WO2017129081A1 - 一种帧格式配置方法、装置和系统 - Google Patents

一种帧格式配置方法、装置和系统 Download PDF

Info

Publication number
WO2017129081A1
WO2017129081A1 PCT/CN2017/072095 CN2017072095W WO2017129081A1 WO 2017129081 A1 WO2017129081 A1 WO 2017129081A1 CN 2017072095 W CN2017072095 W CN 2017072095W WO 2017129081 A1 WO2017129081 A1 WO 2017129081A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame format
terminal device
configuration
format configuration
information
Prior art date
Application number
PCT/CN2017/072095
Other languages
English (en)
French (fr)
Inventor
马小骏
龚政委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017129081A1 publication Critical patent/WO2017129081A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a frame format configuration method, apparatus, and system.
  • uplink and downlink transmissions occupy different time periods, such as time slots or subframes.
  • uplink and downlink transmissions occupy different subframes to avoid interference between transceiver channels.
  • a radio frame In a TDD LTE system, a radio frame includes 10 subframes, and is configured as an uplink subframe, a downlink subframe, or a special subframe according to the subframe.
  • a radio frame may have multiple frame format configurations, which is called an uplink-downlink ratio. (Uplink-downlink configuration).
  • Uplink-downlink configuration the TDD LTE protocol has defined seven frame format configurations listed in Table 1, where "D" represents a downlink subframe, "S” represents a special subframe, and "U" represents an uplink subframe.
  • each cell uses a cell-specific frame format configuration, that is, all terminal devices in a cell are transmitted according to a specific frame format configuration of the cell, and the implementation manner is not flexible enough.
  • the embodiment of the invention provides a frame format configuration method, device and system, which are used to provide a flexible frame format configuration scheme.
  • an embodiment of the present invention provides a frame format configuration method, including:
  • the network device determines configuration information for a frame format configuration of the terminal device, and sends configuration information for a frame format configuration of the terminal device to the terminal device, where the frame format configuration includes each uplink subframe and each downlink in one radio frame a subframe and a location of each special subframe in the radio frame;
  • the terminal device determines, according to the received configuration information, a frame format configuration used by the terminal device.
  • a scheme for separately configuring a frame format for different terminal devices is provided, which is more flexible in implementation.
  • the network device supports full-duplex operation, and can perform uplink transmission to one terminal device, and can receive uplink transmission of another terminal device, and perform different frame format configurations for different terminal devices, according to the actual uplink and downlink of the cell.
  • the transmission requirements are flexibly configured to avoid the waste of transmission resources caused by partial uplink subframes when the downlink transmission demand is large, or when some uplink subframes are idle, which can improve the overall throughput of the cell and improve The utilization rate of the cell transmission resources.
  • the configuration information includes: identifier information configured for a frame format of the terminal device; or
  • the configuration information includes: first information indicating a location of a special subframe in a radio frame, and indicating a number of subframes of one or consecutive uplink subframes after a special subframe in one radio frame. Second information; or
  • the configuration information includes: first information indicating a location of a special subframe in a radio frame, and indicating a number of subframes of one or consecutive consecutive downlink subframes before a special subframe in one radio frame. Third information; or
  • the configuration information includes: fourth information for indicating a difference in frame format configuration for the terminal device with respect to a preset frame format configuration.
  • the configuration information includes fourth information for indicating a difference in frame format configuration of the terminal device with respect to a preset frame format configuration
  • the method further includes:
  • the terminal device determines the preset frame format configuration according to the received fifth information.
  • the terminal device can be reduced for indicating The number of information bits of the configuration information of the frame format configuration.
  • the frame format configured for the terminal device is:
  • the frame format configuration used by the terminal device in one cell is the frame format configuration used by the terminal device in one cell.
  • the frame format of each subframe in each radio frame is added with N and the P format is configured and preset.
  • the frame format is the same, N is an integer, and P is the number of subframes included in a radio frame.
  • the terminal device determines an uplink-downlink mapping relationship used by the terminal device according to the preset frame format configuration.
  • a method for determining an uplink-downlink mapping relationship by a terminal device is provided.
  • an embodiment of the present invention provides a terminal device, where the terminal device has a function of implementing behavior of a terminal device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal device includes a processor and a receiver, and the processor is configured to support the terminal device to perform a corresponding function in the foregoing method.
  • the receiver is configured to receive the message or data involved in the foregoing method from the network device, and further, the terminal device may further include a transmitter, configured to send data or a message to the network device;
  • a memory is included for coupling with a processor that holds program instructions and data necessary for the terminal device.
  • an embodiment of the present invention provides a network device, where the network device has a function of implementing network device behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a transmitter configured to support the network device to send the message or data involved in the foregoing method to the terminal device, where the processor is configured to support the network device to perform the foregoing.
  • the network device may further include a receiver for receiving a message or data sent by the terminal device, and a memory for coupling with the processor, which stores program instructions and data necessary for the network device.
  • an embodiment of the present invention provides a wireless communication system, where the wireless communication system includes the terminal device and the network device according to any one of the first to third aspects.
  • the embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use in a terminal device according to any one of the first to fourth aspects, comprising The program designed.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions for use in the network device of any of the first to fourth aspects, comprising Aspect of the program designed.
  • FIG. 1 is a schematic diagram of uplink and downlink transmission in a Frequency Division Duplexing (FDD) LTE system
  • FIG. 2 is a schematic diagram of uplink and downlink transmission in a TDD LTE system
  • FIG. 3 is a schematic structural diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of interaction between a network device and a terminal device in a wireless communication system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an alternative implementation manner of the terminal device shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an alternative implementation of the network device shown in FIG. 7.
  • the network device sends configuration information for the frame format configuration of the terminal device to a terminal device, and the terminal device determines the frame format configuration used by the terminal device according to the received configuration information.
  • the network device supports full-duplex, and can perform uplink transmission to one terminal device, and can receive uplink transmission of another terminal device, and perform different frame format configuration for different terminal devices, according to the cell.
  • the actual uplink and downlink transmission requirements are flexibly configured to avoid the waste of transmission resources caused by partial downlink subframes when the downlink transmission demand is large, or when some uplink subframes are idle, which can improve the overall cell. Throughput, improve the utilization of cell transmission resources.
  • the terminal device can determine the uplink and downlink mapping relationship used by the terminal device according to the preset frame format configuration, so that the data transmission and feedback can be correctly performed under a specific frame format configuration.
  • the interference processing capability limited by a communication device requires that one communication device cannot be on the same wireless resource (for example, time-frequency resources in an LTE system). Simultaneous transmission and reception, otherwise serious interference will occur between the transmitted signal and the received signal, greatly reducing the communication quality.
  • the same communication device receives and transmits at different frequency points respectively; and TDD duplex is adopted.
  • the same communication device receives and transmits at different times.
  • Some network devices can support transmission and reception at the same frequency point and at the same time. This duplex mode is called "all. Duplex" way.
  • the spectrum efficiency is doubled compared to the duplex mode that only supports transmission or reception at the same frequency and at the same time.
  • the network device supports full duplex, that is, the network device can receive and transmit at the same time and at the same frequency point.
  • each subframe of a radio frame if a network device can simultaneously receive and transmit at the same moment and the same frequency point on one subframe, we refer to such a subframe as a "full duplex subframe.”
  • base station-based scheduling implements base station and user equipment (User Equipment, Uplink and downlink data transmission between UEs.
  • base station and user equipment User Equipment, Uplink and downlink data transmission between UEs.
  • the uplink and downlink transmission adopts Hybrid Automatic Repeat ReQuest (HARQ), and the receiver feeds back the reception result to the sender according to the reception condition. If the received data is successfully decoded, the acknowledgement (ACKnowledgement, ACK) is obtained. If the received data fails to be decoded, the feedback is not acknowledged (Non ACKnowledgement, NACK), and the transmission is initiated after the NACK is received.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the base station For the downlink data transmission, the base station sends a downlink scheduling instruction on the physical downlink control channel (PDCCH) to instruct the terminal device to receive the downlink data, and the terminal device sends the downlink data in a downlink subframe and then transmits the uplink data in the uplink subframe.
  • the acknowledgement information for the received downlink data such as HARQ-ACK, includes the aforementioned ACK and NACK.
  • the base station For the uplink data transmission, the base station sends an uplink scheduling instruction on the PDCCH to instruct the terminal device to send the uplink data, and the terminal device sends the uplink data in one uplink subframe, and receives the acknowledgement information of the base station in the subsequent downlink subframe.
  • the PDCCH may also carry power control instructions and the like.
  • the transmission of the above data and instructions is based on a certain timing relationship.
  • the timing relationship is defined in the protocol, which is called "uplink and downlink mapping relationship".
  • the uplink and downlink mapping relationship may include:
  • PUSCH Physical Uplink Shared CHannel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PDSCH Physical Downlink Shared CHannel
  • the uplink power control subframe number corresponding to the PDCCH power control command is the uplink power control subframe number corresponding to the PDCCH power control command.
  • the uplink-downlink mapping relationship is defined in the form of a table, for example, by means of a table in the 3rd Generation Partnership Project (3GPP) Technical Specification (TS) 36.213.
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • Table 10.1.3.1-1 of TS36.213 defines the timing relationship between PDSCH and HARQ-ACK, with specific reference to Table 2A below.
  • the third row to the ninth row in Table 2A is the row from the beginning to the last row of the uplink-downlink ratio of 0, and the set of numbers in the second column to the last column is K: ⁇ k 0 , k 1 ,... k M-1 ⁇ , M represents the number of elements in the set K.
  • K ⁇ k 0 , k 1 , ... k M-1 ⁇ indicates that the HARQ-ACK transmitted on the corresponding uplink subframe n is used for transmitting on the PDSCH for the feedback subframe nk i , 0 ⁇ i ⁇ M-1 The reception of downlink data.
  • the downlink PDSCH of the -6 subframe is used to feed back the downlink data on these PDSCHs.
  • Table 5.1.1.1-1 of TS36.213 defines the timing relationship between the PDCCH power control command and the uplink power control subframe number. For details, refer to Table 2B below.
  • the numbers in the second column to the last column in the second row to the eighth row are K PUSCH , indicating that the power control instruction on the PDCCH transmitted on the subframe iK PUSCH of the column in the column is used to control the subframe i.
  • the transmit power of the PUSCH is K PUSCH , indicating that the power control instruction on the PDCCH transmitted on the subframe iK PUSCH of the column in the column is used to control the subframe i.
  • the transmit power of the PUSCH The transmit power of the PUSCH.
  • Table 8.3-1 of TS36.213 defines the mapping relationship between the PUSCH and the PHICH where the corresponding downlink acknowledgement information is located. For details, refer to Table 2C below.
  • the second column ie, the row with the uplink-downlink ratio of 0
  • k represents the PHICH on the subframe i of the column in which it is located.
  • the HARQ-ACK is used to feedback the reception of the PUSCH transmitted on the subframe ik.
  • Table 8-2 of TS36.213 defines the mapping relationship between the PDCCH uplink scheduling instruction and the scheduled PUSCH, with specific reference to Table 2D below.
  • the second column ie, the row with the uplink-downlink ratio of 0
  • k represents the PDCCH on the subframe n of the column in the column
  • An uplink scheduling instruction is used to schedule the terminal device to send the PUSCH on the subframe n+k.
  • the terminal device after determining the frame format configuration of the terminal device, the terminal device also needs to determine the uplink-downlink mapping relationship, so that the uplink and downlink data transmission can be performed.
  • system and “network” are often used interchangeably in embodiments of the invention.
  • the term “and/or” in the embodiment of the present invention is merely an association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist simultaneously. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 3 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system includes: a network device 301 and a terminal device 302. Within a cell coverage area managed by the network device 301, one or more terminal devices 302 may exist. If multiple terminal devices 302 exist, The frame format configurations used by the plurality of terminal devices 302 can vary.
  • the network device 301 within the coverage of a cell under the jurisdiction of the network device 301, there are three terminal devices 302, two of which adopt frame format configuration 1 and the other adopts frame format configuration 2.
  • This and the past wireless communication system The configuration of the frame format is different. In the conventional wireless communication system, all the terminal devices are configured in the same frame format in one cell, and different terminal devices 302 in one cell in the embodiment of the present invention are not different. The case of the frame format configuration.
  • different terminal devices in a cell are configured in different frame formats, which is more flexible in implementation and can also provide utilization of transmission resources of the entire cell.
  • the communication system of the wireless communication system shown in FIG. 3 includes but is not limited to: Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA) IS-95, and code division multiple access.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • 2000 Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE-advanced Personal Handy-phone System
  • WiFi Wireless Fidelity
  • 802.11 series of protocols Worldwide Interoperability for Microwave Access (WiMAX)
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • future evolutions A wireless communication system.
  • the terminal device 302 may be a wireless terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a Remote Terminal.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the network device 301 may include a base station, or a radio resource management device for controlling the base station, or include a base station and a radio resource management device for controlling the base station; wherein the base station may be a macro station or a small station, such as a small cell.
  • the base station may also be a home base station, such as a Home NodeB (HNB), a Home eNodeB (HeNB), etc., and the base station may also include a relay node. Wait.
  • HNB Home NodeB
  • HeNB Home eNodeB
  • the network device 301 in the wireless communication system may be an evolved Node B (eNodeB), and the terminal device 302 may be a UE;
  • the TD-SCDMA system or the WCDMA system the network device 301 in the wireless communication system provided by the embodiment of the present invention may include: a Node B (NodeB) and/or a Radio Network Controller (RNC), and the terminal device 302 may be
  • the network device 301 provided by the embodiment of the present invention may include a Base Transceiver Station (BTS) and/or a Base Station Controller (BSC), and the terminal device 302 is a mobile station ( Mobile Station, MS); for WiFi systems, the network
  • the network device 301 may include an access point (AP) and/or an access controller (AC), and the terminal device 302 may be a station (STAtion, STA).
  • AP access point
  • AC access controller
  • STAtion station
  • FIG. 4 shows a flow diagram of interaction between network device 301 and terminal device 302. As shown in FIG. 4, the process includes the following steps:
  • the network device 301 broadcasts configuration information of a frame format configuration in a cell under its jurisdiction;
  • a terminal device 302 in the cell receives the configuration information of the frame format configuration broadcasted by the network device 301, and determines the frame format configuration according to the configuration information, and configures the access cell according to the determined frame format.
  • the network device 301 determines configuration information configured for a frame format of the terminal device 302;
  • the frame format configuration for the terminal device 302 may be the same as or different from the frame format broadcasted in step S401. However, for the terminal device 302, the frame format configuration may be different from that for other terminal devices 302, where one
  • the frame format configuration of the terminal device 302 is referred to as "dedicated frame format configuration";
  • the network device 301 sends the determined configuration information for the dedicated frame format configuration of the terminal device 302 to the terminal device 302;
  • the terminal device 302 receives the configuration information, and determines a dedicated frame format configuration used by the terminal device according to the received configuration information.
  • the network device 301 and the terminal device 302 perform communication according to a dedicated frame format configuration of the terminal device 302.
  • the network device 301 broadcasts configuration information of a frame format configuration in a cell under its jurisdiction, and the frame format configuration may be referred to as “common frame format configuration”;
  • This step can be implemented by means of a broadcast frame format configuration in various current wireless communication systems.
  • the frame format configuration can be delivered by using a broadcast system message.
  • the network device 301 can indicate the frame format configuration through a subframe allocation (subframeAssignment) field.
  • the terminal device 302 is configured according to the received frame format to access the cell.
  • This step can also be implemented by means of the terminal device 302 in various wireless communication systems currently accessing the cell.
  • the terminal device 302 can initiate a random access procedure to access the cell.
  • the network device 301 can establish a dedicated radio resource control (RRC) connection.
  • RRC radio resource control
  • the network device 301 can perform step S404.
  • the dedicated RRC signaling transmits configuration information for the dedicated frame format configuration of the terminal device 302 to the terminal device 302.
  • the network device 301 may notify the terminal device 302 through the physical layer downlink control signaling, such as PDCCH signaling, configuration information configured for the dedicated frame format of the terminal device 302 after the terminal device 302 accesses the cell.
  • the physical layer downlink control signaling such as PDCCH signaling
  • the network device 301 may notify the terminal device 302 through the Medium Access Control (MAC) layer signaling after the terminal device 302 accesses the cell, and configure configuration information for the dedicated frame format of the terminal device 302. .
  • MAC Medium Access Control
  • the network device 301 determines configuration information for a frame format configuration of the terminal device 302, which may be referred to as a "dedicated frame format configuration" since it is for one terminal device 302.
  • the network device 301 can determine a dedicated frame format configuration for the terminal device 302, and determine configuration information indicating the dedicated frame format configuration according to the determined dedicated frame format configuration.
  • the frame format configuration includes: bits of various subframes in the radio frame in the radio frame Set.
  • the frame format configuration indicates the position of each uplink subframe and each downlink subframe in the radio frame in one radio frame.
  • the frame format configuration indicates the position of each uplink subframe, each downlink subframe, and the special subframe in the radio frame in one radio frame.
  • the subframe type may further include a subframe for performing D2D transmission.
  • D2D Device to Device
  • the uplink subframe indicates a subframe that is only used for uplink transmission, where uplink transmission refers to transmission from the terminal device 302 to the network device 301.
  • the downlink subframe indicates a subframe used only for downlink transmission, where downlink transmission refers to transmission from the network device 301 to the terminal device 302;
  • a subframe for performing D2D transmission refers to a subframe used when transmitting between two terminal devices 302;
  • a special subframe refers to a subframe used for downlink to uplink handover, such as an S subframe in an LTE system.
  • a cell under the jurisdiction of the network device 301 may have one carrier, which may be referred to as a "single-carrier cell”, or have multiple carriers, which may be referred to as a “multi-carrier cell.”
  • the dedicated frame format configuration may be a frame format configuration used by the terminal device 302 on one of the plurality of carriers; or a frame format configuration used by the terminal device 302 on all carriers within a cell.
  • the network device 301 can implement frame format configuration for different carriers separately, compared with the latter case. That is, different carriers in one cell have the same frame format configuration, which is more flexible.
  • full-duplex transmission capabilities can be obtained on these multiple carriers by configuring a dedicated frame format configuration for the terminal devices 302 on multiple carriers.
  • the network device 301 may generate configuration information indicating the frame format configuration.
  • the configuration information may respectively indicate the type of each subframe in a radio frame, and may also be indicated by some abbreviated methods, as long as the terminal device 302 can explicitly determine various subframes in a radio frame according to the received configuration information. The location is fine.
  • the configuration information includes identification information configured for a dedicated frame format of the terminal device 302.
  • the correspondence between the various dedicated frame format configurations and the identification information of each dedicated frame format configuration may be specified in the protocol in advance, similar to Table 1.
  • the specified frame format configuration may not be limited to the seven types shown in Table 1, and a richer frame format configuration may be defined to meet the transmission requirements of different terminal devices 302.
  • the network device 301 determines the identification information corresponding to the frame format configuration specified in the protocol, similar to the first column “0 to 6” in Table 1, and identifies the identifier.
  • the information is sent to the terminal device 302 as configuration information configured in a frame format.
  • the terminal device 302 may determine a frame format configuration corresponding to the identifier information according to the protocol, and further determine a dedicated frame format configuration used by the terminal device 302.
  • the configuration information includes: first information indicating a location of a special subframe in a radio frame, and is used for Second information indicating the number of subframes of one or a plurality of consecutive uplink subframes after a special subframe in one radio frame.
  • the first information is S_New_i, which indicates the subframe number of one or more special subframes in a radio frame. If the subframe number ranges from 0 to 9, according to the current TDD LTE system, The value range of S_New_i can be set to a non-negative integer.
  • the second information is Ni, indicating how many uplink subframes are consecutive after a special subframe, and other subframes except the uplink subframe and the special subframe are downlink subframes in the radio frame.
  • the first column is the reference number of the uplink-downlink ratio of the frame format configuration defined in the current TDD LTE protocol, and indicates the subsequent frame format configuration for the terminal device 302, which is a frame defined based on the previous protocol.
  • the format configuration is generated.
  • the information of the uplink-downlink ratio corresponding to the frame format configured by the protocol may be carried in the configuration information, or may not be carried.
  • the second column “Frame Format Configuration” represents a frame format that can be uniquely determined according to S_New_i and Ni. Where D represents a downlink subframe, U represents an uplink subframe, and S represents a special subframe.
  • the third column "S_New_i" is the first information described above; wherein each element in the braces represents the subframe number of a special subframe.
  • the fourth column "Ni" is the second information described above; wherein the elements in the braces correspond to the elements in S_New_i one-to-one.
  • S_New_i is ⁇ 1, 6 ⁇
  • Ni is ⁇ 3, 2 ⁇ , indicating that the subframe number of the special subframe is 1, 6 in one radio frame.
  • the first element 3 of Ni corresponds to the first element of S_New_i, indicating that the special subframe with subframe number 1 is followed by 3 uplink subframes; the second element of Ni corresponds to the second element of S_New_i, indicating A special subframe with a subframe number of 6 is followed by two uplink subframes.
  • the configuration information includes: first information indicating a location of the special subframe in one radio frame, and third number indicating a number of subframes of one or consecutive consecutive downlink subframes before the special subframe in one radio frame information.
  • the first information may be the same as the first information in the third mode, and is S_New_i, indicating a subframe number of one or more special subframes in a radio frame; wherein, according to the current TDD LTE system, the subframe is If the value ranges from 0 to 9, the range of S_New_i can be set to a non-negative integer.
  • the third information Ni indicates how many downlink subframes are consecutive before a special subframe, and other subframes except the downlink subframe and the special subframe are uplink subframes in the radio frame.
  • mode 3 The principle of mode 3 is similar to that of mode 2. The difference is that mode 2 indicates how many uplink subframes exist after a special subframe, and mode 3 indicates how many downlink subframes exist before a special subframe.
  • the preset frame format configuration may be a frame format configuration specified by the protocol, or the network device 301 may notify the terminal device 302 of a frame format configuration before the step S403. If the latter mode is adopted, the network is adopted.
  • the device 301 can broadcast the configuration information of the preset frame format configuration in one cell by using a broadcast message.
  • the dedicated frame format configuration sent by the network device 301 to the terminal device 302 is generated by the preset frame format configuration after cyclic shift. .
  • the dedicated frame format configuration for the terminal device 302 is generated by the preset frame format configuration after the cyclic shift:
  • the frame format configuration obtained by adding N and modulo P to the subframe number of each subframe in a radio frame is the same as the preset frame format configuration, and P is included in a radio frame.
  • the network device 301 sends the fourth information when transmitting the configuration information of the dedicated frame format configuration to the terminal device 302, where the fourth information is used to indicate how to perform the cyclic shift.
  • the first column indicates several uplink-downlink ratios specified in the current TDD LTE protocol, that is, “preset frame format configuration”; the second column is cyclically shifted.
  • the value KFD is the fourth information. The values and meanings are as follows:
  • the KFD value is an integer.
  • KFD is a positive integer
  • SHIFT is a positive integer, indicating that the frame format configuration represented by the uplink-downlink ratio in the first column in the same row is cyclic to the right. Shift SHIFT times.
  • the frame format is configured as follows:
  • the KFD value is a negative integer, for example, the value is -SHIFT, and the SHIFT is a positive integer, indicating that the frame format configuration represented by the uplink-downlink ratio in the first column in the same row is left. Cycle shift SHIFT times.
  • the frame format is configured as:
  • Mode 4 Several possible implementations of Mode 4 are given in Table 4 below. Among them, the first column can refer to the meaning of "upstream-downward ratio" in Table 1 above.
  • subframe 0 is a special subframe.
  • the UE needs to periodically receive broadcast information on the BCH because the TDD LTE protocol specifies that the subframe 0 is used for transmitting broadcast information on the Broadcasting CHannel (BCH). Therefore, in the example of Table 4, it is restricted that the subframe 0 must be a downlink subframe or a special subframe.
  • the special subframe cannot be located in subframe 0 or the like.
  • the frame format configuration sent by the network device 301 to the terminal device 302 is still generated by the preset frame format configuration after cyclic shift, but the fourth information indicates that The subframe number of a special subframe in a radio frame.
  • the preset frame format is configured as the uplink-downlink ratio 1 in Table 1, and the special subframe is ⁇ 2, 7 ⁇ , that is, the special subframe is subframe 2 and subframe 7, which can be calculated, and will be calculated in Table 1.
  • the special subframe can be implemented as subframe 2 and subframe 7. Then determine the frame format configuration as shown in Table 5 below.
  • Subframe number 0 1 2 3 4 5 6 7 8 9 Subframe type D D S U U D D S U U
  • the network device 301 sends the determined configuration information for the dedicated frame format configuration of the terminal device 302 to the terminal device 302;
  • the network device 301 may send the configuration information of the dedicated frame format configuration to the cell that is managed by the terminal device 302 by using dedicated signaling.
  • Terminal Device 302. For example, it is sent to the terminal device 302 through a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • the network device 301 can pre-determine the fifth information for indicating the basic frame format configuration. Sending to the terminal device 302, the fourth information is sent to the terminal device 302. As described above, the fourth information is used to indicate that the dedicated frame format configuration for the terminal device 302 has respect to the basic frame format configuration. difference. In this way, the terminal device 302 can determine a dedicated frame format configuration for itself according to the received fifth information and the fourth information.
  • the network device 301 can send the basic frame format configuration information through the broadcast message before the terminal device 302 accesses the cell under its jurisdiction, such that the cell coverage including the terminal device 302 is included.
  • the basic frame format configuration can be received by the terminal devices within.
  • the network device 301 can send the fourth information to the terminal device 302 by using dedicated signaling, such as the foregoing RRC signaling.
  • the terminal device 302 receives the configuration information, and determines a dedicated frame format configuration used by the terminal device according to the received configuration information.
  • the terminal device 302 receives configuration information of a dedicated frame format configuration transmitted by the network device 301, and determines a dedicated frame format configuration used by itself according to the configuration information.
  • the network device 301 determines the configuration information of the frame format configuration.
  • the terminal device 302 may be notified by the network device 301 through a broadcast message, and the configuration information of the frame format configuration is determined by using the configuration information of the frame format configuration.
  • the frame format configuration is determined based on the configuration information using a method corresponding to the configuration information of the network device 301 determining the frame format configuration.
  • the terminal device 302 after receiving an identification information, according to the agreement To determine the corresponding frame format configuration, you can determine the dedicated frame format configuration for itself.
  • the meanings of the first information and the second information may be specified in the protocol in advance, and after receiving the first information and the second information, the terminal device 302 may be based on the two known in advance.
  • the meaning of the information determines the dedicated frame format configuration that the network device 301 configures for the terminal device 302.
  • the network device 301 sends the fifth information indicating the basic frame format configuration specified by the protocol to the terminal device 302 in advance, and then sends the fourth information to the terminal device 302,
  • the terminal device 302 may determine a dedicated frame format configuration for itself according to the received fifth information and the fourth information, for example, determining a basic frame format configuration according to the fifth information, and determining a frame for itself according to the fourth information.
  • the difference between the format configuration and the basic frame format configuration, and then the dedicated frame format configuration for itself is determined according to the determined frame format configuration and the determined difference.
  • the network device 301 and the terminal device 302 perform communication according to a dedicated frame format configuration of the terminal device 302.
  • the terminal device 302 can determine the uplink and downlink mapping relationship used by itself according to the dedicated frame format configuration for itself, and then communicate with the network device 301 according to the determined uplink and downlink mapping relationship.
  • the dedicated frame format configuration for the terminal device 302 satisfies the aforementioned "cyclic shift condition" in step S403, that is, the dedicated frame format configuration for the terminal device 302 is a preset frame format configuration in the cyclic shift Generated after the bit.
  • the terminal device 302 can determine the use of the terminal device 302 according to the preset frame format configuration. Uplink and downlink mapping relationship.
  • the corresponding uplink frame format may be configured according to the specified frame format in step S403 or step S401.
  • the information is sent to the terminal device 302, which determines the preset frame format configuration based on the number information.
  • the terminal device 302 compares with various frame format configurations that have been specified by the protocol, and determines The preset frame format configuration is which frame format configuration is specified by the protocol.
  • the terminal device 302 can use the subframe number of the S_New_i and the subframe number of the special subframe in the preset frame format configuration. Operation.
  • the subframe number of the special subframe is always 1, and the following operation is performed to obtain a cyclic shift of the dedicated frame format configuration for the terminal device 302 relative to the preset frame format configuration.
  • the value KFD is as follows, where the meaning of the KFD is the same as that in the fourth method of the foregoing step S403:
  • KFD S_New_i(1)-1.
  • the feedback of the downlink transmission, the uplink power control, the feedback of the uplink transmission, and the scheduling of the uplink transmission are taken as an example to describe an alternative scheme for the terminal device 302 to determine the uplink-downlink mapping relationship in the embodiment of the present invention.
  • the terminal device 302 determines the mapping relationship between the PDSCH in the uplink-downlink mapping relationship and the PUCCH or PUSCH in which the uplink acknowledgment information is located.
  • the terminal device 302 can use the KFD to check the table with the current subframe number n, for example, check the foregoing Table 2A to obtain the uplink and downlink mapping relationship.
  • the two information Ni ⁇ 2, 2 ⁇ , in the dedicated frame format configuration for the terminal device 302, the subframe number of the uplink subframe is 1, 2, 6, and 7.
  • the values of the set K: ⁇ k 0 , k 1 , ... k M-1 ⁇ in the table 2A include the values, and the PDSCH subframe number corresponding to the uplink subframe n includes: n minus each of the above sets K
  • the subframe number obtained by one element, that is, the uplink subframe n carries the HARQ-ACK for feeding back the downlink reception condition of the PDSCH transmitted on these subframes.
  • the terminal device 302 can also determine other uplink-downlink mapping relationships described below in a similar manner.
  • the terminal device 302 determines the mapping relationship between the PDCCH power control command and the PUSCH in the foregoing uplink and downlink mapping relationship.
  • the terminal device 302 calculates the KFD, and determines that the preset frame format configuration is one of the frame format configurations listed in Table 1.
  • the terminal device 302 subtracts the current downlink subframe number from the KFD to obtain the subframe number i, according to the calculated subframe number i, and the preset frame format configuration, and the table 2B obtains the K PUSCH , which can be used to control the current
  • the PDCCH power control command for the transmission power of the PUSCH on the uplink subframe i is on the subframe iK PUSCH .
  • K PUSCH is given in Table 5.1.1.1-1.
  • the terminal device 302 determines the mapping relationship between the PUSCH and the PHICH where the downlink acknowledgement information is located.
  • the terminal device 302 calculates the KFD, and determines that the preset frame format configuration is one of the frame format configurations listed in Table 1.
  • the terminal device 302 subtracts the current downlink subframe number from the KFD to obtain the subframe number i, and according to the calculated subframe number i and the preset frame format configuration, the table 2C obtains k, and the current downlink subframe is obtained.
  • the PHICH in the PHICH is used to feed back the subframe number ik where the PUSCH is located.
  • the terminal device 302 determines the mapping relationship between the PDCCH downlink scheduling command and the PUSCH in the foregoing uplink-downlink mapping relationship.
  • the terminal device 302 calculates the KFD, and determines that the preset frame format configuration is one of the frame format configurations listed in Table 1.
  • the terminal device 302 subtracts the current downlink subframe number from the KFD to obtain the subframe number n, and according to the calculated subframe number n and the preset frame format configuration, the table 2D obtains k, and the current downlink subframe is obtained.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 5, the terminal device includes:
  • the receiving module 501 is configured to receive, by the network device, configuration information about a frame format configuration of the terminal device, where the frame format configuration includes each uplink subframe, each downlink subframe, and each special subframe in the wireless frame in the wireless The position in the frame;
  • the processing module 502 is configured to determine, according to the configuration information received by the receiving module 501, a frame format configuration used by the terminal device.
  • the configuration information includes: identifier information configured for a frame format of the terminal device; or
  • the configuration information includes: first information indicating a location of a special subframe in one radio frame, and second number indicating a number of subframes of one or consecutive uplink subframes after a special subframe in one radio frame Information; or
  • the configuration information includes: first information indicating a location of the special subframe in one radio frame, and third number indicating a number of subframes of one or consecutive consecutive downlink subframes before the special subframe in one radio frame Information; or
  • the configuration information includes: fourth information indicating a difference in frame format configuration for the terminal device with respect to a preset frame format configuration.
  • the configuration information includes fourth information for indicating a difference in frame format configuration of the terminal device with respect to a preset frame format configuration
  • the receiving module 501 is further configured to: before receiving the configuration information about the frame format configuration of the terminal device that is sent by the network device, receive the fifth information that is sent by the network device to indicate the preset frame format configuration;
  • the processing module 502 is further configured to: determine, according to the fifth information received by the receiving module 501, a preset frame format configuration.
  • the frame format configured for the terminal device is:
  • the frame format configuration used by the terminal device in one cell is the frame format configuration used by the terminal device in one cell.
  • the frame format of the subframe number of each subframe in a radio frame plus N and the modulo P is the same as the preset frame format configuration, where N is an integer.
  • P is the number of subframes included in a radio frame
  • the processing module 502 is further configured to: determine an uplink and downlink mapping relationship used by the terminal device according to the preset frame format configuration.
  • the terminal device can also include a transmitting module for transmitting messages and/or data to the network device.
  • the processing module 502 is operable to perform processing and control operations of the terminal device 302, and the transmitting module is operable to perform the terminal device 302 transmitting to the network device 301.
  • the receiving module 501 can be configured to perform a receiving operation when the terminal device 302 receives from the network device 301.
  • the interaction process between the terminal device and the network device refer to the process of interaction between the terminal device 302 and the network device 301 in the process shown in FIG. 4, and the content and structure of the message sent and received by the terminal device may also refer to the Description in the process.
  • the terminal device can be as shown in FIG. 6.
  • the processor 602 can be used to implement the function of the processing module 502, and the receiver can be used to implement the function of the receiving module 501.
  • a transmitter may also be included, which may be used to implement the function of the sending module.
  • a memory may be included in the terminal device for storing programs and data, and the processor 602 may process and control by calling a program stored in the memory.
  • the transmitter, the memory, and the receiver 601 may each be directly connected to the processor 602; or, the transmitter, the memory, the receiver 601, and the processor 602 are both connected to the bus, and the devices communicate with each other through the bus.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 7, the network device includes:
  • the processing module 701 is configured to determine configuration information configured for a frame format of a terminal device, where the frame format configuration includes each uplink subframe in each radio frame, each downlink subframe, and each special subframe in the radio frame. position;
  • the sending module 702 is configured to send, to the terminal device, configuration information determined by the processing module 701 for a frame format configuration of the terminal device.
  • the configuration information includes: identifier information configured for a frame format of the terminal device; or
  • the configuration information includes: first information indicating a location of a special subframe in one radio frame, and second number indicating a number of subframes of one or consecutive uplink subframes after a special subframe in one radio frame Information; or
  • the configuration information includes: first information indicating a location of the special subframe in one radio frame, and third number indicating a number of subframes of one or consecutive consecutive downlink subframes before the special subframe in one radio frame Information; or
  • the configuration information includes: fourth information indicating a difference in frame format configuration for the terminal device with respect to a preset frame format configuration.
  • the sending module 702 is further configured to:
  • the fifth information indicating the preset frame format configuration is sent to the terminal device.
  • the frame format configured for the terminal device is:
  • the frame format configuration used by the terminal device in one cell is the frame format configuration used by the terminal device in one cell.
  • the network device can also include a receiving module for receiving messages and/or data sent by the terminal device.
  • the processing module 701 is operable to perform processing and control operations of the network device 301
  • the sending module 702 is configured to perform the network device 301 to send to the terminal device 302. The time of the send operation.
  • the receiving module can be used to perform a receiving operation when the network device 301 receives the message or data sent by the terminal device 302.
  • the interaction process between the network device and the terminal device refer to the process of interaction between the network device 301 and the terminal device 302 in the process shown in FIG. 4, and the content and structure of the message sent and received by the network device may also refer to the process. Description in .
  • the processor 801 can be used to implement the function of the processing module 701, and the transmitter 802 can be used to implement the function of the sending module 702.
  • a receiver may also be included, which can be used to implement the function of the receiving module.
  • a memory may be included in the network device for storing programs and data, and the processor 801 may process and control by calling a program stored in the memory.
  • the transmitter 802, the memory, and the receiver may each be directly connected to the processor 801; or, the transmitter 802, the memory, the receiver, and the processor 801 are both connected to the bus, and the devices communicate with each other through the bus.
  • the full-duplex capability of the network device is effectively utilized by supporting a dedicated frame format configuration for one terminal device.
  • a terminal device UE1 in a cell under the jurisdiction of the network device uses a preset frame format configuration, for example, a frame format configuration corresponding to the uplink-downlink ratio 2 in Table 1; another terminal device UE2 according to the pre-
  • the frame format configuration is configured to receive the configuration information of the dedicated frame format configuration sent by the network device, and determine the frame format configuration for itself according to the received configuration information, where the special subframe is configured in the subframe ⁇ 2, 7 ⁇ .
  • the frame format configuration of the two terminal devices UE1 and UE2 is as shown in Table 6 below.
  • subframes 2, 4, 7, and 9 are full-duplex subframes.
  • the two terminal devices can be configured in the same or different frame formats.
  • the frame format configuration used by the two terminal devices can be cyclically shifted based on the preset frame format configuration.
  • the resulting frame format configuration In Tables 7 and 8 below, 0 to 6 in the first row indicate a preset frame format configuration on which the frame format configuration usable by UE1 can be used; 0 to 6 in the first column indicate a frame format usable by UE2. Configure a preset frame format configuration that can be based on.
  • the two terminal devices can perform various optional cyclic shifts on the basis of the preset frame format configuration, and different cyclic shifts can obtain different frame format configurations.
  • the second row to the last row in the table, the number in the second column to the last column, indicates that UE1 uses the The preset frame format configuration corresponding to the column in which the number is located.
  • UE2 configures the preset frame format of the column in which the number is located, the maximum number of full-duplex subframes that can be obtained by performing various cyclic shifts.
  • Table 7 shows a case where the special subframe is allowed to be allocated in the subframe 0
  • Table 8 shows a case where the special subframe is not allowed to be configured in the subframe 0.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,尤其涉及一种帧格式配置方法、装置和系统,用以提供一种灵活的帧格式配置方案。本发明实施例提供的一种终端设备包括:接收模块,用于接收网络设备发送的针对所述终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;处理模块,用于根据所述接收模块接收的所述配置信息,确定所述终端设备使用的帧格式配置。提供了一种能够针对不同的终端设备单独进行帧格式配置的方案,实现上更灵活。

Description

一种帧格式配置方法、装置和系统
本申请要求在2016年1月29日提交中国专利局、申请号为201610067807.6、发明名称为“一种帧格式配置方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种帧格式配置方法、装置和系统。
背景技术
采用时分双工(Time Division Duplexing,TDD)方式的无线通信系统中,上下行传输占用不同的时间段,比如:时隙(time slot)或子帧(subframe)。
以长期演进-时分双工(Long Term Evolution-TDD,TDD LTE)系统为例,上下行传输占用不同的子帧,以避免收发通道间的干扰。
TDD LTE系统中,一个无线帧中包括10个子帧,按照子帧被配置为上行子帧、下行子帧或特殊子帧,一个无线帧可具有多种帧格式配置,称为上行-下行配比(Uplink-downlink configuration)。目前,TDD LTE的协议已经定义了表1所列的7种帧格式配置,其中,“D”代表下行子帧,“S”代表特殊子帧,以及“U”代表上行子帧。
表1、TDD LTE帧格式配置
Figure PCTCN2017072095-appb-000001
目前,TDD LTE系统中,每个小区使用一种小区特定(cell-specific)的帧格式配置,即一个小区内的所有终端设备均按照该小区特定的帧格式配置进行传输,实现方式不够灵活。
发明内容
本发明实施例提供一种帧格式配置方法、装置和系统,用以提供一种灵活的帧格式配置方案。
第一方面,本发明实施例提供一种帧格式配置方法,包括:
网络设备确定针对终端设备的帧格式配置的配置信息,并向终端设备发送针对所述终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
所述终端设备根据接收的所述配置信息,确定所述终端设备使用的帧格式配置。
提供了一种能够针对不同的终端设备单独进行帧格式配置的方案,实现上更灵活。
其中,网络设备支持全双工,在向一个终端设备进行下行发送的同时,可接收另一个终端设备的上行发送,通过针对不同的终端设备进行不同的帧格式配置,可根据小区实际的上下行传输需求进行灵活配置,避免了在下行传输需求较大时部分上行子帧空闲,或者上行传输需求较大时部分下行子帧空闲而造成的传输资源的浪费,能够提高小区整体的吞吐量,提高小区传输资源的利用率。
在一种可选的实现方案中,所述配置信息包括:针对所述终端设备的帧格式配置的标识信息;或
所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
所述配置信息包括:用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息。
这里,给出了帧格式配置的配置信息的多种可选的实现方式。
在一种可选的实现方案中,若所述配置信息包括用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息,则
在终端设备接收网络设备发送的针对所述终端设备的帧格式配置的配置信息之前,还包括:
所述终端设备接收所述网络设备发送的用于指示所述预设的帧格式配置的第五信息;
所述终端设备根据接收的所述第五信息,确定所述预设的帧格式配置。
其中,通过指示针对终端设备的帧格式配置与预设的帧格式配置之间的差别,一方面,提供一种指示帧格式配置的可选实现方式,另一方面,可减少用于指示终端设备的帧格式配置的配置信息的信息比特数。
在一种可选的实现方案中,针对所述终端设备的帧格式配置为:
所述终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
所述终端设备在一个小区内使用的帧格式配置。
在一种可选的实现方案中,若按照针对所述终端设备的帧格式配置,一个无线帧中各个子帧的子帧号均加上N并模P后得到的帧格式配置与预设的帧格式配置相同,N为整数,P为一个无线帧中包括的子帧的数量,则还包括:
所述终端设备根据所述预设的帧格式配置,确定所述终端设备使用的上下行映射关系。
这里,提供了一种终端设备确定上下行映射关系的方法。
第二方面,本发明实施例提供一种终端设备,该终端设备具有实现上述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该终端设备的结构中包括处理器和接收器,所述处理器被配置为支持终端设备执行上述方法中相应的功能。所述接收器,用于从所述网络设备处接收上述方法中涉及的消息或数据,此外,该终端设备还可包括发送器,用于向网络设备发送数据或消息;所述终端设备还可以包括存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和数据。
第三方面,本发明实施例提供一种网络设备,该网络设备具有实现上述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该网络设备的结构中包括发送器,用于支持网络设备向终端设备发送上述方法中所涉及的消息或数据;处理器,被配置为支持网络设备执行上述方法中相应的功能。可选地,网络设备还可包括接收器,用于接收终端设备发送的消息或数据;存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本发明实施例提供一种无线通信系统,该无线通信系统包括上述第一方面至第三方面任一方面所述的终端设备和网络设备。
第五方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第六方面,本申请的实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
图1为频分双工(Frequency Division Duplexing,FDD)LTE系统中上下行传输的示意图;
图2为TDD LTE系统中上下行传输的示意图;
图3为本发明实施例提供的无线通信系统的结构示意图;
图4为本发明实施例提供的无线通信系统中,网络设备和终端设备交互的流程图;
图5为本发明实施例提供的终端设备的结构示意图;
图6为图5所示的终端设备的一种可选的实现方式的示意图;
图7为本发明实施例提供的网络设备的结构示意图;
图8为图7所示的网络设备的一种可选的实现方式的示意图。
具体实施方式
本发明实施例中,网络设备向一个终端设备发送针对该终端设备的帧格式配置的配置信息,该终端设备根据接收的配置信息,确定自身使用的帧格式配置。
因此,提供了一种能够针对不同的终端设备单独进行帧格式配置的方案,实现上更灵活。
本发明实施例中,网络设备支持全双工,在向一个终端设备进行下行发送的同时,可接收另一个终端设备的上行发送,通过针对不同的终端设备进行不同的帧格式配置,可根据小区实际的上下行传输需求进行灵活配置,避免了在下行传输需求较大时部分上行子帧空闲,或者上行传输需求较大时部分下行子帧空闲而造成的传输资源的浪费,能够提高小区整体的吞吐量,提高小区传输资源的利用率。
进一步地,终端设备在确定自身的帧格式配置后,可根据预设的帧格式配置确定自身使用的上下行映射关系,这样才能实现在特定的帧格式配置下,正确的进行数据传输和反馈。
为了更好地理解上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。
下面,对本发明实施例涉及得到的相同的描述进行解释。需要说明的是,这些解释是为了让本发明实施例更容易被理解,而不应该视为对本发明实施例所要求的保护范围的限定。
1、全双工
在目前已商用的无线通信系统中,受限于通信设备(比如:网络设备或终端设备)的干扰处理能力,要求一个通信设备在同一无线资源(比如:LTE系统中的时频资源)上不能同时发送和接收,否则发送的信号和接收的信号之间会产生严重干扰,极大降低通信质量。
以目前LTE系统的两种制式为例:采用FDD双工方式的FDD LTE系统中,如图1所示,在同一时刻,同一通信设备分别在不同的频点接收和发送;而采用TDD双工方式的TDD LTE系统中,如图2所示,在同一频点,同一通信设备分别在不同的时刻接收和发送。
随着通信设备,特别是网络设备,比如:基站对干扰处理能力的大幅度提升,一些网络设备能够支持在同一频点、同一时刻上进行发送和接收,我们这种双工方式称为“全双工”方式。
采用全双工方式,相比于在同一频点、同一时刻仅支持发送或接收的双工方式,频谱效率将提升一倍。
本发明实施例中,网络设备支持全双工,即网络设备可以在同一时间、同一频点同时接收和发送。
具体到一个无线帧的各个子帧,若一个网络设备可以在一个子帧上的同一刻和同一频点同时接收和发送,则我们将这样的子帧称为“全双工子帧”。
2、上下行映射关系
以目前TDD LTE系统为例,基于基站的调度实现基站与用户设备(User Equipment, UE)之间的上下行数据传输。
上下行传输采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的方式,接收方根据接收情况向发送方反馈接收结果,若接收到的数据解码成功,则反馈确认(ACKnowledgement,ACK),若接收到的数据解码失败,则反馈不确认(Non ACKnowledgement,NACK),发送发在收到NACK后,启动重传过程。
对于下行数据传输,基站通过在物理下行控制信道(Physical Downlink Control CHannel,PDCCH)上发送下行调度指令,指示终端设备接收下行数据,终端设备在一个下行子帧接收下行数据后,在上行子帧发送针对接收的下行数据的确认信息,比如:HARQ-ACK,包括前述的ACK和NACK。
对于上行数据传输,基站通过在PDCCH上发送上行调度指令,指示终端设备发送上行数据,终端设备在一个上行子帧发送上行数据,在后续的下行子帧接收基站的确认信息。
此外,PDCCH中还可能承载功控指令等。
上述数据和指令的传输要基于一定的时序关系,通常在协议中会规定该时序关系,称为“上下行映射关系”。上下行映射关系可包括:
PDCCH上行调度指令对应的用于进行上行数据传输的物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)的子帧号;
用于进行上行传输的PUSCH对应的下行确认信息所在的物理混合自动重传请求指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)的子帧号;
用于进行下行传输的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)对应的上行确认信息所在的PUCCH或PUSCH的子帧号;
PDCCH功控指令对应的上行功率控制子帧号等。
下面逐一介绍目前协议中规定的上述几种上下行映射关系。
在目前的TDD LTE协议中,上下行映射关系以表格的形式定义,比如:在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范(Technical Specification,TS)36.213中通过表格的方式定义了上述几种上下行映射关系。
1)PDSCH与上行确认信息所在的PUCCH或PUSCH的映射关系
TS36.213的表格10.1.3.1-1定义了PDSCH与HARQ-ACK之间的时序关系,具体参照下面的表2A。
表2A下行关联集合索引(Downlink association set index)K:{k0,k1,…kM-1}
Figure PCTCN2017072095-appb-000002
Figure PCTCN2017072095-appb-000003
表2A中第三行至第九行即上行-下行配比为0的一行开始至最后一行,其中的第二列至最后一个列中的数字集合即为K:{k0,k1,…kM-1},M表示集合K中元素的数量。
K:{k0,k1,…kM-1}表示对应的上行子帧n上发送的HARQ-ACK,是用于反馈子帧n-ki,0≤i≤M-1上的PDSCH上发送的下行数据的接收情况。
比如:对于上行-下行配比1,子帧n=2的上行子帧,查上表得到{7,6},表示在该上行子帧上发送的HARQ-ACK,对应于n-7和n-6子帧的下行PDSCH,即用于反馈这些PDSCH上的下行数据的接收情况。
2)PDCCH功控指令与PUSCH的映射关系。
TS36.213的表格5.1.1.1-1定义了PDCCH功控指令与上行功率控制子帧号之间的时序关系,具体参照下面的表2B。
表2B、KPUSCH的定义
Figure PCTCN2017072095-appb-000004
表2B中,第二行至第八行中的第二列至最后一列中的数字为KPUSCH,表示所在列的子帧i-KPUSCH上发送的PDCCH上的功控指令用于控制子帧i的PUSCH的发射功率。
3)PUSCH与下行确认信息所在的PHICH的映射关系
TS36.213的表格8.3-1定义了PUSCH与对应的下行确认信息所在的PHICH的映射关系,具体参照下面的表2C。
表2C、k的定义
Figure PCTCN2017072095-appb-000005
Figure PCTCN2017072095-appb-000006
表2C中,第二列(即上行-下行配比为0的一行)至最后一行,其中的第二列至最后一列中的数字为k,k表示所在列的子帧i上的PHICH上的HARQ-ACK,用于反馈子帧i-k上发送的PUSCH的接收情况。
4)PDCCH下行调度指令与PUSCH的映射关系
TS36.213的表格8-2定义了PDCCH上行调度指令与调度的PUSCH的映射关系,具体参考下面的表2D。
表2D、k的定义
Figure PCTCN2017072095-appb-000007
表2D中,第二列(即上行-下行配比为0的一行)至最后一行,其中的第二列至最后一列中的数字为k,k表示所在列的子帧n上的PDCCH上的上行调度指令,用于调度终端设备在子帧n+k上发送PUSCH。
本发明实施例中,终端设备在确定自身的帧格式配置后,还要确定上下行映射关系,这样才能进行上下行的数据传输。
3、系统和网络
术语“系统”和“网络”在本发明实施例中常被可互换使用。本发明实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上介绍了本发明实施例涉及的相同的描述,下面结合附图对本发明实施例进行详细说明。
图3示出了本发明实施例提供的无线通信系统的结构示意图。如图3所示,该无线通信系统包括:网络设备301和终端设备302,在网络设备301管辖的一个小区覆盖范围内,可存在一个或多个终端设备302,若存在多个终端设备302,这多个终端设备302使用的帧格式配置可不同。
比如:如图3所示,在网络设备301管辖的一个小区的覆盖范围内,有三个终端设备302,其中两个采用帧格式配置1,另一个采用帧格式配置2。这和以往的无线通信系统中 的帧格式配置方式不同,以往的无线通信系统中,在一个小区内,所有的终端设备均采用相同的帧格式配置,不会出现本发明实施例中的一个小区内的不同终端设备302采用不同的帧格式配置的情况。
如前所述,一个小区内的不同终端设备采用不同的帧格式配置,实现上更灵活,也可提供整个小区的传输资源的利用率。
图3所示的无线通信系统的通信制式包括但不限于:全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX),以及未来演进的各种无线通信系统。
其中,终端设备302可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户设备(User Equipment)。
网络设备301可包括基站,或用于控制基站的无线资源管理设备,或包括基站和用于控制基站的无线资源管理设备;其中基站可为宏站或小站,比如:小小区(small cell)、微小区(pico cell)等,基站也可为家庭基站,比如:家庭节点B(Home NodeB,HNB)、家庭演进节点B(Home eNodeB,HeNB)等,基站也可包括中继节点(relay)等。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,本发明实施例提供的无线通信系统中的网络设备301可为演进节点B(evolved NodeB,eNodeB),终端设备302可为UE;对于TD-SCDMA系统或WCDMA系统,本发明实施例提供的无线通信系统中的网络设备301可包括:节点B(NodeB)和/或无线网络控制器(Radio Network Controller,RNC),终端设备302可为UE;对于GSM系统,本发明实施例提供的中的网络设备301可包括基站收发台(Base Transceiver Station,BTS)和/或基站控制器(Base Station Controller,BSC),终端设备302为移动台(Mobile Station,MS);对于WiFi系统,网 络设备301可包括:接入点(Access Point,AP)和/或接入控制器(Access Controller,AC),终端设备302可为站点(STAtion,STA)。
图4示出了网络设备301和终端设备302交互的流程图。如图4所示,该流程包括如下步骤:
S401:网络设备301在自身管辖的一个小区内广播一种帧格式配置的配置信息;
S402:该小区内的一个终端设备302接收网络设备301广播的该帧格式配置的配置信息,并根据该配置信息确定该帧格式配置,以及按照确定的该帧格式配置接入小区;
S403:网络设备301确定针对该终端设备302的帧格式配置的配置信息;
这里,针对该终端设备302的可与步骤S401中广播的帧格式配置相同或不同,但是,是针对该终端设备302的,可与针对其他终端设备302的帧格式配置不同,这里可将针对一个终端设备302的帧格式配置称为“专用的帧格式配置”;
S404:网络设备301将确定的针对该终端设备302的专用的帧格式配置的配置信息发给终端设备302;
S405:终端设备302接收该配置信息,并根据收到的配置信息确定自身使用的专用的帧格式配置;
S406:网络设备301和终端设备302之间,按照该终端设备302的专用的帧格式配置进行通信。
下面,对图4所示的流程加以详细说明。
S401:网络设备301在自身管辖的一个小区内广播一种帧格式配置的配置信息,该帧格式配置可称为“公共的帧格式配置”;
这一步骤,可采用目前各种无线通信系统中的广播帧格式配置的方式来实现。该帧格式配置可通过广播的系统消息下发,以TDD LTE系统为例,网络设备301可通过子帧分配(subframeAssignment)字段,指示帧格式配置。
S402:终端设备302根据收到的帧格式配置,接入小区;
这一步骤也可采用目前各种无线通信系统中的终端设备302接入小区的方式来实现。
比如:以TDD LTE系统为例,终端设备302可发起随机接入过程接入小区。终端设备302在接入小区后,可与网络设备301建立专用的无线资源控制(Radio Resource Control,RRC)连接,在该RRC连接建立后或建立过程中,网络设备301即可执行步骤S404,通过专用的RRC信令向终端设备302发送针对该终端设备302的专用的帧格式配置的配置信息。
或者,网络设备301可在终端设备302接入小区之后,通过物理层下行控制信令,比如PDCCH信令通知终端设备302,针对该终端设备302的专用的帧格式配置的配置信息。
再或者,网络设备301可在终端设备302接入小区之后,通过媒体接入控制(Medium Access Control,MAC)层信令通知终端设备302,针对该终端设备302的专用的帧格式配置的配置信息。
S403:网络设备301确定针对该终端设备302的帧格式配置的配置信息,该帧格式配置由于是针对一个终端设备302的,可称为“专用的帧格式配置”。
步骤S403中,网络设备301可确定针对该终端设备302的专用的帧格式配置,并根据确定的专用的帧格式配置,确定用于表示该专用的帧格式配置的配置信息。
其中,如前所述,帧格式配置包括:一个无线帧中的各种子帧在该无线帧中的位 置。
比如:若子帧分为上行子帧、下行子帧,则帧格式配置表示一个无线帧中,各个上行子帧和各个下行子帧在该无线帧中的位置。
再比如:若子帧分为上行子帧、下行子帧和特殊子帧,则帧格式配置表示一个无线帧中,各个上行子帧、各个下行子帧和特殊子帧在该无线帧中的位置。
再比如:对于终端设备302可进行设备到设备(Device to Device,D2D)通信的情景,子帧类型还可包括用于进行D2D传输的子帧。
其中,上行子帧表示仅用于上行传输的子帧,其中,上行传输指从终端设备302到网络设备301的传输;
下行子帧表示仅用于下行传输的子帧,其中,下行传输指从网络设备301到终端设备302的传输;
用于进行D2D传输的子帧,是指两个终端设备302之间进行传输时使用的子帧;
特殊子帧是指用于下行到上行切换的子帧,比如:LTE系统中的S子帧等。
网络设备301管辖的一个小区可具有一个载波,可称为“单载波小区”,或具有多个载波,可称为“多载波小区”。
对于多载波小区,专用的帧格式配置可为:终端设备302在多个载波中的一个载波上使用的帧格式配置;或终端设备302在一个小区内的所有载波上使用的帧格式配置。
对于前一种情况,即专用的帧格式配置为在多个载波中的一个载波上使用的帧格式配置,则网络设备301可实现针对不同载波分别进行帧格式配置,相对于后一种情况,即一个小区内的不同载波具有相同的帧格式配置,实现更灵活。
此外,对于多载波小区,通过为多个载波上的终端设备302配置专用的帧格式配置,可在这多个载波上获得全双工的传输能力。
网络设备301在确定了针对一个终端设备302的帧格式配置后,可生成用于表示该帧格式配置的配置信息。该配置信息可以分别指示一个无线帧中的每一个子帧的类型,也可采用一些简略的方法进行指示,只要终端设备302根据收到的配置信息能够明确地确定一个无线帧中各种子帧的位置即可。
下面,列举几种帧格式配置的配置信息的可选实现方式。
方式一、
配置信息包括:针对该终端设备302的专用的帧格式配置的标识信息。
为了节省终端设备302与网络设备301之间的信息传输的开销,可以预先在协议中规定各种专用的帧格式配置和每一种专用的帧格式配置的标识信息的对应关系,类似于表1所示的TDD LTE帧格式配置。当然,规定的帧格式配置也可不限于表1中所示的7种,可定义更丰富的帧格式配置,以满足不同终端设备302的传输需求。网络设备301在确定针对一个终端设备302的专用的帧格式配置后,确定协议中规定的该帧格式配置对应的标识信息,类似于表1中的第一列“0~6”,将该标识信息作为帧格式配置的配置信息发给终端设备302。
终端设备302在收到该标识信息后,可根据协议规定,确定该标识信息对应的帧格式配置,进而确定自身使用的专用的帧格式配置。
方式二、
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于 指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息。
比如:第一信息为S_New_i,表示一个无线帧中的一个或多个特殊子帧的子帧号;其中,若按照目前TDD LTE系统的规定,子帧号的取值范围为0~9,则S_New_i的取值范围可设为非负整数。
第二信息为Ni,表示一个特殊子帧后面有连续多少个上行子帧,而该无线帧中,除了上行子帧和特殊子帧之外的其他子帧为下行子帧。
一个例子可参照下面的表3。
表3、方式二的帧格式配置
Figure PCTCN2017072095-appb-000008
表3中,第一列是参考的目前TDD LTE协议中定义的帧格式配置的上行-下行配比的编号,表示后面的针对终端设备302的帧格式配置,是基于前面的协议已定义的帧格式配置生成的。可选地,可在配置信息中携带该协议已定义的帧格式配置对应的上行-下行配比的编号的信息,也可不携带该信息。
第二列“帧格式配置”表示根据S_New_i和Ni可唯一确定的帧格式。其中,D代表下行子帧、U代表上行子帧、S代表特殊子帧。
第三列“S_New_i”即前面所述的第一信息;其中,大括号中的每一个元素表示一个特殊子帧的子帧号。
第四列“Ni”即前面所述的第二信息;其中,大括号中的元素分别与S_New_i中的元素一一对应。
以编号为12的帧格式配置为例,S_New_i为{1,6},Ni为{3,2},表示在一个无线帧中,特殊子帧的子帧号为1、6。Ni的第一个元素3对应S_New_i的第一个元素,表示子帧号为1的特殊子帧后面紧跟着3个上行子帧;Ni的第二个元素对应S_New_i的第二个元素,表示子帧号为6的特殊子帧后面紧跟着2个上行子帧。
需要说明的是,表3中仅列出了一部分可能的帧格式配置,实际可选的帧格式配置不仅限于表3中所列的。比如:S_New_i为{2},Ni为{2}的帧格式配置等。
方式三、
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息。
比如:第一信息可与方式三中的第一信息相同,为S_New_i,表示一个无线帧中的一个或多个特殊子帧的子帧号;其中,若按照目前TDD LTE系统的规定,子帧号的取值范围为0~9,则S_New_i的取值范围可设为非负整数。
第三信息Ni表示一个特殊子帧前面有连续多少个下行子帧,而该无线帧中,除了下行子帧和特殊子帧之外的其他子帧为上行子帧。
方式三的原理与方式二类似,区别在于,方式二指示的是一个特殊子帧后有多少个上行子帧,而方式三指示的是一个特殊子帧前有多少个下行子帧。
方式四、
用于指示相对于一种预设的帧格式配置,针对终端设备302的帧格式配置所具有的差别的第四信息。
其中,预设的帧格式配置,可以是协议规定的一种帧格式配置,也可以是在步骤S403之前,网络设备301通知终端设备302的一种帧格式配置,若采用后一种方式,网络设备301可通过广播消息在一个小区内广播预设的帧格式配置的配置信息。
不论采用何种帧格式配置的配置信息的实现方式,一种可能的情况是:网络设备301发给终端设备302的专用的帧格式配置,是预设的帧格式配置在循环移位后生成的。
可选地,只要存在整数N,使得下述循环移位条件成立,则认为针对终端设备302的专用的帧格式配置是预设的帧格式配置在循环移位后生成的:
按照针对终端设备302的帧格式配置,一个无线帧中各个子帧的子帧号均加上N并模P后得到的帧格式配置与预设的帧格式配置相同,P为一个无线帧中包括的子帧的数量。
方式四中,针对这种循环移位的情况,网络设备301在向终端设备302发送专用的帧格式配置的配置信息时,发送第四信息,第四信息用于表示如何进行循环移位
以TDD LTE系统为例,参考下面的表4,其中第一列表示目前TDD LTE协议中规定的几种上-下行配比,即为“预设的帧格式配置”;第二列循环移位值KFD为第四信息,取值和含义如下:
KFD取值为整数;
1、KFD取值为0时,表示与同一行中的第一列中的上行-下行配比代表的帧格式配置相同;
2、KFD取值为正整数时,比如取值为SHIFT,SHIFT为正整数,表示将同一行中的第一列中的上行-下行配比代表的帧格式配置中,各个子帧向右循环移位SHIFT次。
比如:以表1中的上行-下行配比2为例,帧格式配置为:
D S U D D D S U D D
SHIFT=1,向右循环移位1次的帧格式配置为:
D D S U D D D S U D
3、KFD取值为负整数时,比如取值为-SHIFT,SHIFT为正整数,表示将同一行中的第一列中的上行-下行配比代表的帧格式配置中,各个子帧向左循环移位SHIFT次。
比如:仍以表1中的上行-下行配比2为例,帧格式配置为:
D S U D D D S U D D
SHIFT=1,向左循环移位1次的帧格式配置为:
S U D D D S U D D D
下面的表4中给出了方式四的几种可能的实现方式。其中,第一列可参考前面的表1中“上行-下行配比”的含义。
表4
Figure PCTCN2017072095-appb-000009
表4中,右上角加”*“的表示对应的帧格式配置中,子帧0为特殊子帧。以TDD LTE系统为例,由于TDD LTE协议中规定了子帧0用于广播信道(Broadcasting CHannel,BCH)上的广播信息的发送,UE需要定期接收BCH上的广播信息。因此,表4的例子中,限制了子帧0一定为下行子帧或特殊子帧。此外,还可以有进一步的约束,比如,特殊子帧不能位于子帧0等。
方式四中,另一种可选的实现方式是,网络设备301发给终端设备302的帧格式配置,仍是预设的帧格式配置在循环移位后生成的,但第四信息表示的是一个无线帧中,特殊子帧的子帧号。
比如:预设的帧格式配置为表1中的上行-下行配比1,特殊子帧为{2,7},即特殊子帧为子帧2和子帧7,则可推算,将表1中的上行-下行配比1中的各个子帧向右循环移位后,即可实现特殊子帧为子帧2和子帧7。则可确定帧格式配置如下面的表5所示。
表5
子帧号 0 1 2 3 4 5 6 7 8 9
子帧类型 D D S U U D D S U U
S404:网络设备301将确定的针对该终端设备302的专用的帧格式配置的配置信息发给终端设备302;
比如:对于步骤S403中的方式一~方式三中的任一方式,网络设备301可在终端设备302接入自身管辖的小区之后,通过专用信令,将专用的帧格式配置的配置信息发给终端 设备302。比如:通过无线资源控制(Radio Resource Control,RRC)消息发给终端设备302。
对于步骤S403中的方式四,由于针对终端设备302的帧格式配置是参照预设的帧格式配置而生成的,因此,网络设备301可将用于表示该基本的帧格式配置的第五信息预先发给终端设备302,再将第四信息发给终端设备302,如前所述,该第四信息用于表示针对终端设备302的专用的帧格式配置相对于该基本的帧格式配置所具有的差别。这样,终端设备302可根据收到的第五信息以及第四信息确定针对自身的专用的帧格式配置。
对于步骤S403中的方式四,网络设备301可在终端设备302接入自身管辖的小区前,通过广播消息下发该基本的帧格式配置的信息,这样,包括终端设备302在内的小区覆盖范围内的终端设备均可收到该基本的帧格式配置。当终端设备302接入小区后,网络设备301可通过专用信令,比如前述的RRC信令,将第四信息发给终端设备302。
S405:终端设备302接收该配置信息,并根据收到的配置信息确定自身使用的专用的帧格式配置;
终端设备302接收网络设备301发送的专用的帧格式配置的配置信息,根据该配置信息,确定自身使用的专用的帧格式配置。
在前面的步骤S403中,介绍了网络设备301确定帧格式配置的配置信息的几种方式。可选地,可预先通过协议约定,或网络设备301通过广播消息通知终端设备302,帧格式配置的配置信息是采用哪种方式确定的,终端设备302在收到帧格式配置的配置信息后,按照已知的方式,采用与网络设备301确定帧格式配置的配置信息所相对应的方法,根据配置信息确定帧格式配置。
比如:对于步骤S403中的方式一,由于预先在协议中规定了各种帧格式配置和每一种帧格式配置对应的标识信息,因此,终端设备302在收到一个标识信息后,按照协议规定,确定对应的帧格式配置,即可确定针对自身的专用的帧格式配置。
再比如:对于步骤S403中的方式二,可预先在协议中规定第一信息和第二信息的含义,终端设备302在收到第一信息和第二信息后,即可根据预先知道的这两个信息的含义,确定网络设备301为终端设备302配置的专用的帧格式配置。
再比如:对于步骤S403中的方式四,若网络设备301将用于表示协议规定的基本的帧格式配置的第五信息预先发给终端设备302,再将第四信息发给终端设备302,则终端设备302可根据收到的第五信息以及第四信息确定针对自身的专用的帧格式配置,比如:根据第五信息,确定基本的帧格式配置,再根据第四信息,确定针对自身的帧格式配置与该基本的帧格式配置的差别,进而根据确定的帧格式配置以及确定的差别,确定针对自身的专用的帧格式配置。
S406:网络设备301和终端设备302之间,按照该终端设备302的专用的帧格式配置进行通信。
终端设备302可按照针对自身的专用的帧格式配置,确定自身使用的上下行映射关系,再根据确定的上下行映射关系与网络设备301进行通信。
一种情况是,针对终端设备302的专用的帧格式配置满足前述的步骤S403中的“循环移位条件”,即针对终端设备302的专用的帧格式配置是预设的帧格式配置在循环移位后生成的。
对于该种情况,终端设备302可根据该预设的帧格式配置,确定终端设备302使用的 上下行映射关系。
可选地,若该预设的帧格式配置为目前协议中已规定的帧格式配置,则可在步骤S403中或步骤S401,将该依规定的帧格式配置对应的上行-下行配比的编号信息发给终端设备302,终端设备302根据编号信息确定预设的帧格式配置。
或者,由于预设的帧格式配置是目前协议中已规定的帧格式配置,终端设备302在确定了针对自身的专用的帧格式配置之后,和协议已规定的各种帧格式配置进行比较,确定预设的帧格式配置是协议依规定的哪一种帧格式配置。
比如:对于步骤S403中的方式二,若满足上述循环移位条件,则参考表3,终端设备302可使用S_New_i的子帧号与预设的帧格式配置中的特殊子帧的子帧号进行运算。
比如:按照目前TDD LTE协议中的规定,特殊子帧的子帧号总是为1,进行如下运算,得到针对终端设备302的专用的帧格式配置相对于预设的帧格式配置的循环移位值KFD如下,其中KFD的含义与前述步骤S403方式四中的含义相同:
KFD=S_New_i(1)-1。
使用KFD结合当前子帧号n查表,比如查前述的表2A,得到上下行映射关系。
下面,分别以下行传输的反馈、上行功控、上行传输的反馈以及上行传输的调度为例,介绍本发明实施例中,终端设备302确定上下行映射关系的可选方案。
1、下行传输的反馈
比如:终端设备302确定前述的上下行映射关系中的PDSCH与上行确认信息所在的PUCCH或PUSCH的映射关系。
终端设备302可使用KFD,结合当前子帧号n查表,比如查前述的表2A,得到该上下行映射关系。
比如:预设的帧格式配置为表2A中的上行-下行配比为2的帧格式配置,步骤S403中,网络设备301发送给终端设备302的第一信息S_New_i={0,5},第二信息Ni={2,2},针对终端设备302的专用的帧格式配置中,上行子帧的子帧号为1、2、6、7。
在步骤S406中,终端设备302在确定上下行映射关系时,可计算出KFD=0-1=-1;终端设备302根据诸如前述的表2A,对于上行子帧n,查找n-KFD所对应的表2A中的集合K:{k0,k1,…kM-1}中具体包括哪些值,则上行子帧n对应的PDSCH子帧号包括:n分别减去上述集合K中的每一个元素得到的子帧号,即上行子帧n上承载了用于反馈这些子帧上传输的PDSCH的下行接收情况的HARQ-ACK。
终端设备302也可采用类似的方式确定下述其他上下行映射关系。
2、上行功控
比如:终端设备302确定前述的上下行映射关系中的PDCCH功控指令与PUSCH的映射关系。
比如:终端设备302计算得到KFD,并确定预设的帧格式配置为表1所列的一种帧格式配置。终端设备302将当前的下行子帧号减去KFD得到子帧号i,根据计算得到的子帧号i,以及预设的帧格式配置,查表2B得到KPUSCH,即可得到用于控制当前的上行子帧i上的PUSCH的发送功率的PDCCH功控命令在子帧i-KPUSCH上。
比如:预设的帧格式配置为上行-下行配比0对应的帧格式配置。若子帧2-KFD或子帧7-KFD的PUSCH传输由使用DCI格式0/4的PDCCH/EPDCCH所调度,并且DCI中上行索引(UL index)的最低有效位(Least Significant Bit,LSB)序号设置为1时,则 KPUSCH=7,不由表5.1.1.1-1给出。
对于其他的PUSCH传输,KPUSCH由表5.1.1.1-1给出。
3、上行数据传输的反馈
比如:终端设备302确定前述的PUSCH与下行确认信息所在的PHICH的映射关系。
比如:终端设备302计算得到KFD,并确定预设的帧格式配置为表1所列的一种帧格式配置。终端设备302将当前的下行子帧号减去KFD得到子帧号i,根据计算得到的子帧号i,以及预设的帧格式配置,查表2C得到k,即可得到当前的下行子帧中的PHICH用于反馈的PUSCH所在的子帧号i-k。一个下行子帧上可以分配多个用于传输PHICH的资源,分别对应IPHICH=0和IPHICH=1,其中,IPHICH可参考TS36.213中的如下定义:
Figure PCTCN2017072095-appb-000010
比如:预设的帧格式配置为上行-下行配比0对应的帧格式配置,终端设备302将当前的下行子帧号减去KFD得到子帧号i。若子帧号i对应于IPHICH=0则查表2C得到k,即可得到当前的下行子帧中的该PHICH用于反馈的PUSCH所在的子帧号为i-k;若子帧号i上对应于IPHICH=1,则确定当前的下行子帧中的PHICH用于反馈的PUSCH所在的子帧号为i-6。
4、上行传输的调度
比如:终端设备302确定前述的上下行映射关系中的PDCCH下行调度指令与PUSCH的映射关系。
比如:终端设备302计算得到KFD,并确定预设的帧格式配置为表1所列的一种帧格式配置。终端设备302将当前的下行子帧号减去KFD得到子帧号n,根据计算得到的子帧号n,以及预设的帧格式配置,查表2D得到k,即可得到当前的下行子帧中的上行调度指令对应的PUSCH所在的子帧号n+k。
图5为本发明实施例提供的终端设备的结构示意图。如图5所示,该终端设备包括:
接收模块501,用于接收网络设备发送的针对终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
处理模块502,用于根据接收模块501接收的配置信息,确定终端设备使用的帧格式配置。
可选地,配置信息包括:针对终端设备的帧格式配置的标识信息;或
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
配置信息包括:用于指示相对于一种预设的帧格式配置,针对终端设备的帧格式配置所具有的差别的第四信息。
可选地,若配置信息包括用于指示相对于一种预设的帧格式配置,针对终端设备的帧格式配置所具有的差别的第四信息,则
接收模块501还用于:在接收网络设备发送的针对终端设备的帧格式配置的配置信息之前,接收网络设备发送的用于指示预设的帧格式配置的第五信息;
处理模块502还用于:根据接收模块501接收的第五信息,确定预设的帧格式配置。
可选地,针对终端设备的帧格式配置为:
终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
终端设备在一个小区内使用的帧格式配置。
可选地,若按照针对终端设备的帧格式配置,一个无线帧中各个子帧的子帧号均加上N并模P后得到的帧格式配置与预设的帧格式配置相同,N为整数,P为一个无线帧中包括的子帧的数量,则
处理模块502还用于:根据预设的帧格式配置,确定终端设备使用的上下行映射关系。
该终端设备还可包括发送模块,用于向网络设备发送消息和/或数据。
该终端设备的其他可选实现方式可参考前述的终端设备302的实现,其中,处理模块502可用于执行终端设备302的处理和控制操作,发送模块可用于执行终端设备302在向网络设备301发送时的发送操作,接收模块501可用于执行终端设备302从网络设备301处接收时的接收操作。
其中,该终端设备与网络设备的交互流程,可参考图4所示的流程中,终端设备302与网络设备301之间的交互流程,该终端设备发送、接收消息的内容和结构也可参考该流程中的描述。
该终端设备的一种可选的实现方式可如图6所示,其中,处理器602可用于实现处理模块502的功能,接收器,可用于实现接收模块501的功能。可选地,还可包括发送器,可用于实现发送模块的功能。此外,该终端设备中还可包括存储器,用于存储程序和数据,处理器602可通过调用存储器中存储的程序进行处理和控制。
发送器、存储器、接收器601可均与处理器602直接连接;或者,发送器、存储器、接收器601和处理器602均连接到总线上,各器件之间通过总线通信。
图7为本发明实施例提供的网络设备的结构示意图。如图7所示,该网络设备包括:
处理模块701,用于确定针对一个终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
发送模块702,用于向终端设备发送处理模块701确定的针对终端设备的帧格式配置的配置信息。
可选地,配置信息包括:针对终端设备的帧格式配置的标识信息;或
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
配置信息包括:用于指示相对于一种预设的帧格式配置,针对终端设备的帧格式配置所具有的差别的第四信息。
可选地,若配置信息包括用于指示相对于一种预设的帧格式配置,针对终端设备的帧格式配置所具有的差别的第四信息,则在发送模块702还用于:
在向终端设备发送针对终端设备的帧格式配置的配置信息之前,向终端设备发送用于指示预设的帧格式配置的第五信息。
可选地,针对终端设备的帧格式配置为:
终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
终端设备在一个小区内使用的帧格式配置。
该网络设备还可包括接收模块,用于接收终端设备发送的消息和/或数据。
该网络设备的其他可选实现方式可参考前述的网络设备301的实现,其中,处理模块701可用于执行网络设备301的处理和控制操作,发送模块702可用于执行网络设备301向终端设备302发送时的发送操作。接收模块可用于执行网络设备301在接收终端设备302发送的消息或数据时的接收操作。
其中,该网络设备与终端设备的交互流程,可参考图4所示的流程中,网络设备301与终端设备302间的交互流程,该网络设备发送、接收消息的内容和结构也可参考该流程中的描述。
该网络设备的一种可选的实现方式可如图8所示,其中,处理器801可用于实现处理模块701的功能,发送器802可用于实现发送模块702的功能。可选地,还可包括接收器,可用于实现接收模块的功能。此外,网络设备中还可包括存储器,用于存储程序和数据,处理器801可通过调用存储器中存储的程序进行处理和控制。
发送器802、存储器、接收器可均与处理器801直接连接;或者,发送器802、存储器、接收器和处理器801均连接到总线上,各器件之间通过总线通信。
综上,本发明实施例中,通过支持针对一个终端设备的专用的帧格式配置,有效利用了网络设备的全双工能力。
比如:网络设备管辖的一个小区中的一个终端设备UE1使用一种预设的帧格式配置,比如:表1中的上行-下行配比2对应的帧格式配置;另一个终端设备UE2根据该预设的帧格式配置,接收网络设备发送的专用的帧格式配置的配置信息,根据接收的配置信息确定针对自身的帧格式配置中,特殊子帧配置在子帧{2,7}。
两个终端设备UE1和UE2的帧格式配置如下面的表6所示。
表6
子帧号 0 1 2 3 4 5 6 7 8 9
UE1 D S U U D D S U U D
Ue2 D D S U U D D S U U
则在网络设备侧,子帧2、4、7、9为全双工子帧。
假设一个小区中有两个终端设备:UE1和UE2,两个终端设备可使用相同或不同的帧格式配置,两个终端设备使用的帧格式配置可以是基于预设的帧格式配置进行循环移位后得到的帧格式配置。下面的表7和表8中,第一行中的0~6表示UE1可使用的帧格式配置可基于的预设的帧格式配置;第一列中的0~6表示UE2可使用的帧格式配置可基于的预设的帧格式配置。两个终端设备可在预设的帧格式配置的基础上进行多种可选的循环移位,不同的循环移位可得到不同的帧格式配置。
表格中的第二行至最后一行,其中的第二列至最后一列中的数字,表示UE1采用该 数字所在列对应的预设的帧格式配置,UE2采用该数字所在列的预设的帧格式配置时,通过进行多种不同的循环移位,能够得到的最大的全双工子帧的数量。
其中,表7示出了允许特殊子帧配置在子帧0的情况,表8示出了不允许特殊子帧配置在子帧0的情况。
表7
Figure PCTCN2017072095-appb-000011
表8
Figure PCTCN2017072095-appb-000012
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的 处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (19)

  1. 一种帧格式配置方法,其特征在于,包括:
    终端设备接收网络设备发送的针对所述终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
    所述终端设备根据接收的所述配置信息,确定所述终端设备使用的帧格式配置。
  2. 如权利要求1所述的方法,其特征在于,
    所述配置信息包括:针对所述终端设备的帧格式配置的标识信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
    所述配置信息包括:用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息。
  3. 如权利要求2所述的方法,其特征在于,若所述配置信息包括用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息,则
    在终端设备接收网络设备发送的针对所述终端设备的帧格式配置的配置信息之前,还包括:
    所述终端设备接收所述网络设备发送的用于指示所述预设的帧格式配置的第五信息;
    所述终端设备根据接收的所述第五信息,确定所述预设的帧格式配置。
  4. 如权利要求1~3任一项所述的方法,其特征在于,针对所述终端设备的帧格式配置为:
    所述终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
    所述终端设备在一个小区内使用的帧格式配置。
  5. 如权利要求1~4任一项所述的方法,其特征在于,若按照针对所述终端设备的帧格式配置,一个无线帧中各个子帧的子帧号均加上N并模P后得到的帧格式配置与预设的帧格式配置相同,N为整数,P为一个无线帧中包括的子帧的数量,则还包括:
    所述终端设备根据所述预设的帧格式配置,确定所述终端设备使用的上下行映射关系。
  6. 一种帧格式配置方法,其特征在于,包括:
    网络设备确定针对终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
    所述网络设备向所述终端设备发送确定的针对所述终端设备的帧格式配置的配置信息。
  7. 如权利要求6所述的方法,其特征在于,
    所述配置信息包括:针对所述终端设备的帧格式配置的标识信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
    所述配置信息包括:用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息。
  8. 如权利要求7所述的方法,其特征在于,若所述配置信息包括用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息,则
    在所述网络设备向所述终端设备发送针对所述终端设备的帧格式配置的配置信息之前,还包括:
    所述网络设备向所述终端设备发送用于指示所述预设的帧格式配置的第五信息。
  9. 如权利要求6~8任一项所述的方法,其特征在于,针对所述终端设备的帧格式配置为:
    所述终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
    所述终端设备在一个小区内使用的帧格式配置。
  10. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的针对所述终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
    处理模块,用于根据所述接收模块接收的所述配置信息,确定所述终端设备使用的帧格式配置。
  11. 如权利要求10所述的终端设备,其特征在于,
    所述配置信息包括:针对所述终端设备的帧格式配置的标识信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
    所述配置信息包括:用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息。
  12. 如权利要求11所述的终端设备,其特征在于,若所述配置信息包括用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息,则
    所述接收模块还用于:在接收所述网络设备发送的针对所述终端设备的帧格式配置的配置信息之前,接收所述网络设备发送的用于指示所述预设的帧格式配置的第五信息;
    所述处理模块还用于:根据所述接收模块接收的所述第五信息,确定所述预设的帧 格式配置。
  13. 如权利要求10~12任一项所述的终端设备,其特征在于,针对所述终端设备的帧格式配置为:
    所述终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
    所述终端设备在一个小区内使用的帧格式配置。
  14. 如权利要求10~13任一项所述的终端设备,其特征在于,若按照针对所述终端设备的帧格式配置,一个无线帧中各个子帧的子帧号均加上N并模P后得到的帧格式配置与预设的帧格式配置相同,N为整数,P为一个无线帧中包括的子帧的数量,则
    所述处理模块还用于:根据所述预设的帧格式配置,确定所述终端设备使用的上下行映射关系。
  15. 一种网络设备,其特征在于,包括:
    处理模块,用于确定针对一个终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
    发送模块,用于向所述终端设备发送所述处理模块确定的针对所述终端设备的帧格式配置的配置信息。
  16. 如权利要求15所述的网络设备,其特征在于,
    所述配置信息包括:针对所述终端设备的帧格式配置的标识信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之后的一个或连续多个上行子帧的子帧数量的第二信息;或
    所述配置信息包括:用于指示一个无线帧中的特殊子帧所在位置的第一信息,以及用于指示一个无线帧中特殊子帧之前的一个或连续多个下行子帧的子帧数量的第三信息;或
    所述配置信息包括:用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息。
  17. 如权利要求16所述的网络设备,其特征在于,若所述配置信息包括用于指示相对于一种预设的帧格式配置,针对所述终端设备的帧格式配置所具有的差别的第四信息,则在所述发送模块还用于:
    在向所述终端设备发送针对所述终端设备的帧格式配置的配置信息之前,向所述终端设备发送用于指示所述预设的帧格式配置的第五信息。
  18. 如权利要求15~17任一项所述的网络设备,其特征在于,针对所述终端设备的帧格式配置为:
    所述终端设备在一个小区的多个载波中的一个载波上使用的帧格式配置;或
    所述终端设备在一个小区内使用的帧格式配置。
  19. 一种无线通信系统,其特征在于,包括:
    网络设备,用于向终端设备发送针对所述终端设备的帧格式配置的配置信息;其中,帧格式配置包括一个无线帧中的各个上行子帧、各个下行子帧以及各个特殊子帧在该无线帧中的位置;
    终端设备,用于接收所述配置信息,并根据接收的所述配置信息,确定所述终端设 备使用的帧格式配置。
PCT/CN2017/072095 2016-01-29 2017-01-22 一种帧格式配置方法、装置和系统 WO2017129081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610067807.6A CN107026689B (zh) 2016-01-29 2016-01-29 一种帧格式配置方法、装置和系统
CN201610067807.6 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017129081A1 true WO2017129081A1 (zh) 2017-08-03

Family

ID=59398768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072095 WO2017129081A1 (zh) 2016-01-29 2017-01-22 一种帧格式配置方法、装置和系统

Country Status (2)

Country Link
CN (1) CN107026689B (zh)
WO (1) WO2017129081A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11023151B2 (en) 2013-04-18 2021-06-01 Ruslan SHIGABUTDINOV Systems and methods for file management by mobile computing devices
US11356218B2 (en) * 2017-08-11 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Common control signaling for efficient system operation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428828A (zh) * 2017-08-23 2019-03-05 华为技术有限公司 Quic业务控制方法及网络设备
CN109428680B (zh) * 2017-08-24 2020-09-25 华为技术有限公司 发送或接收上行数据的方法和装置
CN109474381B (zh) * 2017-09-08 2020-08-07 华为技术有限公司 一种时隙格式指示方法、设备及系统
CN110035517B (zh) 2018-01-12 2023-07-18 华为技术有限公司 一种指示信息的传输方法和装置
CN110248402B (zh) 2018-03-09 2022-02-25 华为技术有限公司 一种功率控制方法及设备
CN111831555A (zh) * 2020-06-09 2020-10-27 西安思丹德信息技术有限公司 一种通用地面站测试装置、工作方法、计算机设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075806A1 (zh) * 2010-12-09 2012-06-14 中兴通讯股份有限公司 数据传输方法、装置及无线帧
CN103036657A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 一种数据传输方法和装置
CN104780608A (zh) * 2014-01-13 2015-07-15 中兴通讯股份有限公司 配置信息的下发、处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075806A1 (zh) * 2010-12-09 2012-06-14 中兴通讯股份有限公司 数据传输方法、装置及无线帧
CN103036657A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 一种数据传输方法和装置
CN104780608A (zh) * 2014-01-13 2015-07-15 中兴通讯股份有限公司 配置信息的下发、处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11023151B2 (en) 2013-04-18 2021-06-01 Ruslan SHIGABUTDINOV Systems and methods for file management by mobile computing devices
US11520511B2 (en) 2013-04-18 2022-12-06 Ruslan SHIGABUTDINOV Systems and methods for file management by mobile computing devices
US11868634B2 (en) 2013-04-18 2024-01-09 Ruslan SHIGABUTDINOV Systems and methods for file management by mobile computing devices
US11356218B2 (en) * 2017-08-11 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Common control signaling for efficient system operation

Also Published As

Publication number Publication date
CN107026689B (zh) 2019-08-16
CN107026689A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2017129081A1 (zh) 一种帧格式配置方法、装置和系统
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
JP6151445B2 (ja) Tdd−fddキャリアアグリゲーションのためのharqタイムライン
JP2021192536A (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
US11678401B2 (en) Transmission timing information sending method, transmission timing information receiving method, and apparatus
CN106664702B (zh) 一种数据传输方法、装置及系统
WO2014068891A1 (en) Systems and methods for carrier aggregation
WO2014092619A1 (en) A network node, a wireless device and methods therein for enabling and performing harq transmissions in a d2d communication between wireless devices in a wireless telecommunications network
WO2013020508A1 (zh) Tdd无线帧中传输数据的方法、系统和设备
EP2936899A1 (en) Network node and method for allocating uplink radio resources
JP2020502918A (ja) 上りリンク伝送制御方法及びその装置、通信システム
WO2020216314A1 (zh) 通信方法和通信装置
CN112534763B (zh) Nr峰值速率和传输块大小
WO2017148334A1 (zh) 一种终端设备、网络设备、帧格式配置方法和系统
WO2013107399A1 (zh) 基于跨载波调度的数据传输方法、用户设备和基站
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
US20200295900A1 (en) Information transmission apparatus, method, and system
WO2013143381A1 (zh) 一种上行调度方法及装置
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
EP3487100B1 (en) Harq response information transmission method
WO2023056189A1 (en) Downlink control information based feedback transmission
JP6751180B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2018076300A1 (zh) 基于harq的消息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743696

Country of ref document: EP

Kind code of ref document: A1