WO2017126002A1 - Common mode filter - Google Patents

Common mode filter Download PDF

Info

Publication number
WO2017126002A1
WO2017126002A1 PCT/JP2016/051246 JP2016051246W WO2017126002A1 WO 2017126002 A1 WO2017126002 A1 WO 2017126002A1 JP 2016051246 W JP2016051246 W JP 2016051246W WO 2017126002 A1 WO2017126002 A1 WO 2017126002A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
common mode
signal
control coil
dielectric layer
Prior art date
Application number
PCT/JP2016/051246
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 亀谷
Original Assignee
松江エルメック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松江エルメック株式会社 filed Critical 松江エルメック株式会社
Priority to PCT/JP2016/051246 priority Critical patent/WO2017126002A1/en
Publication of WO2017126002A1 publication Critical patent/WO2017126002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a common mode filter, and more particularly to a novel common mode filter capable of suppressing reflection of common mode noise and adjusting common mode rejection characteristics.
  • a common mode choke coil has been widely used as an electronic component for removing common mode noise in a transmission line for ultra high-speed differential signals.
  • the common mode noise elimination principle of the common mode choke coil uses a magnetic coupling such as a coil wound with a conductive wire or a spiral coil printed on a flat surface to generate a high series impedance with respect to the common mode signal. Noise is reflected to the input side and not propagated to the previous circuit.
  • the common mode removal capability is particularly easily deteriorated particularly at a frequency of 10 GHz or more.
  • the method of preventing the propagation to the output side by reflecting the common mode noise to the input side is conductive because the noise is difficult to radiate if the frequency of the transmission signal is low and the circuit pattern is difficult to become an antenna. It is only necessary to remove noise, and noise emission is not a problem.
  • the circuit pattern is likely to be an antenna, so that the own circuit is likely to malfunction due to radioactive noise generated from the own circuit.
  • the common mode filter shown in Patent Document 1 has a configuration in which two signal coils through which a differential signal passes are opposed to each other, and a control coil is disposed and coupled to both outer sides of the signal coils. It tends to adversely affect the signal passing characteristics.
  • the common mode filter shown in Patent Document 2 is configured as shown in the equivalent circuit of FIG. 11. Based on this configuration, the common mode filter is virtually considered for 10 Gbit / second transmission, The analysis result of the modeled one is as shown in FIG.
  • Scc11 is the reflection characteristic of the common mode signal at the input terminals 21A and 21B
  • Scc22 is the reflection characteristic of the common mode signal at the output terminals 23A and 23B
  • Scc21 is the transmission characteristic of the common mode signal. Means.
  • the resistances R1 and R2 are infinite, that is, the control coil 3 is in a floating state, but the characteristics are hardly changed even if the control coil 3 is removed as it is. That is, it has the same configuration as a general common mode choke coil.
  • the reflection characteristic Scc11 is approximately 0 dB, and the input common mode signal is in a state of total reflection returning to the input terminals 21A and 21B without being attenuated.
  • the pass characteristic Scc21 achieves a large attenuation of about -25 dB at around 5 GHz, but is about -3 dB at around 15 GHz, and the attenuation is very small. Shows typical characteristics.
  • FIG. 12B shows the characteristics when the resistors R1 and R2 are set to 60 ⁇ . If the resistances R1 and R2 are set to appropriate values, the pass characteristic Scc21 can secure an attenuation of about ⁇ 10 dB around 15 GHz. . However, at the same time, Scc21 is -15 dB at 5 GHz, and the attenuation is reduced.
  • FIG. 12 (C) shows an example in which the resistor R1 is 25 ⁇ and the resistor R2 is infinite, that is, open, and the technique of ground connection only at one end shown in Patent Document 1 is applied to Patent Document 2.
  • Scc11 can achieve a significant reflection reduction of -20 dB at 2.5 GHz.
  • Scc21 is about -7.5 dB at around 15 GHz, and a slight improvement is realized as compared with FIG.
  • Patent Document 2 shows that Scc21 does not significantly improve the characteristics of the general common mode choke coil shown in FIG. 12A, and only one end of the control coil is connected to the ground. Therefore, there is no characteristic improvement method other than adjusting the value of the resistor R1 as an optimization method, and the options for characteristic improvement are narrow.
  • the present invention has been made to solve such problems, and provides a common mode filter capable of suppressing reflection of common mode noise and sufficiently removing common mode noise of 10 GHz or more.
  • a common mode filter according to claim 1 of the present invention is formed in a spiral shape in a multilayer dielectric layer, and is inserted and connected in series in a differential signal line of one polarity.
  • the first signal coil is formed in a spiral shape so as to face the first signal coil through the dielectric layer so as to overlap the first signal coil in the thickness direction in the dielectric layer.
  • the control coil is wound in the same direction as the first signal coil and controls the magnetic coupling and coupling capacity between the first and second signal coils.
  • a four-terminal circuit is connected between the terminal pair formed by the start point of the division control coil on the start point side and the ground and the terminal pair formed by the end point of the division control coil on the end point side and the terminal pair formed by the ground. It is a configuration.
  • the four-terminal circuit network includes a ⁇ -type or T-type resistor network.
  • a first signal coil inserted and connected in series in a differential signal line of one polarity in a multilayer dielectric layer, and the first signal coil
  • a second signal coil which faces the signal coil in a shape overlapping in the thickness direction and is inserted and connected in series in the differential signal line of the other polarity; and the first and second signal coils
  • the first and second signal coils For controlling the magnetic coupling and coupling capacitance between the first signal coil and the second signal coil, which are sandwiched between the first signal coil and the first signal coil.
  • the control coil is divided at one point between the start point and the end point of the control coil, and the terminal pair formed by the start point and the ground, and the terminal pair formed by the end point and the ground Since a 4-terminal circuit is connected to Suppressing reflection mode noise can be sufficiently removed common mode noise above 10 GHz.
  • the four-terminal circuit network since the four-terminal circuit network includes a ⁇ -type or T-type resistor network, it is easy to optimize the common-mode noise removal characteristics.
  • FIG. 2 is an equivalent circuit diagram of the common mode filter of FIG. 1. It is a frequency characteristic of the common mode filter of FIG. It is a frequency characteristic of the common mode filter of FIG. FIG. 2 is a line pattern diagram of the common mode filter of FIG. 1. It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. It is another external view of the common mode filter according to the present invention. It is an equivalent circuit diagram of a conventional common mode filter. It is a frequency characteristic figure of the conventional common mode filter.
  • FIG. 1 is an exploded perspective view showing a basic configuration of a common mode filter F according to the present invention.
  • the dielectric layer 11A has a signal coil (first signal coil) 1A
  • the dielectric layer 11C has a signal coil (second signal coil) 1B
  • the dielectric layer 11B has a control coil 3 Is formed.
  • dielectric layers 11A to 11C are formed of a known laminated ceramic having substantially the same shape as a rectangular thin plate, a resin substrate such as polyimide or glass epoxy, or an insulating film for a semiconductor such as silicon dioxide or silicon nitride.
  • the layers 11B are stacked so as to be sandwiched between the dielectric layers 11A and 11C.
  • the signal coils 1A and 1B and the control coil 3 are formed on one side of each of the dielectric layers 11A to 11C by, for example, a thin film photolithography, damascene process, thick film printing, etching, or the like from a known conductive material. It is formed in a shape.
  • the control coil 3 is sandwiched between the signal coil 1A and the signal coil 1B in the stacking (thickness) direction of the dielectric layers 11A to 11C, and is disposed at the center position between the signal coil 1A and the signal coil 1B. Has been.
  • the signal coil 1A and the signal coil 1B are formed with the same winding direction, the same line width, and the same inter-line space, and when viewed from the thickness direction, the line portions excluding both end portions are misprinted or misaligned. It is formed so as to overlap within the error range. That is, the signal coils 1 ⁇ / b> A and 1 ⁇ / b> B are wired so that the line portions except for both end portions substantially overlap.
  • the dielectric layers 11D and 11F are formed, for example, from the same material and in the same shape as the dielectric layers 11A to 11C, and the dielectric layer 11D is superimposed on the dielectric layer 11C on the side opposite to the dielectric layer 11B.
  • the body layer 11E is superimposed on the dielectric layer 11A on the side opposite to the dielectric layer 11B.
  • the outer peripheral end of the signal coil 1A is led out to the end face of the dielectric layer 11A via the input side lead wire 15A formed on the same surface of the dielectric layer 11A, and is connected to the input terminal 21A shown in FIG. .
  • the dielectric layers 11A to 11C, the dielectric layers 11D and 11E, and cover layers 13A and 13B described later are stacked.
  • the inner peripheral end of the signal coil 1A is led out to the dielectric layer 11D through the via 9A formed in the dielectric layers 11A, 11B, and 11C, and formed on one surface of the dielectric layer 11D facing the dielectric layer 11C. Is connected to the output lead wire 17A.
  • the output lead line 17A is led out to the end face of the dielectric layer 11D and is connected to the output terminal 23A shown in FIG.
  • the outer peripheral end of the signal coil 1B is led out to the end surface of the dielectric layer 11C via the input side lead wire 15B formed on the same surface of the dielectric layer 11C so as not to overlap the input side lead wire 15A. It is connected to the input terminal 21B inside.
  • the inner peripheral end of the signal coil 1B is led out to the dielectric layer 11D through the via 9B formed in the dielectric layer 11C, and is different from this on the same surface as the output lead line 17A in the dielectric layer 11D. It is connected to the output side lead wire 17B formed at the position.
  • the output lead line 17B is led out to the end face of the dielectric layer 11D and connected to the output terminal 23B in FIG.
  • the control coil 3 is formed in the same winding direction as the signal coils 1A and 1B, and is not necessarily the same line width and the same inter-line space as the signal coils 1A and 1B. However, the pitch is the same as that of the signal coils 1A and 1B.
  • the control coil 3 is divided into two parts at a dividing point 7 which is approximately the middle (1/2) position of the line length from the start point 5A (outer peripheral end) to the end point 5B (inner peripheral end).
  • the starting point 5A of the control coil 3 is led to the dielectric layer 11D through the vias 9C formed in the dielectric layers 11B and 11C, and these are on the same surface as the output lead lines 17A and 17B in the dielectric layer 11D. Is connected to a resistance connection pad 19A formed at a different position.
  • a resistor connection pad 19B is formed in the vicinity of the resistor connection pad 19A on the same surface as the resistor connection pad 19A in the dielectric layer 11D, and this is led out to the end surface of the dielectric layer 11D, and the control terminal 25A in FIG. It is connected to the.
  • the end point 5B of the control coil 3 is led to the dielectric layer 11D through the vias 9D formed in the dielectric layers 11B and 11C, and is provided in the dielectric layer 11D with the output side lead wires 17A and 17B and the resistance connection pad 19A.
  • 19B are connected to a resistance connection pad 19C formed at a position different from the same surface as that of 19B.
  • the resistance connection pad 19C is located in the vicinity of the resistance connection pad 19A.
  • a resistance connection pad 19D is formed in the vicinity of the resistance connection pad 19C, and this leads to the end surface of the dielectric layer 11D in the direction opposite to the resistance connection pad 19B. And connected to the control terminal 25B in FIG.
  • a resistor R1 is connected between the resistor connection pads 19A and 19C, a resistor R2 is connected between the resistor connection pads 19B and 19D, and a resistor R3 is connected between the resistor connection pads 19C and 19D.
  • resistors R1 to R3 are passive elements that terminate the electric power induced in the control coil 3, and are printed by a resistance paste, a resistive metal thin film such as nichrome, or a resin substrate with a built-in resistor. Is formed.
  • the dielectric layers 11A to 11D are stacked, and the cover layer 13A is stacked on the dielectric layer 11A on the side opposite to the dielectric layer 11B, and the cover is provided on the dielectric layer 11D on the side opposite to the dielectric layer 11C.
  • Layer 13B is laminated and integrated as shown in FIG. 2, for example, by baking.
  • the cover layers 13A and 13B are magnetic materials
  • the dielectric layers 11A to 11E are laminated and fired to become the first solid, and the cover layers 13A and 13B are bonded and integrated on the solid.
  • cover layers 13A and 13B are dielectrics
  • the cover layers 13A and 13B are arranged above and below the dielectric layers 11A to 11E, and are laminated and fired to be integrated.
  • the common mode filter F integrated by any one of these methods has input terminals 21A and 21B as external terminal electrodes connected to the input lead wires 15A and 15B formed on one outer peripheral side surface, and the other facing the other.
  • the output terminals 23A and 23B to which the output side lead wires 17A and 17B as external terminal electrodes are connected are formed on the outer peripheral side surface of the, thereby constituting a finished chip component.
  • the common mode filter F is mounted on a printed wiring board or the like, and as shown in FIG. 2, between the differential lines 27A and the differential lines 27B that are formed on the printed wiring board and cut along the way.
  • the terminals 21A and 21B and the output terminals 23A and 23B are connected together.
  • the input terminal 21A and the output terminal 23A of the common mode filter F are inserted and connected in series in the differential signal line 27A of one polarity, and the input terminal 21B and the output terminal 23B are the differential signal of the other polarity.
  • the line 27B is inserted and connected in series.
  • the printed wiring board or the like is provided with ground pads 29A and 29B that match the control terminals 25A and 25B, and these control terminals 25A and 25B are connected to a ground (not shown).
  • control coil 3 is preferably formed at the center layer position between the signal coils 1A and 1B, and the dielectric layer 11A and the dielectric layer 11B are preferably made of the same material and the same layer thickness.
  • the signal coils 1A and 1B are both positive or negative at the same time, and the intermediate potential does not become “zero”, so that the electromagnetic field reaches the control coil 3; An induced electromotive force is generated in the control coil 3.
  • a resistor R1 is connected between the start point 5A of the split control coil 3A including the start point 5A and the ground, and a resistor R2 is connected between the end point 5B of the split control coil 3B including the end point 5B and the ground.
  • a resistor R3 is connected between the start point 5A of the split control coil 3A including the start point 5A and the ground, and a resistor R2 is connected between the end point 5B of the split control coil 3B including the end point 5B and the ground.
  • a ⁇ -type four-terminal circuit 33 formed of resistors R1 to R3 is connected.
  • control coil 3 is not formed with a feedback circuit to the ground or a closed loop circuit by the resistor R3 due to the presence of the dividing portion 7.
  • control coil 3 and its terminal connection are indicated by solid lines for easy understanding. In the subsequent equivalent circuits, only the solid line circuit portion is displayed.
  • FIG. 4 shows frequency characteristics when the common mode filter F shown in FIG. 1 is designed for 10 Gbit / sec and subjected to electromagnetic field simulation.
  • the line width of the signal coils 1A and 1B is 15 ⁇ m
  • the space between the lines is also 15 ⁇ m
  • the outer dimensions of the dielectric 11A are 0.85 mm in the direction between the control terminals 25A and 25B
  • the input terminal 21A Wiring was performed in an area of 0.65 mm in the direction between 21B and the output terminals 23A and 23B.
  • control coils 3 There are two types of control coils 3. The first is a shape in which the line of the control coil 3 completely overlaps that of the signal coils 1 ⁇ / b> A and 1 ⁇ / b> B. The second is the signal coil in the center of the line of the control coil 3. Although it coincides with the centers of 1A and 1B, the line width is 25 ⁇ m, the space between lines is 5 ⁇ m, and the area where the control coil 3 is formed is substantially filled with the conductor. In both cases, the cutting length of the dividing portion 7 is 40 ⁇ m.
  • Sdd11 is a reflection characteristic at the input terminals 21A and 21B
  • Sdd21 is a differential signal passing characteristic from the input terminals 21A and 21B to the output terminals 23A and 23B
  • FIG. (B) and (C) are frequency characteristics with respect to the common mode
  • Scc11 is the common mode reflection characteristic at the input terminals 21A and 21B
  • Scc22 is the common mode reflection characteristic at the output terminals 23A and 23B
  • Scc21 is from the input terminals 21A and 21B. This is a common mode pass characteristic to the output terminals 23A and 23B.
  • control coil 3 Since the control coil 3 is not visible from the differential signal, this characteristic is obtained regardless of the line width of the control coil 3 or the space between the lines. Therefore, the characteristic for the differential signal is omitted in the subsequent characteristic display.
  • Sdd11 shows a very low reflection of -15 dB or less in a wide band of 15 GHz or less
  • Sdd21 has a passband of -3 dB of about 15 GHz and 10 Gbit / sec. This signal is passed without distortion.
  • the pass characteristic Scc21 shows a maximum attenuation of about ⁇ 29 dB at 2.6 GHz, that is, a noise removal peak, and shows a sufficient common mode removal capability of about ⁇ 19 dB even at 5 GHz which is a clock frequency of 10 Gbit / second, In the conventional example, it is shown that the frequency range of 10 G to 16 Hz in which the removal characteristics are rapidly deteriorated is ⁇ 12 dB or less.
  • the noise can be sufficiently removed if the passage of the common mode noise is suppressed to ⁇ 20 dB or less, a large attenuation pole at a specific frequency as shown in FIG. Rather, the characteristic that suppresses the passage in a wide band on average as shown in FIG. 4B has a certain removal capability for noise generated at any frequency, so that the usability is improved.
  • the reflection characteristics Scc11 and Scc22 show a large resonance-like attenuation characteristic of about ⁇ 15 dB at 4 to 5 GHz, and it is shown that the reflection of the common mode noise removed near the noise removal peak frequency of 5 GHz can be suppressed.
  • the reason why the peak frequencies of attenuation do not completely match between Scc11 and Scc22 is that the dividing point 7 is slightly shifted from the accurate intermediate position between the start point 5A and the end point 5B in terms of electrical length.
  • the conventional configuration is the same as FIG. 1 except that the control coil 3 is not divided and there is no R3. That is, the difference in characteristics between FIG. 4B and FIG. 12 comes from the presence / absence of the division of the control coil 3 and the values of the resistors R1, R2 and R3 in FIG.
  • the characteristics slightly change, and the noise removal capability is improved at a value lower than the characteristics shown in FIG. 4B at Scc21 of 2.6 G to 9 GHz.
  • the line width of the control coil 3 is preferably equal to or smaller than the line width of the signal coils 1A and 1B, but even if it is equal to or larger than the line width of the signal coils 1A and 1B, as shown in FIG. It is possible to obtain a sufficiently practical common mode filter F. Therefore, it can be said that the line width of the control coil 3 is not so important.
  • FIG. 5 shows the ratio of the reflected power, the passing ratio, and the internal absorption removal ratio of Scc11 and Scc21 in FIG. 4 when the common mode noise is input to the common mode filter F and the input power is 100%. It is calculated from the characteristics.
  • FIG. 5 The graph calculated from FIG. 4 (B) is FIG. 5 (B), and the graph calculated from FIG. 4 (C) is FIG. 5 (C). As shown in the figure, it can be seen that about 95% of common mode power is absorbed at 5 GHz.
  • FIG. 5 is shown corresponding to FIGS. 4B and 4C.
  • the configuration described above is a case where the signal coils 1A and 1B and the control coil 3 are all overlapped by the center line in the line length direction, and the cutting length at the dividing point 7 is 40 ⁇ m.
  • FIG. 6 is a view of the conductor pattern of the control coil 3 as viewed from the upper surface (dielectric layer 11B side) of the dielectric layer 11C.
  • the pattern of the signal coil 1B in contact with the opposite surface of the dielectric layer 11C is displayed as shown in a perspective view (broken line).
  • the line center line of the control coil 3 is intentionally arranged at an intermediate position in the space between the lines of the signal coil 1 ⁇ / b> B (1 ⁇ / b> A), but even in this case, the common mode noise improved over the conventional example It is possible to obtain removal characteristics.
  • the circular pitch of the control coil 3 matches the circular pitch of the signal coils 1A and 1B. If this does not match, not only the improvement of the common mode noise removal characteristic is not expected, but there is a possibility that the differential signal passing characteristic may be deteriorated, which is not desirable.
  • the minimum value of the cutting length of the dividing point 7 of the control coil 3 is the same as the gap that can be realized in the manufacturing process, that is, the minimum inter-line space in many cases. Although not shown, even if the cutting length of the control coil 3 is reduced from 40 ⁇ m to 5 ⁇ m in the configuration of FIG.
  • control coil 3 is of course arranged at an intermediate position between the signal coils 1A and 1B in order to maintain symmetry between the two lines with respect to the differential signal.
  • the dielectrics 11A to 11C must be made of the same material, and the cover layers 13A and 13B and the dielectrics 11D and 11E are made of the same material as the dielectrics 11A to 11C.
  • cover layers 13A and 13B are made of a magnetic material, they are magnetically shielded and a stable operation is realized.
  • the cover layer 13A can be incorporated in a semiconductor package or a semiconductor chip so that it can be incorporated in a semiconductor package or a semiconductor chip.
  • 13B are all described as dielectrics.
  • the four-terminal circuit 33 described above connects a series circuit of resistors R1 and R2 between the start point 5A of the split control coil 3A and the end point 5B of the split control coil 3B, and the resistor R1 and It is also possible to form a T-type resistor network in which a resistor 3 is connected between the connection point of R2 and the ground.
  • the four-terminal circuit 33 connects a series circuit of resistors R1, R3, and R2 between the start point 5A of the split control coil 3A and the end point 5B of the split control coil 3B, and the resistor R1 It is also possible to form a ladder-type resistor network in which the resistor R4 is connected between the connection point of R3 and the ground, and the resistor R5 is connected between the connection point of the resistors R3 and R2 and the ground.
  • the four-terminal circuit 33 connects only the resistor R1 between the starting point 5A of the split control coil 3A and the ground, and only the resistor R2 between the end point 5B of the split control coil 3B and the ground.
  • the resistor R3 is infinite in FIG. 3
  • a configuration that can be said to be a modification of the ⁇ -type network is also possible.
  • the important point is that one terminal pair of the four-terminal circuit 33 is connected between the start point of the split control coil 3A having the start point and the ground, and the end point and ground of the split control coil 3B having the end point are connected. If the other terminal pair of the four-terminal circuit 33 is connected between each other, the object of the present invention can be achieved.
  • the four-terminal circuit 33 can adjust the pass characteristics of the common mode Scc21 even with a ⁇ -type, T-type, or ladder-type network using resistors and capacitors or resistors and inductors.
  • the four-terminal circuit 33 can construct an infinite circuit configuration, and among them, a circuit network formed so as to include a ⁇ -type or T-type resistance network is most desirable.
  • resistors R1 to R3 are not necessarily built in the common mode filter F.
  • the resistors R1 and R2 are “zero ⁇ ”, that is, the resistors are omitted and connected by a conductor, and the control terminal 25A
  • the terminal on the outer peripheral side of the control coil 3 may be directly connected to the control terminal 25B, and the terminal on the inner peripheral side of the control coil 3 may be directly connected to the control terminal 25B.
  • the passive circuit 35A is connected as an external component between the ground pad 29A and the ground
  • the passive circuit 35B is connected as an external component between the ground pad 29B and the ground.
  • the characteristics of the common mode filter F can be freely adjusted.
  • the passive circuits 35A and 35B connected to the terminal of the control coil 3 can be external components. If the external configuration is adopted, it is possible to prevent an increase in the dielectric layer or the like containing the inductor, capacitor, etc., and it is difficult to increase the cost of the common mode filter F, and a desired combination of resistors, inductors and capacitors can be freely combined. There is also an advantage that the characteristics can be adjusted.

Abstract

[Problem] To suppress reflection of common mode noise and enable sufficient removal of common mode noise of 10 GHz and higher. [Solution] A signal coil 1A, which is inserted into one differential signal line, is formed on a layer among a plurality of dielectric layers 11A-11C. A signal coil 1B, which is inserted into another differential signal line, is formed so as to face the signal coil 1A with a dielectric layer therebetween on a layer among the dielectric layers 11A-11C. A control coil 3, which is superimposed with the signal coils 1A, 1B, is formed on a layer among the dielectric layers 11A-11C with dielectric layers interposed between the control coil 3 and the first and second signal coils 1A, 1B. The control coil 3 is bisected into a starting-point-side divided control coil 3A and an end-point-side divided control coil 3B. A four-terminal circuit is connected between a pair of terminals of the starting point of the divided control coil 3A and the ground, and a pair of terminals of the end point of the divided control coil 3B and the ground.

Description

コモンモードフィルタCommon mode filter
 本発明はコモンモードフィルタに係り、特に、コモンモードノイズの反射を抑制するとともに、コモンモード除去特性の調整も可能な新規のコモンモードフィルタに関する。 The present invention relates to a common mode filter, and more particularly to a novel common mode filter capable of suppressing reflection of common mode noise and adjusting common mode rejection characteristics.
 従来、超高速差動信号の伝送線路において、コモンモードノイズを除去する電子部品としては、コモンモード・チョークコイルが広く使われている。 Conventionally, a common mode choke coil has been widely used as an electronic component for removing common mode noise in a transmission line for ultra high-speed differential signals.
 コモンモード・チョークコイルのコモンモードノイズ除去原理は、導線を巻いたコイルや平面状に印刷されたスパイラルコイル等の磁気結合を利用し、コモンモード信号に対して高い直列インピーダンスを生じさせ、コモンモードノイズを入力側へ反射させて先の回路へは伝搬させないものである。 The common mode noise elimination principle of the common mode choke coil uses a magnetic coupling such as a coil wound with a conductive wire or a spiral coil printed on a flat surface to generate a high series impedance with respect to the common mode signal. Noise is reflected to the input side and not propagated to the previous circuit.
 ところが、コイルの導線間には浮遊容量が存在するため、高い周波数のコモンモードノイズは、この浮遊容量を経由することで、高インピーダンスのコイルを迂回して出力側へ伝播してしまう。 However, since stray capacitance exists between the coil conductors, high-frequency common mode noise bypasses the high-impedance coil and propagates to the output side via this stray capacitance.
 そのため、従来のコモンモード・チョークコイルでは、特に10GHz以上の周波数でコモンモード除去能力が著しく劣化し易い。 Therefore, in the conventional common mode choke coil, the common mode removal capability is particularly easily deteriorated particularly at a frequency of 10 GHz or more.
 さらに、コモンモードノイズを入力側へ反射させて出力側への伝播を防ぐ手法は、伝送信号の周波数が低くて回路パターンがアンテナとはなり難い装置であれば、ノイズが放射し難いので伝導性ノイズだけを除去すれば良く、ノイズの放射が問題とならない。 Furthermore, the method of preventing the propagation to the output side by reflecting the common mode noise to the input side is conductive because the noise is difficult to radiate if the frequency of the transmission signal is low and the circuit pattern is difficult to become an antenna. It is only necessary to remove noise, and noise emission is not a problem.
 しかし、GHz帯の超高速差動信号を伝送する装置においては、回路パターンがアンテナとなり易いため、自身の回路から発生する放射性ノイズによって自身の回路が誤動作し易い。 However, in a device that transmits an ultra-high-speed differential signal in the GHz band, the circuit pattern is likely to be an antenna, so that the own circuit is likely to malfunction due to radioactive noise generated from the own circuit.
 従って、GHz帯の超高速差動信号伝送においては、コモンモード・チョークコイルでノイズを反射させることは好ましくない。 Therefore, in ultra high-speed differential signal transmission in the GHz band, it is not preferable to reflect noise with a common mode choke coil.
 このような問題を回避するためには、コモンモードノイズをグラウンド(共通電位:アース)に逃がして反射を低減させることが有効である。そのような目的に対応するため、特許文献1(特開2009-10729号公報)および特許文献2(WO/2015/181883号公報)のようなコモンモードフィルタが開示されている。 In order to avoid such a problem, it is effective to reduce reflection by letting common mode noise escape to the ground (common potential: earth). In order to meet such a purpose, common mode filters such as Patent Document 1 (Japanese Patent Laid-Open No. 2009-10729) and Patent Document 2 (WO / 2015/181833) are disclosed.
 これらのコモンモードフィルタは、信号コイルに結合させた制御用コイルにコモンモードノイズを誘導させ、これをグラウンドに逃がすという発想である。 These common mode filters have the idea of inducing common mode noise in a control coil coupled to a signal coil and letting it escape to ground.
特開2009-10729号公報JP 2009-10729 A WO/2015/181883号公報WO / 2015/181833 publication
 しかしながら、特許文献1に示すコモンモードフィルタは、差動信号が通過する2つの信号用コイルを対向させ、それら信号用コイルの両外側に制御用コイルをそれぞれ配置・結合させる構成のため、差動信号の通過特性に悪影響を与え易い。 However, the common mode filter shown in Patent Document 1 has a configuration in which two signal coils through which a differential signal passes are opposed to each other, and a control coil is disposed and coupled to both outer sides of the signal coils. It tends to adversely affect the signal passing characteristics.
 さらに、制御用コイルの一端部のみがグラウンドへ接続される構成のため、入力側と出力側のどちらの端子からノイズが来るかによって反射除去能力に差が生じる。いわゆる、方向性を持ったフィルタとなってしまう問題がある。 Furthermore, since only one end of the control coil is connected to the ground, there is a difference in the reflection removal ability depending on whether noise comes from the input side or the output side. There is a problem of becoming a so-called directional filter.
 他方、特許文献2に示すコモンモードフィルタは、図11の等価回路で示すような構成であり、この構成に基づき10Gビット/秒伝送用にコモンモードフィルタを仮想的に考え、電磁界シミュレータ上でモデリングしたものの解析結果が図12のようになる。 On the other hand, the common mode filter shown in Patent Document 2 is configured as shown in the equivalent circuit of FIG. 11. Based on this configuration, the common mode filter is virtually considered for 10 Gbit / second transmission, The analysis result of the modeled one is as shown in FIG.
 図12において、Scc11は入力端子21A、21B側でのコモンモード信号の反射特性であり、Scc22は出力端子23A、23B側でのコモンモード信号の反射特性であり、Scc21はコモンモード信号の通過特性を意味している。 In FIG. 12, Scc11 is the reflection characteristic of the common mode signal at the input terminals 21A and 21B, Scc22 is the reflection characteristic of the common mode signal at the output terminals 23A and 23B, and Scc21 is the transmission characteristic of the common mode signal. Means.
 図12(A)では、抵抗R1、R2が無限大、すなわち制御用コイル3が浮いている状態であるが、そのまま制御用コイル3を取り除いても特性はほとんど変わらない。すなわち一般的なコモンモード・チョークコイルと同じ構成である。 In FIG. 12A, the resistances R1 and R2 are infinite, that is, the control coil 3 is in a floating state, but the characteristics are hardly changed even if the control coil 3 is removed as it is. That is, it has the same configuration as a general common mode choke coil.
 反射特性Scc11はほぼ0dBであり、入力したコモンモード信号は、減衰することなく入力端子21A、21Bに戻る全反射の状態である。また、通過特性Scc21は、5GHz付近で約-25dBと大きな減衰量を実現しているものの、15GHz前後では約-3dBとなって減衰量が非常に小さくなり、一般的なコモンモード・チョークコイルの典型的な特性を示している。 The reflection characteristic Scc11 is approximately 0 dB, and the input common mode signal is in a state of total reflection returning to the input terminals 21A and 21B without being attenuated. The pass characteristic Scc21 achieves a large attenuation of about -25 dB at around 5 GHz, but is about -3 dB at around 15 GHz, and the attenuation is very small. Shows typical characteristics.
 図12(B)は、抵抗R1、R2を60Ωに設定した場合の特性であり、適切な値に設定すれば、通過特性Scc21は15GHz前後で-10dB程度の減衰量を確保できることを示している。しかしながら、同時にScc21は5GHzで-15dBとなって減衰量が小さくなる。 FIG. 12B shows the characteristics when the resistors R1 and R2 are set to 60Ω. If the resistances R1 and R2 are set to appropriate values, the pass characteristic Scc21 can secure an attenuation of about −10 dB around 15 GHz. . However, at the same time, Scc21 is -15 dB at 5 GHz, and the attenuation is reduced.
 図12(C)は、抵抗R1を25Ω、抵抗R2を無限大すなわち開放とした場合であり、特許文献1で示されている片端のみグラウンド接続する技術を特許文献2に適用した例である。 FIG. 12 (C) shows an example in which the resistor R1 is 25Ω and the resistor R2 is infinite, that is, open, and the technique of ground connection only at one end shown in Patent Document 1 is applied to Patent Document 2.
 このようにすれば、Scc11は2.5GHzで-20dBと大幅な反射低減が実現可能となる。Scc21は15GHz前後で-7.5dB程度となり、図12(A)に比べて若干の改善が実現されている。 In this way, Scc11 can achieve a significant reflection reduction of -20 dB at 2.5 GHz. Scc21 is about -7.5 dB at around 15 GHz, and a slight improvement is realized as compared with FIG.
 しかしながら、特許文献2においては、先にも述べたとおり、Scc11とScc22とで特性が異なっているため、反射特性が方向性を持つようになって使い勝手が悪くなる。しかも、Scc21が最小となる周波数、すなわちノイズ除去ピーク周波数である5GHzでは、Scc11が-4dB程度となって反射があまり減衰しないし、ノイズ除去ピーク周波数と反射低減周波数とが一致しない。 However, in Patent Document 2, since the characteristics are different between Scc11 and Scc22 as described above, the reflection characteristics become directional and usability is deteriorated. Moreover, at the frequency at which Scc21 is minimum, that is, the noise removal peak frequency of 5 GHz, Scc11 is about −4 dB, and the reflection does not attenuate so much, and the noise removal peak frequency does not match the reflection reduction frequency.
 さらに、特許文献2は、Scc21も、図12(A)の一般的なコモンモード・チョークコイルの特性に比べて大幅な特性改善とはならないし、制御用コイルの片端のみしかグラウンドに接続しない構成のため、最適化の手法として抵抗R1の値を調整する以外に特性改善手法が無く、特性改善の選択肢が狭い。 Further, Patent Document 2 shows that Scc21 does not significantly improve the characteristics of the general common mode choke coil shown in FIG. 12A, and only one end of the control coil is connected to the ground. Therefore, there is no characteristic improvement method other than adjusting the value of the resistor R1 as an optimization method, and the options for characteristic improvement are narrow.
 本発明はこのような問題点を解決するためになされたものであり、コモンモードノイズの反射を抑制するとともに、10GHz以上のコモンモードノイズを充分除去可能なコモンモードフィルタを提供するものである。 The present invention has been made to solve such problems, and provides a common mode filter capable of suppressing reflection of common mode noise and sufficiently removing common mode noise of 10 GHz or more.
 そのような課題を解決するために本発明の請求項1に係るコモンモードフィルタは、多層の誘電体層中にスパイラル状に形成され、一方の極性の差動信号線路内に直列的に挿入接続される第1の信号用コイルと、その誘電体層中に第1の信号用コイルに厚さ方向で重なるよう誘電体層を介して対面してスパイラル状に形成され、他方の極性の差動信号線路内に直列的に挿入接続される第2の信号用コイルと、それら第1および第2の信号用コイルとの間にその誘電体層を介して挟まれるようにスパイラル状に形成され、その第1の信号用コイルと同一方向に巻き線され、それら第1および第2の信号用コイル間の磁気結合および結合容量を制御する制御用コイルを具備し、この制御用コイルがこの始点と終点との間の1箇所で分割され、その始点側の分割制御用コイルの当該始点とグラウンドで形成される端子対と、その終点側の分割制御用コイルの当該終点とそのグラウンドで形成される端子対との間に4端子回路を接続した構成である。 In order to solve such a problem, a common mode filter according to claim 1 of the present invention is formed in a spiral shape in a multilayer dielectric layer, and is inserted and connected in series in a differential signal line of one polarity. The first signal coil is formed in a spiral shape so as to face the first signal coil through the dielectric layer so as to overlap the first signal coil in the thickness direction in the dielectric layer. Formed in a spiral shape so as to be sandwiched between the second signal coil inserted and connected in series in the signal line and the first and second signal coils via the dielectric layer, The control coil is wound in the same direction as the first signal coil and controls the magnetic coupling and coupling capacity between the first and second signal coils. It is divided at one point between the end point and A four-terminal circuit is connected between the terminal pair formed by the start point of the division control coil on the start point side and the ground and the terminal pair formed by the end point of the division control coil on the end point side and the terminal pair formed by the ground. It is a configuration.
 本発明の請求項2に係るコモンモードフィルタは、上記4端子回路網をπ型又はT型の抵抗ネットワークを含む構成としたものである。 In the common mode filter according to claim 2 of the present invention, the four-terminal circuit network includes a π-type or T-type resistor network.
 本発明の請求項1に係るコモンモードフィルタでは、多層の誘電体層中に、一方の極性の差動信号線路内に直列的に挿入接続される第1の信号用コイルと、この第1の信号用コイルと厚さ方向で重なる形状にて対面するとともに他方の極性の差動信号線路内に直列的に挿入接続される第2の信号用コイルと、それら第1および第2の信号用コイルとの間にその誘電体層を介して挟まれるとともに第1の信号用コイルと同一方向に巻き線され、それら第1および第2の信号用コイル間の磁気結合と結合容量を制御する制御用コイルとを具備し、その制御用コイルの始点と終点との間の1箇所が分割され、その始点とグラウンドで形成される端子対と、その終点とそのグラウンドで形成される端子対との間に4端子回路を接続したから、コモンモードノイズの反射を抑制し、10GHz以上のコモンモードノイズを充分除去可能である。 In the common mode filter according to claim 1 of the present invention, a first signal coil inserted and connected in series in a differential signal line of one polarity in a multilayer dielectric layer, and the first signal coil A second signal coil which faces the signal coil in a shape overlapping in the thickness direction and is inserted and connected in series in the differential signal line of the other polarity; and the first and second signal coils For controlling the magnetic coupling and coupling capacitance between the first signal coil and the second signal coil, which are sandwiched between the first signal coil and the first signal coil. The control coil is divided at one point between the start point and the end point of the control coil, and the terminal pair formed by the start point and the ground, and the terminal pair formed by the end point and the ground Since a 4-terminal circuit is connected to Suppressing reflection mode noise can be sufficiently removed common mode noise above 10 GHz.
 本発明の請求項2に係るコモンモードフィルタでは、上記4端子回路網をπ型又はT型の抵抗ネットワークを含む構成としたから、コモンモードノイズの除去特性を最適化し易い。 In the common mode filter according to claim 2 of the present invention, since the four-terminal circuit network includes a π-type or T-type resistor network, it is easy to optimize the common-mode noise removal characteristics.
本発明に係るコモンモードフィルタの基本構成を示す分解斜視図である。It is a disassembled perspective view which shows the basic composition of the common mode filter which concerns on this invention. 図1のコモンモードフィルタの外観図である。It is an external view of the common mode filter of FIG. 図1のコモンモードフィルタの等価回路図である。FIG. 2 is an equivalent circuit diagram of the common mode filter of FIG. 1. 図1のコモンモードフィルタの周波数特性である。It is a frequency characteristic of the common mode filter of FIG. 図1のコモンモードフィルタの周波数特性である。It is a frequency characteristic of the common mode filter of FIG. 図1のコモンモードフィルタの線路パターン図である。FIG. 2 is a line pattern diagram of the common mode filter of FIG. 1. 本発明に係るコモンモードフィルタの他の実施の形態を説明する等価回路図である。It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. 本発明に係るコモンモードフィルタの他の実施の形態を説明する等価回路図である。It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. 本発明に係るコモンモードフィルタの他の実施の形態を説明する等価回路図である。It is an equivalent circuit schematic explaining other embodiment of the common mode filter which concerns on this invention. 本発明に係るコモンモードフィルタの他の外観図である。It is another external view of the common mode filter according to the present invention. 従来のコモンモードフィルタの等価回路図である。It is an equivalent circuit diagram of a conventional common mode filter. 従来のコモンモードフィルタの周波数特性図である。It is a frequency characteristic figure of the conventional common mode filter.
 以下、本発明の実施の形態を図面を参照して説明する。
 図1は本発明に係るコモンモードフィルタFの基本構成を示す分解斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded perspective view showing a basic configuration of a common mode filter F according to the present invention.
 誘電体層11Aには信号用コイル(第1の信号用コイル)1Aが、誘電体層11Cには信号用コイル(第2の信号用コイル)1Bが、誘電体層11Bには制御用コイル3が形成されている。 The dielectric layer 11A has a signal coil (first signal coil) 1A, the dielectric layer 11C has a signal coil (second signal coil) 1B, and the dielectric layer 11B has a control coil 3 Is formed.
 それら誘電体層11A~11Cは、方形の薄板状にしてほぼ同形状の公知の積層セラミック、ポリイミド、ガラスエポキシ等の樹脂基板、又は二酸化珪素や窒化珪素等の半導体向け絶縁膜からなり、誘電体層11Bを誘電体層11A、11Cで挟むようにして積層されている。 These dielectric layers 11A to 11C are formed of a known laminated ceramic having substantially the same shape as a rectangular thin plate, a resin substrate such as polyimide or glass epoxy, or an insulating film for a semiconductor such as silicon dioxide or silicon nitride. The layers 11B are stacked so as to be sandwiched between the dielectric layers 11A and 11C.
 それら信号用コイル1A、1Bおよび制御用コイル3は、公知の導体材料から薄膜のフォトリソグラフィ、ダマシンプロセス、厚膜印刷又はエッチング等によって誘電体層11A~11Cの各々の片面に、例えば方形のスパイラル状に形成されている。 The signal coils 1A and 1B and the control coil 3 are formed on one side of each of the dielectric layers 11A to 11C by, for example, a thin film photolithography, damascene process, thick film printing, etching, or the like from a known conductive material. It is formed in a shape.
 制御用コイル3は、誘電体層11A~11Cの積層(厚み)方向において、信号用コイル1Aおよび信号用コイル1B間に挟まれるとともに、信号用コイル1Aと信号用コイル1B間の中心位置に配置されている。 The control coil 3 is sandwiched between the signal coil 1A and the signal coil 1B in the stacking (thickness) direction of the dielectric layers 11A to 11C, and is disposed at the center position between the signal coil 1A and the signal coil 1B. Has been.
 信号用コイル1Aおよび信号用コイル1Bは、同一の巻き線方向、同一の線幅および同一の線路間スペースで形成され、厚み方向から見た場合、両端部分を除く線路部分が印刷ずれや積層ずれの誤差範囲内で重なるように形成されている。すわなち、信号用コイル1A、1Bは、両端部分を除く線路部分がほぼ重なるように配線されている。 The signal coil 1A and the signal coil 1B are formed with the same winding direction, the same line width, and the same inter-line space, and when viewed from the thickness direction, the line portions excluding both end portions are misprinted or misaligned. It is formed so as to overlap within the error range. That is, the signal coils 1 </ b> A and 1 </ b> B are wired so that the line portions except for both end portions substantially overlap.
 誘電体層11D、11Fは、例えば誘電体層11A~11Cと同材料から同形状に形成され、誘電体層11Dは誘電体層11Bとは反対面側にて誘電体層11Cに重ねられ、誘電体層11Eは誘電体層11Bとは反対面側にて誘電体層11Aに重ねられている。 The dielectric layers 11D and 11F are formed, for example, from the same material and in the same shape as the dielectric layers 11A to 11C, and the dielectric layer 11D is superimposed on the dielectric layer 11C on the side opposite to the dielectric layer 11B. The body layer 11E is superimposed on the dielectric layer 11A on the side opposite to the dielectric layer 11B.
 信号用コイル1Aの外周端は、誘電体層11Aの同一面に形成された入力側引出し線15Aを介して誘電体層11Aの端面まで導出され、図2に示す入力端子21Aに接続されている。 The outer peripheral end of the signal coil 1A is led out to the end face of the dielectric layer 11A via the input side lead wire 15A formed on the same surface of the dielectric layer 11A, and is connected to the input terminal 21A shown in FIG. .
 なお、図2は、誘電体層11A~11C、誘電体層11D、11Eおよび後述するカバー層13A、13Bを積層したものである。 In FIG. 2, the dielectric layers 11A to 11C, the dielectric layers 11D and 11E, and cover layers 13A and 13B described later are stacked.
 信号用コイル1Aの内周端は、誘電体層11A、11B、11Cに形成されたビア9Aを介して誘電体層11Dまで導出され、誘電体層11Cに面する誘電体層11Dの片面に形成された出力側引出し線17Aに接続されている。出力引出し線17Aは誘電体層11Dの端面まで導出され、図2中に示す出力端子23Aに接続されている。 The inner peripheral end of the signal coil 1A is led out to the dielectric layer 11D through the via 9A formed in the dielectric layers 11A, 11B, and 11C, and formed on one surface of the dielectric layer 11D facing the dielectric layer 11C. Is connected to the output lead wire 17A. The output lead line 17A is led out to the end face of the dielectric layer 11D and is connected to the output terminal 23A shown in FIG.
 信号用コイル1Bの外周端は、誘電体層11Cの同一面に入力側引出し線15Aと重ならない位置で形成された入力側引出し線15Bを介して誘電体層11Cの端面まで導出され、図2中の入力端子21Bに接続されている。 The outer peripheral end of the signal coil 1B is led out to the end surface of the dielectric layer 11C via the input side lead wire 15B formed on the same surface of the dielectric layer 11C so as not to overlap the input side lead wire 15A. It is connected to the input terminal 21B inside.
 信号用コイル1Bの内周端は、誘電体層11Cに形成されたビア9Bを介し誘電体層11Dまで導出され、誘電体層11Dにあって出力側引出し線17Aと同じ面でこれとは異なる位置に形成された出力側引出し線17Bに接続されている。出力側引出し線17Bは誘電体層11Dの端面まで導出され、図2中の出力端子23Bに接続されている。 The inner peripheral end of the signal coil 1B is led out to the dielectric layer 11D through the via 9B formed in the dielectric layer 11C, and is different from this on the same surface as the output lead line 17A in the dielectric layer 11D. It is connected to the output side lead wire 17B formed at the position. The output lead line 17B is led out to the end face of the dielectric layer 11D and connected to the output terminal 23B in FIG.
 制御用コイル3は、信号用コイル1A、1Bと同一巻き線方向で形成され、必ずしも信号用コイル1A、1Bと同一の線幅、同一の線路間スペースとは限らないが、コイル線路の中心線が信号用コイル1A、1Bのそれと同一の周回ピッチとなっている。 The control coil 3 is formed in the same winding direction as the signal coils 1A and 1B, and is not necessarily the same line width and the same inter-line space as the signal coils 1A and 1B. However, the pitch is the same as that of the signal coils 1A and 1B.
 制御用コイル3は、始点5A(外周端)から終点5B(内周端)に至るまでの線路長のほぼ中間(1/2)位置となる分断箇所7で2個に分割されている。 The control coil 3 is divided into two parts at a dividing point 7 which is approximately the middle (1/2) position of the line length from the start point 5A (outer peripheral end) to the end point 5B (inner peripheral end).
 制御用コイル3の始点5Aは、誘電体層11B、11Cに形成されたビア9Cを介し誘電体層11Dまで導出され、誘電体層11Dにあって出力側引出し線17A、17Bと同じ面でこれらとは異なる位置に形成された抵抗接続パッド19Aに接続されている。 The starting point 5A of the control coil 3 is led to the dielectric layer 11D through the vias 9C formed in the dielectric layers 11B and 11C, and these are on the same surface as the output lead lines 17A and 17B in the dielectric layer 11D. Is connected to a resistance connection pad 19A formed at a different position.
 誘電体層11Dにあって抵抗接続パッド19Aと同じ面において、抵抗接続パッド19Aの近傍には抵抗接続パッド19Bが形成され、これが誘電体層11Dの端面まで導出され、図2中の制御端子25Aに接続されている。 A resistor connection pad 19B is formed in the vicinity of the resistor connection pad 19A on the same surface as the resistor connection pad 19A in the dielectric layer 11D, and this is led out to the end surface of the dielectric layer 11D, and the control terminal 25A in FIG. It is connected to the.
 制御用コイル3の終点5Bは、誘電体層11B、11Cに形成されたビア9Dを介し誘電体層11Dまで導出され、誘電体層11Dにあって出力側引出し線17A、17Bおよび抵抗接続パッド19A、19Bと同じ面でそれらとは異なる位置に形成された抵抗接続パッド19Cに接続されている。抵抗接続パッド19Cは抵抗接続パッド19Aの近傍に位置している。 The end point 5B of the control coil 3 is led to the dielectric layer 11D through the vias 9D formed in the dielectric layers 11B and 11C, and is provided in the dielectric layer 11D with the output side lead wires 17A and 17B and the resistance connection pad 19A. , 19B are connected to a resistance connection pad 19C formed at a position different from the same surface as that of 19B. The resistance connection pad 19C is located in the vicinity of the resistance connection pad 19A.
 誘電体層11Dにあって抵抗接続パッド19Cと同じ面において、抵抗接続パッド19Cの近傍には抵抗接続パッド19Dが形成され、これが抵抗接続パッド19Bとは反対方向に誘電体層11Dの端面まで導出され、図2中の制御端子25Bに接続されている。 On the same surface as the resistance connection pad 19C in the dielectric layer 11D, a resistance connection pad 19D is formed in the vicinity of the resistance connection pad 19C, and this leads to the end surface of the dielectric layer 11D in the direction opposite to the resistance connection pad 19B. And connected to the control terminal 25B in FIG.
 抵抗接続パッド19A、19C間には抵抗R1が接続され、抵抗接続パッド19B、19D間には抵抗R2が接続され、抵抗接続パッド19C、19D間には抵抗R3が接続されている。 A resistor R1 is connected between the resistor connection pads 19A and 19C, a resistor R2 is connected between the resistor connection pads 19B and 19D, and a resistor R3 is connected between the resistor connection pads 19C and 19D.
 これら抵抗R1~R3は、制御用コイル3に誘起された電力を終端する受動素子であり、抵抗ペーストを印刷したり、ニクロム等の抵抗性金属薄膜又は抵抗内蔵樹脂基板を載置するなどして形成されている。 These resistors R1 to R3 are passive elements that terminate the electric power induced in the control coil 3, and are printed by a resistance paste, a resistive metal thin film such as nichrome, or a resin substrate with a built-in resistor. Is formed.
 誘電体層11A~11Dは積層されるとともに、誘電体層11Bとは反対側にて誘電体層11Aにカバー層13Aが積層され、誘電体層11Cとは反対側にて誘電体層11Dにカバー層13Bが積層され、図2に示すように、例えば焼成加工して一体化されている。 The dielectric layers 11A to 11D are stacked, and the cover layer 13A is stacked on the dielectric layer 11A on the side opposite to the dielectric layer 11B, and the cover is provided on the dielectric layer 11D on the side opposite to the dielectric layer 11C. Layer 13B is laminated and integrated as shown in FIG. 2, for example, by baking.
 カバー層13A、13Bが磁性体の場合、誘電体層11A~11Eが積層プレス・焼成され最初の固体となり、その固体上にカバー層13A、13Bが接着され、一体化される。 When the cover layers 13A and 13B are magnetic materials, the dielectric layers 11A to 11E are laminated and fired to become the first solid, and the cover layers 13A and 13B are bonded and integrated on the solid.
 カバー層13A、13Bが誘電体の場合、誘電体層11A~11Eの上下にカバー層13A、13Bを配置して積層プレス・焼成し、一体化される。 When the cover layers 13A and 13B are dielectrics, the cover layers 13A and 13B are arranged above and below the dielectric layers 11A to 11E, and are laminated and fired to be integrated.
 それら何れかの手法で一体化されたコモンモードフィルタFは、一方の外周側面には入力側引出し線15A、15Bの接続された外部端子電極としての入力端子21A、21Bが形成され、対向する他方の外周側面には外部端子電極としての出力側引出し線17A、17Bの接続された出力端子23A、23Bが形成され、完成チップ部品を構成する。 The common mode filter F integrated by any one of these methods has input terminals 21A and 21B as external terminal electrodes connected to the input lead wires 15A and 15B formed on one outer peripheral side surface, and the other facing the other. The output terminals 23A and 23B to which the output side lead wires 17A and 17B as external terminal electrodes are connected are formed on the outer peripheral side surface of the, thereby constituting a finished chip component.
 コモンモードフィルタFはプリント配線板等に搭載され、図2に示すように、プリント配線板等に形成されるとともに途中で切断された差動線路27Aどうしおよび差動線路27Bどうしの間に、入力端子21A、21Bおよび出力端子23A、23Bを合わせて接続される。 The common mode filter F is mounted on a printed wiring board or the like, and as shown in FIG. 2, between the differential lines 27A and the differential lines 27B that are formed on the printed wiring board and cut along the way. The terminals 21A and 21B and the output terminals 23A and 23B are connected together.
 すなわち、コモンモードフィルタFの入力端子21Aおよび出力端子23Aは、一方の極性の差動信号線路27A内に直列的に挿入接続され、入力端子21Bおよび出力端子23Bは、他方の極性の差動信号線路27B内に直列的に挿入接続して使用される。 That is, the input terminal 21A and the output terminal 23A of the common mode filter F are inserted and connected in series in the differential signal line 27A of one polarity, and the input terminal 21B and the output terminal 23B are the differential signal of the other polarity. The line 27B is inserted and connected in series.
 プリント配線板等には、制御端子25A、25Bに合うグラウンドパッド29A、29Bが設けられ、これら制御端子25A、25Bは図示しないグラウンドに接続される。 The printed wiring board or the like is provided with ground pads 29A and 29B that match the control terminals 25A and 25B, and these control terminals 25A and 25B are connected to a ground (not shown).
 図3は図1のコモンモードフィルタFの等価回路である。差動2線間の対称性維持の観点から、誘電体層11Aを挟んで信号コイル1Aと制御用コイル3との間で形成される結合容量31Aと、誘電体層11Bを挟んで信号コイル1Bと制御用コイル3との間で形成される形成される結合容量31Bとは等しくなることが望ましい。 3 is an equivalent circuit of the common mode filter F of FIG. From the viewpoint of maintaining symmetry between the two differential lines, the coupling capacitor 31A formed between the signal coil 1A and the control coil 3 with the dielectric layer 11A interposed therebetween, and the signal coil 1B with the dielectric layer 11B interposed therebetween. And the coupling capacitor 31B formed between the control coil 3 and the control coil 3 are preferably equal.
 そのため、制御用コイル3は、信号用コイル1A、1B間の中心の層位置に形成されることが望ましく、誘電体層11Aと誘電体層11Bは同じ材質、同じ層厚であることが望ましい。 Therefore, the control coil 3 is preferably formed at the center layer position between the signal coils 1A and 1B, and the dielectric layer 11A and the dielectric layer 11B are preferably made of the same material and the same layer thickness.
 そのような構成では、制御用コイル3には信号用コイル1A、1Bの平均電位が印加され、信号用コイル1A、1Bに差動信号が入力された場合、正極性と負極性との電位が相殺され、その平均電位が「ゼロ」であるため、差動信号からは制御用コイル3が見えない。 In such a configuration, when the average potential of the signal coils 1A and 1B is applied to the control coil 3 and a differential signal is input to the signal coils 1A and 1B, the positive and negative potentials are Since the average potential is zero, the control coil 3 cannot be seen from the differential signal.
 他方、コモンモード信号に対しては、信号用コイル1A、1Bが両方同時に正極性又は負極性となり、その中間の電位は「ゼロ」にならないため、その分の電磁場が制御用コイル3に及び、制御用コイル3に誘導起電力が発生する。 On the other hand, for the common mode signal, the signal coils 1A and 1B are both positive or negative at the same time, and the intermediate potential does not become “zero”, so that the electromagnetic field reaches the control coil 3; An induced electromotive force is generated in the control coil 3.
 制御用コイル3において、始点5Aを含む分割制御用コイル3Aの当該始点5Aとグラウンドの間に抵抗R1が接続され、終点5Bを含む分割制御用コイル3Bの当該終点5Bとグラウンドの間に抵抗R2が接続されるとともに、両端末(始点5A、終点5B)どうしが抵抗R3で接続されている。 In the control coil 3, a resistor R1 is connected between the start point 5A of the split control coil 3A including the start point 5A and the ground, and a resistor R2 is connected between the end point 5B of the split control coil 3B including the end point 5B and the ground. Are connected, and both terminals (start point 5A, end point 5B) are connected by a resistor R3.
 すなわち、始点5A側の分割制御用コイル3Aの当該始点5Aとグラウンドで形成される端子対と、終点5B側の分割制御用コイル3Bの当該終点5Bとグラウンドで形成される端子対との間に、抵抗R1~R3で形成された例えばπ型の4端子回路33が接続されている。 That is, between the start point 5A of the split control coil 3A on the start point 5A side and the terminal pair formed by the ground, and the terminal pair formed by the end point 5B of the split control coil 3B on the end point 5B side and the ground. For example, a π-type four-terminal circuit 33 formed of resistors R1 to R3 is connected.
 そして、制御用コイル3には、分断箇所7の存在によってグラウンドへの帰還回路や抵抗R3による閉じたループ回路が形成されない。 And, the control coil 3 is not formed with a feedback circuit to the ground or a closed loop circuit by the resistor R3 due to the presence of the dividing portion 7.
しかし、制御用コイル3に発生した誘導起電力による電流はグラウンドへ帰還し、その際通過する抵抗R1、R2によって電力消費され、結果的にコモンモードノイズが吸収除去される。 However, the current due to the induced electromotive force generated in the control coil 3 is fed back to the ground, and is consumed by the resistors R1 and R2 that pass therethrough. As a result, the common mode noise is absorbed and removed.
 図3では、制御用コイル3とその端末接続を実線で表示して理解し易くしている。以降の等価回路においては実線の回路部分のみ表示する。 In FIG. 3, the control coil 3 and its terminal connection are indicated by solid lines for easy understanding. In the subsequent equivalent circuits, only the solid line circuit portion is displayed.
 図4は、図1に示したコモンモードフィルタFを10Gビット/秒向けに設計し、これを電磁界シミュレーションした場合の周波数特性である。 FIG. 4 shows frequency characteristics when the common mode filter F shown in FIG. 1 is designed for 10 Gbit / sec and subjected to electromagnetic field simulation.
 この例では、信号用コイル1A、1Bの線路幅を15μm、線路間スペースも15μmとし、誘電体11Aの外形寸法が、制御端子25Aと25Bとの間の方向で0.85mm、入力端子21A、21Bと出力端子23A、23Bとの間の方向で0.65mmとなる領域に配線した。 In this example, the line width of the signal coils 1A and 1B is 15 μm, the space between the lines is also 15 μm, the outer dimensions of the dielectric 11A are 0.85 mm in the direction between the control terminals 25A and 25B, the input terminal 21A, Wiring was performed in an area of 0.65 mm in the direction between 21B and the output terminals 23A and 23B.
 制御用コイル3については2種類とし、1つ目は制御用コイル3の線路が信号用コイル1A、1Bのそれと完全に重なる形状、2つ目は制御用コイル3の線路の中心が信号用コイル1A、1Bのその中心とは一致するものの、線路幅25μm、線路間スペース5μmとし、ほぼ制御用コイル3の形成領域がその導体で埋め尽くされた形状のものである。どちらも分断箇所7の切断長は40μmである。 There are two types of control coils 3. The first is a shape in which the line of the control coil 3 completely overlaps that of the signal coils 1 </ b> A and 1 </ b> B. The second is the signal coil in the center of the line of the control coil 3. Although it coincides with the centers of 1A and 1B, the line width is 25 μm, the space between lines is 5 μm, and the area where the control coil 3 is formed is substantially filled with the conductor. In both cases, the cutting length of the dividing portion 7 is 40 μm.
 図4(A)は差動信号に対する周波数特性であり、Sdd11は入力端子21A、21Bでの反射特性、Sdd21は入力端子21A、21Bから出力端子23A、23Bへの差動信号通過特性、同図(B)および(C)はコモンモードに対する周波数特性、Scc11は入力端子21A、21Bでのコモンモード反射特性、Scc22は出力端子23A、23Bでのコモンモード反射特性、Scc21は入力端子21A、21Bから出力端子23A、23Bへのコモンモード通過特性である。 4A is a frequency characteristic with respect to a differential signal, Sdd11 is a reflection characteristic at the input terminals 21A and 21B, Sdd21 is a differential signal passing characteristic from the input terminals 21A and 21B to the output terminals 23A and 23B, and FIG. (B) and (C) are frequency characteristics with respect to the common mode, Scc11 is the common mode reflection characteristic at the input terminals 21A and 21B, Scc22 is the common mode reflection characteristic at the output terminals 23A and 23B, and Scc21 is from the input terminals 21A and 21B. This is a common mode pass characteristic to the output terminals 23A and 23B.
 制御用コイル3は差動信号からは見えないので、制御用コイル3の線路幅や線路間スペースによらずこの特性となる。従って、以降の特性表示では差動信号に対する特性を省略する。 Since the control coil 3 is not visible from the differential signal, this characteristic is obtained regardless of the line width of the control coil 3 or the space between the lines. Therefore, the characteristic for the differential signal is omitted in the subsequent characteristic display.
 図4(A)で示す差動信号の周波数特性のとおり、Sdd11が15GHz以下の広帯域で-15dB以下と極めて低い反射を示しており、Sdd21は-3dBの通過帯域が約15GHzと10Gビット/秒の信号を歪なく通過させることを示している。 As shown in the frequency characteristic of the differential signal shown in FIG. 4A, Sdd11 shows a very low reflection of -15 dB or less in a wide band of 15 GHz or less, and Sdd21 has a passband of -3 dB of about 15 GHz and 10 Gbit / sec. This signal is passed without distortion.
 図4(B)は、制御用コイル3の線路幅15μm、線路間スペース15μm、抵抗R1=R2=20Ω、R3=50Ωの場合のコモンモードに対する周波数特性である。 FIG. 4B shows frequency characteristics with respect to the common mode when the line width of the control coil 3 is 15 μm, the space between the lines is 15 μm, the resistors R1 = R2 = 20Ω, and R3 = 50Ω.
 通過特性Scc21は、2.6GHzで約-29dBの最大減衰量、すなわちノイズ除去ピークを示し、10Gビット/秒のクロック周波数である5GHzでも約-19dBと充分なコモンモードの除去能力を示すとともに、従来例では急激に除去特性が劣化する10G~16Hzの周波数範囲が-12dB以下となることを示している。 The pass characteristic Scc21 shows a maximum attenuation of about −29 dB at 2.6 GHz, that is, a noise removal peak, and shows a sufficient common mode removal capability of about −19 dB even at 5 GHz which is a clock frequency of 10 Gbit / second, In the conventional example, it is shown that the frequency range of 10 G to 16 Hz in which the removal characteristics are rapidly deteriorated is −12 dB or less.
 このような特徴ある特性と、従来例である上述した図12(A)に示される特性図とを比較すると、図4(B)の特性はノイズ除去ピークでの減衰量は小さくなるものの、コモンモードの除去能力が広帯域に渡って平均化されていることがわかる。 Comparing such characteristic characteristics with the characteristic diagram shown in FIG. 12A, which is a conventional example, the characteristic shown in FIG. It can be seen that the mode removal capability is averaged over a wide band.
 コモンモードノイズの通過が-20dB以下に抑えられればノイズを充分除去できるため、図12(A)のような特定の周波数での大きな減衰極は過剰な除去能力と言える。むしろ、図4(B)のような、広帯域で平均的に通過を抑制する特性の方が、どの周波数で発生するノイズに対しても一定の除去能力を持つことになって使い勝手は良くなる。 Since the noise can be sufficiently removed if the passage of the common mode noise is suppressed to −20 dB or less, a large attenuation pole at a specific frequency as shown in FIG. Rather, the characteristic that suppresses the passage in a wide band on average as shown in FIG. 4B has a certain removal capability for noise generated at any frequency, so that the usability is improved.
 また、反射特性Scc11とScc22は、4~5GHzで約-15dBといった共振状の大きな減衰特性を示し、ノイズ除去ピーク周波数の5GHz付近で除去したコモンモードノイズの反射を抑制できることが示されている。Scc11とScc22とで減衰のピーク周波数が完全に一致しないのは、分断箇所7が、電気長的に始点5Aと終端5Bとの間の正確な中間位置から若干ずれているためである。 Also, the reflection characteristics Scc11 and Scc22 show a large resonance-like attenuation characteristic of about −15 dB at 4 to 5 GHz, and it is shown that the reflection of the common mode noise removed near the noise removal peak frequency of 5 GHz can be suppressed. The reason why the peak frequencies of attenuation do not completely match between Scc11 and Scc22 is that the dividing point 7 is slightly shifted from the accurate intermediate position between the start point 5A and the end point 5B in terms of electrical length.
 他方、図12(C)ではScc11のみ共振状の減衰極を有するが、それはノイズ除去ピーク周波数の5GHzから大きく外れ、ほぼ半分の2.5GHzになっている。すなわち、線路長が2倍になったため共振周波数が1/2になったという現象が発生している。この現象から推測すると、制御用コイル3は一種の受信アンテナとして機能していると考えられる。 On the other hand, in FIG. 12 (C), only Scc11 has a resonance attenuation pole, but it is far from the noise removal peak frequency of 5 GHz and is almost half of 2.5 GHz. That is, the phenomenon that the resonance frequency is halved because the line length is doubled has occurred. Presuming from this phenomenon, it is considered that the control coil 3 functions as a kind of receiving antenna.
 従って、制御用コイル3は片端末を開放する方がより効率的にコモンモードノイズを誘導でき、閉ループにすることは望ましくないと言える。 Therefore, it can be said that it is not desirable to open the one end of the control coil 3 more efficiently because it can induce common mode noise more efficiently.
 なお、図示はしないが、図12の特性を解析するに当たり、従来構成は制御用コイル3を分断しない点とR3が無い点以外は図1と同じである。すなわち、図4(B)と図12の特性の違いは、図1における制御用コイル3の分断の有無と抵抗R1、R2およびR3の値の違いから来るものである。 Although not shown, when analyzing the characteristics of FIG. 12, the conventional configuration is the same as FIG. 1 except that the control coil 3 is not divided and there is no R3. That is, the difference in characteristics between FIG. 4B and FIG. 12 comes from the presence / absence of the division of the control coil 3 and the values of the resistors R1, R2 and R3 in FIG.
 図4(C)は、線路幅25μm、線路間スペース5μm、抵抗R1=R2=50Ω、R3=100Ωの場合のコモンモードに対する周波数特性である。多少特性に変化が生じ、Scc21は2.6G~9GHzでは図4(B)に示す特性よりも低い値でノイズ除去能力が向上している。 FIG. 4C shows frequency characteristics with respect to the common mode when the line width is 25 μm, the space between lines is 5 μm, the resistances R1 = R2 = 50Ω, and R3 = 100Ω. The characteristics slightly change, and the noise removal capability is improved at a value lower than the characteristics shown in FIG. 4B at Scc21 of 2.6 G to 9 GHz.
 しかし、先に述べたとおり、Scc21の-20dB以下は必要以上のノイズ除去能力である。一方、12.5GHzでは図4(B)に示す特性よりも若干通過量が増えているため、全体的なコモンモードの除去能力という点でわずかに劣化している。 However, as mentioned above, Scc21 of −20 dB or less is more than necessary noise removal capability. On the other hand, at 12.5 GHz, since the amount of passage is slightly larger than the characteristic shown in FIG. 4B, the overall common mode removal capability is slightly deteriorated.
 他方、図示はしないが、制御用コイル3の線路幅を5μm、線路間スペースを25μmとし、信号用線路1A、1Bの線路幅より細くした場合は、ほぼ図4(B)と同じ特性が得られる。 On the other hand, although not shown, when the line width of the control coil 3 is 5 μm, the space between the lines is 25 μm, and narrower than the line widths of the signal lines 1A and 1B, substantially the same characteristics as FIG. 4B are obtained. It is done.
 以上のことから、制御用コイル3の線路幅は、信号用コイル1A、1Bの線路幅以下が望ましいが、信号用コイル1A、1Bの線路幅以上でも、図4(C)に示すように、充分実用的なコモンモードフィルタFを得ることは可能である。そのため、制御用コイル3の線路幅はそれほど重要では無いと言える。 From the above, the line width of the control coil 3 is preferably equal to or smaller than the line width of the signal coils 1A and 1B, but even if it is equal to or larger than the line width of the signal coils 1A and 1B, as shown in FIG. It is possible to obtain a sufficiently practical common mode filter F. Therefore, it can be said that the line width of the control coil 3 is not so important.
 図5は、コモンモードフィルタFにコモンモードノイズが入力された時、その入力電力を100%としてこれが反射する割合、通過する割合および内部で吸収除去される割合を、図4のScc11、Scc21の特性から算出したものである。 FIG. 5 shows the ratio of the reflected power, the passing ratio, and the internal absorption removal ratio of Scc11 and Scc21 in FIG. 4 when the common mode noise is input to the common mode filter F and the input power is 100%. It is calculated from the characteristics.
 図4(B)から算出したグラフが図5(B)であり、図4(C)から算出したグラフが図5(C)である。図に示されるとおり、両者ともに5GHzで95%程度のコモンモード電力が吸収されていることがわかる。なお、図5は図4(B)(C)に対応させて図示している。 The graph calculated from FIG. 4 (B) is FIG. 5 (B), and the graph calculated from FIG. 4 (C) is FIG. 5 (C). As shown in the figure, it can be seen that about 95% of common mode power is absorbed at 5 GHz. FIG. 5 is shown corresponding to FIGS. 4B and 4C.
 上述した構成は、信号用コイル1A、1Bおよび制御用コイル3がこの線路長方向の中心線ですべて重なり、分断箇所7での切断長40μmとした場合である。 The configuration described above is a case where the signal coils 1A and 1B and the control coil 3 are all overlapped by the center line in the line length direction, and the cutting length at the dividing point 7 is 40 μm.
 しかし、実際の製品では、印刷ずれや積層ずれ等により、これらの中心線が確実に厚み方向で重なるとは限らない。 However, in an actual product, these center lines do not always overlap in the thickness direction due to printing misalignment or stacking misalignment.
 そこで、本発明において所望の特性が得られるコイルずれの許容値を検証したところ、図示は省略するが、誘電体層11A~11Dを重ね合わせた状態でこれを上面から見て、少なくとも制御用コイル3の線路方向の中心線が信号用コイル1A、1Bの線路幅以内に収まるようなずれ量であれば問題は無いと言える。 In view of this, when the allowable value of the coil deviation for obtaining the desired characteristics is verified in the present invention, although not shown, at least the control coil is seen when viewed from above with the dielectric layers 11A to 11D being superimposed. It can be said that there is no problem as long as the amount of deviation is such that the center line in the line direction of 3 is within the line width of the signal coils 1A, 1B.
 図6は、制御用コイル3の導体パターンを誘電体層11Cの上面(誘電体層11B側)から見た図である。 FIG. 6 is a view of the conductor pattern of the control coil 3 as viewed from the upper surface (dielectric layer 11B side) of the dielectric layer 11C.
 また、誘電体層11Cの反対面に当接する信号用コイル1Bのパターンを透視図(破線)のように表示させている。 Further, the pattern of the signal coil 1B in contact with the opposite surface of the dielectric layer 11C is displayed as shown in a perspective view (broken line).
 図6では、制御用コイル3の線路中心線を意図的に信号用コイル1B(1A)の線路間スペースの中間位置に配置させているが、この場合でも従来例よりは改善されたコモンモードノイズ除去特性を得ることは可能である。 In FIG. 6, the line center line of the control coil 3 is intentionally arranged at an intermediate position in the space between the lines of the signal coil 1 </ b> B (1 </ b> A), but even in this case, the common mode noise improved over the conventional example It is possible to obtain removal characteristics.
 重要なことは、制御用コイル3の周回ピッチが、信号用コイル1Aおよび1Bの周回ピッチと一致することである。これが一致しない場合は、コモンモードノイズ除去特性の改善が期待されないばかりか、差動信号の通過特性まで劣化する恐れがあり、望ましくない。 What is important is that the circular pitch of the control coil 3 matches the circular pitch of the signal coils 1A and 1B. If this does not match, not only the improvement of the common mode noise removal characteristic is not expected, but there is a possibility that the differential signal passing characteristic may be deteriorated, which is not desirable.
 従って、信号用コイル1A、1Bおよび制御用コイル3を形成する印刷マスクを設計する場合、それらの周回ピッチを一致させ、可能な限り厚み方向で重なるよう印刷・積層すれば、工程上で保証される範囲の位置ずれが発生しても所望の特性が得られる。 Therefore, when designing a printing mask for forming the signal coils 1A and 1B and the control coil 3, it is ensured in the process if they are printed and stacked so that their circumferential pitches coincide and overlap in the thickness direction as much as possible. Desired characteristics can be obtained even if a positional deviation within a certain range occurs.
 また、制御用コイル3の分断箇所7の切断長の最小値は、製造工程上で実現可能なギャップ、すなわち多くの場合は最小線路間スペースと同じである。図示はしないが、図1の構成において、制御用コイル3の切断長を40μmから5μmに狭めても、特性にほとんど変化が無い。 Further, the minimum value of the cutting length of the dividing point 7 of the control coil 3 is the same as the gap that can be realized in the manufacturing process, that is, the minimum inter-line space in many cases. Although not shown, even if the cutting length of the control coil 3 is reduced from 40 μm to 5 μm in the configuration of FIG.
 逆に、分断箇所7を両側に広げて行き、切断長が制御用コイル3の一辺分となった場合でも、特性に大きな変化は無い。制御用コイル3の全長が短くなった分、Scc21のノイズ除去ピーク周波数およびScc11、Scc22の反射減衰ピーク周波数が、わずかに高域にシフトする程度である。 On the contrary, even when the dividing part 7 is spread on both sides and the cutting length becomes one side of the control coil 3, there is no significant change in the characteristics. As the total length of the control coil 3 is shortened, the noise removal peak frequency of Scc21 and the reflection attenuation peak frequencies of Scc11 and Scc22 are shifted slightly to the high range.
 なお、上述した実施例では、差動信号に対する2線路間の対称性を保つために、制御用コイル3は、信号用コイル1A、1B間の中間位置に配置するのはもちろんである。更に、誘電体11A~11Cも同じ材質であることが必要であり、カバー層13A、13B、誘電体11D、11Eも誘電体11A~11Cと同じ材質の誘電体としている。 In the embodiment described above, the control coil 3 is of course arranged at an intermediate position between the signal coils 1A and 1B in order to maintain symmetry between the two lines with respect to the differential signal. Furthermore, the dielectrics 11A to 11C must be made of the same material, and the cover layers 13A and 13B and the dielectrics 11D and 11E are made of the same material as the dielectrics 11A to 11C.
 カバー層13A、13Bを磁性体にすると、磁気シールドされて安定な動作が実現されるが、本実施例では半導体パッケージ又は半導体チップへの内蔵も可能となるよう、以降の構成でも、カバー層13A、13Bは全て誘電体として説明する。 If the cover layers 13A and 13B are made of a magnetic material, they are magnetically shielded and a stable operation is realized. However, in this embodiment, the cover layer 13A can be incorporated in a semiconductor package or a semiconductor chip so that it can be incorporated in a semiconductor package or a semiconductor chip. , 13B are all described as dielectrics.
 ところで、上述した4端子回路33は、図7に示すように、分割制御用コイル3Aの始点5Aと分割制御用コイル3Bの終点5B間に抵抗R1、R2の直列回路を接続し、抵抗R1とR2の接続点とグラウンド間に抵抗3を接続したT型の抵抗ネットワークで形成することも可能である。 By the way, as shown in FIG. 7, the four-terminal circuit 33 described above connects a series circuit of resistors R1 and R2 between the start point 5A of the split control coil 3A and the end point 5B of the split control coil 3B, and the resistor R1 and It is also possible to form a T-type resistor network in which a resistor 3 is connected between the connection point of R2 and the ground.
 また、4端子回路33は、図8に示すように、分割制御用コイル3Aの始点5Aと分割制御用コイル3Bの終点5B間に抵抗R1、R3、R2の直列回路を接続し、抵抗R1とR3の接続点とグラウンド間に抵抗R4を接続するとともに、抵抗R3とR2の接続点とグラウンド間に抵抗R5を接続する梯子形の抵抗ネットワークで形成することも可能である。 As shown in FIG. 8, the four-terminal circuit 33 connects a series circuit of resistors R1, R3, and R2 between the start point 5A of the split control coil 3A and the end point 5B of the split control coil 3B, and the resistor R1 It is also possible to form a ladder-type resistor network in which the resistor R4 is connected between the connection point of R3 and the ground, and the resistor R5 is connected between the connection point of the resistors R3 and R2 and the ground.
 さらに、4端子回路33は、図9に示すように、分割制御用コイル3Aの始点5Aとグラウンド間に抵抗R1のみを接続するとともに、分割制御用コイル3Bの終点5Bとグラウンド間に抵抗R2のみを接続する構成、すなわち図3で抵抗R3が無限大となった構成も可能であり、π型ネットワークの変形とも言える構成も可能である。 Further, as shown in FIG. 9, the four-terminal circuit 33 connects only the resistor R1 between the starting point 5A of the split control coil 3A and the ground, and only the resistor R2 between the end point 5B of the split control coil 3B and the ground. In other words, a configuration in which the resistor R3 is infinite in FIG. 3 is possible, and a configuration that can be said to be a modification of the π-type network is also possible.
 本発明において、要は、始点のある分割制御用コイル3Aの当該始点とグラウンド間にその4端子回路33の一方の端子対を各々接続し、終点のある分割制御用コイル3Bの当該終点とグラウンド間に当該4端子回路33の他方の端子対を各々接続する構成であれば、本発明の目的達成が可能である。 In the present invention, the important point is that one terminal pair of the four-terminal circuit 33 is connected between the start point of the split control coil 3A having the start point and the ground, and the end point and ground of the split control coil 3B having the end point are connected. If the other terminal pair of the four-terminal circuit 33 is connected between each other, the object of the present invention can be achieved.
 さらに図示はしないが、4端子回路33は、抵抗とキャパシタ、又は抵抗とインダクタによるπ型、T型若しくは梯子型のネットワークでもコモンモードScc21の通過特性を調整可能である。 Further, although not shown, the four-terminal circuit 33 can adjust the pass characteristics of the common mode Scc21 even with a π-type, T-type, or ladder-type network using resistors and capacitors or resistors and inductors.
 このように4端子回路33は無限の回路構成を構築でき、その中でもπ型又はT型の抵抗ネットワークを含むよう形成された回路網が最も望ましい。 Thus, the four-terminal circuit 33 can construct an infinite circuit configuration, and among them, a circuit network formed so as to include a π-type or T-type resistance network is most desirable.
 なお、上述した図1の構成では、抵抗R1、R2、R3が誘電体層11Dに全て内蔵されている例を図示した。 In the configuration of FIG. 1 described above, an example in which the resistors R1, R2, and R3 are all incorporated in the dielectric layer 11D is illustrated.
 しかし、必ずしもこれらの抵抗R1~R3がコモンモードフィルタFに内蔵される必要はなく、例えば図1において、抵抗R1、R2を「ゼロΩ」すなわち抵抗を省略して導体で接続し、制御端子25Aに制御用コイル3の外周側の端末を直接接続し、制御端子25Bに制御用コイル3の内周側の端末を直接接続する構成としても良い。 However, these resistors R1 to R3 are not necessarily built in the common mode filter F. For example, in FIG. 1, the resistors R1 and R2 are “zero Ω”, that is, the resistors are omitted and connected by a conductor, and the control terminal 25A The terminal on the outer peripheral side of the control coil 3 may be directly connected to the control terminal 25B, and the terminal on the inner peripheral side of the control coil 3 may be directly connected to the control terminal 25B.
 この場合、図10に示すように、グラウンドパッド29Aとグラウンド間に受動回路35Aを外付け部品として接続し、グラウンドパッド29Bとグラウンド間に受動回路35Bを外付け部品として接続することで、ユーザーが自由にコモンモードフィルタFの特性を調整可能になる。 In this case, as shown in FIG. 10, the passive circuit 35A is connected as an external component between the ground pad 29A and the ground, and the passive circuit 35B is connected as an external component between the ground pad 29B and the ground. The characteristics of the common mode filter F can be freely adjusted.
 当然、抵抗R3を無限大、すなわち抵抗R3を取り除いて開放し、外付け部品としてグラウンドパッド29Aと29Bとの間に接続することも可能である。 Of course, it is possible to connect the resistor R3 between the ground pads 29A and 29B as an external component by removing the resistor R3 infinitely, that is, removing the resistor R3.
 このように、制御用コイル3の端末に接続される受動回路35A、35Bを外付け部品とすることが可能である。外付け構成にすれば、インダクタやキャパシタ等を内蔵した誘電体層等の増加防止が可能で、コモンモードフィルタFのコストアップを生じさせ難いうえ、抵抗、インダクタおよびキャパシタを自由に組み合わせて所望の特性となるよう調整できる利点もある。 Thus, the passive circuits 35A and 35B connected to the terminal of the control coil 3 can be external components. If the external configuration is adopted, it is possible to prevent an increase in the dielectric layer or the like containing the inductor, capacitor, etc., and it is difficult to increase the cost of the common mode filter F, and a desired combination of resistors, inductors and capacitors can be freely combined. There is also an advantage that the characteristics can be adjusted.
 また、上述した実施例においては、入力端子21A、21B、出力端子23A、23Bおよび制御端子25A、25Bを有する構成について説明した。しかし、本発明のコモンモードフィルタFでは、それらの外部端子電極を省略した構成、すなわち内部素子のみをプリント配線板、インターポーザ等の半導体パッケージ、更には、半導体ダイ等に内蔵させることも可能である。 In the above-described embodiment, the configuration having the input terminals 21A and 21B, the output terminals 23A and 23B, and the control terminals 25A and 25B has been described. However, in the common mode filter F of the present invention, those external terminal electrodes can be omitted, that is, only the internal elements can be incorporated in a semiconductor package such as a printed wiring board or an interposer, or a semiconductor die. .
1A 信号用コイル(第1の信号用コイル)
1B 信号用コイル(第2の信号用コイル)
3 制御用コイル
3A、3B 分割制御用コイル(制御用コイル)
5A 始点
5B 終点
7 分断箇所
9、9A、9B、9C、9D ビア
11A、11B、11C、11D 誘電体層
13A、13B カバー層
15A、15B 入力側引出し線
17A、17B 出力側引出し線
19A、19B、19C、19D 抵抗接続パッド
21A、21B 入力端子
23A、23B 出力端子
25A、25B 制御端子
27A、27B 差動線路
29A、29B グラウンドパッド
31A、31B 結合容量
33 4端子回路
35A、35B 受動回路
F コモンモードフィルタ
R1、R2、R3、R4、R5 抵抗(4端子回路)
1A Signal coil (first signal coil)
1B Signal coil (second signal coil)
3 Control coils 3A, 3B Split control coil (control coil)
5A Start point 5B End point 7 Dividing point 9, 9A, 9B, 9C, 9D Via 11A, 11B, 11C, 11D Dielectric layer 13A, 13B Cover layer 15A, 15B Input side lead wire 17A, 17B Output side lead wire 19A, 19B, 19C, 19D Resistance connection pads 21A, 21B Input terminals 23A, 23B Output terminals 25A, 25B Control terminals 27A, 27B Differential lines 29A, 29B Ground pads 31A, 31B Coupling capacitors 33 4-terminal circuits 35A, 35B Passive circuit F Common mode filter R1, R2, R3, R4, R5 resistors (4-terminal circuit)

Claims (2)

  1. 多層の誘電体層中にスパイラル状に形成され、一方の極性の差動信号線路内に直列的に挿入接続される第1の信号用コイルと、
     前記誘電体層中に前記第1の信号用コイルに厚さ方向で重なるように前記誘電体層を介して対面してスパイラル状に形成され、他方の極性の差動信号線路内に直列的に挿入接続される第2の信号用コイルと、
     前記第1および第2の信号用コイルとの間に前記誘電体層を介して挟まれるようにしてスパイラル状に形成され、前記第1の信号用コイルと同一方向に巻き線され、前記第1および第2の信号用コイル間の磁気結合および結合容量を制御する制御用コイルと、
     を具備し、
     前記制御用コイルはこの始点と終点との間の1箇所で分割され、前記始点とグラウンドとで形成される端子対と、前記終点と前記グラウンドとで形成される端子対との間に4端子回路が接続されてなることを特徴とするコモンモードフィルタ。
    A first signal coil formed in a spiral shape in a multilayer dielectric layer and inserted and connected in series in a differential signal line of one polarity;
    In the dielectric layer, it is formed in a spiral shape so as to face the first signal coil through the dielectric layer so as to overlap with the first signal coil, and in series in the differential signal line of the other polarity A second signal coil to be inserted and connected;
    It is formed in a spiral shape so as to be sandwiched between the first and second signal coils via the dielectric layer, wound in the same direction as the first signal coil, and And a control coil for controlling the magnetic coupling and coupling capacitance between the second signal coil,
    Comprising
    The control coil is divided at one point between the start point and the end point, and four terminals are formed between the terminal pair formed by the start point and the ground and the terminal pair formed by the end point and the ground. A common mode filter characterized in that a circuit is connected.
  2. 前記4端子回路はπ型又はT型の抵抗ネットワークを含む請求項1記載のコモンモードフィルタ。 The common mode filter according to claim 1, wherein the four-terminal circuit includes a π-type or T-type resistance network.
PCT/JP2016/051246 2016-01-18 2016-01-18 Common mode filter WO2017126002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051246 WO2017126002A1 (en) 2016-01-18 2016-01-18 Common mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051246 WO2017126002A1 (en) 2016-01-18 2016-01-18 Common mode filter

Publications (1)

Publication Number Publication Date
WO2017126002A1 true WO2017126002A1 (en) 2017-07-27

Family

ID=59362165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051246 WO2017126002A1 (en) 2016-01-18 2016-01-18 Common mode filter

Country Status (1)

Country Link
WO (1) WO2017126002A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280410A (en) * 1989-04-20 1990-11-16 Takeshi Ikeda Lc noise filter
JPH06104674A (en) * 1992-09-24 1994-04-15 Takeshi Ikeda Noise filter and its manufacture
JPH07176699A (en) * 1993-07-26 1995-07-14 T I F:Kk Semiconductor, lc element and manufacture thereof
JP2007174586A (en) * 2005-12-26 2007-07-05 Yagi Antenna Co Ltd Constant attenuation filter
WO2015181883A1 (en) * 2014-05-27 2015-12-03 松江エルメック株式会社 Common mode filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280410A (en) * 1989-04-20 1990-11-16 Takeshi Ikeda Lc noise filter
JPH06104674A (en) * 1992-09-24 1994-04-15 Takeshi Ikeda Noise filter and its manufacture
JPH07176699A (en) * 1993-07-26 1995-07-14 T I F:Kk Semiconductor, lc element and manufacture thereof
JP2007174586A (en) * 2005-12-26 2007-07-05 Yagi Antenna Co Ltd Constant attenuation filter
WO2015181883A1 (en) * 2014-05-27 2015-12-03 松江エルメック株式会社 Common mode filter

Similar Documents

Publication Publication Date Title
JP4579198B2 (en) Multilayer bandpass filter
TWI482354B (en) Directional coupler
JP5386586B2 (en) Common mode filter
TWI500213B (en) Directional coupler
JP6392865B2 (en) Common mode filter
US7253697B2 (en) Two-port isolator and communication apparatus
JP4449834B2 (en) Surge absorption circuit
US9413324B2 (en) Electronic component
US8629735B2 (en) Electronic component
JP5674363B2 (en) Circuit board having noise suppression structure
KR101352631B1 (en) Stacked common mode filter for high-frequency
TWI517570B (en) LC filter circuit and high frequency module
JP6315347B2 (en) Directional coupler and module using the same
JP2003087074A (en) Laminated filter
WO2017126002A1 (en) Common mode filter
JP3545245B2 (en) Common mode filter
US11368135B2 (en) High-frequency module
JP4033852B2 (en) Common mode filter
JP2004088744A (en) Two-port isolator and communication apparatus
JP6095175B2 (en) Passive equalizer
JP2000114048A (en) Common-mode filter
JP3176859B2 (en) Dielectric filter
TWI778766B (en) Filter integrated circuit
JP2004320556A (en) Passive component
JP2024024438A (en) electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP