WO2017126521A1 - 核酸前処理キット、および塩基配列解析方法 - Google Patents

核酸前処理キット、および塩基配列解析方法 Download PDF

Info

Publication number
WO2017126521A1
WO2017126521A1 PCT/JP2017/001468 JP2017001468W WO2017126521A1 WO 2017126521 A1 WO2017126521 A1 WO 2017126521A1 JP 2017001468 W JP2017001468 W JP 2017001468W WO 2017126521 A1 WO2017126521 A1 WO 2017126521A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
container
base sequence
identification
particle
Prior art date
Application number
PCT/JP2017/001468
Other languages
English (en)
French (fr)
Inventor
叶井 正樹
軸屋 博之
鉄雄 大橋
中村 伸
小原 收
Original Assignee
株式会社島津製作所
公益財団法人かずさDna研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 公益財団法人かずさDna研究所 filed Critical 株式会社島津製作所
Priority to US16/071,006 priority Critical patent/US20190024142A1/en
Priority to CN201780007394.5A priority patent/CN108541272A/zh
Publication of WO2017126521A1 publication Critical patent/WO2017126521A1/ja
Priority to US17/155,158 priority patent/US20210139954A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications

Definitions

  • the present invention relates to a nucleic acid pretreatment kit for separating and purifying nucleic acid for base sequence analysis from a biological sample, and a base sequence analysis method for nucleic acid separated using the kit.
  • Nucleotide sequence analysis of nucleic acids contained in biological samples such as blood, serum, cells, urine, feces and the like obtained by separation from animals and plants is useful for medical examinations, food safety and hygiene management, and the like.
  • biological samples such as blood, serum, cells, urine, feces and the like obtained by separation from animals and plants
  • base sequence analysis such as polymorphisms and mutations has attracted more and more attention.
  • the separated and purified nucleic acid is amplified by a PCR method or the like as necessary, and then analyzed by a base sequence analyzer.
  • Multi-capillary base sequence analyzers that can analyze multiple samples at the same time are popular, and it is common to create a library of multiple sample samples prepared in advance and analyze the base sequences of each sample simultaneously Has been done.
  • next-generation sequencing technology that employs various principles has been developed, and the ability to analyze base sequences has dramatically improved.
  • Patent Documents 1 to 3 the inside of a container is separated into a plurality of spaces by a water phase separation medium insoluble or hardly soluble in water such as an oil phase or a gel-like medium, and cell lysis is performed in the space partitioned by the separation medium.
  • a pretreatment device loaded with an aqueous liquid such as a liquid, a washing liquid, or a nucleic acid eluate has been proposed.
  • Patent Document 1 discloses a device in which a plurality of droplets and magnetic silica beads capable of selectively adsorbing nucleic acids are present in an enclosed medium such as oil loaded in a container. Yes.
  • nucleic acid purification and amplification reaction can be performed by sequentially moving magnetic silica beads present in a droplet into another droplet by a magnetic field operation.
  • Patent Document 2 an aqueous liquid layer such as a cell lysate, a washing solution, or a nucleic acid eluate and a gel layer that is hardly soluble or insoluble in water are alternately stacked in a tubular container having an open end that can be closed on one side.
  • a device is disclosed.
  • Patent Document 3 discloses a chip device in which an aqueous liquid layer and a gel layer are alternately arranged in a groove formed on a substrate surface. In these devices, a plurality of aqueous liquids are separated by a gel, and nucleic acid purification is performed by sequentially moving magnetic silica beads along the longitudinal direction of the tube to cell lysate, washing solution, and nucleic acid eluate. Can be implemented.
  • Patent Documents 1 to 3 can perform sample pretreatment in a closed system, contamination between specimen samples can be suppressed and the reliability of base sequence analysis can be improved.
  • These sealed pretreatment devices can be applied to nucleic acid amplification operations such as PCR in addition to separation and purification of nucleic acids from biological samples. If separation and purification of nucleic acid from a biological sample and nucleic acid amplification are performed in the same closed system device, it is possible to directly analyze the sample obtained by the pretreatment device with a base sequence analyzer. Nation can be minimized. Furthermore, since a plurality of types of liquids are loaded in one closed system container, the number of operations for transferring the sample to another container is small, and the risk of mix-up of the specimen sample due to human error can be reduced.
  • each container for loading a sample is provided with identification information that can be recognized from the outside, such as a barcode, and the base sequence from the creation of the library. A method for consistently managing the code up to the analysis is prevalent.
  • the closed-system pretreatment device as described above does not require a large-scale apparatus and is suitable for use in a clinical site, etc., while the analysis of the nucleotide sequence of a nucleic acid after separation from a biological sample is performed in the clinical site. It is mostly carried out at a remote location. Therefore, it is difficult to manage from nucleic acid pre-processing to base sequence analysis consistently by a single entity, and the reliability of the test decreases due to code reading errors and code mixing errors. Contains risk.
  • an object of the present invention is to provide a method for consistently holding information for specifying a specimen sample and improving test reliability in a process from nucleic acid pretreatment to base sequence analysis. .
  • the present invention relates to a nucleotide sequence analysis method to which this method is applied, and a nucleic acid pretreatment kit used for the pretreatment.
  • the pretreatment kit is used for separating nucleic acid from a biological sample containing nucleic acid and impurities.
  • the pretreatment kit includes a particle manipulation container, a nucleic acid capturing particle that can selectively bind to a nucleic acid, an aqueous phase separation medium that is insoluble or hardly soluble in water, a plurality of types of aqueous liquids, and an individual identification nucleic acid.
  • Two of the plural types of aqueous liquids are a nucleic acid capture solution for binding a nucleic acid contained in a biological sample to the nucleic acid capture particle, and a nucleic acid recovery solution for recovering the nucleic acid bound to the surface of the nucleic acid capture particle. is there.
  • a cell lysate or the like is used as the nucleic acid capture solution.
  • the nucleic acid recovery solution a nucleic acid elution solution for eluting nucleic acid bound to the surface of the nucleic acid capture particle from the particle surface is used.
  • the aqueous phase separation medium and the nucleic acid recovery liquid are loaded in a particle manipulation container.
  • the particle manipulation container may be configured to be separable in the vicinity of the loading position of the nucleic acid recovery liquid.
  • the aqueous phase separation medium and the aqueous liquid are all loaded in the particle manipulation container.
  • the kit according to the second aspect of the present invention includes a container for nucleic acid capture operation in addition to a container for particle manipulation, and a nucleic acid capture solution is loaded in the container for nucleic acid capture operation.
  • Nucleic acid capture particles may be contained within a container or provided separately from the container. When the kit is provided with the nucleic acid capture particles loaded in the container, the nucleic acid capture particles are preferably contained in the nucleic acid capture solution.
  • the nucleic acid for individual identification is contained in at least one of the aqueous liquids or is included in the kit in a state of being bound to the surface of the nucleic acid capturing particles.
  • the nucleic acid for individual identification is contained in the nucleic acid recovery solution, the recovery rate of the nucleic acid for individual identification is increased.
  • the nucleic acid for individual identification is contained in the nucleic acid capturing solution or bound to the surface of the nucleic acid capturing particle, the nucleic acid of the biological sample and the nucleic acid for individual identification have coexisted since the addition of the biological sample to the kit. Since the operation is performed in the state, the reliability of the inspection is improved.
  • it is useful when the nucleic acid capturing solution is loaded in the nucleic acid capturing operation container and the sample is transferred from the nucleic acid capturing operation container to the particle operating container.
  • the base sequence of the individual identification nucleic acid includes an identification sequence composed of a non-complementary base sequence to the nucleic acid contained in the biological sample.
  • the base sequence of the individual identification nucleic acid is also analyzed. The reliability of the test is improved by checking whether the base sequence of the identification sequence part obtained by the base sequence analysis matches the base sequence of the identification sequence of the nucleic acid for individual identification included in the kit. It is done.
  • the nucleic acid for individual identification may contain other sequences on the 3 'side and 5' side of the identification sequence.
  • the nucleic acid for individual identification includes a base sequence complementary to the nucleic acid contained in the biological sample on the 3 ′ side and / or 5 ′ side of the identification sequence
  • the nucleic acid contained in the biological sample is amplified by PCR or the like.
  • the nucleic acid of the identification sequence of the individual identification nucleic acid can also be amplified.
  • the particle manipulation container is provided with identification information that can be recognized from the outside of the container, and the identification information attached to the particle manipulation container and the base sequence of the identification sequence are preferably associated with each other. Since the identification information attached to the operation container and the identification sequence are associated with each other, traceability can be ensured and verification at the time of base sequence analysis can be easily performed.
  • the identification information is preferably attached in a form that can be recognized by an optical technique or an electromagnetic technique.
  • the identification information is stored in the nucleic acid capture operation container. It is preferable that the identification information attached to the container for nucleic acid capturing operation is associated with the base sequence of the identification sequence. Furthermore, it is preferable that the identification information attached to the container for nucleic acid capture operation can be associated with the identification information attached to the particle operation container.
  • the kit of the present invention can separate and purify nucleic acid from a biological sample in a sealed container, contamination between samples can be suppressed even when a large number of specimen samples are handled simultaneously. Further, by using the kit of the present invention, the state in which the nucleic acid of the biological sample and the nucleic acid for individual identification coexist is maintained consistently from the pretreatment stage for separating and purifying the nucleic acid from the biological sample to the base sequence analysis.
  • container misplacement and contamination can be detected by checking the base sequence of the identification sequence portion of the nucleic acid for individual identification. That is, by using the kit of the present invention, the risk of contamination and sample mix-up can be reduced, and the occurrence thereof can be detected, so that the reliability of genetic testing by nucleic acid base sequence analysis is improved.
  • the nucleic acid pretreatment kit of the present invention is used for nucleic acid pretreatment for use in base sequence analysis. Specifically, the kit of the present invention is used for separation of nucleic acid from a biological sample containing nucleic acid and impurities. The separated nucleic acid is amplified as necessary, and then subjected to base sequence analysis.
  • nucleic acid contained in the biological sample examples include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
  • the nucleic acid for individual identification is DNA, RNA, or peptide nucleic acid (PNA).
  • the nucleic acid may be single stranded or double stranded.
  • Examples of biological samples containing nucleic acids include biological samples such as animal and plant tissues, body fluids and excreta, and nucleic acid inclusions such as cells, protozoa, fungi, bacteria and viruses.
  • Body fluid includes blood, cerebrospinal fluid, saliva, milk and the like, and excrement includes feces, urine, sweat and the like. A combination of these can also be used.
  • the cells include leukocytes in blood, platelets, exfoliated cells of mucosal cells such as oral cells, leukocytes in saliva, etc., and combinations thereof can also be used.
  • the biological sample containing the nucleic acid may be prepared in the form of, for example, a cell suspension, a homogenate, a mixed solution with a cell lysate, or the like. These biological samples contain a wide variety of contaminants in addition to the target nucleic acid. For example, blood contains impurities such as proteins, sugars and lipids eluted from cells in addition to nucleic acids.
  • the pretreatment kit includes a nucleic acid capture particle, an aqueous phase separation medium, an aqueous liquid, and a particle manipulation container for containing them, and further includes an individual identification nucleic acid.
  • Nucleic acid capture particles are particles that can selectively bind nucleic acids. As particles capable of selectively binding nucleic acids, silica particles or particles coated on silica are preferably used. When nucleic acid capture particles are present in a liquid containing nucleic acids and contaminants, the nucleic acids are selectively bound to the particle surfaces. Nucleic acids can be recovered in the nucleic acid recovery solution by moving the particles to which the nucleic acid has been bound to the washing solution to remove impurities adhering to the surface and then moving the particles to the nucleic acid recovery solution.
  • the particle diameter of the nucleic acid capturing particles is preferably 1 mm or less, more preferably 0.1 ⁇ m to 500 ⁇ m.
  • the shape of the particles is preferably a sphere having a uniform particle size, but may be an irregular shape and have a certain particle size distribution as long as the particles can be manipulated.
  • ⁇ Operations such as aggregation, dispersion, and movement of particles can be performed by the action of a magnetic field, electric field, gravity field, ultrasonic field, and the like.
  • magnetic field operation is preferable because aggregation, dispersion, and movement of particles can be easily and accurately performed.
  • magnetic particles are preferably used as the nucleic acid capture particles.
  • the magnetic material constituting the magnetic particles include iron, cobalt, nickel, and their compounds, oxides, and alloys.
  • nucleic acid capture particles may be used as the nucleic acid capture particles.
  • examples of commercially available magnetic particles for capturing nucleic acid whose surface is coated with silica include Dynabeads (registered trademark) sold by Life Technologies, MagExtractor (registered trademark) sold by Toyobo, and the like.
  • the aqueous liquid provides a place for chemical operation such as fixation or separation of nucleic acids on the surface of the nucleic acid capturing particles.
  • a nucleic acid capture solution for binding the nucleic acid contained in the biological sample to the nucleic acid capture particle, and a nucleic acid recovery solution for recovering the nucleic acid bound to the surface of the nucleic acid capture particle Is used.
  • a washing liquid is preferably used in addition to the nucleic acid capture liquid and the nucleic acid recovery liquid. By exposing the particles having nucleic acid bound to the surface to the washing liquid, impurities attached to the particle surface can be removed, and the purity of the nucleic acid can be improved.
  • the nucleic acid capturing solution provides a field for binding nucleic acids released in the solution to the surface of the nucleic acid capturing particles.
  • the nucleic acid capturing solution is preferably a cell lysate that has an action of destroying cells and releasing nucleic acid in the solution.
  • Examples of the cell lysate that can be used as the nucleic acid capture solution include chaotropic substances, chelating agents such as EDTA, and buffer solutions containing Tris-HCl.
  • the cell lysate can also contain a surfactant such as Triton X-100.
  • chaotropic substances include guanidine hydrochloride, guanidine isothiocyanate, potassium iodide, urea and the like.
  • the cell lysate may contain a proteolytic enzyme such as protease K, various buffering agents, salts, various other auxiliary agents, and an organic solvent such as alcohol.
  • protease K various buffering agents, salts, various other auxiliary agents, and an organic solvent such as alcohol.
  • nucleic acids bind specifically to surfaces such as silica particles. Therefore, if a biological sample containing nucleic acid and nucleic acid capture particles are added to the cell lysate, the nucleic acid selectively binds to the surface of the nucleic acid capture particles.
  • the cleaning liquid is used to remove impurities attached to the particle surface and the like.
  • the washing liquid can release components other than nucleic acids (protein, sugar, lipid, etc.), reagents used for cell lysis, etc. into the washing liquid while maintaining the state where the nucleic acid is fixed on the particle surface. I just need it.
  • the cleaning liquid include high salt concentration aqueous solutions such as sodium chloride, potassium chloride, and ammonium sulfate, and aqueous alcohol solutions such as ethanol and isopropanol.
  • the nucleic acid recovery liquid is used for recovering the nucleic acid bound to the surface of the nucleic acid capturing particles in the liquid.
  • a method of collecting nucleic acid bound to the particle surface into the liquid a method of collecting the particle while the nucleic acid remains bound to the particle surface, and a method of eluting the nucleic acid bound to the particle surface into the liquid and collecting it as a solution. The method of doing is mentioned.
  • an aqueous solution having the same composition as the washing solution is preferably used as the nucleic acid recovery solution.
  • a nucleic acid elution solution for eluting the nucleic acid bound to the surface of the nucleic acid capture particle from the particle surface is used as the nucleic acid recovery solution.
  • nucleic acid eluate water or a buffer containing a low-concentration salt can be used.
  • Tris buffer, phosphate buffer, distilled water, or the like can be used.
  • the aqueous phase separation medium is disposed in the container so as to be in contact with two or more aqueous liquids, and separates the interior of the container into a plurality of spaces. Each of the spaces partitioned by the separation medium is loaded with an aqueous liquid such as a cell lysis solution, a washing solution, or a nucleic acid recovery solution.
  • a substance that is insoluble or hardly soluble in water is used as the aqueous phase separation medium.
  • the aqueous phase separation medium may be in a liquid state or in a (semi) solid state as long as it is insoluble or hardly soluble in water and immiscible with an aqueous liquid.
  • the liquid separation medium examples include hydrocarbons such as alkanes, perfluoroalkanes, mineral oil, silicone oil, fatty acids, fatty acid esters, fatty acid amides, fatty acid ketones, fatty acid amines, and the like.
  • the (semi) solid separation medium is preferably a medium through which the nucleic acid-capturing particles can penetrate and is less likely to cause mixing of an aqueous liquid through the through-holes of the particles.
  • a gel-like substance is preferably used. When the particles enter the gel and move through the gel, the gel is perforated, but the holes formed in the gel are immediately closed by the self-repairing action by the restoring force of the gel. For this reason, the inflow of the aqueous liquid through the through holes by the particles hardly occurs.
  • the material and composition of the gel that can be used as the separation medium are not particularly limited, and may be a physical gel or a chemical gel.
  • a liquid substance that is insoluble or hardly soluble in water is heated, a gelling agent is added to the heated liquid substance, and then cooled to a sol-gel transition temperature or lower. By doing so, a physical gel is formed.
  • chemical gels such as silicone gels can be easily loaded into a container and have little change in characteristics depending on the use environment (temperature, etc.), and generation of gel-derived impurities. Has the advantage that it is difficult to occur.
  • the particle manipulation container contains the aqueous liquid and the aqueous phase separation medium. Nucleic acid separation and purification are performed by particle manipulation in the particle manipulation container.
  • the particle manipulation container has an opening for loading a biological sample or nucleic acid capture particles into the container.
  • the opening of the particle manipulation container may be closable. Contamination from the outside can be prevented by loading the biological sample and nucleic acid capture particles into the container and then closing the opening to make the container a closed system.
  • the opening can be closed by an appropriate method such as sealing with a sealing member such as a lid or a stopper, or heat sealing of the opening.
  • the material and shape of the particle manipulation container are not particularly limited as long as they can hold the aqueous liquid and the aqueous phase separation medium.
  • a tubular body having an inner diameter of about 1 to 2 mm and a length of about 50 mm to 200 mm, and a linear groove having a width of about 1 to 2 mm, a depth of about 0.5 to 1 mm, and a length of about 50 mm to 200 mm are formed.
  • the structure etc. which bonded another plane board material on the upper surface of the made plane board material are mentioned.
  • the cross-sectional shape of the tube is not particularly limited, and may be an appropriate shape such as a circle, an ellipse, or a polygon. From the viewpoint of operability when loading a biological sample or particles into a tubular body, as shown in FIG. 1, the tubular container may be formed so that the open end has a wider inner diameter.
  • the shape of the particle manipulation container is not limited to a tubular shape or a planar shape, and the particle movement path may be a structure having a cross such as a cross or a T-shape.
  • Materials for particle manipulation containers include polyolefins such as polypropylene and polyethylene, fluorine-based resins such as tetrafluoroethylene, organic materials such as polyvinyl chloride, polystyrene, polycarbonate, and cyclic polyolefin; inorganic materials such as ceramic, glass, silicone, and metal Materials.
  • the particle operation is performed by a magnetic field operation from the outside of the container (for example, movement of a magnet along the outer wall surface of the container).
  • the container material is preferably capable of transmitting a magnetic field.
  • a material having optical transparency is preferably used.
  • the container is light-transmitting, it is preferable because the state of particle operation in the container can be visually confirmed.
  • the particle manipulation container may be integrally molded, or may be constituted by a combination of a plurality of members.
  • the container When the container is configured by a combination of a plurality of members, the container may be separable at the combined portion. Moreover, even when the container is integrally molded, the container may be configured to be separable by a method such as locally providing a portion (separation line) where the thickness of the container wall surface is small.
  • the particle manipulation container is configured to be separable, after completion of the pretreatment by the particle manipulation, by separating the part containing the liquid after collecting the nucleic acid (nucleic acid collection liquid) from the other part, The container containing the nucleic acid to be tested can be downsized to improve the storage efficiency.
  • the kit of the present invention includes an individual identification nucleic acid.
  • the individual identification nucleic acid includes an identification sequence composed of a base sequence that is non-complementary to the nucleic acid contained in the biological sample.
  • the identification sequences of the individual identification nucleic acids contained in each of the plurality of kits are different from each other.
  • the nucleic acid recovered in the nucleic acid recovery solution using the kit includes a nucleic acid derived from a biological sample and an individual identification nucleic acid.
  • a kit used for separation and purification of nucleic acids or the like is assigned a code such as a number for each individual, and the specimen is identified by comparing the code attached to the kit with the specimen. .
  • the nucleic acid separated using the kit is transferred from the particle manipulation container included in the kit to another container for amplification and base sequence analysis. For this reason, if a container is mixed or contaminated, a result of analyzing the base sequence of a sample different from the target sample is brought about.
  • the nucleic acid in the nucleic acid recovery solution contains the nucleic acid derived from the specimen and the nucleic acid for individual identification, and even when the nucleic acid is transferred to another container in the subsequent process.
  • the coexistence state is maintained.
  • the base sequence analysis in addition to the base sequence of the sample-derived nucleic acid (sequence determination target), the base sequence of the identification sequence portion of the individual identification nucleic acid is analyzed, and the base sequence of the identification sequence portion obtained by the analysis is Then, it is verified whether or not it matches the base sequence of the identification sequence of the nucleic acid for individual identification contained in the kit. If the base sequence of the identification sequence part matches, it can be ensured that the target sample is correctly analyzed.
  • An individual identification nucleic acid having a desired base sequence can be synthesized by a known method such as a solid phase synthesis method or a liquid phase synthesis method.
  • a known method such as a solid phase synthesis method or a liquid phase synthesis method.
  • an individual identification nucleic acid having a desired sequence may be synthesized by peptide synthesis methods such as Fmoc method and tBoc method using peptide nucleic acid monomers.
  • the nucleic acid for individual identification may be labeled with a fluorescent label, a radioisotope label, an electrochemical label, an affinity label, an epitope label, or the like.
  • the nucleic acid for individual identification may contain another base sequence on the 3 'side and / or 5' side of the identification sequence.
  • the nucleic acid for individual identification contains a common base sequence on the 3 'side and / or 5' side of the identification sequence
  • the common base sequence can be recognized as the start point or end point of the identification sequence. If an adapter sequence that can bind to a carrier such as a base sequence analysis flow cell or a particle is included on the 5 'side of the identification sequence, the base sequence of the identification sequence can be easily analyzed.
  • the base sequence complementary to the nucleic acid (target) of the base sequence analysis target contained in the biological sample may be contained in either the 3 'side or 5' side of the identification sequence.
  • PCR can be performed using the individual identification nucleic acid as either the FW primer or the RW primer. Therefore, the complementary sequence portion of the nucleic acid for identifying an individual anneals the nucleic acid to be analyzed for base sequence, and a fragment in which the nucleic acid to be analyzed and the antisense sequence of the identifying sequence are linked can be amplified. By analyzing the base sequence of this fragment, the base sequence of the nucleic acid subject to base sequence analysis and the base sequence of the identification sequence of the individual identification nucleic acid can be analyzed simultaneously.
  • the base sequence complementary to the nucleic acid of the base sequence analysis target contained in the biological sample may be contained on both the 3 'side and 5' side of the identification sequence.
  • the nucleic acid to be subjected to base sequence analysis by PCR is amplified in parallel.
  • the sense fragment and the antisense fragment of the nucleic acid for individual identification can be amplified.
  • the 3 ′ side of the identification sequence includes a base sequence complementary to the nucleic acid to be analyzed in the biological sample (complementary sequence) and the adapter sequence includes the 5 ′ side of the identification sequence, that is, individual identification
  • the nucleic acid for use includes an adapter sequence, an identification sequence and a complementary sequence from the 5 ′ side, it has a base sequence of the nucleic acid subject to base sequence analysis, a base sequence of the identification sequence of the individual identification nucleic acid, and an adapter sequence by PCR.
  • the fragment can be amplified, and the base sequence of the identification sequence of the individual identification nucleic acid can be analyzed simultaneously.
  • the base sequence other than the identification sequence contained in the nucleic acid for individual identification may be appropriately designed according to the analysis method of the base sequence.
  • the aqueous phase separation medium and the aqueous liquid constituting the kit are all loaded in a particle manipulation container.
  • a biological sample such as blood is added to the particle manipulation container, and the nucleic acid is bound to the nucleic acid capture particles in the particle manipulation container.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a pretreatment kit according to the first embodiment.
  • the pretreatment kit 1 is arranged in a tubular particle manipulation container 10 having an opening at the top, and from the bottom of the container, the nucleic acid recovery liquid 38, the third aqueous phase separation medium 23, the second washing liquid 32, and the second aqueous phase separation.
  • the medium 22, the first washing liquid 31, the first aqueous phase separation medium 21, and the nucleic acid capturing liquid 35 are loaded.
  • the aqueous phase separation media 21, 22, and 23 are gel layers, and aqueous liquids 31, 32, and 33 are loaded in a space partitioned by the inner wall surface of the container and the gel layer.
  • a lid 13 is attached to the opening of the container 10 so that it can be opened and closed. After the biological sample is added to the container 10 with the lid 13 open, the lid is closed to close the opening of the container and make the inside of the container a closed system.
  • magnetic particles 70 as nucleic acid capture particles are contained in a cell lysis solution 35 as a nucleic acid capture solution.
  • the nucleic acid capture particles may be previously contained in the cell lysate, or the nucleic acid capture particles may be added to the cell lysate immediately before the biological sample is added to the cell lysate. Further, the nucleic acid capture particles may be added to the cell lysate simultaneously with the addition of the biological sample to the cell lysate or after the addition of the biological sample. That is, the nucleic acid capture particles may be provided in a state of being included in the kit 1 in advance, or may be provided separately from the kit 1 as a component of the pretreatment kit.
  • the stirring method is not particularly limited, and examples thereof include a method of vibrating the container 10 with a vortex mixer, a method of generating a liquid flow by pipetting, a method of moving particles in a cell lysate and stirring.
  • the nucleic acid capture particles are magnetic particles, the particles can be moved and dispersed in the cell lysate by changing the strength and direction of the magnetic field applied from the outside of the container.
  • the particle 70 After binding nucleic acid to the particle surface, the particle 70 is moved in the longitudinal direction of the container 10 by a magnetic field operation. Washing is performed by passing the aqueous phase separation medium 21, moving the particles into the first washing liquid 31, and dispersing the particles in the washing liquid. After passing through the aqueous phase separation medium 22 and washing in the second washing liquid 32, the aqueous phase separation medium 23 is passed through and the particles 70 are moved to the nucleic acid recovery liquid 38.
  • the nucleic acid recovery liquid 38 is a nucleic acid elution liquid
  • the nucleic acid capture particles 70 are dispersed in the nucleic acid elution liquid, whereby the nucleic acid bound to the particle surface is eluted and the nucleic acid can be recovered in the nucleic acid recovery liquid 38.
  • a mixture of a nucleic acid derived from a biological sample (specimen) and a nucleic acid for individual identification is obtained by including the nucleic acid for individual identification in advance in the nucleic acid recovery liquid 38.
  • the nucleic acid for identifying an individual can be included in addition to the nucleic acid recovery solution 38 in the kit.
  • an individual identification nucleic acid is included in a nucleic acid capture solution (cell lysate)
  • an individual identification nucleic acid is added in addition to a nucleic acid derived from a biological sample. , Bind to the particle surface.
  • nucleic acid for individual identification is included in another aqueous liquid such as a washing liquid
  • the nucleic acid for individual identification is bound to the particle surface when the nucleic acid capturing particles move into the aqueous liquid.
  • the nucleic acid recovery liquid 38 By moving the nucleic acid capture particles in which the nucleic acid derived from the biological sample and the nucleic acid for individual identification are bound into the nucleic acid recovery liquid 38 by a magnetic field operation or the like, the nucleic acid derived from the biological sample and the nucleic acid for individual identification are contained in the nucleic acid recovery liquid 38. Can be recovered.
  • a nucleic acid capturing particle in which an individual identification nucleic acid is bound to the surface in advance may be used.
  • the nucleic acid capture particles to which the nucleic acid for identifying an individual is bound may be previously contained in the nucleic acid capture solution.
  • the nucleic acid capture solution is added to the nucleic acid capture solution immediately before, simultaneously with, or after the addition of the biological sample to the nucleic acid capture solution. Nucleic acid capture particles may be added.
  • the nucleic acid collected in the particle manipulation container is amplified by PCR or the like as necessary, and then the sequence is analyzed by a base sequence analyzer.
  • the nucleic acid sample is placed in the particle manipulation vessel from the viewpoint of preventing contamination caused by opening the vessel. It is preferable to move (deliver) to another place in the accommodated state.
  • the part containing the nucleic acid recovery liquid may be separated from other parts, and the separated container may be used for delivery.
  • the particle manipulation container is preferably separated in the vicinity of the loading position of the nucleic acid recovery liquid.
  • the boundary between the loading position of the nucleic acid recovery liquid 38 and the loading position of the aqueous phase separation medium 23 arranged in contact with the nucleic acid recovery liquid 38, or the loading of the aqueous phase separation medium 23 It is preferred that the container is separated at the location.
  • the container 10 is preferably provided with identification information 14 that can be identified from the outside.
  • identification information include information that can be recognized by an optical method such as a character string, a barcode, and a two-dimensional code, and information that can be recognized by an electromagnetic method such as an IC chip and an IC tag. This identification information is associated with the nucleotide sequence of the individual identification nucleic acid contained in the kit.
  • the association between the identification information attached to the container and the identification sequence of the nucleic acid for individual identification can be performed by any method.
  • the identification information is a character string
  • a method of describing the base sequence of the identification sequence as it is as a character string, a method of encoding the base sequence, and the like can be mentioned.
  • An example of DNA base sequence coding is a method of quantifying by replacing four types of bases (A, G, C, T) with 2-bit information (00, 01, 10, 11). . Since one base has 2-bit information, 10-bit identification information can be generated when the identification sequence is 5 bases, and 10-bit identification information when 10 bases.
  • the encoded identification information may be encrypted.
  • the identification information may be attached to the container as numbers or letters, or may be attached to the container as mechanically readable identification information such as a barcode, a two-dimensional code, or an IC.
  • the identification information attached to the container and the identification sequence of the individual identification nucleic acid may be associated via a database.
  • an encoded number is attached to a container as identification information, and the serial number of the container and the identification sequence of the individual identification nucleic acid contained in the container are made into a database, thereby identifying the container identification information and An identification sequence can be associated.
  • the position where the identification information 14 is attached to the container 10 is not particularly limited as long as the identification information can be read after the nucleic acid is recovered in the nucleic acid recovery solution.
  • the identification information is attached to a position where the integrity of the nucleic acid recovery liquid and the container identification information can be maintained.
  • the particle manipulation container is configured to be separable in the vicinity of the loading position of the nucleic acid recovery liquid, it is preferable that the container identification information is attached to the loading position of the nucleic acid recovery liquid.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a pretreatment kit according to the second embodiment.
  • the pretreatment kit of the second form includes a nucleic acid capturing operation container 15 in addition to the particle operation container 10.
  • a nucleic acid capturing operation container 15 in addition to the particle operation container 10.
  • all the aqueous liquids including the nucleic acid capture solution and the nucleic acid recovery solution are loaded in the particle manipulation container 10
  • the nucleic acid capture solution 35 is used for the nucleic acid capture operation.
  • the container 15 is loaded.
  • the pretreatment kit of the second form includes the first kit 101 in which the aqueous liquids 31, 32, and 38 and the aqueous phase separation media 21, 22, and 23 are loaded in the particle operation container 10, and the nucleic acid capturing operation.
  • the container 15 is configured in combination with the second kit 102 in which the nucleic acid capturing solution 35 is loaded.
  • a biological sample such as blood is added to the container 15 for nucleic acid capture operation, and the nucleic acid is bound to the nucleic acid capture particles.
  • nucleic acid capture particles such as magnetic silica particles
  • the particles may aggregate.
  • contaminants contained in the biological sample especially denatured proteins produced by cell lysis, etc. have the action of masking the surface of the particles and causing the particles to adhere and aggregate.
  • the nucleic acid capture particles are aggregated, the chance of contact between the particle surface and the nucleic acid is decreased, so that binding of the nucleic acid to the particle surface tends to be inhibited. For this reason, in order to increase the efficiency of nucleic acid recovery, when the nucleic acid is bound to the nucleic acid capture particles, the container should be vigorously stirred so that the aggregates of the particles are crushed to eliminate the aggregation. Is preferred.
  • a nucleic acid capturing operation container 15 is prepared separately from the particle operation container 10 loaded with the aqueous phase separation media 21, 22, 23, the aqueous liquids 31, 32, 38 and the like.
  • the nucleic acid is bound to the surface of the nucleic acid capturing particles.
  • the aqueous phase separation medium and the aqueous liquid loaded in the particle operation container 10 are not affected at all.
  • the state in which the aqueous liquid is loaded in the space partitioned by the phase separation medium can be maintained. Therefore, stirring can be carried out by applying a stronger external force than when nucleic acid is bound to the surface of the nucleic acid capturing particle in the particle manipulation container.
  • the container for nucleic acid capture operation does not need to provide a space for accommodating an aqueous phase separation medium, a nucleic acid recovery solution, and the like, and is therefore more compact than a particle operation container and has a high degree of freedom in the shape of the container. Therefore, a shape suitable for dispersing the nucleic acid capture particles in the liquid by stirring can be adopted. Therefore, by binding the nucleic acid to the surface of the nucleic acid capturing particle in the container for nucleic acid capturing operation, even when the nucleic acid capturing particle is aggregated, the dispersion efficiency of the nucleic acid capturing particle in the liquid is improved. The recovery efficiency can be increased.
  • the nucleic acid capturing operation container 15 has an opening for adding a biological sample and nucleic acid capturing particles to the container and for removing the sample from the container.
  • the opening of the container for nucleic acid capture operation may be closable.
  • a sealable member such as a lid or a stopper.
  • the material and shape of the nucleic acid capturing operation container are not particularly limited as long as the container can hold a nucleic acid capturing solution such as a cell lysate and nucleic acid capturing particles.
  • the shape of the container is preferably designed so that the particles can be efficiently dispersed in the liquid.
  • the material of the container those described above as the material constituting the particle manipulation container can be employed.
  • the cell lysate 35 loaded in the nucleic acid capturing operation container 15 includes magnetic particles 70 as nucleic acid capturing particles.
  • the nucleic acid capture particles may be previously contained in the cell lysate, or may be added to the cell lysate immediately before use. Further, the nucleic acid capture particles may be added to the cell lysate simultaneously with the addition of the biological sample to the cell lysate or after the addition of the biological sample. That is, the nucleic acid capture particle may be provided in a state of being included in the second kit 102 in advance, or may be provided separately from the second kit 102 as one component of the pretreatment kit.
  • the binding of the nucleic acid in the biological sample to the nucleic acid capture particle can be performed by the same method as in the first embodiment. As described above, in this embodiment, since the nucleic acid is bound to the surface of the nucleic acid capture particle in the nucleic acid capture operation container, the dispersion efficiency of the particles in the liquid can be improved. Along with this, the amount of nucleic acid bound to the particle surface can be increased, and the nucleic acid recovery efficiency can be increased.
  • the nucleic acid-capturing particles after binding the nucleic acid are moved into the particle manipulation container 10, and thereafter, as in the first embodiment, the particles 70 are moved in the container 10 by the magnetic field operation, and the nucleic acid is collected by the nucleic acid collection liquid 38.
  • the particles may be moved together with the nucleic acid capture liquid, or only the particles may be moved.
  • the nucleic acid capturing liquid may adhere to the particle surface.
  • FIG. 2 shows a form in which the aqueous phase separation medium 21 is arranged as the uppermost layer on the opening end side of the particle manipulation container 10, but the uppermost layer may be an aqueous liquid such as a cleaning liquid.
  • the aqueous phase separation medium 21 is arranged as the uppermost layer on the opening end side of the particle manipulation container 10, but the uppermost layer may be an aqueous liquid such as a cleaning liquid.
  • a mixture of the nucleic acid derived from the biological sample and the nucleic acid for individual identification can be obtained in the nucleic acid recovery solution 38 by previously including the nucleic acid for individual identification in the kit.
  • the individual identification nucleic acid may be contained in either the particle manipulation container 10 of the first kit 101 or the nucleic acid capture manipulation container 15 of the second kit 102.
  • the individual identification nucleic acid can be included in the nucleic acid capturing operation container 15 by adding particles having the individual identification nucleic acid bound to the surface in advance to the nucleic acid capturing operation container 15.
  • a mixture of a nucleic acid derived from a biological sample and a nucleic acid for individual identification can be recovered in a nucleic acid solution.
  • the individual identification nucleic acid may be contained in both the particle manipulation container and the nucleic acid capturing manipulation container.
  • the identification sequences of the individual identification nucleic acids may be the same or different.
  • the identification sequence of the individual identification nucleic acid contained in the particle manipulation container and the identification sequence of the individual identification nucleic acid contained in the nucleic acid capture manipulation container are the same, one identification sequence is used in the base sequence analysis. If it is confirmed that only the sample is detected, it can be confirmed that there is no sample mix-up and contamination.
  • each of the individual identification nucleic acid contained in the particle manipulation container and the individual identification nucleic acid contained in the nucleic acid capture manipulation container may have different functions.
  • the individual identification nucleic acid has a base sequence corresponding to the FW primer in addition to the identification sequence
  • the other individual identification nucleic acid has a base sequence corresponding to the RW primer in addition to the identification sequence. If an identification nucleic acid is designed, PCR can be performed using these two types of individual identification nucleic acids as a pair of primers.
  • the particle manipulation container 10 may be configured to be separable in the vicinity of the nucleic acid recovery liquid loading portion. Moreover, it is preferable that identification information 14 associated with the base sequence of the individual identification nucleic acid is attached to the particle manipulation container 10. When the nucleic acid for individual identification is contained in the particle manipulation container 10, the identification information 14 attached to the nucleic acid capturing manipulation container can be associated with the base sequence of the identification sequence in the same manner as in the first embodiment.
  • the nucleic acid capturing operation container 15 contains the individual identification nucleic acid (including the case where the nucleic acid capturing particles combined with the individual identification nucleic acid are added to the nucleic acid capturing operation container), the nucleic acid capturing operation container 15 A mixture of a nucleic acid derived from a biological sample (specimen) and a nucleic acid for individual identification is obtained. Therefore, even if the container is misplaced when the sample is moved from the nucleic acid capturing operation container 15 to the particle operation container 10, the base sequence of the identification sequence of the individual identification nucleic acid can be analyzed during the base sequence analysis. , It is possible to detect a false detection caused by a mistake.
  • identification information 19 that can be recognized from outside the container is attached to the nucleic acid capturing operation container 15.
  • the identification information 19 attached to the nucleic acid capturing operation container 15 is preferably associated with the identification sequence of the individual identification nucleic acid.
  • the identification information 14, 19 is stored in each of the particle operating container 10 and the nucleic acid capturing operation container 15. It is preferable that these identification information can be associated with each other.
  • the identification information 19 and the identification information 14 can be associated by associating the container 15 for nucleic acid capturing operation and the container 10 for particle operation in advance and attaching the same identification information.
  • the identification information 19 of the nucleic acid capturing operation container 15 and the identification information 14 of the particle operation container 10 are associated with each other when the kit is used. Preferably it is done. For example, when the sample in the nucleic acid capturing operation container 15 is moved to the particle operation container 10, the identification information 19 and the identification information 14 can be read to associate them with each other. Further, the identification information 19 is attached to the nucleic acid capturing operation container 15 in a detachable manner using a seal or the like, and the identification information 19 is transferred when the sample in the nucleic acid capturing operation container 15 is moved to the particle operation container 10. May be separated from the nucleic acid capturing operation container 15 and attached to the particle operation container 10 to associate the identification information of the two.
  • the base sequence of the nucleic acid collected by the pretreatment kit is analyzed.
  • the method for analyzing the base sequence is not particularly limited.
  • the nucleic acid recovered from the pretreatment kit may be subjected to further processing such as fragmentation, ligation, and amplification before being subjected to base sequence analysis. These treatments can be appropriately performed according to the analysis method of the base sequence. Even when the nucleic acid collected from the kit is transferred to another container for use in these processes, the coexistence state of the nucleic acid derived from the specimen and the nucleic acid for individual identification is maintained.
  • the base sequence of the identification sequence of the individual identification nucleic acid is analyzed. It is verified whether or not the base sequence of the identification sequence portion obtained by the base sequence analysis matches the base sequence of the identification sequence of the individual identification nucleic acid included in the kit. If the base sequences of the identification sequences do not match, it is considered that the sample has been mistaken. If a plurality of identification sequences are detected even though there is only one type of nucleic acid for individual identification in the kit, it is considered that contamination has occurred. In this way, by analyzing the base sequence of the identification sequence portion, it is possible to detect erroneous detection due to sample mix-up or contamination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

前処理キットは、粒子操作用容器(10)、核酸と選択的に結合可能な核酸捕捉粒子(70)、水相分離用媒体(21,22,23)、複数種の水系液体(35,31,32,38)および個体識別用核酸を含む。個体識別用核酸は、複数種の水系液体のうちの少なくとも1つに含まれているか、または前記核酸捕捉粒子の表面に結合しており、個体識別用核酸の塩基配列は、前記生体試料に含まれる核酸に対して非相補的な塩基配列からなる識別配列を含む。前処理キットは、核酸および夾雑物を含む生体試料からの核酸の分離に用いられる。

Description

核酸前処理キット、および塩基配列解析方法
 本発明は、生体試料から塩基配列解析用の核酸を分離精製するための核酸前処理キット、および当該キットを用いて分離された核酸の塩基配列解析方法に関する。
 動植物から分離取得される血液、血清、細胞、尿、糞便等の生体試料に含まれる核酸の塩基配列解析は、医学的検査、食品安全衛生上の管理等に有用である。また、種々の疾患とゲノムDNA配列との関連が解明されており、これに伴って、多型や変異等の塩基配列解析がますます注目されている。
 生体試料中の核酸の塩基配列解析に際しては、タンパク質、糖、脂質等の多種多様な夾雑物に起因する悪影響を排除するために、生体試料の前処理を行い、核酸を分離精製する必要がある。分離精製後の核酸は、必要に応じてPCR法等による増幅を行った後、塩基配列解析装置により解析が行われる。
 複数の試料を同時に解析可能なマルチキャピラリー型の塩基配列解析装置が普及しており、予め調製した複数の検体試料からなるライブラリーを作成し、各試料の塩基配列を同時に解析することが一般的に行われている。また、近年では、様々な原理を採用した次世代シーケンス技術が開発され、塩基配列解析能力が飛躍的に向上している。
 塩基配列解析装置による解析は自動化されているため、塩基配列解析の段階では、ヒューマンエラーに起因する検体試料の取り違えや、試料間のコンタミネーションはほとんど生じない。一方、塩基配列解析に供するための生体試料からの核酸の分離精製等の前処理では、ピペッティングや別容器への試料の移動等の操作が開放系で実施される。そのため、塩基配列解析の前処理操作において、試料間でのコンタミネーションが生じる場合があり、検査結果の信頼性低下のリスクがある。
 特許文献1~3では、油相やゲル状媒体等の水に不溶または難溶の水相分離用媒体により容器内を複数の空間に分離し、分離用媒体により仕切られた空間に、細胞溶解液、洗浄液、核酸溶出液等の水系液体を装填した前処理デバイスが提案されている。具体的には、特許文献1では、複数の液滴、および核酸を選択的に吸着可能な磁性シリカビーズを、容器内に装填された油等の封入媒体中に存在させたデバイスが開示されている。このデバイスでは、液滴内に存在する磁性シリカビーズを、磁場操作により、他の液滴内へと順次移動させることにより、核酸の精製や増幅反応を実施できる。
 特許文献2では、一方に閉鎖可能な開口端を有する管状容器内に、細胞溶解液、洗浄液、核酸溶出液等の水系液体層と、水に難溶または不溶であるゲル層とを交互に重層したデバイスが開示されている。特許文献3では、基板表面に形成された溝内に水系液体層とゲル層とを交互に配置したチップデバイスが開示されている。これらのデバイスでは、複数の水系液体間がゲルで仕切られており、磁性シリカビーズを管の長手方向に沿って、細胞溶解液、洗浄液、核酸溶出液へと順次移動させることにより、核酸の精製を実施できる。
 特許文献1~3に開示されている前処理デバイスは、密閉系で試料の前処理を実施できるため、検体試料間のコンタミネーションを抑制し、塩基配列解析の信頼性を向上できる。また、これらの密閉系の前処理デバイスは、生体試料からの核酸の分離精製に加えて、PCR等の核酸増幅操作にも適用できる。生体試料からの核酸の分離精製と核酸増幅を同一の密閉系デバイス内で実施すれば、前処理デバイスで得られた試料をそのまま塩基配列解析装置で解析することも可能であり、試料間のコンタミネーションを最小限に抑制できる。さらには、1つの密閉系容器内に複数種の液体が装填されているため、試料を別の容器に移し替える操作の回数が少なく、ヒューマンエラーに起因する検体試料の取り違えのリスクも低減できる。
特開2008-012490号公報 WO2012/086243号国際公開パンフレット WO2013/094322号国際公開パンフレット
 特許文献1~3等に開示されている密閉系の前処理デバイスを用いた場合でも、解析用ライブラリーの作製や、塩基配列解析装置への試料注入等の際に、容器の移し替えを必要とするため、ヒューマンエラーに起因する検体試料取り違えのリスクがある。このような取り違えに起因する誤検出を防止する目的で、検体試料を装填するための容器毎に、バーコード等の外部から認識可能な識別情報を付しておき、ライブラリーの作製から塩基配列解析までのプロセスを一貫してコード管理する方法が普及している。
 しかし、容器に付された識別情報をプロセス単位で引き継いで管理する方法では、コードの読み取りミスや、コードの混同等のヒューマンエラーを完全に排除することは困難である。前述したような密閉系の前処理デバイスは、大掛かりな装置を必要としないため、臨床現場等での使用に適している一方で、生体試料から分離後の核酸の塩基配列の解析は、臨床現場とは離れた場所で実施されることが大半である。そのため、核酸の前処理から塩基配列の解析までを単一の主体で一貫して管理することが困難であり、コードの読み取りミスやコードの混同等に起因して、検査の信頼性が低下するリスクを含んでいる。
 このような課題に鑑み、本発明は、核酸の前処理から塩基配列解析までのプロセスにおいて、検体試料を特定する情報を一貫して保持し、検査の信頼性を高める方法の提供を目的とする。
 生体試料から核酸を分離精製する前処理の段階で、検体ごとに異なる塩基配列を有する個体識別用核酸を試料に加えておき、塩基配列を解析する際に、解析対象の核酸の塩基配列に加えて、個体識別用核酸の塩基配列を解析する。これにより、検体試料を特定する情報を一貫して保持できる。本発明は、この方法を応用した塩基配列解析方法、およびその前処理に用いられる核酸前処理キットに関する。
 前処理キットは、核酸および夾雑物を含む生体試料から核酸を分離するために用いられる。前処理キットは、粒子操作用容器、核酸と選択的に結合可能な核酸捕捉粒子、水に不溶または難溶である水相分離用媒体、複数種の水系液体、および個体識別用核酸を含む。
 複数種の水系液体のうちの2種は、生体試料に含まれる核酸を核酸捕捉粒子に結合させるための核酸捕捉液、および核酸捕捉粒子の表面に結合した核酸を回収するための核酸回収液である。核酸捕捉液としては細胞溶解液等が用いられる。核酸回収液としては、核酸捕捉粒子の表面に結合した核酸を粒子表面から溶出させるための核酸溶出液等が用いられる。
 これらのキットの構成要素のうち、少なくとも、水相分離用媒体、および核酸回収液は、粒子操作用容器内に装填されている。粒子操作用容器は、核酸回収液の装填箇所の近傍で分離可能に構成されていてもよい。
 本発明のキットの第一形態では、水相分離用媒体、および水系液体の全てが、粒子操作用容器内に装填されている。本発明の第二形態のキットは、粒子操作用容器に加えて核酸捕捉操作用容器を含み、核酸捕捉液が核酸捕捉操作用容器に装填されている。核酸捕捉粒子は、容器内に含まれていてもよく、容器とは別に提供されてもよい。核酸捕捉粒子が容器内に装填された状態でキットが提供される場合、核酸捕捉粒子は、核酸捕捉液中に含まれていることが好ましい。
 個体識別用核酸は、水系液体のうちの少なくとも1つに含まれているか、または核酸捕捉粒子の表面に結合した状態で、キットに含まれる。個体識別用核酸が、核酸回収液中に含まれている場合、個体識別用核酸の回収率が高められる。個体識別用核酸が、核酸捕捉液に含まれているか、または核酸捕捉粒子の表面に結合している場合、キットへの生体試料の添加時から生体試料の核酸と個体識別用核酸とが共存した状態で操作が行われるため、検査の信頼性が高められる。特に、第二形態のように、核酸捕捉液が核酸捕捉操作用容器に装填されており、核酸捕捉操作用容器から粒子操作容器への試料の移動が行われる場合に有用である。
 個体識別用核酸の塩基配列は、生体試料に含まれる核酸に対して非相補的な塩基配列からなる識別配列を含む。本発明のキットを用いて回収した生体試料中の核酸の塩基配列を解析する際に、個体識別用核酸の塩基配列もあわせて解析を行う。塩基配列解析により得られた識別配列部分の塩基配列が、キットに含まれていた個体識別用核酸の識別配列の塩基配列と一致するか否かの照合を行うことにより、検査の信頼性が高められる。
 個体識別用核酸は、識別配列の3’側および5’側に他の配列を含んでいてもよい。個体識別用核酸が、識別配列の3’側および/または5’側に、生体試料に含まれる核酸に対して相補的な塩基配列を含む場合、PCR等により生体試料に含まれる核酸の増幅時に、個体識別用核酸の識別配列の核酸も増幅させることができる。
 粒子操作用容器には、容器外部から認識可能な識別情報が付されており、粒子操作用容器に付された識別情報と識別配列の塩基配列とは関連付けられていることが好ましい。操作用容器に付された識別情報と識別配列とが関連付けられていることにより、トレーサビリティーを確保できるとともに、塩基配列解析時の照合も容易に行い得る。識別情報は、光学的手法または電磁気的手法により認識可能な形態で付されていることが好ましい。
 核酸捕捉液が核酸捕捉操作用容器に装填されており、個体識別用核酸が核酸捕捉液に含まれているかまたは核酸捕捉粒子の表面に結合している場合は、核酸捕捉操作用容器に識別情報が付されており、核酸捕捉操作用容器に付された識別情報と識別配列の塩基配列とが関連付けされていることが好ましい。さらに、核酸捕捉操作用容器に付された識別情報と、粒子操作用容器に付された識別情報とが対応付け可能であることが好ましい。
 本発明のキットは、生体試料からの核酸の分離精製を密閉容器内で実施可能であるため、多数の検体試料を同時に取り扱う場合でも、試料間のコンタミネーションを抑制可能である。また、本発明のキットを用いることにより、生体試料から核酸を分離精製する前処理の段階から塩基配列解析まで、一貫して、生体試料の核酸と個体識別用核酸とが共存した状態が保持される。
 万が一、コンタミネーションや検体の取り違えが生じた場合でも、個体識別用核酸の識別配列部分の塩基配列の照合により、容器の入れ違いやコンタミネーションを検知できる。すなわち、本発明のキットを用いることにより、コンタミネーションや検体の取り違えのリスクを低減できるとともに、その発生を検知可能であるため、核酸の塩基配列解析による遺伝子検査等の信頼性が高められる。
第一形態の前処理キットの構成例を示す模式断面図である。 第二形態の前処理キットの構成例を示す模式断面図である。
 本発明の核酸前処理キットは、塩基配列解析に供するための核酸の前処理に用いられる。具体的には、本発明のキットは、核酸および夾雑物を含む生体試料からの核酸の分離に用いられる。分離後の核酸は、必要に応じて増幅を行った後、塩基配列解析が行われる。
 生体試料に含まれる核酸としては、デオキシリボ核酸(DNA)およびリボ核酸(RNA)が挙げられる。個体識別用核酸は、DNA、RNA、またはペプチド核酸(PNA)である。核酸は一本鎖でも二本鎖でもよい。
 核酸を含む生体試料としては、動植物組織、体液、排泄物等の生体試料、細胞、原虫、真菌、細菌、ウィルス等の核酸包含体等が挙げられる。体液には血液、髄液、唾液、乳等が含まれ、排泄物には糞便、尿、汗等が含まれる。また、これらの複数の組合せを用いることもできる。細胞には血液中の白血球、血小板、口腔細胞等の粘膜細胞の剥離細胞、唾液中白血球等が含まれ、これらの組合せを用いることもできる。核酸を含む生体試料は、例えば、細胞懸濁液、ホモジネート、細胞溶解液との混合液等の態様で調製されてもよい。これらの生体試料は、目的物質である核酸の他に、多種多様な夾雑物を含む。例えば、血液中には、核酸の他に、細胞から溶出したタンパク質、糖、脂質等の夾雑物が含まれている。
 前処理キットは、核酸捕捉粒子、水相分離用媒体、水系液体、およびこれらを収容するための粒子操作用容器を含み、さらに、個体識別用核酸を含む。
[核酸捕捉粒子]
 核酸捕捉粒子は、核酸を選択的に結合可能な粒子である。核酸を選択的に結合可能な粒子としては、シリカ粒子、あるいは表面がシリカコートされた粒子が好ましく用いられる。核酸および夾雑物を含む液体中に、核酸捕捉粒子を存在させると、粒子表面に核酸が選択的に結合する。核酸を結合させた粒子を洗浄液に移動させて表面に付着した夾雑物を除去し、その後に粒子を核酸回収液に移動させることにより、核酸回収液中に核酸を回収できる。
 液体中やゲル状媒体内での粒子操作を容易とする観点から、核酸捕捉粒子の粒径は1mm以下が好ましく、0.1μm~500μmがより好ましい。粒子の形状は、粒径が揃った球形が望ましいが、粒子操作が可能である限りにおいて、不規則な形状で、ある程度の粒径分布を持っていてもよい。
 磁場、電場、重力場、超音波場等の作用により、粒子の凝集、分散、移動等の操作を行い得る。中でも、粒子の凝集、分散および移動を簡便かつ正確に行い得ることから、磁場操作が好ましい。磁場により粒子操作を行う場合、核酸捕捉粒子としては磁性粒子が好ましく用いられる。磁性粒子を構成する磁性体としては、鉄、コバルト、ニッケル、ならびにそれらの化合物、酸化物、および合金等が挙げられる。
 核酸捕捉粒子として、市販の磁性粒子を用いてもよい。表面がシリカコートされた核酸捕捉用の磁性粒子の市販品としては、ライフテクノロジーズから販売されているDynabeads(登録商標)や、東洋紡から販売されているMagExtractor(登録商標)等が挙げられる。
[水系液体]
 水系液体は、核酸捕捉粒子表面への核酸の固定や、分離等の化学操作の場を提供するものである。粒子操作による生体試料中の核酸の分離精製では、生体試料に含まれる核酸を核酸捕捉粒子に結合させるための核酸捕捉液、および核酸捕捉粒子の表面に結合した核酸を回収するための核酸回収液が用いられる。水系液体として、核酸捕捉液および核酸回収液の他に、洗浄液が用いられることが好ましい。表面に核酸が結合した粒子を洗浄液に曝すことにより、粒子表面に付着した夾雑物等を除去して、核酸の純度を向上できる。
<核酸捕捉液>
 核酸捕捉液は、液中に遊離した核酸を核酸捕捉粒子表面に結合させる場を提供する。核酸捕捉液は、細胞を破壊して液中に核酸を遊離させる作用を兼ね備えるもの、すなわち細胞溶解液であることが好ましい。核酸捕捉液として使用可能な細胞溶解液としては、カオトロピック物質、EDTA等のキレート剤、トリス塩酸等を含有する緩衝液が挙げられる。細胞溶解液には、TritonX-100等の界面活性剤を含めることもできる。カオトロピック物質としては、グアニジン塩酸塩、グアニジンイソチオシアン酸塩、ヨウ化カリウム、尿素等が挙げられる。細胞溶解液は、上記の他に、プロテアーゼK等のタンパク質分解酵素や各種の緩衝剤、塩類、およびその他の各種補助剤、ならびにアルコール等の有機溶剤等を含んでいてもよい。これらの物質の存在下で、核酸は、シリカ粒子等の表面に特異的に結合する。そのため、核酸を含む生体試料と核酸捕捉粒子とを細胞溶解液中に添加すれば、核酸捕捉粒子の表面に核酸が選択的に結合する。
<洗浄液>
 洗浄液は、粒子表面等に付着した夾雑物の除去に用いられる。洗浄液としては、核酸が粒子表面に固定された状態を保持したまま、核酸以外の成分(タンパク質、糖、脂質等)や、細胞の溶解に用いられた試薬等を洗浄液中に遊離させ得るものであればよい。洗浄液としては、例えば、塩化ナトリウム、塩化カリウム、硫酸アンモニウム等の高塩濃度水溶液、エタノール、イソプロパノール等のアルコール水溶液等が挙げられる。
<核酸回収液>
 核酸回収液は、核酸捕捉粒子の表面に結合した核酸を液中に回収するために用いられる。粒子表面に結合した核酸の液中への回収方法としては、核酸が粒子表面に結合したままの状態で粒子を回収する方法、および粒子表面に結合した核酸を液中に溶出させて溶液として回収する方法が挙げられる。核酸が粒子表面に結合したままの状態で回収を行う場合、核酸回収液としては、上記洗浄液と同様の組成を有する水溶液が好ましく用いられる。核酸を液中に溶出させる場合、核酸回収液としては、核酸捕捉粒子の表面に結合した核酸を粒子表面から溶出させるための核酸溶出液が用いられる。
 核酸溶出液としては、水または低濃度の塩を含む緩衝液を用いることができる。具体的には、トリス緩衝液、リン酸緩衝液、蒸留水等を用いることができる。中でも、pH7~9に調整された5~20mMトリス緩衝液を用いることが一般的である。表面に核酸が結合した粒子を核酸溶出液中に移動させることにより、粒子表面から核酸を溶出させ、核酸溶出液中に核酸を回収できる。
[水相分離用媒体]
 水相分離用媒体は、2以上の水系液体に接するように容器内に配置され、容器内を複数の空間に分離する。分離用媒体により仕切られた空間のそれぞれに、細胞溶解液、洗浄液、核酸回収液等の水系液体が装填される。
 複数の水系媒体間の混入を防止するために、水相分離用媒体としては、水に不溶または難溶の物質が用いられる。水相分離用媒体は水に不溶または難溶であり、水系液体と混和しないものであれば、液状態でも(半)固体状でもよい。
 液状の分離用媒体としては、アルカン等の炭化水素類、パーフルオロアルカン類、ミネラルオイル、シリコーンオイル、脂肪酸、脂肪酸エステル、脂肪酸アミド、脂肪酸ケトン、脂肪酸アミン類等が挙げられる。(半)固体状の分離用媒体は、核酸捕捉粒子が貫通可能であり、かつ粒子の貫通孔を介した水系液体の混入が生じ難いものが好ましく、かかる観点からゲル状物質が好ましく用いられる。ゲル内に粒子が進入し、粒子がゲル内を移動すると、ゲルは穿孔されるが、ゲルの復元力による自己修復作用により、ゲルに形成された孔は直ちに塞がれる。そのため、粒子による貫通孔を介した水系液体の流入は、ほとんど生じない。
 分離用媒体として使用可能なゲルの材料や組成等は、特に限定されず、物理ゲルでも化学ゲルでもよい。例えば、WO2012/086243号に記載されているように、水に不溶または難溶の液体物質を加熱し、加熱された当該液体物質にゲル化剤を添加した後、ゾル・ゲル転移温度以下に冷却することにより、物理ゲルが形成される。WO2015/001629号に記載されているように、シリコーンゲル等の化学ゲルは、容器内への装填が容易であるとともに、使用環境(温度等)による特性変化が小さく、ゲル由来の夾雑物の発生が生じ難いとの利点を有する。
[粒子操作用容器]
 粒子操作用容器は、上記の水系液体および水相分離用媒体を収容するものである。粒子操作用容器内での粒子操作により、核酸の分離精製が行われる。粒子操作用容器は、生体試料や核酸捕捉粒子を容器内に装填するための開口を有している。粒子操作用容器の開口は閉鎖可能であってもよい。生体試料および核酸捕捉粒子を容器内に装填後に、開口を閉鎖して容器内を密閉系とすることにより、外部からのコンタミネーションを防止できる。開口の閉鎖は、蓋や栓等の封止部材による封止、開口部分の熱融着等、適宜の方法により行い得る。
 粒子操作用容器は、水系液体および水相分離用媒体を保持できるものであれば、その材質や形状は特に限定されない。容器の形状としては、内径1~2mm程度、長さ50mm~200mm程度の管状体や、幅1~2mm程度、深さ0.5~1mm程度、長さ50mm~200mm程度の直線状溝が形成された平面板材の上面に、別の平面板材を貼り合わせた構造体等が挙げられる。
 容器が管状体である場合、管の横断面形状は特に限定されず、円形、楕円形、多角形等適宜の形状であってよい。生体試料や粒子を管状体に装填する際の操作性の観点から、図1に示すように、管状の容器は、開口端がより広い内径を有するように形成されていてもよい。粒子操作用容器の形状は管状や面状に限定されず、粒子の移動経路が、十字あるいはT字等の分岐を有する構造であってもよい。また、エッペンドルチューブ等の錐形状の容器を用いてもよい。
 粒子操作用容器の材料としては、ポリプロピレンやポリエチレン等のポリオレフィン、テトラフルオロエチレン等のフッ素系樹脂、ポリ塩化ビニル、ポリスチレン、ポリカーボネート、環状ポリオレフィン等の有機材料;セラミック、ガラス、シリコーン、金属等の無機材料が挙げられる。核酸捕捉粒子として磁性粒子が用いられる場合、容器の外部からの磁場操作(例えば容器外壁面に沿った磁石の移動)により粒子操作が行われる。この場合、容器の材料は磁場を透過可能であることが好ましい。粒子操作中あるいは粒子操作後に、光学的測定が行われる場合や、光照射が行われる場合は、光透過性を有する材料が好ましく用いられる。また、容器が光透過性であれば、容器内の粒子操作の状況を目視確認できることからも好ましい。
 粒子操作用容器は一体成型されたものでもよく、複数の部材の組合わせにより構成されていてもよい。容器が複数の部材の組合わせにより構成されている場合、組み合わせ部分で容器が分離可能であってもよい。また、容器が一体成型されている場合でも、局所的に容器壁面の厚みが小さい部分(分離線)を設ける等の方法により、容器が分離可能に構成されていてもよい。粒子操作用容器が分離可能に構成されている場合、粒子操作による前処理の終了後に、核酸を回収後の液体(核酸回収液)が含まれている部分を他の部分から分離することにより、検査対象の核酸が含まれる容器を小型化し、収納効率を改善できる。
[個体識別用核酸]
 本発明のキットには、個体識別用核酸が含まれる。個体識別用核酸は、生体試料に含まれる核酸に対して非相補的な塩基配列からなる識別配列を含んでいる。複数のキットのそれぞれに含まれる個体識別用核酸の識別配列は互いに異なっている。キットを用いて核酸回収液中に回収された核酸は、生体試料由来の核酸と個体識別用核酸とを含んでいる。
 一般に、核酸等の分離精製に用いられるキットには、個体ごとに番号等のコードが付されており、キットに付されたコードと検体とを照合することにより、検体の識別が行われている。キットを用いて分離された核酸は、キットに含まれる粒子操作容器から別の容器に移し替えられて、増幅や塩基配列解析が行われる。そのため、容器の取り違えやコンタミネーション等が生じると、目的の検体とは異なる検体の塩基配列を解析する結果を招来する。
 本発明のキットを用いた場合、核酸回収液中の核酸は、検体由来の核酸と個体識別用核酸とを含んでおり、以降のプロセスで核酸が別の容器に移し替えられた際にもこの共存状態が保持される。塩基配列解析の際に、検体由来の核酸(配列決定対象)の塩基配列に加えて、個体識別用核酸の識別配列部分の塩基配列を解析し、解析により得られた識別配列部分の塩基配列が、キットに含まれていた個体識別用核酸の識別配列の塩基配列と一致するか否かの照合を行う。識別配列部分の塩基配列が一致していれば、目的の検体を正しく解析していることを保証できる。
 識別配列の塩基数は特に限定されないが、十分な個体数を識別するためには、5塩基以上が好ましく、7塩基以上が好ましい。5塩基の場合、4=1024通りの識別配列を生成できる。ただし、識別配列部分が、検体である生体試料に含まれる核酸と特異的にハイブリダイズすると、その後の増幅反応や配列解析に悪影響を及ぼし、誤検出の原因となる。そのため、識別配列は、生体試料に含まれる核酸に対して非相補的な塩基配列から選択される。
 固相合成法や液相合成法等の公知の方法により、所望の塩基配列を有する個体識別用核酸を合成できる。個体識別用核酸としてPNAを用いる場合には、ペプチド核酸モノマーを用いて、Fmoc法やtBoc法等のペプチド合成法により、所望の配列を有する個体識別用核酸を合成すればよい。個体識別用核酸は、蛍光標識、ラジオアイソトープ標識、電気化学的標識、アフィニティー標識、エピトープ標識等により標識されていてもよい。
 個体識別用核酸は、識別配列の3’側および/または5’側に、他の塩基配列を含んでいてもよい。例えば、個体識別用核酸が、識別配列の3’側および/または5’側に、共通の塩基配列を含んでいる場合、当該共通の塩基配列を識別配列の始点または終点として認識できる。また、識別配列の5’側に、塩基配列解析用フローセルや粒子等の担体と結合可能なアダプタ配列を含めておけば、識別配列の塩基配列の解析を容易に行い得る。
 識別配列の3’側および5’側のいずれか一方に、生体試料に含まれる塩基配列解析対象の核酸(標的)に対して相補的な塩基配列が含まれていてもよい。この場合、個体識別用核酸をFWプライマーまたはRWプライマーのいずれか一方としてPCRを行い得る。そのため、個体識別用核酸の相補的配列部分が塩基配列解析対象の核酸とをアニールさせ、解析対象の核酸と識別配列のアンチセンス配列とが連結されたフラグメントを増幅できる。このフラグメントの塩基配列を解析することにより、塩基配列解析対象の核酸の塩基配列と、個体識別用核酸の識別配列の塩基配列とを同時に解析できる。
 識別配列の3’側および5’側の両方に、生体試料に含まれる塩基配列解析対象の核酸に対して相補的な塩基配列が含まれてもよい。例えば、識別配列の3’側にFWプライマーと同一のセンス配列、5’側にRWプライマーのアンチセンス配列を有する個体識別用核酸を用いれば、PCRによる塩基配列解析対象の核酸の増幅と並行して、個体識別用核酸のセンスフラグメントおよびアンチセンスフラグメントを増幅できる。
 識別配列の3’側に生体試料に含まれる塩基配列解析対象の核酸に対して相補的な塩基配列(相補配列)を含み、識別配列の5’側にアダプタ配列を含む場合、すなわち、個体識別用核酸が5’側からアダプタ配列、識別配列および相補配列を含む場合、PCRにより、塩基配列解析対象の核酸の塩基配列と、個体識別用核酸の識別配列の塩基配列と、アダプタ配列とを有するフラグメントを増幅して、個体識別用核酸の識別配列の塩基配列とを同時に解析できる。
 上記の様に、個体識別用核酸に含まれる識別配列以外の塩基配列は、塩基配列の解析方法等に応じて適宜に設計すればよい。
[キットの構成および前処理操作]
<第一形態>
 本発明の核酸前処理用キットの第一形態は、キットを構成する水相分離用媒体および水系液体の全てが、粒子操作用容器内に装填されている。このキットを用いた前処理操作では、粒子操作用容器に血液等の生体試料が添加され、粒子操作用容器内で、核酸捕捉粒子に核酸を結合させる。
 図1は、第一形態の前処理キットの構成例を示す模式断面図である。前処理キット1は、上部に開口を有する管状の粒子操作用容器10内に、容器底部から、核酸回収液38、第三水相分離用媒体23、第二洗浄液32、第二水相分離用媒体22、第一洗浄液31、第一水相分離用媒体21、および核酸捕捉液35が装填されている。水相分離用媒体21,22,23はゲル層であり、容器内壁面とゲル層で仕切られた空間内に水系液体31,32,33が装填されている。
 容器10の開口部には蓋13が開閉可能に取り付けられている。蓋13を開いた状態で容器10内に生体試料を添加後に、蓋を閉じることにより、容器の開口を閉鎖し、容器内を密閉系とすることができる。
 図1に示す形態では、核酸捕捉液としての細胞溶解液35中に、核酸捕捉粒子としての磁性粒子70が含まれている。核酸捕捉粒子は、予め細胞溶解液中に含まれていてもよく、細胞溶解液への生体試料の添加の直前に、細胞溶解液中に核酸捕捉粒子を添加してもよい。また、細胞溶解液への生体試料の添加と同時または生体試料の添加後に、細胞溶解液に核酸捕捉粒子を添加してもよい。すなわち、核酸捕捉粒子は、キット1内に予め含まれた状態で提供されてもよく、前処理キットの一構成要素として、キット1とは別に提供されてもよい。
 細胞溶解液中に生体試料と核酸捕捉粒子とを含む状態で撹拌を行い、液中で核酸捕捉粒子を分散させることにより、生体試料中の核酸が核酸捕捉粒子の表面に結合する。撹拌の方法は特に限定されず、ボルテックスミキサー等により容器10を振動させる方法、ピペッティング等により液流を発生させる方法、細胞溶解液中で粒子を移動させて撹拌する方法等が挙げられる。核酸捕捉粒子が磁性粒子である場合は、容器の外部から印加する磁場の強弱や方向を変化させることにより、細胞溶解液中で粒子を移動させ、分散させることができる。
 粒子表面に核酸を結合させた後、磁場操作により、粒子70を容器10の長手方向に移動させる。水相分離用媒体21を通過させ、第一洗浄液31中に粒子を移動させて、洗浄液中で粒子を分散させることにより、洗浄が行われる。水相分離用媒体22を通過させ、第二洗浄液32中で洗浄を行った後、水相分離用媒体23を通過させ、粒子70を核酸回収液38に移動させる。核酸回収液38が核酸溶出液である場合、核酸溶出液中で核酸捕捉粒子70を分散させることにより、粒子表面に結合していた核酸が溶出し、核酸回収液38中に核酸を回収できる。
 核酸回収液38中に、予め個体識別用核酸を含めておくことにより、生体試料(検体)由来の核酸と個体識別用核酸との混合物が得られる。個体識別用核酸は、キット内の核酸回収液38以外に含めておくこともできる。例えば、核酸捕捉液(細胞溶解液)中に個体識別用核酸を含めておけば、核酸捕捉液中で核酸捕捉粒子を分散させることにより、生体試料由来の核酸に加えて、個体識別用核酸が、粒子表面に結合する。また、個体識別用核酸を、洗浄液等の他の水系液体中に含めておけば、核酸捕捉粒子が当該水系液体中に移動した際に、粒子表面に個体識別用核酸が結合する。生体試料由来の核酸と個体識別用核酸とが結合した核酸捕捉粒子を磁場操作等により核酸回収液38中へ移動させることにより、核酸回収液38中に、生体試料由来の核酸と個体識別用核酸の混合物を回収できる。
 予め個体識別用核酸を表面に結合させた核酸捕捉粒子を用いてもよい。個体識別用核酸を結合させた核酸捕捉粒子は、予め核酸捕捉液中に含まれていてもよく、核酸捕捉液への生体試料の添加の直前、添加と同時または添加後に、核酸捕捉液中に核酸捕捉粒子を添加してもよい。核酸捕捉液中に核酸捕捉粒子および個体識別用核酸が含まれた状態でキットが提供される場合、個体識別用核酸は核酸捕捉粒子の表面に結合している。
 粒子操作用容器内に回収された核酸は、必要に応じてPCR等による増幅を行った後、塩基配列解析装置により配列の解析が行われる。回収後の核酸増幅や塩基配列解析等の操作が粒子操作と別の場所で実施される場合は、容器の開放に起因するコンタミネーション等を防止する観点から、核酸試料が粒子操作用容器内に収容された状態で別の場所への移動(デリバリー)を行うことが好ましい。
 粒子操作用容器が分離可能に構成されている場合は、核酸回収液が含まれている部分を他の部分から分離して、分離後の容器をデリバリーに供してもよい。デリバリーに用いる容器収納ラック等への収納効率を高める観点から、粒子操作用容器は、核酸回収液の装填箇所の近傍で分離されることが好ましい。例えば、図1に示す形態では、核酸回収液38の装填箇所と核酸回収液38に接して配置された水相分離用媒体23の装填箇所との境界部、または水相分離用媒体23の装填箇所で、容器が分離されることが好ましい。水相分離用媒体23の装填箇所で容器が分離される場合、分離後の容器の内壁面と水相分離用媒体23とで構成される空間内に核酸回収液38が封入された閉鎖系が維持されるため、コンタミネーションのリスクを低減できる。
 図1に示すように、容器10には、外部から識別可能な識別情報14が付されていることが好ましい。識別情報としては、文字列、バーコード、二次元コード等の光学的手法により認識可能な情報や、ICチップ、ICタグ等の電磁気的手法により認識可能な情報が挙げられる。この識別情報は、キットに含まれる個体識別用核酸の塩基配列と関連付けられている。
 容器に付された識別情報と個体識別用核酸の識別配列との関連付けは、任意の手法で行い得る。識別情報が文字列である場合、識別配列の塩基配列をそのまま文字列として記載する方法や、塩基配列をコード化する方法等が挙げられる。DNAの塩基配列のコード化の一例としては、4種類の塩基(A,G,C,T)を2ビットの情報(00,01,10,11)に置換して数値化する方法が挙げられる。1塩基が2ビットの情報を有するため、識別配列が5塩基の場合は10ビット、10塩基の場合は20ビットの識別情報を生成できる。コード化された識別情報は暗号化されていてもよい。識別情報は、数字または文字として容器に付されてもよく、バーコード、二次元コード、IC等の機械的に読み取り可能な識別情報として容器に付されてもよい。
 容器に付された識別情報と個体識別用核酸の識別配列とは、データベースを介して関連付けられてもよい。例えば、番号をコード化したものを識別情報として容器に付しておき、容器の通し番号と、当該容器内に含まれる個体識別用核酸の識別配列とをデータベース化することにより、容器の識別情報と識別配列とを関連付けることができる。
 容器10に識別情報14を付す位置は特に限定されず、核酸回収液中に核酸を回収後に識別情報が読み取り可能であればよい。粒子操作用容器が分離可能に構成されている場合は、核酸回収液と容器の識別情報との一体性を保持可能な位置に、識別情報が付されていることが好ましい。例えば、粒子操作用容器が核酸回収液の装填箇所の近傍で分離可能に構成されている場合は、核酸回収液の装填箇所に容器の識別情報が付されていることが好ましい。
<第二形態>
 図2は、第二形態の前処理キットの構成例を示す模式断面図である。第二形態の前処理キットは、粒子操作用容器10に加えて、核酸捕捉操作用容器15を含む。上記第一形態では、核酸捕捉液および核酸回収液を含む全ての水系液体が粒子操作用容器10内に装填されているのに対して、第二形態では、核酸捕捉液35が核酸捕捉操作用容器15に装填されている。すなわち、第二形態の前処理キットは、粒子操作用容器10内に水系液体31,32,38および水相分離用媒体21,22,23が装填された第一キット101と、核酸捕捉操作用容器15内に核酸捕捉液35が装填された第二キット102との組み合わせにより構成される。このキットを用いた前処理操作では、核酸捕捉操作用容器15に血液等の生体試料が添加され、核酸捕捉粒子への核酸の結合が行われる。
 磁性シリカ粒子等の核酸捕捉粒子を液中で長時間保存すると、粒子の凝集が生じる場合がある。また、生体試料に含まれる夾雑物、中でも細胞の溶解等により生成する変性タンパク質は、粒子の表面をマスクし、粒子同士を付着させ凝集させる作用を有する。核酸捕捉粒子が凝集すると、粒子表面と核酸との接触機会が減少するため、粒子表面への核酸の結合が阻害される傾向がある。そのため、核酸の回収効率を高めるためには、核酸捕捉粒子への核酸の結合の際に、粒子の凝集体を粉砕して凝集を解消するように、容器に強い振動を与えて撹拌を行うことが好ましい。
 第二形態のキットでは、水相分離用媒体21,22,23および水系液体31,32,38等が装填された粒子操作用容器10とは別に核酸捕捉操作用容器15が用意される。この核酸捕捉操作用容器15内に核酸捕捉液35および磁性粒子70が装填された状態で、核酸捕捉粒子表面への核酸の結合が行われる。ボルテックスミキサー等を用いて核酸捕捉操作用容器15に強い振動を与えても、粒子操作用容器10内に装填された水相分離用媒体や水系液体は何ら影響を受けず、容器内壁面と水相分離用媒体により仕切られた空間内に水系液体が装填された状態を維持できる。そのため、粒子操作用容器内で核酸捕捉粒子表面への核酸の結合が行われる場合よりも、より強い外力を与えて撹拌を実施できる。
 また、核酸捕捉操作用容器は、水相分離用媒体や核酸回収液等を収容するためのスペースを設ける必要がないため、粒子操作用容器よりもコンパクトであり、容器形状の自由度も高い。そのため、撹拌による液中での核酸捕捉粒子の分散に適した形状を採用できる。したがって、核酸捕捉操作用容器内で核酸捕捉粒子表面への核酸の結合が行われることにより、核酸捕捉粒子が凝集している場合でも、液中での核酸捕捉粒子の分散効率を向上し、核酸の回収効率を高めることができる。
 核酸捕捉操作用容器15は、生体試料や核酸捕捉粒子の容器内への添加、および容器からの取出しを行うための開口を有している。核酸捕捉操作用容器の開口は閉鎖可能であってもよい。開口の閉鎖には、蓋や栓等の開閉可能な封止部材を用いることが好ましい。
 核酸捕捉操作用容器は、細胞溶解液等の核酸捕捉液および核酸捕捉粒子を保持できるものであれば、その材質や形状は特に限定されない。容器の形状は、液中での粒子の分散を効率的に行い得るように設計されることが好ましい。容器の材料としては、粒子操作用容器を構成する材料として前述したもの等を採用できる。
 図2に示す形態では、核酸捕捉操作用容器15に装填された細胞溶解液35中に、核酸捕捉粒子としての磁性粒子70が含まれている。核酸捕捉粒子は、予め細胞溶解液中に含まれていてもよく、使用直前に細胞溶解液に添加してもよい。また、細胞溶解液への生体試料の添加と同時または生体試料の添加後に、細胞溶解液に核酸捕捉粒子を添加してもよい。すなわち、核酸捕捉粒子は、第二キット102内に予め含まれた状態で提供されてもよく、前処理キットの一構成要素として、第二キット102とは別に提供されてもよい。
 生体試料中の核酸の核酸捕捉粒子への結合は、第一形態と同様の方法により行い得る。前述のように、本形態では、核酸捕捉操作用容器内で核酸捕捉粒子表面への核酸の結合が行われるため、液中での粒子の分散効率を向上できる。これに伴って、粒子表面に結合する核酸の量を増大させ、核酸の回収効率を高めることができる。
 核酸を結合後の核酸捕捉粒子を粒子操作用容器10内に移動させ、その後は第一形態と同様、磁場操作により粒子70を容器10で移動させ、核酸回収液38で核酸が回収される。核酸捕捉操作用容器15から粒子操作用容器10へ核酸捕捉粒子を移動させる際には、核酸捕捉液とともに粒子を移動させてもよく、粒子のみを移動させてもよい。粒子のみを粒子操作用容器10へ移動させる場合、粒子表面に核酸捕捉液が付着していても差し支えない。
 図2では、粒子操作用容器10の開口端側の最上層として水相分離用媒体21が配置された形態が示されているが、最上層は洗浄液等の水系液体でもよい。特に、核酸を結合後の粒子のみを、核酸捕捉操作用容器から粒子操作容器へと移動する場合は、粒子操作容器内での粒子操作の工程を簡素化する観点から、容器の開口端側に配置された水系液体に粒子を添加することが好ましい。
 第二形態においても、キット内に予め個体識別用核酸を含めておくことにより、核酸回収液38中に、生体試料由来の核酸と個体識別用核酸との混合物が得られる。個体識別用核酸は、第一キット101の粒子操作用容器10内、第二キット102の核酸捕捉操作用容器15内のいずれに含まれていてもよい。また、予め個体識別用核酸を表面に結合させた粒子を核酸捕捉操作用容器に添加することにより、核酸捕捉操作用容器15内に個体識別用核酸を含めることもできる。第二の形態においても、核酸溶液中に、生体試料由来の核酸と個体識別用核酸の混合物を回収できる。
 粒子操作用容器内と核酸捕捉操作用容器内の両方に個体識別用核酸が含まれていてもよい。粒子操作用容器内と核酸捕捉操作用容器内の両方に個体識別用核酸が含まれる場合、それぞれの個体識別用核酸の識別配列は同一でも異なっていてもよい。粒子操作用容器内に含まれる個体識別用核酸の識別配列と核酸捕捉操作用容器内に含まれる個体識別用核酸の識別配列とが同一である場合、塩基配列解析の際に識別配列が1種のみ検出されることを確認すれば、検体の取り違えやコンタミネーションがないことを確認できる。
 粒子操作用容器内に含まれる個体識別用核酸の識別配列と核酸捕捉操作用容器内に含まれる個体識別用核酸の識別配列とが異なる場合、塩基配列解析の際に両方の識別配列の塩基配列を解析することにより、検体の取り違えやコンタミネーションがないことを確認できる。粒子操作用容器内に含まれる個体識別用核酸と核酸捕捉操作用容器内に含まれる個体識別用核酸のそれぞれに異なる機能を持たせてもよい。例えば、一方の個体識別用核酸が識別配列に加えてFWプライマーに相当する塩基配列を有し、他方の個体識別用核酸が識別配列に加えてRWプライマーに相当する塩基配列を有するように、個体識別用核酸を設計すれば、これら2種の個体識別用核酸を一対のプライマーとしてPCRを実施できる。
 第二形態においても、粒子操作用容器10は核酸回収液装填箇所の近傍で分離可能に構成されていてもよい。また、粒子操作用容器10には、個体識別用核酸の塩基配列と関連付けられた識別情報14が付されていることが好ましい。粒子操作用容器10内に個体識別用核酸が含まれる場合、核酸捕捉操作用容器に付された識別情報14と識別配列の塩基配列との関連付けは第一形態と同様に行い得る。
 核酸捕捉操作用容器15内に個体識別用核酸が含まれる場合(個体識別用核酸が結合した核酸捕捉粒子が核酸捕捉操作用容器内に添加される場合を含む)は、核酸捕捉操作用容器15内で生体試料(検体)由来の核酸と個体識別用核酸との混合物が得られる。そのため、核酸捕捉操作用容器15から粒子操作用容器10へ試料を移動させる際に容器の取り違えが発生しても、塩基配列解析の際に個体識別用核酸の識別配列の塩基配列を解析すれば、取り違えに起因する誤検出を検知できる。
 核酸捕捉操作用容器15内に個体識別用核酸が含まれる場合は、核酸捕捉操作用容器15に、容器外部から認識可能な識別情報19が付されていることが好ましい。核酸捕捉操作用容器15に付された識別情報19は、個体識別用核酸の識別配列と関連付けられていることが好ましい。
 核酸捕捉操作用容器15内の試料を粒子操作用容器10へ移動させた後にもトレーサビリティーを確保するためには、粒子操作用容器10および核酸捕捉操作用容器15のそれぞれに識別情報14,19が付され、これらの識別情報が関連付け可能であることが好ましい。例えば、核酸捕捉操作用容器15と粒子操作用容器10とを予め関連付けておき、同一の識別情報を付すことにより、識別情報19と識別情報14とを関連付けることができる。
 識別情報の読み違いや混同等のヒューマンエラーに起因する誤検出を低減するためには、キット使用時に核酸捕捉操作用容器15の識別情報19と粒子操作用容器10の識別情報14との関連付けを行うことが好ましい。例えば、核酸捕捉操作用容器15内の試料を粒子操作用容器10へ移動させる際に、識別情報19と識別情報14の両方を読み取ることにより、両者の関連付けを行うことができる。また、核酸捕捉操作用容器15にシール等を用いて識別情報19を剥離可能に添付しておき、核酸捕捉操作用容器15内の試料を粒子操作用容器10へ移動させる際に、識別情報19を核酸捕捉操作用容器15から剥離して、粒子操作用容器10に添付することにより、両者の識別情報を関連付けてもよい。
[塩基配列解析]
 本発明の塩基配列解析方法では、上記の前処理キットで回収された核酸の塩基配列の解析が行われる。塩基配列の解析方法は特に限定されない。前処理キットから回収された核酸は、塩基配列解析に供する前に、断片化、ライゲーション、増幅等のさらなる処理が行われてもよい。これらの処理は、塩基配列の解析方法に応じて適宜に行い得る。これらの処理に供するために、キットから回収した核酸が別の容器に移し替えられた場合でも、検体由来の核酸と個体識別用核酸との共存状態が保持される。
 塩基配列の解析では、生体試料中の核酸の塩基配列に加えて、前記個体識別用核酸の識別配列の塩基配列の解析が行われる。塩基配列解析により得られた識別配列部分の塩基配列が、キットに含まれていた個体識別用核酸の識別配列の塩基配列と一致するか否かの照合が行われる。識別配列の塩基配列が一致しない場合は、検体の取り違え等が生じていると考えられる。キット内の個体識別用核酸が1種のみであるにも関わらず複数の識別配列が検出された場合は、コンタミネーションが生じていると考えられる。このように、識別配列部分の塩基配列を解析することにより、検体の取り違えやコンタミネーションによる誤検出を検知可能である。
 上記のように、本発明のキットを用いた核酸の分離精製操作では、生体試料からの核酸の分離精製を密閉容器内で実施可能であるため、多数の検体試料を同時に取り扱う場合でも、試料間のコンタミネーション等の不具合のリスクを低減可能である。また、万が一、コンタミネーションや検体の取り違えが生じた場合でも、個体識別用核酸の識別配列部分の塩基配列の照合により、これらに基づく誤検出を検知できる。そのため、本発明のキットを用いて核酸の分離精製を実施することにより、核酸の塩基配列解析による遺伝子検査等の信頼性が高められる。
   10       粒子操作用容器
   15       核酸捕捉操作用容器
   21,22,23 水相分離用媒体
   31,32    洗浄液
   35       核酸捕捉液
   38       核酸回収液
   14,19    識別情報
   70       核酸捕捉粒子

Claims (16)

  1.  核酸および夾雑物を含む生体試料から核酸を分離するための核酸前処理キットであって、
     閉鎖可能であってよい開口を有する粒子操作用容器;核酸と選択的に結合可能な核酸捕捉粒子;水に不溶または難溶である水相分離用媒体;複数種の水系液体;および個体識別用核酸を含み、
     前記複数種の水系液体のうちの2種は、前記生体試料に含まれる核酸を前記核酸捕捉粒子に結合させるための核酸捕捉液、および前記核酸捕捉粒子の表面に結合した核酸を回収するための核酸回収液であり、
     少なくとも、前記水相分離用媒体、および前記核酸回収液は、前記粒子操作用容器内に装填されており、
     前記個体識別用核酸は、前記複数種の水系液体のうちの少なくとも1つに含まれているか、または前記核酸捕捉粒子の表面に結合しており、
     前記個体識別用核酸の塩基配列は、前記生体試料に含まれる核酸に対して非相補的な塩基配列からなる識別配列を含む、核酸前処理キット。
  2.  前記水相分離用媒体、および前記水系液体の全てが、前記粒子操作用容器内に装填されている、請求項1に記載の核酸前処理キット。
  3.  さらに、核酸捕捉操作用容器を含み、
     前記核酸捕捉液が、前記核酸捕捉操作用容器に装填されている、請求項1に記載の核酸前処理キット。
  4.  前記核酸捕捉粒子が、前記核酸捕捉液中に含まれている、請求項1~3のいずれか1項に記載の核酸前処理キット。
  5.  前記個体識別用核酸が、核酸回収液中に含まれている、請求項1~4のいずれか1項に記載の核酸前処理キット。
  6.  前記粒子操作用容器に、容器外部から認識可能な識別情報が付されており、
     前記粒子操作用容器に付された前記識別情報と前記識別配列の塩基配列とが関連付けされている、請求項1~5のいずれか1項に記載の核酸前処理キット。
  7.  前記個体識別用核酸が、前記核酸捕捉液に含まれているか、または前記核酸捕捉粒子の表面に結合しており、
     前記核酸捕捉操作用容器に、容器外部から認識可能な識別情報が付されており、
     前記核酸捕捉操作用容器に付された前記識別情報と前記識別配列の塩基配列とが関連付けされている、請求項4に記載の核酸前処理キット。
  8.  前記粒子操作用容器に、容器外部から認識可能な識別情報が付されており、
     前記核酸捕捉操作用容器に付された前記識別情報と、前記粒子操作用容器に付された前記識別情報とが対応付け可能である、請求項7に記載の核酸前処理キット。
  9.  前記粒子操作用容器の識別情報が、前記核酸回収液の装填箇所に付されている、請求項6または8に記載の核酸前処理キット。
  10.  前記識別情報が、光学的手法または電磁気的手法により認識可能な形態で付されている、請求項6~9のいずれか1項に記載の核酸前処理キット。
  11.  前記水相分離用媒体がゲルである、請求項1~10のいずれか1項に記載の核酸前処理キット。
  12.  前記核酸捕捉粒子が磁性粒子である、請求項1~11のいずれか1項に記載の核酸前処理キット。
  13.  前記核酸回収液は、前記核酸捕捉粒子の表面に結合した核酸を粒子表面から溶出させるための核酸溶出液である、請求項1~12のいずれか1項に記載の核酸前処理キット。
  14.  前記粒子操作用容器は、前記核酸回収液の装填箇所の近傍で分離可能に構成されている、請求項1~13のいずれか1項に記載の核酸前処理キット。
  15.  前記個体識別用核酸は、前記識別配列の3’側および5’側の少なくともいずれか一方に、前記生体試料に含まれる核酸に対して相補的な塩基配列を含む、請求項1~14のいずれか1項に記載の核酸前処理キット。
  16.  請求項1~15のいずれか1項に記載のキットを用いて、前記核酸回収液中に、生体試料中の核酸および前記個体識別用核酸を回収するステップ;および
     前記回収した核酸の塩基配列を解析するステップ、を有し
     塩基配列の解析において、生体試料中の核酸の塩基配列に加えて、前記個体識別用核酸の識別配列の塩基配列を解析し、
     塩基配列解析により得られた識別配列部分の塩基配列が、前記キットに含まれていた個体識別用核酸の識別配列の塩基配列と一致するか否かの照合を行う、塩基配列解析方法。
PCT/JP2017/001468 2016-01-19 2017-01-18 核酸前処理キット、および塩基配列解析方法 WO2017126521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/071,006 US20190024142A1 (en) 2016-01-19 2017-01-18 Nucleic acid pretreatment kit, and base sequence analysis method
CN201780007394.5A CN108541272A (zh) 2016-01-19 2017-01-18 核酸前处理试剂盒和碱基序列分析方法
US17/155,158 US20210139954A1 (en) 2016-01-19 2021-01-22 Nucleic acid pretreatment kit, and base sequence analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016008016A JP2017127224A (ja) 2016-01-19 2016-01-19 核酸前処理キット、および塩基配列解析方法
JP2016-008016 2016-01-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/071,006 A-371-Of-International US20190024142A1 (en) 2016-01-19 2017-01-18 Nucleic acid pretreatment kit, and base sequence analysis method
US17/155,158 Division US20210139954A1 (en) 2016-01-19 2021-01-22 Nucleic acid pretreatment kit, and base sequence analysis method

Publications (1)

Publication Number Publication Date
WO2017126521A1 true WO2017126521A1 (ja) 2017-07-27

Family

ID=59362403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001468 WO2017126521A1 (ja) 2016-01-19 2017-01-18 核酸前処理キット、および塩基配列解析方法

Country Status (4)

Country Link
US (2) US20190024142A1 (ja)
JP (1) JP2017127224A (ja)
CN (1) CN108541272A (ja)
WO (1) WO2017126521A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807759B (zh) * 2022-04-06 2023-07-01 關鍵禾芯科技股份有限公司 核酸篩檢方法及其篩檢套組

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091891B2 (ja) * 2018-07-06 2022-06-28 株式会社島津製作所 磁性体粒子操作用容器
JP7139931B2 (ja) * 2018-12-14 2022-09-21 株式会社島津製作所 磁性体粒子操作用容器及び磁性体粒子操作用装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060862A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 試料取違え防止用ラベル核酸
WO2012086243A1 (ja) * 2010-12-21 2012-06-28 株式会社 島津製作所 管内で対象成分を操作するためのデバイス及び方法
WO2012176598A1 (ja) * 2011-06-24 2012-12-27 株式会社島津製作所 容器に収容された物質の分割方法
JP2013226506A (ja) * 2012-04-25 2013-11-07 Shimadzu Corp 液充填器具及びその液充填器具を用いたキャピラリへの液充填方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215821A1 (en) * 1999-04-20 2003-11-20 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US6484104B2 (en) * 2001-02-15 2002-11-19 Klaus Abraham-Fuchs Network for evaluating data obtained in a biochip measurement device
BRPI0908876A2 (pt) * 2008-02-29 2018-03-13 Univ Northwestern barreiras para facilitação de reações biológicas
US9347056B2 (en) * 2012-10-26 2016-05-24 Seiko Epson Corporation Nucleic acid extraction device, and nucleic acid extraction method, nucleic acid extraction kit, and nucleic acid extraction apparatus, each using the same
WO2015001629A1 (ja) * 2013-07-03 2015-01-08 株式会社島津製作所 粒子操作方法および粒子操作用デバイス
US10533170B2 (en) * 2014-03-14 2020-01-14 Shimadzu Corporation Method for manipulating magnetic particles and device for manipulating magnetic particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060862A (ja) * 2007-09-07 2009-03-26 Toppan Printing Co Ltd 試料取違え防止用ラベル核酸
WO2012086243A1 (ja) * 2010-12-21 2012-06-28 株式会社 島津製作所 管内で対象成分を操作するためのデバイス及び方法
WO2012176598A1 (ja) * 2011-06-24 2012-12-27 株式会社島津製作所 容器に収容された物質の分割方法
JP2013226506A (ja) * 2012-04-25 2013-11-07 Shimadzu Corp 液充填器具及びその液充填器具を用いたキャピラリへの液充填方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807759B (zh) * 2022-04-06 2023-07-01 關鍵禾芯科技股份有限公司 核酸篩檢方法及其篩檢套組

Also Published As

Publication number Publication date
JP2017127224A (ja) 2017-07-27
CN108541272A (zh) 2018-09-14
US20210139954A1 (en) 2021-05-13
US20190024142A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US20220176370A1 (en) Method for purifying and testing biomolecules from biological samples
US11274291B2 (en) Sample preparation method and apparatus
US9517472B2 (en) Device and method for processing target component in tube
US20210139954A1 (en) Nucleic acid pretreatment kit, and base sequence analysis method
JP2022088380A (ja) コンビナトリアルバーコーディングのための方法および組成物
US5714380A (en) Closed vessel for isolating target molecules and for performing amplification
JP6350654B2 (ja) 磁性体粒子の操作方法
US20110207619A1 (en) Arrangement for processing a plurality of samples for analysis
US9695414B2 (en) Suspension container for binding particles for the isolation of biological material
US20030203491A1 (en) Gravitational flow purification system
JP6509913B2 (ja) 磁性体粒子操作用デバイスおよび磁性体粒子の操作方法
JP7138677B2 (ja) 核酸前処理キット、および塩基配列解析方法
US20220355310A1 (en) Manufacturing method of the operation pipe
KR20170115157A (ko) 임피던스를 이용한 유전자 분석용 비표지 전기적 센서 및 이를 이용한 랩온어칩 시스템
JP2021115493A (ja) 磁性体粒子の操作方法
JP2018161649A (ja) 磁性体粒子の操作方法および磁性体粒子操作用デバイス
US20110223589A1 (en) Solid Phase Nucleic Acid Extraction From Leukoreduced Blood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741398

Country of ref document: EP

Kind code of ref document: A1