WO2017126552A1 - Positioning device and positioning method - Google Patents

Positioning device and positioning method Download PDF

Info

Publication number
WO2017126552A1
WO2017126552A1 PCT/JP2017/001546 JP2017001546W WO2017126552A1 WO 2017126552 A1 WO2017126552 A1 WO 2017126552A1 JP 2017001546 W JP2017001546 W JP 2017001546W WO 2017126552 A1 WO2017126552 A1 WO 2017126552A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
positioning device
positioning
observation
position information
Prior art date
Application number
PCT/JP2017/001546
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 中井
卓紀夫 山岡
Original Assignee
株式会社メガチップス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガチップス filed Critical 株式会社メガチップス
Priority to JP2017562851A priority Critical patent/JP6965165B2/en
Publication of WO2017126552A1 publication Critical patent/WO2017126552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present invention relates to a technique for correcting a position obtained by autonomous navigation by intermittently performing absolute position measurement while observing a movement trajectory of a pedestrian by autonomous navigation.
  • a technique is known in which a portable terminal device is carried by a pedestrian, and the movement trajectory of the pedestrian is observed and recorded by autonomous navigation.
  • autonomous navigation using an acceleration sensor, a gyro sensor, or the like has a problem in that errors accumulate with time and position accuracy decreases. Therefore, a technique has been proposed in which absolute position measurement is intermittently performed to correct a position obtained by autonomous navigation. Such techniques are described in, for example, Patent Documents 1 to 3.
  • the technique described in Patent Document 1 uses the timing when the pedestrian changes the traveling direction as the timing of absolute position measurement. Then, at the timing, the pedestrian is considered to be present at a corner position on the route, and the position of the corner is determined as an absolute position. Therefore, the technique described in Patent Document 3 is a technique on the premise that a pedestrian walks on a predetermined route, and has a problem of lack of versatility.
  • Patent Document 2 and Patent Document 3 have a problem that the timing of absolute positioning is fixed at a constant time interval, thereby fixing the correction timing. Therefore, when the positioning accuracy by autonomous navigation is lowered, there is a problem that the position accuracy is lowered.
  • the time interval for absolute position positioning is set short in advance in order to guarantee the position accuracy, there is a problem that the number of times of absolute position positioning increases and power consumption increases. Since a portable device is usually driven by a battery, it is particularly necessary to reduce power consumption.
  • the invention of claim 1 is a positioning device carried by a pedestrian, a storage means for storing reference position information and parameter information, an observation means for obtaining observation information, First positioning means for acquiring relative position information indicating the relative position of the positioning device based on observation information and the parameter information; and second positioning means for acquiring absolute position information indicating the absolute position of the positioning device.
  • Position calculation means for calculating position information indicating the position of the positioning device based on the reference position information and the relative position information, situation determination means for estimating a situation based on the observation information, and the situation
  • the data update means for updating the parameter information stored in the storage means based on the position information and the absolute position information
  • Serial observation means obtains motion information about the motion of the positioning device comprises a motion detection means including the observation information.
  • the invention of claim 2 is the positioning apparatus according to claim 1, wherein the storage means stores distance information, calculates a moving distance based on the relative position information, and the moving distance. And a timing control means for causing the second positioning means to acquire the absolute position information according to the distance information.
  • the invention according to claim 3 is the positioning device according to claim 2, wherein the data updating means updates the distance information stored in the storage means in accordance with an estimation result by the situation judging means. To do.
  • the positioning apparatus wherein the position information is corrected by the absolute position information in accordance with the acquisition of the absolute position information by the second positioning means.
  • the data updating unit determines whether the parameter information needs to be updated according to the estimation result regardless of whether the position information is corrected by the correcting unit.
  • the invention of claim 5 is a positioning device carried by a pedestrian, a storage means for storing reference position information, parameter information and distance information, an observation means for obtaining observation information, and the observation information And first positioning means for acquiring relative position information indicating a relative position of the positioning device based on the parameter information, and second positioning means for acquiring absolute position information indicating the absolute position of the positioning device; Position calculating means for calculating position information indicating the position of the positioning device based on the reference position information and the relative position information, and acquired according to the acquisition of the absolute position information of the second positioning means.
  • a correction unit that corrects the position information based on the absolute position information, a situation determination unit that estimates a situation based on the observation information, and the storage unit according to an estimation result by the situation determination unit
  • a data updating means for updating the distance information stored in the computer, a movement distance is calculated based on the relative position information, and the absolute position information is stored in the second positioning means in accordance with the movement distance and the distance information.
  • Timing control means for acquiring, and the observation means includes movement detection means for acquiring movement information relating to movement of the positioning device and including it in the observation information.
  • the invention of claim 6 is the positioning apparatus according to claim 1, wherein the storage means stores map information around the positioning apparatus, and the situation determination means includes the map information. Based on the situation.
  • the invention according to claim 7 is the positioning device according to claim 1, wherein the observation means includes a barometric sensor that observes the atmospheric pressure and acquires it as observation information, and the situation determination means includes the observation information.
  • the situation is estimated based on the fluctuation of the atmospheric pressure shown in.
  • the invention according to claim 8 is the positioning device according to claim 6, wherein the situation determination means specifies whether or not the stairs are moving based on the observation information.
  • the invention of claim 9 is the positioning device according to claim 6, wherein the situation determination means specifies whether or not the escalator is moving based on the observation information.
  • the invention of claim 10 is the positioning apparatus according to claim 6, wherein the situation determination means specifies whether or not the vehicle is moving by an elevator based on the observation information.
  • the invention according to claim 11 is the positioning device according to claim 1, wherein the situation determination means indicates a state in which the positioning device is possessed based on the motion information included in the observation information. presume.
  • the invention according to claim 12 is the positioning device according to claim 11, wherein the observation means includes an illuminance sensor that observes illuminance and acquires it as observation information, and the situation determination means includes the observation information. Based on the illuminance shown in Fig. 4, the state in which the positioning device is carried is estimated.
  • the invention according to claim 13 is the positioning device according to claim 1, wherein the situation determination means obtains the magnitude of the fluctuation of the walking cycle based on the motion information included in the observation information. Estimate the situation when moving on a rough road.
  • the invention according to claim 14 is the positioning device according to claim 1, wherein the situation determination means estimates a situation in which a crowd is moving based on the exercise information included in the observation information. .
  • the invention according to claim 15 is the positioning device according to claim 14, wherein the situation determination means obtains a change frequency of the traveling direction based on the movement information included in the observation information, thereby causing crowding. Estimate the situation when you are moving.
  • the invention according to claim 16 is the positioning device according to claim 14, wherein the observation means includes a microphone that observes voice and acquires it as observation information, and the situation determination means includes the observation information. By analyzing the displayed voice, the situation in which the crowd is moving is estimated.
  • the invention according to claim 17 is the positioning device according to claim 1, wherein the observation means includes a magnetic sensor that observes magnetism and acquires it as observation information, and the situation determination means includes the observation information.
  • the status of geomagnetic anomalies is estimated based on the magnetism shown in.
  • the invention according to claim 18 is the positioning device according to claim 1, wherein the data updating unit updates the distance information according to a power supply status to the positioning device.
  • the invention according to claim 19 is the positioning device according to claim 1, wherein the data updating means determines whether the position indicated by the position information is a position visited in the past or not. Update.
  • the invention of claim 20 is the positioning device according to claim 1, wherein the data updating means updates the distance information according to the distinction between day and night.
  • the invention according to claim 21 is the positioning device according to claim 1, wherein the data updating means updates the distance information according to the distinction between indoor and outdoor.
  • the invention according to claim 22 is the positioning device according to claim 18, wherein the data updating means updates the distance information in accordance with an instruction from the pedestrian.
  • the invention according to claim 23 is the positioning device according to claim 5, wherein the data updating unit is configured to perform the estimation according to the estimation result regardless of whether the correction unit corrects the position information. Determine whether parameter information needs to be updated.
  • the invention of claim 24 is the positioning device according to claim 1, wherein the position information includes a past position of the positioning device.
  • the invention of claim 25 is a positioning method executed by a positioning device carried by a pedestrian, the step of storing reference position information and parameter information in the storage means, and the observation information is acquired by the observation means.
  • the step of estimating the situation by the situation determination means, and the memory device based on the position information and the absolute position information according to the estimation result by the situation judgment means includes motion information regarding movement of the positioning device.
  • the invention of claim 26 is a positioning method executed by a positioning device carried by a pedestrian, the step of storing reference position information, parameter information and distance information in a storage means, and observation information
  • a step of correcting the position information by the correction means based on the acquired absolute position information, and based on the observation information Based on the relative position information, the step of estimating the situation by the situation determination unit, the step of updating the distance information stored in the storage unit by the data update unit according to the estimation result by the situation determination unit Calculating a moving distance, and causing the second positioning means to acquire the absolute position information by a timing control means according to the moving distance and the distance information, and the observation information includes the positioning device Contains exercise information about movement.
  • the inventions according to claims 1 to 4 and claim 25 acquire relative position information indicating a relative position of the positioning device based on the observation information and the parameter information, and change the situation based on the observation information.
  • the parameter information can be optimized by updating the parameter information while estimating.
  • claims 5 to 24 and claim 26 allow the second positioning means to acquire the absolute position information according to the relative position information and the distance information, and also estimate the situation based on the observation information. By updating, the timing of absolute position positioning by the second positioning means can be optimized.
  • Positioning device 10 CPU DESCRIPTION OF SYMBOLS 100 1st positioning part 101 Position calculating part 102 Situation determination part 103 Timing control part 104 Data update part 105 Correction
  • storage device 110 Program 111 Reference
  • FIG. 1 is a diagram showing a positioning device 1.
  • the positioning device 1 is configured as a portable device.
  • a positioning device 1 in addition to a dedicated terminal device, a smart phone, a mobile phone, a tablet, or the like is assumed. However, it is not limited to the apparatus mentioned here.
  • a person who carries the positioning device 1 is referred to as a “pedestrian”. Further, when the pedestrian is stopped, the position of the pedestrian does not change. On the other hand, for example, when a pedestrian who has stopped swings his / her arm carrying the positioning device 1, strictly speaking, the position of the positioning device 1 varies. Although details are omitted below, the positioning device 1 determines the position of the positioning device 1 so as to cancel the fine movement of the position of the positioning device 1 (movement of the position that is not regarded as a change in the position of the pedestrian). Therefore, in the following description, unless otherwise specified, the “position of the positioning device 1” is assumed to be the position of the pedestrian carrying the positioning device 1.
  • the positioning device 1 is configured as a device that acquires and displays position information 118 (see FIG. 3) indicating the position of the own device. And the presence position of the positioning apparatus 1 is a position of the pedestrian who has the positioning apparatus 1 as mentioned above. Therefore, the positioning device 1 can acquire and display the position of the pedestrian carrying the positioning device 1. Moreover, the movement locus
  • the positioning device 1 includes an operation unit 12 and a display unit 13.
  • the operation unit 12 is hardware that is operated by the pedestrian so that the pedestrian inputs information for giving various instructions to the positioning device 1.
  • the operation unit 12 corresponds to various buttons, keys, a rotary selector, a touch panel, or the like.
  • the display unit 13 has a function of outputting by displaying various information. That is, the display unit 13 is hardware that outputs information in a state that a pedestrian visually perceives. In particular, the display unit 13 of the positioning device 1 displays the position information 118 described above. Therefore, the pedestrian can confirm his / her presence position by visually recognizing the display unit 13.
  • the display unit 13 corresponds to, for example, a liquid crystal panel, a liquid crystal display, an organic EL display, a lamp, or an LED.
  • FIG. 2 is a block diagram of the positioning device 1.
  • the positioning device 1 includes a CPU 10, a storage device 11, an observation device 14, and a second positioning unit 15 in addition to the operation unit 12 and the display unit 13 that have already been described.
  • the CPU 10 reads and executes the program 110 stored in the storage device 11, and performs various data calculations, control signal generation, and the like. Thereby, CPU10 has a function which calculates and produces various data while controlling each structure with which the positioning apparatus 1 is provided. That is, the positioning device 1 is configured as a general computer.
  • the storage device 11 provides a function of storing various data in the positioning device 1.
  • the storage device 11 stores information electronically fixed in the positioning device 1.
  • the storage device 11 in the present embodiment is used to store the program 110, the reference position information 111, the distance information 112, the parameter information 113, the map information 114, and the observation information 115.
  • the information stored in the storage device 11 is not limited to the information shown here.
  • the storage device 11 As the storage device 11, a RAM or buffer used as a temporary working area of the CPU 10, a read-only ROM, a non-volatile memory (such as a NAND memory), a hard disk for storing a relatively large amount of data, a dedicated memory A portable storage medium (such as a PC card, an SD card, or a USB memory) mounted on the reading apparatus is applicable.
  • the storage device 11 is illustrated as if it were one structure. However, the storage device 11 is normally composed of a plurality of types of devices that are employed as necessary among the various devices (or media) exemplified above. That is, the storage device 11 is a general term for a group of devices having a function of storing data.
  • the actual CPU 10 is an electronic circuit having a RAM that can be accessed at high speed.
  • the storage device included in the CPU 10 is also included in the storage device 11 for convenience of explanation. That is, in the following description, it is assumed that the storage device 11 also stores data temporarily stored by the CPU 10 itself.
  • the program 110 is a set of commands that can be read by the CPU 10 (computer).
  • the program 110 is stored in a non-volatile recording medium among the recording media constituting the storage device 11. Therefore, even when the power of the positioning device 1 is turned off, the program 110 is not lost from the positioning device 1 (storage device 11).
  • the program 110 is read and executed by the CPU 10 as necessary.
  • the reference position information 111 shown in FIG. 2 is information indicating the absolute position of the positioning device 1 at the reference point.
  • the reference point is a point where the positioning device 1 exists, and may be a point at any time as long as the absolute position is known. However, as will be described later in detail, in order to create the position information 118, an absolute position at any point is required. Therefore, in the following description, it is assumed that the reference position information 111 is information indicating the absolute position of the point where the pedestrian has instructed to display the position information 118 (the point where the start of creation of the position information 118 is instructed). .
  • the positioning device 1 defines the position of the positioning device 1 at that time as a reference point, acquires the absolute position of the reference point, and stores it in the storage device 11 as reference position information 111. It shall be memorized.
  • the parameter information 113 is information used by the positioning device 1 to obtain the relative position of the positioning device 1.
  • the parameter information 113 includes, for example, a pedestrian's stride value.
  • the positioning device 1 causes the pedestrian to input the height of the pedestrian in advance, and sets the value obtained by subtracting 1 [m] from the height as the parameter information 113 as the initial value of the stride.
  • the pedestrian may directly input the stride value.
  • an average value of a person's stride may be recorded as an initial value until a pedestrian inputs.
  • the stride included in the parameter information 113 is referred to as “step stride L”.
  • the positioning device 1 uses the error angle ⁇ and the expansion / contraction ratio ⁇ as parameter information 113.
  • the initial value of the error angle ⁇ is “0”
  • the initial value of the expansion / contraction ratio ⁇ is “1”.
  • the map information 114 is image information that visually represents the state around the positioning device 1 (an arbitrary range). Although details will be described later, the positioning device 1 includes information indicating whether or not a pedestrian has visited in the past in the map information 114. Further, the map information 114 is displayed on the display unit 13 together with the position information 118.
  • the positioning device 1 includes a timer, and can acquire and store information related to time.
  • Observation device 14 is a general term for devices having a function of acquiring observation information 115.
  • the positioning device 1 includes an atmospheric pressure sensor 140, an illuminance sensor 141, a microphone 142, and a motion detection sensor 143 as the observation device 14.
  • the atmospheric pressure sensor 140 is a device that measures the ambient atmospheric pressure and records it as observation information 115.
  • the movement of the positioning device 1 in the vertical direction can be detected by the observation information 115 acquired by the atmospheric pressure sensor 140.
  • the illuminance sensor 141 is a device that observes ambient illuminance (brightness) and records it as observation information 115.
  • the microphone 142 is a device that converts surrounding sound waves into electrical signals and records them as sound information (observation information 115).
  • the motion detection sensor 143 is a generic name for devices having a function of acquiring motion information 116 relating to the motion of the positioning device 1.
  • the motion detection sensor 143 shown here includes a gyro sensor 144, an acceleration sensor 145, and a magnetic sensor 146.
  • the gyro sensor 144 measures the angular velocity in the positioning device 1.
  • the gyro sensor 144 shown here is configured as a so-called three-axis gyro sensor, measures angular velocities around three axial directions perpendicular to each other, and outputs the measured values as motion information 116.
  • the acceleration sensor 145 detects the acceleration in the positioning device 1.
  • the acceleration sensor 145 creates an output value expressed according to the three axes defined for the positioning device 1 as the motion information 116.
  • the magnetic sensor 146 detects the surrounding geomagnetism. Information on the geomagnetism (movement information 116) acquired by the magnetic sensor 146 is used to determine the direction.
  • the second positioning unit 15 has a function of acquiring absolute position information 150 indicating the absolute position of the positioning device 1.
  • the second positioning unit 15 performs absolute positioning (acquisition of the absolute position information 150) according to the control signal transmitted from the CPU 10. That is, the absolute position information 150 is information indicating the absolute position of the positioning device 1 at the time when the second positioning unit 15 performs absolute positioning. Accordingly, the absolute position information 150 also records the time when the absolute position information 150 is acquired.
  • a control signal transmitted from the CPU 10 in order to cause the second positioning unit 15 to perform absolute positioning is referred to as a “timing signal”.
  • the positioning device 1 shown here includes a GPS receiving unit as the second positioning unit 15.
  • the positioning device 1 can employ the GPS receiving unit as the second positioning unit 15.
  • the GPS receiver receives a radio wave transmitted from a satellite and analyzes the received signal to obtain a reception position (absolute position information 150). Since the conventional technology can be adopted as appropriate for the configuration and function of the GPS receiver, detailed description thereof is omitted here.
  • the CPU 10 collates the feature points on the assumed route of the pedestrian in the map information 114 (for example, the departure point and the corner) and the feature points on the observation route (for example, the start point and the route change point). Thereby, the CPU 10 can obtain the absolute position information 150 by regarding the position of the feature point on the assumed route as the absolute position of the feature point on the observation route. That is, if the absolute position information 150 is acquired by the CPU 10 according to the situation, the CPU 10 is included in the second positioning unit 15.
  • the absolute position information 150 is acquired by the operation unit 12. That is, if the absolute position information 150 is acquired by the operation unit 12 according to the situation, the operation unit 12 is included in the second positioning unit 15. As already described, the reference position information 111 may be acquired in this way.
  • a beacon signal receiver may be provided to receive a signal transmitted from a beacon installed outside and acquire the absolute position information 150.
  • the absolute position information 150 may be acquired by receiving a signal transmitted from an access point for WiFi communication.
  • a digital camera imaging unit
  • a subject such as a marker or a code image
  • the positioning device 1 is configured to be able to acquire the absolute position information 150 even by a configuration other than the GPS receiving unit. Therefore, for example, even when the GPS positioning accuracy is reduced, the positioning device 1 can acquire the absolute position information 150.
  • a point indicated by the absolute position information 150 is referred to as an “observation point”.
  • FIG. 3 is a diagram showing functional blocks provided in the positioning device 1 together with a data flow.
  • the first positioning unit 100, the position calculation unit 101, the situation determination unit 102, the timing control unit 103, the data update unit 104, and the correction unit 105 illustrated in FIG. 3 are functions realized by the CPU 10 operating according to the program 110. It is a block.
  • the first positioning unit 100 acquires the relative position information 117 by creating the relative position information 117 indicating the relative position of the positioning device 1 based on the observation information 115 and the parameter information 113.
  • the relative positioning information 117 is acquired in the positioning device 1 by the first positioning unit 100 creating the relative positioning information 117. More specifically, the first positioning unit 100 refers to the exercise information 116 included in the observation information 115 when creating the relative position information 117. Conversely, of the information included in the observation information 115, the information used by the first positioning unit 100 to create the relative position information 117 is the exercise information 116.
  • the positioning device 1 in the present embodiment initializes the relative position information 117 when the position information 118 is created based on the relative position information 117. That is, the relative position information 117 is information temporarily created to create the position information 118.
  • the creation of the relative position information 117 by the first positioning unit 100 can adopt a conventional technique as appropriate for autonomous navigation (relative positioning), and thus a detailed description thereof is omitted here.
  • the position calculation unit 101 calculates position information 118 based on the reference position information 111 and the relative position information 117. More specifically, the position calculation unit 101 uses the reference position information 111 to convert the relative position information 117 into an absolute position, and creates position information 118. Thereafter, the position information 118 is continuously updated by calculating new position information 118 based on the new relative position information 117 as a relative position with respect to the position information 118.
  • the positioning device 1 records not only the current location of the positioning device 1 but also the past location in the location information 118.
  • the position information 118 becomes information indicating the absolute position of the positioning device 1 from the reference point to the present. Further, when these positions are connected in time series order, a pedestrian's walking trajectory from the reference point to the current position is obtained. Therefore, by displaying the position information 118 on the display unit 13, the pedestrian can check not only his current position but also a walking locus, for example.
  • a section from the latest observation point to the end point of the current position information 118 is a section in which position correction by the correction unit 105 described later is not performed.
  • the section may be referred to as an “uncorrected section”.
  • Each position constituting the uncorrected section is converted to an absolute position by the position calculation unit 101.
  • the absolute position in the uncorrected section is a relative position from the latest observation point.
  • the length of the walking trajectory in the uncorrected section indicates the distance that the pedestrian has moved from the latest observation point (position where absolute positioning was performed immediately before) to the present.
  • the distance is referred to as “movement distance ⁇ ”.
  • the situation determination unit 102 estimates the situation based on the observation information 115 (including the exercise information 116). Further, the situation estimation unit 102 has a function of transmitting the estimation result to the data update unit 104.
  • Specific situations situations where relative positioning accuracy is predicted to be reduced
  • the situation determination unit 102 in the present embodiment include situations where a person is walking on stairs, vehicles (elevators, escalators, moving walks, etc.) ), Walking on a rough road, abnormal geomagnetic field, walking in a crowded area, and “hand gesture state” as a possessed state.
  • the situation determination unit 102 estimates that the relative positioning reliability by the first positioning unit 100 is high.
  • the situation determination unit 102 detects a situation where a pedestrian is walking on the stairs as a situation where the accuracy of relative positioning is lowered.
  • the situation determination unit 102 determines whether or not the movement in the vertical direction (vertical direction) is greater than or equal to a threshold value in the walking motion. And when the movement to an up-down direction is more than a threshold value, it determines with walking the stairs. Further, when walking on a slope or a slope, it is determined that it is the same as when walking on stairs. When the movement in the vertical direction is large and the calculated step length (described later) is large, it is determined that the situation is different (described later).
  • the situation determination unit 102 detects the situation on the vehicle as a situation in which the relative positioning accuracy decreases.
  • an escalator, a moving walk, and an elevator are assumed as vehicles used in the walking motion.
  • the situation determination unit 102 first determines the presence or absence of movement in the vertical direction by detecting a change in atmospheric pressure based on the observation information 115 observed by the atmospheric pressure sensor 140. Next, by dividing the distance traveled during a period by the number of steps observed during that period, the stride between them is obtained, and it is determined whether the stride is longer, shorter, or within the expected step length of the person. To do.
  • the situation determination unit 102 determines that the pedestrian is on the escalator when the vertical movement is detected and the calculated stride value is abnormally large. In addition, the situation determination unit 102 determines that the pedestrian is on the elevator when the movement in the vertical direction is detected and the obtained step length is abnormally small (indicating that the movement distance is small). Furthermore, the situation determination unit 102 determines that the pedestrian is on the moving walk when the movement in the vertical direction is not detected and the calculated stride value is abnormally large. In addition, when it is determined that the vehicle is on the vehicle, when the periodic motion due to the walking motion is observed based on the motion information 116, the situation determination unit 102 causes the pedestrian to walk on the vehicle. It is determined that
  • the situation determination part 102 detects the situation which is walking on a bad road as a situation where the accuracy of relative positioning falls.
  • the situation determination unit 102 determines that the pedestrian is walking on a rough road when the fluctuation of the walking cycle in the walking motion is large (when the walking cycle is not stable).
  • the situation determination unit 102 obtains the travel distance, the walking cycle, and the like by calculation based on the observation information 115.
  • the moving distance, the walking cycle, and the like may be acquired based on information obtained in the process in which the first positioning unit 100 creates the relative position information 117. In this case, you may comprise so that such information may be transmitted from the 1st positioning part 100 as needed.
  • the map information 114 indicates the location of the stairs, the location of the vehicle such as the escalator, and the location of the bad road. Therefore, the situation determination unit 102 refers to the position information 118 and collates with the map information 114 to determine whether the pedestrian is walking on the stairs, using the vehicle, or the bad road. It is also possible to determine whether or not walking. Or you may use such determination together.
  • the situation determination unit 102 detects a geomagnetic abnormality situation as a situation where the accuracy of relative positioning decreases.
  • the situation determination unit 102 determines that the output value of the magnetic sensor 146 is an unreliable situation (a geomagnetic abnormality situation).
  • the situation determination unit 102 detects a situation where a pedestrian is walking in a crowd as a situation where the accuracy of relative positioning is reduced.
  • the situation determination unit 102 determines whether or not the frequency of change in the traveling direction in the walking motion is equal to or higher than a threshold based on the observation information 115 (exercise information 116). In the process of obtaining the relative position information 117 using the movement information 116, a method for obtaining the pedestrian's traveling direction has been known. Therefore, the situation determination unit 102 can detect the change in the traveling direction every moment by comparing the traveling directions obtained in this way. That is, it is possible to detect the change frequency of the traveling direction.
  • the situation determination unit 102 analyzes the observation information 115 (voice information) observed by the microphone 142, recognizes the surrounding speech and the like, and determines whether or not it is a hustle and bustle. Further, if the map information 114 specifies a place where the crowd is formed on a daily basis, the situation determination unit 102 compares the position information 118 with the map information 114 so that the pedestrian exists at the place where the crowd is formed. It can be determined whether or not.
  • the possessed state is a state when the positioning device 1 is possessed by a pedestrian.
  • the positioning device 1 is carried by a pedestrian so as to be inserted into a pocket or a holder, or is held in a handheld state.
  • Whether the positioning device 1 is inserted into a pocket or a holder can be determined according to the observation information 115 output from the illuminance sensor 141, for example.
  • the situation determination unit 102 detects a situation in which the hand is in a hand-shaking state among the possessed states as a situation in which the accuracy of relative positioning is lowered.
  • the situation determination unit 102 detects a hand gesture state by referring to the motion information 116 in the observation information 115 and analyzing the walking motion.
  • Each position constituting the uncorrected section in the position information 118 is a position obtained based on the relative position information 117. Therefore, the timing control unit 103 has a function of calculating the movement distance ⁇ based on the relative position information 117 and causing the second positioning unit 15 to acquire the absolute position information 150 according to the movement distance ⁇ and the distance information 112. Have.
  • the positioning device 1 executes absolute positioning according to the moving distance ⁇ of the pedestrian instead of a fixed time interval. Therefore, for example, when the pedestrian stops without moving, the positioning device 1 does not perform absolute positioning.
  • the data update unit 104 updates the parameter information 113 based on the position information 118 and the absolute position information 150 according to the estimation result by the situation determination unit 102.
  • the parameter may be abnormal. Therefore, when it is detected that such a positioning error has occurred, it is preferable to change the parameter information 113 in a direction to reduce the positioning error.
  • the first positioning unit 100 obtains the number of steps n of the pedestrian during the time t based on the exercise information 116, and calculates (n ⁇ L) / t, thereby calculating the pedestrian's number. Find the speed ⁇ 0 .
  • the first positioning unit 100 estimates the current position in relative positioning based on the traveling direction ⁇ 0 and the speed ⁇ 0 while estimating the traveling direction ⁇ 0 of the pedestrian based on the motion information 116. In this way, relative positioning is performed by the first positioning unit 100, and the relative position information 117 is created.
  • the walking trajectory (movement trajectory) estimated by relative positioning is close to the similar shape of the actual walking trajectory.
  • the accumulation error in the measurement of the gyro sensor 144 and the acceleration sensor 145 becomes obvious in such a form. Therefore, for example, if rotation processing and expansion / contraction processing are performed on the estimated walking locus, it is expected to match the actual walking locus.
  • FIG. 4 is a diagram illustrating an example of an estimated walking trajectory and an actual walking trajectory.
  • T1 and T2 shown in FIG. 4 are observation points.
  • the observation point T2 is the latest observation point
  • the observation point T1 is a past observation point other than the latest observation point.
  • the past observation point T1 is not limited to the previous observation point.
  • a solid line L2 is an actual walking locus.
  • Each position constituting the broken line L1 is converted to an absolute position using the observation point T1, and corresponds to the position information 118. That is, the broken line L1 coincides with the movement locus in the uncorrected section.
  • the point P1 is an end point in the position information 118 at the time when the observation point T2 was obtained. In other words, the point P1 is a current position estimated as a relative position from the observation point T1 by relative positioning.
  • the data updating unit 104 can refer to the observation point T2, the observation point T1, and the point P1 by referring to the absolute position information 150 and the position information 118.
  • a straight line L3 shown in FIG. 4 is a straight line connecting the observation point T1 and the observation point T2.
  • a straight line L4 shown in FIG. 4 is a straight line connecting the observation point T1 and the point P1.
  • the data updating unit 104 in the present embodiment refers to the absolute position information 150 and the position information 118 to obtain the error angle ⁇ and the expansion / contraction ratio ⁇ , and updates the parameter information 113.
  • the update of the parameter information 113 by the data updating unit 104 is not limited to the above principle. That is, other conventional techniques may be adopted as appropriate.
  • the relative position information 117 is obtained using the normal stride L recorded in the parameter information 113, it is absolute.
  • a large positioning error occurs between the position by positioning and the position by relative positioning.
  • the expansion / contraction ratio ⁇ is immediately changed to a small value, the relative position is changed by the slow speed ⁇ a after the change even after the abnormal situation returns to the normal situation.
  • Information 117 is obtained. Then, despite the adjustment of the parameter information 113, the positioning error between the position based on absolute positioning and the position based on relative positioning is still not eliminated.
  • the data update unit 104 updates the parameter information 113 with reference to the estimation result by the situation determination unit 102 when an abnormality of the parameter used for relative positioning is assumed.
  • the situation in which the data updating unit 104 updates the parameter information 113 is a situation in which a positioning error has occurred and the cause of the positioning error is not found except for parameter abnormality.
  • the data updating unit 104 compares the absolute position information 150 and the position information 118 to determine whether or not a positioning error has occurred.
  • the situation determination unit 102 may execute the determination.
  • the data updating unit 104 in the present embodiment updates the parameter information 113 by determining that a situation in which the accuracy of relative positioning is lowered is not detected even though a positioning error has occurred, as a parameter abnormal situation. To do. Specifically, the situation of walking on stairs, riding on a vehicle, walking on a rough road, abnormal geomagnetic field, walking in a crowded area, The situation is none of them. As described above, these situations are estimated by the situation determination unit 102 and transmitted to the data update unit 104.
  • the data update unit 104 also has a function of updating the distance information 112 stored in the storage device 11 according to the estimation result by the situation determination unit 102.
  • the positioning device 1 generates the timing signal by the timing control unit 103 when the movement distance ⁇ (length of the uncorrected section) becomes the distance D t (distance information 112), and the second The positioning unit 15 executes absolute positioning. Therefore, when the data update unit 104 dynamically changes the distance information 112 (distance D t ), the absolute positioning timing in the positioning device 1 can be dynamically changed.
  • Data updating unit 104 when the state determination unit 102 a situation where the accuracy of the relative positioning of the first positioning portion 100 is lowered is detected, and updates the distance information 112 in a direction to reduce the distance D t.
  • the data updating unit 104 compares the position indicated in the absolute position information 150 with the position in the position information 118 corresponding to the absolute position information 150 (current position by relative positioning), and the error between these positions.
  • the distance information 112 may be updated as a situation in which the relative positioning accuracy decreases. In the example shown in FIG. 4, it may be determined whether or not the distance between the point P1 and the observation point T2 exceeds the threshold value.
  • the data update unit 104 subtracts a certain value (adjustment range) from the distance information 112 regardless of the detected situation (a situation in which the relative positioning accuracy decreases), thereby obtaining the distance information. 112 is updated.
  • the adjustment range by the data updating unit 104 may be changed according to the detected situation.
  • the distance D t is a value of “0” or more, and “0” is also assumed as the lower limit value.
  • the distance Dt of “0” means that absolute positioning is performed even when the pedestrian does not move, and means that absolute positioning is continuously performed.
  • Absolute positioning is abandoned when the distance D t is set to “0” and the absolute positioning is intermittently executed when the relative positioning accuracy is reduced and it is no longer reliable. Switching to is also worth considering as an example.
  • the positioning device 1 of this embodiment the lower limit is provided at a distance D t, the distance D t is assumed to prohibit be shorter than the lower limit value.
  • the data updating unit 104 when the reliability of the relative positioning of the first positioning portion 100 is higher situation is detected, to extend the distance D t. Specifically, the distance information 112 is updated in a direction in which the distance Dt is extended when the situation determination unit 102 has not detected a situation in which the relative positioning accuracy by the first positioning unit 100 decreases.
  • the data updating unit 104 in the present embodiment updates the distance information 112 by adding a certain value (adjustment width) to the distance information 112.
  • the adjustment range by the data updating unit 104 may be changed according to the detected situation.
  • the value of the distance D t is increased, accordingly, it extends the interval absolute positioning is performed. Thereby, power consumption can be suppressed.
  • errors in the motion detection sensor 143 are accumulated even when a situation in which the accuracy of relative positioning decreases is not detected. Therefore, relative positioning by the first positioning unit 100 requires calibration by absolute positioning at an interval of a certain constant or less.
  • the data update unit 104 does not make the distance information 112 larger than the predetermined upper limit value even if a situation in which the relative positioning accuracy is lowered is not detected. That is, the status determination unit 102, the distance D t is assumed to prohibit be extended from the upper limit value.
  • the data updating unit 104 a distance not only whether updating by upper or lower limit of the D t, also determines whether the updated by other circumstances.
  • the data update unit 104 updates the distance information 112 according to the power supply status to the positioning device 1 with reference to the remaining battery level and whether or not the power adapter is attached. For example, even if the accuracy of relative positioning is lowered, when the battery remaining amount is low, priority is given to the suppression of power consumption over the accuracy, and the value of the distance Dt is not reduced. Thereby, the timing of positioning by the second positioning unit 15 can be optimized according to the actual power supply state.
  • the data update unit 104 refers to the map information 114 and the position information 118 to determine whether or not the position indicated by the position information 118 is a position where a pedestrian has visited in the past, and according to the determination result, The distance information 112 is updated. For example, for a place where a pedestrian has visited in the past, even if the accuracy of relative positioning is lowered, there may be a case where it does not become a serious problem. Therefore, when the position indicated by the position information 118 is a position where a pedestrian has visited in the past, the distance information 112 is set to a larger value than in other cases.
  • the data update unit 104 updates the distance information 112 according to the distinction between day and night while referring to the time information obtained by a timer (not shown). For example, in the daytime, even if the relative positioning accuracy is reduced, the pedestrian can easily observe the surroundings, so that there may be no serious problem. Therefore, the data updating unit 104 sets the distance information 112 to a larger value in the daytime than in the nighttime.
  • the data update unit 104 refers to the map information 114 and the position information 118 to determine whether the current position is indoor or outdoor, and updates the distance information 112 according to the distinction between indoor and outdoor. For example, if it is indoor, even if the accuracy of relative positioning is lowered, it is expected that there is a relatively large amount of other information for specifying the position in the surrounding area, and there may be no serious problem. Therefore, when the current position is indoor, the data update unit 104 sets the distance information 112 to a larger value than in other cases.
  • the data update unit 104 finally updates the distance information 112 in accordance with a pedestrian instruction. Specifically, regarding the update of the distance information 112, the detected situation and a message for requesting whether or not the pedestrian is required are displayed on the display unit 13, and whether or not the update is possible is determined according to an instruction input by the pedestrian. .
  • the correction unit 105 corrects the position information 118 with the acquired absolute position information 150 in response to the acquisition of the absolute position information 150 of the second positioning unit 15. More specifically, the position information 118 is corrected by replacing the end point of the uncorrected section (the current position by relative positioning) with the absolute position information 150.
  • the correction unit 105 in the present embodiment is configured to always perform correction on the position information 118 when the absolute position information 150 with high reliability is acquired. However, for example, the correction unit 105 compares the absolute position information 150 and the position information 118 and indicates the position indicated by the absolute position information 150 and the position information 118 at the time when the absolute position information 150 is acquired.
  • the position information 118 may be corrected only when an error from the position is obtained and the error is equal to or greater than a threshold value. If the example shown in FIG. 4 demonstrates, you may correct
  • the correction unit 105 also retroactively corrects the uncorrected section of the positions recorded in the position information 118 and sets it as the past existing position of the positioning device 1. In this case, the correction unit 105 corrects each position in the uncorrected section using the error angle ⁇ and the expansion / contraction ratio ⁇ while referring to the parameter information 113 (not shown in FIG. 3). As a result, the uncorrected section is canceled and the section becomes a corrected section.
  • 5 and 6 are flowcharts showing a positioning method by the positioning device 1.
  • each process shown in FIG. 5 and FIG. 6 shall be started by the pedestrian start instruction with respect to the positioning apparatus 1.
  • each process shown in FIGS. 5 and 6 is executed by the CPU 10 executing the program 110. Further, it is assumed that the process of storing the distance information 112 and the parameter information 113 in the storage device 11 is executed before each process shown in FIGS. 5 and 6 is started.
  • the positioning device 1 acquires the reference position information 111 (step S1) and stores it in the storage device 11.
  • a signal indicating that the input has been made is transmitted from the operation unit 12 to the timing control unit 103, and the timing control unit 103 generates a timing signal, This is transmitted to the second positioning unit 15.
  • the positioning device 1 acquires the reference position information 111 by the second positioning unit 15 (GPS receiving unit) positioning the absolute position of the reference point.
  • the pedestrian may input the reference position information 111 by operating the operation unit 12.
  • acquisition of the observation information 115 by the observation device 14 is started in parallel with the acquisition of the reference position information 111.
  • the motion detection sensor 143 (the gyro sensor 144, the acceleration sensor 145, and the magnetic sensor 146) is activated, and the acquisition of the motion information 116 necessary for relative positioning is also started. Thereafter, the observation device 14 continues to acquire the observation information 115.
  • the first positioning unit 100 performs relative positioning based on the exercise information 116 (step S2), and acquires relative position information 117. Then, the position calculation unit 101 creates position information 118 based on the relative position information 117 and the reference position information 111 (step S3).
  • step S3 the reference position information 111 is not referred to, and the position calculation unit 101 determines the position information based on the end position in the position information 118 at that time and the relative position information 117. 118 is created by updating.
  • step S3 the situation determination unit 102 determines whether or not a situation in which the accuracy of relative positioning is reduced occurs based on the observation information 115 (step S4).
  • the situation detected by the situation determination unit 102 as a situation where the accuracy of relative positioning is reduced, as described above, is a situation where a person is walking on a stairs, a situation where he is riding a vehicle, or a situation where he is walking on a rough road
  • the situation of abnormal geomagnetism, the situation of walking in a crowd, and the possession state are the states of hand-shaking.
  • step S4 It can be determined in step S4 by referring to the observation information 115 that is output information from the atmospheric pressure sensor 140 whether or not it is walking on the stairs, or whether it is on an escalator or elevator (however, It is difficult to distinguish between these situations.) Whether or not the user is walking on a rough road, whether or not the geomagnetic abnormality is present, or whether or not the hand is shaking can be determined in step S4 by referring to the motion information 116. In addition, whether or not the user is walking in a crowd can be determined based on the exercise information 116 and the observation information 115 that is output information from the microphone 142.
  • step S4 when step S4 is executed, the uncorrected section is gradually extended, and the absolute position information 150 for calibrating the uncorrected section has not yet been acquired. In this situation, a positioning error between the position in the absolute position information 150 and the position in the position information 118 cannot be detected. Therefore, it is not possible to determine whether or not the vehicle is on a moving walk (whether the average stride is abnormally long) using the positioning error as a detection index when the step S4 is executed.
  • step S4 If another situation that cannot be detected at the stage where step S4 is executed has occurred, if the distance Dt is extended, the correction by the absolute position information 150 is delayed, and the accuracy of the position information 118 decreases. Therefore, even when it is determined No in step S4, the data updating unit 104 immediately it does not extend the distance D t. And the positioning apparatus 1 transfers to the process of step S11.
  • the condition determination part 102 sets a detection flag to ON (step S5), and transmits to the data update part 104.
  • the detection flag is a flag indicating whether or not it has been detected that a situation in which the accuracy of relative positioning is lowered has occurred. When it is “OFF”, it indicates that it has not been detected, and when it is “ON”, it has been detected. Indicates. Note that the initial value of the detection flag is “OFF”.
  • Step S5 the data updating unit 104 determines whether to shortening the distance D t (step S6).
  • step S6 the data updating unit 104 determines whether or not the distance Dt has already reached the lower limit value. As already described, if the distance D t has reached the lower limit value, the distance D t should not be further shortened, and the data updating unit 104 determines No in step S6.
  • step S6 the data update unit 104 determines whether the power supply is in danger, whether the current position has been visited in the past, daytime, or whether the current position is indoors. When any of these situations is detected, the data update unit 104 inquires about the detected situation and whether or not the absolute positioning interval should be narrowed (whether or not the distance D t should be shortened). The message is displayed on the display unit 13. Furthermore, the data update part 104 determines with No in step S6, when the instruction
  • step S6 If the data update unit 104 described above does not correspond to any of the situations determined as “No”, the data update unit 104 determines Yes in step S6.
  • step S6 the data updating unit 104, to shorten the distance D t (step S7) by, it updates the distance information 112.
  • the positioning device 1 when a situation where the accuracy of the relative positioning is reduced occurs, the distance is shortened to D t it is possible to increase the frequency of the absolute positioning. On the other hand, the positioning device 1, the frequency of the absolute positioning distance D t is shortened can be prevented from rising carelessly.
  • the timing control unit 103 refers to the position information 118 to acquire the movement distance ⁇ , and determines whether or not the acquired movement distance ⁇ has reached the distance D t indicated in the distance information 112 (step S1). S11).
  • step S2 If the moving distance ⁇ has not reached the distance D t (No. in step S11), and the positioning device 1, the process returns to step S2. That is, relative positioning (step S2) is repeated without performing absolute positioning.
  • step S11 If the movement distance ⁇ has reached the distance D t (Yes. In step S11), and the timing controller 103 generates a timing signal, and transmits to the second positioning portion 15. Thereby, positioning (absolute positioning) by the 2nd positioning part 15 is performed (step S12). As already described, in the positioning device 1, absolute positioning is performed by the GPS receiver. Therefore, the process of step S12 is a positioning process using GPS.
  • the second positioning unit 15 determines whether or not the position acquired in step S12 (the position obtained by absolute positioning) is reliable (whether or not it is highly accurate) (step S13).
  • step S13 the 2nd positioning part 15 produces the absolute position information 150 (step S14), and memorize
  • step S13 if the position is not reliable (No in step S13), the absolute position information 150 is not created, and the positioning device 1 returns to step S2 and repeats the process.
  • the correction unit 105 corrects the position information 118 using the absolute position information 150. At this time, the correction unit 105 corrects the position information 118 on the assumption that the absolute position information 150 is highly accurate without evaluating the absolute position information 150. Therefore, even if the accuracy of the acquired absolute position information 150 is low, if the update process is performed, the accuracy of the position information 118 may be reduced. In particular, when the method of acquiring the absolute position information 150 uses GPS, the absolute position information 150 with low reliability may be acquired due to the influence of the state of the GPS signal or the like.
  • the positioning device 1 does not execute the update process until reliable absolute position information 150 is acquired by executing step S13. As a result, even when the absolute position information 150 with low accuracy is acquired, it is possible to prevent a decrease in accuracy of the position information 118 due to inappropriate update processing being executed.
  • the second positioning unit 15 (GPS reception unit) analyzes the additional information included in the GPS signal (included in the GPS signal format), thereby obtaining the GPS signal.
  • the reliability of the system shall be determined.
  • step S14 When step S14 is executed and the absolute position information 150 is recorded, the positioning device 1 executes an update process (step S15).
  • the situation determination unit 102 starts a process related to situation estimation for updating the distance information 112.
  • the situation determination unit 102 determines whether or not the detection flag is “ON” (step S21).
  • step S21 the case where the detection flag is already “ON” indicates that step S5 has been executed.
  • step S7 since the step S7 is executed, the adjustment to the distance D t is already running (or the distance should not be shortened D t situation.).
  • state determination unit 102 by skipping the processing of S27 to not step S22, a further adjustment of the distance D t is not performed.
  • the situation determination unit 102 determines, based on the observation information 115, whether or not a situation in which the relative positioning accuracy is reduced has occurred. (Step S22).
  • the situation determination unit 102 determines only whether the pedestrian is on a moving walk as a situation that could not be detected in step S4. However, for example, when a situation where the positioning error is large is regarded as a situation where the relative positioning accuracy is reduced, such a determination may be performed in step S22.
  • step S22 If it determines with No in step S22, the condition determination part 102 will transmit that to the data update part 104.
  • FIG. Thus, the data updating unit 104, a distance D t already determined whether the upper limit value (step S23), the distance D t is still only if not the upper limit value, to extend the distance D t (step S24).
  • step S22 The case where it is determined No in step S22 is a case where the situation determination unit 102 has not been able to detect a situation in which the relative positioning accuracy ultimately decreases. Therefore, in such a case, the data updating unit 104, by extending the distance D t indicated in the distance information 112, by extending an interval to perform absolute positioning, suppressing the power consumption of the positioning apparatus 1 .
  • step S22 if it determines with Yes in step S22, the condition determination part 102 will transmit that to the data update part 104.
  • FIG. Thereby, the data update unit 104 executes steps S25 to S27.
  • or S27 can be performed similarly to the process of step S5 thru
  • the positioning device 1 starts the process related to the update of the parameter information 113.
  • the data update unit 104 compares the current positions of both based on the absolute position information 150 and the position information 118, and obtains a positioning error between the absolute positioning and the relative positioning. Next, the data update unit 104 determines whether or not the positioning error is equal to or greater than a threshold value (step S31).
  • the data update unit 104 If the positioning error is smaller than the threshold value (No in step S31), the data update unit 104 considers that there is no need to change the parameter information 113, and skips the processes of steps S32 and S33. Thereby, the parameter information 113 is not changed when the relative positioning position is obtained with relatively high accuracy. Therefore, it is possible to prevent the relative positioning accuracy from deteriorating due to unnecessary parameter changes.
  • Step S31 when the positioning error is equal to or larger than the threshold (Yes in Step S31), the data update unit 104 determines whether or not the detection flag is “ON” (Step S32).
  • step S32 the case where the detection flag is “ON” indicates a case where the situation determination unit 102 detects a situation in which the relative positioning accuracy decreases. Therefore, in such a case, it is preferable that the data update unit 104 considers that the positioning error is due to a decrease in the accuracy of relative positioning, and does not change the parameter.
  • step S32 the data update unit 104 skips step S33 and does not change the parameter information 113.
  • step S32 the data update unit 104 has a positioning error that is greater than or equal to the threshold value even though a situation in which the relative positioning accuracy decreases is not detected. It is determined that the situation is present, and the parameter information 113 is updated (step S33). Note that how the data updating unit 104 changes the parameter information 113 (the error angle ⁇ and the expansion / contraction ratio ⁇ ) has already been described, and thus the description thereof is omitted here.
  • the correction unit 105 corrects the position information 118 based on the absolute position information 150 and the position information 118 (step S34). Thereby, the uncorrected section in the position information 118 is eliminated, and the end point in the position information 118 becomes the latest observation point and the position indicated in the absolute position information 150. Since the correction in step S34 has already been described, detailed description thereof is omitted here.
  • step S34 When step S34 is executed and the correction for the position information 118 is completed, the positioning device 1 initializes the detection flag to “OFF” (step S35), completes the update process, and returns to the process shown in FIG. Further, when the update process is completed and the process returns to the process shown in FIG. 6, the positioning apparatus 1 returns to step S2 shown in FIG. 5 and repeats the process.
  • the positioning device 1 carried by the pedestrian includes the storage device 11 that stores the reference position information 111 and the parameter information 113, the observation device 14 that acquires the observation information 115, the observation information 115, and the parameter information. 113, a first positioning unit 100 that acquires relative position information 117 that indicates the relative position of the positioning device 1, and a second positioning unit 15 that acquires absolute position information 150 that indicates the absolute position of the positioning device 1.
  • a position calculation unit 101 that calculates position information 118 indicating the position of the positioning device 1 based on the reference position information 111 and the relative position information 117, a situation determination unit 102 that estimates a situation based on the observation information 115, The parameter information 11 stored in the storage device 11 based on the position information 118 and the absolute position information 150 according to the estimation result by the situation determination unit 102.
  • a data updating unit 104 for updating the observation device 14 acquires the movement information 116 regarding the motion of the positioning apparatus 1 comprises a motion detection sensor 143 including observation information 115. Thereby, parameter information can be optimized.
  • the storage device 11 stores distance information 112, calculates a movement distance based on the relative position information 117, and stores absolute position information in the second positioning unit 15 according to the movement distance and the distance information 112.
  • the timing control unit 103 for acquiring 150 is further provided. Thereby, since the timing of absolute position positioning by the 2nd positioning part 15 can be determined based on distance, the said timing can be optimized compared with the case where it determines based on time.
  • the data update unit 104 updates the distance information 112 stored in the storage device 11 according to the estimation result by the situation determination unit 102. Thereby, the timing of absolute position positioning by the second positioning unit 15 can be further optimized.
  • the storage device 11 stores map information 114 around the positioning device 1, and the situation determination unit 102 estimates the situation based on the map information 114. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the observation device 14 includes an atmospheric pressure sensor 140 that observes atmospheric pressure and acquires it as observation information 115, and the situation determination unit 102 estimates the situation based on the fluctuation of the atmospheric pressure indicated in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 specifies whether or not the stairs are moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 specifies whether or not the escalator is moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 specifies whether or not the elevator is moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 estimates a state in which the positioning device 1 is held based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the observation device 14 includes an illuminance sensor 141 that observes illuminance and acquires it as observation information 115, and the situation determination unit 102 is in a state where the positioning device 1 is possessed based on the illuminance indicated in the observation information 115. Is estimated. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 estimates the situation of moving on a rough road by obtaining the magnitude of fluctuation of the walking cycle based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 estimates a situation where the crowd is moving based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the situation determination unit 102 estimates the situation in which the crowd is moving by obtaining the change frequency of the traveling direction based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the observation device 14 includes a microphone 142 that observes voice and acquires it as observation information 115, and the situation determination unit 102 analyzes the voice indicated in the observation information 115 to detect a situation where the crowd is moving. presume. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the observation device 14 includes a magnetic sensor 146 that observes magnetism and acquires it as observation information 115, and the situation determination unit 102 estimates a geomagnetic abnormality situation based on the magnetism indicated in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
  • the data updating unit 104 updates the distance information 112 according to the power supply status to the positioning device 1. Thereby, the timing of positioning by the second positioning means can be optimized according to the actual power supply state.
  • the data update unit 104 updates the distance information 112 according to whether or not the position indicated by the position information 118 has been visited in the past. Thereby, for example, in a place where the user has already visited once, it is possible to realize a versatile process such as suppressing the frequency of absolute positioning.
  • the data update unit 104 updates the distance information 112 according to the distinction between day and night.
  • the target object effective for specifying the position
  • versatile processing such as suppressing the frequency of absolute positioning is performed. Can be realized.
  • the data update unit 104 updates the distance information 112 according to the distinction between indoor and outdoor.
  • the data update unit 104 updates the distance information 112 according to the distinction between indoor and outdoor.
  • the data update unit 104 can prevent the distance information 112 from being inadvertently updated by updating the distance information 112 in accordance with a pedestrian's instruction.
  • the data update unit 104 determines whether or not the parameter information 113 needs to be updated according to the estimation result by the situation determination unit 102 regardless of whether or not the position information 118 is corrected by the correction unit 105. Thereby, the time when the position information 118 should be corrected and the time when the parameter information 113 should be updated can be handled independently. Therefore, it is possible to optimally cope with the situation.
  • the position information 118 includes the past position of the positioning device 1 so that, for example, a walking locus can be recorded.
  • each process shown in the above embodiment is merely an example, and is not limited to the order and contents shown above. That is, as long as the same effect can be obtained, the order and contents may be changed as appropriate.
  • the functional blocks for example, the first positioning unit 100 and the timing control unit 103 shown in the above-described embodiment are realized as software by the CPU 10 operating according to the program 110.
  • some or all of these functional blocks may be configured by a dedicated logic circuit and realized in hardware.
  • the positioning device 1 in the above embodiment repeats relative positioning when the absolute position acquired by the GPS receiving unit is not reliable.
  • a reliable one may be selected from the plurality of second positioning units 15. Thereby, the situation where the absolute position information 150 is not created can be suppressed.
  • the correction process for the position information 118 and the update process for the distance information 112 and the parameter information 113 are performed without referring to the past correction results and update results.
  • Such feedback control can also improve accuracy.
  • the positioning device 1 may include other devices as the observation device 14.
  • the device employed as the observation device 14 can be determined according to an event to be observed (an event that affects positioning), required accuracy, allowable power consumption, cost, and the like.
  • Other devices that can be employed as the observation device 14 include, for example, a temperature sensor that observes the ambient temperature, a humidity sensor that observes humidity, a digital camera that images the surrounding subject, and observation information 115 from an external device.
  • a communication device is assumed.
  • the temperature sensor and the humidity sensor can determine the surrounding weather.
  • the positioning device 1 is configured to acquire information that is difficult to observe in real time (for example, big data or weather) from an external device through a communication device, it is possible to make a more versatile situation determination. Become.
  • the motion detection sensor 143 is a device that acquires information used for autonomous navigation (which information of the observation information 115 is used is arbitrary) among the devices employed as the observation device 14. It is a name for convenience.
  • the data update unit 104 updates the error angle ⁇ and the expansion / contraction ratio ⁇ among the parameters included in the parameter information 113, thereby suppressing the measurement error in the sensor and improving the accuracy of future relative positioning.
  • the parameters updated by the data updating unit 104 are not limited to these.
  • the data update unit 104 may update the stride L included in the parameter information 113.
  • the parameter information 113 may be updated so that ⁇ ⁇ L becomes a new stride L.
  • the data updating unit 104 in the above embodiment determines that a situation in which the relative positioning accuracy is reduced but does not detect a situation where a positioning error has occurred is a parameter abnormality situation, and parameter information 113 Explained to update.
  • the parameter information 113 may be updated depending on the situation even when a situation in which the relative positioning accuracy decreases is detected. For example, the case where the bad road continues is assumed.
  • the parameter indicating the traveling direction and the parameter indicating the stride may be updated. For example, it is assumed that it is determined that a staircase has been passed between the correction timing and the correction timing. After passing the stairs, it is determined that the parameter positioning is not a situation where the relative positioning is lowered, but the parameter information 113 is updated. In this case, only the parameter indicating the traveling direction is selectively selected. It is preferable to update.

Abstract

A positioning device is provided with a storage device for storing reference position information and parameter information, an observation device for acquiring observation information, a first positioning unit for acquiring relative position information on the basis of the observation information and the parameter information, a second positioning unit for acquiring absolute position information, a position computation unit for computing position information that indicates the position where the positioning apparatus is present on the basis of the reference position information and the relative position information, a situation determination unit for estimating the situation on the basis of the observation information, and a data updating unit for updating the parameter information on the basis of the position information and the absolute position information in accordance with the result of estimation by the situation determination unit. The observation device includes a motion detection sensor for acquiring motion information that pertains to movement of the positioning apparatus and including the motion information in the observation information.

Description

測位装置および測位方法Positioning device and positioning method
 本発明は、自律航法によって歩行者の移動軌跡を観測しつつ、絶対位置測位を間欠的に実行して、当該自律航法によって求められた位置を補正する技術に関する。 The present invention relates to a technique for correcting a position obtained by autonomous navigation by intermittently performing absolute position measurement while observing a movement trajectory of a pedestrian by autonomous navigation.
 携帯型の端末装置を歩行者に携帯させて、当該歩行者の移動軌跡を自律航法によって観測し、記録する技術が知られている。しかし、加速度センサやジャイロセンサなどを用いた自律航法では、時間の経過とともに誤差が蓄積され、位置精度が低下するという問題がある。そこで、間欠的に絶対位置測位を実行し、自律航法によって求められた位置を補正する技術が提案されている。このような技術が、例えば、特許文献1ないし3に記載されている。 A technique is known in which a portable terminal device is carried by a pedestrian, and the movement trajectory of the pedestrian is observed and recorded by autonomous navigation. However, autonomous navigation using an acceleration sensor, a gyro sensor, or the like has a problem in that errors accumulate with time and position accuracy decreases. Therefore, a technique has been proposed in which absolute position measurement is intermittently performed to correct a position obtained by autonomous navigation. Such techniques are described in, for example, Patent Documents 1 to 3.
特開2012-117975号公報JP 2012-117975 A 特開2011-058896号公報JP 2011-058896 A 特開2011-007736号公報JP 2011-007736 A
 ところが、特許文献1に記載された技術は、歩行者が進行方向を変えたタイミングを絶対位置測位のタイミングとする。そして、当該タイミングに、当該歩行者が、ルート上の曲がり角の位置に存在するとみなして、当該曲がり角の位置を絶対位置として決定する。したがって、特許文献3に記載された技術は、歩行者が予め決められたルート上を歩行することが前提の技術であり、汎用性に欠けるという問題があった。 However, the technique described in Patent Document 1 uses the timing when the pedestrian changes the traveling direction as the timing of absolute position measurement. Then, at the timing, the pedestrian is considered to be present at a corner position on the route, and the position of the corner is determined as an absolute position. Therefore, the technique described in Patent Document 3 is a technique on the premise that a pedestrian walks on a predetermined route, and has a problem of lack of versatility.
 また、特許文献1および特許文献2に記載された技術では、自律航法によって求められた位置を絶対位置測位による位置によって補正するときに、歩行者の歩幅も補正する。したがって、例えば、位置の補正後に歩行者の実際の歩幅が変わった場合には、逆に、その後の自律航法によって求まる位置の精度が低下するという問題があった。 Also, in the techniques described in Patent Document 1 and Patent Document 2, when the position obtained by autonomous navigation is corrected by the position by absolute position measurement, the pedestrian's stride is also corrected. Therefore, for example, when the actual stride of the pedestrian changes after the position is corrected, there is a problem that the accuracy of the position obtained by the subsequent autonomous navigation is lowered.
 また、特許文献2および特許文献3に記載された技術では、絶対位置測位のタイミングが一定の時間間隔に固定されており、これによって補正のタイミングも固定されるという問題があった。したがって、自律航法による測位精度が低下している場合には、結局、位置精度が低下するという問題があった。とはいえ、位置精度を保証するために、絶対位置測位の時間間隔を予め短く設定しておくとすると、絶対位置測位の回数が増え、消費電力が増大するという問題がある。携帯型の装置は、通常、電池で駆動するため、特に消費電力を抑制する必要がある。 In addition, the techniques described in Patent Document 2 and Patent Document 3 have a problem that the timing of absolute positioning is fixed at a constant time interval, thereby fixing the correction timing. Therefore, when the positioning accuracy by autonomous navigation is lowered, there is a problem that the position accuracy is lowered. However, if the time interval for absolute position positioning is set short in advance in order to guarantee the position accuracy, there is a problem that the number of times of absolute position positioning increases and power consumption increases. Since a portable device is usually driven by a battery, it is particularly necessary to reduce power consumption.
 上記課題を解決するため、請求項1の発明は、歩行者によって携帯される測位装置であって、基準位置情報とパラメータ情報とを記憶する記憶手段と、観測情報を取得する観測手段と、前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を取得する第1測位手段と、前記測位装置の絶対位置を示す絶対位置情報を取得する第2測位手段と、前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を演算する位置演算手段と、前記観測情報に基づいて状況を推定する状況判定手段と、前記状況判定手段による推定結果に応じて、前記位置情報と前記絶対位置情報とに基づいて前記記憶手段に記憶された前記パラメータ情報を更新するデータ更新手段とを備え、前記観測手段は、前記測位装置の動きに関する運動情報を取得して、前記観測情報に含める運動検出手段を備える。 In order to solve the above-mentioned problem, the invention of claim 1 is a positioning device carried by a pedestrian, a storage means for storing reference position information and parameter information, an observation means for obtaining observation information, First positioning means for acquiring relative position information indicating the relative position of the positioning device based on observation information and the parameter information; and second positioning means for acquiring absolute position information indicating the absolute position of the positioning device. Position calculation means for calculating position information indicating the position of the positioning device based on the reference position information and the relative position information, situation determination means for estimating a situation based on the observation information, and the situation In accordance with the estimation result by the determination means, the data update means for updating the parameter information stored in the storage means based on the position information and the absolute position information, Serial observation means obtains motion information about the motion of the positioning device comprises a motion detection means including the observation information.
 また、請求項2の発明は、請求項1に記載の測位装置であって、前記記憶手段は、距離情報を記憶しており、前記相対位置情報に基づいて移動距離を演算し、前記移動距離と前記距離情報とに応じて、前記第2測位手段に前記絶対位置情報を取得させるタイミング制御手段をさらに備える。 The invention of claim 2 is the positioning apparatus according to claim 1, wherein the storage means stores distance information, calculates a moving distance based on the relative position information, and the moving distance. And a timing control means for causing the second positioning means to acquire the absolute position information according to the distance information.
 また、請求項3の発明は、請求項2に記載の測位装置であって、前記データ更新手段は、前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報を更新する。 The invention according to claim 3 is the positioning device according to claim 2, wherein the data updating means updates the distance information stored in the storage means in accordance with an estimation result by the situation judging means. To do.
 また、請求項4の発明は、請求項1に記載の測位装置であって、前記第2測位手段の前記絶対位置情報の取得に応じて、当該絶対位置情報により前記位置情報を補正する補正手段をさらに備え、前記データ更新手段は、前記補正手段による前記位置情報の補正の有無に関わらず、前記推定結果に応じて、前記パラメータ情報の更新の要否を決定する。 According to a fourth aspect of the present invention, there is provided the positioning apparatus according to the first aspect, wherein the position information is corrected by the absolute position information in accordance with the acquisition of the absolute position information by the second positioning means. The data updating unit determines whether the parameter information needs to be updated according to the estimation result regardless of whether the position information is corrected by the correcting unit.
 また、請求項5の発明は、歩行者によって携帯される測位装置であって、基準位置情報とパラメータ情報と距離情報とを記憶する記憶手段と、観測情報を取得する観測手段と、前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を取得する第1測位手段と、前記測位装置の絶対位置を示す絶対位置情報を取得する第2測位手段と、前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を演算する位置演算手段と、前記第2測位手段の前記絶対位置情報の取得に応じて、取得された当該絶対位置情報により前記位置情報を補正する補正手段と、前記観測情報に基づいて状況を推定する状況判定手段と、前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報を更新するデータ更新手段と、前記相対位置情報に基づいて移動距離を演算し、前記移動距離と前記距離情報とに応じて前記第2測位手段に前記絶対位置情報を取得させるタイミング制御手段とを備え、前記観測手段は、前記測位装置の動きに関する運動情報を取得して、前記観測情報に含める運動検出手段を備える。 Further, the invention of claim 5 is a positioning device carried by a pedestrian, a storage means for storing reference position information, parameter information and distance information, an observation means for obtaining observation information, and the observation information And first positioning means for acquiring relative position information indicating a relative position of the positioning device based on the parameter information, and second positioning means for acquiring absolute position information indicating the absolute position of the positioning device; Position calculating means for calculating position information indicating the position of the positioning device based on the reference position information and the relative position information, and acquired according to the acquisition of the absolute position information of the second positioning means. A correction unit that corrects the position information based on the absolute position information, a situation determination unit that estimates a situation based on the observation information, and the storage unit according to an estimation result by the situation determination unit A data updating means for updating the distance information stored in the computer, a movement distance is calculated based on the relative position information, and the absolute position information is stored in the second positioning means in accordance with the movement distance and the distance information. Timing control means for acquiring, and the observation means includes movement detection means for acquiring movement information relating to movement of the positioning device and including it in the observation information.
 また、請求項6の発明は、請求項1に記載の測位装置であって、前記記憶手段は、前記測位装置の周囲の地図情報を記憶しており、前記状況判定手段は、前記地図情報に基づいて、状況を推定する。 The invention of claim 6 is the positioning apparatus according to claim 1, wherein the storage means stores map information around the positioning apparatus, and the situation determination means includes the map information. Based on the situation.
 また、請求項7の発明は、請求項1に記載の測位装置であって、前記観測手段は、気圧を観測して観測情報として取得する気圧センサを備え、前記状況判定手段は、前記観測情報に示される気圧の変動に基づいて、状況を推定する。 The invention according to claim 7 is the positioning device according to claim 1, wherein the observation means includes a barometric sensor that observes the atmospheric pressure and acquires it as observation information, and the situation determination means includes the observation information. The situation is estimated based on the fluctuation of the atmospheric pressure shown in.
 また、請求項8の発明は、請求項6に記載の測位装置であって、前記状況判定手段は、前記観測情報に基づいて、階段を移動しているか否かを特定する。 The invention according to claim 8 is the positioning device according to claim 6, wherein the situation determination means specifies whether or not the stairs are moving based on the observation information.
 また、請求項9の発明は、請求項6に記載の測位装置であって、前記状況判定手段は、前記観測情報に基づいて、エスカレータによって移動しているか否かを特定する。 Further, the invention of claim 9 is the positioning device according to claim 6, wherein the situation determination means specifies whether or not the escalator is moving based on the observation information.
 また、請求項10の発明は、請求項6に記載の測位装置であって、前記状況判定手段は、前記観測情報に基づいて、エレベータによって移動しているか否かを特定する。 Further, the invention of claim 10 is the positioning apparatus according to claim 6, wherein the situation determination means specifies whether or not the vehicle is moving by an elevator based on the observation information.
 また、請求項11の発明は、請求項1に記載の測位装置であって、前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて、前記測位装置が所持されている状態を推定する。 The invention according to claim 11 is the positioning device according to claim 1, wherein the situation determination means indicates a state in which the positioning device is possessed based on the motion information included in the observation information. presume.
 また、請求項12の発明は、請求項11に記載の測位装置であって、前記観測手段は、照度を観測して観測情報として取得する照度センサを備え、前記状況判定手段は、前記観測情報に示される照度に基づいて、前記測位装置が所持されている状態を推定する。 The invention according to claim 12 is the positioning device according to claim 11, wherein the observation means includes an illuminance sensor that observes illuminance and acquires it as observation information, and the situation determination means includes the observation information. Based on the illuminance shown in Fig. 4, the state in which the positioning device is carried is estimated.
 また、請求項13の発明は、請求項1に記載の測位装置であって、前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて歩行周期の変動の大きさを求めることにより、悪路を移動している状況を推定する。 The invention according to claim 13 is the positioning device according to claim 1, wherein the situation determination means obtains the magnitude of the fluctuation of the walking cycle based on the motion information included in the observation information. Estimate the situation when moving on a rough road.
 また、請求項14の発明は、請求項1に記載の測位装置であって、前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて、人混みを移動している状況を推定する。 The invention according to claim 14 is the positioning device according to claim 1, wherein the situation determination means estimates a situation in which a crowd is moving based on the exercise information included in the observation information. .
 また、請求項15の発明は、請求項14に記載の測位装置であって、前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて進行方向の変更頻度を求めることにより、人混みを移動している状況を推定する。 The invention according to claim 15 is the positioning device according to claim 14, wherein the situation determination means obtains a change frequency of the traveling direction based on the movement information included in the observation information, thereby causing crowding. Estimate the situation when you are moving.
 また、請求項16の発明は、請求項14に記載の測位装置であって、前記観測手段は、音声を観測して観測情報として取得するマイクを備え、前記状況判定手段は、前記観測情報に示される音声を解析することにより、人混みを移動している状況を推定する。 The invention according to claim 16 is the positioning device according to claim 14, wherein the observation means includes a microphone that observes voice and acquires it as observation information, and the situation determination means includes the observation information. By analyzing the displayed voice, the situation in which the crowd is moving is estimated.
 また、請求項17の発明は、請求項1に記載の測位装置であって、前記観測手段は、磁気を観測して観測情報として取得する磁気センサを備え、前記状況判定手段は、前記観測情報に示される磁気に基づいて、地磁気異常の状況を推定する。 The invention according to claim 17 is the positioning device according to claim 1, wherein the observation means includes a magnetic sensor that observes magnetism and acquires it as observation information, and the situation determination means includes the observation information. The status of geomagnetic anomalies is estimated based on the magnetism shown in.
 また、請求項18の発明は、請求項1に記載の測位装置であって、前記データ更新手段は、前記測位装置に対する電力の供給状況に応じて、前記距離情報を更新する。 Further, the invention according to claim 18 is the positioning device according to claim 1, wherein the data updating unit updates the distance information according to a power supply status to the positioning device.
 また、請求項19の発明は、請求項1に記載の測位装置であって、前記データ更新手段は、前記位置情報に示される位置が過去に訪れた位置か否かに応じて、前記距離情報を更新する。 The invention according to claim 19 is the positioning device according to claim 1, wherein the data updating means determines whether the position indicated by the position information is a position visited in the past or not. Update.
 また、請求項20の発明は、請求項1に記載の測位装置であって、前記データ更新手段は、昼夜の区別に応じて、前記距離情報を更新する。 Further, the invention of claim 20 is the positioning device according to claim 1, wherein the data updating means updates the distance information according to the distinction between day and night.
 また、請求項21の発明は、請求項1に記載の測位装置であって、前記データ更新手段は、屋内外の区別に応じて、前記距離情報を更新する。 Further, the invention according to claim 21 is the positioning device according to claim 1, wherein the data updating means updates the distance information according to the distinction between indoor and outdoor.
 また、請求項22の発明は、請求項18に記載の測位装置であって、前記データ更新手段は、前記歩行者の指示に応じて、前記距離情報を更新する。 Further, the invention according to claim 22 is the positioning device according to claim 18, wherein the data updating means updates the distance information in accordance with an instruction from the pedestrian.
 また、請求項23の発明は、請求項5に記載の測位装置であって、前記データ更新手段は、前記補正手段による前記位置情報の補正の有無に関わらず、前記推定結果に応じて、前記パラメータ情報の更新の要否を決定する。 The invention according to claim 23 is the positioning device according to claim 5, wherein the data updating unit is configured to perform the estimation according to the estimation result regardless of whether the correction unit corrects the position information. Determine whether parameter information needs to be updated.
 また、請求項24の発明は、請求項1に記載の測位装置であって、前記位置情報は、前記測位装置の過去の位置を含む。 Further, the invention of claim 24 is the positioning device according to claim 1, wherein the position information includes a past position of the positioning device.
 また、請求項25の発明は、歩行者によって携帯される測位装置によって実行される測位方法であって、基準位置情報とパラメータ情報とを記憶手段に記憶する工程と、観測情報を観測手段により取得する工程と、前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を第1測位手段により取得する工程と、前記測位装置の絶対位置を示す絶対位置情報を第2測位手段により取得する工程と、前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を位置演算手段により演算する工程と、前記観測情報に基づいて状況を状況判定手段により推定する工程と、前記状況判定手段による推定結果に応じて、前記位置情報と前記絶対位置情報とに基づいて前記記憶手段に記憶された前記パラメータ情報をデータ更新手段により更新する工程とを有し前記観測情報は、前記測位装置の動きに関する運動情報を含む。 The invention of claim 25 is a positioning method executed by a positioning device carried by a pedestrian, the step of storing reference position information and parameter information in the storage means, and the observation information is acquired by the observation means. A step of acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information by first positioning means, and absolute position information indicating the absolute position of the positioning device. Is obtained by the second positioning means, the position information indicating the position of the positioning device based on the reference position information and the relative position information is calculated by the position calculating means, and the observation information is used. The step of estimating the situation by the situation determination means, and the memory device based on the position information and the absolute position information according to the estimation result by the situation judgment means The observation information the parameter information stored and a step of updating by the data updating means includes motion information regarding movement of the positioning device.
 また、請求項26の発明は、歩行者によって携帯される測位装置によって実行される測位方法であって、基準位置情報とパラメータ情報と距離情報とを記憶手段に記憶する工程と、観測情報を観測手段により取得する工程と、前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を第1測位手段により取得する工程と、前記測位装置の絶対位置を示す絶対位置情報を第2測位手段により取得する工程と、前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を位置演算手段により演算する工程と、前記第2測位手段の前記絶対位置情報の取得に応じて、取得された当該絶対位置情報により前記位置情報を補正手段により補正する工程と、前記観測情報に基づいて状況を状況判定手段により推定する工程と、前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報をデータ更新手段により更新する工程と、前記相対位置情報に基づいて移動距離を演算するとともに、前記移動距離と前記距離情報とに応じてタイミング制御手段により前記第2測位手段に前記絶対位置情報を取得させる工程とを有し、前記観測情報は、前記測位装置の動きに関する運動情報を含む。 The invention of claim 26 is a positioning method executed by a positioning device carried by a pedestrian, the step of storing reference position information, parameter information and distance information in a storage means, and observation information A step of acquiring by means of means, a step of acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information by the first positioning device, and indicating an absolute position of the positioning device. A step of acquiring absolute position information by a second positioning means, a step of calculating position information indicating the position of the positioning device based on the reference position information and the relative position information by a position calculating means; In response to the acquisition of the absolute position information by the positioning means, a step of correcting the position information by the correction means based on the acquired absolute position information, and based on the observation information Based on the relative position information, the step of estimating the situation by the situation determination unit, the step of updating the distance information stored in the storage unit by the data update unit according to the estimation result by the situation determination unit Calculating a moving distance, and causing the second positioning means to acquire the absolute position information by a timing control means according to the moving distance and the distance information, and the observation information includes the positioning device Contains exercise information about movement.
 請求項1ないし請求項4、および、請求項25の発明は、観測情報とパラメータ情報とに基づいて測位装置の相対的な位置を示す相対位置情報を取得するとともに、観測情報に基づいて状況を推定しつつパラメータ情報を更新することにより、パラメータ情報を最適化することができる。 The inventions according to claims 1 to 4 and claim 25 acquire relative position information indicating a relative position of the positioning device based on the observation information and the parameter information, and change the situation based on the observation information. The parameter information can be optimized by updating the parameter information while estimating.
 請求項5ないし24、および、請求項26の発明は、相対位置情報と距離情報とに応じて第2測位手段に絶対位置情報を取得させるとともに、観測情報に基づいて状況を推定しつつ距離情報を更新することにより、第2測位手段による絶対位置測位のタイミングを最適化することができる。 The inventions of claims 5 to 24 and claim 26 allow the second positioning means to acquire the absolute position information according to the relative position information and the distance information, and also estimate the situation based on the observation information. By updating, the timing of absolute position positioning by the second positioning means can be optimized.
測位装置の外観図である。It is an external view of a positioning device. 測位装置のブロック図である。It is a block diagram of a positioning device. 測位装置が備える機能ブロックをデータの流れとともに示す図である。It is a figure which shows the functional block with which a positioning apparatus is provided with the flow of data. 推定された歩行軌跡および現実の歩行軌跡の一例を示す図である。It is a figure which shows an example of the estimated walking locus and an actual walking locus. 測位装置による測位方法を示す流れ図である。It is a flowchart which shows the positioning method by a positioning apparatus. 測位装置による測位方法を示す流れ図である。It is a flowchart which shows the positioning method by a positioning apparatus. 更新処理を示す流れ図である。It is a flowchart which shows an update process. 更新処理を示す流れ図である。It is a flowchart which shows an update process.
 1 測位装置
 10 CPU
 100 第1測位部
 101 位置演算部
 102 状況判定部
 103 タイミング制御部
 104 データ更新部
 105 補正部
 11 記憶装置
 110 プログラム
 111 基準位置情報
 112 距離情報
 113 パラメータ情報
 114 地図情報
 115 観測情報
 116 運動情報
 117 相対位置情報
 118 位置情報
 12 操作部
 13 表示部
 14 観測装置
 140 気圧センサ
 141 照度センサ
 142 マイク
 143 運動検出センサ
 144 ジャイロセンサ
 145 加速度センサ
 146 磁気センサ
 15 第2測位部
 150 絶対位置情報
1 Positioning device 10 CPU
DESCRIPTION OF SYMBOLS 100 1st positioning part 101 Position calculating part 102 Situation determination part 103 Timing control part 104 Data update part 105 Correction | amendment part 11 Memory | storage device 110 Program 111 Reference | standard position information 112 Distance information 113 Parameter information 114 Map information 115 Observation information 116 Motion information 117 Relative Position information 118 Position information 12 Operation section 13 Display section 14 Observation device 140 Barometric pressure sensor 141 Illuminance sensor 142 Microphone 143 Motion detection sensor 144 Gyro sensor 145 Acceleration sensor 146 Magnetic sensor 15 Second positioning section 150 Absolute position information
 以下、本発明の好適な実施の形態について、添付の図面を参照しつつ、詳細に説明する。ただし、以下の説明において特に断らない限り、方向や向きに関する記述は、当該説明の便宜上、図面に対応するものであり、例えば実施品、製品または権利範囲等を限定するものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, unless otherwise specified in the following description, descriptions of directions and orientations correspond to the drawings for the convenience of the description, and do not limit, for example, a product, a product, or a scope of rights.
 また、本出願では、2016年1月19日に日本国に出願された特許出願番号2016-007529の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。 In addition, this application claims the benefit of Patent Application No. 2016-007529 filed in Japan on January 19, 2016, and the contents of the application are incorporated herein by reference.
 図1は、測位装置1を示す図である。図1に示すように、測位装置1は、携帯可能な装置として構成されている。このような測位装置1としては、専用の端末装置の他に、スマートホンや携帯電話、タブレットなどが想定される。ただし、ここに挙げた装置に限定されるものではない。 FIG. 1 is a diagram showing a positioning device 1. As shown in FIG. 1, the positioning device 1 is configured as a portable device. As such a positioning device 1, in addition to a dedicated terminal device, a smart phone, a mobile phone, a tablet, or the like is assumed. However, it is not limited to the apparatus mentioned here.
 なお、以下の説明では、測位装置1を携帯する者を、「歩行者」と称する。また、歩行者が立ち止まっているとき、当該歩行者の位置は変化しない。その一方で、例えば、立ち止まっている歩行者が測位装置1を所持した腕を振った場合、厳密には、測位装置1の位置は変動する。以下において詳細は省略するが、測位装置1は、測位装置1の位置の細かな移動(歩行者の位置の変動とみなされない位置の移動)をキャンセルするように、測位装置1の位置を求める。したがって、以下の説明において、特に断らない限り、「測位装置1の位置」とは、当該測位装置1を携帯する歩行者の位置であるものとする。 In the following description, a person who carries the positioning device 1 is referred to as a “pedestrian”. Further, when the pedestrian is stopped, the position of the pedestrian does not change. On the other hand, for example, when a pedestrian who has stopped swings his / her arm carrying the positioning device 1, strictly speaking, the position of the positioning device 1 varies. Although details are omitted below, the positioning device 1 determines the position of the positioning device 1 so as to cancel the fine movement of the position of the positioning device 1 (movement of the position that is not regarded as a change in the position of the pedestrian). Therefore, in the following description, unless otherwise specified, the “position of the positioning device 1” is assumed to be the position of the pedestrian carrying the positioning device 1.
 詳細は後述するが、測位装置1は、自機の存在位置を示す位置情報118(図3参照)を取得し、表示する装置として構成されている。そして、測位装置1の存在位置とは、先述のように、測位装置1を所持している歩行者の位置である。したがって、測位装置1は、当該測位装置1を携帯する歩行者の位置を取得し、表示することができる。また、歩行者の位置を継続して記録しつづけることにより、当該歩行者の移動軌跡を記録することもできる。 Although the details will be described later, the positioning device 1 is configured as a device that acquires and displays position information 118 (see FIG. 3) indicating the position of the own device. And the presence position of the positioning apparatus 1 is a position of the pedestrian who has the positioning apparatus 1 as mentioned above. Therefore, the positioning device 1 can acquire and display the position of the pedestrian carrying the positioning device 1. Moreover, the movement locus | trajectory of the said pedestrian can also be recorded by continuing recording the position of a pedestrian.
 図1に示すように、測位装置1は、操作部12と表示部13とを備えている。 As shown in FIG. 1, the positioning device 1 includes an operation unit 12 and a display unit 13.
 操作部12は、歩行者が測位装置1に対して様々な指示を与えるための情報を入力するために、当該歩行者によって操作されるハードウェアである。操作部12としては、各種ボタン類、キー、回転式セレクタ、あるいは、タッチパネルなどが該当する。 The operation unit 12 is hardware that is operated by the pedestrian so that the pedestrian inputs information for giving various instructions to the positioning device 1. The operation unit 12 corresponds to various buttons, keys, a rotary selector, a touch panel, or the like.
 表示部13は、各種情報を表示することにより出力する機能を有している。すなわち、表示部13は、歩行者が視覚によって知覚する状態で情報を出力するハードウェアである。特に、測位装置1の表示部13は、先述の位置情報118を表示する。したがって、歩行者は、表示部13を視認することにより、自身の存在位置を確認することができる。なお、表示部13としては、例えば、液晶パネル、液晶ディスプレイ、有機ELディスプレイ、ランプ、あるいは、LEDなどが該当する。 The display unit 13 has a function of outputting by displaying various information. That is, the display unit 13 is hardware that outputs information in a state that a pedestrian visually perceives. In particular, the display unit 13 of the positioning device 1 displays the position information 118 described above. Therefore, the pedestrian can confirm his / her presence position by visually recognizing the display unit 13. The display unit 13 corresponds to, for example, a liquid crystal panel, a liquid crystal display, an organic EL display, a lamp, or an LED.
 図2は、測位装置1のブロック図である。測位装置1は、すでに説明した操作部12および表示部13の他に、CPU10、記憶装置11、観測装置14および第2測位部15を備えている。 FIG. 2 is a block diagram of the positioning device 1. The positioning device 1 includes a CPU 10, a storage device 11, an observation device 14, and a second positioning unit 15 in addition to the operation unit 12 and the display unit 13 that have already been described.
 CPU10は、記憶装置11に格納されているプログラム110を読み取りつつ実行し、各種データの演算や制御信号の生成等を行う。これにより、CPU10は、測位装置1が備える各構成を制御するとともに、各種データを演算し作成する機能を有している。すなわち、測位装置1は、一般的なコンピュータとして構成されている。 The CPU 10 reads and executes the program 110 stored in the storage device 11, and performs various data calculations, control signal generation, and the like. Thereby, CPU10 has a function which calculates and produces various data while controlling each structure with which the positioning apparatus 1 is provided. That is, the positioning device 1 is configured as a general computer.
 記憶装置11は、測位装置1において各種データを記憶する機能を提供する。言い換えれば、記憶装置11が測位装置1において電子的に固定された情報を保存する。特に、本実施の形態における記憶装置11は、プログラム110、基準位置情報111、距離情報112、パラメータ情報113、地図情報114および観測情報115を記憶するために使用される。ただし、記憶装置11に記憶される情報は、ここに示すものに限定されるものではない。 The storage device 11 provides a function of storing various data in the positioning device 1. In other words, the storage device 11 stores information electronically fixed in the positioning device 1. In particular, the storage device 11 in the present embodiment is used to store the program 110, the reference position information 111, the distance information 112, the parameter information 113, the map information 114, and the observation information 115. However, the information stored in the storage device 11 is not limited to the information shown here.
 記憶装置11としては、CPU10の一時的なワーキングエリアとして使用されるRAMやバッファ、読み取り専用のROM、不揮発性のメモリ(例えばNANDメモリなど)、比較的大容量のデータを記憶するハードディスク、専用の読み取り装置に装着された可搬性の記憶媒体(PCカードやSDカード、USBメモリなど)等が該当する。図2においては、記憶装置11を、あたかも1つの構造物であるかのように図示している。しかし、通常、記憶装置11は、上記例示した各種装置(あるいは媒体)のうち、必要に応じて採用される複数種類の装置から構成されるものである。すなわち、記憶装置11は、データを記憶する機能を有する装置群の総称である。 As the storage device 11, a RAM or buffer used as a temporary working area of the CPU 10, a read-only ROM, a non-volatile memory (such as a NAND memory), a hard disk for storing a relatively large amount of data, a dedicated memory A portable storage medium (such as a PC card, an SD card, or a USB memory) mounted on the reading apparatus is applicable. In FIG. 2, the storage device 11 is illustrated as if it were one structure. However, the storage device 11 is normally composed of a plurality of types of devices that are employed as necessary among the various devices (or media) exemplified above. That is, the storage device 11 is a general term for a group of devices having a function of storing data.
 また、現実のCPU10は高速にアクセス可能なRAMを内部に備えた電子回路である。しかし、このようなCPU10が備える記憶装置も、説明の都合上、記憶装置11に含めて説明する。すなわち、以下の説明では、一時的にCPU10自体が記憶するデータも、記憶装置11が記憶するとして説明する。 Further, the actual CPU 10 is an electronic circuit having a RAM that can be accessed at high speed. However, the storage device included in the CPU 10 is also included in the storage device 11 for convenience of explanation. That is, in the following description, it is assumed that the storage device 11 also stores data temporarily stored by the CPU 10 itself.
 プログラム110は、CPU10(コンピュータ)による読み取りが可能な指令の集合である。プログラム110は、記憶装置11を構成する記録媒体のうち、不揮発性の記録媒体に格納される。したがって、測位装置1の電源が切られた場合でも、測位装置1(記憶装置11)からプログラム110が失われることはない。プログラム110は、必要に応じてCPU10によって読み取られ、実行される。 The program 110 is a set of commands that can be read by the CPU 10 (computer). The program 110 is stored in a non-volatile recording medium among the recording media constituting the storage device 11. Therefore, even when the power of the positioning device 1 is turned off, the program 110 is not lost from the positioning device 1 (storage device 11). The program 110 is read and executed by the CPU 10 as necessary.
 図2に示す基準位置情報111は、基準点における測位装置1の絶対的な位置を示す情報である。基準点とは、測位装置1が存在する地点であって、絶対位置が既知の地点であれば、いつの時点における地点であってもよい。しかし、詳細は後述するが、位置情報118を作成するためには、いずれかの地点における絶対位置が必要となる。したがって、以下の説明では、基準位置情報111は、歩行者が位置情報118を表示するように指示した地点(位置情報118の作成開始を指示した地点)の絶対位置を示す情報であるものとする。測位装置1は、歩行者からの指示に応じて、その時点における測位装置1の存在位置を基準点と定義し、当該基準点の絶対位置を取得して、基準位置情報111として記憶装置11に記憶させるものとする。 The reference position information 111 shown in FIG. 2 is information indicating the absolute position of the positioning device 1 at the reference point. The reference point is a point where the positioning device 1 exists, and may be a point at any time as long as the absolute position is known. However, as will be described later in detail, in order to create the position information 118, an absolute position at any point is required. Therefore, in the following description, it is assumed that the reference position information 111 is information indicating the absolute position of the point where the pedestrian has instructed to display the position information 118 (the point where the start of creation of the position information 118 is instructed). . In response to an instruction from a pedestrian, the positioning device 1 defines the position of the positioning device 1 at that time as a reference point, acquires the absolute position of the reference point, and stores it in the storage device 11 as reference position information 111. It shall be memorized.
 パラメータ情報113は、測位装置1が、測位装置1の相対的な位置を求めるために用いる情報である。パラメータ情報113としては、例えば、歩行者の歩幅の値がある。測位装置1は、予め歩行者に当該歩行者自身の身長を入力させて、当該身長から1[m]を減じた値を、歩幅の初期値としてパラメータ情報113とする。ただし、歩行者が、直接、歩幅の値を入力してもよい。また、歩行者による入力がされるまでは、人の歩幅の平均的な値を初期値として記録していてもよい。また、以下の説明において、パラメータ情報113に含まれる歩幅を「歩幅L」と称する。また、測位装置1は、歩幅Lの他に、誤差角θと、伸縮比γとをパラメータ情報113とする。詳細は後述するが、誤差角θの初期値は「0」であり、伸縮比γの初期値は「1」である。 The parameter information 113 is information used by the positioning device 1 to obtain the relative position of the positioning device 1. The parameter information 113 includes, for example, a pedestrian's stride value. The positioning device 1 causes the pedestrian to input the height of the pedestrian in advance, and sets the value obtained by subtracting 1 [m] from the height as the parameter information 113 as the initial value of the stride. However, the pedestrian may directly input the stride value. Further, an average value of a person's stride may be recorded as an initial value until a pedestrian inputs. Further, in the following description, the stride included in the parameter information 113 is referred to as “step stride L”. In addition to the step length L, the positioning device 1 uses the error angle θ and the expansion / contraction ratio γ as parameter information 113. Although the details will be described later, the initial value of the error angle θ is “0”, and the initial value of the expansion / contraction ratio γ is “1”.
 地図情報114は、測位装置1の周囲(ある任意の範囲)の状態を視覚的に表現した画像情報である。詳細は後述するが、測位装置1は、地図情報114に、歩行者が過去に訪れたことがあるか否かを示す情報を含めるものとする。また、地図情報114は、位置情報118とともに表示部13に表示される。 The map information 114 is image information that visually represents the state around the positioning device 1 (an arbitrary range). Although details will be described later, the positioning device 1 includes information indicating whether or not a pedestrian has visited in the past in the map information 114. Further, the map information 114 is displayed on the display unit 13 together with the position information 118.
 なお、図2に示す距離情報112および観測情報115については後述する。また、図2において図示を省略しているが、測位装置1はタイマを備えており、時間に関する情報を取得し、記憶することが可能である。 Note that the distance information 112 and the observation information 115 shown in FIG. 2 will be described later. Although not shown in FIG. 2, the positioning device 1 includes a timer, and can acquire and store information related to time.
 観測装置14は、観測情報115を取得する機能を有する装置の総称である。ここに示す例では、測位装置1は、観測装置14として、気圧センサ140、照度センサ141、マイク142、および、運動検出センサ143を備えている。 Observation device 14 is a general term for devices having a function of acquiring observation information 115. In the example shown here, the positioning device 1 includes an atmospheric pressure sensor 140, an illuminance sensor 141, a microphone 142, and a motion detection sensor 143 as the observation device 14.
 気圧センサ140は、周囲の気圧を測定して観測情報115として記録する装置である。気圧センサ140により取得される観測情報115によって、測位装置1の鉛直方向における移動を検出することができる。 The atmospheric pressure sensor 140 is a device that measures the ambient atmospheric pressure and records it as observation information 115. The movement of the positioning device 1 in the vertical direction can be detected by the observation information 115 acquired by the atmospheric pressure sensor 140.
 照度センサ141は、周囲の照度(明るさ)を観測して、観測情報115として記録する装置である。 The illuminance sensor 141 is a device that observes ambient illuminance (brightness) and records it as observation information 115.
 マイク142は、周囲の音波を電気信号に変換して、音声情報(観測情報115)として記録する装置である。 The microphone 142 is a device that converts surrounding sound waves into electrical signals and records them as sound information (observation information 115).
 運動検出センサ143は、測位装置1の動きに関する運動情報116を取得する機能を備えた装置の総称である。ここに示す運動検出センサ143は、ジャイロセンサ144、加速度センサ145および磁気センサ146を備えている。 The motion detection sensor 143 is a generic name for devices having a function of acquiring motion information 116 relating to the motion of the positioning device 1. The motion detection sensor 143 shown here includes a gyro sensor 144, an acceleration sensor 145, and a magnetic sensor 146.
 ジャイロセンサ144は、測位装置1における角速度を測定する。ここに示すジャイロセンサ144は、いわゆる3軸のジャイロセンサとして構成されており、互いに垂直な3つの軸方向回りの角速度を測定し、当該測定値を運動情報116として出力する。 The gyro sensor 144 measures the angular velocity in the positioning device 1. The gyro sensor 144 shown here is configured as a so-called three-axis gyro sensor, measures angular velocities around three axial directions perpendicular to each other, and outputs the measured values as motion information 116.
 加速度センサ145は、測位装置1における加速度を検出する。加速度センサ145は、測位装置1について定義された3軸に従って表現された出力値を運動情報116として作成する。 The acceleration sensor 145 detects the acceleration in the positioning device 1. The acceleration sensor 145 creates an output value expressed according to the three axes defined for the positioning device 1 as the motion information 116.
 磁気センサ146は、周囲の地磁気を検出する。磁気センサ146によって取得された地磁気に関する情報(運動情報116)は、方位を決定するために使用される。 The magnetic sensor 146 detects the surrounding geomagnetism. Information on the geomagnetism (movement information 116) acquired by the magnetic sensor 146 is used to determine the direction.
 第2測位部15は、測位装置1の絶対位置を示す絶対位置情報150を取得する機能を有している。測位装置1では、CPU10から伝達される制御信号に応じて、第2測位部15が絶対的測位(絶対位置情報150の取得)を行う。すなわち、絶対位置情報150とは、第2測位部15が絶対的測位を行った時点における測位装置1の絶対的な位置を示す情報である。したがって、絶対位置情報150には、当該絶対位置情報150が取得されたときの時間も記録される。なお、以下の説明では、第2測位部15に絶対的測位を実行させるために、CPU10から伝達される制御信号を、「タイミング信号」と称する。 The second positioning unit 15 has a function of acquiring absolute position information 150 indicating the absolute position of the positioning device 1. In the positioning device 1, the second positioning unit 15 performs absolute positioning (acquisition of the absolute position information 150) according to the control signal transmitted from the CPU 10. That is, the absolute position information 150 is information indicating the absolute position of the positioning device 1 at the time when the second positioning unit 15 performs absolute positioning. Accordingly, the absolute position information 150 also records the time when the absolute position information 150 is acquired. In the following description, a control signal transmitted from the CPU 10 in order to cause the second positioning unit 15 to perform absolute positioning is referred to as a “timing signal”.
 詳細は図示しないが、ここに示す測位装置1は、第2測位部15として、GPS受信部を備えている。言い換えれば、測位装置1は、GPS受信部を第2測位部15として採用可能である。 Although not shown in detail, the positioning device 1 shown here includes a GPS receiving unit as the second positioning unit 15. In other words, the positioning device 1 can employ the GPS receiving unit as the second positioning unit 15.
 GPS受信部は、衛星から送信される電波を受信して、受信した信号を解析することにより、受信位置(絶対位置情報150)を取得する。GPS受信部の構成および機能は、従来の技術を適宜採用することができるため、ここでは詳細な説明を省略する。 The GPS receiver receives a radio wave transmitted from a satellite and analyzes the received signal to obtain a reception position (absolute position information 150). Since the conventional technology can be adopted as appropriate for the configuration and function of the GPS receiver, detailed description thereof is omitted here.
 以下の説明において、「絶対位置の取得」とは、特に断らない限り、GPS受信部により実行されるものとする。ただし、測位装置1は、CPU10および操作部12によって絶対位置を取得することも可能なように構成されている。 In the following description, “obtain absolute position” is assumed to be executed by the GPS receiver unless otherwise specified. However, the positioning device 1 is configured such that the absolute position can be acquired by the CPU 10 and the operation unit 12.
 例えば、CPU10は、地図情報114における歩行者の想定ルート上の特徴点(例えば、出発地や曲がり角)と、観測ルート上の特徴点(例えば、開始点や進路変更地点)とを照合する。これにより、CPU10は、当該想定ルート上の特徴点の位置を、当該観測ルート上の特徴点の絶対位置とみなして絶対位置情報150を取得することが可能である。すなわち、状況に応じて、CPU10によって絶対位置情報150を取得するように構成すれば、CPU10が第2測位部15に含まれることとなる。 For example, the CPU 10 collates the feature points on the assumed route of the pedestrian in the map information 114 (for example, the departure point and the corner) and the feature points on the observation route (for example, the start point and the route change point). Thereby, the CPU 10 can obtain the absolute position information 150 by regarding the position of the feature point on the assumed route as the absolute position of the feature point on the observation route. That is, if the absolute position information 150 is acquired by the CPU 10 according to the situation, the CPU 10 is included in the second positioning unit 15.
 また、歩行者が操作部12を操作して、自身の存在位置(絶対位置)を入力すれば、操作部12によって絶対位置情報150が取得されることになる。すなわち、状況に応じて、操作部12によって絶対位置情報150を取得するように構成すれば、操作部12が第2測位部15に含まれることとなる。すでに説明したように、基準位置情報111については、このように取得されてもよい。 Also, if the pedestrian operates the operation unit 12 and inputs his / her presence position (absolute position), the absolute position information 150 is acquired by the operation unit 12. That is, if the absolute position information 150 is acquired by the operation unit 12 according to the situation, the operation unit 12 is included in the second positioning unit 15. As already described, the reference position information 111 may be acquired in this way.
 ただし、第2測位部15を構成する装置としては、これらに限定されるものではない。例えば、ビーコン信号受信機を設けて、外部に設置されたビーコンから送信される信号を受信して絶対位置情報150を取得するように構成してもよい。また、WiFi通信用のアクセスポイントから送信される信号を受信して絶対位置情報150を取得してもよい。あるいは、デジタルカメラ(撮像部)を設けて、絶対位置が既知の被写体(マーカーやコード画像など)を撮像し、絶対位置情報150を取得してもよい。 However, the apparatus constituting the second positioning unit 15 is not limited to these. For example, a beacon signal receiver may be provided to receive a signal transmitted from a beacon installed outside and acquire the absolute position information 150. Alternatively, the absolute position information 150 may be acquired by receiving a signal transmitted from an access point for WiFi communication. Alternatively, a digital camera (imaging unit) may be provided to capture a subject (such as a marker or a code image) whose absolute position is known, and acquire the absolute position information 150.
 このように、測位装置1は、GPS受信部以外の構成によっても絶対位置情報150を取得可能なように構成されている。したがって、例えば、GPS測位精度が低下している場合であっても、測位装置1は絶対位置情報150を取得することができる。なお、以下の説明において、絶対位置情報150に示される地点を、「観測点」と称する。 As described above, the positioning device 1 is configured to be able to acquire the absolute position information 150 even by a configuration other than the GPS receiving unit. Therefore, for example, even when the GPS positioning accuracy is reduced, the positioning device 1 can acquire the absolute position information 150. In the following description, a point indicated by the absolute position information 150 is referred to as an “observation point”.
 図3は、測位装置1が備える機能ブロックをデータの流れとともに示す図である。図3に示す第1測位部100、位置演算部101、状況判定部102、タイミング制御部103、データ更新部104、および、補正部105は、CPU10がプログラム110に従って動作することにより実現される機能ブロックである。 FIG. 3 is a diagram showing functional blocks provided in the positioning device 1 together with a data flow. The first positioning unit 100, the position calculation unit 101, the situation determination unit 102, the timing control unit 103, the data update unit 104, and the correction unit 105 illustrated in FIG. 3 are functions realized by the CPU 10 operating according to the program 110. It is a block.
 第1測位部100は、観測情報115とパラメータ情報113とに基づいて測位装置1の相対的な位置を示す相対位置情報117を作成することにより、相対位置情報117を取得する。言い換えれば、第1測位部100が相対位置情報117を作成することによって、測位装置1において相対位置情報117が取得される。より詳細に説明すると、第1測位部100は、相対位置情報117の作成に際して、観測情報115に含まれる運動情報116を参照する。逆に言えば、観測情報115に含まれる情報のうち、第1測位部100が相対位置情報117を作成するために用いる情報が運動情報116である。 The first positioning unit 100 acquires the relative position information 117 by creating the relative position information 117 indicating the relative position of the positioning device 1 based on the observation information 115 and the parameter information 113. In other words, the relative positioning information 117 is acquired in the positioning device 1 by the first positioning unit 100 creating the relative positioning information 117. More specifically, the first positioning unit 100 refers to the exercise information 116 included in the observation information 115 when creating the relative position information 117. Conversely, of the information included in the observation information 115, the information used by the first positioning unit 100 to create the relative position information 117 is the exercise information 116.
 本実施の形態における測位装置1は、相対位置情報117に基づいて位置情報118を作成すると、当該相対位置情報117を初期化するものとする。すなわち、相対位置情報117は、位置情報118を作成するために一時的に作成される情報である。第1測位部100による相対位置情報117の作成は、自律航法(相対的測位)として、従来の技術を適宜採用することができるため、ここでは詳細な説明を省略する。 Suppose that the positioning device 1 in the present embodiment initializes the relative position information 117 when the position information 118 is created based on the relative position information 117. That is, the relative position information 117 is information temporarily created to create the position information 118. The creation of the relative position information 117 by the first positioning unit 100 can adopt a conventional technique as appropriate for autonomous navigation (relative positioning), and thus a detailed description thereof is omitted here.
 位置演算部101は、基準位置情報111と相対位置情報117とに基づいて位置情報118を演算する。より詳細には、位置演算部101は、基準位置情報111を用いて、相対位置情報117を絶対位置に変換し、位置情報118を作成する。その後は、位置情報118に対する相対的な位置として、新たな相対位置情報117に基づいて新たな位置情報118を演算することにより、位置情報118を更新しつづける。 The position calculation unit 101 calculates position information 118 based on the reference position information 111 and the relative position information 117. More specifically, the position calculation unit 101 uses the reference position information 111 to convert the relative position information 117 into an absolute position, and creates position information 118. Thereafter, the position information 118 is continuously updated by calculating new position information 118 based on the new relative position information 117 as a relative position with respect to the position information 118.
 なお、本実施の形態における測位装置1は、測位装置1の現在の存在位置だけでなく、過去の存在位置も位置情報118に含めて記録しておくものとする。これにより、位置情報118は、基準点から現在までの測位装置1の絶対位置を示す情報となる。また、これらの位置を時系列順に繋げると、基準点から現在位置までの歩行者の歩行軌跡となる。したがって、位置情報118を表示部13に表示することにより、歩行者は、自分の現在の位置だけでなく、例えば、歩行軌跡も確認することができる。 Note that the positioning device 1 according to the present embodiment records not only the current location of the positioning device 1 but also the past location in the location information 118. Thereby, the position information 118 becomes information indicating the absolute position of the positioning device 1 from the reference point to the present. Further, when these positions are connected in time series order, a pedestrian's walking trajectory from the reference point to the current position is obtained. Therefore, by displaying the position information 118 on the display unit 13, the pedestrian can check not only his current position but also a walking locus, for example.
 また、位置情報118において、最新の観測点から現在の位置情報118の終点までの区間は、後述する補正部105による位置補正がされていない区間である。以下の説明では、当該区間を「未補正区間」と称する場合がある。未補正区間を構成する各位置は、位置演算部101によって絶対位置に変換されている。しかし、未補正区間における絶対位置は、あくまでも最新の観測点からの相対的な位置である。 In the position information 118, a section from the latest observation point to the end point of the current position information 118 is a section in which position correction by the correction unit 105 described later is not performed. In the following description, the section may be referred to as an “uncorrected section”. Each position constituting the uncorrected section is converted to an absolute position by the position calculation unit 101. However, the absolute position in the uncorrected section is a relative position from the latest observation point.
 また、未補正区間における歩行軌跡の長さは、最新の観測点(直前の絶対的測位を実行した位置)から現在までに歩行者が移動した距離を示す。以下の説明では、当該距離を「移動距離δ」と称する。 Also, the length of the walking trajectory in the uncorrected section indicates the distance that the pedestrian has moved from the latest observation point (position where absolute positioning was performed immediately before) to the present. In the following description, the distance is referred to as “movement distance δ”.
 状況判定部102は、観測情報115(運動情報116を含む。)に基づいて状況を推定する。さらに、状況推定部102は、推定結果をデータ更新部104に伝達する機能を有している。 The situation determination unit 102 estimates the situation based on the observation information 115 (including the exercise information 116). Further, the situation estimation unit 102 has a function of transmitting the estimation result to the data update unit 104.
 本実施の形態における状況判定部102が検出する具体的な状況(相対的測位の精度が低下すると予測される状況)としては、階段を歩行している状況、乗り物(エレベータやエスカレータ、ムービングウォークなど)に乗っている状況、悪路を歩行している状況、地磁気異常の状況、人混みを歩行している状況、および、所持状態としての「手振り状況」である。なお、これらの状況を検出しなかったとき、状況判定部102は、第1測位部100による相対的測位の信頼度が高い状況であると推定する。 Specific situations (situations where relative positioning accuracy is predicted to be reduced) detected by the situation determination unit 102 in the present embodiment include situations where a person is walking on stairs, vehicles (elevators, escalators, moving walks, etc.) ), Walking on a rough road, abnormal geomagnetic field, walking in a crowded area, and “hand gesture state” as a possessed state. When these situations are not detected, the situation determination unit 102 estimates that the relative positioning reliability by the first positioning unit 100 is high.
 歩行者が階段を歩行している状況では、通常の歩行状態とは異なる状況となる。より具体的には、歩行者の歩幅が変化し、設定されている歩幅の値の信頼度が低下すると予測される。したがって、状況判定部102は、歩行者が階段を歩行している状況を、相対的測位の精度が低下する状況として検出する。 When the pedestrian is walking on the stairs, the situation is different from the normal walking state. More specifically, it is predicted that the pedestrian's stride changes and the reliability of the set stride value decreases. Therefore, the situation determination unit 102 detects a situation where a pedestrian is walking on the stairs as a situation where the accuracy of relative positioning is lowered.
 具体的には、状況判定部102は、気圧センサ140によって観測された観測情報115に基づいて、歩行動作において、上下方向(鉛直方向)への移動が閾値以上であるか否かを判定する。そして、上下方向への移動が閾値以上の場合に、階段を歩行していると判定する。また、スロープや坂道などを歩行する場合も、階段を歩行する場合と同様とみなして判定する。なお、上下方向への移動が大きい場合で、かつ、求まる歩幅(後述)が大きい場合には、別の状況と判定する(後述)。 Specifically, based on the observation information 115 observed by the atmospheric pressure sensor 140, the situation determination unit 102 determines whether or not the movement in the vertical direction (vertical direction) is greater than or equal to a threshold value in the walking motion. And when the movement to an up-down direction is more than a threshold value, it determines with walking the stairs. Further, when walking on a slope or a slope, it is determined that it is the same as when walking on stairs. When the movement in the vertical direction is large and the calculated step length (described later) is large, it is determined that the situation is different (described later).
 歩行者が乗り物に乗っている状況では、乗り物の動きによって通常の歩行状態とは異なる状況となる。したがって、状況判定部102は、乗り物に乗っている状況を、相対的測位の精度が低下する状況として検出する。ここでは、歩行動作において利用する乗り物として、エスカレータ、ムービングウォークおよびエレベータを想定する。 The situation where a pedestrian is on a vehicle is different from the normal walking state depending on the movement of the vehicle. Therefore, the situation determination unit 102 detects the situation on the vehicle as a situation in which the relative positioning accuracy decreases. Here, an escalator, a moving walk, and an elevator are assumed as vehicles used in the walking motion.
 具体的には、状況判定部102は、まず、気圧センサ140によって観測された観測情報115に基づいて、気圧の変化を検出することにより、上下方向の移動の有無を判定する。次に、ある期間における移動距離をその間に観測された歩数で除すことにより、その間の歩幅を求め、当該歩幅が想定される人の歩幅より長いか、短いか、あるいは、想定内かを判定する。 Specifically, the situation determination unit 102 first determines the presence or absence of movement in the vertical direction by detecting a change in atmospheric pressure based on the observation information 115 observed by the atmospheric pressure sensor 140. Next, by dividing the distance traveled during a period by the number of steps observed during that period, the stride between them is obtained, and it is determined whether the stride is longer, shorter, or within the expected step length of the person. To do.
 これにより、状況判定部102は、上下方向への移動が検出され、かつ、求めた歩幅の値が異常に大きいとき、歩行者がエスカレータに乗っていると判定する。また、状況判定部102は、上下方向への移動が検出され、かつ、求めた歩幅が異常に小さい(移動距離が小さいことを示す)とき、歩行者がエレベータに乗っていると判定する。さらに、状況判定部102は、上下方向への移動が検出されなかったときであって、求めた歩幅の値が異常に大きいとき、歩行者がムービングウォークに乗っていると判定する。また、これらの乗り物に乗っていると判定された時点で、運動情報116に基づいて歩行動作による周期運動が観測された場合、状況判定部102は、歩行者がこれらの乗り物上を歩行していると判定する。 Thereby, the situation determination unit 102 determines that the pedestrian is on the escalator when the vertical movement is detected and the calculated stride value is abnormally large. In addition, the situation determination unit 102 determines that the pedestrian is on the elevator when the movement in the vertical direction is detected and the obtained step length is abnormally small (indicating that the movement distance is small). Furthermore, the situation determination unit 102 determines that the pedestrian is on the moving walk when the movement in the vertical direction is not detected and the calculated stride value is abnormally large. In addition, when it is determined that the vehicle is on the vehicle, when the periodic motion due to the walking motion is observed based on the motion information 116, the situation determination unit 102 causes the pedestrian to walk on the vehicle. It is determined that
 歩行者が悪路を歩行している状況では、当該歩行者は慎重に歩行すると予想される。このような状況では、例えば、歩行者の歩幅が小さくなり、通常の歩行状態とは異なる状況となる。したがって、状況判定部102は、悪路を歩行している状況を、相対的測位の精度が低下する状況として検出する。 In a situation where a pedestrian is walking on a rough road, the pedestrian is expected to walk carefully. In such a situation, for example, the pedestrian's stride is reduced, which is different from the normal walking state. Therefore, the situation determination part 102 detects the situation which is walking on a bad road as a situation where the accuracy of relative positioning falls.
 具体的には、状況判定部102は、歩行動作における歩行周期の変動が大きいとき(歩行周期が安定しないとき)に、歩行者が悪路を歩行している状況であると判定する。 Specifically, the situation determination unit 102 determines that the pedestrian is walking on a rough road when the fluctuation of the walking cycle in the walking motion is large (when the walking cycle is not stable).
 なお、状況判定部102は、上記の移動距離や歩行周期などを、観測情報115に基づいて演算により求める。しかし、例えば、第1測位部100が相対位置情報117を作成する過程で求める情報などにより、上記の移動距離や歩行周期などを取得してもよい。この場合、これらの情報は、必要に応じて、第1測位部100から伝達するように構成してもよい。 Note that the situation determination unit 102 obtains the travel distance, the walking cycle, and the like by calculation based on the observation information 115. However, for example, the moving distance, the walking cycle, and the like may be acquired based on information obtained in the process in which the first positioning unit 100 creates the relative position information 117. In this case, you may comprise so that such information may be transmitted from the 1st positioning part 100 as needed.
 また、階段の存在位置、エスカレータなどの乗り物の敷設位置、および、悪路の位置は、地図情報114に示されている。したがって、状況判定部102は、位置情報118を参照して地図情報114と照合することにより、歩行者が階段を歩行しているか否か、乗り物を利用しているか否か、あるいは、悪路を歩行しているか否かを判定することも可能である。あるいは、このような判定を併用してもよい。 Also, the map information 114 indicates the location of the stairs, the location of the vehicle such as the escalator, and the location of the bad road. Therefore, the situation determination unit 102 refers to the position information 118 and collates with the map information 114 to determine whether the pedestrian is walking on the stairs, using the vehicle, or the bad road. It is also possible to determine whether or not walking. Or you may use such determination together.
 歩行者の周囲に磁性体が存在し、磁気センサ146によって観測される地磁気が異常となる状況では、絶対方位の取得が困難となり、やはり相対的測位の精度が低下すると予測される。したがって、状況判定部102は、地磁気異常の状況を、相対的測位の精度が低下する状況として検出する。 In a situation where there is a magnetic body around the pedestrian and the geomagnetism observed by the magnetic sensor 146 is abnormal, it is difficult to obtain the absolute direction, and it is predicted that the accuracy of relative positioning will also decrease. Therefore, the situation determination unit 102 detects a geomagnetic abnormality situation as a situation where the accuracy of relative positioning decreases.
 具体的には、ジャイロセンサ144により得られる回転角と、磁気センサ146により得られる回転角とを比較する。そして、これらの値の誤差が大きい場合、状況判定部102は、磁気センサ146の出力値が信頼できない状況(地磁気異常の状況)であると判定する。 Specifically, the rotation angle obtained by the gyro sensor 144 and the rotation angle obtained by the magnetic sensor 146 are compared. If the error between these values is large, the situation determination unit 102 determines that the output value of the magnetic sensor 146 is an unreliable situation (a geomagnetic abnormality situation).
 歩行者が人混みを歩行している状況では、周囲の人を避けるために歩幅が小さくなると予測される。また、頻繁に進路が変更されることが予測されるため、進行方向(方位)に関する誤差も蓄積しやすい。したがって、状況判定部102は、歩行者が人混みを歩行している状況を、相対的測位の精度が低下する状況として検出する。 In a situation where pedestrians are walking in crowds, the stride is predicted to be small to avoid surrounding people. Further, since it is predicted that the course is frequently changed, errors relating to the traveling direction (direction) are likely to be accumulated. Therefore, the situation determination unit 102 detects a situation where a pedestrian is walking in a crowd as a situation where the accuracy of relative positioning is reduced.
 具体的には、状況判定部102は、観測情報115(運動情報116)に基づいて、歩行動作における進行方向の変更の頻度が閾値以上か否かを判定する。運動情報116を用いて相対位置情報117を求める過程において、歩行者の進行方向を求める手法は従来より知られている。したがって、状況判定部102は、このようにして得られる進行方向を比較することにより、時々刻々の進行方向の変化を検出することができる。すなわち、進行方向の変更頻度を検出することができる。 Specifically, the situation determination unit 102 determines whether or not the frequency of change in the traveling direction in the walking motion is equal to or higher than a threshold based on the observation information 115 (exercise information 116). In the process of obtaining the relative position information 117 using the movement information 116, a method for obtaining the pedestrian's traveling direction has been known. Therefore, the situation determination unit 102 can detect the change in the traveling direction every moment by comparing the traveling directions obtained in this way. That is, it is possible to detect the change frequency of the traveling direction.
 また、状況判定部102は、マイク142によって観測された観測情報115(音声情報)を解析して、周囲の話し声などを認識し、雑踏か否かを判定する。さらに、地図情報114が日常的に人混みを形成する場所を特定していれば、状況判定部102が位置情報118と地図情報114とを照合することにより、歩行者が人混みを形成する場所に存在しているか否かを判定することができる。 Also, the situation determination unit 102 analyzes the observation information 115 (voice information) observed by the microphone 142, recognizes the surrounding speech and the like, and determines whether or not it is a hustle and bustle. Further, if the map information 114 specifies a place where the crowd is formed on a daily basis, the situation determination unit 102 compares the position information 118 with the map information 114 so that the pedestrian exists at the place where the crowd is formed. It can be determined whether or not.
 所持状態とは、測位装置1が歩行者に所持されているときの状態である。例えば、測位装置1がポケットやホルダーに挿入されるようにして歩行者に携帯されているか、あるいは、手に持った状態で所持されているかといった状態が想定される。また、手に所持されている場合でも、所持した手を前後に振りながら歩行している(手振り状態)か、それとも顔の前に保持して歩行している(閲覧状態)かなどの区別も想定される。 The possessed state is a state when the positioning device 1 is possessed by a pedestrian. For example, it is assumed that the positioning device 1 is carried by a pedestrian so as to be inserted into a pocket or a holder, or is held in a handheld state. In addition, even if it is held in the hand, it is also possible to distinguish whether it is walking while shaking the hand held back and forth (hand shaking state) or walking while holding it in front of the face (viewing state). is assumed.
 測位装置1がポケットやホルダーに挿入されているか否かは、例えば、照度センサ141から出力される観測情報115に応じて判定することができる。 Whether the positioning device 1 is inserted into a pocket or a holder can be determined according to the observation information 115 output from the illuminance sensor 141, for example.
 測位装置1が手振り状態で所持されている場合、測位装置1の位置(この場合の位置とは、歩行者の位置とはみなせない位置を含む。)の変動が大きく、通常の歩行状態とは異なる状況となる。したがって、状況判定部102は、所持状態のうち、特に手振り状態となっている状況を、相対的測位の精度が低下する状況として検出する。 When the positioning device 1 is held in a hand-shaking state, the position of the positioning device 1 (the position in this case includes a position that cannot be regarded as a pedestrian position) is large, and what is a normal walking state? It becomes a different situation. Therefore, the situation determination unit 102 detects a situation in which the hand is in a hand-shaking state among the possessed states as a situation in which the accuracy of relative positioning is lowered.
 具体的には、状況判定部102は、観測情報115のうちの特に運動情報116を参照して、歩行動作を解析することにより、手振り状態を検出する。 Specifically, the situation determination unit 102 detects a hand gesture state by referring to the motion information 116 in the observation information 115 and analyzing the walking motion.
 タイミング制御部103は、位置情報118と距離情報112とに応じてタイミング信号を生成する。より詳細には、タイミング制御部103は、位置情報118を参照しつつ、移動距離δ(未補正区間の長さ)を求める。そして、移動距離δを監視しつつ、当該移動距離δが距離情報112に示される距離Dに到達したとき(δ=D)にタイミング信号を生成する。また、タイミング制御部103は、生成したタイミング信号を第2測位部15に伝達することにより、第2測位部15に絶対位置情報150を取得させる。 The timing control unit 103 generates a timing signal according to the position information 118 and the distance information 112. More specifically, the timing control unit 103 obtains the movement distance δ (length of the uncorrected section) while referring to the position information 118. Then, while monitoring the movement distance δ, a timing signal is generated when the movement distance δ reaches the distance D t indicated by the distance information 112 (δ = D t ). Further, the timing control unit 103 causes the second positioning unit 15 to acquire the absolute position information 150 by transmitting the generated timing signal to the second positioning unit 15.
 位置情報118における未補正区間を構成する各位置は、相対位置情報117に基づいて求められた位置である。したがって、タイミング制御部103は、相対位置情報117に基づいて移動距離δを演算し、当該移動距離δと距離情報112とに応じて、第2測位部15に絶対位置情報150を取得させる機能を有する。 Each position constituting the uncorrected section in the position information 118 is a position obtained based on the relative position information 117. Therefore, the timing control unit 103 has a function of calculating the movement distance δ based on the relative position information 117 and causing the second positioning unit 15 to acquire the absolute position information 150 according to the movement distance δ and the distance information 112. Have.
 これにより、測位装置1は、一定の時間間隔ではなく、歩行者の移動距離δに応じて絶対的測位を実行する。したがって、例えば、歩行者が移動することなく立ち止まっている場合、測位装置1は、絶対的測位を行わない。 Thereby, the positioning device 1 executes absolute positioning according to the moving distance δ of the pedestrian instead of a fixed time interval. Therefore, for example, when the pedestrian stops without moving, the positioning device 1 does not perform absolute positioning.
 データ更新部104は、状況判定部102による推定結果に応じて、位置情報118と絶対位置情報150とに基づいてパラメータ情報113を更新する。 The data update unit 104 updates the parameter information 113 based on the position information 118 and the absolute position information 150 according to the estimation result by the situation determination unit 102.
 相対的測位によって得られた歩行者の位置と、絶対的測位によって得られた歩行者の位置との間に比較的大きな測位誤差が生じている場合、その原因として、相対的測位に使用されたパラメータの異常が考えられる。したがって、このような測位誤差が生じていることを検出した場合、当該測位誤差を縮小させる方向に、パラメータ情報113を変更することが好ましい。 When a relatively large positioning error occurred between the pedestrian position obtained by relative positioning and the pedestrian position obtained by absolute positioning, it was used for relative positioning as the cause. The parameter may be abnormal. Therefore, when it is detected that such a positioning error has occurred, it is preferable to change the parameter information 113 in a direction to reduce the positioning error.
 ここで、データ更新部104によってパラメータ情報113を更新する原理の一例を説明する。 Here, an example of the principle of updating the parameter information 113 by the data updating unit 104 will be described.
 詳細な説明は省略したが、第1測位部100は、運動情報116に基づいて時間tの間の歩行者の歩数nを求め、(n×L)/tを演算することにより、歩行者の速さνを求める。また、第1測位部100は、運動情報116に基づいて歩行者の進行方向φを推定しつつ、進行方向φと速さνとに基づいて相対的測位における現在位置を推定する。このようにして、第1測位部100による相対的測位が行われ、相対位置情報117が作成される。 Although detailed description is omitted, the first positioning unit 100 obtains the number of steps n of the pedestrian during the time t based on the exercise information 116, and calculates (n × L) / t, thereby calculating the pedestrian's number. Find the speed ν 0 . The first positioning unit 100 estimates the current position in relative positioning based on the traveling direction φ 0 and the speed ν 0 while estimating the traveling direction φ 0 of the pedestrian based on the motion information 116. In this way, relative positioning is performed by the first positioning unit 100, and the relative position information 117 is created.
 相対的測位により推定された歩行軌跡(移動軌跡)は、現実の歩行軌跡の相似形に近いものとなる。言い換えれば、ジャイロセンサ144や加速度センサ145の測定における蓄積誤差は、そのような形で顕在化する。したがって、例えば、推定された歩行軌跡に対して、回転処理および伸縮処理を施すと、現実の歩行軌跡と一致すると予想される。 The walking trajectory (movement trajectory) estimated by relative positioning is close to the similar shape of the actual walking trajectory. In other words, the accumulation error in the measurement of the gyro sensor 144 and the acceleration sensor 145 becomes obvious in such a form. Therefore, for example, if rotation processing and expansion / contraction processing are performed on the estimated walking locus, it is expected to match the actual walking locus.
 すなわち、パラメータ情報113に含まれる誤差角θと伸縮比γとを用いると、現実の進行方向φおよび速さνについて、式1および式2が成立する。 That is, when the error angle θ and the expansion / contraction ratio γ included in the parameter information 113 are used, Expressions 1 and 2 are established for the actual traveling direction φ a and the speed ν a .
 φ=φ+θ ・・・ 式1 φ a = φ 0 + θ Equation 1
 ν=γ×ν ・・・ 式2 ν a = γ × ν 0 Formula 2
 図4は、推定された歩行軌跡および現実の歩行軌跡の一例を示す図である。 FIG. 4 is a diagram illustrating an example of an estimated walking trajectory and an actual walking trajectory.
 図4に示すT1,T2は、それぞれ観測点である。観測点T2は最新の観測点であり、観測点T1は、最新以外の過去の観測点である。なお、本実施の形態では、過去の観測点T1として、前回(直前)の観測点を用いる例で説明する。ただし、過去の観測点T1は、前回の観測点に限定されるものではない。 T1 and T2 shown in FIG. 4 are observation points. The observation point T2 is the latest observation point, and the observation point T1 is a past observation point other than the latest observation point. In the present embodiment, an example in which the previous (immediately preceding) observation point is used as the past observation point T1 will be described. However, the past observation point T1 is not limited to the previous observation point.
 図4に示す破線L1は相対的測位により推定された歩行軌跡である。また、実線L2は現実の歩行軌跡である。 4 is a walking trajectory estimated by relative positioning. A solid line L2 is an actual walking locus.
 破線L1を構成する各位置は、観測点T1を用いて絶対位置に変換されており、位置情報118に相当する。すなわち、破線L1は未補正区間における移動軌跡に一致する。また、地点P1は、観測点T2が得られた時間の位置情報118における終点である。言い換えれば、地点P1は相対的測位により、観測点T1からの相対的な位置として推定された現在位置である。 Each position constituting the broken line L1 is converted to an absolute position using the observation point T1, and corresponds to the position information 118. That is, the broken line L1 coincides with the movement locus in the uncorrected section. The point P1 is an end point in the position information 118 at the time when the observation point T2 was obtained. In other words, the point P1 is a current position estimated as a relative position from the observation point T1 by relative positioning.
 以上のことから、データ更新部104は、絶対位置情報150および位置情報118を参照することにより、観測点T2と、観測点T1および地点P1を参照することができる。 From the above, the data updating unit 104 can refer to the observation point T2, the observation point T1, and the point P1 by referring to the absolute position information 150 and the position information 118.
 さらに、図4に示す直線L3は、観測点T1と観測点T2とを結んだ直線である。また、図4に示す直線L4は、観測点T1と地点P1とを結んだ直線である。 Furthermore, a straight line L3 shown in FIG. 4 is a straight line connecting the observation point T1 and the observation point T2. A straight line L4 shown in FIG. 4 is a straight line connecting the observation point T1 and the point P1.
 このような直線L3,L4を定義すると、現実の進行方向φを求めるために必要となる誤差角θは、直線L3と直線L4とのなす角として求めることができる。また、現実の速さνを求めるために必要となる伸縮比γは、直線L3,L4の長さをそれぞれd,dとして、その比により求まる。すなわち、γ=d/dである。 Defining such a straight line L3, L4, error angle θ necessary for the calculation of the traveling direction phi a reality, can be obtained as an angle formed between the straight line L3 and the straight line L4. Further, the expansion / contraction ratio γ required for obtaining the actual speed ν a is obtained from the ratios of the lengths of the straight lines L3 and L4 as d 1 and d 2 , respectively. That is, γ = d 1 / d 2 .
 本実施の形態におけるデータ更新部104は、上記のように、絶対位置情報150および位置情報118とを参照して、誤差角θおよび伸縮比γを求めて、パラメータ情報113を更新する。 As described above, the data updating unit 104 in the present embodiment refers to the absolute position information 150 and the position information 118 to obtain the error angle θ and the expansion / contraction ratio γ, and updates the parameter information 113.
 ただし、データ更新部104によるパラメータ情報113の更新は、上記原理に限定されるものではない。すなわち、その他の従来の技術を適宜採用してもよい。 However, the update of the parameter information 113 by the data updating unit 104 is not limited to the above principle. That is, other conventional techniques may be adopted as appropriate.
 しかし、このようなパラメータ情報113の更新は、いわゆるフィードバック制御によって、将来推定される相対位置を補正することに相当するため、状況によってはパラメータ(ここに示す例では誤差角θおよび伸縮比γ)の変更が、かえって測位誤差を維持する(あるいは拡大させる)こともある。 However, such updating of the parameter information 113 corresponds to correcting a relative position estimated in the future by so-called feedback control. Therefore, depending on the situation, parameters (error angle θ and expansion / contraction ratio γ in the example shown here) are used. In some cases, this change may maintain (or increase) the positioning error.
 例えば、歩行者の歩幅が小さくなる異常な状況(例えば、階段昇降など)が生じている場合、パラメータ情報113に記録されている通常の歩幅Lを用いて相対位置情報117を求めると、絶対的測位による位置と相対的測位による位置との間に大きな測位誤差を生じる。そして、このような大きな測位誤差が検出されたことにより、直ちに伸縮比γを小さい値に変更すると、異常な状況が通常の状況に戻った後も、変更後の遅い速さνによって相対位置情報117を求めることになる。そうすると、パラメータ情報113を調整したにもかかわらず、絶対的測位による位置と相対的測位による位置との間の測位誤差は、依然として解消されないことになる。 For example, when an abnormal situation in which the pedestrian's stride becomes small (for example, ascending or descending stairs) occurs, if the relative position information 117 is obtained using the normal stride L recorded in the parameter information 113, it is absolute. A large positioning error occurs between the position by positioning and the position by relative positioning. When such a large positioning error is detected, if the expansion / contraction ratio γ is immediately changed to a small value, the relative position is changed by the slow speed ν a after the change even after the abnormal situation returns to the normal situation. Information 117 is obtained. Then, despite the adjustment of the parameter information 113, the positioning error between the position based on absolute positioning and the position based on relative positioning is still not eliminated.
 したがって、データ更新部104は、相対的測位に使用するパラメータの異常が想定される場合において、さらに、状況判定部102による推定結果を参照して、パラメータ情報113を更新する。ここでデータ更新部104がパラメータ情報113を更新する状況とは、測位誤差が生じており、かつ、測位誤差を生じた原因がパラメータ異常以外にみあたらない状況である。 Therefore, the data update unit 104 updates the parameter information 113 with reference to the estimation result by the situation determination unit 102 when an abnormality of the parameter used for relative positioning is assumed. Here, the situation in which the data updating unit 104 updates the parameter information 113 is a situation in which a positioning error has occurred and the cause of the positioning error is not found except for parameter abnormality.
 本実施の形態における測位装置1では、データ更新部104が、絶対位置情報150と位置情報118とを比較することにより、測位誤差が生じているか否かを判定する。しかし、当該判定を状況判定部102が実行してもよい。 In the positioning device 1 according to the present embodiment, the data updating unit 104 compares the absolute position information 150 and the position information 118 to determine whether or not a positioning error has occurred. However, the situation determination unit 102 may execute the determination.
 本実施の形態におけるデータ更新部104は、測位誤差が生じているにもかかわらず、相対的測位の精度が低下する状況が検出されない状況を、パラメータ異常の状況と判定してパラメータ情報113を更新する。具体的には、階段を歩行している状況、乗り物に乗っている状況、悪路を歩行している状況、地磁気異常の状況、人混みを歩行している状況、所持状態が手振り状態の状況のうちのいずれでもない状況である。すでに説明したように、これらの状況は、状況判定部102によって推定され、データ更新部104に伝達される。 The data updating unit 104 in the present embodiment updates the parameter information 113 by determining that a situation in which the accuracy of relative positioning is lowered is not detected even though a positioning error has occurred, as a parameter abnormal situation. To do. Specifically, the situation of walking on stairs, riding on a vehicle, walking on a rough road, abnormal geomagnetic field, walking in a crowded area, The situation is none of them. As described above, these situations are estimated by the situation determination unit 102 and transmitted to the data update unit 104.
 また、データ更新部104は、状況判定部102による推定結果に応じて、記憶装置11に記憶された距離情報112を更新する機能も有している。 Further, the data update unit 104 also has a function of updating the distance information 112 stored in the storage device 11 according to the estimation result by the situation determination unit 102.
 すでに説明したように、測位装置1は、移動距離δ(未補正区間の長さ)が距離D(距離情報112)となったときに、タイミング制御部103によりタイミング信号を生成し、第2測位部15により絶対的測位を実行する。したがって、データ更新部104が距離情報112(距離D)を動的に変更することにより、測位装置1における絶対的測位のタイミングを動的に変更することができる。 As already described, the positioning device 1 generates the timing signal by the timing control unit 103 when the movement distance δ (length of the uncorrected section) becomes the distance D t (distance information 112), and the second The positioning unit 15 executes absolute positioning. Therefore, when the data update unit 104 dynamically changes the distance information 112 (distance D t ), the absolute positioning timing in the positioning device 1 can be dynamically changed.
 データ更新部104は、第1測位部100による相対的測位の精度が低下する状況を状況判定部102が検出した場合に、距離Dを短縮する方向に距離情報112を更新する。 Data updating unit 104, when the state determination unit 102 a situation where the accuracy of the relative positioning of the first positioning portion 100 is lowered is detected, and updates the distance information 112 in a direction to reduce the distance D t.
 なお、データ更新部104は、絶対位置情報150に示される位置と、当該絶対位置情報150に対応する位置情報118における位置(相対的測位による現在位置)とを比較して、それらの位置の誤差が大きいときを、相対的測位の精度が低下する状況として距離情報112を更新してもよい。図4に示す例で説明するならば、地点P1と観測点T2との距離が閾値を超える状況か否かを判定するようにしてもよい。 The data updating unit 104 compares the position indicated in the absolute position information 150 with the position in the position information 118 corresponding to the absolute position information 150 (current position by relative positioning), and the error between these positions. When the distance is large, the distance information 112 may be updated as a situation in which the relative positioning accuracy decreases. In the example shown in FIG. 4, it may be determined whether or not the distance between the point P1 and the observation point T2 exceeds the threshold value.
 また、本実施の形態におけるデータ更新部104は、検出された状況(相対的測位の精度が低下する状況)にかかわらず、距離情報112から一定の値(調整幅)を減ずることにより、距離情報112を更新するものとする。ただし、検出された状況に応じて、データ更新部104による調整幅を変更してもよい。 In addition, the data update unit 104 according to the present embodiment subtracts a certain value (adjustment range) from the distance information 112 regardless of the detected situation (a situation in which the relative positioning accuracy decreases), thereby obtaining the distance information. 112 is updated. However, the adjustment range by the data updating unit 104 may be changed according to the detected situation.
 ここで、距離Dは、「0」以上の値であり、下限値としては「0」も想定される。しかし、測位装置1において、距離Dが「0」とは、歩行者が移動しない場合にも絶対的測位を行うことを意味し、絶対的測位を常時実行しつづけることを意味する。 Here, the distance D t is a value of “0” or more, and “0” is also assumed as the lower limit value. However, in the positioning device 1, the distance Dt of “0” means that absolute positioning is performed even when the pedestrian does not move, and means that absolute positioning is continuously performed.
 相対的測位の精度が低下し、もはや信頼することができない状況にまで陥った場合に、距離Dを「0」とし、絶対的測位を間欠的に実行することを放棄して、絶対的測位に切り替えることも1つの実施例として考慮に値する。しかし、本実施の形態における測位装置1は、距離Dに下限値を設け、距離Dが下限値よりも短縮されることを禁止するものとする。 Absolute positioning is abandoned when the distance D t is set to “0” and the absolute positioning is intermittently executed when the relative positioning accuracy is reduced and it is no longer reliable. Switching to is also worth considering as an example. However, the positioning device 1 of this embodiment, the lower limit is provided at a distance D t, the distance D t is assumed to prohibit be shorter than the lower limit value.
 一方、データ更新部104は、第1測位部100による相対的測位の信頼度が高い状況が検出された場合、距離Dを延長する。具体的には、第1測位部100による相対的測位の精度が低下する状況を状況判定部102が検出していない場合に、距離Dを延長する方向に距離情報112を更新する。 On the other hand, the data updating unit 104, when the reliability of the relative positioning of the first positioning portion 100 is higher situation is detected, to extend the distance D t. Specifically, the distance information 112 is updated in a direction in which the distance Dt is extended when the situation determination unit 102 has not detected a situation in which the relative positioning accuracy by the first positioning unit 100 decreases.
 なお、本実施の形態におけるデータ更新部104は、距離情報112に一定の値(調整幅)を加算することにより、距離情報112を更新する。ただし、検出された状況に応じて、データ更新部104による調整幅を変更してもよい。 Note that the data updating unit 104 in the present embodiment updates the distance information 112 by adding a certain value (adjustment width) to the distance information 112. However, the adjustment range by the data updating unit 104 may be changed according to the detected situation.
 ここで、距離Dの値が大きくなると、それに応じて、絶対的測位が実行される間隔が延びる。これにより、消費電力を抑制することができる。しかし、相対的測位の精度が低下する状況が特に検出されない場合であっても、運動検出センサ143における誤差は蓄積されるものである。したがって、第1測位部100による相対的測位は、ある一定以下の間隔で、絶対的測位による較正が必要となる。 Here, the value of the distance D t is increased, accordingly, it extends the interval absolute positioning is performed. Thereby, power consumption can be suppressed. However, errors in the motion detection sensor 143 are accumulated even when a situation in which the accuracy of relative positioning decreases is not detected. Therefore, relative positioning by the first positioning unit 100 requires calibration by absolute positioning at an interval of a certain constant or less.
 また、第2測位部15としてGPS受信部を採用する場合の事情もある。GPSにおいては、測位間隔が長期になると、保持しておいた情報(例えば、衛星の軌道などに関する情報)が無効となり、測位に必要な演算量が増えるという事情がある。すなわち、GPS受信部による絶対的測位は、ある一定以下の時間間隔で実行しなければ、結局、演算量の増加により、消費電力が増加するという特性がある。 There is also a situation when a GPS receiver is employed as the second positioning unit 15. In the GPS, when the positioning interval becomes long, the stored information (for example, information on the orbit of the satellite) becomes invalid, and there is a situation that the amount of calculation necessary for positioning increases. That is, if absolute positioning by the GPS receiver is not executed at a certain time interval or less, the power consumption increases due to an increase in calculation amount.
 したがって、データ更新部104は、相対的測位の精度が低下する状況が検出されない場合であっても、所定の上限値より距離情報112を大きくすることはない。すなわち、状況判定部102は、距離Dが上限値より延長されることを禁止するものとする。 Therefore, the data update unit 104 does not make the distance information 112 larger than the predetermined upper limit value even if a situation in which the relative positioning accuracy is lowered is not detected. That is, the status determination unit 102, the distance D t is assumed to prohibit be extended from the upper limit value.
 さらに、データ更新部104は、距離Dの上限値または下限値による更新の可否だけでなく、他の状況によっても更新の可否を判定する。 Moreover, the data updating unit 104, a distance not only whether updating by upper or lower limit of the D t, also determines whether the updated by other circumstances.
 データ更新部104は、電池残量や電源アダプタの装着の有無などを参照して、測位装置1に対する電力の供給状況に応じて、距離情報112を更新する。例えば、相対的測位の精度が低下していたとしても、電池残量が少ない場合には、当該精度よりも消費電力の抑制を優先して、距離Dの値を小さくしない。これにより、現実の電力供給状態に応じて第2測位部15による測位のタイミングを最適化することができる。 The data update unit 104 updates the distance information 112 according to the power supply status to the positioning device 1 with reference to the remaining battery level and whether or not the power adapter is attached. For example, even if the accuracy of relative positioning is lowered, when the battery remaining amount is low, priority is given to the suppression of power consumption over the accuracy, and the value of the distance Dt is not reduced. Thereby, the timing of positioning by the second positioning unit 15 can be optimized according to the actual power supply state.
 また、データ更新部104は、地図情報114および位置情報118を参照して、位置情報118に示される位置が過去に歩行者が訪れた位置か否かを判定し、当該判定結果に応じて、距離情報112を更新する。例えば、歩行者が過去に訪れた場所については、相対的測位の精度が低下していても、深刻な問題とはならない場合が考えられる。したがって、位置情報118に示される位置が過去に歩行者が訪れた位置である場合には、それ以外の場合に比べて、距離情報112を大きな値とする。 In addition, the data update unit 104 refers to the map information 114 and the position information 118 to determine whether or not the position indicated by the position information 118 is a position where a pedestrian has visited in the past, and according to the determination result, The distance information 112 is updated. For example, for a place where a pedestrian has visited in the past, even if the accuracy of relative positioning is lowered, there may be a case where it does not become a serious problem. Therefore, when the position indicated by the position information 118 is a position where a pedestrian has visited in the past, the distance information 112 is set to a larger value than in other cases.
 また、データ更新部104は、タイマ(図示せず。)によって得られる時間情報を参照しつつ、昼夜の区別に応じて、距離情報112を更新する。例えば、昼間であれば、相対的測位の精度が低下していても、歩行者は周囲を容易に観察することができることから、深刻な問題とはならない場合が考えられる。したがって、データ更新部104は、昼間の場合には、夜間の場合に比べて、距離情報112を大きな値とする。 Further, the data update unit 104 updates the distance information 112 according to the distinction between day and night while referring to the time information obtained by a timer (not shown). For example, in the daytime, even if the relative positioning accuracy is reduced, the pedestrian can easily observe the surroundings, so that there may be no serious problem. Therefore, the data updating unit 104 sets the distance information 112 to a larger value in the daytime than in the nighttime.
 また、データ更新部104は、地図情報114および位置情報118を参照して、現在位置が屋内であるか屋外であるかを判定し、屋内外の区別に応じて、距離情報112を更新する。例えば、屋内であれば、相対的測位の精度が低下していても、周囲に位置を特定するための他の情報が比較的多いと予想され、深刻な問題とはならない場合が考えられる。したがって、データ更新部104は、現在位置が屋内の場合には、それ以外の場合に比べて、距離情報112を大きな値とする。 Also, the data update unit 104 refers to the map information 114 and the position information 118 to determine whether the current position is indoor or outdoor, and updates the distance information 112 according to the distinction between indoor and outdoor. For example, if it is indoor, even if the accuracy of relative positioning is lowered, it is expected that there is a relatively large amount of other information for specifying the position in the surrounding area, and there may be no serious problem. Therefore, when the current position is indoor, the data update unit 104 sets the distance information 112 to a larger value than in other cases.
 ただし、電力の供給状況、過去に訪れた位置か否か、昼夜の区別、あるいは、屋内外の区別などに応じて距離情報112を更新することは、測位装置1が自動的に決定すると不都合を生じることもあり得る。そこで、データ更新部104は、これらの状況を検出した場合には、歩行者の指示に応じて、最終的に距離情報112を更新する。具体的には、距離情報112の更新に関して、検出された状況と歩行者に可否を求めるメッセージとを表示部13に表示させ、それに対して歩行者が入力した指示に従って、更新の可否を決定する。 However, updating the distance information 112 according to the power supply status, whether the location has been visited in the past, day / night distinction, indoor / outdoor distinction, etc. is inconvenient if the positioning device 1 automatically determines it. It can happen. Therefore, when these conditions are detected, the data update unit 104 finally updates the distance information 112 in accordance with a pedestrian instruction. Specifically, regarding the update of the distance information 112, the detected situation and a message for requesting whether or not the pedestrian is required are displayed on the display unit 13, and whether or not the update is possible is determined according to an instruction input by the pedestrian. .
 補正部105は、第2測位部15の絶対位置情報150の取得に応じて、取得された当該絶対位置情報150により位置情報118を補正する。より詳細には、位置情報118における未補正区間の終点(相対的測位による現在位置)を、当該絶対位置情報150に置換することにより補正する。 The correction unit 105 corrects the position information 118 with the acquired absolute position information 150 in response to the acquisition of the absolute position information 150 of the second positioning unit 15. More specifically, the position information 118 is corrected by replacing the end point of the uncorrected section (the current position by relative positioning) with the absolute position information 150.
 本実施の形態における補正部105は、信頼性の高い絶対位置情報150が取得されたときに、必ず、位置情報118に対する補正を実行するように構成されている。しかし、例えば、補正部105は、絶対位置情報150と位置情報118とを比較して、当該絶対位置情報150に示される位置と当該絶対位置情報150が取得された時間における位置情報118に示される位置との誤差を求め、当該誤差が閾値以上の場合にのみ、位置情報118を補正するように構成してもよい。図4に示す例で説明するならば、地点P1と観測点T2との距離が閾値を超えたときにのみ、補正を行ってもよい。 The correction unit 105 in the present embodiment is configured to always perform correction on the position information 118 when the absolute position information 150 with high reliability is acquired. However, for example, the correction unit 105 compares the absolute position information 150 and the position information 118 and indicates the position indicated by the absolute position information 150 and the position information 118 at the time when the absolute position information 150 is acquired. The position information 118 may be corrected only when an error from the position is obtained and the error is equal to or greater than a threshold value. If the example shown in FIG. 4 demonstrates, you may correct | amend only when the distance of the point P1 and the observation point T2 exceeds the threshold value.
 また、補正部105は、位置情報118に記録されている位置のうちの未補正区間についても、遡及的に補正し、測位装置1の過去の存在位置とする。この場合、補正部105は、パラメータ情報113を参照(図3において図示省略)しつつ、誤差角θおよび伸縮比γを用いて、未補正区間における各位置を補正する。これにより、未補正区間が解消され、当該区間が補正された区間となる。 Further, the correction unit 105 also retroactively corrects the uncorrected section of the positions recorded in the position information 118 and sets it as the past existing position of the positioning device 1. In this case, the correction unit 105 corrects each position in the uncorrected section using the error angle θ and the expansion / contraction ratio γ while referring to the parameter information 113 (not shown in FIG. 3). As a result, the uncorrected section is canceled and the section becomes a corrected section.
 以上が、本実施の形態における測位装置1の構成および機能の説明である。次に、測位装置1によって実現される測位方法について説明する。 The above is description of the structure and function of the positioning apparatus 1 in this Embodiment. Next, a positioning method realized by the positioning device 1 will be described.
 図5および図6は、測位装置1による測位方法を示す流れ図である。 5 and 6 are flowcharts showing a positioning method by the positioning device 1.
 なお、図5および図6に示す各工程は、測位装置1に対する歩行者の開始指示により開始されるものとする。すなわち、図5および図6に示す各工程は、歩行者が、歩行軌跡の記録を所望し、歩行軌跡の記録を開始する指示を操作部12を操作して入力することにより開始される。また、特に断らない限り、図5および図6に示す各工程は、CPU10がプログラム110を実行することにより、実行される。また、図5および図6に示される各工程が開始されるまでに、距離情報112およびパラメータ情報113を記憶装置11に記憶させる工程が実行されているものとする。 In addition, each process shown in FIG. 5 and FIG. 6 shall be started by the pedestrian start instruction with respect to the positioning apparatus 1. FIG. That is, each process shown in FIGS. 5 and 6 is started when the pedestrian desires to record a walking locus and operates the operation unit 12 to input an instruction to start recording the walking locus. Unless otherwise specified, each process shown in FIGS. 5 and 6 is executed by the CPU 10 executing the program 110. Further, it is assumed that the process of storing the distance information 112 and the parameter information 113 in the storage device 11 is executed before each process shown in FIGS. 5 and 6 is started.
 まず、測位装置1は、基準位置情報111を取得し(ステップS1)、記憶装置11に記憶させる。本実施の形態では、歩行者が開始指示を入力したときに、操作部12から当該入力があったことを示す信号がタイミング制御部103に伝達され、タイミング制御部103がタイミング信号を生成し、第2測位部15に伝達する。 First, the positioning device 1 acquires the reference position information 111 (step S1) and stores it in the storage device 11. In the present embodiment, when a pedestrian inputs a start instruction, a signal indicating that the input has been made is transmitted from the operation unit 12 to the timing control unit 103, and the timing control unit 103 generates a timing signal, This is transmitted to the second positioning unit 15.
 これにより、第2測位部15(GPS受信部)が基準点の絶対位置を測位することにより、測位装置1は基準位置情報111を取得する。だだし、GPS信号が受信できない、あるいは、信頼性が期待できないといった事情がある場合には、基準位置情報111を歩行者が操作部12を操作して入力してもよい。 Thereby, the positioning device 1 acquires the reference position information 111 by the second positioning unit 15 (GPS receiving unit) positioning the absolute position of the reference point. However, if there is a situation where GPS signals cannot be received or reliability cannot be expected, the pedestrian may input the reference position information 111 by operating the operation unit 12.
 なお、図5において図示を省略しているが、基準位置情報111の取得と並行して、観測装置14による観測情報115の取得も開始される。これにより、運動検出センサ143(ジャイロセンサ144、加速度センサ145および磁気センサ146)が起動され、相対的測位に必要な運動情報116の取得も開始される。以後、観測装置14は、観測情報115の取得を継続する。 Although not shown in FIG. 5, acquisition of the observation information 115 by the observation device 14 is started in parallel with the acquisition of the reference position information 111. As a result, the motion detection sensor 143 (the gyro sensor 144, the acceleration sensor 145, and the magnetic sensor 146) is activated, and the acquisition of the motion information 116 necessary for relative positioning is also started. Thereafter, the observation device 14 continues to acquire the observation information 115.
 次に、第1測位部100が運動情報116に基づいて、相対的測位を実行し(ステップS2)、相対位置情報117を取得する。そして、位置演算部101が相対位置情報117と基準位置情報111とに基づいて、位置情報118を作成する(ステップS3)。 Next, the first positioning unit 100 performs relative positioning based on the exercise information 116 (step S2), and acquires relative position information 117. Then, the position calculation unit 101 creates position information 118 based on the relative position information 117 and the reference position information 111 (step S3).
 なお、以後、ステップS3が実行されるときには、基準位置情報111の参照は行われず、位置演算部101は、その時点の位置情報118における終点位置と、相対位置情報117とに基づいて、位置情報118を更新することにより作成する。 Thereafter, when step S3 is executed, the reference position information 111 is not referred to, and the position calculation unit 101 determines the position information based on the end position in the position information 118 at that time and the relative position information 117. 118 is created by updating.
 ステップS3が実行されると、状況判定部102は、観測情報115に基づいて、相対的測位の精度が低下する状況が発生しているか否かを判定する(ステップS4)。 When step S3 is executed, the situation determination unit 102 determines whether or not a situation in which the accuracy of relative positioning is reduced occurs based on the observation information 115 (step S4).
 状況判定部102が、相対的測位の精度が低下する状況として検出する状況は、すでに説明したように、階段を歩行している状況、乗り物に乗っている状況、悪路を歩行している状況、地磁気異常の状況、人混みを歩行している状況、所持状態が手振りの状態である。 The situation detected by the situation determination unit 102 as a situation where the accuracy of relative positioning is reduced, as described above, is a situation where a person is walking on a stairs, a situation where he is riding a vehicle, or a situation where he is walking on a rough road The situation of abnormal geomagnetism, the situation of walking in a crowd, and the possession state are the states of hand-shaking.
 階段を歩行しているか否か、エスカレータまたはエレベータに乗っているか否かは、気圧センサ140からの出力情報である観測情報115を参照することにより、ステップS4において判定することができる(ただし、これらのうちのいずれの状況かを区別することは困難である。)。悪路を歩行しているか否か、地磁気異常の状況か否か、あるいは、手振りの状態か否かは、いずれも運動情報116を参照することにより、ステップS4において判定することができる。また、人混みを歩行している状況か否かは、運動情報116およびマイク142からの出力情報である観測情報115に基づいて判定することができる。 It can be determined in step S4 by referring to the observation information 115 that is output information from the atmospheric pressure sensor 140 whether or not it is walking on the stairs, or whether it is on an escalator or elevator (however, It is difficult to distinguish between these situations.) Whether or not the user is walking on a rough road, whether or not the geomagnetic abnormality is present, or whether or not the hand is shaking can be determined in step S4 by referring to the motion information 116. In addition, whether or not the user is walking in a crowd can be determined based on the exercise information 116 and the observation information 115 that is output information from the microphone 142.
 しかし、ステップS4が実行される時点では、未補正区間が徐々に延びている状況であり、当該未補正区間を較正するための絶対位置情報150は未だ取得されていない。この状況では、絶対位置情報150における位置と、位置情報118における位置との測位誤差を検出することはできない。したがって、測位誤差を検出の指標とする、ムービングウォークに乗っているか否か(平均歩幅が異常に長いか否か)の判定は、ステップS4が実行される時点では検出することができない。 However, when step S4 is executed, the uncorrected section is gradually extended, and the absolute position information 150 for calibrating the uncorrected section has not yet been acquired. In this situation, a positioning error between the position in the absolute position information 150 and the position in the position information 118 cannot be detected. Therefore, it is not possible to determine whether or not the vehicle is on a moving walk (whether the average stride is abnormally long) using the positioning error as a detection index when the step S4 is executed.
 ステップS4が実行される段階では検出することのできない他の状況が発生している場合には、距離Dを延長すると絶対位置情報150による補正が遅れ、位置情報118の精度が低下する。そこで、ステップS4においてNoと判定した場合であっても、データ更新部104は、距離Dをただちに延長しない。そして、測位装置1は、ステップS11の処理に移行する。 If another situation that cannot be detected at the stage where step S4 is executed has occurred, if the distance Dt is extended, the correction by the absolute position information 150 is delayed, and the accuracy of the position information 118 decreases. Therefore, even when it is determined No in step S4, the data updating unit 104 immediately it does not extend the distance D t. And the positioning apparatus 1 transfers to the process of step S11.
 一方、ステップS4においてYesと判定した場合、状況判定部102は、検出フラグをONにセットし(ステップS5)、データ更新部104に伝達する。検出フラグとは、相対的測位の精度が低下する状況が発生していることを検出したか否かを示すフラグであって、「OFF」のとき未検出を示し、「ON」のとき検出済みを示す。なお、検出フラグの初期値は、「OFF」である。 On the other hand, when it determines with Yes in step S4, the condition determination part 102 sets a detection flag to ON (step S5), and transmits to the data update part 104. FIG. The detection flag is a flag indicating whether or not it has been detected that a situation in which the accuracy of relative positioning is lowered has occurred. When it is “OFF”, it indicates that it has not been detected, and when it is “ON”, it has been detected. Indicates. Note that the initial value of the detection flag is “OFF”.
 ステップS5が実行されると、データ更新部104は、距離Dを短縮させるべきか否かを判定する(ステップS6)。 When Step S5 is executed, the data updating unit 104 determines whether to shortening the distance D t (step S6).
 まず、ステップS6においてデータ更新部104は、距離Dがすでに下限値に達しているか否かを判定する。すでに説明したように、距離Dが下限値に達しているならば、距離Dをさらに短縮するべきではなく、データ更新部104はステップS6においてNoと判定する。 First, in step S6, the data updating unit 104 determines whether or not the distance Dt has already reached the lower limit value. As already described, if the distance D t has reached the lower limit value, the distance D t should not be further shortened, and the data updating unit 104 determines No in step S6.
 次に、ステップS6においてデータ更新部104は、電力供給が危ぶまれる状況か、現在位置が過去に訪れたことのある位置か、昼間か、あるいは、現在位置が屋内かを判定する。そして、これらの状況のうちのいずれかを検出した場合、データ更新部104は、検出した状況と、絶対的測位の間隔を狭くすべきか否か(距離Dを短縮するか否か)を問い合わせるメッセージとを表示部13に表示させる。さらに、データ更新部104は、当該メッセージに対する歩行者の指示がNoである場合には、ステップS6においてNoと判定する。 Next, in step S6, the data update unit 104 determines whether the power supply is in danger, whether the current position has been visited in the past, daytime, or whether the current position is indoors. When any of these situations is detected, the data update unit 104 inquires about the detected situation and whether or not the absolute positioning interval should be narrowed (whether or not the distance D t should be shortened). The message is displayed on the display unit 13. Furthermore, the data update part 104 determines with No in step S6, when the instruction | indication of the pedestrian with respect to the said message is No.
 上記に説明したデータ更新部104が「No」と判定する状況のうちのいずれにも該当しない場合に、データ更新部104は、ステップS6においてYesと判定する。 If the data update unit 104 described above does not correspond to any of the situations determined as “No”, the data update unit 104 determines Yes in step S6.
 ステップS6においてYesの場合、データ更新部104は、距離Dを短縮する(ステップS7)ことにより、距離情報112を更新する。 If Yes at step S6, the data updating unit 104, to shorten the distance D t (step S7) by, it updates the distance information 112.
 一方で、上記に説明したデータ更新部104が「No」と判定する状況のうちのいずれかに該当した場合、データ更新部104は距離Dを短縮することはない(ステップS7をスキップする。)。 On the other hand, when the data updating unit 104 described above is applicable to any of the determined status "No", the data updating unit 104 is not possible to shorten the distance D t (skips step S7. ).
 これにより、測位装置1は、相対的測位の精度が低下する状況が生じている場合には、距離Dを短縮させて絶対的測位の頻度を上げることができる。その一方で、測位装置1は、距離Dが短縮されて絶対的測位の頻度が不用意に上がることを抑制することもできる。 Accordingly, the positioning device 1, when a situation where the accuracy of the relative positioning is reduced occurs, the distance is shortened to D t it is possible to increase the frequency of the absolute positioning. On the other hand, the positioning device 1, the frequency of the absolute positioning distance D t is shortened can be prevented from rising carelessly.
 次に、タイミング制御部103が、位置情報118を参照して移動距離δを取得するとともに、取得した移動距離δが距離情報112に示される距離Dに到達したか否かを判定する(ステップS11)。 Next, the timing control unit 103 refers to the position information 118 to acquire the movement distance δ, and determines whether or not the acquired movement distance δ has reached the distance D t indicated in the distance information 112 (step S1). S11).
 移動距離δが距離Dに到達していない場合(ステップS11においてNo。)、測位装置1は、ステップS2に戻って処理を繰り返す。すなわち、絶対的測位を行わずに、相対的測位(ステップS2)を繰り返す。 If the moving distance δ has not reached the distance D t (No. in step S11), and the positioning device 1, the process returns to step S2. That is, relative positioning (step S2) is repeated without performing absolute positioning.
 移動距離δが距離Dに到達した場合(ステップS11においてYes。)、タイミング制御部103は、タイミング信号を生成し、第2測位部15に伝達する。これにより、第2測位部15による測位(絶対的測位)が実行される(ステップS12)。すでに説明したように、測位装置1では、絶対的測位はGPS受信部により実行される。したがって、ステップS12の処理は、GPSを用いた測位処理である。 If the movement distance δ has reached the distance D t (Yes. In step S11), and the timing controller 103 generates a timing signal, and transmits to the second positioning portion 15. Thereby, positioning (absolute positioning) by the 2nd positioning part 15 is performed (step S12). As already described, in the positioning device 1, absolute positioning is performed by the GPS receiver. Therefore, the process of step S12 is a positioning process using GPS.
 次に、第2測位部15は、ステップS12において取得した位置(絶対的測位により得られた位置)が信頼できるか否か(高精度であるか否か)を判定する(ステップS13)。 Next, the second positioning unit 15 determines whether or not the position acquired in step S12 (the position obtained by absolute positioning) is reliable (whether or not it is highly accurate) (step S13).
 そして、当該位置が信頼できる場合(ステップS13においてYes。)、第2測位部15は、絶対位置情報150を作成し(ステップS14)、記憶装置11に記憶させる。 And when the said position is reliable (in step S13 Yes), the 2nd positioning part 15 produces the absolute position information 150 (step S14), and memorize | stores it in the memory | storage device 11. FIG.
 一方、当該位置が信頼できない場合(ステップS13においてNo。)、絶対位置情報150が作成されることはなく、測位装置1はステップS2に戻って処理を繰り返す。 On the other hand, if the position is not reliable (No in step S13), the absolute position information 150 is not created, and the positioning device 1 returns to step S2 and repeats the process.
 後述する更新処理では、補正部105が絶対位置情報150を用いて位置情報118を補正する。このとき、補正部105は、絶対位置情報150に対する評価をせずに、絶対位置情報150が高精度であることを前提に、位置情報118を補正する。したがって、取得された絶対位置情報150の精度が低い場合にも、更新処理を行うとすると、逆に、位置情報118の精度が低下するおそれもある。特に、絶対位置情報150を取得する手法がGPSを用いる場合、GPS信号の状態などの影響により、信頼性の低い絶対位置情報150が取得される場合もある得る。 In the update process described later, the correction unit 105 corrects the position information 118 using the absolute position information 150. At this time, the correction unit 105 corrects the position information 118 on the assumption that the absolute position information 150 is highly accurate without evaluating the absolute position information 150. Therefore, even if the accuracy of the acquired absolute position information 150 is low, if the update process is performed, the accuracy of the position information 118 may be reduced. In particular, when the method of acquiring the absolute position information 150 uses GPS, the absolute position information 150 with low reliability may be acquired due to the influence of the state of the GPS signal or the like.
 しかし、測位装置1は、ステップS13を実行することにより、信頼できる絶対位置情報150が取得されるまで更新処理を実行しない。これにより、精度の低い絶対位置情報150が取得された場合であっても、不適切な更新処理が実行されることによる位置情報118の精度の低下を防止することができる。 However, the positioning device 1 does not execute the update process until reliable absolute position information 150 is acquired by executing step S13. As a result, even when the absolute position information 150 with low accuracy is acquired, it is possible to prevent a decrease in accuracy of the position information 118 due to inappropriate update processing being executed.
 本実施の形態では、ステップS13において、第2測位部15(GPS受信部)は、GPS信号に含まれる付加情報(GPS信号のフォーマットに含まれている。)を解析することにより、当該GPS信号の信頼性を判定するものとする。 In the present embodiment, in step S13, the second positioning unit 15 (GPS reception unit) analyzes the additional information included in the GPS signal (included in the GPS signal format), thereby obtaining the GPS signal. The reliability of the system shall be determined.
 ステップS14が実行され、絶対位置情報150が記録されると、測位装置1は更新処理(ステップS15)を実行する。 When step S14 is executed and the absolute position information 150 is recorded, the positioning device 1 executes an update process (step S15).
 図7および図8は、更新処理を示す流れ図である。 7 and 8 are flowcharts showing the update process.
 更新処理が開始されると、状況判定部102は、距離情報112を更新するための状況推定に関する処理を開始する。 When the update process is started, the situation determination unit 102 starts a process related to situation estimation for updating the distance information 112.
 まず、状況判定部102は、検出フラグが「ON」か否かを判定する(ステップS21)。ステップS21が実行されるときに、すでに検出フラグが「ON」の場合とは、ステップS5が実行されたことを示している。そして、ステップS5が実行された後には、ステップS7が実行されるため、距離Dに対する調整がすでに実行されている(もしくは、距離Dを短縮すべきでない状況。)。この場合には、状況判定部102は、ステップS22ないしS27の処理をスキップすることにより、距離Dのさらなる調整は行わない。 First, the situation determination unit 102 determines whether or not the detection flag is “ON” (step S21). When step S21 is executed, the case where the detection flag is already “ON” indicates that step S5 has been executed. Then, after the step S5 is executed, since the step S7 is executed, the adjustment to the distance D t is already running (or the distance should not be shortened D t situation.). In this case, state determination unit 102, by skipping the processing of S27 to not step S22, a further adjustment of the distance D t is not performed.
 一方、検出フラグが「OFF」の場合(ステップS21においてNo。)、状況判定部102は、観測情報115に基づいて、相対的測位の精度が低下する状況が発生しているか否かを判定する(ステップS22)。 On the other hand, when the detection flag is “OFF” (No in step S <b> 21), the situation determination unit 102 determines, based on the observation information 115, whether or not a situation in which the relative positioning accuracy is reduced has occurred. (Step S22).
 本実施の形態におけるステップS22の処理では、状況判定部102は、ステップS4において検出することができなかった状況として、歩行者がムービングウォークに乗っているか否かのみを判定する。ただし、例えば、測位誤差が大きい状況を、相対的測位の精度が低下している状況とみなす場合には、ステップS22においてそのような判定を行ってもよい。 In the process of step S22 in the present embodiment, the situation determination unit 102 determines only whether the pedestrian is on a moving walk as a situation that could not be detected in step S4. However, for example, when a situation where the positioning error is large is regarded as a situation where the relative positioning accuracy is reduced, such a determination may be performed in step S22.
 ステップS22においてNoと判定すると、状況判定部102は、その旨をデータ更新部104に伝達する。これにより、データ更新部104は、距離Dがすでに上限値か否かを判定し(ステップS23)、距離Dが未だ上限値となっていない場合にのみ、距離Dを延長する(ステップS24)。 If it determines with No in step S22, the condition determination part 102 will transmit that to the data update part 104. FIG. Thus, the data updating unit 104, a distance D t already determined whether the upper limit value (step S23), the distance D t is still only if not the upper limit value, to extend the distance D t (step S24).
 ステップS22においてNoと判定される場合とは、状況判定部102が、最終的に、相対的測位の精度が低下する状況を検出できなかった場合である。したがって、そのような場合には、データ更新部104は、距離情報112に示される距離Dを延長して、絶対的測位を実行する間隔を延ばすことにより、測位装置1における消費電力を抑制する。 The case where it is determined No in step S22 is a case where the situation determination unit 102 has not been able to detect a situation in which the relative positioning accuracy ultimately decreases. Therefore, in such a case, the data updating unit 104, by extending the distance D t indicated in the distance information 112, by extending an interval to perform absolute positioning, suppressing the power consumption of the positioning apparatus 1 .
 一方、ステップS22においてYesと判定すると、状況判定部102は、その旨をデータ更新部104に伝達する。これにより、データ更新部104は、ステップS25ないしS27を実行する。なお、ステップS25ないしS27の処理は、ステップS5ないしS7の処理と同様に実行することができるため、説明を省略する。 On the other hand, if it determines with Yes in step S22, the condition determination part 102 will transmit that to the data update part 104. FIG. Thereby, the data update unit 104 executes steps S25 to S27. In addition, since the process of step S25 thru | or S27 can be performed similarly to the process of step S5 thru | or S7, description is abbreviate | omitted.
 更新処理において、ステップS21ないしS27の処理を終了し、距離情報112の更新に関する処理が完了すると、測位装置1は、パラメータ情報113の更新に関する処理を開始する。 In the update process, when the process of steps S21 to S27 is finished and the process related to the update of the distance information 112 is completed, the positioning device 1 starts the process related to the update of the parameter information 113.
 まず、データ更新部104は、絶対位置情報150と位置情報118とに基づいて、両者における現在位置を比較して、絶対的測位と相対的測位との測位誤差を求める。次に、データ更新部104は、測位誤差が閾値以上であるか否かを判定する(ステップS31)。 First, the data update unit 104 compares the current positions of both based on the absolute position information 150 and the position information 118, and obtains a positioning error between the absolute positioning and the relative positioning. Next, the data update unit 104 determines whether or not the positioning error is equal to or greater than a threshold value (step S31).
 測位誤差が閾値より小さい場合(ステップS31においてNo。)、データ更新部104は、パラメータ情報113を変更する必要はないとみなして、ステップS32,S33の処理をスキップする。これにより、相対的測位による位置が、比較的、精度よく得られている場合には、パラメータ情報113は変更されない。したがって、不要なパラメータ変更によって、相対的測位の精度が悪化することを防止することができる。 If the positioning error is smaller than the threshold value (No in step S31), the data update unit 104 considers that there is no need to change the parameter information 113, and skips the processes of steps S32 and S33. Thereby, the parameter information 113 is not changed when the relative positioning position is obtained with relatively high accuracy. Therefore, it is possible to prevent the relative positioning accuracy from deteriorating due to unnecessary parameter changes.
 一方、測位誤差が閾値以上の場合(ステップS31においてYes。)、データ更新部104は、検出フラグが「ON」であるか否かを判定する(ステップS32)。 On the other hand, when the positioning error is equal to or larger than the threshold (Yes in Step S31), the data update unit 104 determines whether or not the detection flag is “ON” (Step S32).
 ステップS32が実行されるときにおいて、検出フラグが「ON」の場合とは、相対的測位の精度が低下する状況が状況判定部102により検出されている場合を示す。したがって、このような場合、データ更新部104は、測位誤差は、相対的測位の精度が低下しているためであるとみなして、パラメータの変更は行わないことが好ましい。 When step S32 is executed, the case where the detection flag is “ON” indicates a case where the situation determination unit 102 detects a situation in which the relative positioning accuracy decreases. Therefore, in such a case, it is preferable that the data update unit 104 considers that the positioning error is due to a decrease in the accuracy of relative positioning, and does not change the parameter.
 したがって、ステップS32においてYesと判定した場合、データ更新部104は、ステップS33をスキップし、パラメータ情報113を変更しない。 Therefore, when it is determined Yes in step S32, the data update unit 104 skips step S33 and does not change the parameter information 113.
 一方で、ステップS32においてNoと判定した場合、データ更新部104は、相対的測位の精度が低下する状況が検出されないにもかかわらず、閾値以上の測位誤差が生じているのは、パラメータ異常の状況であると判定し、パラメータ情報113を更新する(ステップS33)。なお、データ更新部104がどのようにしてパラメータ情報113(誤差角θおよび伸縮比γ)を変更するかについては、すでに説明したため、ここでは説明を省略する。 On the other hand, if it is determined No in step S32, the data update unit 104 has a positioning error that is greater than or equal to the threshold value even though a situation in which the relative positioning accuracy decreases is not detected. It is determined that the situation is present, and the parameter information 113 is updated (step S33). Note that how the data updating unit 104 changes the parameter information 113 (the error angle θ and the expansion / contraction ratio γ) has already been described, and thus the description thereof is omitted here.
 パラメータ情報113の変更に関する処理が完了すると、補正部105は、絶対位置情報150と位置情報118とに基づいて、位置情報118を補正する(ステップS34)。これにより、位置情報118における未補正区間が解消され、位置情報118における終点は、最新の観測点となり、絶対位置情報150に示される位置となる。なお、ステップS34における補正については、すでに説明したので、ここでは詳細な説明を省略する。 When the process related to the change of the parameter information 113 is completed, the correction unit 105 corrects the position information 118 based on the absolute position information 150 and the position information 118 (step S34). Thereby, the uncorrected section in the position information 118 is eliminated, and the end point in the position information 118 becomes the latest observation point and the position indicated in the absolute position information 150. Since the correction in step S34 has already been described, detailed description thereof is omitted here.
 ステップS34が実行され、位置情報118に対する補正が完了すると、測位装置1は、検出フラグを「OFF」に初期化し(ステップS35)、更新処理を完了して図6に示す処理に戻る。さらに、更新処理を完了して図6に示す処理に戻ると、測位装置1は、再び、図5に示すステップS2に戻って処理を繰り返す。 When step S34 is executed and the correction for the position information 118 is completed, the positioning device 1 initializes the detection flag to “OFF” (step S35), completes the update process, and returns to the process shown in FIG. Further, when the update process is completed and the process returns to the process shown in FIG. 6, the positioning apparatus 1 returns to step S2 shown in FIG. 5 and repeats the process.
 以上のように、歩行者によって携帯される測位装置1は、基準位置情報111とパラメータ情報113とを記憶する記憶装置11と、観測情報115を取得する観測装置14と、観測情報115とパラメータ情報113とに基づいて測位装置1の相対的な位置を示す相対位置情報117を取得する第1測位部100と、測位装置1の絶対位置を示す絶対位置情報150を取得する第2測位部15と、基準位置情報111と相対位置情報117とに基づいて測位装置1の存在位置を示す位置情報118を演算する位置演算部101と、観測情報115に基づいて状況を推定する状況判定部102と、状況判定部102による推定結果に応じて、位置情報118と絶対位置情報150とに基づいて記憶装置11に記憶されたパラメータ情報113を更新するデータ更新部104とを備え、観測装置14は、測位装置1の動きに関する運動情報116を取得して、観測情報115に含める運動検出センサ143を備える。これにより、パラメータ情報を最適化することができる。 As described above, the positioning device 1 carried by the pedestrian includes the storage device 11 that stores the reference position information 111 and the parameter information 113, the observation device 14 that acquires the observation information 115, the observation information 115, and the parameter information. 113, a first positioning unit 100 that acquires relative position information 117 that indicates the relative position of the positioning device 1, and a second positioning unit 15 that acquires absolute position information 150 that indicates the absolute position of the positioning device 1. A position calculation unit 101 that calculates position information 118 indicating the position of the positioning device 1 based on the reference position information 111 and the relative position information 117, a situation determination unit 102 that estimates a situation based on the observation information 115, The parameter information 11 stored in the storage device 11 based on the position information 118 and the absolute position information 150 according to the estimation result by the situation determination unit 102. And a data updating unit 104 for updating the observation device 14 acquires the movement information 116 regarding the motion of the positioning apparatus 1 comprises a motion detection sensor 143 including observation information 115. Thereby, parameter information can be optimized.
 また、記憶装置11は、距離情報112を記憶しており、相対位置情報117に基づいて移動距離を演算し、当該移動距離と距離情報112とに応じて、第2測位部15に絶対位置情報150を取得させるタイミング制御部103をさらに備える。これにより、第2測位部15による絶対位置測位のタイミングを、距離に基づいて決定することができるため、時間に基づいて決定する場合に比べて、当該タイミングを最適化することができる。 The storage device 11 stores distance information 112, calculates a movement distance based on the relative position information 117, and stores absolute position information in the second positioning unit 15 according to the movement distance and the distance information 112. The timing control unit 103 for acquiring 150 is further provided. Thereby, since the timing of absolute position positioning by the 2nd positioning part 15 can be determined based on distance, the said timing can be optimized compared with the case where it determines based on time.
 また、データ更新部104は、状況判定部102による推定結果に応じて、記憶装置11に記憶された距離情報112を更新する。これにより、第2測位部15による絶対位置測位のタイミングをさらに最適化することができる。 Further, the data update unit 104 updates the distance information 112 stored in the storage device 11 according to the estimation result by the situation determination unit 102. Thereby, the timing of absolute position positioning by the second positioning unit 15 can be further optimized.
 また、記憶装置11は、測位装置1の周囲の地図情報114を記憶しており、状況判定部102は、地図情報114に基づいて、状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Further, the storage device 11 stores map information 114 around the positioning device 1, and the situation determination unit 102 estimates the situation based on the map information 114. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、観測装置14は、気圧を観測して観測情報115として取得する気圧センサ140を備え、状況判定部102は、観測情報115に示される気圧の変動に基づいて、状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Further, the observation device 14 includes an atmospheric pressure sensor 140 that observes atmospheric pressure and acquires it as observation information 115, and the situation determination unit 102 estimates the situation based on the fluctuation of the atmospheric pressure indicated in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に基づいて、階段を移動しているか否かを特定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 specifies whether or not the stairs are moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に基づいて、エスカレータによって移動しているか否かを特定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 specifies whether or not the escalator is moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に基づいて、エレベータによって移動しているか否かを特定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 specifies whether or not the elevator is moving based on the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に含まれる運動情報116に基づいて、測位装置1が所持されている状態を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 estimates a state in which the positioning device 1 is held based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 特に、観測装置14は、照度を観測して観測情報115として取得する照度センサ141を備え、状況判定部102は、観測情報115に示される照度に基づいて、測位装置1が所持されている状態を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 In particular, the observation device 14 includes an illuminance sensor 141 that observes illuminance and acquires it as observation information 115, and the situation determination unit 102 is in a state where the positioning device 1 is possessed based on the illuminance indicated in the observation information 115. Is estimated. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に含まれる運動情報116に基づいて歩行周期の変動の大きさを求めることにより、悪路を移動している状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 estimates the situation of moving on a rough road by obtaining the magnitude of fluctuation of the walking cycle based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、状況判定部102は、観測情報115に含まれる運動情報116に基づいて、人混みを移動している状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 Also, the situation determination unit 102 estimates a situation where the crowd is moving based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 特に、状況判定部102は、観測情報115に含まれる運動情報116に基づいて進行方向の変更頻度を求めることにより、人混みを移動している状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 In particular, the situation determination unit 102 estimates the situation in which the crowd is moving by obtaining the change frequency of the traveling direction based on the exercise information 116 included in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、観測装置14は、音声を観測して観測情報115として取得するマイク142を備え、状況判定部102は、観測情報115に示される音声を解析することにより、人混みを移動している状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 In addition, the observation device 14 includes a microphone 142 that observes voice and acquires it as observation information 115, and the situation determination unit 102 analyzes the voice indicated in the observation information 115 to detect a situation where the crowd is moving. presume. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 観測装置14は、磁気を観測して観測情報115として取得する磁気センサ146を備え、状況判定部102は、観測情報115に示される磁気に基づいて、地磁気異常の状況を推定する。これにより、第1測位部100による測位に影響を与える状況を正確に推定することができ、第2測位部15による測位のタイミングを、より最適化することができる。 The observation device 14 includes a magnetic sensor 146 that observes magnetism and acquires it as observation information 115, and the situation determination unit 102 estimates a geomagnetic abnormality situation based on the magnetism indicated in the observation information 115. Thereby, the situation which influences the positioning by the 1st positioning part 100 can be estimated correctly, and the timing of the positioning by the 2nd positioning part 15 can be optimized more.
 また、データ更新部104は、測位装置1に対する電力の供給状況に応じて、距離情報112を更新する。これにより、現実の電力供給状態に応じて第2測位手段による測位のタイミングを最適化することができる。 Further, the data updating unit 104 updates the distance information 112 according to the power supply status to the positioning device 1. Thereby, the timing of positioning by the second positioning means can be optimized according to the actual power supply state.
 また、データ更新部104は、位置情報118に示される位置が過去に訪れた位置か否かに応じて、距離情報112を更新する。これにより、例えば、すでに一度訪問したことのある場所などでは、絶対的測位の頻度を抑制するなど、汎用性に富んだ処理を実現することができる。 Further, the data update unit 104 updates the distance information 112 according to whether or not the position indicated by the position information 118 has been visited in the past. Thereby, for example, in a place where the user has already visited once, it is possible to realize a versatile process such as suppressing the frequency of absolute positioning.
 また、データ更新部104は、昼夜の区別に応じて、距離情報112を更新する。これにより、例えば、日中のように目標物(位置を特定するために有効な物体)が比較的目視しやすい状況においては、絶対的測位の頻度を抑制するなど、汎用性に富んだ処理を実現することができる。 Further, the data update unit 104 updates the distance information 112 according to the distinction between day and night. Thus, for example, in a situation where the target (object effective for specifying the position) is relatively easy to see, such as during the daytime, versatile processing such as suppressing the frequency of absolute positioning is performed. Can be realized.
 また、データ更新部104は、屋内外の区別に応じて、距離情報112を更新する。これにより、例えば、屋内などの目標物(位置を特定するために有効な物体)が比較的多い状況においては、絶対的測位の頻度を抑制するなど、汎用性に富んだ処理を実現することができる。 Further, the data update unit 104 updates the distance information 112 according to the distinction between indoor and outdoor. As a result, for example, in a situation where there are relatively many targets (objects effective for specifying positions) such as indoors, it is possible to realize versatile processing such as suppressing the frequency of absolute positioning. it can.
 また、データ更新部104は、歩行者の指示に応じて、距離情報112を更新することにより、不用意に距離情報112を更新してしまうことを防止することができる。 In addition, the data update unit 104 can prevent the distance information 112 from being inadvertently updated by updating the distance information 112 in accordance with a pedestrian's instruction.
 また、データ更新部104は、補正部105による位置情報118の補正の有無に関わらず、状況判定部102による推定結果に応じて、パラメータ情報113の更新の要否を決定する。これにより、位置情報118を補正すべきときと、パラメータ情報113を更新すべきときとを独立に扱うことができる。したがって、状況に応じた最適な対応が可能となる。 Further, the data update unit 104 determines whether or not the parameter information 113 needs to be updated according to the estimation result by the situation determination unit 102 regardless of whether or not the position information 118 is corrected by the correction unit 105. Thereby, the time when the position information 118 should be corrected and the time when the parameter information 113 should be updated can be handled independently. Therefore, it is possible to optimally cope with the situation.
 また、位置情報118は、測位装置1の過去の位置を含むことにより、例えば、歩行軌跡についても記録できる。 Further, the position information 118 includes the past position of the positioning device 1 so that, for example, a walking locus can be recorded.
 以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく様々な変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.
 例えば、上記実施の形態に示した各工程は、あくまでも例示であって、上記に示した順序や内容に限定されるものではない。すなわち、同様の効果が得られるならば、適宜、順序や内容が変更されてもよい。 For example, each process shown in the above embodiment is merely an example, and is not limited to the order and contents shown above. That is, as long as the same effect can be obtained, the order and contents may be changed as appropriate.
 また、上記実施の形態に示した機能ブロック(例えば、第1測位部100やタイミング制御部103)は、CPU10がプログラム110に従って動作することにより、ソフトウェア的に実現されると説明した。しかし、これらの機能ブロックの一部または全部を専用の論理回路で構成し、ハードウェア的に実現してもよい。 Further, it has been described that the functional blocks (for example, the first positioning unit 100 and the timing control unit 103) shown in the above-described embodiment are realized as software by the CPU 10 operating according to the program 110. However, some or all of these functional blocks may be configured by a dedicated logic circuit and realized in hardware.
 また、上記実施の形態における測位装置1は、GPS受信部により取得した絶対位置が信頼できないとき、相対的測位を繰り返すと説明した。しかし、例えば、絶対的測位を実行する複数の第2測位部15を備えている場合には、それら複数の第2測位部15の中から、信頼できる1つを選択するようにしてもよい。これにより、絶対位置情報150が作成されない事態を抑制することができる。 In addition, it has been described that the positioning device 1 in the above embodiment repeats relative positioning when the absolute position acquired by the GPS receiving unit is not reliable. However, for example, when a plurality of second positioning units 15 that perform absolute positioning are provided, a reliable one may be selected from the plurality of second positioning units 15. Thereby, the situation where the absolute position information 150 is not created can be suppressed.
 また、上記実施の形態では、過去の補正結果や更新結果を参照することなく、位置情報118に対する補正処理、および、距離情報112やパラメータ情報113に対する更新処理を行うと説明した。しかし、過去に実行した補正処理や更新処理を記録しておき、これらの適否を評価して、次回の補正処理や更新処理の参考としてもよい。このようなフィードバック制御によっても、精度を向上させることができる。 In the above-described embodiment, it has been described that the correction process for the position information 118 and the update process for the distance information 112 and the parameter information 113 are performed without referring to the past correction results and update results. However, it is also possible to record correction processes and update processes executed in the past, evaluate their suitability, and use them as a reference for the next correction process or update process. Such feedback control can also improve accuracy.
 また、上記実施の形態における観測装置14に含まれる装置群は例示である。したがって、測位装置1は、観測装置14としてその他の装置を備えていてもよい。観測装置14として採用する装置は、観測すべき事象(測位に影響を与える事象)や要求精度、許容される消費電力やコストなどに応じて決定することができる。観測装置14として採用可能な他の装置としては、例えば、周囲の温度を観測する温度センサ、湿度を観測する湿度センサ、周囲の被写体を撮像するデジタルカメラ、外部の装置から観測情報115を受信する通信装置などが想定される。温度センサや湿度センサは、例えば、周囲の天気を判定することができる。また、デジタルカメラ(撮像部)により撮像された画像を解析することにより、歩行者のルートが悪路(田舎道)か否かの区別や、屋内外の区別、人混みにおける混雑の程度、測位装置1の保持状態などを判定することができる。また、測位装置1においてリアルタイムに観測することが困難な情報(例えば、ビッグデータや天気)を通信装置により外部の装置から取得するように構成すれば、さらに汎用性に富んだ状況判定が可能となる。 Further, the device group included in the observation device 14 in the above embodiment is an example. Therefore, the positioning device 1 may include other devices as the observation device 14. The device employed as the observation device 14 can be determined according to an event to be observed (an event that affects positioning), required accuracy, allowable power consumption, cost, and the like. Other devices that can be employed as the observation device 14 include, for example, a temperature sensor that observes the ambient temperature, a humidity sensor that observes humidity, a digital camera that images the surrounding subject, and observation information 115 from an external device. A communication device is assumed. For example, the temperature sensor and the humidity sensor can determine the surrounding weather. In addition, by analyzing the image captured by the digital camera (imaging unit), it is possible to distinguish whether the route of the pedestrian is a bad road (country road), to distinguish between indoors and outdoors, the degree of congestion in crowds, positioning devices 1 holding state and the like can be determined. In addition, if the positioning device 1 is configured to acquire information that is difficult to observe in real time (for example, big data or weather) from an external device through a communication device, it is possible to make a more versatile situation determination. Become.
 また、観測装置14が備える装置のうち、いずれが運動検出センサ143に含まれるかは、任意である。例えば、歩行者の移動軌跡として上下方向(高さ方向)の移動軌跡も記録する場合には、気圧センサ140によって観測された情報を高さ方向の動きに関する情報として運動情報116に含めてもよい。あるいは、自律航法(相対的測位)に磁気センサ146の観測結果を用いないのであれば、磁気センサ146を運動検出センサ143に含めず、単に、周囲の磁気を観測する観測装置14(状況判定用)としてのみ用いてもよい。すなわち、運動検出センサ143とは、観測装置14として採用された装置のうち、自律航法に使用する情報(観測情報115のうちのどの情報を使用するかは任意である。)を取得する装置の便宜上の名称である。 Also, which of the devices included in the observation device 14 is included in the motion detection sensor 143 is arbitrary. For example, when a movement trajectory in the vertical direction (height direction) is also recorded as the movement trajectory of the pedestrian, information observed by the atmospheric pressure sensor 140 may be included in the motion information 116 as information related to the movement in the height direction. . Alternatively, if the observation result of the magnetic sensor 146 is not used for autonomous navigation (relative positioning), the magnetic sensor 146 is not included in the motion detection sensor 143, and simply the observation device 14 (for situation determination) for observing surrounding magnetism ) Only. That is, the motion detection sensor 143 is a device that acquires information used for autonomous navigation (which information of the observation information 115 is used is arbitrary) among the devices employed as the observation device 14. It is a name for convenience.
 また、データ更新部104は、パラメータ情報113に含まれるパラメータのうち、誤差角θおよび伸縮比γを更新することにより、センサにおける測定誤差を抑制し、将来の相対的測位の精度を向上させる。ただし、データ更新部104が更新するパラメータはこれらに限定されるものではない。例えば、データ更新部104がパラメータ情報113に含まれる歩幅Lを更新してもよい。例えば、γ×Lを新たな歩幅Lとするようにパラメータ情報113を更新してもよい。 Also, the data update unit 104 updates the error angle θ and the expansion / contraction ratio γ among the parameters included in the parameter information 113, thereby suppressing the measurement error in the sensor and improving the accuracy of future relative positioning. However, the parameters updated by the data updating unit 104 are not limited to these. For example, the data update unit 104 may update the stride L included in the parameter information 113. For example, the parameter information 113 may be updated so that γ × L becomes a new stride L.
 また、上記実施の形態におけるデータ更新部104は、測位誤差が生じているにもかかわらず、相対的測位の精度が低下する状況が検出されない状況を、パラメータ異常の状況と判定してパラメータ情報113を更新すると説明した。しかし、相対的測位の精度が低下する状況が検出された場合であっても、状況によっては、パラメータ情報113を更新してもよい。例えば、悪路が続く場合などが想定される。 In addition, the data updating unit 104 in the above embodiment determines that a situation in which the relative positioning accuracy is reduced but does not detect a situation where a positioning error has occurred is a parameter abnormality situation, and parameter information 113 Explained to update. However, the parameter information 113 may be updated depending on the situation even when a situation in which the relative positioning accuracy decreases is detected. For example, the case where the bad road continues is assumed.
 また、パラメータ情報113を更新する場合において、進行方向を示すパラメータまたは歩幅を示すパラメータのいずれか一方のみを更新してもよい。例えば、補正タイミングと補正タイミングとの間で、階段を通過したと判断した場合が想定される。階段を通過した後であれば、相対的測位が低下する状況ではなく、パラメータ異常の状況と判断して、パラメータ情報113を更新するが、この場合は、進行方向を示すパラメータのみを選択的に更新することが好ましい。 Further, when updating the parameter information 113, only one of the parameter indicating the traveling direction and the parameter indicating the stride may be updated. For example, it is assumed that it is determined that a staircase has been passed between the correction timing and the correction timing. After passing the stairs, it is determined that the parameter positioning is not a situation where the relative positioning is lowered, but the parameter information 113 is updated. In this case, only the parameter indicating the traveling direction is selectively selected. It is preferable to update.

Claims (26)

  1.  歩行者によって携帯される測位装置であって、
     基準位置情報とパラメータ情報とを記憶する記憶手段と、
     観測情報を取得する観測手段と、
     前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を取得する第1測位手段と、
     前記測位装置の絶対位置を示す絶対位置情報を取得する第2測位手段と、
     前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を演算する位置演算手段と、
     前記観測情報に基づいて状況を推定する状況判定手段と、
     前記状況判定手段による推定結果に応じて、前記位置情報と前記絶対位置情報とに基づいて前記記憶手段に記憶された前記パラメータ情報を更新するデータ更新手段と、
    を備え、
     前記観測手段は、前記測位装置の動きに関する運動情報を取得して、前記観測情報に含める運動検出手段を備える測位装置。
    A positioning device carried by a pedestrian,
    Storage means for storing reference position information and parameter information;
    Observation means for obtaining observation information;
    First positioning means for acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information;
    Second positioning means for acquiring absolute position information indicating the absolute position of the positioning device;
    Position calculating means for calculating position information indicating an existing position of the positioning device based on the reference position information and the relative position information;
    Situation determination means for estimating the situation based on the observation information;
    Data updating means for updating the parameter information stored in the storage means based on the position information and the absolute position information according to the estimation result by the situation determination means;
    With
    The said observation means is a positioning apparatus provided with the movement detection means which acquires the movement information regarding the movement of the said positioning apparatus, and includes it in the said observation information.
  2.  請求項1に記載の測位装置であって、
     前記記憶手段は、距離情報を記憶しており、
     前記相対位置情報に基づいて移動距離を演算し、前記移動距離と前記距離情報とに応じて、前記第2測位手段に前記絶対位置情報を取得させるタイミング制御手段をさらに備える測位装置。
    The positioning device according to claim 1,
    The storage means stores distance information,
    A positioning device further comprising timing control means for calculating a movement distance based on the relative position information and causing the second positioning means to acquire the absolute position information according to the movement distance and the distance information.
  3.  請求項2に記載の測位装置であって、
     前記データ更新手段は、前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報を更新する測位装置。
    The positioning device according to claim 2,
    The data updating unit is a positioning device that updates the distance information stored in the storage unit according to an estimation result by the situation determination unit.
  4.  請求項1に記載の測位装置であって、
     前記第2測位手段の前記絶対位置情報の取得に応じて、当該絶対位置情報により前記位置情報を補正する補正手段をさらに備え、
     前記データ更新手段は、前記補正手段による前記位置情報の補正の有無に関わらず、前記推定結果に応じて、前記パラメータ情報の更新の要否を決定する測位装置。
    The positioning device according to claim 1,
    In accordance with the acquisition of the absolute position information of the second positioning means, further comprising a correction means for correcting the position information by the absolute position information,
    The positioning device determines whether or not to update the parameter information according to the estimation result regardless of whether or not the position information is corrected by the correction unit.
  5.  歩行者によって携帯される測位装置であって、
     基準位置情報とパラメータ情報と距離情報とを記憶する記憶手段と、
     観測情報を取得する観測手段と、
     前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を取得する第1測位手段と、
     前記測位装置の絶対位置を示す絶対位置情報を取得する第2測位手段と、
     前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を演算する位置演算手段と、
     前記第2測位手段の前記絶対位置情報の取得に応じて、取得された当該絶対位置情報により前記位置情報を補正する補正手段と、
     前記観測情報に基づいて状況を推定する状況判定手段と、
     前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報を更新するデータ更新手段と、
     前記相対位置情報に基づいて移動距離を演算し、前記移動距離と前記距離情報とに応じて前記第2測位手段に前記絶対位置情報を取得させるタイミング制御手段と、
    を備え、
     前記観測手段は、前記測位装置の動きに関する運動情報を取得して、前記観測情報に含める運動検出手段を備える測位装置。
    A positioning device carried by a pedestrian,
    Storage means for storing reference position information, parameter information, and distance information;
    Observation means for obtaining observation information;
    First positioning means for acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information;
    Second positioning means for acquiring absolute position information indicating the absolute position of the positioning device;
    Position calculating means for calculating position information indicating an existing position of the positioning device based on the reference position information and the relative position information;
    Correction means for correcting the position information by the acquired absolute position information in response to the acquisition of the absolute position information of the second positioning means;
    Situation determination means for estimating the situation based on the observation information;
    Data updating means for updating the distance information stored in the storage means according to the estimation result by the situation determination means;
    A timing control means for calculating a movement distance based on the relative position information, and causing the second positioning means to acquire the absolute position information according to the movement distance and the distance information;
    With
    The said observation means is a positioning apparatus provided with the movement detection means which acquires the movement information regarding the movement of the said positioning apparatus, and includes it in the said observation information.
  6.  請求項1に記載の測位装置であって、
     前記記憶手段は、前記測位装置の周囲の地図情報を記憶しており、
     前記状況判定手段は、前記地図情報に基づいて、状況を推定する測位装置。
    The positioning device according to claim 1,
    The storage means stores map information around the positioning device,
    The situation determination means is a positioning device that estimates a situation based on the map information.
  7.  請求項1に記載の測位装置であって、
     前記観測手段は、気圧を観測して観測情報として取得する気圧センサを備え、
     前記状況判定手段は、前記観測情報に示される気圧の変動に基づいて、状況を推定する測位装置。
    The positioning device according to claim 1,
    The observation means includes an atmospheric pressure sensor that observes atmospheric pressure and acquires it as observation information,
    The situation determination means is a positioning device that estimates a situation based on a change in atmospheric pressure indicated in the observation information.
  8.  請求項6に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に基づいて、階段を移動しているか否かを特定する測位装置。
    The positioning device according to claim 6,
    The situation determination means is a positioning device that specifies whether or not the stairs are moving based on the observation information.
  9.  請求項6に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に基づいて、エスカレータによって移動しているか否かを特定する測位装置。
    The positioning device according to claim 6,
    The status determination unit is a positioning device that specifies whether or not the escalator is moving based on the observation information.
  10.  請求項6に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に基づいて、エレベータによって移動しているか否かを特定する測位装置。
    The positioning device according to claim 6,
    The status determination unit is a positioning device that specifies whether or not the vehicle is moving by an elevator based on the observation information.
  11.  請求項1に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて、前記測位装置が所持されている状態を推定する測位装置。
    The positioning device according to claim 1,
    The status determination unit is a positioning device that estimates a state in which the positioning device is carried based on the motion information included in the observation information.
  12.  請求項11に記載の測位装置であって、
     前記観測手段は、照度を観測して観測情報として取得する照度センサを備え、
     前記状況判定手段は、前記観測情報に示される照度に基づいて、前記測位装置が所持されている状態を推定する測位装置。
    The positioning device according to claim 11,
    The observation means includes an illuminance sensor that observes illuminance and acquires it as observation information,
    The status determination unit is a positioning device that estimates a state in which the positioning device is carried based on illuminance indicated in the observation information.
  13.  請求項1に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて歩行周期の変動の大きさを求めることにより、悪路を移動している状況を推定する測位装置。
    The positioning device according to claim 1,
    The position determination means is a positioning device that estimates a state of moving on a rough road by obtaining a magnitude of fluctuation of a walking cycle based on the motion information included in the observation information.
  14.  請求項1に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて、人混みを移動している状況を推定する測位装置。
    The positioning device according to claim 1,
    The positioning device is a positioning device that estimates a situation where a crowd is moving based on the exercise information included in the observation information.
  15.  請求項14に記載の測位装置であって、
     前記状況判定手段は、前記観測情報に含まれる前記運動情報に基づいて進行方向の変更頻度を求めることにより、人混みを移動している状況を推定する測位装置。
    The positioning device according to claim 14,
    The positioning device is a positioning device that estimates a situation in which a crowd is moving by obtaining a change frequency of a traveling direction based on the exercise information included in the observation information.
  16.  請求項14に記載の測位装置であって、
     前記観測手段は、音声を観測して観測情報として取得するマイクを備え、
     前記状況判定手段は、前記観測情報に示される音声を解析することにより、人混みを移動している状況を推定する測位装置。
    The positioning device according to claim 14,
    The observation means includes a microphone that observes voice and acquires it as observation information;
    The positioning device is a positioning device that estimates a situation where a crowd is moving by analyzing the voice indicated by the observation information.
  17.  請求項1に記載の測位装置であって、
     前記観測手段は、磁気を観測して観測情報として取得する磁気センサを備え、
     前記状況判定手段は、前記観測情報に示される磁気に基づいて、地磁気異常の状況を推定する測位装置。
    The positioning device according to claim 1,
    The observation means includes a magnetic sensor for observing magnetism and obtaining as observation information,
    The status determination means is a positioning device that estimates the status of a geomagnetic abnormality based on magnetism indicated by the observation information.
  18.  請求項1に記載の測位装置であって、
     前記データ更新手段は、前記測位装置に対する電力の供給状況に応じて、前記距離情報を更新する測位装置。
    The positioning device according to claim 1,
    The data updating means is a positioning device that updates the distance information according to a power supply status to the positioning device.
  19.  請求項1に記載の測位装置であって、
     前記データ更新手段は、前記位置情報に示される位置が過去に訪れた位置か否かに応じて、前記距離情報を更新する測位装置。
    The positioning device according to claim 1,
    The data updating means is a positioning device that updates the distance information according to whether or not the position indicated by the position information has been visited in the past.
  20.  請求項1に記載の測位装置であって、
     前記データ更新手段は、昼夜の区別に応じて、前記距離情報を更新する測位装置。
    The positioning device according to claim 1,
    The data updating means is a positioning device that updates the distance information according to the distinction between day and night.
  21.  請求項1に記載の測位装置であって、
     前記データ更新手段は、屋内外の区別に応じて、前記距離情報を更新する測位装置。
    The positioning device according to claim 1,
    The data updating means is a positioning device that updates the distance information according to the distinction between indoor and outdoor.
  22.  請求項18に記載の測位装置であって、
     前記データ更新手段は、前記歩行者の指示に応じて、前記距離情報を更新する測位装置。
    The positioning device according to claim 18, comprising:
    The data updating means is a positioning device that updates the distance information in accordance with an instruction from the pedestrian.
  23.  請求項5に記載の測位装置であって、
     前記データ更新手段は、前記補正手段による前記位置情報の補正の有無に関わらず、前記推定結果に応じて、前記パラメータ情報の更新の要否を決定する測位装置。
    The positioning device according to claim 5,
    The positioning device determines whether or not to update the parameter information according to the estimation result regardless of whether or not the position information is corrected by the correction unit.
  24.  請求項1に記載の測位装置であって、
     前記位置情報は、前記測位装置の過去の位置を含む測位装置。
    The positioning device according to claim 1,
    The position information includes a past position of the positioning device.
  25.  歩行者によって携帯される測位装置によって実行される測位方法であって、
     基準位置情報とパラメータ情報とを記憶手段に記憶する工程と、
     観測情報を観測手段により取得する工程と、
     前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を第1測位手段により取得する工程と、
     前記測位装置の絶対位置を示す絶対位置情報を第2測位手段により取得する工程と、
     前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を位置演算手段により演算する工程と、
     前記観測情報に基づいて状況を状況判定手段により推定する工程と、
     前記状況判定手段による推定結果に応じて、前記位置情報と前記絶対位置情報とに基づいて前記記憶手段に記憶された前記パラメータ情報をデータ更新手段により更新する工程と、
    を有し
     前記観測情報は、前記測位装置の動きに関する運動情報を含む測位方法。
    A positioning method performed by a positioning device carried by a pedestrian,
    Storing reference position information and parameter information in a storage means;
    Obtaining observation information by observation means;
    Acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information by a first positioning means;
    Obtaining absolute position information indicating the absolute position of the positioning device by a second positioning means;
    Calculating position information indicating the position of the positioning device based on the reference position information and the relative position information by a position calculating means;
    Estimating the situation based on the observation information by the situation judging means;
    Updating the parameter information stored in the storage unit based on the position information and the absolute position information according to an estimation result by the situation determination unit, by a data updating unit;
    And the observation information includes movement information related to movement of the positioning device.
  26.  歩行者によって携帯される測位装置によって実行される測位方法であって、
     基準位置情報とパラメータ情報と距離情報とを記憶手段に記憶する工程と、
     観測情報を観測手段により取得する工程と、
     前記観測情報と前記パラメータ情報とに基づいて前記測位装置の相対的な位置を示す相対位置情報を第1測位手段により取得する工程と、
     前記測位装置の絶対位置を示す絶対位置情報を第2測位手段により取得する工程と、
     前記基準位置情報と前記相対位置情報とに基づいて前記測位装置の存在位置を示す位置情報を位置演算手段により演算する工程と、
     前記第2測位手段の前記絶対位置情報の取得に応じて、取得された当該絶対位置情報により前記位置情報を補正手段により補正する工程と、
     前記観測情報に基づいて状況を状況判定手段により推定する工程と、
     前記状況判定手段による推定結果に応じて、前記記憶手段に記憶された前記距離情報をデータ更新手段により更新する工程と、
     前記相対位置情報に基づいて移動距離を演算するとともに、前記移動距離と前記距離情報とに応じてタイミング制御手段により前記第2測位手段に前記絶対位置情報を取得させる工程と、
    を有し、
     前記観測情報は、前記測位装置の動きに関する運動情報を含む測位方法。
    A positioning method performed by a positioning device carried by a pedestrian,
    Storing reference position information, parameter information, and distance information in a storage means;
    Obtaining observation information by observation means;
    Acquiring relative position information indicating a relative position of the positioning device based on the observation information and the parameter information by a first positioning means;
    Obtaining absolute position information indicating the absolute position of the positioning device by a second positioning means;
    Calculating position information indicating the position of the positioning device based on the reference position information and the relative position information by a position calculating means;
    In accordance with the acquisition of the absolute position information of the second positioning means, the step of correcting the position information by means of the acquired absolute position information,
    Estimating the situation based on the observation information by the situation judging means;
    A step of updating the distance information stored in the storage unit by a data updating unit according to an estimation result by the situation determination unit;
    Calculating a moving distance based on the relative position information, and causing the second positioning means to acquire the absolute position information by a timing control means according to the moving distance and the distance information;
    Have
    The said observation information is a positioning method containing the exercise | movement information regarding the motion of the said positioning apparatus.
PCT/JP2017/001546 2016-01-19 2017-01-18 Positioning device and positioning method WO2017126552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562851A JP6965165B2 (en) 2016-01-19 2017-01-18 Positioning device and positioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007529 2016-01-19
JP2016007529 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126552A1 true WO2017126552A1 (en) 2017-07-27

Family

ID=59361776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001546 WO2017126552A1 (en) 2016-01-19 2017-01-18 Positioning device and positioning method

Country Status (2)

Country Link
JP (1) JP6965165B2 (en)
WO (1) WO2017126552A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183529A (en) * 1997-09-03 1999-03-26 Furuno Electric Co Ltd Position-detection informing device
JPH11194033A (en) * 1997-12-30 1999-07-21 Jatco Corp Portable position detector and position management system
JP2011058896A (en) * 2009-09-09 2011-03-24 Casio Computer Co Ltd Positioning device, positioning method, and program
JP2012211880A (en) * 2011-03-31 2012-11-01 Ntt Docomo Inc Communication system, guidance method and program
JP2012215409A (en) * 2011-03-31 2012-11-08 Zenrin Datacom Co Ltd Navigation device
JP2012230092A (en) * 2011-04-27 2012-11-22 Zenrin Datacom Co Ltd Navigation system
JP2013200156A (en) * 2012-03-23 2013-10-03 Seiko Epson Corp Altitude measuring device, navigation system, program, and recording medium
WO2014162502A1 (en) * 2013-04-02 2014-10-09 パイオニア株式会社 Mobile guidance device, control method, program, and recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013309B1 (en) * 1999-02-19 2000-02-28 株式会社ゼンリン Hybrid traveling locus acquisition method and hybrid traveling locus acquisition system
JP2009288022A (en) * 2008-05-28 2009-12-10 Sumitomo Electric Ind Ltd Abnormality determination device of earth magnetism sensor, travel azimuth specification device, computer program, and abnormality determination method of earth magnetism sensor
JP2012208010A (en) * 2011-03-30 2012-10-25 Yokosuka Telecom Research Park:Kk Positioning device, positioning system, positioning method, and program
WO2014038041A1 (en) * 2012-09-06 2014-03-13 株式会社東芝 Position detection device, position detection method and position detection program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183529A (en) * 1997-09-03 1999-03-26 Furuno Electric Co Ltd Position-detection informing device
JPH11194033A (en) * 1997-12-30 1999-07-21 Jatco Corp Portable position detector and position management system
JP2011058896A (en) * 2009-09-09 2011-03-24 Casio Computer Co Ltd Positioning device, positioning method, and program
JP2012211880A (en) * 2011-03-31 2012-11-01 Ntt Docomo Inc Communication system, guidance method and program
JP2012215409A (en) * 2011-03-31 2012-11-08 Zenrin Datacom Co Ltd Navigation device
JP2012230092A (en) * 2011-04-27 2012-11-22 Zenrin Datacom Co Ltd Navigation system
JP2013200156A (en) * 2012-03-23 2013-10-03 Seiko Epson Corp Altitude measuring device, navigation system, program, and recording medium
WO2014162502A1 (en) * 2013-04-02 2014-10-09 パイオニア株式会社 Mobile guidance device, control method, program, and recording medium

Also Published As

Publication number Publication date
JPWO2017126552A1 (en) 2018-11-08
JP6965165B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US7822545B2 (en) Mobile terminal with navigation function
JP5862016B2 (en) Positioning device, positioning method and program
EP3168571B1 (en) Utilizing camera to assist with indoor pedestrian navigation
US8788232B2 (en) Altitude estimation apparatus, altitude estimation method, and program
US9268474B2 (en) Information processing apparatus, method, and non-transitory computer-readable medium to control display of a map
WO2017141484A1 (en) Congestion estimation method, number of people estimation method, congestion estimation program, number of people estimation program and number of people estimation system
WO2012073895A1 (en) Mobile terminal, system and method
EP2647957A1 (en) Mobile terminal, system and method
US20100332126A1 (en) Inertial navigation system with error correction based on navigation map
EP2703780A2 (en) Navigation apparatus and display method thereof
US20160033279A1 (en) Position calculation method and position calculation device
KR20150122097A (en) Method interlocking navigation by navigation algorithm
EP3415869B1 (en) Electronic device for improving dead reckoning-based positioning accuracy
JP2012122892A (en) Position estimation method, terminal apparatus and program
JP2016206017A (en) Electronic apparatus and travel speed calculation program
US9426778B2 (en) Electronic apparatus, location estimating method, and storage medium
US7428461B2 (en) Walker navigation device, walker navigation method, and program
WO2017126552A1 (en) Positioning device and positioning method
US9389318B2 (en) Self-position measuring terminal
WO2020226102A1 (en) Pedestrian dead reckoning device, method, and program
US10830906B2 (en) Method of adaptive weighting adjustment positioning
JP6796985B2 (en) Information processing equipment, information processing methods and programs
JP2006065762A (en) Calculation device and wheelchair
US11483674B2 (en) Information processing apparatus and information processing method
JP6553915B2 (en) INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017562851

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741429

Country of ref document: EP

Kind code of ref document: A1