WO2014188662A1 - Coil structure - Google Patents

Coil structure Download PDF

Info

Publication number
WO2014188662A1
WO2014188662A1 PCT/JP2014/002267 JP2014002267W WO2014188662A1 WO 2014188662 A1 WO2014188662 A1 WO 2014188662A1 JP 2014002267 W JP2014002267 W JP 2014002267W WO 2014188662 A1 WO2014188662 A1 WO 2014188662A1
Authority
WO
WIPO (PCT)
Prior art keywords
interlinkage
coil
reactor
conductor
core
Prior art date
Application number
PCT/JP2014/002267
Other languages
French (fr)
Japanese (ja)
Inventor
崎山 一幸
悟 菊池
元彦 藤村
加藤 彰
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014188662A1 publication Critical patent/WO2014188662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present disclosure relates to a coil structure such as a reactor used for a power supply for a switching power supply.
  • Patent Document 1 As a conventional technique for suppressing surges in a magnetic component composed of a magnetic core and a coil, there is a case for suppressing surges when turning on / off an electromagnet as shown in Patent Document 1, for example. .
  • Patent Document 1 an inductance value is reduced by disposing a non-magnetic metal portion between magnetic cores, and a separation delay and a surge due to the influence of residual magnetization, which are problems of an electromagnet, are suppressed.
  • One aspect of the present disclosure includes a magnetic core, a coil, and an interlinkage conductor portion that is a short-circuit conductor constituting a closed circuit, the magnetic core has a core leg, and the coil is disposed around the core leg.
  • the main magnetic flux is generated in the core leg by the current flowing through the coil, the interlinkage conductor portion is disposed at a position in contact with the core leg and interlinkage with the main magnetic flux, and the coil and the interlinkage conductor portion are electrically connected to each other. It takes the configuration of an insulated coil structure.
  • FIG. 4 is a structural diagram for explaining a reactor magnetic field simulation model according to the first embodiment; It is a comparison figure of magnetic flux distribution by magnetic field simulation, (a) is magnetic flux distribution at the time of the maximum coil current of the reactor of a comparative example, (b) is magnetic flux distribution at the time of the maximum coil current of the reactor of Embodiment 1, respectively. Show.
  • FIG. 4 is a schematic diagram for explaining another configuration example of the reactor according to the first embodiment, where (a) is a plan view, (b) is a front view of the coil viewed from the axial direction, and (c) is BB. It is sectional drawing.
  • FIG. 6 is a schematic diagram for explaining a configuration of a power supply circuit according to a second embodiment.
  • A), (b), (c), (d), (e), (f), and (g) are circuit diagrams which show the detailed example of the induced current control part in FIG.
  • FIG. 6 is a cross-sectional view for explaining a configuration example of a coil structure according to a third embodiment.
  • (A) is a circuit diagram for demonstrating the example of switching operation at the time of using the coil structure of FIG.
  • FIG. 13 is a reactor
  • (b) is a large surge voltage at the terminal of a diode in the case of the reactor of a comparative example. It is a wave form diagram which shows that generate
  • (A) is a switching waveform figure in the case of the reactor of a comparative example
  • (b) is a switching waveform figure in the case of the prototype of the coil structure of FIG.
  • FIG. 10 is a cross-sectional view for explaining another configuration example of the coil structure according to the third embodiment.
  • (A), (b), (c) and (d) are expanded sectional views which show the modification of the interlinkage conductor part in FIG.
  • FIG. 5 is a schematic diagram of an automobile that is an application example of a reactor according to any of Embodiments 1 to 3.
  • the magnetic body core, the coil, and the interlinkage conductor part which is a short circuit conductor which comprises a closed circuit
  • a magnetic body core has a core leg, and a coil is around a core leg.
  • the main magnetic flux is generated in the core leg by the current flowing through the coil
  • the interlinkage conductor part is arranged at a position in contact with the core leg and interlinkage with the main magnetic flux, and the coil and the interlinkage conductor part are electrically connected to each other. Insulated coil structure.
  • the interlinkage conductor part cancels the main magnetic flux generated from the coil, the generation of a surge voltage can be suppressed.
  • the interlinkage conductor portion includes a first interlinkage conductor portion and a second interlinkage conductor portion, and the first interlinkage conductor portion is provided above the coil, The second interlinkage conductor portion is provided below the coil.
  • the main magnetic flux generated from the coil is further canceled by the two interlinkage conductor portions of the first interlinkage conductor portion and the second interlinkage conductor portion. Therefore, surge can be further suppressed.
  • the interlinkage conductor portion is arranged to be wound around the outer side of the core leg.
  • the interlinkage conductor part is partially embedded in the surface of the core leg.
  • FIG. 1 (a) to 1 (c) are schematic diagrams for explaining the configuration of the reactor according to the first embodiment, and FIG. 1 (a) is a perspective view for illustrating the overall configuration, and FIG. FIG. 1B is a front view when viewed from the axial direction of the coil, and FIG. 1C is a cross-sectional view taken along line AA.
  • a configuration of a so-called outer iron type reactor in which a coil 102 is formed as a winding, for example, in order to apply a magnetic flux to a so-called E-shaped magnetic core 101 is shown as an example.
  • the coil 102 is connected to the switching circuit, and 0 V and the maximum voltage are alternately applied to the coil 102 according to the switching operation. At that time, magnetic flux is generated by the current flowing through the coil 102.
  • a magnetic body having a relative permeability larger than 1 may be used as the magnetic core 101.
  • the magnetic flux generated by the coil 102 mainly flows in the magnetic core 101.
  • An annular interlinking conductor 103 is arranged so as to interlink with the magnetic flux generated in the magnetic core 101.
  • the interlinkage conductor 103 may be a single conductor or a conductive wire wound two or more times. Further, the interlinkage conductor portion 103 may be formed of a covered conductor.
  • An induced electromotive force is generated in the interlinkage conductor 103 in accordance with a change in magnetic flux generated in the magnetic core 101, and as a result, an induced current flowing in the interlinkage conductor 103 is controlled by the induction current controller 104. Therefore, both ends of the interlinkage conductor portion 103 and both ends of the induced current control portion 104 are connected so that they can be electrically connected in a ring shape.
  • 2 (a) to 2 (d) are schematic structural diagrams for explaining the configuration of the reactor of the comparative example.
  • the only difference from the reactor of the first embodiment is that the interlinkage conductor 103 and the induced current controller 104 are not provided.
  • the switching circuit shown in FIG. 3A includes a reactor L, a semiconductor switch S, a diode D, and a capacitor C.
  • the reactor L in FIG. 3A is the reactor of the comparative example, in the so-called off operation in which the reactor voltage is maximized from zero by the switching operation of the circuit, or in the so-called on operation in which the reactor voltage is maximized to zero
  • the terminal voltage of the diode D generates a large surge as shown in FIG. Due to the influence of the inductance component of the magnetic component such as the reactor L, a back electromotive force is generated that prevents the charge in the circuit from being discharged / charged. Therefore, a surge is generated particularly during a transient such as switching on / off. It is.
  • FIG. 4 is a structural diagram for explaining a magnetic field simulation model of a reactor of a comparative example.
  • a magnetic flux distribution generated in the magnetic core 101 by the magnetomotive force of the current flowing through the coil 102 is used using a model for so-called two-dimensional analysis whose analysis target is the cross-sectional shape of the reactor as shown in FIG. Simulation analysis.
  • the analysis region is set as shown in FIG. 4 from the shape symmetry of the analysis target.
  • FIG. 5 is a structural diagram for explaining the magnetic field simulation model of the reactor according to the first embodiment.
  • a model for two-dimensional analysis is also used, and the analysis region is set as shown in FIG. 5 from the shape symmetry of the analysis target.
  • the induced current control unit 104 is approximated as a conductor assuming that the induced current flowing through the interlinkage conductor portion 103 always flows, and the interlinkage conductor portion 103 in FIG. 5 is represented by two cross sections. Modeling is conducted under the condition that conduction is conducted.
  • 6 (a) and 6 (b) are comparison diagrams of magnetic flux distributions by magnetic field simulation between the reactor of the comparative example and the reactor of the first embodiment.
  • the power condition applied to the coil 102 is set to be the same magnetomotive force in both results, and the magnetic flux distribution at the moment when the current flowing through the coil 102 is maximized is the same from the calculation result of the magnetic vector potential.
  • the magnetic flux distribution is displayed under conditions.
  • most of the magnetic flux flows through the magnetic core 101.
  • the interlinkage conductor is affected by the induced current flowing through the interlinkage conductor 103.
  • the magnetic flux is slightly distributed so as to leak from the core so as to go around the lower section of the portion 103.
  • the change in the magnetic flux distribution in the gap portion of the central leg that is the main magnetic flux path of the magnetic core 101 is small, and the magnetic flux interlinking with the coil 102 is rather less in the reactor of the first embodiment. It can be said that the copper loss by itself is slightly reduced.
  • FIG. 7 is a circuit diagram for explaining a coupled simulation model of reactor magnetic field analysis and circuit analysis.
  • the circuit simulation and the coupled analysis are performed by substituting the reactor of the comparative example and the reactor of the first embodiment for the reactor L in FIG.
  • the circuit itself is assumed to have a simple configuration in order to observe the surge phenomenon of the reactor L, and the voltage Vi of the input power supply approximates a rectangular wave having a voltage value of 500 V, a period of 10 ⁇ s, and a duty ratio of 50%, and has the circuit configuration shown in FIG.
  • the output voltage Vo is observed by simulation.
  • FIG. 8A and FIG. 8B are comparison diagrams of switching voltage waveforms obtained by a coupled simulation of magnetic field analysis and circuit analysis between the reactor of the comparative example and the reactor of the first embodiment.
  • FIG. 8A it can be seen that the reactor of the comparative example generates a large surge voltage during the switching operation, and further pulsates the voltage, thereby causing electromagnetic noise in the circuit.
  • FIG. 8B it can be seen that the reactor of the first embodiment has a small surge voltage during the switching operation and a small voltage pulsation.
  • the present disclosure has an effect of suppressing the generation of surge and the electromagnetic noise in the switching power supply circuit having the reactor.
  • the interlinkage conductor 103 and the induced current controller 104 are effective to interlink with the magnetic flux generated in the magnetic core 101.
  • the interlinkage conductor 103 and the induced current control unit 104 may be installed at a location where the amount of interlinkage magnetic flux increases.
  • a configuration as shown in a schematic diagram for explaining another configuration example of the reactor of the first embodiment shown in FIGS. 9A to 9C is also possible.
  • the interlinkage conductor 103 and the induced current controller 104 are arranged at the center leg portion of the magnetic core 101.
  • the installation location of the interlinkage conductor 103 and the induced current controller 104 can be designed based on the surge suppression effect and the so-called magnetic circuit structure mainly composed of the magnetic core 101.
  • the reactor magnetic core 101 of the first embodiment has been shown as an example of a so-called outer iron type reactor using a core called a so-called E-shaped core, the so-called inner core using a so-called U-shaped core is shown. It can also be applied to the structure of a reactor called an iron type.
  • the induced current control unit 104 in FIG. 10A is a simple conductor that short-circuits both ends of the interlinkage conductor 103.
  • the induced current control unit 104 in FIG. 10B is a capacitive element connected between both ends of the interlinkage conductor unit 103.
  • the induced current control unit 104 in FIG. 10C is a resistance element connected between both ends of the interlinkage conductor unit 103.
  • the induced current control unit 104 in FIG. 10D is a series circuit of a capacitive element and a resistive element connected between both ends of the interlinkage conductor 103.
  • the induced current control unit 104 in FIG. 10A is a simple conductor that short-circuits both ends of the interlinkage conductor 103.
  • the induced current control unit 104 in FIG. 10B is a capacitive element connected between both ends of the interlinkage conductor unit 103.
  • the induced current control unit 104 in FIG. 10C is a resistance element connected between
  • the induced current control unit 104 in FIG. 10F is a variable resistance element connected between both ends of the interlinkage conductor unit 103.
  • the induced current control unit 104 in FIG. 10G is a series circuit of a variable capacitance element and a variable resistance element connected between both ends of the interlinkage conductor portion 103.
  • the induction current control unit 104 can be realized by an electric element such as a capacitive element or a resistance element in addition to the conductor that short-circuits both ends of the interlinkage conductor part 103.
  • the induction current control unit 104 is made of an electric element, the energization performance of the induction current control unit 104 has a certain frequency characteristic depending on the impedance value of the interlinkage conductor unit 103 and the impedance value of the induction current control unit 104. As a result, the surge suppression effect can have frequency characteristics.
  • FIG. 11 is a schematic diagram for explaining the power supply circuit according to the second embodiment.
  • the power supply circuit according to the second embodiment includes the reactor according to the present embodiment and the main circuit 107, and is configured so that the main circuit unit 107 of the power supply and the coil 102 are connected to each other by the wiring 108 that follows the coil of the reactor.
  • the reactor according to the second embodiment is the same as the reactor according to the first embodiment.
  • an operation control unit 106 that receives detection data from the characteristic detection unit 105 as an input.
  • the operation control unit 106 provides control data to the induced current control unit 104.
  • the induced current control unit 104 has a switch that operates based on the control data from the operation control unit 106, and the conduction of the induced current is turned on and off by this switch.
  • the operation state of the power supply circuit using the reactor of the present embodiment is detected, and the induced current control unit 104 controls the induced current flowing through the interlinkage conductor unit 103 based on the detection result.
  • the surge suppression effect of the reactor can be made variable.
  • 12 (a) to 12 (g) show detailed examples of the induced current control unit 104 in FIG.
  • a switch used in the induced current control unit 104 a semiconductor switch, a mechanical switch, or the like can be used.
  • the coil 102 is composed of a winding, but a planar coil may be used.
  • FIG. 13 is a cross-sectional view for explaining a configuration example of the coil structure according to the third embodiment.
  • the coil structure according to the third embodiment includes a magnetic core 101, a coil 102, and interlinkage conductor portions 103a and 103b, which are short-circuit conductors that constitute a closed circuit.
  • the magnetic core 101 has a core leg 110, and the coil 102 is disposed around the core leg 110.
  • a main magnetic flux is generated in the core leg 110 by the current flowing through the coil 102.
  • the interlinkage conductor portions 103a and 103b are arranged in contact with the core leg 110 and at a position interlinking with the main magnetic flux.
  • the coil 102 and the interlinkage conductor portions 103a and 103b are electrically insulated from each other.
  • the interlinkage conductor portion includes a first interlinkage conductor portion 103a and a second interlinkage conductor portion 103b.
  • the first interlinkage conductor portion 103 a is provided above the coil 102.
  • the second interlinkage conductor portion 103 b is provided below the coil 102.
  • the coil structure of the third embodiment is configured such that the interlinkage conductor portions 103a and 103b are linked to the main magnetic flux, and the induced current due to the counter electromotive force generated by the alternating magnetic flux is maximized.
  • the number of interlinkage conductor portions is not limited to two, and may be one or three or more.
  • FIG. 14A is a circuit diagram for explaining an example of the switching operation when the coil structure of FIG. 13 is used as a reactor
  • FIG. 14B shows a diode terminal in the case of the reactor of the comparative example. It is a wave form diagram which shows that a big surge voltage generate
  • FIG. 14A includes a reactor L, a semiconductor switch S, a diode D, and a capacitor C.
  • the reactor L in FIG. 14A is the reactor of the comparative example, a large surge voltage is generated at both ends of the diode D as shown in FIG.
  • FIG. 15A is a switching waveform diagram in the case of the reactor of the comparative example
  • FIG. 15B is a switching waveform diagram in the case of the prototype of the coil structure of FIG. It turns out that generation
  • FIG. 16 is a cross-sectional view for explaining another configuration example of the coil structure according to the third embodiment.
  • the coil structure of Embodiment 3 may be configured as a transformer including a primary coil 102a and a secondary coil 102b as shown in FIG.
  • the interlinkage conductor portion 103 a may be disposed so as to be wound around the core leg 110.
  • the interlinkage conductor portion 103 a may be partially embedded in the surface of the core leg 110.
  • the entire interlinkage conductor portion 103 a may be embedded in the core leg 110.
  • the interlinkage conductor portion 103 a may be a flat conductor, or the entire interlinkage conductor portion 103 a may be embedded in the core leg 110. .
  • FIG. 18 is a schematic diagram of an automobile as an application example of the reactor according to any one of the first to third embodiments.
  • An automobile 201 illustrated in FIG. 18 includes a battery 202 and a charger 203.
  • Charger 203 has the reactor of any one of the first to third embodiments.
  • the surge suppression effect of the present disclosure can suppress malfunction of the charge control microcomputer and electromagnetic noise to the surrounding environment.
  • the coil structure according to the present disclosure has an effect of suppressing surge voltage and surge current generated in a switching power supply using a reactor. Therefore, by using the coil structure according to the present disclosure, it is not necessary to employ an element having excessive resistance to cope with the destruction of the circuit caused by the surge phenomenon, and the cost of the entire power supply circuit can be reduced. . In addition, since it has an effect of suppressing electromagnetic noise caused by the surge phenomenon, it is possible to reduce costs by reducing noise countermeasure components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

A coil structure is configured, such that an occurrence of a surge voltage is suppressed, from a magnetic core (101), a coil (102), and link conductors (103a, 103b) which are short-circuit conductors which configure closed circuits. The magnetic core (101) further comprises a core leg (110). The coil (102) is positioned in the circumference of the core leg (110). A primary magnetic field is emitted in the core leg (110) by an electrical current flowing in the coil (102). The link conductors (103a, 103b) are positioned in locations which are in contact with the coil leg (110) and which link with the primary magnetic field. The coil (102) and the link conductors (103a, 103b) are electrically insulated from one another.

Description

コイル構造体Coil structure
 本開示は、スイッチング電源の電力用電源に用いられるリアクトル等のコイル構造体に関するものである。 The present disclosure relates to a coil structure such as a reactor used for a power supply for a switching power supply.
 従来の磁性体コアとコイルとで構成される磁気部品でのサージ抑制の技術としては、例えば特許文献1に示されるような、電磁石の通電を入り切りする場合のサージを抑制するための事例がある。特許文献1は、非磁性の金属部を磁性体コアの間に配置することでインダクタンス値を小さくして、電磁石の課題である残留磁化の影響による離脱遅れとサージを抑制するものである。 As a conventional technique for suppressing surges in a magnetic component composed of a magnetic core and a coil, there is a case for suppressing surges when turning on / off an electromagnet as shown in Patent Document 1, for example. . In Patent Document 1, an inductance value is reduced by disposing a non-magnetic metal portion between magnetic cores, and a separation delay and a surge due to the influence of residual magnetization, which are problems of an electromagnet, are suppressed.
特公平7-85448号公報Japanese Examined Patent Publication No. 7-85448
 スイッチング動作時のようにコイルを流れる電流が変化する過渡時に生じるサージを抑制することが求められていた。 抑制 す る It has been required to suppress surges that occur during transients when the current flowing through the coil changes, such as during switching operations.
 本開示の一態様は、磁性体コアと、コイルと、閉回路を構成する短絡導体である鎖交導体部とを備え、磁性体コアはコア脚を有し、コイルはコア脚周りに配置され、コイルに流れる電流によってコア脚には主磁束が発生し、鎖交導体部はコア脚に接してかつ主磁束と鎖交する位置に配置され、コイルと鎖交導体部とは互いに電気的に絶縁されたコイル構造体の構成をとる。 One aspect of the present disclosure includes a magnetic core, a coil, and an interlinkage conductor portion that is a short-circuit conductor constituting a closed circuit, the magnetic core has a core leg, and the coil is disposed around the core leg. The main magnetic flux is generated in the core leg by the current flowing through the coil, the interlinkage conductor portion is disposed at a position in contact with the core leg and interlinkage with the main magnetic flux, and the coil and the interlinkage conductor portion are electrically connected to each other. It takes the configuration of an insulated coil structure.
 本開示によれば、コイルを流れる電流が変化する過渡時に生じるサージを抑制することができる。 According to the present disclosure, it is possible to suppress a surge that occurs during a transient in which the current flowing through the coil changes.
実施の形態1のリアクトルの構成を説明するための概略図であって、(a)は斜視図、(b)はコイルを軸方向から見た正面図、(c)はA-A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic for demonstrating the structure of the reactor of Embodiment 1, Comprising: (a) is a perspective view, (b) is the front view which looked at the coil from the axial direction, (c) is AA sectional drawing. is there. 比較例のリアクトルの構成を説明するための概略図であって、(a)は平面図、(b)は斜視図、(c)はコイルを軸方向から見た正面図、(d)はC-C断面図である。It is the schematic for demonstrating the structure of the reactor of a comparative example, (a) is a top view, (b) is a perspective view, (c) is the front view which looked at the coil from the axial direction, (d) is C FIG. (a)はリアクトルのスイッチング動作の例を説明するための回路図であり、(b)は比較例のリアクトルの場合にダイオードの端子に大きなサージ電圧が発生することを示す波形図である。(A) is a circuit diagram for demonstrating the example of the switching operation of a reactor, (b) is a wave form diagram which shows that a big surge voltage generate | occur | produces in the terminal of a diode in the case of the reactor of a comparative example. 比較例のリアクトルの磁界シミュレーションモデルを説明するための構造図である。It is a structural diagram for demonstrating the magnetic field simulation model of the reactor of a comparative example. 実施の形態1のリアクトルの磁界シミュレーションモデルを説明するための構造図である。FIG. 4 is a structural diagram for explaining a reactor magnetic field simulation model according to the first embodiment; 磁界シミュレーションによる磁束分布の比較図であって、(a)は比較例のリアクトルのコイル電流最大時の磁束分布を、(b)は実施の形態1のリアクトルのコイル電流最大時の磁束分布をそれぞれ示す。It is a comparison figure of magnetic flux distribution by magnetic field simulation, (a) is magnetic flux distribution at the time of the maximum coil current of the reactor of a comparative example, (b) is magnetic flux distribution at the time of the maximum coil current of the reactor of Embodiment 1, respectively. Show. リアクトルの磁界解析及び回路解析の連成シミュレーションモデルを説明するための回路図である。It is a circuit diagram for demonstrating the coupled simulation model of the magnetic field analysis and circuit analysis of a reactor. 磁界解析及び回路解析の連成シミュレーションによるスイッチング電圧波形の比較図であって、(a)は比較例のリアクトルの場合の波形図、(b)は実施の形態1のリアクトルの場合の波形図である。It is a comparison figure of a switching voltage waveform by coupled simulation of magnetic field analysis and circuit analysis, (a) is a waveform figure in the case of the reactor of a comparative example, (b) is a waveform figure in the case of the reactor of Embodiment 1. is there. 実施の形態1のリアクトルの他の構成例を説明するための概略図であって、(a)は平面図、(b)はコイルを軸方向から見た正面図、(c)はB-B断面図である。FIG. 4 is a schematic diagram for explaining another configuration example of the reactor according to the first embodiment, where (a) is a plan view, (b) is a front view of the coil viewed from the axial direction, and (c) is BB. It is sectional drawing. (a)、(b)、(c)、(d)、(e)、(f)及び(g)は、図1又は図9中の誘導電流制御部の詳細例を示す回路図である。(A), (b), (c), (d), (e), (f), and (g) are circuit diagrams which show the detailed example of the induced current control part in FIG. 1 or FIG. 実施の形態2の電源回路の構成を説明するための概略図である。FIG. 6 is a schematic diagram for explaining a configuration of a power supply circuit according to a second embodiment. (a)、(b)、(c)、(d)、(e)、(f)及び(g)は、図11中の誘導電流制御部の詳細例を示す回路図である。(A), (b), (c), (d), (e), (f), and (g) are circuit diagrams which show the detailed example of the induced current control part in FIG. 実施の形態3のコイル構造体の構成例を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining a configuration example of a coil structure according to a third embodiment. (a)は図13のコイル構造体をリアクトルとして用いた場合のスイッチング動作の例を説明するための回路図であり、(b)は比較例のリアクトルの場合にダイオードの端子に大きなサージ電圧が発生することを示す波形図である。(A) is a circuit diagram for demonstrating the example of switching operation at the time of using the coil structure of FIG. 13 as a reactor, (b) is a large surge voltage at the terminal of a diode in the case of the reactor of a comparative example. It is a wave form diagram which shows that generate | occur | produces. (a)は比較例のリアクトルの場合のスイッチング波形図、(b)は図13のコイル構造体の試作品の場合のスイッチング波形図である。(A) is a switching waveform figure in the case of the reactor of a comparative example, (b) is a switching waveform figure in the case of the prototype of the coil structure of FIG. 実施の形態3のコイル構造体の他の構成例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining another configuration example of the coil structure according to the third embodiment. (a)、(b)、(c)及び(d)は、図16中の鎖交導体部の変形例を示す拡大断面図である。(A), (b), (c) and (d) are expanded sectional views which show the modification of the interlinkage conductor part in FIG. 実施の形態1~3のいずれかに係るリアクトルの応用例である自動車の概略図である。FIG. 5 is a schematic diagram of an automobile that is an application example of a reactor according to any of Embodiments 1 to 3.
 本開示に係る第1形態は、磁性体コアと、コイルと、閉回路を構成する短絡導体である鎖交導体部とを備え、磁性体コアはコア脚を有し、コイルはコア脚周りに配置され、コイルに流れる電流によってコア脚には主磁束が発生し、鎖交導体部はコア脚に接してかつ主磁束と鎖交する位置に配置され、コイルと鎖交導体部とは互いに電気的に絶縁されたコイル構造体である。 1st form which concerns on this indication is provided with the magnetic body core, the coil, and the interlinkage conductor part which is a short circuit conductor which comprises a closed circuit, a magnetic body core has a core leg, and a coil is around a core leg. The main magnetic flux is generated in the core leg by the current flowing through the coil, the interlinkage conductor part is arranged at a position in contact with the core leg and interlinkage with the main magnetic flux, and the coil and the interlinkage conductor part are electrically connected to each other. Insulated coil structure.
 この形態によると、コイルより発生する主磁束を鎖交導体部が打ち消す作用を奏するので、サージ電圧の発生を抑制することができる。 According to this embodiment, since the interlinkage conductor part cancels the main magnetic flux generated from the coil, the generation of a surge voltage can be suppressed.
 本開示に係る第2形態では、第1形態において、鎖交導体部は第1鎖交導体部と第2鎖交導体部とを含み、第1鎖交導体部はコイルより上側に設けられ、第2鎖交導体部はコイルより下側に設けられる。 In the second embodiment according to the present disclosure, in the first embodiment, the interlinkage conductor portion includes a first interlinkage conductor portion and a second interlinkage conductor portion, and the first interlinkage conductor portion is provided above the coil, The second interlinkage conductor portion is provided below the coil.
 この形態によると、第1鎖交導体部と第2鎖交導体部との2つの鎖交導体部により、コイルより発生する主磁束が更に打ち消される。したがって、サージを更に抑制することができる。 According to this embodiment, the main magnetic flux generated from the coil is further canceled by the two interlinkage conductor portions of the first interlinkage conductor portion and the second interlinkage conductor portion. Therefore, surge can be further suppressed.
 本開示に係る第3形態では、第1又は第2形態において、鎖交導体部はコア脚の外側に巻かれるように配置される。 In the third embodiment according to the present disclosure, in the first or second embodiment, the interlinkage conductor portion is arranged to be wound around the outer side of the core leg.
 本開示に係る第4形態では、第1又は第2形態において、鎖交導体部はコア脚の表面に一部埋め込まれて配置される。 In the fourth form according to the present disclosure, in the first or second form, the interlinkage conductor part is partially embedded in the surface of the core leg.
 以下、実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (実施の形態1)
 図1(a)~図1(c)は、実施の形態1のリアクトルの構成を説明するための概略図であり、図1(a)は全体の構成を示すための斜視図、図1(b)はコイルの軸方向から見た場合の正面図、図1(c)はA-A断面図を示すものである。
(Embodiment 1)
1 (a) to 1 (c) are schematic diagrams for explaining the configuration of the reactor according to the first embodiment, and FIG. 1 (a) is a perspective view for illustrating the overall configuration, and FIG. FIG. 1B is a front view when viewed from the axial direction of the coil, and FIG. 1C is a cross-sectional view taken along line AA.
 本実施の形態では、いわゆるE字型と呼ばれる磁性体コア101に、磁束を印加するためにコイル102を例えば巻線として形成した、いわゆる外鉄型のリアクトルの構成を例に示す。 In the present embodiment, a configuration of a so-called outer iron type reactor in which a coil 102 is formed as a winding, for example, in order to apply a magnetic flux to a so-called E-shaped magnetic core 101 is shown as an example.
 コイル102がスイッチング回路と繋がっており、コイル102には、スイッチング動作に応じて0Vと最大電圧が交互に印加される。その際、コイル102に流れる電流によって磁束が生じる。磁性体コア101としては、比透磁率が1より大きな磁性体を用いてもよい。コイル102により生じた磁束は主に磁性体コア101中を流れる。磁性体コア101に生じる磁束と鎖交するように環状の鎖交導体部103を配置する。鎖交導体部103は、図1(a)~図1(c)に示すように、1本の導体であってもよいし、2回以上巻いた導線であってもよい。また、鎖交導体部103は、被覆導線で構成してもよい。鎖交導体部103には磁性体コア101に生じる磁束の変化に応じて誘導起電力が生じ、その結果鎖交導体部103に流れる誘導電流を誘導電流制御部104で制御する。そのため、鎖交導体部103の両端と誘導電流制御部104の両端は電気的に環状に導通できるように繋がれる。 The coil 102 is connected to the switching circuit, and 0 V and the maximum voltage are alternately applied to the coil 102 according to the switching operation. At that time, magnetic flux is generated by the current flowing through the coil 102. As the magnetic core 101, a magnetic body having a relative permeability larger than 1 may be used. The magnetic flux generated by the coil 102 mainly flows in the magnetic core 101. An annular interlinking conductor 103 is arranged so as to interlink with the magnetic flux generated in the magnetic core 101. As shown in FIGS. 1 (a) to 1 (c), the interlinkage conductor 103 may be a single conductor or a conductive wire wound two or more times. Further, the interlinkage conductor portion 103 may be formed of a covered conductor. An induced electromotive force is generated in the interlinkage conductor 103 in accordance with a change in magnetic flux generated in the magnetic core 101, and as a result, an induced current flowing in the interlinkage conductor 103 is controlled by the induction current controller 104. Therefore, both ends of the interlinkage conductor portion 103 and both ends of the induced current control portion 104 are connected so that they can be electrically connected in a ring shape.
 図2(a)~図2(d)は、比較例のリアクトルの構成を説明するための概略構造図である。鎖交導体部103及び誘導電流制御部104を備えていない点のみが、実施の形態1のリアクトルと異なる。 2 (a) to 2 (d) are schematic structural diagrams for explaining the configuration of the reactor of the comparative example. The only difference from the reactor of the first embodiment is that the interlinkage conductor 103 and the induced current controller 104 are not provided.
 図3(a)に示す回路を例に用いて、リアクトルをスイッチング電源に用いる場合の基本動作を説明する。図3(a)のスイッチング回路は、リアクトルLと、半導体スイッチSと、ダイオードDと、コンデンサCとで構成される。 The basic operation when the reactor is used as a switching power supply will be described using the circuit shown in FIG. 3A as an example. The switching circuit shown in FIG. 3A includes a reactor L, a semiconductor switch S, a diode D, and a capacitor C.
 図3(a)中のリアクトルLが比較例のリアクトルである場合、リアクトル電圧が回路のスイッチング動作により零から最大になるいわゆるオフ動作時や、リアクトル電圧が最大から零になるいわゆるオン動作時において、回路中のコンデンサCや半導体スイッチSの容量成分に溜まった電荷の放充電を繰り返す際に、例えばダイオードDの端子電圧は図3(b)に示すように大きなサージを発生する。リアクトルLのような磁気部品が持つインダクタンス成分の影響で、回路中の電荷の放充電を妨げるような逆起電力が生じるために、特にスイッチング動作のオン、オフのような過渡時にサージが発生するのである。 When the reactor L in FIG. 3A is the reactor of the comparative example, in the so-called off operation in which the reactor voltage is maximized from zero by the switching operation of the circuit, or in the so-called on operation in which the reactor voltage is maximized to zero When the charge accumulated in the capacitance components of the capacitor C and the semiconductor switch S in the circuit is repeatedly discharged, for example, the terminal voltage of the diode D generates a large surge as shown in FIG. Due to the influence of the inductance component of the magnetic component such as the reactor L, a back electromotive force is generated that prevents the charge in the circuit from being discharged / charged. Therefore, a surge is generated particularly during a transient such as switching on / off. It is.
 ここで、本開示中の主要構成部である鎖交導体部103と誘導電流制御部104との作用について、シミュレーションを用いた比較実験結果で説明する。 Here, the operation of the interlinkage conductor 103 and the induced current controller 104, which are the main components in the present disclosure, will be described with the results of a comparative experiment using simulation.
 図4は、比較例のリアクトルの磁界シミュレーションモデルを説明するための構造図である。比較例のシミュレーションでは、図4に示すようなリアクトルの断面形状を解析対象とするいわゆる2次元解析のためのモデルを用い、コイル102を流れる電流の起磁力により磁性体コア101中に生じる磁束分布をシミュレーション解析する。解析対象の形状対称性から解析領域は図4中に示すように設定する。 FIG. 4 is a structural diagram for explaining a magnetic field simulation model of a reactor of a comparative example. In the simulation of the comparative example, a magnetic flux distribution generated in the magnetic core 101 by the magnetomotive force of the current flowing through the coil 102 is used using a model for so-called two-dimensional analysis whose analysis target is the cross-sectional shape of the reactor as shown in FIG. Simulation analysis. The analysis region is set as shown in FIG. 4 from the shape symmetry of the analysis target.
 図5は、実施の形態1のリアクトルの磁界シミュレーションモデルを説明するための構造図である。実施の形態1のシミュレーションでも2次元解析のためのモデルを用い、解析対象の形状対称性から解析領域は図5に示すように設定する。このシミュレーションでは誘導電流制御部104は常に鎖交導体部103に流れる誘導電流を流す場合を想定して導体と近似し、図5中の鎖交導体部103は2個の断面で表し、それぞれが導通することを解析条件としてモデル化を行っている。 FIG. 5 is a structural diagram for explaining the magnetic field simulation model of the reactor according to the first embodiment. In the simulation of the first embodiment, a model for two-dimensional analysis is also used, and the analysis region is set as shown in FIG. 5 from the shape symmetry of the analysis target. In this simulation, the induced current control unit 104 is approximated as a conductor assuming that the induced current flowing through the interlinkage conductor portion 103 always flows, and the interlinkage conductor portion 103 in FIG. 5 is represented by two cross sections. Modeling is conducted under the condition that conduction is conducted.
 図6(a)及び図6(b)は、比較例のリアクトルと実施の形態1のリアクトルとの磁界シミュレーションによる磁束分布の比較図である。この比較結果は、両方の結果ともコイル102に印加する電源条件は同じ起磁力と設定し、その場合のコイル102に流れる電流が最大になる瞬間の磁束分布を磁気ベクトルポテンシャルの計算結果から、同じ条件で磁束分布を表示したものである。比較例のリアクトル及び実施の形態1のリアクトルのいずれにおいても、ほとんどの磁束が磁性体コア101を流れるが、実施の形態1のリアクトルでは鎖交導体部103に流れる誘導電流の影響で鎖交導体部103の下断面を周回するように僅かに磁束がコアから漏れ出すように分布していることが判る。このことはリアクトル自体のインダクタンスの低下を示し、スイッチング動作時の過渡時には、このインダクタンスの低下が顕著に現れる。また、磁性体コア101の主磁束経路である中央脚のギャップ部分での磁束分布の変化は少なく、むしろコイル102と鎖交する磁束が実施の形態1のリアクトルの方が少なくなるので、コイル102自体での銅損は若干小さくなると言える。 6 (a) and 6 (b) are comparison diagrams of magnetic flux distributions by magnetic field simulation between the reactor of the comparative example and the reactor of the first embodiment. In this comparison result, the power condition applied to the coil 102 is set to be the same magnetomotive force in both results, and the magnetic flux distribution at the moment when the current flowing through the coil 102 is maximized is the same from the calculation result of the magnetic vector potential. The magnetic flux distribution is displayed under conditions. In both the reactor of the comparative example and the reactor of the first embodiment, most of the magnetic flux flows through the magnetic core 101. However, in the reactor of the first embodiment, the interlinkage conductor is affected by the induced current flowing through the interlinkage conductor 103. It can be seen that the magnetic flux is slightly distributed so as to leak from the core so as to go around the lower section of the portion 103. This indicates a decrease in inductance of the reactor itself, and this decrease in inductance appears remarkably at the time of transient during switching operation. Further, the change in the magnetic flux distribution in the gap portion of the central leg that is the main magnetic flux path of the magnetic core 101 is small, and the magnetic flux interlinking with the coil 102 is rather less in the reactor of the first embodiment. It can be said that the copper loss by itself is slightly reduced.
 図7は、リアクトルの磁界解析及び回路解析の連成シミュレーションモデルを説明するための回路図である。図7中のリアクトルLの部分に比較例のリアクトルと実施の形態1のリアクトルとをそれぞれ代入して回路シミュレーションと連成解析とを行う。回路自体はリアクトルLのサージ現象を見るために簡単な構成を仮定し、入力電源の電圧Viは電圧値500V、周期10μs、デューティ比50%の矩形波と近似し、図7に示す回路構成で出力電圧Voをシミュレーションにより観測する。 FIG. 7 is a circuit diagram for explaining a coupled simulation model of reactor magnetic field analysis and circuit analysis. The circuit simulation and the coupled analysis are performed by substituting the reactor of the comparative example and the reactor of the first embodiment for the reactor L in FIG. The circuit itself is assumed to have a simple configuration in order to observe the surge phenomenon of the reactor L, and the voltage Vi of the input power supply approximates a rectangular wave having a voltage value of 500 V, a period of 10 μs, and a duty ratio of 50%, and has the circuit configuration shown in FIG. The output voltage Vo is observed by simulation.
 図8(a)及び図8(b)は、比較例のリアクトルと実施の形態1のリアクトルとの磁界解析及び回路解析の連成シミュレーションによるスイッチング電圧波形の比較図である。図8(a)に示すように、比較例のリアクトルではスイッチング動作時に大きなサージ電圧を生じ、更にその電圧が脈動することで回路中の電磁ノイズの原因となることが判る。これに対し、図8(b)に示すように、実施の形態1のリアクトルではスイッチング動作時のサージ電圧が小さく、また電圧の脈動も少ないことが判る。このように、本開示では、リアクトルを有するスイッチング電源回路においてサージ発生を抑制するとともに電磁ノイズを抑制できる効果がある。 FIG. 8A and FIG. 8B are comparison diagrams of switching voltage waveforms obtained by a coupled simulation of magnetic field analysis and circuit analysis between the reactor of the comparative example and the reactor of the first embodiment. As shown in FIG. 8A, it can be seen that the reactor of the comparative example generates a large surge voltage during the switching operation, and further pulsates the voltage, thereby causing electromagnetic noise in the circuit. On the other hand, as shown in FIG. 8B, it can be seen that the reactor of the first embodiment has a small surge voltage during the switching operation and a small voltage pulsation. As described above, the present disclosure has an effect of suppressing the generation of surge and the electromagnetic noise in the switching power supply circuit having the reactor.
 前記の磁界シミュレーションの結果からも判るように、磁性体コア101に生じる磁束と鎖交するように鎖交導体部103と誘導電流制御部104とを設置することが有効であり、実施の形態1のその他の構成として、その鎖交磁束量が多くなる箇所に鎖交導体部103と誘導電流制御部104とを設置してもよい。 As can be seen from the result of the magnetic field simulation, it is effective to install the interlinkage conductor 103 and the induced current controller 104 so as to interlink with the magnetic flux generated in the magnetic core 101. Embodiment 1 As another configuration, the interlinkage conductor 103 and the induced current control unit 104 may be installed at a location where the amount of interlinkage magnetic flux increases.
 図9(a)~図9(c)に示した、実施の形態1のリアクトルの別な構成例を説明するための概略図のような構成も可能である。詳細には、鎖交導体部103と誘導電流制御部104とが、磁性体コア101の中央脚部分に配置される。鎖交導体部103と誘導電流制御部104との設置箇所は、サージ抑制効果と、磁性体コア101で主に構成されるいわゆる磁気回路の構造とをもとに設計することができる。 A configuration as shown in a schematic diagram for explaining another configuration example of the reactor of the first embodiment shown in FIGS. 9A to 9C is also possible. Specifically, the interlinkage conductor 103 and the induced current controller 104 are arranged at the center leg portion of the magnetic core 101. The installation location of the interlinkage conductor 103 and the induced current controller 104 can be designed based on the surge suppression effect and the so-called magnetic circuit structure mainly composed of the magnetic core 101.
 実施の形態1のリアクトルの磁性体コア101はいわゆるE字型コアと呼ばれるコアを用いたいわゆる外鉄型のリアクトルを例として示したが、いわゆるU字型と呼ばれる形状のコアを用いたいわゆる内鉄型と呼ばれるリアクトルの構成にも適用できる。 Although the reactor magnetic core 101 of the first embodiment has been shown as an example of a so-called outer iron type reactor using a core called a so-called E-shaped core, the so-called inner core using a so-called U-shaped core is shown. It can also be applied to the structure of a reactor called an iron type.
 図10(a)~図10(g)は、図1又は図9中の誘導電流制御部104の詳細例を示す。図10(a)の誘導電流制御部104は、鎖交導体部103の両端間を短絡する、単なる導体である。図10(b)の誘導電流制御部104は、鎖交導体部103の両端間に接続された容量素子である。図10(c)の誘導電流制御部104は、鎖交導体部103の両端間に接続された抵抗素子である。図10(d)の誘導電流制御部104は、鎖交導体部103の両端間に接続された容量素子と抵抗素子との直列回路である。図10(e)の誘導電流制御部104は、鎖交導体部103の両端間に接続された可変容量素子である。図10(f)の誘導電流制御部104は、鎖交導体部103の両端間に接続された可変抵抗素子である。図10(g)の誘導電流制御部104は、鎖交導体部103の両端間に接続された可変容量素子と可変抵抗素子との直列回路である。 10 (a) to 10 (g) show detailed examples of the induced current control unit 104 in FIG. 1 or FIG. The induced current control unit 104 in FIG. 10A is a simple conductor that short-circuits both ends of the interlinkage conductor 103. The induced current control unit 104 in FIG. 10B is a capacitive element connected between both ends of the interlinkage conductor unit 103. The induced current control unit 104 in FIG. 10C is a resistance element connected between both ends of the interlinkage conductor unit 103. The induced current control unit 104 in FIG. 10D is a series circuit of a capacitive element and a resistive element connected between both ends of the interlinkage conductor 103. The induced current control unit 104 in FIG. 10 (e) is a variable capacitance element connected between both ends of the interlinkage conductor unit 103. The induced current control unit 104 in FIG. 10F is a variable resistance element connected between both ends of the interlinkage conductor unit 103. The induced current control unit 104 in FIG. 10G is a series circuit of a variable capacitance element and a variable resistance element connected between both ends of the interlinkage conductor portion 103.
 以上のとおり、誘導電流制御部104は、鎖交導体部103の両端間を短絡する導体で構成する以外に、容量素子、抵抗素子等の電気素子で実現することもできる。誘導電流制御部104を電気素子で作る場合、鎖交導体部103のインピーダンス値と誘導電流制御部104のインピーダンス値とによって誘導電流制御部104の通電性能は一定の周波数特性を持つことになり、その結果、サージ抑制効果に周波数特性を持たせることができる。 As described above, the induction current control unit 104 can be realized by an electric element such as a capacitive element or a resistance element in addition to the conductor that short-circuits both ends of the interlinkage conductor part 103. When the induction current control unit 104 is made of an electric element, the energization performance of the induction current control unit 104 has a certain frequency characteristic depending on the impedance value of the interlinkage conductor unit 103 and the impedance value of the induction current control unit 104. As a result, the surge suppression effect can have frequency characteristics.
 (実施の形態2)
 図11は、実施の形態2の電源回路を説明するための模式図である。図11において、実施の形態1を説明するために用いた図1(a)~図1(c)と同じ構成要素については同じ符号を用い、説明を省略する。実施の形態2の電源回路は、本実施の形態のリアクトルと主回路107とを備え、電源の主回路部107とコイル102とがリアクトルのコイルに続く配線108で繋がるように結線される回路構成を有する。実施の形態2のリアクトルは、実施の形態1のリアクトルにおいて、コイル102に印加される電流、電圧、電力、電磁ノイズ等から電源回路の動作特性を検知するための動作特性検出部105と、動作特性検出部105からの検出データを入力とする動作制御部106とを備える。動作制御部106は誘導電流制御部104に制御データを提供する。誘導電流制御部104は、動作制御部106からの制御データに基づいて動作するスイッチを有し、このスイッチにより誘導電流の通電を入り切りする。
(Embodiment 2)
FIG. 11 is a schematic diagram for explaining the power supply circuit according to the second embodiment. In FIG. 11, the same components as those in FIGS. 1A to 1C used for describing the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The power supply circuit according to the second embodiment includes the reactor according to the present embodiment and the main circuit 107, and is configured so that the main circuit unit 107 of the power supply and the coil 102 are connected to each other by the wiring 108 that follows the coil of the reactor. Have The reactor according to the second embodiment is the same as the reactor according to the first embodiment. And an operation control unit 106 that receives detection data from the characteristic detection unit 105 as an input. The operation control unit 106 provides control data to the induced current control unit 104. The induced current control unit 104 has a switch that operates based on the control data from the operation control unit 106, and the conduction of the induced current is turned on and off by this switch.
 この構成によれば、本実施の形態のリアクトルを用いた電源回路の動作状況を検出し、この検出結果に基づいて、鎖交導体部103に流れる誘導電流を誘導電流制御部104で制御することで、リアクトルのサージ抑制効果を可変にできる。 According to this configuration, the operation state of the power supply circuit using the reactor of the present embodiment is detected, and the induced current control unit 104 controls the induced current flowing through the interlinkage conductor unit 103 based on the detection result. Thus, the surge suppression effect of the reactor can be made variable.
 図12(a)~図12(g)は、図11中の誘導電流制御部104の詳細例を示す。誘導電流制御部104に用いられるスイッチは、半導体スイッチ、機械式スイッチ等を用いることができる。 12 (a) to 12 (g) show detailed examples of the induced current control unit 104 in FIG. As a switch used in the induced current control unit 104, a semiconductor switch, a mechanical switch, or the like can be used.
 以上の説明ではコイル102が巻線からなるものとしたが、プレーナコイルを採用することも可能である。 In the above description, the coil 102 is composed of a winding, but a planar coil may be used.
 (実施の形態3)
 図13は、実施の形態3のコイル構造体の構成例を説明するための断面図である。実施の形態3のコイル構造体は、磁性体コア101と、コイル102と、各々閉回路を構成する短絡導体である鎖交導体部103a,103bとを備える。磁性体コア101はコア脚110を有し、コイル102はコア脚110の周りに配置される。コイル102に流れる電流によって、コア脚110には主磁束が発生する。鎖交導体部103a,103bは、コア脚110に接して、かつ主磁束と鎖交する位置に配置される。コイル102と鎖交導体部103a,103bとは、互いに電気的に絶縁されている。
(Embodiment 3)
FIG. 13 is a cross-sectional view for explaining a configuration example of the coil structure according to the third embodiment. The coil structure according to the third embodiment includes a magnetic core 101, a coil 102, and interlinkage conductor portions 103a and 103b, which are short-circuit conductors that constitute a closed circuit. The magnetic core 101 has a core leg 110, and the coil 102 is disposed around the core leg 110. A main magnetic flux is generated in the core leg 110 by the current flowing through the coil 102. The interlinkage conductor portions 103a and 103b are arranged in contact with the core leg 110 and at a position interlinking with the main magnetic flux. The coil 102 and the interlinkage conductor portions 103a and 103b are electrically insulated from each other.
 図13のコイル構造体において、鎖交導体部は、第1鎖交導体部103aと、第2鎖交導体部103bとを含んでいる。第1鎖交導体部103aは、コイル102より上側に設けられている。第2鎖交導体部103bは、コイル102より下側に設けられている。 In the coil structure of FIG. 13, the interlinkage conductor portion includes a first interlinkage conductor portion 103a and a second interlinkage conductor portion 103b. The first interlinkage conductor portion 103 a is provided above the coil 102. The second interlinkage conductor portion 103 b is provided below the coil 102.
 実施の形態3のコイル構造体は、鎖交導体部103a,103bが主磁束と鎖交し,かつその交番磁束で生じる逆起電力による誘導電流が最大になるように構成される。ただし、鎖交導体部の数は2に限らず、1又は3以上であってもよい。 The coil structure of the third embodiment is configured such that the interlinkage conductor portions 103a and 103b are linked to the main magnetic flux, and the induced current due to the counter electromotive force generated by the alternating magnetic flux is maximized. However, the number of interlinkage conductor portions is not limited to two, and may be one or three or more.
 この構成によれば、コイル102より発生する主磁束を鎖交導体部103a,103bが打ち消す作用を奏する。したがって、サージ電圧の発生を抑制することができる。 According to this configuration, there is an effect that the interlinkage conductor portions 103a and 103b cancel the main magnetic flux generated from the coil 102. Therefore, generation of surge voltage can be suppressed.
 図14(a)は図13のコイル構造体をリアクトルとして用いた場合のスイッチング動作の例を説明するための回路図であり、図14(b)は比較例のリアクトルの場合にダイオードの端子に大きなサージ電圧が発生することを示す波形図である。 FIG. 14A is a circuit diagram for explaining an example of the switching operation when the coil structure of FIG. 13 is used as a reactor, and FIG. 14B shows a diode terminal in the case of the reactor of the comparative example. It is a wave form diagram which shows that a big surge voltage generate | occur | produces.
 図14(a)のスイッチング回路は、リアクトルLと、半導体スイッチSと、ダイオードDと、コンデンサCとで構成される。図14(a)中のリアクトルLが比較例のリアクトルである場合、スイッチング動作に伴いダイオードDの両端に図14(b)に示すように大きなサージ電圧が発生する。 14A includes a reactor L, a semiconductor switch S, a diode D, and a capacitor C. When the reactor L in FIG. 14A is the reactor of the comparative example, a large surge voltage is generated at both ends of the diode D as shown in FIG.
 図15(a)は比較例のリアクトルの場合のスイッチング波形図であり、図15(b)は図13のコイル構造体の試作品の場合のスイッチング波形図である。図13のコイル構造体を用いることで、サージ電圧の発生を抑制できることが判る。 15A is a switching waveform diagram in the case of the reactor of the comparative example, and FIG. 15B is a switching waveform diagram in the case of the prototype of the coil structure of FIG. It turns out that generation | occurrence | production of a surge voltage can be suppressed by using the coil structure of FIG.
 図16は、実施の形態3のコイル構造体の他の構成例を説明するための断面図である。実施の形態3のコイル構造体は、図16のように、一次コイル102aと二次コイル102bとを備えた変圧器として構成されてもよい。 FIG. 16 is a cross-sectional view for explaining another configuration example of the coil structure according to the third embodiment. The coil structure of Embodiment 3 may be configured as a transformer including a primary coil 102a and a secondary coil 102b as shown in FIG.
 図17(a)~図17(d)は、図16中の鎖交導体部103aの変形例を示す拡大断面図である。図17(a)に示すように、鎖交導体部103aは、コア脚110の外側に巻かれるように配置されてもよい。図17(b)に示すように、鎖交導体部103aは、コア脚110の表面に一部埋め込まれて配置されてもよい。図17(c)に示すように、鎖交導体部103aの全体が、コア脚110の内部に埋め込まれて配置されてもよい。図17(d)に示すように、鎖交導体部103aは平板状の導体であってもよく、また鎖交導体部103aの全体が、コア脚110の内部に埋め込まれて配置されてもよい。 17 (a) to 17 (d) are enlarged cross-sectional views showing modifications of the interlinkage conductor portion 103a in FIG. As shown in FIG. 17A, the interlinkage conductor portion 103 a may be disposed so as to be wound around the core leg 110. As shown in FIG. 17 (b), the interlinkage conductor portion 103 a may be partially embedded in the surface of the core leg 110. As shown in FIG. 17C, the entire interlinkage conductor portion 103 a may be embedded in the core leg 110. As shown in FIG. 17D, the interlinkage conductor portion 103 a may be a flat conductor, or the entire interlinkage conductor portion 103 a may be embedded in the core leg 110. .
 ここでは図16中の第1鎖交導体部103aの変形例を説明したが、図16中の第2鎖交導体部103bについても同様の変形が可能である。また、図13中の第1鎖交導体部103a及び/又は第2鎖交導体部103bについても同様である。 Here, the modification example of the first interlinkage conductor portion 103a in FIG. 16 has been described, but the same modification can be made to the second interlinkage conductor portion 103b in FIG. The same applies to the first interlinkage conductor portion 103a and / or the second interlinkage conductor portion 103b in FIG.
 (応用例)
 図18は、実施の形態1~3のいずれかのリアクトルの応用例である自動車の概略図である。図18に示した自動車201は、バッテリ202と、充電器203とを備える。充電器203は、実施の形態1~3のいずれかのリアクトルを有するものである。本開示のサージ抑制効果により、充電制御マイコンの誤動作や、周辺環境への電磁ノイズを抑制できる。
(Application examples)
FIG. 18 is a schematic diagram of an automobile as an application example of the reactor according to any one of the first to third embodiments. An automobile 201 illustrated in FIG. 18 includes a battery 202 and a charger 203. Charger 203 has the reactor of any one of the first to third embodiments. The surge suppression effect of the present disclosure can suppress malfunction of the charge control microcomputer and electromagnetic noise to the surrounding environment.
 本開示によるコイル構造体は、リアクトルを用いたスイッチング電源で生じるサージ電圧やサージ電流を抑制する効果を有する。したがって、本開示によるコイル構造体を用いることで、サージ現象が原因となる回路の破壊に対応するための過剰な耐性を有する素子を採用する必要がなく、電源回路全体のコスト削減を可能にできる。また、サージ現象が原因となって生じる電磁ノイズを抑制する効果を有するので、ノイズ対策部品の削減によるコスト削減が可能になる。 The coil structure according to the present disclosure has an effect of suppressing surge voltage and surge current generated in a switching power supply using a reactor. Therefore, by using the coil structure according to the present disclosure, it is not necessary to employ an element having excessive resistance to cope with the destruction of the circuit caused by the surge phenomenon, and the cost of the entire power supply circuit can be reduced. . In addition, since it has an effect of suppressing electromagnetic noise caused by the surge phenomenon, it is possible to reduce costs by reducing noise countermeasure components.
101 磁性体コア
102,102a,102b コイル
103,103a,103b 鎖交導体部
104 誘導電流制御部
105 動作特性検出部
106 動作制御部
107 主回路部
108 リアクトルのコイルの配線
110 コア脚
201 自動車
202 バッテリ
203 充電器
DESCRIPTION OF SYMBOLS 101 Magnetic core 102,102a, 102b Coil 103,103a, 103b Linkage conductor part 104 Inductive current control part 105 Operation characteristic detection part 106 Operation control part 107 Main circuit part 108 Reactor coil wiring 110 Core leg 201 Car 202 Battery 203 Charger

Claims (4)

  1.  磁性体コアと、
     コイルと、
     閉回路を構成する短絡導体である鎖交導体部とを備え、
     前記磁性体コアは、コア脚を有し、
     前記コイルは、前記コア脚周りに配置され、
     前記コイルに流れる電流によって、前記コア脚には主磁束が発生し、
     前記鎖交導体部は、前記コア脚に接して、かつ前記主磁束と鎖交する位置に配置され、
     前記コイルと前記鎖交導体部とは、互いに電気的に絶縁されたコイル構造体。
    A magnetic core;
    Coils,
    The interlinkage conductor portion that is a short-circuit conductor constituting a closed circuit,
    The magnetic core has a core leg,
    The coil is disposed around the core leg;
    Due to the current flowing in the coil, a main magnetic flux is generated in the core leg,
    The interlinkage conductor portion is disposed at a position in contact with the core leg and interlinkage with the main magnetic flux,
    A coil structure in which the coil and the interlinkage conductor are electrically insulated from each other.
  2.  請求項1に記載のコイル構造体において、
     前記鎖交導体部は、第1鎖交導体部と、第2鎖交導体部とを含み、
     前記第1鎖交導体部は、前記コイルより上側に設けられ、
     前記第2鎖交導体部は、前記コイルより下側に設けられたコイル構造体。
    The coil structure according to claim 1,
    The interlinkage conductor portion includes a first interlinkage conductor portion and a second interlinkage conductor portion,
    The first interlinkage conductor portion is provided above the coil,
    The second interlinkage conductor part is a coil structure provided below the coil.
  3.  請求項1又は2に記載のコイル構造体において、
     前記鎖交導体部は、前記コア脚の外側に巻かれるように配置されたコイル構造体。
    In the coil structure according to claim 1 or 2,
    The interlinkage conductor portion is a coil structure disposed so as to be wound around the outer side of the core leg.
  4.  請求項1又は2に記載のコイル構造体において、
     前記鎖交導体部は、前記コア脚の表面に一部埋め込まれて配置されたコイル構造体。
    In the coil structure according to claim 1 or 2,
    The interlaced conductor portion is a coil structure that is arranged partially embedded in the surface of the core leg.
PCT/JP2014/002267 2013-05-21 2014-04-22 Coil structure WO2014188662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107425 2013-05-21
JP2013107425 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014188662A1 true WO2014188662A1 (en) 2014-11-27

Family

ID=51933233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002267 WO2014188662A1 (en) 2013-05-21 2014-04-22 Coil structure

Country Status (1)

Country Link
WO (1) WO2014188662A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152578A1 (en) * 2015-03-23 2016-09-29 Ntn株式会社 Inductor and protection circuit
WO2017122439A1 (en) * 2016-01-12 2017-07-20 株式会社デンソー Magnetic circuit component
WO2017126486A1 (en) * 2016-01-20 2017-07-27 Ntn株式会社 Transformer for breaker circuit
JP2019009289A (en) * 2017-06-26 2019-01-17 Ntn株式会社 Core for current-limiting reactor, current-limiting reactor and manufacturing method of core for current-limiting reactor
JP2019047048A (en) * 2017-09-06 2019-03-22 Ntn株式会社 Current-limiting coil for dc power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222456A (en) * 1995-02-09 1996-08-30 Kyoshin Denki Kogyo Kk Harmonic current suppressor
JPH11186068A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Converter transformer
JP2001237123A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Coil part
JP2001267148A (en) * 2000-01-14 2001-09-28 Denken Seiki Kenkyusho:Kk Disturbance cut-off transformer
JP2005005287A (en) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd Inductance component and electronic apparatus employing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222456A (en) * 1995-02-09 1996-08-30 Kyoshin Denki Kogyo Kk Harmonic current suppressor
JPH11186068A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Converter transformer
JP2001267148A (en) * 2000-01-14 2001-09-28 Denken Seiki Kenkyusho:Kk Disturbance cut-off transformer
JP2001237123A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Coil part
JP2005005287A (en) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd Inductance component and electronic apparatus employing it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152578A1 (en) * 2015-03-23 2016-09-29 Ntn株式会社 Inductor and protection circuit
WO2017122439A1 (en) * 2016-01-12 2017-07-20 株式会社デンソー Magnetic circuit component
WO2017126486A1 (en) * 2016-01-20 2017-07-27 Ntn株式会社 Transformer for breaker circuit
JP2019009289A (en) * 2017-06-26 2019-01-17 Ntn株式会社 Core for current-limiting reactor, current-limiting reactor and manufacturing method of core for current-limiting reactor
JP2019047048A (en) * 2017-09-06 2019-03-22 Ntn株式会社 Current-limiting coil for dc power supply
JP7015657B2 (en) 2017-09-06 2022-02-03 Ntn株式会社 Current limiting coil for DC power supply

Similar Documents

Publication Publication Date Title
WO2014188662A1 (en) Coil structure
US9613745B2 (en) Adjustable integrated combined common mode and differential mode three phase inductors and methods of manufacture and use thereof
CN101707121B (en) Transformer with split primary winding
EP3035349B1 (en) A transformer
US8416050B2 (en) Inductor
TWI611438B (en) Composite smoothing inductor and smoothing circuit
RU2633611C2 (en) Power coil device containing winding of first coil and winding of second coil covering same section of magnetic core pin
CN107768122B (en) Coupled inductor for low electromagnetic interference
TWI389148B (en) Transformer for reducing emi and power conversion circuit using the same
Ongayo et al. An overview of single-sided and double-sided winding inductive coupling transformers for wireless electric vehicle charging
WO2020195275A1 (en) Transformer and switching power supply device
JP6222492B2 (en) Parallel inverter connected to one inductor
KR101201291B1 (en) Transformer with backward double winding coil transformer for protceting electro-static shield, surge and eletromagnetic noise
CN112652470B (en) Transformer
JP6210464B2 (en) electric circuit
JP6701827B2 (en) Switching power supply
CN102244469A (en) Switching power supply capable of suppressing current harmonic waves
CN105593956B (en) The construction and transformer of coupling coil
CN109639128B (en) Method for reducing conducted common-mode interference of flyback switching power supply by optimizing transformer structure
Ziegler et al. Influences of WPT-coil losses and coupling coefficient on the resonance circuits of wireless power transfer systems
JP4532034B2 (en) Zero phase current transformer
RU2704127C1 (en) Device for protection of windings of single-phase transformer against electrical damages
KR101338905B1 (en) High frequency transformer
KR20120006603A (en) Resonator for magnetic resonance power transmission device using current source input
JP2013125926A (en) Power supply cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP