WO2017129066A1 - 一种同步方法及装置 - Google Patents

一种同步方法及装置 Download PDF

Info

Publication number
WO2017129066A1
WO2017129066A1 PCT/CN2017/071941 CN2017071941W WO2017129066A1 WO 2017129066 A1 WO2017129066 A1 WO 2017129066A1 CN 2017071941 W CN2017071941 W CN 2017071941W WO 2017129066 A1 WO2017129066 A1 WO 2017129066A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
node
priority
gnss
nodes
Prior art date
Application number
PCT/CN2017/071941
Other languages
English (en)
French (fr)
Inventor
赵丽
周海军
彭莹
李媛媛
房家奕
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to JP2018539421A priority Critical patent/JP2019505127A/ja
Priority to KR1020187024887A priority patent/KR20180108741A/ko
Priority to US16/072,850 priority patent/US20190069255A1/en
Priority to EP17743681.3A priority patent/EP3410792A4/en
Publication of WO2017129066A1 publication Critical patent/WO2017129066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a synchronization method and apparatus.
  • the UE user equipment
  • the eNB evolved base station
  • the synchronization priority is divided into three levels. The order of priority is:
  • SyncRef Synchronisation Reference
  • the SyncRef UE covering the outer node is not a partially covered outer node
  • the coverage external node does not select any SyncRef UE, which is an independent synchronization source
  • the vehicle node In the LTE V2X (Vehicle-to-Everything) system, the vehicle node has direct reception of GNSS (Global Navigation Satellite System) or GNSS-equivalent (Global Navigation System equivalent system) signals.
  • GNSS Global Navigation Satellite System
  • GNSS-equivalent Global Navigation System equivalent system
  • the ability to directly obtain the GNSS signal of the vehicle node can be used as SLSS (SideLink Synchronisation Signal, synchronization source to send synchronization signals) and synchronization configuration information.
  • synchronization sources there are two types of synchronization sources, vehicle nodes that directly obtain GNSS or GNSS-equivalent signals, and eNBs that obtain synchronization from GNSS or GNSS-equivalent.
  • the eNB can provide synchronization through the downlink PSS (Primary Synchronisation Signal)/SSS (Secondary Synchronisation Signal) when the GNSS is synchronized. If the eNB is used as the synchronization source, the following problems exist:
  • the eNB cannot ensure that the GNSS or GNSS-equivalent signal can be directly received. In this case, the eNB and the GNSS may have a large synchronization deviation. If the synchronization is also used as the synchronization source, the synchronization of the nodes in the network coverage cannot be unified and fast convergence.
  • the eNB can directly receive GNSS or GNSS-equivalent signals, the nodes in the network coverage are covered by the edge due to the influence of path propagation; the synchronization error between such nodes and nodes based on GNSS or GNSS-equivalent synchronization is large;
  • the timing and frequency deviation between eNBs may be large.
  • the embodiment of the present application provides a synchronization method and device, which are used to implement a specific synchronization scheme when a terminal node is used as a synchronization source.
  • a synchronization signal of a node is selected for synchronization.
  • a synchronization priority of the plurality of nodes is determined, and a synchronization signal of a node is selected according to a synchronization priority of the multiple nodes, and a synchronization is given.
  • selecting a synchronization signal of a node for synchronization specifically includes:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • selecting a synchronization signal of a node for synchronization specifically includes:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • the method further includes:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • the method further includes:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • a first unit configured to determine a synchronization priority of the multiple nodes when receiving synchronization signals of multiple nodes
  • a second unit configured to select a synchronization signal of a node for synchronization according to synchronization priorities of the multiple nodes.
  • the second unit is specifically configured to:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • the second unit is specifically configured to:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • the second unit is further configured to:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • the second unit is further configured to:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • a processor for reading a program in the memory performing the following process:
  • a synchronization signal of a node is selected for synchronization.
  • the processor is specifically configured to:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • the processor is specifically configured to:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • the processor is further configured to:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • the processor is further configured to:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • FIG. 1 is a schematic flowchart of a synchronization method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a GNSS node scenario based on GNSS synchronization according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a tunnel scenario based on GNSS synchronization according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a synchronization apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another synchronization apparatus according to an embodiment of the present application.
  • the embodiment of the present application provides a synchronization method and device, which are used to implement a specific synchronization scheme when a terminal node is used as a synchronization source.
  • the terminal UE is not used as a synchronization source; in LTE V2X, since the vehicle node has the capability of directly receiving GNSS or GNSS-equivalent signals, the vehicle node that directly obtains the GNSS or GNSS-equivalent signal can transmit the SLSS as a synchronization source. And synchronize configuration information.
  • the eNB controls the GNSS or GNSS-equivalent-based synchronization or performs eNB synchronization. In the embodiment of the present application, only the eNB control node enters the GNSS or GNSS-equivalent synchronization-based synchronization priority processing.
  • the eNB instructs the node to perform GNSS or GNSS-equivalent-based synchronization
  • the eNB since the eNB does not necessarily receive the GNSS reliably, and due to the influence of the transmission delay, there may be a synchronization deviation between the nodes synchronized with the eNB and between the eNBs, so the eNB It is no longer used as a synchronization source. Only nodes that directly acquire GNSS are considered as synchronization sources.
  • the nodes in the network can be divided into the following four cases according to the difference in synchronization accuracy:
  • Case 1 The node directly obtains the signal of GNSS or GNSS-equivalent, and the synchronization accuracy is the highest;
  • Case 2 The GNSS or GNSS-equivalent signal cannot be directly obtained, and the node that directly obtains the signal of GNSS or GNSS-equivalent is selected as the synchronization reference UE, which is equivalent to the GNSS or GNSS-equivalent signal arriving at the receiving node and transmitting by one hop.
  • the accuracy of synchronization has two parts compared with GNSS or GNSS-equivalent signals: 1 hop transmission error, and reception processing error;
  • Case 3 The GNSS or GNSS-equivalent signal cannot be directly obtained, and the node that directly obtains the signal of GNSS or GNSS-equivalent is not selected as the synchronization reference UE, and other nodes that cannot directly obtain the signal of GNSS or GNSS-equivalent are selected as the synchronization reference.
  • the UE which is equivalent to a GNSS or GNSS-equivalent signal, arrives at the receiving node for 2 hops or more. Synchronization accuracy has two parts compared to GNSS or GNSS-equivalent: multi-hop transmission error, and reception processing error;
  • the synchronization priority In order to eliminate the time discontinuity caused by the synchronization deviation, the synchronization priority needs to be divided according to the above synchronization deviation situation, but the signaling overhead caused by dividing the excessive synchronization priority and the cumulative error impact of the synchronization information multi-hop transmission are considered. It is necessary to balance the constraints such as limiting synchronization deviation, ensuring synchronization accuracy, reducing signaling overhead, and reasonable multi-hop transmission. Considering the cases three and four described above, the corresponding synchronization precision is low, and the merge is processed to the same priority.
  • Priority 1 (Priority 1): GNSS or GNSS-equivalent signal 0 hop transmission:
  • the priority node obtains synchronization directly from GNSS or GNSS-equivalent, which is a navigation system that provides absolute accuracy like a GNSS system.
  • Priority 2 GNSS or GNSS-equivalent signal 1 hop transmission:
  • the node of this priority cannot obtain synchronization directly from GNSS or GNSS-equivalent, and obtain synchronization from the node that directly obtains GNSS or GNSS-equivalent synchronization.
  • the priority node cannot directly obtain the GNSS or GNSS-equivalent signal, in order to receive the Priority 2 a UE that transmits a valid synchronization signal by the terminal;
  • the priority node cannot directly obtain the GNSS or GNSS-equivalent signal, and cannot receive the valid synchronization signal higher than Priority 3, but can receive the UE with the valid synchronization signal sent by the Priority 3 terminal;
  • the node of the priority cannot directly obtain the GNSS or GNSS-equivalent signal, and cannot receive the synchronization signal sent by any UE to form an independent synchronization source.
  • the synchronization priority is processed according to the above synchronization priority.
  • the synchronization signal selection signal of the same priority is the strongest, and the S criterion of the RSRP (Reference Signal Receiving Power) is required to be compared with the power difference hysteresis condition of other transmitting nodes; wherein the S criterion is to satisfy the received signal. Power threshold.
  • RSRP Reference Signal Receiving Power
  • the synchronization signals of different priorities select the synchronization signal of the node with the highest synchronization priority, and further require that the S criterion be satisfied.
  • the synchronization priority is reasonably set, the synchronization precision is ensured, the signaling overhead is small, and the high-precision synchronization information is reasonably transmitted by 2 hops.
  • a synchronization method provided by an embodiment of the present application includes:
  • the node may be a UE, such as a vehicle node in LTE V2X.
  • S102 Select a synchronization signal of a node to perform synchronization according to synchronization priorities of the multiple nodes.
  • a synchronization priority of the plurality of nodes is determined, and a synchronization signal of a node is selected according to a synchronization priority of the multiple nodes, and a synchronization is given.
  • selecting a synchronization signal of a node for synchronization specifically includes:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • the threshold value of the threshold may be determined according to actual needs, and is not limited in the embodiment of the present application.
  • selecting a synchronization signal of a node for synchronization specifically includes:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • the method further includes:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • the method further includes:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • Embodiment 1 A GNSS node scenario exists in both the network coverage and the network coverage outer node.
  • the synchronization priority processing is processed according to the above synchronization priority order. specifically:
  • the priority of the Priority 1 node A in the coverage is higher than the Priority 2 Node B in the coverage.
  • the priority of the Priority 2 Node B in the coverage is higher than the Priority 3 Node C in the coverage, so the synchronization information is from the coverage Priority 1 node A to the coverage Priority 2 node.
  • B is forwarded and passed to the inner node of the Priority3 node C.
  • the out-of-band Priority 1 node E has higher priority than the out-of-coverage Priority 2 node F, and the out-of-band Priority 2 node F has higher priority than the out-of-covery Priority 3 node D and node G, so the synchronization information is overwritten from the out-of-coverage Priority 1 node E.
  • Priority 2 node F forwards and passes to the out-of-band Priority3 node D and node G.
  • the node When the node cannot receive any synchronization information, it forms an independent synchronization source with a synchronization priority of Priority3.
  • the priority of the Priority 2 node F is higher than the priority 3 node C of the coverage, so the partial coverage node and the coverage priority 2 Node F is synchronized, and the synchronization priority is Priority3.
  • the Priority 3 node G receives the synchronization information of the partial coverage Priority 3 node D, the independent synchronization source Priority 3 node H, and the out-of-band Priority 2 node F, it synchronizes with the out-of-coverage Priority 2 node F, and the synchronization priority is Priority 3.
  • the outer node I is synchronized with the independent synchronization source node H, and the synchronization priority is Priority3.
  • Embodiment 2 Based on GNSS synchronization, a tunnel scenario.
  • the synchronization priority processing is processed in the above-described synchronization priority order.
  • the priority of the Priority 1 node A in the coverage is higher than the Priority 2 Node B in the coverage.
  • the priority of the Priority 2 Node B in the coverage is higher than the Priority 3 Node C in the coverage, so the synchronization information is from the coverage Priority 1 node A to the coverage Priority 2 node.
  • B is forwarded and passed to the inner node of the Priority3 node C.
  • the partial coverage node D After entering the tunnel, when the partial coverage node D receives the synchronization information of the Priority3 node C, the partial coverage node D and the Priority 3 node C of the left coverage tunnel interface have a synchronization priority of Priority3.
  • the synchronization information between the nodes can only be used for self-synchronization, and the synchronization priority is Priority3.
  • the node When the node continues to move to the right, it can receive the synchronization information of the Priority 3 node E in the tunnel and the Priority3 node G in the network coverage.
  • the receiving node becomes the partial coverage node F, and synchronizes according to the self-synchronization principle, and the synchronization priority is Priority3. .
  • the node When the node continues to move to the right, it can receive the synchronization information of the Priority 3 node F in the tunnel and the Priority 2 node H in the network coverage.
  • the priority of the Priority2 node H in the network coverage is higher than the Priority 3 node F in the tunnel.
  • the level is Priority3.
  • a synchronization device provided by an embodiment of the present application includes:
  • the first unit 11 is configured to determine a synchronization priority of the multiple nodes when receiving synchronization signals of multiple nodes;
  • the second unit 12 is configured to select a synchronization signal of a node for synchronization according to synchronization priorities of the multiple nodes.
  • the second unit is specifically configured to:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • the second unit is specifically configured to:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • the second unit is further configured to:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • the second unit is further configured to:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • another synchronization device provided by the embodiment of the present application includes:
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • a synchronization signal of a node is selected for synchronization.
  • the processor 600 selects a synchronization signal of a node to synchronize according to the synchronization priority of the multiple nodes, the processor is specifically configured to:
  • the synchronization signals of the nodes with the highest synchronization priority are selected for synchronization.
  • the power of the synchronization signal of the node with the highest synchronization priority is greater than a preset threshold.
  • the processor 600 selects a synchronization signal of a node to synchronize according to the synchronization priority of the multiple nodes, the processor is specifically configured to:
  • the synchronization signals of the nodes with the strongest selection signals are synchronized.
  • the synchronization priority of each node is one of the following priorities:
  • the node of the first priority is a node that obtains a synchronization signal directly from the equivalent system GNSS-equivalent of the global navigation system GNSS or GNSS;
  • the node of the second priority is a node that obtains a synchronization signal from the node of the first priority
  • the node of the third priority is: a node that obtains a synchronization signal from a node of the second priority; or a node that obtains a synchronization signal from a node of the third priority; or, acts alone The node of the synchronization source.
  • processor 600 is further configured to:
  • the synchronization signal of the GNSS is directly used for synchronization;
  • the GNSS-equivalent synchronization signal of the GNSS is received, the GNSS-equivalent synchronization signal is directly used for synchronization.
  • processor 600 is further configured to:
  • the local oscillator When the synchronization signal is not received, the local oscillator is used as an independent synchronization source.
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically by the processor 600.
  • the various circuits of the memory represented by one or more processors and memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the processor 600 can be a central buried device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (Complex). Programmable Logic Device, CPLD).
  • CPU central buried device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Complex complex programmable logic device
  • CPLD Programmable Logic Device
  • the synchronization priority is ranked according to the priority level according to the GNSS or GNSS-equivalent mode:
  • Priority 1 GNSS signal 0 hop transmission:
  • Synchronization cannot be obtained directly from GNSS or GNSS-equivalent, synchronizing from nodes that directly acquire GNSS or GNSS-equivalent synchronization
  • a UE that cannot directly obtain GNSS or GNSS-equivalent, and cannot receive a valid synchronization signal higher than level 3, but can receive a valid synchronization signal transmitted by the level 3 terminal;
  • the embodiment of the present application proposes a GNSS or GNSS-equivalent-based synchronization priority setting method in an LTE V2X system, which supports different precision synchronization priority settings in the LTE V2X system.
  • the synchronization priority is set reasonably, the synchronization precision is ensured, the signaling overhead is small, and the high-precision synchronization information is reasonably transmitted.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied. formula.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请公开了一种同步方法及装置,用以实现当终端节点作为同步源时的具体同步方案。本申请提供的一种同步方法,包括:当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。

Description

一种同步方法及装置
本申请要求在2016年1月29日提交中国专利局、申请号为201610066528.8、申请名称为“一种同步方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种同步方法及装置。
背景技术
LTE D2D中,UE(用户设备)不作为同步源,系统中由eNB(演进型基站)作为同步源,同步优先级分为3级,按优先级高低顺序分别为:
覆盖内;
部分覆盖;
覆盖外,包括3种情况:
覆盖外节点的SyncRef(Synchronisation Reference,同步参考)UE为部分覆盖节点;
覆盖外节点的SyncRef UE不是部分覆盖的覆盖外节点;
覆盖外节点未选择任何一个SyncRef UE,为独立同步源;
而在LTE V2X(Vehicle-to-Everything,车辆与任一物体)系统中,由于车辆节点有直接接收GNSS(Global Navigation Satellite System,全球导航系统)或GNSS-equivalent(全球导航系统的等同系统)信号的能力,直接获得GNSS信号的车辆节点可以作为SLSS(SideLink Synchronisation Signal,同步源发送同步信号)和同步配置信息。
LTE V2X系统中,存在2类同步源,直接获得GNSS或者GNSS-equivalent信号的车辆节点,以及从GNSS或者GNSS-equivalent获得同步的eNB。
当基于GNSS同步时,eNB能通过下行的PSS(Primary Synchronisation Signal,主同步信号)/SSS(Secondary Synchronisation Signal,辅同步信号)提供同步,如果eNB作为同步源,存在以下问题:
eNB不能确保总能成功直接接收GNSS或者GNSS-equivalent信号,这时eNB与GNSS同步偏差可能较大,如果还作为同步源,导致网络覆盖内节点同步无法统一,快速收敛;
即使eNB能直接接收GNSS或者GNSS-equivalent信号,由于路径传播的影响,网络覆盖内处于覆盖边缘的节点;这类节点与基于GNSS或者GNSS-equivalent同步的节点间的同步误差较大;
eNB之间的定时、频率偏差可能较大。
综上所述,现有技术中,针对终端节点作为同步源的具体同步方案还没有明确。
发明内容
本申请实施例提供了一种同步方法及装置,用以实现当终端节点作为同步源时的具体同步方案。
本申请实施例提供的一种同步方法,包括:
当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
通过该方法,当接收到多个节点的同步信号时,确定所述多个节点的同步优先级,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,给出了当终端节点作为同步源时的具体同步方案,并且,通过终端节点的不同的同步优先级的设置,保证了同步精度,信令开销较小,实现了高精度的同步信息的合理传输。
可选的,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
可选的,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,该方法还包括:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,该方法还包括:
当接收不到同步信号时,采用本振作为独立同步源。
本申请实施例提供的一种同步装置,包括:
第一单元,用于当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
第二单元,用于根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
可选的,所述第二单元具体用于:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
可选的,所述第二单元具体用于:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,所述第二单元还用于:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,所述第二单元还用于:
当接收不到同步信号时,采用本振作为独立同步源。
本申请实施例提供的一种同步装置,包括:
处理器,用于读取存储器中的程序,执行下列过程:
当通过收发机接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
可选的,所述处理器具体用于:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
可选的,所述处理器具体用于:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,所述处理器还用于:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,所述处理器还用于:
当接收不到同步信号时,采用本振作为独立同步源。
附图说明
图1为本申请实施例提供的一种同步方法的流程示意图;
图2为本申请实施例提供的基于GNSS同步,网络覆盖内/外都存在GNSS节点场景示意图;
图3为本申请实施例提供的基于GNSS同步,隧道场景示意图;
图4为本申请实施例提供的一种同步装置的结构示意图;
图5为本申请实施例提供的另一种同步装置的结构示意图。
具体实施方式
本申请实施例提供了一种同步方法及装置,用以实现当终端节点作为同步源时的具体同步方案。
在LTE D2D中,终端UE不作为同步源;而在LTE V2X中,由于车辆节点有直接接收GNSS或GNSS-equivalent信号的能力,直接获得GNSS或者GNSS-equivalent信号的车辆节点可以作为同步源发送SLSS和同步配置信息。在LTE V2X系统中,eNB控制节点进行基于GNSS或者GNSS-equivalent的同步或者进行eNB的同步,本申请实施例中,仅说明在eNB控制节点进入基于GNSS或者GNSS-equivalent同步的同步优先级处理。
当eNB指示节点进行基于GNSS或者GNSS-equivalent的同步时,由于eNB不一定可靠接收GNSS,而且由于传输时延的影响,与eNB同步的节点间以及eNB之间都有可能存在同步偏差,所以eNB不再作为同步源,只考虑直接获得GNSS的节点作为同步源。
网络中的节点根据同步精度的差异,可以分为以下4种情况:
情况一:节点直接获得GNSS或者GNSS-equivalent的信号,同步精度最高;
情况二:无法直接获得GNSS或者GNSS-equivalent的信号,选择直接获得GNSS或者GNSS-equivalent的信号的节点作为同步参考UE,相当于GNSS或者GNSS-equivalent信号到达接收节点经过1跳传输。同步的精度与GNSS或者GNSS-equivalent信号相比有2部分:1跳的传输误差,以及接收处理误差;
情况三:无法直接获得GNSS或者GNSS-equivalent的信号,也未选择直接获得GNSS或者GNSS-equivalent的信号的节点作为同步参考UE,选择其它无法直接获得GNSS或者GNSS-equivalent的信号的节点作为同步参考UE,相当于GNSS或者GNSS-equivalent信号到达接收节点经过2跳或2跳以上。同步精度与GNSS或者GNSS-equivalent相比有2部分:多跳传输误差,以及接收处理误差;
情况四:无法直接获得GNSS或者GNSS-equivalent的信号,未收到任何有效同步信号,未选择任何节点作为同步参考UE,该节点形成独立的同步源。同步精度与本振精度相关;
为了消除由于同步偏差导致的时间不连续性,需要根据以上的同步偏差情况划分同步优先级,但是考虑到划分过多同步优先级带来的信令开销,以及同步信息多跳传输的累积错误影响,需要在限制同步偏差,保证同步精度,减少信令开销,合理多跳传输等限制条件间取平衡。考虑到上面描述的情况三和四,对应的同步精度较低,合并为同一优先级进行处理。
基于GNSS或者GNSS-equivalent同步的方式的同步优先级按优先级高低排列依次为:
第一优先级(Priority 1):GNSS或者GNSS-equivalent信号0跳传输:
该优先级的节点直接从GNSS或者GNSS-equivalent获得同步,其中所述GNSS-equivalent为类似GNSS系统的可提供绝对精度的导航系统。
第二优先级(Priority 2):GNSS或者GNSS-equivalent信号1跳传输:
该优先级的节点无法直接从GNSS或者GNSS-equivalent获得同步,从直接获得GNSS或者GNSS-equivalent同步的节点获得同步。
第三优先级(Priority 3):其它情况:
该优先级的节点无法直接获得GNSS或者GNSS-equivalent信号,为能收到Priority 2 终端发送的有效同步信号的UE;
或者,该优先级的节点无法直接获得GNSS或者GNSS-equivalent信号,而且无法收到高于Priority 3的有效同步信号,但能收到Priority 3终端发送的有效同步信号的UE;
或者,该优先级的节点无法直接获得GNSS或者GNSS-equivalent信号,无法收到任何UE发来的同步信号,形成独立同步源。
当节点收到多个同步信号时,参考版本12(R12)D2D(设备到设备)的同步参考UE选择方法,同步优先级按照上述同步优先级处理。
相同优先级的同步信号选信号最强的,要求满足RSRP(Reference Signal Receiving Power,参考信号接收功率)的S准则与相比其它发送节点功率差异迟滞条件;其中,所述S准则就是满足接收信号功率门限。
不同优先级的同步信号,选最高同步优先级的节点的同步信号,并且进一步要求满足S准则。
通过以上设计,在LTE V2X的基于GNSS的同步机制中,合理设置了同步优先级,保证了同步精度,信令开销较小,高精度的同步信息合理传输2跳。
综上,参见图1,本申请实施例提供的一种同步方法,包括:
S101、当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
其中,所述节点,可以是UE,例如LTE V2X中的车辆节点等。
S102、根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
通过该方法,当接收到多个节点的同步信号时,确定所述多个节点的同步优先级,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,给出了当终端节点作为同步源时的具体同步方案,并且,通过终端节点的不同的同步优先级的设置,保证了同步精度,信令开销较小,实现了高精度的同步信息的合理传输。
可选的,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
其中,所述门限的门限值,可以根据实际需要而定,本申请实施例中不作限制。
可选的,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,该方法还包括:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,该方法还包括:
当接收不到同步信号时,采用本振作为独立同步源。
下面给出两个具体实施例的说明。
实施例1:网络覆盖内与网络覆盖外节点都存在GNSS节点场景。
参见图2,当网络覆盖内与网络覆盖外都存在GNSS节点场景时,同步优先级处理按照上述同步优先级顺序处理。具体地:
覆盖内Priority 1节点A优先级高于覆盖内Priority 2节点B,覆盖内Priority 2节点B优先级高于覆盖内Priority 3节点C,所以同步信息从覆盖内Priority 1节点A经过覆盖内Priority 2节点B转发,传递给覆盖内Priority3节点C。
覆盖外Priority 1节点E优先级高于覆盖外Priority 2节点F,覆盖外Priority 2节点F优先级高于覆盖外Priority 3节点D和节点G,所以同步信息从覆盖外Priority 1节点E经过覆盖外Priority 2节点F转发,传递给覆盖外Priority3节点D和节点G。
当节点无法收到任何同步信息时,形成独立同步源,同步优先级为Priority3。
部分覆盖节点D收到覆盖内Priority3节点C和覆盖外Priority 2节点F的同步信息时,由于覆盖外Priority 2节点F优先级高于覆盖内Priority 3节点C,所以部分覆盖节点与覆盖外Priority 2节点F同步,同步优先级为Priority3。
同理覆盖外Priority3节点G收到部分覆盖Priority3节点D、独立同步源Priority3节点H和覆盖外Priority 2节点F的同步信息时,与覆盖外Priority 2节点F同步,同步优先级为Priority3。
与独立同步源节点H同步的覆盖外节点I,同步优先级为Priority3。
实施例2:基于GNSS同步,隧道场景。
当隧道场景时,如图3所示,同步优先级处理按照上述同步优先级顺序处理。
覆盖内Priority 1节点A优先级高于覆盖内Priority 2节点B,覆盖内Priority 2节点B优先级高于覆盖内Priority 3节点C,所以同步信息从覆盖内Priority 1节点A经过覆盖内Priority 2节点B转发,传递给覆盖内Priority3节点C。
假设节点从左侧覆盖内向沿隧道向右侧移动。
进入隧道后,部分覆盖节点D收到覆盖内Priority3节点C同步信息时,部分覆盖节点D与左侧覆盖内隧道口的Priority 3节点C,同步优先级为Priority3。
由于隧道内可能无eNB覆盖,也无GNSS覆盖,只能依靠节点间的同步信息来进行自同步,同步优先级都为Priority3。
当节点继续向右运动时,能收到隧道内Priority 3节点E以及网络覆盖内Priority3节点G的同步信息时,该接收节点成为部分覆盖节点F,根据自同步原则进行同步,同步优先级为Priority3。
节点继续向右运动时,能收到隧道内Priority 3节点F以及网络覆盖内Priority2节点H的同步信息时,网络覆盖内Priority2节点H优先级高于隧道内Priority 3节点F,该接收节点同步优先级为Priority3。
与上述方法相对应地,参见图4,本申请实施例提供的一种同步装置,包括:
第一单元11,用于当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
第二单元12,用于根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
可选的,所述第二单元具体用于:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
可选的,所述第二单元具体用于:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,所述第二单元还用于:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,所述第二单元还用于:
当接收不到同步信号时,采用本振作为独立同步源。
参见图5,本申请实施例提供的另一种同步装置,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
当通过收发机610接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
可选的,所述处理器600根据所述多个节点的同步优先级,选择一节点的同步信号进行同步时,具体用于:
当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
可选的,所述同步优先级最高的节点的同步信号的功率大于预设门限。
可选的,所述处理器600根据所述多个节点的同步优先级,选择一节点的同步信号进行同步时,具体用于:
当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
可选的,每一节点的同步优先级,为下列优先级之一:
第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
可选的,所述处理器600还用于:
当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
可选的,所述处理器600还用于:
当接收不到同步信号时,采用本振作为独立同步源。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600 代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
所述的处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
综上所述,本申请实施例中,基于GNSS或者GNSS-equivalent的方式同步优先级按优先级高低排列为:
Priority 1:GNSS信号0跳传输:
直接从GNSS或者GNSS-equivalent获得同步
Priority 2:GNSS信号1跳传输:
无法直接从GNSS或者GNSS-equivalent获得同步,从直接获得GNSS或者GNSS-equivalent同步的节点获得同步
Priority 3:其它情况:
无法直接获得GNSS或者GNSS-equivalent,而且无法收到高于等级3的有效同步信号,但能收到等级3终端发送的有效同步信号的UE;
无法直接获得GNSS或者GNSS-equivalent,无法收到任何UE发来的同步信号,形成独立同步源。
本申请实施例提出了一种在LTE V2X系统中基于GNSS或者GNSS-equivalent的同步优先级设置方法,支持LTE V2X系统中不同精度的同步优先级设置。在LTE V2X的基于GNSS或者GNSS-equivalent的同步机制中,合理设置了同步优先级,保证了同步精度,信令开销较小,高精度的同步信息合理传输。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种同步方法,其特征在于,该方法包括:
    当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
    根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
  2. 根据权利要求1所述的方法,其特征在于,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
    当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
  3. 根据权利要求2所述的方法,其特征在于,所述同步优先级最高的节点的同步信号的功率大于预设门限。
  4. 根据权利要求1所述的方法,其特征在于,根据所述多个节点的同步优先级,选择一节点的同步信号进行同步,具体包括:
    当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
  5. 根据权利要求1所述的方法,其特征在于,每一节点的同步优先级,为下列优先级之一:
    第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
    第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
    第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
  6. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
    或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
  7. 根据权利要求1~6任一权项所述的方法,其特征在于,该方法还包括:
    当接收不到同步信号时,采用本振作为独立同步源。
  8. 一种同步装置,其特征在于,包括:
    第一单元,用于当接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
    第二单元,用于根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
  9. 根据权利要求8所述的装置,其特征在于,所述第二单元具体用于:
    当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
  10. 根据权利要求9所述的装置,其特征在于,所述同步优先级最高的节点的同步信号的功率大于预设门限。
  11. 根据权利要求8所述的装置,其特征在于,所述第二单元具体用于:
    当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
  12. 根据权利要求8所述的装置,其特征在于,每一节点的同步优先级,为下列优先级之一:
    第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
    第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
    第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
  13. 根据权利要求8所述的装置,其特征在于,所述第二单元还用于:
    当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
    或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
  14. 根据权利要求8~13任一权项所述的装置,其特征在于,所述第二单元还用于:
    当接收不到同步信号时,采用本振作为独立同步源。
  15. 一种同步装置,其特征在于,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    当通过收发机接收到多个节点的同步信号时,确定所述多个节点的同步优先级;
    根据所述多个节点的同步优先级,选择一节点的同步信号进行同步。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器具体用于:
    当所述多个节点的同步优先级不同时,选择同步优先级最高的节点的同步信号进行同步。
  17. 根据权利要求16所述的装置,其特征在于,所述同步优先级最高的节点的同步信号的功率大于预设门限。
  18. 根据权利要求15所述的装置,其特征在于,所述处理器具体用于:
    当所述多个节点的同步优先级相同时,选择信号最强的节点的同步信号进行同步。
  19. 根据权利要求15所述的装置,其特征在于,每一节点的同步优先级,为下列优 先级之一:
    第一优先级:该第一优先级的节点为直接从全球导航系统GNSS或GNSS的等同系统GNSS-equivalent获得同步信号的节点;
    第二优先级:该第二优先级的节点为从所述第一优先级的节点获得同步信号的节点;
    第三优先级:该第三优先级的节点为:从所述第二优先级的节点获得同步信号的节点;或者,从所述第三优先级的节点获得同步信号的节点;或者,独自作为同步源的节点。
  20. 根据权利要求15所述的装置,其特征在于,所述处理器还用于:
    当接收到全球导航系统GNSS的同步信号时,直接采用该GNSS的同步信号进行同步;
    或者,当接收到GNSS的等同系统GNSS-equivalent的同步信号时,直接采用该GNSS-equivalent的同步信号进行同步。
  21. 根据权利要求15~20任一权项所述的装置,其特征在于,所述处理器还用于:
    当接收不到同步信号时,采用本振作为独立同步源。
PCT/CN2017/071941 2016-01-29 2017-01-20 一种同步方法及装置 WO2017129066A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018539421A JP2019505127A (ja) 2016-01-29 2017-01-20 同期方法及び装置
KR1020187024887A KR20180108741A (ko) 2016-01-29 2017-01-20 동기화 방법 및 장치
US16/072,850 US20190069255A1 (en) 2016-01-29 2017-01-20 Synchronization method and apparatus
EP17743681.3A EP3410792A4 (en) 2016-01-29 2017-01-20 METHOD AND APPARATUS FOR SYNCHRONIZATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610066528.8 2016-01-29
CN201610066528.8A CN107027164A (zh) 2016-01-29 2016-01-29 一种同步方法及装置

Publications (1)

Publication Number Publication Date
WO2017129066A1 true WO2017129066A1 (zh) 2017-08-03

Family

ID=59397405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071941 WO2017129066A1 (zh) 2016-01-29 2017-01-20 一种同步方法及装置

Country Status (6)

Country Link
US (1) US20190069255A1 (zh)
EP (1) EP3410792A4 (zh)
JP (1) JP2019505127A (zh)
KR (1) KR20180108741A (zh)
CN (1) CN107027164A (zh)
WO (1) WO2017129066A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062862A1 (en) * 2019-10-02 2021-04-08 Mediatek Singapore Pte. Ltd. Synchronization reference reselection procedure design for v2x communication

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337798B1 (ko) * 2014-05-09 2021-12-10 선 페이턴트 트러스트 장치-대-장치 동기화 소스 선택
CN114900278A (zh) * 2016-02-05 2022-08-12 北京三星通信技术研究有限公司 V2x终端时频同步的发送和接收处理方法及装置
CN110352618B (zh) * 2016-03-30 2022-03-04 夏普株式会社 用于车辆(v2x)通信的同步
KR102467752B1 (ko) * 2016-04-01 2022-11-16 주식회사 아이티엘 V2x 통신에서 동기화 방법 및 장치
CN110662286B (zh) * 2018-06-29 2020-11-10 电信科学技术研究院有限公司 一种同步源的确定方法及终端
WO2020062043A1 (en) * 2018-09-28 2020-04-02 Mediatek Singapore Pte. Ltd. Ue capability dependent sync priority determination mechanism for v2x communication
CN109413733B (zh) * 2018-10-24 2021-04-23 济南格林信息科技有限公司 传感网络信息采集同步校时方法、网关、传感节点及系统
CN111447673B (zh) * 2020-04-03 2022-06-10 南京大鱼半导体有限公司 无线自组网的同步方法、装置、存储介质及其节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077512A1 (en) * 2011-09-14 2013-03-28 Electronics And Telecommunications Research Institute Method and terminal for direct communication between terminals
US20150215763A1 (en) * 2014-01-28 2015-07-30 Samsung Electronics Co., Ltd. Method and device for detecting and generating synchronization signal for device-to-device wireless communication
US20150271771A1 (en) * 2014-03-21 2015-09-24 Samsung Electronics Co., Ltd. Method and apparatus for supporting synchronization in d2d communication
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343439B2 (ja) * 2008-07-31 2013-11-13 アイコム株式会社 フレーム同期検出回路およびそれを用いるfsk受信機
WO2015010337A1 (zh) * 2013-07-26 2015-01-29 华为终端有限公司 同步信号的承载方法和用户设备
US20170006563A1 (en) * 2014-01-31 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring Synchronization Signals in Device-to-Device Communication
US20150264588A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for synchronization in device-to-device communication networks
TWI577217B (zh) * 2014-05-08 2017-04-01 宏碁股份有限公司 形成用於裝置間通信的n跳躍點同步網路的方法以及使用所述方法的裝置
KR102337798B1 (ko) * 2014-05-09 2021-12-10 선 페이턴트 트러스트 장치-대-장치 동기화 소스 선택
US11153837B2 (en) * 2015-07-02 2021-10-19 Qualcomm Incorporated Synchronization for wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077512A1 (en) * 2011-09-14 2013-03-28 Electronics And Telecommunications Research Institute Method and terminal for direct communication between terminals
US20150215763A1 (en) * 2014-01-28 2015-07-30 Samsung Electronics Co., Ltd. Method and device for detecting and generating synchronization signal for device-to-device wireless communication
US20150271771A1 (en) * 2014-03-21 2015-09-24 Samsung Electronics Co., Ltd. Method and apparatus for supporting synchronization in d2d communication
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM.: "Discussion on Synchronization for D2D Communication", 3GPP TSG RAN WG1 MEETING #76, RL-140233., 31 January 2014 (2014-01-31), XP050751614 *
See also references of EP3410792A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062862A1 (en) * 2019-10-02 2021-04-08 Mediatek Singapore Pte. Ltd. Synchronization reference reselection procedure design for v2x communication

Also Published As

Publication number Publication date
EP3410792A4 (en) 2019-01-23
JP2019505127A (ja) 2019-02-21
CN107027164A (zh) 2017-08-08
KR20180108741A (ko) 2018-10-04
US20190069255A1 (en) 2019-02-28
EP3410792A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017129066A1 (zh) 一种同步方法及装置
US11659510B2 (en) Clock synchronisation between devices using message timestamps
US11825433B2 (en) Synchronizing multiple-input/multiple-output signals in distributed antenna systems
US10425220B2 (en) Method for receiving and transmitting synchronization signal and wireless communication device
JP2018525894A5 (zh)
US11576133B2 (en) Timing synchronization of 5G V2X sidelink transmissions
JP2019533351A (ja) ワイヤレス通信の方法、装置、およびシステム
TWI753893B (zh) 同步方法、同步裝置和同步源
WO2020220851A1 (zh) 一种通信方法、终端设备以及网络设备
US9455824B1 (en) Distributed network synchronization methods and architectures
JP6686152B2 (ja) 同期方法及び装置
US20230379850A1 (en) Synchronization information determination with respect to neighboring cells
WO2021097680A1 (zh) 一种定位方法及其装置
JP5883970B1 (ja) 通信システム、基地局及び遅延管理装置
US10484097B2 (en) Communication repeater system and method
US20170303219A1 (en) Method and Access Point for Maintaining Synchronization Among Access Points in Radio Access Network
WO2023236706A1 (en) Frame number offset for positioning of a remote ue
TWI634803B (zh) 同步訊號收發方法及無線通訊裝置
CN115396058B (zh) 一种信号传输方法、装置及存储介质
JP2018157340A (ja) 無線通信装置、プログラム及び方法
US9585154B2 (en) Direct communication network system for resource synchronization communication
CN105519026B (zh) 小区间同步的交互方法、装置以及通信系统
WO2016185686A1 (ja) 基地局、無線通信システム、通信方法
WO2019117764A1 (en) Methods and apparatus for providing synchronization within a subnetwork comprising a plurality of nodes
JP2009232226A (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024887

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024887

Country of ref document: KR

Ref document number: 2017743681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017743681

Country of ref document: EP

Effective date: 20180829