WO2017126486A1 - Transformer for breaker circuit - Google Patents

Transformer for breaker circuit Download PDF

Info

Publication number
WO2017126486A1
WO2017126486A1 PCT/JP2017/001322 JP2017001322W WO2017126486A1 WO 2017126486 A1 WO2017126486 A1 WO 2017126486A1 JP 2017001322 W JP2017001322 W JP 2017001322W WO 2017126486 A1 WO2017126486 A1 WO 2017126486A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transformer
coil
breaker
primary coil
Prior art date
Application number
PCT/JP2017/001322
Other languages
French (fr)
Japanese (ja)
Inventor
島津 英一郎
貴之 小田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017126486A1 publication Critical patent/WO2017126486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/103Magnetic circuits with permanent magnets

Definitions

  • the present invention relates to a transformer for making it possible to use a circuit breaker for short-circuit protection in a DC circuit, and more particularly to a transformer that operates a circuit breaker while functioning as a current limiting device.
  • the present invention relates to a transformer that can effectively use a circuit breaker having a feature that the time until the circuit breaks is shortened as the value of the current flowing through the relay unit of the circuit breaker increases.
  • Patent Literature 1 when using a circuit breaker as a protective device, in order to prevent the inrush current due to a short circuit from exceeding the rated current of the circuit breaker, a method of suppressing an increase in current due to a short circuit by connecting an inductor called a current limiting coil in series are known (for example, Patent Literature 1 and Non-Patent Literature 1).
  • An object of the present invention is to provide a transformer for a breaker circuit capable of breaking a circuit by operating a breaker instantaneously when an overcurrent such as a short circuit occurs.
  • a transformer for a breaker circuit is a primary circuit provided by being connected in series or in parallel with the contact to a main circuit composed of a DC circuit provided with the contact of a circuit breaker that opens and closes a contact with an electromagnet.
  • a secondary coil provided in series with the electromagnet coil in a secondary circuit provided with a coil and an electromagnet coil for exciting the electromagnet of the circuit breaker, and from a current value flowing through the primary coil
  • the turn ratio of the primary coil and the secondary coil is set so that the value of the current flowing through the secondary coil becomes large.
  • the primary coil of the circuit breaker transformer is provided in the main circuit, the secondary coil is connected to the electromagnet coil of the circuit breaker, and the current flowing in the secondary coil is greater than the current value flowing in the primary coil.
  • the turn ratio of the primary coil and the secondary coil is set so that the value becomes large. For this reason, electric power corresponding to a large current change generated in the main circuit due to the short circuit is supplied to the electromagnet coil of the circuit breaker via the breaker circuit transformer.
  • the current value caused by the short circuit generated in the primary coil is further increased by supplying current to the electromagnet coil by changing the current in the transformer for the breaking circuit.
  • blocking speed improves and a circuit breaker can be operated before a short circuit current becomes large too much. As a result, the influence of the inrush current on various devices on the primary side main circuit can be suppressed low.
  • a circuit breaker can be used safely as a substitute for a fuse as a protective device for a short circuit in a main circuit to which a high voltage is applied. This solves the problem that the fuse must be replaced each time a short circuit occurs in the conventional circuit using the fuse as the protective device.
  • the circuit breaker transformer When the circuit breaker transformer is a cored transformer, a capacitor is provided in series or in parallel with the secondary coil so that the secondary coil is a resonant coil that resonates with the leakage flux of the primary coil. Also good. If a large current is input to the breaker circuit transformer, the core may be magnetically saturated and the breaker circuit transformer may not function. By making the secondary coil a resonant coil, even if the core can only store energy less than the breaking capacity of the circuit breaker, the leakage flux of the primary coil and the secondary coil resonate, eliminating the effects of magnetic saturation of the core can do.
  • Magnetic saturation occurs when the power energy flowing in the coil is stored in the core in the form of magnetic energy.
  • the portion where the primary coil is wound and the vicinity thereof are first magnetically saturated. If the magnetic flux generated in the primary coil flows smoothly to the secondary coil and electric power equivalent to the input is output from the secondary coil, magnetic saturation does not occur. Energy that is not extracted from the secondary coil is accumulated in the core and reaches saturation.
  • An air gap may be provided in a portion of the core portion constituting the first magnetic circuit where the primary coil and the secondary coil are not wound. If the air gap is not provided, the magnetic flux generated by the permanent magnet does not pass through the core portion around which the primary coil and the secondary coil are wound, and the primary coil of the core portion constituting the first magnetic circuit and the There is a possibility of passing through a portion where the secondary coil is not wound. In this case, the reverse bias action of the magnetic flux generated by the permanent magnet is reduced. However, by providing the air gap, the magnetic flux generated by the permanent magnet can easily pass through the core portion where the primary coil and the secondary coil are wound, and the magnetic flux generated by the permanent magnet acts efficiently as a reverse bias.
  • a circuit breaker includes the breaker transformer, and further includes a contact provided in the main circuit, an electromagnet that opens and closes the contact, and an electromagnet provided in the sub-circuit to excite the electromagnet.
  • a circuit breaker having an electromagnet coil is provided.
  • FIG. 1 is an electric circuit diagram of an electric device 100 provided with an arbitrary one of circuit breaker transformers according to first to third embodiments of the present invention.
  • the electric device 100 is, for example, a quick charger for an electric vehicle.
  • the electric device 100 includes a device 1 such as a charger main body, and a DC power source 2, a circuit breaker 3, and a breaker circuit transformer 4 are provided along with the device 1.
  • a circuit breaker 110 according to an embodiment of the present invention includes a circuit breaker 3 and a breaker circuit transformer 4.
  • some components of the device 1, the DC power supply 2, and the circuit breaker 3, and some components of the circuit breaker 4 are a main circuit 5 including a DC circuit.
  • the direct current power source 2 is composed of, for example, a rectifier that rectifies alternating current into direct current.
  • the DC power supply 2 may be a battery.
  • the voltage of the main circuit 5 is a high voltage of several hundred volts or more.
  • the circuit breaker 3 is a complete electromagnetic type in which the contact 3a is removed by an electromagnet (not shown).
  • the complete electromagnetic circuit breaker 3 includes an electromagnet that attracts the movable iron core, a braking spring that applies a force opposite to the attracting direction by the electromagnet to the movable iron core, braking oil, and the like (not shown). ).
  • an electromagnetic / thermal type may be used in combination with a thermal type in which the contact point 3a is removed by utilizing thermal deformation of the bimetal.
  • the circuit breaker 3 Since the circuit breaker 3 is a complete electromagnetic type in which the contact 3a is removed only by the action of an electromagnet, the circuit breaker 3 takes one of a non-operation state, a time-delay operation state, and an instantaneous operation state. In the non-operating state, the current of the circuit (sub circuit 6 in the first to third embodiments) is within the rated value, the electromagnet does not operate, and the circuit (main circuit 5 in the first to third embodiments) It is in a closed state. In the time delay operation state, when an overcurrent continues to flow in the circuit (sub circuit 6 in the first to third embodiments), the circuit (first to In the third embodiment, the main circuit 5) is shut off.
  • the electromagnet In the instantaneous operation state, when a large current of a certain value or more flows in the circuit (sub circuit 6 in the first to third embodiments), the electromagnet is instantaneously connected to the circuit (first to third embodiments) due to an increase in leakage flux. In this state, the main circuit 5) is shut off.
  • the primary coil 4a of the breaker circuit transformer 4 is inserted into the main circuit 5, and the secondary coil 4b is connected to the electromagnet coil 3b of the circuit breaker 3. Since the main circuit 5 and the sub circuit 6 are DC circuits, when the electrical equipment is operating normally, no current flows through the sub circuit 6 including the secondary coil 4b, and the circuit breaker 3 is in an inoperative state. is there.
  • the main circuit 5 When a short circuit occurs in the main circuit 5, a large amount of electric power corresponding to a current change due to the short circuit is supplied to the electromagnet coil 3 b of the circuit breaker 3 through the circuit breaker transformer 4. At that time, the current value caused by the short circuit generated in the primary coil 4a is further increased by supplying current to the electromagnet coil 3b by changing the current in the transformer 4 for the breaking circuit. Thereby, it will be in an instantaneous operation state, without passing through a time delay operation state. For this reason, the main circuit 5 can be interrupted by operating the circuit breaker 3 instantaneously when an overcurrent such as a short circuit occurs. As a result, the influence of the inrush current on various devices on the primary side main circuit can be suppressed low.
  • FIG. 2 is a diagram illustrating a schematic configuration of the first embodiment of the transformer for the cutoff circuit.
  • the cutoff circuit transformer 4A is a cored transformer and has a rectangular annular core 10.
  • the core 10 is made of a magnetic material such as an iron core.
  • a primary coil 4a and a secondary coil 4b are wound around portions 10a and 10b of the annular core 2 facing each other.
  • the ratio (N1 / N2) of the number of turns of the primary coil 4a to the number of turns of the secondary coil 4b is, for example, 3 or more.
  • the turn ratio (N1 / N2) is 3, in other words, the turn ratio of the secondary coil 4b to the primary coil 4a is 1/3.
  • an air core can be used. When making it cored, it is necessary to make it the core physique which can accumulate
  • FIG. 3 is a diagram showing a schematic configuration of the second embodiment of the transformer for the cutoff circuit.
  • This configuration of the cutoff circuit transformer 4B is effective when the size of the core 10 is small.
  • a capacitor 11 is provided in parallel with the secondary coil 4b.
  • the secondary coil 4b is a resonance coil that resonates with the leakage magnetic flux of the primary coil 4a.
  • the resonance frequency of the secondary coil 4b is preferably at least 250 Hz and 2.5 MHz or less. That is, preferably, the capacitor 11 is selected so as to satisfy this frequency condition. If the resonance frequency is within the above range, the cutoff time is 1 msec to 1 ⁇ sec.
  • the secondary coil 4b is a resonance coil, even if the core 10 can only store energy equal to or less than the breaking capacity of the circuit breaker 3, the leakage flux of the primary coil 4a and the secondary coil 4b resonate. Thus, the magnetic saturation of the core 10 can be eliminated.
  • FIG. 4 is a diagram showing a schematic configuration of the third embodiment of the transformer for the cutoff circuit.
  • This cutoff circuit transformer 4C is also a cored transformer.
  • the core 10 has a middle leg portion 10c in the center of a rectangular ring.
  • the core 10 also includes first and second outer leg portions 10d and 10e each having two sides of the rectangle located on both sides of the middle leg portion 10c.
  • the configuration of the cutoff circuit transformer 4C is also effective in suppressing the magnetic saturation of the core 10.
  • a first magnetic circuit 12 and a second magnetic circuit 13 are formed in parallel with each other in the core 10 of the cutoff circuit transformer 4C.
  • a part of the first magnetic circuit 12 is configured in the first outer leg part 10d, and a part of the second magnetic circuit 13 is configured in the second outer leg part 10e.
  • a primary coil 4 a and a secondary coil 4 b are wound around a middle leg portion 10 c that is a shared part of the first magnetic circuit 12 and the second magnetic circuit 13.
  • the first magnetic circuit 12 is a circuit serving as a path for magnetic flux generated when a current flows through the primary coil 4a. As in the illustrated example, it is preferable that an air gap 14 is provided in a portion of the first magnetic circuit 12 that is not shared with the second magnetic circuit 13 (first outer leg portion 10d).
  • the middle leg portion 10c and the outer leg portions 10d and 10e may have the same cross-sectional area.
  • a permanent magnet 15 is provided in the second outer leg portion 10e in which a part of the second magnetic circuit 13 is configured.
  • the permanent magnet 15 applies a magnetic flux 17 that is a reverse bias with respect to the magnetic flux 16 that passes through the first magnetic circuit 12.
  • a non-magnetic and conductive demagnetization preventing member 18 is installed on the outer periphery of the permanent magnet 15 to prevent demagnetization.
  • the middle leg part 10 c is disposed at a position close to the permanent magnet 15.
  • the reluctance of the second magnetic circuit 13 is reduced in the first magnetic circuit 12 with respect to the magnetic flux generated by the current flowing through the primary coil 4 a. It is set larger than the magnetic resistance. As a result, the magnetic flux generated by the current flowing through the primary coil 4a flows preferentially to the first magnetic circuit 12 side having a low magnetic resistance, so that the magnetic flux indicated by reference numeral 16 is generated.
  • the middle leg portion 10c has a smaller magnetic resistance than the first outer leg portion 10d provided with the air gap 14. For this reason, when the magnetic flux by the permanent magnet 15 flows preferentially to the part 10d of the core 10, the flow of the magnetic flux indicated by reference numeral 17 occurs, and a reverse bias can be effectively applied.
  • the magnetic flux 17 that is reverse-biased by the permanent magnet 15 provided in the second magnetic circuit 13 is applied to the magnetic flux 16 that passes through the first magnetic circuit 12.
  • the magnetic flux 16 flowing through the first magnetic circuit 12 and the magnetic flux 17 flowing through the second magnetic circuit 13 cancel each other, and the magnetic flux density of the core 10 is reduced.
  • the first quadrant portion on the BH curve magnetic hysteresis curve: see FIG. 5
  • the core 10 having a small physique is not easily magnetically saturated.
  • the magnetic flux 17 generated by the permanent magnet 15 is generated by the first magnetic circuit. 12 and the second magnetic circuit 13 are easily passed through a shared portion (middle leg portion 10c).
  • the magnetic flux 17 generated by the permanent magnet 15 is also generated when the shared portion (the middle leg portion 10 c) of the first magnetic circuit 12 and the second magnetic circuit 13 is disposed near the permanent magnet 15.
  • the magnetic circuit 12 and the second magnetic circuit 13 can easily pass through the shared portion (the middle leg portion 10c).
  • the magnetic flux 17 generated by the permanent magnet 15 acts efficiently as a reverse bias.
  • the magnetic flux 17 generated by the permanent magnet 15 causes the shared portion (the middle leg portion 10c) of the first magnetic circuit 12 and the second magnetic circuit 13 to be present. Without passing, there is a possibility that the first magnetic circuit 12 may pass through a portion not shared with the second magnetic circuit 13 (first outer leg portion 10d). In this case, the reverse bias action of the magnetic flux 17 generated by the permanent magnet 15 is reduced. Providing the air gap 14 prevents such a situation from occurring.
  • a configuration in which the secondary coil 4b is a resonance coil (FIG. 3) and a configuration in which a permanent magnet 15 for reverse excitation is provided (FIG. 4) can be used in combination.

Abstract

The present invention provides a transformer for a breaker circuit with which it is possible to actuate a breaker instantly to break a circuit in the event of an overcurrent such as with a short. The transformer for a breaker circuit (4) is provided with a primary coil (4a) and a secondary coil (4b). A main circuit (5) comprising a direct current circuit provided with a contact point (3a) of a circuit breaker (3) in which the contact point is opened and closed using an electromagnet is provided with the primary coil (4a), which is connected in series or in parallel with the contact point (3a). A sub circuit (6) on which is provided an electromagnetic coil (3b) for exciting the electromagnet of the circuit breaker (3) is provided with the secondary coil (4b), which is connected in series with the electromagnetic coil (3b). The winding count ratio of the primary coil (4a) and the secondary coil (4b) is set so that the current value flowing to the secondary coil (4b) is greater than the current value flowing to the primary coil (4a).

Description

遮断回路用トランスCircuit breaker transformer 関連出願Related applications
 本出願は、2016年1月20日出願の特願2016-008709の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2016-008709 filed on Jan. 20, 2016, which is incorporated herein by reference in its entirety.
 この発明は、直流回路における短絡保護のための遮断器を利用できるようにするためのトランスであって、限流器として機能しながら回路遮断器を動作させるトランスに係り、特に完全電磁式の配線遮断器のリレー部に流れる電流値が大きいほど、遮断までの時間が短くなる特徴を持つ遮断器を効果的に利用できるようにしたトランスに関する。 The present invention relates to a transformer for making it possible to use a circuit breaker for short-circuit protection in a DC circuit, and more particularly to a transformer that operates a circuit breaker while functioning as a current limiting device. The present invention relates to a transformer that can effectively use a circuit breaker having a feature that the time until the circuit breaks is shortened as the value of the current flowing through the relay unit of the circuit breaker increases.
 電気機器には、短絡、漏電等の電気事故から装置および人を保護するために、回路に大電流が流れた場合に回路を遮断する保護機器を設ける必要がある。一方で、電気機器は、スイッチ、遮断器等のオン・オフ時または瞬停時に発生する突入電流によって前記保護機器が誤作動しないようにする必要がある。このようなことから、ヒューズ、遮断器、リレーといった各種保護機器が、回路の仕様に合わせて使用されている。 ¡In order to protect equipment and people from electrical accidents such as short circuits and electrical leakage, electrical equipment must be provided with protective equipment that shuts off the circuit when a large current flows through the circuit. On the other hand, it is necessary for an electrical device to prevent the protective device from malfunctioning due to an inrush current that occurs when a switch, a circuit breaker, or the like is turned on / off or during a momentary power failure. For this reason, various protective devices such as fuses, circuit breakers, and relays are used in accordance with circuit specifications.
 例えば、電気自動車用の急速充電器に使われる高電圧直流回路等の直流回路では、スイッチ動作によりアーク放電が発生するため、遮断器がこの直流回路に設けられている場合、不安定な遮断動作が発生する。このことから、通常、短絡保護のために、確実に回路を遮断することが可能な利点から、ヒューズが利用されている。しかし、ヒューズは動作すると溶断により破損することから、遮断動作の都度、交換が必要になる。そのため、ヒューズ以外の保護機器を使用したいとの要望があり、遮断器が使われることも多い。 For example, in a DC circuit such as a high voltage DC circuit used for a quick charger for an electric vehicle, an arc discharge is generated by a switch operation. Therefore, when a circuit breaker is provided in this DC circuit, an unstable circuit break operation Will occur. For this reason, fuses are usually used because of the advantage that the circuit can be reliably interrupted for short circuit protection. However, since the fuse is damaged by fusing when it operates, it needs to be replaced every time the breaking operation is performed. For this reason, there is a demand for using protective devices other than fuses, and circuit breakers are often used.
 従来、保護機器として遮断器を用いる場合、短絡による突入電流が遮断器の定格電流を超え難くするために、限流コイルと呼ばれるインダクタを直列に接続して、短絡による電流増加自体を抑制する方法が知られている(例えば、特許文献1および非特許文献1)。 Conventionally, when using a circuit breaker as a protective device, in order to prevent the inrush current due to a short circuit from exceeding the rated current of the circuit breaker, a method of suppressing an increase in current due to a short circuit by connecting an inductor called a current limiting coil in series Are known (for example, Patent Literature 1 and Non-Patent Literature 1).
国際公開第2015/015831号パンフレットInternational Publication No. 2015/015831 Pamphlet
 しかし、限流コイルと呼ばれるインダクタを回路に直列に接続する方法は、遮断器が動作するまでの時間が長くかかるという問題がある。 However, the method of connecting an inductor called a current limiting coil in series with the circuit has a problem that it takes a long time until the circuit breaker operates.
 この発明の目的は、短絡等の過電流発生時に瞬時に遮断器を動作させて回路を遮断することができる遮断回路用トランスを提供することである。 An object of the present invention is to provide a transformer for a breaker circuit capable of breaking a circuit by operating a breaker instantaneously when an overcurrent such as a short circuit occurs.
 この発明の一構成に係る遮断回路用トランスは、電磁石で接点を開閉させる回路遮断器の前記接点が設けられた直流回路からなる主回路に、前記接点と直列または並列に接続されて設けられる一次コイルと、前記回路遮断器の前記電磁石を励磁する電磁石用コイルが設けられた副回路に前記電磁石用コイルと直列に接続されて設けられる二次コイルとを備え、前記一次コイルに流れる電流値よりも前記二次コイルに流れる電流値が大きくなるように前記一次コイルおよび前記二次コイルの巻き数比が設定されている。 A transformer for a breaker circuit according to one configuration of the present invention is a primary circuit provided by being connected in series or in parallel with the contact to a main circuit composed of a DC circuit provided with the contact of a circuit breaker that opens and closes a contact with an electromagnet. A secondary coil provided in series with the electromagnet coil in a secondary circuit provided with a coil and an electromagnet coil for exciting the electromagnet of the circuit breaker, and from a current value flowing through the primary coil Also, the turn ratio of the primary coil and the secondary coil is set so that the value of the current flowing through the secondary coil becomes large.
 この構成によると、遮断回路用トランスの一次コイルが主回路に設けられ、二次コイルが回路遮断器の電磁石用コイルに接続されており、一次コイルに流れる電流値よりも二次コイルに流れる電流値が大きくなるように一次コイルおよび二次コイルの巻き数比が設定されている。このため、短絡により主回路に発生した大きな電流変化分の電力が、遮断回路用トランスを介して回路遮断器の電磁石用コイルに供給される。その際、遮断回路用トランスで変流することで、一次コイルに発生した短絡による電流値がさらに高電流化されて電磁石用コイルに供給される。これにより、遮断速度が向上し、短絡電流が大きくなり過ぎないうちに回路遮断器を動作させることができる。その結果、一次側の主回路上にある各種機器に対する突入電流による影響を低く抑えることができる。 According to this configuration, the primary coil of the circuit breaker transformer is provided in the main circuit, the secondary coil is connected to the electromagnet coil of the circuit breaker, and the current flowing in the secondary coil is greater than the current value flowing in the primary coil. The turn ratio of the primary coil and the secondary coil is set so that the value becomes large. For this reason, electric power corresponding to a large current change generated in the main circuit due to the short circuit is supplied to the electromagnet coil of the circuit breaker via the breaker circuit transformer. At that time, the current value caused by the short circuit generated in the primary coil is further increased by supplying current to the electromagnet coil by changing the current in the transformer for the breaking circuit. Thereby, the interruption | blocking speed improves and a circuit breaker can be operated before a short circuit current becomes large too much. As a result, the influence of the inrush current on various devices on the primary side main circuit can be suppressed low.
 このように突入電流による影響を低く抑えることができるため、高電圧がかかる主回路における短絡用の保護機器として、ヒューズの代替に回路遮断器を安全に使用することができる。これにより、保護機器としてヒューズを使用した従来の回路における、回路の短絡が生じるたびにヒューズを交換しなければならないという問題が解決される。 Since the effect of inrush current can be kept low in this way, a circuit breaker can be used safely as a substitute for a fuse as a protective device for a short circuit in a main circuit to which a high voltage is applied. This solves the problem that the fuse must be replaced each time a short circuit occurs in the conventional circuit using the fuse as the protective device.
 当該遮断回路用トランスが有芯トランスである場合、前記二次コイルが、前記一次コイルの漏れ磁束と共振する共振コイルとなるように、前記二次コイルと直列または並列にコンデンサが設けられていても良い。遮断回路用トランスに大電流が入力されると、コアが磁気飽和して遮断回路用トランスが機能しなくなる恐れがある。二次コイルを共振コイルとすることで、コアが回路遮断器の遮断容量以下のエネルギーしか蓄積できない場合でも、一次コイルの漏れ磁束と二次コイルとが共振し、コアの磁気飽和による影響を解消することができる。 When the circuit breaker transformer is a cored transformer, a capacitor is provided in series or in parallel with the secondary coil so that the secondary coil is a resonant coil that resonates with the leakage flux of the primary coil. Also good. If a large current is input to the breaker circuit transformer, the core may be magnetically saturated and the breaker circuit transformer may not function. By making the secondary coil a resonant coil, even if the core can only store energy less than the breaking capacity of the circuit breaker, the leakage flux of the primary coil and the secondary coil resonate, eliminating the effects of magnetic saturation of the core can do.
 なお、磁気飽和が発生すると最終的にはほぼコア全体が磁気飽和した状態になる。磁気飽和はコイルに流れる電力エネルギーが、磁気エネルギーの形でコアに蓄積されることで発生する。まずは一次コイルが巻かれている箇所およびその近傍が先に磁気飽和する。一次コイルで発生した磁束が二次コイルまでスムーズに流れて、二次コイルから入力と同等の電力が出力されていれば磁気飽和しない。二次コイルから取り出されないエネルギー分がコアに蓄積されて飽和に至る。 Note that when magnetic saturation occurs, the entire core eventually becomes magnetically saturated. Magnetic saturation occurs when the power energy flowing in the coil is stored in the core in the form of magnetic energy. First, the portion where the primary coil is wound and the vicinity thereof are first magnetically saturated. If the magnetic flux generated in the primary coil flows smoothly to the secondary coil and electric power equivalent to the input is output from the secondary coil, magnetic saturation does not occur. Energy that is not extracted from the secondary coil is accumulated in the core and reaches saturation.
 また、前記一次コイルおよび前記二次コイルが巻かれるコアを有し、このコアは、前記一次コイルの電流が流れることで発生する磁束が流れる第1の磁気回路と、この第1の磁気回路と並列な第2の磁気回路とが形成されるものであり、前記第2の磁気回路に、前記一次コイルに突入電流が流れたときに発生する磁束に対して逆バイアスとなる磁束を印加する永久磁石が設けられていても良い。上記永久磁石が設けられていると、この永久磁石が逆バイアスとなる磁束を印加することで、第1の磁気回路を流れる磁束と、第2の磁気回路を流れる磁束とが相殺し合って、コアの磁束密度が低減する。このため、エネルギー蓄積能力の低い体格の小さいコアでも磁気飽和し難くなる。なお、上記永久磁石の側面には、一次コイルで発生する磁束による永久磁石の脱磁を防止するための金属管や短絡したコイルを設けてもよい。 The core includes a core around which the primary coil and the secondary coil are wound. The core includes a first magnetic circuit through which a magnetic flux generated by a current flowing through the primary coil flows, and the first magnetic circuit, A second magnetic circuit in parallel is formed, and a permanent magnetic flux is applied to the second magnetic circuit that is reversely biased with respect to the magnetic flux generated when an inrush current flows through the primary coil. A magnet may be provided. When the permanent magnet is provided, the magnetic flux flowing through the first magnetic circuit and the magnetic flux flowing through the second magnetic circuit cancel each other by applying a magnetic flux that is reverse-biased by the permanent magnet, The magnetic flux density of the core is reduced. For this reason, even a small core with low energy storage capability is less likely to be magnetically saturated. Note that a metal tube or a short-circuited coil for preventing demagnetization of the permanent magnet due to the magnetic flux generated in the primary coil may be provided on the side surface of the permanent magnet.
 前記第1の磁気回路を構成するコア部分の前記一次コイルおよび前記二次コイルが巻かれていない箇所にエアギャップが設けられていても良い。エアギャップが設けられていないと、永久磁石により生じる磁束が、一次コイルおよび二次コイルが巻かれているコア部分を通らずに、第1の磁気回路を構成するコア部分の前記一次コイルおよび前記二次コイルが巻かれていない箇所を通る可能性がある。この場合、永久磁石により生じる磁束の逆バイアス作用が低減する。しかし、エアギャップを設けることで、永久磁石により生じる磁束が一次コイルおよび二次コイルが巻かれているコア有部分を通り易くなり、永久磁石により生じる磁束が逆バイアスとして効率良く作用する。 An air gap may be provided in a portion of the core portion constituting the first magnetic circuit where the primary coil and the secondary coil are not wound. If the air gap is not provided, the magnetic flux generated by the permanent magnet does not pass through the core portion around which the primary coil and the secondary coil are wound, and the primary coil of the core portion constituting the first magnetic circuit and the There is a possibility of passing through a portion where the secondary coil is not wound. In this case, the reverse bias action of the magnetic flux generated by the permanent magnet is reduced. However, by providing the air gap, the magnetic flux generated by the permanent magnet can easily pass through the core portion where the primary coil and the secondary coil are wound, and the magnetic flux generated by the permanent magnet acts efficiently as a reverse bias.
 前記一次コイルに対する前記二次コイルの巻き数比が1/3以下の有芯トランスであり、この有芯トランスのコアが、前記回路遮断器の遮断容量以上のエネルギーを蓄積可能な容量を有していても良い。この場合、上述したように二次コイルを共振コイルとしたり、逆バイアスとなる磁束を印加する永久磁石を設けたりすることなく、コアの磁気飽和を防止することができる。 A cored transformer having a winding ratio of the secondary coil to the primary coil of 1/3 or less, and the core of the cored transformer has a capacity capable of storing energy more than the breaking capacity of the circuit breaker. May be. In this case, magnetic saturation of the core can be prevented without using a secondary coil as a resonance coil as described above or providing a permanent magnet for applying a magnetic flux as a reverse bias.
 この発明の一構成に係る回路遮断装置は、前記遮断回路用トランスを備え、さらに、前記主回路に設けられた接点、この接点を開閉させる電磁石、および前記副回路に設けられて前記電磁石を励磁する電磁石用コイルを有する回路遮断器を備える。 A circuit breaker according to one aspect of the present invention includes the breaker transformer, and further includes a contact provided in the main circuit, an electromagnet that opens and closes the contact, and an electromagnet provided in the sub-circuit to excite the electromagnet. A circuit breaker having an electromagnet coil is provided.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1~第3の実施形態にかかる遮断回路用トランスの任意の1つが設けられた電気機器の電気回路図である。 この発明の第1の実施形態にかかる遮断回路用トランスの概略構成を示す図である。 この発明の第2の実施形態にかかる遮断回路用トランスの概略構成を示す図である。 この発明の第3の実施形態にかかる遮断回路用トランスの概略構成を示す図である。 磁気ヒステリシス曲線を示すグラフである。 仮想の遮断回路用トランスの概略構成を示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
FIG. 6 is an electric circuit diagram of an electric device provided with any one of the circuit breaker transformers according to the first to third embodiments of the present invention. It is a figure which shows schematic structure of the transformer for interruption | blocking circuits concerning the 1st Embodiment of this invention. It is a figure which shows schematic structure of the transformer for cutoff circuits concerning the 2nd Embodiment of this invention. It is a figure which shows schematic structure of the transformer for cutoff circuits concerning the 3rd Embodiment of this invention. It is a graph which shows a magnetic hysteresis curve. It is a figure which shows schematic structure of the transformer for virtual cutoff circuits.
 この発明の実施形態を図面と共に説明する。
 図1は、この発明の第1~第3の実施形態にかかる遮断回路用トランスの任意の1つが設けられた電気機器100の電気回路図である。電気機器100は、例えば電気自動車用急速充電器である。電気機器100は、充電器本体等の装置1を有し、この装置1に付随して直流電源2、回路遮断器3、および遮断回路用トランス4が設けられている。この発明の一実施形態に係る回路遮断装置110は、回路遮断器3および遮断回路用トランス4から構成されている。図1の例では、上記装置1、直流電源2、回路遮断器3のうちの一部の構成要素、および遮断回路用トランス4のうちの一部の構成要素が、直流回路からなる主回路5において互いに直列に設けられている。具体的には、回路遮断器3については前記一部の構成要素として接点3aが主回路5に含まれ、遮断回路用トランス4については前記一部の構成要素として一次コイル4aが主回路5に含まれている。遮断回路用トランス4の一次コイル4aは、主回路5において接点3aと並列に接続されてもよい。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an electric circuit diagram of an electric device 100 provided with an arbitrary one of circuit breaker transformers according to first to third embodiments of the present invention. The electric device 100 is, for example, a quick charger for an electric vehicle. The electric device 100 includes a device 1 such as a charger main body, and a DC power source 2, a circuit breaker 3, and a breaker circuit transformer 4 are provided along with the device 1. A circuit breaker 110 according to an embodiment of the present invention includes a circuit breaker 3 and a breaker circuit transformer 4. In the example of FIG. 1, some components of the device 1, the DC power supply 2, and the circuit breaker 3, and some components of the circuit breaker 4 are a main circuit 5 including a DC circuit. Are provided in series with each other. Specifically, the contact breaker 3a is included in the main circuit 5 as the partial component for the circuit breaker 3, and the primary coil 4a is included in the main circuit 5 as the partial component for the transformer 4 for the breaker circuit. include. The primary coil 4 a of the breaker circuit transformer 4 may be connected in parallel with the contact 3 a in the main circuit 5.
 直流電源2は、例えば、交流電流を直流電流に整流する整流器からなる。直流電源2はバッテリーであってもよい。電気機器が電気自動車用の急速充電器である場合、主回路5の電圧は、数百ボルト以上の高電圧である。 The direct current power source 2 is composed of, for example, a rectifier that rectifies alternating current into direct current. The DC power supply 2 may be a battery. When the electric device is a quick charger for an electric vehicle, the voltage of the main circuit 5 is a high voltage of several hundred volts or more.
 回路遮断器3は、電磁石(図示せず)により接点3aを引きはずす完全電磁式である。例えば、完全電磁式の回路遮断器3は、可動鉄心を吸着する電磁石、可動鉄心に対して電磁石による吸着方向と逆向きの力を付与する制動ばね、制動油等で構成される(図示せず)。但し、バイメタルの熱変形を利用して接点3aを引きはずす熱動式を併用した電磁・熱動式であっても良い。 The circuit breaker 3 is a complete electromagnetic type in which the contact 3a is removed by an electromagnet (not shown). For example, the complete electromagnetic circuit breaker 3 includes an electromagnet that attracts the movable iron core, a braking spring that applies a force opposite to the attracting direction by the electromagnet to the movable iron core, braking oil, and the like (not shown). ). However, an electromagnetic / thermal type may be used in combination with a thermal type in which the contact point 3a is removed by utilizing thermal deformation of the bimetal.
 先に説明したように、接点3aは、主回路5に挿入されている。通常時は、接点3aが閉じた状態となっている。主回路5とは別回路である副回路6に、電磁石を励磁する電磁石用コイル3bが接続されている。 As described above, the contact 3 a is inserted in the main circuit 5. Normally, the contact 3a is closed. An electromagnet coil 3b that excites an electromagnet is connected to a subcircuit 6 that is a separate circuit from the main circuit 5.
 遮断回路用トランス4は、主回路5に挿入される一次コイル4aと、副回路6に挿入される二次コイル4bとを備える。二次コイル4bと電磁用コイル3bは、副回路6において直列に接続されている。この遮断回路用トランス4は、一次側に発生した短絡等による突入電流を増幅して二次側に伝えることで、高電流値の電流を前記電磁石用コイル3bに供給するように機能する。 The breaking circuit transformer 4 includes a primary coil 4 a inserted into the main circuit 5 and a secondary coil 4 b inserted into the sub circuit 6. The secondary coil 4 b and the electromagnetic coil 3 b are connected in series in the sub circuit 6. The cutoff circuit transformer 4 functions to supply a high current value to the electromagnet coil 3b by amplifying an inrush current caused by a short circuit or the like generated on the primary side and transmitting the amplified current to the secondary side.
 そのために、一次コイル4aに流れる電流値よりも二次コイル4bに流れる電流値が大きくなるように、一次コイル4aの巻き数N1に対して二次コイル4bの巻き数N2を少なくしてある。換言すると、一次コイル4aと二次コイル4bの巻き数比(N1/N2)が適正に設定されている。巻き数比(N1/N2)に特に制限はないが、例えば3≦(N1/N2)≦5が好ましい。巻き数比が3未満であると、遮断速度の向上をあまり見込めない。回路遮断器3の電磁石用コイル3bが溶着しない限り、巻き数比を5以上とすることも可能である。 Therefore, the number of turns N2 of the secondary coil 4b is made smaller than the number of turns N1 of the primary coil 4a so that the value of the current flowing in the secondary coil 4b is larger than the value of the current flowing in the primary coil 4a. In other words, the turn ratio (N1 / N2) between the primary coil 4a and the secondary coil 4b is set appropriately. The winding ratio (N1 / N2) is not particularly limited, but for example, 3 ≦ (N1 / N2) ≦ 5 is preferable. If the turn ratio is less than 3, improvement in the shutoff speed cannot be expected. As long as the electromagnet coil 3b of the circuit breaker 3 is not welded, the turn ratio can be 5 or more.
 この遮断回路用トランス4を備えた電気機器100の作用について説明する。
 回路遮断器3が電磁石の作用のみで接点3aを引きはずす完全電磁式であるため、回路遮断器3は、不動作状態、時延動作状態および瞬時動作状態のいずれかの状態を取る。不動作状態は、回路(第1~第3の実施形態では副回路6)の電流が定格値以内であり、電磁石が動作せず回路(第1~第3の実施形態では主回路5)が閉じたままの状態である。時延動作状態は、回路(第1~第3の実施形態では副回路6)に過電流が継続して流れるとき、電磁石が制動油の粘性抵抗を受けながら時延動作で回路(第1~第3の実施形態では主回路5)を遮断する状態である。瞬時動作状態は、回路(第1~第3の実施形態では副回路6)に一定値以上の大電流が流れるとき、漏えい磁束の増大により電磁石が瞬時に回路(第1~第3の実施形態では主回路5)を遮断する状態である。
The operation of the electric device 100 including the breaker circuit transformer 4 will be described.
Since the circuit breaker 3 is a complete electromagnetic type in which the contact 3a is removed only by the action of an electromagnet, the circuit breaker 3 takes one of a non-operation state, a time-delay operation state, and an instantaneous operation state. In the non-operating state, the current of the circuit (sub circuit 6 in the first to third embodiments) is within the rated value, the electromagnet does not operate, and the circuit (main circuit 5 in the first to third embodiments) It is in a closed state. In the time delay operation state, when an overcurrent continues to flow in the circuit (sub circuit 6 in the first to third embodiments), the circuit (first to In the third embodiment, the main circuit 5) is shut off. In the instantaneous operation state, when a large current of a certain value or more flows in the circuit (sub circuit 6 in the first to third embodiments), the electromagnet is instantaneously connected to the circuit (first to third embodiments) due to an increase in leakage flux. In this state, the main circuit 5) is shut off.
 この電気機器100では、遮断回路用トランス4の一次コイル4aが主回路5に挿入され、二次コイル4bが回路遮断器3の電磁石用コイル3bに接続されている。主回路5と副回路6は直流回路のため、電気機器が正常に動作しているときは、二次コイル4bを含む副回路6には電流は流れず、回路遮断器3は不動作状態である。 In this electrical device 100, the primary coil 4a of the breaker circuit transformer 4 is inserted into the main circuit 5, and the secondary coil 4b is connected to the electromagnet coil 3b of the circuit breaker 3. Since the main circuit 5 and the sub circuit 6 are DC circuits, when the electrical equipment is operating normally, no current flows through the sub circuit 6 including the secondary coil 4b, and the circuit breaker 3 is in an inoperative state. is there.
 主回路5に短絡が発生した場合、短絡による電流変化分の大きな電力が、遮断回路用トランス4を介して回路遮断器3の電磁石用コイル3bに供給される。その際、遮断回路用トランス4で変流することで、一次コイル4aに発生した短絡による電流値がさらに高電流化されて電磁石用コイル3bに供給される。これにより、時延動作状態を経ずに、瞬時動作状態になる。このため、短絡等の過電流発生時に瞬時に、回路遮断器3を動作させて主回路5を遮断することができる。その結果、一次側の主回路上にある各種機器に対する突入電流による影響を低く抑えることができる。 When a short circuit occurs in the main circuit 5, a large amount of electric power corresponding to a current change due to the short circuit is supplied to the electromagnet coil 3 b of the circuit breaker 3 through the circuit breaker transformer 4. At that time, the current value caused by the short circuit generated in the primary coil 4a is further increased by supplying current to the electromagnet coil 3b by changing the current in the transformer 4 for the breaking circuit. Thereby, it will be in an instantaneous operation state, without passing through a time delay operation state. For this reason, the main circuit 5 can be interrupted by operating the circuit breaker 3 instantaneously when an overcurrent such as a short circuit occurs. As a result, the influence of the inrush current on various devices on the primary side main circuit can be suppressed low.
 遮断回路用トランス4の具体的な構成を以下に示す。
 図2は、遮断回路用トランスの第1の実施形態の概略構成を示す図である。この遮断回路用トランス4Aは有芯トランスであって、矩形の環状のコア10を有する。コア10は鉄芯等の磁性材料からなる。環状のコア2の互いに対向する部位10a,10bに一次コイル4aおよび二次コイル4bがそれぞれ巻かれている。二次コイル4bの巻き数に対する一次コイル4aの巻き数の比(N1/N2)は、例えば3以上としてある。巻き数の比(N1/N2)が3は、言い換えると、一次コイル4aに対する二次コイル4bの巻き数比が1/3である。特に体格上の制約が無いならば、空芯とすることも可能である。有芯とする場合、回路遮断器3の遮断容量以上のエネルギーを蓄積可能なコア体格にする必要がある。
A specific configuration of the breaking circuit transformer 4 will be described below.
FIG. 2 is a diagram illustrating a schematic configuration of the first embodiment of the transformer for the cutoff circuit. The cutoff circuit transformer 4A is a cored transformer and has a rectangular annular core 10. The core 10 is made of a magnetic material such as an iron core. A primary coil 4a and a secondary coil 4b are wound around portions 10a and 10b of the annular core 2 facing each other. The ratio (N1 / N2) of the number of turns of the primary coil 4a to the number of turns of the secondary coil 4b is, for example, 3 or more. When the turn ratio (N1 / N2) is 3, in other words, the turn ratio of the secondary coil 4b to the primary coil 4a is 1/3. If there are no restrictions on the physique, an air core can be used. When making it cored, it is necessary to make it the core physique which can accumulate | store the energy more than the interruption | blocking capacity | capacitance of the circuit breaker 3.
 図3は、遮断回路用トランスの第2の実施形態の概略構成を示す図である。この遮断回路用トランス4Bの構成は、コア10の体格が小さい場合に有効である。遮断回路用トランス4Bでは、第1の実施形態に係る遮断回路用トランス4Aの構成に加えて、二次コイル4bと並列にコンデンサ11が設けられている。これにより、二次コイル4bが、一次コイル4aの漏れ磁束と共振する共振コイルとなっている。この場合、二次コイル4bの共振周波数は、少なくとも250Hz以上、2.5MHz以下にすることが好ましい。すなわち、好ましくは、この周波数条件を満たすようにコンデンサ11が選択される。共振周波数が上記範囲内にあるならば、遮断時間は1msec~1μsecとなる。 FIG. 3 is a diagram showing a schematic configuration of the second embodiment of the transformer for the cutoff circuit. This configuration of the cutoff circuit transformer 4B is effective when the size of the core 10 is small. In the breaking circuit transformer 4B, in addition to the configuration of the breaking circuit transformer 4A according to the first embodiment, a capacitor 11 is provided in parallel with the secondary coil 4b. Thereby, the secondary coil 4b is a resonance coil that resonates with the leakage magnetic flux of the primary coil 4a. In this case, the resonance frequency of the secondary coil 4b is preferably at least 250 Hz and 2.5 MHz or less. That is, preferably, the capacitor 11 is selected so as to satisfy this frequency condition. If the resonance frequency is within the above range, the cutoff time is 1 msec to 1 μsec.
 このように二次コイル4bを共振コイルとすると、コア10が回路遮断器3の遮断容量以下のエネルギーしか蓄積できない場合であっても、一次コイル4aの漏れ磁束と二次コイル4bとが共振することで、コア10の磁気飽和を解消することができる。 Thus, if the secondary coil 4b is a resonance coil, even if the core 10 can only store energy equal to or less than the breaking capacity of the circuit breaker 3, the leakage flux of the primary coil 4a and the secondary coil 4b resonate. Thus, the magnetic saturation of the core 10 can be eliminated.
 図4は、遮断回路用トランスの第3の実施形態の概略構成を示す図である。この遮断回路用トランス4Cも有芯トランスである。コア10は、矩形の環状の中央に中脚部位10cを有する。コア10は、また、中脚部位10cの両側にそれぞれ位置する前記矩形の各二辺からなる第1および第2の外脚部位10d,10eを有する。この遮断回路用トランス4Cの構成も、コア10の磁気飽和を抑制するのに有効である。遮断回路用トランス4Cのコア10には、互いに並列に第1の磁気回路12および第2の磁気回路13が形成される。第1磁気回路12の一部は第1の外脚部位10dに構成され、第2の磁気回路13の一部は第2の外脚部位10eに構成される。そして、第1の磁気回路12および第2の磁気回路13の共有部分となる中脚部位10cに、一次コイル4aおよび二次コイル4bが巻かれている。 FIG. 4 is a diagram showing a schematic configuration of the third embodiment of the transformer for the cutoff circuit. This cutoff circuit transformer 4C is also a cored transformer. The core 10 has a middle leg portion 10c in the center of a rectangular ring. The core 10 also includes first and second outer leg portions 10d and 10e each having two sides of the rectangle located on both sides of the middle leg portion 10c. The configuration of the cutoff circuit transformer 4C is also effective in suppressing the magnetic saturation of the core 10. A first magnetic circuit 12 and a second magnetic circuit 13 are formed in parallel with each other in the core 10 of the cutoff circuit transformer 4C. A part of the first magnetic circuit 12 is configured in the first outer leg part 10d, and a part of the second magnetic circuit 13 is configured in the second outer leg part 10e. A primary coil 4 a and a secondary coil 4 b are wound around a middle leg portion 10 c that is a shared part of the first magnetic circuit 12 and the second magnetic circuit 13.
 第1の磁気回路12は、一次コイル4aに電流が流れるときに生じる磁束の通路となる回路である。図示の例のように、第1の磁気回路12における第2の磁気回路13と共有しない部分(第1の外脚部位10d)に、エアギャップ14が設けられていることが好ましい。なお、中脚部位10cおよび外脚部位10d,10eは、同一の断面積を有しても良い。 The first magnetic circuit 12 is a circuit serving as a path for magnetic flux generated when a current flows through the primary coil 4a. As in the illustrated example, it is preferable that an air gap 14 is provided in a portion of the first magnetic circuit 12 that is not shared with the second magnetic circuit 13 (first outer leg portion 10d). The middle leg portion 10c and the outer leg portions 10d and 10e may have the same cross-sectional area.
 第2の磁気回路13一部が構成される第2の外脚部位10eには、永久磁石15が設けられている。永久磁石15は、第1の磁気回路12を通る磁束16に対して逆バイアスとなる磁束17を印加する。この永久磁石15の外周部には、脱磁防止のために、非磁性かつ導電性の脱磁防止部材18が設置されている。なお、中脚部位10cは、永久磁石15に近い位置に配置されているのが好ましい。 A permanent magnet 15 is provided in the second outer leg portion 10e in which a part of the second magnetic circuit 13 is configured. The permanent magnet 15 applies a magnetic flux 17 that is a reverse bias with respect to the magnetic flux 16 that passes through the first magnetic circuit 12. A non-magnetic and conductive demagnetization preventing member 18 is installed on the outer periphery of the permanent magnet 15 to prevent demagnetization. In addition, it is preferable that the middle leg part 10 c is disposed at a position close to the permanent magnet 15.
 エアギャップ14の大きさおよび永久磁石15の長さを調整することで、一次コイル4aに流れる電流によって発生した磁束に対して、第2の磁気回路13の磁気抵抗を第1の磁気回路12の磁気抵抗よりも大きく設定してある。これにより、一次コイル4aに流れる電流によって発生した磁束は、磁気抵抗の低い第1の磁気回路12側に優先して流れることで、符号16で示す磁束の流れが生じる。 By adjusting the size of the air gap 14 and the length of the permanent magnet 15, the reluctance of the second magnetic circuit 13 is reduced in the first magnetic circuit 12 with respect to the magnetic flux generated by the current flowing through the primary coil 4 a. It is set larger than the magnetic resistance. As a result, the magnetic flux generated by the current flowing through the primary coil 4a flows preferentially to the first magnetic circuit 12 side having a low magnetic resistance, so that the magnetic flux indicated by reference numeral 16 is generated.
 また、永久磁石15による磁束に対しては、中脚部位10cの方が、エアギャップ14が設けられた第1の外脚部位10dよりも磁気抵抗が小さい。このため、永久磁石15による磁束がコア10の部位10dに優先して流れることで、符号17で示す磁束の流れが生じ、効果的に逆バイアスを掛けることができる。 Also, with respect to the magnetic flux generated by the permanent magnet 15, the middle leg portion 10c has a smaller magnetic resistance than the first outer leg portion 10d provided with the air gap 14. For this reason, when the magnetic flux by the permanent magnet 15 flows preferentially to the part 10d of the core 10, the flow of the magnetic flux indicated by reference numeral 17 occurs, and a reverse bias can be effectively applied.
 この構成であると、第1の磁気回路12を通る磁束16に対して、第2の磁気回路13に設けられた永久磁石15により逆バイアスとなる磁束17が印加される。これにより、第1の磁気回路12を流れる磁束16と、第2の磁気回路13を流れる磁束17とが相殺し合って、コア10の磁束密度が低減する。このため、通常はB-Hカーブ(磁気ヒステリシス曲線:図5参照)上の第1象限の部分しか使えないところが、第3象限の部分から使用できるようになる。その結果、体格が小さいコア10でも磁気飽和し難くなる。 With this configuration, the magnetic flux 17 that is reverse-biased by the permanent magnet 15 provided in the second magnetic circuit 13 is applied to the magnetic flux 16 that passes through the first magnetic circuit 12. As a result, the magnetic flux 16 flowing through the first magnetic circuit 12 and the magnetic flux 17 flowing through the second magnetic circuit 13 cancel each other, and the magnetic flux density of the core 10 is reduced. For this reason, normally, only the first quadrant portion on the BH curve (magnetic hysteresis curve: see FIG. 5) can be used from the third quadrant portion. As a result, even the core 10 having a small physique is not easily magnetically saturated.
 第1の磁気回路12における第2の磁気回路13と共有しない部分(第1の外脚部位10d)にエアギャップ14が設けられていると、永久磁石15により生じる磁束17が第1の磁気回路12と第2の磁気回路13の共有部分(中脚部位10c)を通り易い。また、第1の磁気回路12と第2の磁気回路13の共有部分(中脚部位10c)が永久磁石15に近い位置に配置されていることによっても、永久磁石15により生じる磁束17が第1の磁気回路12と第2の磁気回路13の共有部分(中脚部位10c)を通り易くなる。このように、永久磁石15により生じる磁束17が第1の磁気回路12と第2の磁気回路13の共有部分を通り易いと、永久磁石15により生じる磁束17が逆バイアスとして効率良く作用する。 When the air gap 14 is provided in a portion (first outer leg portion 10d) that is not shared with the second magnetic circuit 13 in the first magnetic circuit 12, the magnetic flux 17 generated by the permanent magnet 15 is generated by the first magnetic circuit. 12 and the second magnetic circuit 13 are easily passed through a shared portion (middle leg portion 10c). In addition, the magnetic flux 17 generated by the permanent magnet 15 is also generated when the shared portion (the middle leg portion 10 c) of the first magnetic circuit 12 and the second magnetic circuit 13 is disposed near the permanent magnet 15. The magnetic circuit 12 and the second magnetic circuit 13 can easily pass through the shared portion (the middle leg portion 10c). As described above, when the magnetic flux 17 generated by the permanent magnet 15 easily passes through the shared portion of the first magnetic circuit 12 and the second magnetic circuit 13, the magnetic flux 17 generated by the permanent magnet 15 acts efficiently as a reverse bias.
 仮にエアギャップ14が設けられていないと、図6に示すように、永久磁石15により生じる磁束17が、第1の磁気回路12と第2の磁気回路13の共有部分(中脚部位10c)を通らずに、第1の磁気回路12における第2の磁気回路13と共有しない部分(第1の外脚部位10d)を通る可能性がある。この場合、永久磁石15により生じる磁束17の逆バイアス作用が低減する。エアギャップ14を設けることによって、このような事態が生じるのを防いでいる。 If the air gap 14 is not provided, as shown in FIG. 6, the magnetic flux 17 generated by the permanent magnet 15 causes the shared portion (the middle leg portion 10c) of the first magnetic circuit 12 and the second magnetic circuit 13 to be present. Without passing, there is a possibility that the first magnetic circuit 12 may pass through a portion not shared with the second magnetic circuit 13 (first outer leg portion 10d). In this case, the reverse bias action of the magnetic flux 17 generated by the permanent magnet 15 is reduced. Providing the air gap 14 prevents such a situation from occurring.
 上記二次コイル4bを共振コイルにする構成(図3)および逆励磁用の永久磁石15を設ける構成(図4)を併用することも可能である。 A configuration in which the secondary coil 4b is a resonance coil (FIG. 3) and a configuration in which a permanent magnet 15 for reverse excitation is provided (FIG. 4) can be used in combination.
 以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
3…回路遮断器
3a…接点
3b…電磁石用コイル
4,4A,4B,4C…遮断回路用トランス
4a…一次コイル
4b…二次コイル
5…主回路
6…副回路
DESCRIPTION OF SYMBOLS 3 ... Circuit breaker 3a ... Contact 3b ... Electromagnetic coils 4, 4A, 4B, 4C ... Breaking circuit transformer 4a ... Primary coil 4b ... Secondary coil 5 ... Main circuit 6 ... Sub circuit

Claims (12)

  1.  電磁石で接点を開閉させる回路遮断器の前記接点が設けられた直流回路からなる主回路に、前記接点と直列または並列に接続されて設けられる一次コイルと、
     前記回路遮断器の前記電磁石を励磁する電磁石用コイルが設けられた副回路に前記電磁石用コイルと直列に接続されて設けられる二次コイルとを備え、
     前記一次コイルに流れる電流値よりも前記二次コイルに流れる電流値が大きくなるように前記一次コイルおよび前記二次コイルの巻き数比が設定されている遮断回路用トランス。
    A primary coil provided by being connected in series or in parallel with the contact in a main circuit composed of a DC circuit provided with the contact of the circuit breaker for opening and closing the contact with an electromagnet;
    A secondary circuit provided in series with the electromagnet coil in a sub-circuit provided with an electromagnet coil for exciting the electromagnet of the circuit breaker;
    A circuit breaker transformer in which a turn ratio of the primary coil and the secondary coil is set so that a current value flowing through the secondary coil is larger than a current value flowing through the primary coil.
  2.  請求項1に記載の遮断回路用トランスにおいて、当該遮断回路用トランスが有芯トランスであり、前記二次コイルが、前記一次コイルの漏れ磁束と共振する共振コイルとなるように、前記二次コイルと直列または並列にコンデンサが設けられている遮断回路用トランス。 The transformer for a cutoff circuit according to claim 1, wherein the transformer for the cutoff circuit is a cored transformer, and the secondary coil is a resonance coil that resonates with a leakage flux of the primary coil. Transformer for circuit breaker that is provided with a capacitor in series or in parallel.
  3.  請求項1または請求項2に記載の遮断回路用トランスにおいて、前記一次コイルおよび前記二次コイルが巻かれるコアを有し、このコアは、前記一次コイルの電流が流れることで発生する磁束が流れる第1の磁気回路と、この第1の磁気回路と並列な第2の磁気回路とが形成されるものであり、前記第2の磁気回路に、前記一次コイルに突入電流が流れたときに発生する磁束に対して逆バイアスとなる磁束を印加する永久磁石が設けられている遮断回路用トランス。 3. The circuit breaker transformer according to claim 1, further comprising: a core around which the primary coil and the secondary coil are wound, and the core generates a magnetic flux generated by a current flowing through the primary coil. A first magnetic circuit and a second magnetic circuit in parallel with the first magnetic circuit are formed, and occurs when an inrush current flows through the primary coil in the second magnetic circuit. A circuit breaker transformer provided with a permanent magnet that applies a magnetic flux that is reversely biased with respect to the magnetic flux to be applied.
  4.  請求項3に記載の遮断回路用トランスにおいて、前記第1の磁気回路を構成するコア部分の前記一次コイルおよび前記二次コイルが巻かれていない箇所にエアギャップが設けられた遮断回路用トランス。 4. The circuit breaker transformer according to claim 3, wherein an air gap is provided at a location where the primary coil and the secondary coil of the core portion constituting the first magnetic circuit are not wound.
  5.  請求項1ないし請求項3のいずれか1項に記載の遮断回路用トランスにおいて、前記一次コイルに対する前記二次コイルの巻き数比が1/3以下の有芯トランスであり、この有芯トランスのコアが、前記回路遮断器の遮断容量以上のエネルギーを蓄積可能な容量を有する遮断回路用トランス。 4. The circuit breaker transformer according to claim 1, wherein the transformer is a cored transformer having a turn ratio of the secondary coil to the primary coil of 1/3 or less. 5. A breaker circuit transformer having a capacity capable of storing energy equal to or greater than a breaker capacity of the circuit breaker.
  6.  直流回路からなる主回路に設けられた接点、この接点を開閉させる電磁石、および副回路に設けられて前記電磁石を励磁する電磁石用コイルを有する回路遮断器と、
     前記接点と直列または並列に接続されて前記主回路に設けられた一次コイル、および前記電磁石用コイルと直列に接続されて前記副回路に設けられた二次コイルを有する遮断回路用トランスとを備えた回路遮断装置であって、
     前記一次コイルに流れる電流値よりも前記二次コイルに流れる電流値が大きくなるように前記一次コイルおよび前記二次コイルの巻き数比が設定されている回路遮断装置。
    A circuit breaker having a contact provided in a main circuit composed of a DC circuit, an electromagnet for opening and closing the contact, and a coil for an electromagnet provided in a sub-circuit for exciting the electromagnet;
    A primary coil provided in the main circuit connected in series or in parallel with the contact; and a circuit breaker transformer having a secondary coil connected in series with the electromagnet coil and provided in the sub circuit. Circuit breaker,
    A circuit breaker in which a turn ratio of the primary coil and the secondary coil is set so that a current value flowing through the secondary coil is larger than a current value flowing through the primary coil.
  7.  請求項6に記載の回路遮断装置において、前記遮断回路用トランスが有芯トランスであり、前記一次コイルの漏れ磁束と共振する共振コイルとなるように、遮断回路用トランスに前記二次コイルと直列または並列にコンデンサが設けられている回路遮断装置。 7. The circuit breaker according to claim 6, wherein the breaker circuit transformer is a cored transformer, and is connected in series with the secondary coil to the breaker circuit transformer so as to be a resonance coil that resonates with the leakage flux of the primary coil. Or a circuit breaker provided with a capacitor in parallel.
  8.  請求項6または請求項7に記載の回路遮断装置において、前記遮断回路用トランスが、前記一次コイルおよび前記二次コイルが巻かれるコアを有し、このコアは、前記一次コイルの電流が流れることで発生する磁束が流れる第1の磁気回路と、この第1の磁気回路と並列な第2の磁気回路とが形成されるものであり、前記第2の磁気回路に、前記一次コイルに突入電流が流れたときに発生する磁束に対して逆バイアスとなる磁束を印加する永久磁石が設けられている回路遮断装置。 The circuit breaker according to claim 6 or 7, wherein the breaker circuit transformer has a core around which the primary coil and the secondary coil are wound, and the core is configured to allow a current of the primary coil to flow. And a second magnetic circuit in parallel with the first magnetic circuit, and an inrush current to the primary coil is formed in the second magnetic circuit. The circuit breaker provided with the permanent magnet which applies the magnetic flux which becomes a reverse bias with respect to the magnetic flux which generate | occur | produces when an electric current flows.
  9.  請求項8に記載の回路遮断装置において、前記第1の磁気回路を構成するコア部分の前記一次コイルおよび前記二次コイルが巻かれていない箇所にエアギャップが設けられた回路遮断装置。 9. The circuit breaker according to claim 8, wherein an air gap is provided at a location where the primary coil and the secondary coil of the core portion constituting the first magnetic circuit are not wound.
  10.  請求項6ないし請求項9のいずれか1項に記載の回路遮断装置において、前記遮断回路用トランスが、前記一次コイルに対する前記二次コイルの巻き数比が1/3以下の有芯トランスであり、この有芯トランスのコアが、前記回路遮断器の遮断容量以上のエネルギーを蓄積可能な容量を有する回路遮断装置。 10. The circuit breaker according to claim 6, wherein the breaker circuit transformer is a cored transformer having a turn ratio of the secondary coil to the primary coil of 1/3 or less. The circuit breaker having a capacity at which the core of the cored transformer has a capacity capable of storing energy equal to or greater than the breaking capacity of the circuit breaker.
  11.  請求項6ないし請求項10のいずれか1項に記載の回路遮断装置が設けられた電気機器。 An electrical device provided with the circuit breaker according to any one of claims 6 to 10.
  12.  請求項11において、当該電気機器が電気自動車用の急速充電器である電気機器。
     
    The electric device according to claim 11, wherein the electric device is a quick charger for an electric vehicle.
PCT/JP2017/001322 2016-01-20 2017-01-17 Transformer for breaker circuit WO2017126486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016008709A JP2017131032A (en) 2016-01-20 2016-01-20 Transformer for cut-off circuit
JP2016-008709 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126486A1 true WO2017126486A1 (en) 2017-07-27

Family

ID=59362690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001322 WO2017126486A1 (en) 2016-01-20 2017-01-17 Transformer for breaker circuit

Country Status (2)

Country Link
JP (1) JP2017131032A (en)
WO (1) WO2017126486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557581A (en) * 2022-10-28 2023-01-03 湖南岳大环保科技有限公司 Waste liquid recycling equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448052A (en) * 1977-09-26 1979-04-16 Fuji Electric Co Ltd Leak breaker
JP2003007190A (en) * 2001-06-20 2003-01-10 Nagano Fujitsu Component Kk Overcurrent checking device and circuit protecting device
JP2012039074A (en) * 2010-07-15 2012-02-23 Osamu Ide Transformer
WO2014188662A1 (en) * 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 Coil structure
JP2016181686A (en) * 2015-03-23 2016-10-13 Ntn株式会社 Inductor and protection circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448052A (en) * 1977-09-26 1979-04-16 Fuji Electric Co Ltd Leak breaker
JP2003007190A (en) * 2001-06-20 2003-01-10 Nagano Fujitsu Component Kk Overcurrent checking device and circuit protecting device
JP2012039074A (en) * 2010-07-15 2012-02-23 Osamu Ide Transformer
WO2014188662A1 (en) * 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 Coil structure
JP2016181686A (en) * 2015-03-23 2016-10-13 Ntn株式会社 Inductor and protection circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557581A (en) * 2022-10-28 2023-01-03 湖南岳大环保科技有限公司 Waste liquid recycling equipment
CN115557581B (en) * 2022-10-28 2023-05-23 湖南岳大环保科技有限公司 Waste liquid recycling equipment

Also Published As

Publication number Publication date
JP2017131032A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
US10403461B2 (en) Electromagnetic relay
US9595411B2 (en) Electromagnetic relay
JP4770640B2 (en) Electromagnetic actuator
WO2011158447A1 (en) Electromagnetic relay
JP2008166085A (en) Circuit breaker and its opening and closing method
CN102339677B (en) Contact protection circuit and high voltage relay comprising the same
WO2017126486A1 (en) Transformer for breaker circuit
US9355803B2 (en) Actuator with thermomagnetic shunt, especially for triggering a circuit breaker
KR20090026900A (en) Instant current limiter using a magnet switching for dc circuit breaker
TWI412752B (en) Circuit breaker
JP4859575B2 (en) Breaker
JP6778908B2 (en) Electromagnetic relay
JP2019047690A (en) DC circuit breaker
JP2019204607A (en) DC circuit breaker
JP6918609B2 (en) DC circuit breaker
CN109690718B (en) Drive circuit of electromagnetic operating mechanism
US1760542A (en) Electroresponsive device
JP2017212324A (en) Current limiting coil for DC power supply
USRE15441E (en) Circuit interrupter
JP2019088138A (en) Current-limiting dc power supply coil
EP3493341B1 (en) Voltage transformer
US1685949A (en) High-speed circuit interrupter
JPH11225432A (en) Transformer rush current reduction method
CN117546256A (en) Improved passive device, arrangement and circuit for limiting or reducing current rise
JP2508463Y2 (en) Flux switching type trip device for circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741364

Country of ref document: EP

Kind code of ref document: A1