de) | Verfahren zum Bestimmen interferometrischer Dickenprofile eines bewegten Materials unter Beibehaltung seiner Flachheit | |
DE102016103298B4 (de) | Terahertz-Messvorrichtung und ein Terahertz-Messverfahren zum Ermitteln mindestens einer Schichtdicke | |
DE102020109596B4 (de) | Optoelektronischer Sensor mit Blende und Herstellungsverfahren dafür | |
EP1058087B1 (fr) | Détermination de la position d'un bord avec des capteurs répartis par la détermination du point tournant | |
DE102011014518A1 (de) | Verfahren und Vorrichtung zur Kalibrierung eines Sensors zur Materialdicken- bzw. flächengewichtsmessung | |
DE102017205331A1 (de) | Dauerstrich-radar mit vibrationserkennung | |
EP3427004B1 (fr) | Procédé et dispositif de mesure pour déterminer une épaisseur de couche d'une feuille en plastique | |
DE102006023971B4 (de) | Optischer Sensor und Verfahren zum Nachweis von Personen, Tieren oder Gegenständen | |
DE102020120545A1 (de) | THz-Messverfahren zur Ermittlung einer Materialeigenschaft eines Messobjektes | |
AT510605B1 (de) | Vorrichtung und verfahren zur optischen messung zumindest einer dimension eines objektes mittels punktförmiger, divergenter lichtquellen | |
WO2016015833A1 (fr) | Détection optique de défauts | |
DE4438014C2 (de) | Vorrichtung zur Messung der Länge von bewegten Teilen | |
DE102018131362B4 (de) | THz- Messvorrichtung und THz- Messverfahren zur Vermessung von geförderten Messobjekten | |
DE102013100809A1 (de) | Verfahren zur Messung von optischen Eigenschaften an transparenten flexiblen Substraten | |
EP4193121B1 (fr) | Procédé de mesure thz et dispositif de mesure thz pour mesurer un objet de mesure | |
DE102020132330B3 (de) | THz-Sensor und THz-Messverfahren zum Vermessen eines Messobjektes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17705783 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017705783 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017705783 Country of ref document: EP Effective date: 20180828 |