WO2017127501A1 - Fibre inorganique - Google Patents

Fibre inorganique Download PDF

Info

Publication number
WO2017127501A1
WO2017127501A1 PCT/US2017/014067 US2017014067W WO2017127501A1 WO 2017127501 A1 WO2017127501 A1 WO 2017127501A1 US 2017014067 W US2017014067 W US 2017014067W WO 2017127501 A1 WO2017127501 A1 WO 2017127501A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight percent
inorganic fiber
calcia
magnesia
silica
Prior art date
Application number
PCT/US2017/014067
Other languages
English (en)
Inventor
Donghui Zhao
Bruce K. Zoitos
Jason M. Hamilton
Michael J. Andrejcak
Karen L. Hanson
Original Assignee
Unifrax I Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unifrax I Llc filed Critical Unifrax I Llc
Priority to KR1020187023527A priority Critical patent/KR20180096808A/ko
Priority to JP2018555857A priority patent/JP6720338B2/ja
Priority to CN201780018589.XA priority patent/CN109071363A/zh
Priority to MX2018008758A priority patent/MX2018008758A/es
Priority to EP17741894.4A priority patent/EP3405447A4/fr
Publication of WO2017127501A1 publication Critical patent/WO2017127501A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • C04B35/62245Fibres based on silica rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • a high temperature resistant inorganic fiber that is useful as thermal, electrical, or acoustical insulating material, and which has a continuous use temperature of 1260°C and greater is provided.
  • the high temperature resistant inorganic fiber is easily manufacturable, exhibits low shrinkage after exposure to use temperatures, retains good mechanical strength after continued exposure to use temperatures, and exhibits low biopersistence in physiological fluids.
  • BACKGROUND Refractory ceramic fibers such as those based on alumino-silicate chemistry, have been sold extensively for thermal and electrical insulation applications since their development in the 1950s.
  • the low biopersistence fibers In addition to temperature resistance as expressed by shrinkage characteristics that are important in fibers that are used in insulation, it is also required that the low biopersistence fibers have mechanical property characteristics during and following exposure to the expected use or service temperature, that will permit the fiber to maintain its structural integrity and insulating characteristics in use.
  • One characteristic of the mechanical integrity of a fiber is its after service friability. The more friable a fiber, that is, the more easily it is crushed or crumbled to a powder, the less mechanical integrity it possesses. In general, inorganic fibers that exhibit both high temperature resistance and low biopersistence in physiological fluids also exhibit a high degree of after service friability. This results in a brittle fiber lacking the strength or mechanical integrity after exposure to the service temperature to be able to provide the necessary structure to accomplish its insulating purpose. Other measures of mechanical integrity of fibers include compression strength and compression recovery.
  • an improved inorganic fiber composition having an improved viscosity so as to be readily manufacturable from a fiberizable melt of desired ingredients, which exhibits low biopersistence in physiological fluids, low shrinkage during and after exposure to service temperatures of 1260°C and greater and, which exhibits low brittleness after exposure to the expected use temperatures, and which maintains mechanical integrity after exposure to use temperatures of 1260°C and greater.
  • a high temperature resistant low-biopersistent inorganic fiber exhibiting improved thermal stability when the inorganic fiber is exposed to elevated temperatures of 1260°C, 1400°C or greater. It has been found that the intentional inclusion of synergistic amounts of at least one alkali metal oxide and at least one alkaline earth metal oxide different from magnesium oxide in a magnesium-silicate inorganic fiber reduces linear shrinkage of the fiber and enhances mechanical strength of the fiber beyond that of alkaline earth silicate fibers without the inclusion of the synergistic combination of the alkali metal oxide and alkaline earth metal oxide.
  • the at least one alkaline earth metal oxide different from magnesium oxide in a magnesium- silicate inorganic is referred to in this disclosure as an "additional alkaline earth metal oxide".
  • the intentional synergistic amounts also result in an improved viscosity of the raw material melt so as to provide easier manufacturability and better fiber quality.
  • the high temperature resistant low- biopersistent inorganic fiber comprises a magnesium-silicate fiber having an intentional inclusion of synergistic amounts of one alkali metal oxide and one additional alkaline earth metal oxide. According to other illustrative embodiments, the high temperature resistant low-biopersistent inorganic fiber comprises a magnesium-silicate fiber having an intentional inclusion of synergistic amounts of lithium oxide and calcia.
  • the inorganic fiber exhibits low biopersistence in physiological solutions, reduced linear shrinkage, improved mechanical strength and compression recovery after exposure to expected use temperatures.
  • FIG. 1 is a temperature-viscosity curve comparing the viscosity of fiber melts used to prepare low biopersistent magnesium-silicate fibers commercially available under the registered trademark ISOFRAX, and certain illustrative embodiments of the presently disclosed inorganic fiber.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, calcia and lithium oxide. According to certain embodiments, the inorganic fiber comprises the fiberization product of silica, magnesia, calcia, lithium oxide, and a further viscosity modifier.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, lithium oxide, calcia and alumina.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, lithium oxide, calcia and boria.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, lithium oxide, calcia and a mixture of alumina and boria.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, zirconia, lithium oxide, calcia and a further viscosity modifier.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, zirconia, lithium oxide, calcia and alumina.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, zirconia, lithium oxide, calcia and boria.
  • the inorganic fiber comprises the fiberization product of silica, magnesia, zirconia, lithium oxide, calcia and a mixture of alumina and boria.
  • the term “substantially” refers to a degree of deviation that is sufficiently small so as to not measurably detract from the identified property or circumstance. The exact degree of deviation allowable may in some cases depend on the specific context.
  • the phrase “substantially free” means that the composition excludes any amount more than trace impurities that are not intentionally added to the fiber melt, but which may be present in the raw starting materials from which the fibers are produced.
  • compositional weight percentages disclosed herein are based on the total weight of the fiber. It will be understood to one of ordinary skill in the art that the total weight percent of the fiber cannot exceed 100%. For example, a person of ordinary skill in the art would easily recognize and understand that a fiber composition comprising 65 to 86 weight percent silica, 14 to 35 weight percent magnesia, 0.1 to 5 weight percent calcia, and 0.1 to 2 weight percent lithium oxide will not exceed 100%. A person of ordinary skill in the art would understand that the amount of silica and magnesia will be adjusted to include the desired amount of silica, magnesia, calcia and lithium oxide without exceeding 100% by weight of the fiber.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, calcia, and lithium oxide. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and greater than 0 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 5 to about 35 weight percent magnesia, greater than 1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, about 0.1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, about 0.1 to about 5 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, about 0.1 to about 3 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, about 0.1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, about 0.1 to about 5 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 5 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, about 0.1 to about 3 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, about 0.1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, and about 0.1 to about 5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, about 0.1 to about 5 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 5 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, about 0.1 to about 3 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, lithium oxide and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 10 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide and about 0.1 to about 5 weight percent boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 10 weight percent calcia, lithium oxide and a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 10 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, about 0.1 to about 5 weight percent alumina, and about 0.1 to about 5 weight percent boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and greater than 0 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 1.5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 0.75 weight percent lithium oxide. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 0.5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide and alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide and alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide and a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 5 to about 35 weight percent magnesia, greater than 1 to about 35 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide and a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, about 0.5 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, about 1 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, about 1.5 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 15 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 2 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 1.5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 1 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 0.75 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, about 0.1 to about 10 weight percent calcia, and about 0.1 to about 0.5 weight percent lithium oxide.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 1.5 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 0.8 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.1 to about 0.5 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 15 weight percent calcia, about 0.5 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 3 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 2.5 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 1.5 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 0.5 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 15 weight percent calcia, about 1 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 15 weight percent calcia, about 1.5 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 15 weight percent calcia, about 1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 6 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 6 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 6 weight percent calcia, greater than 0 to about 0.5 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 6 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 6 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 6 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 6 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 0.5 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 2 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 82 weight percent silica, about 10 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 0.5 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 0 to about 3 weight percent calcia greater than 0 to about 0.25 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 0.1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 0.8 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 1 to about 3 weight percent calcia, about 0.1 to about 0.5 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 3 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 5 to about 22 weight percent magnesia, greater than about 3 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 4 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 5 to about 22 weight percent magnesia, greater than about 4 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 5 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 5 to about 22 weight percent magnesia, greater than about 5 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 6 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, greater than 5 to about 22 weight percent magnesia, greater than about 6 weight percent calcia, about 0.1 to about 1 weight percent lithium oxide, and about 0.1 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, lithium oxide and calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 2 weight percent lithium oxide and about 15 to about 30 weight percent calcia. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.1 to about 2 weight percent lithium oxide and about 15 to about 30 weight percent calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 1 weight percent lithium oxide and about 15 to about 30 weight percent calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide and about 15 to about 30 weight percent calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 0.75 weight percent lithium oxide and about 15 to about 30 weight percent calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.1 to about 0.75 weight percent lithium oxide and about 15 to about 30 weight percent calcia.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 15 to about 30 weight percent calcium oxide, and lithium oxide wherein the amount of lithium oxide may be selected from greater than 0 to about 1 weight percent lithium oxide, greater than 0 to about 0.9 weight percent lithium oxide, greater than 0 to about 0.8 weight percent lithium oxide, greater than 0 to about 0.7 weight percent lithium oxide, greater than 0 to about 0.6 weight percent lithium oxide, greater than 0 to about 0.5 weight percent lithium oxide, greater than 0 to about 0.4 weight percent lithium oxide, greater than 0 to about 0.3 weight percent lithium oxide, or greater than 0 to about 0.25 weight percent lithium oxide, greater than 0 to about 0.2 weight percent lithium oxide, greater than 0 to about 0.175 weight percent lithium oxide, greater than 0 to about 0.15 weight percent lithium oxide, greater than 0 to about 0.125 weight percent lithium oxide, greater than 0 to about 0.1 weight percent lithium oxide, greater than
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 2 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.1 to about 2 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 2 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent boria.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 2 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent of a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 1 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 1 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent boria.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 1 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent of a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 0.5 weight percent lithium oxide, about
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, about 0.5 to about 2 weight percent lithium oxide, about 15 to about 30 weight percent calcium oxide and about 0.1 to about 5 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 0.5 weight percent lithium oxide, about 15 to about 30 weight percent calcia and greater than 0 to about 5 weight percent boria.
  • the inorganic fiber comprises the fiberization product of about 70 to about 80 weight percent silica, about 15 to about 30 weight percent magnesia, greater than 0 to about 0.5 weight percent lithium oxide, about 15 to about 30 weight percent calcium oxide and greater than 0 to about 5 weight percent of a combination of alumina and boria.
  • the inorganic fiber comprises the fiberization product of about 79 weight percent silica, about 20 weight percent magnesia, greater than 0 to about 0.4 weight percent lithium oxide, greater than 0 to about 6 weight percent calcia and greater than 0 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, greater than 1 to about 6 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 0.75 weight percent lithium oxide, greater than 1 to about 6 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 0.5 weight percent lithium oxide, greater than 1 to about 6 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, greater than 1 to about 5 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, greater than 1 to about 4 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, greater than 1 to about 3 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.1 to about 1 weight percent lithium oxide, greater than 1 to about 2 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.5 to about 1.5 weight percent lithium oxide, greater than 1 to about 6 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.5 to about 1.5 weight percent lithium oxide, greater than 1 to about 5 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.5 to about 1.5 weight percent lithium oxide, greater than 1 to about 4 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.5 to about 1.5 weight percent lithium oxide, greater than 1 to about 3 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 76 to about 82 weight percent silica, about 10 to about 19 weight percent magnesia, about 0.5 to about 1.5 weight percent lithium oxide, greater than 1 to about 2 weight percent calcia and about 0.5 to about 1.5 weight percent of alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, about 1 to about 3 weight percent calcia, and greater than 0 to about 2 weight percent lithia.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, about 1 to about 3 weight percent calcia, and greater than 0 to about 1 weight percent lithia.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, about 1 to about 3 weight percent calcia, and greater than 0 to about 0.75 weight percent lithia. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, about 1 to about 3 weight percent calcia, and greater than 0 to about 0.5 weight percent lithia.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, about 1 to about 3 weight percent calcia, greater than 0 to about
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, greater than 3 weight percent calcia, and greater than 0 to about
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, greater than 3 weight percent calcia, and greater than 0 to about 1 weight percent lithia.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, greater than 3 weight percent calcia, and greater than 0 to about 0.75 weight percent lithia.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, greater than 3 weight percent calcia, and greater than 0 to about 0.5 weight percent lithia. According to certain illustrative embodiments, the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, greater than 3 weight percent calcia, greater than 0 to about 1 weight percent lithia, and greater than 0 to about 3 weight percent alumina.
  • the inorganic fiber comprises the fiberization product of about 75 to about 82 weight percent silica, about 5 to about 25 weight percent magnesia, about 3 to about 6 weight percent calcia, and greater than 0 to about 2 weight percent lithia.
  • a given fiber composition may contain the intended calcia addition in an amount of greater than 0 to about 10 weight percent, in an amount of greater than 0 to about 7.5 weight percent, in an amount of greater than 0 to about 7 weight percent, in an amount of greater than 0 to about 6.5 weight percent, in an amount of greater than 0 to about 6 weight percent, in an amount of greater than 0 to about 5.5 weight percent, in an amount of greater than 0 to about 5 weight percent, in an amount of greater than 0 to about 4.5 weight percent, in an amount of greater than 0 to about 4 weight percent, in an amount of greater than 0 to about 3.5 weight percent, in an amount of greater than 0 to about 3 weight percent, in an amount of greater than 0 to about 2.5 weight percent, in an amount of greater than 0 to about 2 weight percent, in an amount of greater than 0
  • a given fiber composition may contain the intended lithium oxide in an amount of greater than 0 to about 5 weight percent, in an amount of greater than 0 to about 4.5 weight percent, in an amount of greater than 0 to about 4 weight percent, in an amount of greater than 0 to about 3.5 weight percent, in an amount of greater than 0 to about 3 weight percent, in an amount of greater than 0 to about 2.5 weight percent, in an amount of greater than 0 to about 2 weight percent, in an amount of greater than 0 to about 1.5 weight percent, in an amount of greater than 0 to about 1 weight percent, in an amount of greater than 0 to about 0.8 weight percent, in an amount of greater than 0 to about 0.5 weight percent, in an amount of greater than 0 to about 0.3 weight percent, in an amount of about 0.1 to about 2 weight percent, in an amount of about 0.1 to about 1.5 weight percent
  • a given fiber composition may contain alumina in an amount of greater than 0 to about 4.5 weight percent, in an amount of greater than 0 to about 4 weight percent, in an amount of greater than 0 to about 3.5 weight percent, in an amount of greater than 0 to about 3 weight percent, in an amount of greater than 0 to about 2.5 weight percent, in an amount of greater than 0 to about 2 weight percent, in an amount of greater than 0 to about 1.5 weight percent, in an amount of greater than 0 to about 1 weight percent, in an amount of greater than 0 to about 0.8 weight percent, in an amount of greater than 0 to about 0.5 weight percent, in an amount of greater than 0 to about 0.3 weight percent, in an amount of about 0.1 to about 2 weight percent,
  • a given fiber composition may contain iron oxide in an amount of about 2 weight percent or less, in an amount of about 1.5 weight percent or less, in an amount of about 1 weight percent or less, in an amount of about 0.75 weight percent or less, in a range of about 0.1 to about 1, or in a range of about 0.1 to about 0.5.
  • the high temperature resistant inorganic fiber exhibits a linear shrinkage of 5% or less when exposed to a use temperature of 1260°C or greater for 24 hours, and maintains mechanical integrity after exposure to the use temperature, and which exhibits low biopersistence in physiological fluids.
  • the high temperature resistant inorganic fiber exhibits a linear shrinkage of 4% or less when exposed to a use temperature of 1260°C or greater for 24 hours, maintains mechanical integrity after exposure to the use temperature, and which exhibits low biopersistence in physiological fluids.
  • a high temperature resistant inorganic fiber which exhibits a linear shrinkage of 10% or less when exposed to a use temperature of 1400°C or greater for 24 hours, and which maintains mechanical integrity after exposure to the use temperature, and which exhibits low biopersistence in physiological fluids.
  • the high temperature resistant inorganic fiber exhibits a linear shrinkage of 5% or less when exposed to a use temperature of 1400°C or greater for 24 hours, and which maintains mechanical integrity after exposure to the use temperature, and exhibit low biopersistence in physiological fluids.
  • an inorganic fiber of any one of the above- described illustrative embodiments comprising (1) forming a molten melt of ingredients comprising silica, magnesia, and synergistic amounts of at least alkali metal oxide and at least one alkaline earth metal oxide that is different from magnesium oxide, optionally alumina, optionally boria, and optionally zirconia, and (2) forming fibers from the molten melt of ingredients.
  • the method of making an inorganic fiber of any one of the above-described illustrative embodiments comprises (1) forming a molten melt of ingredients comprising silica, magnesia, and synergistic amounts of one alkali metal oxide and one alkaline earth metal oxide that is different from magnesia, optionally alumina, optionally boria, and optionally zirconia, and (2) forming fibers from the molten melt of ingredients.
  • the method of making an inorganic fiber of any one of the above-described illustrative embodiment comprises (1) forming a molten melt of ingredients comprising silica, magnesia, and synergistic amounts of calcia and lithium oxide, optionally alumina, optionally bona, and optionally zirconia, and (2) forming fibers from the molten melt of ingredients.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, calcia, and lithium oxide, and forming fibers from the molten melt of ingredients.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and lithium oxide.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and greater than 0 to about 2 weight percent lithium oxide, and forming fibers from the molten melt of ingredients.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina, and forming fibers from the molten melt of ingredients.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 65 to about 86 weight percent silica, about 10 to about
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 0.1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina, and forming fibers from the molten melt of ingredients.
  • the method for preparing the fiber comprises forming a molten melt of ingredients comprising from about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 3 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina, and forming fibers from the molten melt of ingredients.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of any one of the disclosed inorganic fibers comprising the fiberization product of silica, magnesia, and synergistic amounts of at least one alkali metal oxide and at least one alkaline earth metal oxide that is different from magnesia, optionally alumina, optionally boria, and optionally zirconia.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of silica, magnesia, and synergistic amounts of lithium oxide and calcia, optionally alumina, optionally boria, and optionally zirconia.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, calcia, and lithium oxide.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and lithium oxide.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, and greater than 0 to about 2 weight percent lithium oxide.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 65 to about 86 weight percent silica, greater than 0 to about 35 weight percent magnesia, greater than 0 to about 35 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 65 to about 86 weight percent silica, about 10 to about 35 weight percent magnesia, greater than 0 to about 15 weight percent calcia, greater than 0 to about 2 weight percent lithium oxide, and greater than 0 to about 5 weight percent alumina.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 75 to about 82 weight percent silica, about 12 to about 25 weight percent magnesia, greater than 0 to about 3 weight percent calcia, greater than 0 to about 0.1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina.
  • the method includes disposing on, in, near or around the article to be thermally insulated, a thermal insulation material comprising a plurality of the inorganic fibers comprising the fiberization product of about 75 to about 82 weight percent silica, greater than 0 to about 22 weight percent magnesia, greater than about 3 weight percent calcia, greater than 0 to about 1 weight percent lithium oxide, and greater than 0 to about 3 weight percent alumina. While several specific illustrative embodiments of the method of making the inorganic fiber have been recited hereinabove, it is to be noted that any of the disclosed inorganic fiber compositions may be used in the method of insulating an article.
  • an inorganic fiber containing article comprising a plurality of the inorganic fibers of any one of the above-described illustrative embodiments in the form of blankets, blocks, boards, caulking compositions, cement compositions, coatings, felts, mats, moldable compositions, modules, papers, pumpable compositions, putty compositions, sheets, tamping mixtures, vacuum cast shapes, vacuum cast forms, or woven textiles (for example, without limitation, braids, cloths, fabrics, ropes, tapes, sleeving, wicking).
  • the fiber to be produced must be manufacturable, sufficiently soluble (i.e., having low biopersistence) in physiological fluids, and capable of surviving high temperatures with minimal shrinkage and minimal loss of mechanical integrity during exposure to the high service temperatures.
  • the present inorganic fiber exhibits low biopersistence in physiological fluids.
  • low biopersistence in physiological fluids, it is meant that the inorganic fiber at least partially dissolves in such fluids, such as simulated lung fluid, during in vitro tests.
  • Biopersistence may be tested by measuring the rate at which mass is lost from the fiber (ng/cm 2 -hr) under conditions which simulate the temperature and chemical conditions found in the human lung. This test consists of exposing approximately 0.1 g of de-shotted fiber to 50 ml of simulated lung fluid ("SLF”) for 6 hours. The entire test system is maintained at 37°C, to simulate the temperature of the human body.
  • SPF simulated lung fluid
  • the fibers are significantly less biopersistent than normal refractory ceramic fiber in simulated lung fluid, and are at least as soluble as magnesium-silicate fibers without the intended addition of calcia and lithium oxide.
  • To measure the dissolution rate of fibers in simulated lung fluid approximately 0.1 g of fiber is placed into a 50 ml centrifuge tube containing simulated lung fluid which has been warmed to 37°C.
  • Plasma Spectroscopy analysis This test may be conducted using either a near-neutral pH solution or an acidic solution. Although no specific dissolution rate standards exist, fibers with dissolution values in excess of 100 ng/cm 2 -hr are considered indicative of a non- biopersistent fiber.
  • the composition for the simulated lung fluid which was used to test the durability of the fiber compositions of the present invention:
  • Viscosity refers to the ability of a glass melt to resist flow or shear stress. The viscosity-temperature relationship is critical in determining whether it is possible to fiberize a given glass composition. An optimum viscosity curve would have a low viscosity (5-50 poise) at the fiberization temperature and would gradually increase as the temperature decreased. If the melt is not sufficiently viscous (i.e. too thin) at the fiberization temperature, the result is a short, thin fiber, with a high proportion of unfiberized material (shot). If the melt is too viscous at the fiberization temperature, the resulting fiber will be extremely coarse (high diameter) and short.
  • Viscosity is dependent upon melt chemistry, which is also affected by elements or compounds that act as viscosity modifiers. Viscosity modifiers permit fibers to be blown or spun from the fiber melt. It is desirable, however, that such viscosity modifiers, either by type or amount, do not adversely impact the solubility, shrink resistance, or mechanical strength of the blown or spun fiber.
  • One approach to testing whether a fiber of a defined composition can be readily manufactured at an acceptable quality level is to determine whether the viscosity curve of the experimental chemistry matches that of a known product which can be easily fiberized. Viscosity-temperature profiles may be measured on a viscometer, capable of operating at elevated temperatures.
  • an adequate viscosity profile may be inferred by routine experimentation, examining the quality of fiber (index, diameter, length) produced.
  • the shape of the viscosity vs. temperature curve for a glass composition is representative of the ease with which a melt will fiberize and thus, of the quality of the resulting fiber (affecting, for example, the fiber's shot content, fiber diameter, and fiber length). Glasses generally have low viscosity at high temperatures. As temperature decreases, the viscosity increases. The value of the viscosity at a given temperature will vary as a function of the composition, as will the overall steepness of the viscosity vs. temperature curve.
  • the present fiber melt composition possesses a viscosity profile of a readily manufacturable fiber.
  • Linear shrinkage of an inorganic fiber is a good measure of a fiber's dimensional stability at high temperatures or of its performance at a particular continuous service or use temperature.
  • Fibers are tested for shrinkage by forming them into a mat and needle punching the mat together into a pad of approximately 4-10 pounds per cubic foot density and a thickness of about 1 inch.
  • pads are cut into 3 inch x 5 inch pieces and platinum pins are inserted into the face of the material. The separation distance of these pins is then carefully measured and recorded. The pad is then placed into a furnace, ramped to temperature and held at the temperature for a fixed period of time. After heating, the pin separation is again measured to determine the linear shrinkage that pad has experienced.
  • the length and width of the fiber pads were carefully measured, and the pad was placed in a furnace and brought to a temperature of 1260°C or 1400°C for 24 or 168 hours. After cooling, the lateral dimensions were measured and the linear shrinkage was determined by comparing "before" and "after” measurements. If the fiber is available in blanket form, measurements may be made directly on the blanket without the need to form a pad. Mechanical integrity is also an important property since the fiber must support its own weight in any application and must also be able to resist abrasion due to moving air or gas. Indications of fiber integrity and mechanical strength are provided by visual and tactile observations, as well as mechanical measurement of these properties of after-service temperature exposed fibers.
  • the ability of the fiber to maintain its integrity after exposure to the use temperature may also be measured mechanically by testing for compression strength and compression recovery. These tests measure, respectively, how easily the pad may be deformed and the amount of resiliency (or compression recovery) the pad exhibits after a compression of 50%. Visual and tactile observations indicate that the present inorganic fiber remains intact and maintains its form after exposure to a use temperature of at least 1260°C or 1400°C.
  • the low biopersistent inorganic fibers are made by standard glass and ceramic fiber manufacturing methods.
  • Raw materials such as silica and any suitable source of magnesia such as enstatite, forsterite, magnesia, magnesite, calcined magnesite, magnesium zirconate, periclase, steatite, or talc may be used.
  • Any suitable lithium- bearing compound may be used as the source of lithium oxide.
  • Lithium may be included in the fiber melt as Li 2 CC"3. If zirconia is included in the fiber melt, any suitable source of zirconia, such as baddeleyite, magnesium zirconate, zircon or zirconia may be used.
  • the materials are introduced into a suitable furnace where they are melted and blown using a fiberization nozzle, or spun, either in a batch or a continuous mode.
  • the present inorganic fiber has an average diameter of 4 microns and greater.
  • the inorganic fibers containing intended synergistic amounts of a combination of lithium oxide and calcia are useful for thermal insulating applications at continuous service or operating temperatures of at least 1260°C, 1400°C or greater. According to certain embodiments, the fibers containing lithium oxide and calcium oxide are useful for thermal insulating applications at continuous service or operating temperatures of at least
  • the inorganic fibers may be prepared by fiber blowing or fiber spinning techniques.
  • a suitable fiber blowing technique includes the steps of mixing the starting raw materials containing magnesia, silica, lithium oxide, calcium oxide, a further viscosity modifier, and optional zirconia together to form a material mixture of ingredients, introducing the material mixture of ingredients into a suitable vessel or container, melting the material mixture of ingredients for discharge through a suitable nozzle, and blowing a high pressure gas onto the discharged flow of molten material mixture of ingredients to form the fibers.
  • a suitable fiber spinning technique includes the steps of mixing the starting raw materials together to form a material mixture of ingredients, introducing the material mixture of ingredients into a suitable vessel or container, melting the material mixture of ingredients for discharge through a suitable nozzle onto spinning wheels. The molten stream then cascades over the wheels, coating the wheels and being thrown off through centripetal forces, thereby forming fibers.
  • the fiber is produced from a melt of raw materials by subjecting the molten stream to a jet of high pressure/high velocity air or by pouring the melt onto rapidly spinning wheels and spinning fiber centrifugally.
  • the viscosity of the material melt of ingredients may optionally be controlled by the presence of other viscosity modifiers, in an amount sufficient to provide the fiberization required for the desired applications.
  • the viscosity modifiers may be present in the raw materials which supply the main components of the melt, or may, at least in part, be separately added. Desired particle size of the raw materials is determined by furnacing conditions, including furnace size (SEF), pour rate, melt temperature, residence time, and the like.
  • the fiber may be manufactured with existing fiberization technology and formed into multiple thermal insulation product forms, including but not limited to bulk fibers, fiber-containing blankets, boards, papers, felts, mats, blocks, modules, coatings, cements, moldable compositions, pumpable compositions, putties, ropes, braids, wicking, textiles (such as cloths, tapes, sleeving, string, yarns, etc .), vacuum cast shapes and composites.
  • the fiber may be used in combination with conventional materials utilized in the production of fiber-containing blankets, vacuum cast shapes and composites, as a substitute for conventional refractory ceramic fibers.
  • the fiber may be used alone or in combination with other materials, such as binders and the like, in the production of fiber- containing paper and felt.
  • the fiber may be easily melted by standard glass furnacing methods, fiberized by standard RCF fiberization equipment, and is not biopersistent in simulated body fluids.
  • the high temperature resistant inorganic fibers are readily manufacturable from a melt having an improved viscosity suitable for blowing or spinning fiber, are non-durable in physiological fluids, exhibit good mechanical strength up to the service temperature, exhibit excellent linear shrinkage up to 1400°C and above and improved viscosity for fiberization.
  • a shrinkage pad was prepared by needling a fiber mat using a bank of felting needles. A 3 inch x 5 inch test piece was cut from the pad and was used in the shrinkage testing. The length and width of the test pad was carefully measured. The test pad was then placed into a furnace and brought to a temperature of 1400°C for 24 hours. After heating for 24 hours, the test pad was removed from the test furnace and cooled. After cooling, the length and width of the test pad were measured again. The linear shrinkage of the test pad was determined by comparing the "before" and "after” dimensional measurements.
  • a second shrinkage pad was prepared in a manner similar to that disclosed for the first shrinkage pad. However, the second shrinkage pad was placed in a furnace and brought to a temperature of 1260°C for 24 hours. After heating for 24 hours, the test pad was removed from the test furnace and cooled. After cooling, the length and width of the test pad were measured again. The linear shrinkage of the test pad was determined by comparing the "before" and "after” dimensional measurements.
  • Compression recovery is a measure of the mechanical performance of an inorganic fiber in response to the exposure of the fiber to a desired use temperature for a given period of time. Compression recovery is measured by firing test pads manufactured from the inorganic fiber material to the test temperature for the selected period of time. The fired test pads are thereafter compressed to half of their original thickness and allowed to rebound. The amount of rebound is measured as percent recovery of the compressed thickness of the pad. Compression recovery was measured after exposure to use temperatures of 1260°C for 24 hours and 168 hours, and 1400°C for 24 hours and 168 hours.
  • the inorganic fiber is non-durable or non-biopersi stent in physiological fluids.
  • non-durable or “non-biopersistent” in physiological fluids it is meant that the inorganic fiber at least partially dissolves or decomposes in such fluids, such as simulated lung fluid, during in vitro tests described below.
  • the biopersistence test measures the rate at which mass is lost from the fiber (ng/cm 2 -hr) under conditions which simulate the temperature and chemical conditions found in the human lung. In particular, the fibers exhibit low biopersistence in Simulated Lung Fluid at a pH of about 7.4.
  • To measure the dissolution rate of fibers in simulated lung fluid approximately 0.1 g of fiber is placed into a 50 ml centrifuge tube containing simulated lung fluid which has been warmed to 37°C. This is then placed into a shaking incubator for 6 hours and agitated at 100 cycles per minute. At the conclusion of the test, the tube is centrifuged and the solution is poured into a 60 ml syringe.
  • the solution is then forced through a 0.45 ⁇ filter to remove any particulate and tested for glass constituents using Inductively Coupled Plasma Spectroscopy analysis.
  • This test may be conducted using either a near-neutral pH solution or an acidic solution. Although no specific dissolution rate standards exist, fibers with dissolution values in excess of 100 ng/cm 2 -hr are considered indicative of a non- biopersistent fiber.
  • Table I shows fiber melt chemistries for various comparative and inventive fiber samples.
  • Table II shows the median fiber diameter for the fibers of Table I, and the thickness (inches) and density (pcf) of a blanket prepared from the fibers.
  • Table III shows the results for shrinkage for the fibers after exposure to 1260° 1400°C for 24 hours.
  • Table III shows that a magnesium-silicate inorganic fiber composition including a synergistic combination of calcium oxide and lithium oxide as a component of the fiberization product results in lower linear shrinkage at both 1260°C and 1400°C as compared to magnesium-silicate inorganic fiber without the intended calcium oxide and lithium oxide additions.
  • Table IV shows the results compression recovery after exposure to 1260°C and 1400°C for 24 hours, and solubility for the fibers of Table I.
  • Table IV shows that a magnesium-silicate inorganic fiber composition including an intended synergistic combination of calcium oxide and lithium oxide as a component of the fiberization product results in an improvement in compression recovery at both 1260°C and 1400°C, as compared to magnesium-silicate inorganic fiber without the intended calcium oxide and lithium oxide additions.
  • the magnesium-silicate inorganic fiber composition including a synergistic combination of calcium oxide and lithium oxide as a component of the fiberization product exhibits an average compression recovery after exposure to 1260°C for 24 hours of at least 50%.
  • the magnesium-silicate inorganic fiber composition including a synergistic combination of calcium oxide and lithium oxide as a component of the fiberization product exhibits an average compression recovery after exposure to 1400°C for 24 hours of at least 10%.
  • Table V shows the results compressive strength after exposure to 1260°C and 1400°C for 24 hours for the fibers of Table I.
  • the inorganic fiber, thermal insulation, methods of preparing the inorganic fiber, and method of insulating articles using the thermal insulation have been described in connection with various embodiments, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiments for performing the same function. Furthermore, the various illustrative embodiments may be combined to produce the desired results. Therefore, the inorganic fiber, thermal insulation, methods of preparing the inorganic fiber, and method of insulating articles using the thermal insulation should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)

Abstract

Fibre inorganique contenant de la silice et de la magnésie comme constituants principaux et renfermant en outre des quantités synergiques d'oxyde de calcium et un oxyde de métal alcalin autre que la magnésie, tel que l'oxyde de lithium, pour améliorer les performances thermiques et la fabricabilité de la fibre. La fibre inorganique est plus facile à fabriquer, présente une meilleure qualité de fibre, une bonne performance thermique à une température d'utilisation égale ou supérieure à1260°C, conserve son intégrité mécanique après avoir été exposée à la température d'utilisation, et présente une faible biopersistence dans les liquides physiologiques. L'invention concerne également des procédés de préparation de la fibre inorganique et d'isolation thermique d'articles au moyen d'un isolant préparé à partir de ces fibres inorganique.
PCT/US2017/014067 2016-01-19 2017-01-19 Fibre inorganique WO2017127501A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187023527A KR20180096808A (ko) 2016-01-19 2017-01-19 무기 섬유
JP2018555857A JP6720338B2 (ja) 2016-01-19 2017-01-19 無機繊維
CN201780018589.XA CN109071363A (zh) 2016-01-19 2017-01-19 无机纤维
MX2018008758A MX2018008758A (es) 2016-01-19 2017-01-19 Fibra inorganica.
EP17741894.4A EP3405447A4 (fr) 2016-01-19 2017-01-19 Fibre inorganique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662280282P 2016-01-19 2016-01-19
US62/280,282 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017127501A1 true WO2017127501A1 (fr) 2017-07-27

Family

ID=59362638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/014067 WO2017127501A1 (fr) 2016-01-19 2017-01-19 Fibre inorganique

Country Status (6)

Country Link
EP (1) EP3405447A4 (fr)
JP (1) JP6720338B2 (fr)
KR (1) KR20180096808A (fr)
CN (1) CN109071363A (fr)
MX (1) MX2018008758A (fr)
WO (1) WO2017127501A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074521A2 (fr) 1999-08-03 2001-02-07 Johns Manville Corporation Composition de verre sans bore et milieu filtrant
US20050032620A1 (en) * 2003-06-27 2005-02-10 Unifrax Corporation High temperature resistant vitreous inorganic fiber
WO2006048610A1 (fr) * 2004-11-01 2006-05-11 The Morgan Crucible Company Plc Transformation de fibres de silicate alcalino-terreux
WO2008073585A1 (fr) 2006-12-14 2008-06-19 Ppg Industries Ohio, Inc. Verre et fibre de verre faiblement diélectriques pour des applications électroniques
US20090053510A1 (en) * 2005-06-14 2009-02-26 Gary Anthony Jubb Glass fibers
US20090130937A1 (en) 2005-11-10 2009-05-21 The Morgan Crucible Company Plc High Temperature Resistant Fibres
US20120247156A1 (en) 2011-03-31 2012-10-04 Nichias Corporation Method of producing biosoluble inorganic fiber
US20130225025A1 (en) 2010-10-18 2013-08-29 Ocv Intellectual Capital, Llc Glass composition for producing high strength and high modulus fibers
WO2015100320A1 (fr) 2013-12-23 2015-07-02 Unifrax I Llc Fibre inorganique à retrait et résistance améliorés

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658836A (en) * 1995-12-04 1997-08-19 Owens-Corning Fiberglas Technology, Inc. Mineral fibers and their compositions
GB2383793B (en) * 2002-01-04 2003-11-19 Morgan Crucible Co Saline soluble inorganic fibres
GB0424190D0 (en) * 2004-11-01 2004-12-01 Morgan Crucible Co Modification of alkaline earth silicate fibres
GB0522980D0 (en) * 2005-11-10 2005-12-21 Morgan Crucible Co High temperature resistant fibres
CN100497248C (zh) * 2007-08-08 2009-06-10 赵钢 一种可溶性耐高温陶瓷纤维及其制备方法和应用
EP2969989B1 (fr) * 2013-03-15 2019-05-08 Unifrax I LLC Fibre inorganique
JP5634637B1 (ja) * 2014-08-08 2014-12-03 ニチアス株式会社 生体溶解性無機繊維

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074521A2 (fr) 1999-08-03 2001-02-07 Johns Manville Corporation Composition de verre sans bore et milieu filtrant
US20050032620A1 (en) * 2003-06-27 2005-02-10 Unifrax Corporation High temperature resistant vitreous inorganic fiber
WO2006048610A1 (fr) * 2004-11-01 2006-05-11 The Morgan Crucible Company Plc Transformation de fibres de silicate alcalino-terreux
US20090053510A1 (en) * 2005-06-14 2009-02-26 Gary Anthony Jubb Glass fibers
US20090130937A1 (en) 2005-11-10 2009-05-21 The Morgan Crucible Company Plc High Temperature Resistant Fibres
WO2008073585A1 (fr) 2006-12-14 2008-06-19 Ppg Industries Ohio, Inc. Verre et fibre de verre faiblement diélectriques pour des applications électroniques
US20130225025A1 (en) 2010-10-18 2013-08-29 Ocv Intellectual Capital, Llc Glass composition for producing high strength and high modulus fibers
US20120247156A1 (en) 2011-03-31 2012-10-04 Nichias Corporation Method of producing biosoluble inorganic fiber
WO2015100320A1 (fr) 2013-12-23 2015-07-02 Unifrax I Llc Fibre inorganique à retrait et résistance améliorés

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3405447A4

Also Published As

Publication number Publication date
CN109071363A (zh) 2018-12-21
EP3405447A4 (fr) 2019-07-17
KR20180096808A (ko) 2018-08-29
MX2018008758A (es) 2018-09-12
JP2019503333A (ja) 2019-02-07
JP6720338B2 (ja) 2020-07-08
EP3405447A1 (fr) 2018-11-28

Similar Documents

Publication Publication Date Title
CA2934652C (fr) Fibre inorganique a retrait et resistance ameliores
US9567256B2 (en) Inorganic fiber
US10023491B2 (en) Inorganic fiber
US10301213B2 (en) Inorganic fiber with improved shrinkage and strength
US9926224B2 (en) Inorganic fiber with improved shrinkage and strength
CA3098445C (fr) Fibre inorganique
US9919957B2 (en) Inorganic fiber
WO2017127501A1 (fr) Fibre inorganique
KR102681930B1 (ko) 무기 섬유

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008758

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2018555857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023527

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023527

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017741894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741894

Country of ref document: EP

Effective date: 20180820