WO2017125071A1 - 一种光伏支架 - Google Patents

一种光伏支架 Download PDF

Info

Publication number
WO2017125071A1
WO2017125071A1 PCT/CN2017/071923 CN2017071923W WO2017125071A1 WO 2017125071 A1 WO2017125071 A1 WO 2017125071A1 CN 2017071923 W CN2017071923 W CN 2017071923W WO 2017125071 A1 WO2017125071 A1 WO 2017125071A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
column
upright
photovoltaic support
wind
Prior art date
Application number
PCT/CN2017/071923
Other languages
English (en)
French (fr)
Inventor
徐冬媛
黄猛
南树功
刘霞
唐文强
梁荣鑫
全建明
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/071,758 priority Critical patent/US11101767B2/en
Priority to EP17741102.2A priority patent/EP3407484B1/en
Priority to AU2017209348A priority patent/AU2017209348B2/en
Priority to CA3012274A priority patent/CA3012274C/en
Publication of WO2017125071A1 publication Critical patent/WO2017125071A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/015Supports with play between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/19Movement dampening means; Braking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/60Arrangements for controlling solar heat collectors responsive to wind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Embodiments of the present invention relate to photovoltaic technology, and more particularly to a photovoltaic support.
  • the photovoltaic support is a support for supporting the solar panel in the solar photovoltaic power generation system, and the conversion efficiency of the solar energy can be improved by adjusting the fasteners to adapt the slope of the solar panel to different angles of the light.
  • the existing photovoltaic brackets are broadly divided into: optimal tilt fixed photovoltaic brackets, manual adjustable photovoltaic brackets, and horizontal single-axis tracking, oblique single-axis tracking, and dual-axis tracking isometric tracking photovoltaic brackets.
  • the structure of the fixed photovoltaic support is simple and easy to maintain, but in the case of severe weather or strong wind, the angle of the photovoltaic component cannot be adjusted according to the external environment, so that the photovoltaic component is easily damaged.
  • Manually-adjusted photovoltaic supports are limited by human factors, and cannot respond quickly and accurately to disasters in a timely manner, and are also prone to damage of photovoltaic modules.
  • the axis tracking type photovoltaic support can adjust the inclination angle of the photovoltaic component in time according to external environmental factors, the structure is complicated and the cost is high, and it is not convenient for wide application.
  • the embodiment of the invention provides a photovoltaic bracket to solve the problem that the existing photovoltaic bracket cannot automatically adjust the angle of the photovoltaic component according to the external environment and the cost of the photovoltaic bracket is high.
  • Embodiments of the present invention provide a photovoltaic support including a first column and a second column on a foundation, and a beam hinged respectively to the first end of the first column and the first end of the second column. Also includes:
  • first moving joint on the foundation and connected to the second end of the first upright, the first moving joint is automatically adjusted according to the wind to move the first upright in a vertical direction Adjust the angle of inclination of the beam.
  • the second moving link is automatically adjusted according to the wind to move the second upright in a vertical direction Adjust the angle of inclination of the beam.
  • the moving connecting piece comprises:
  • a spring housing fixed on the foundation, and a limiting node is disposed in an inner wall of the spring housing for limiting a moving path of the corresponding column;
  • a spring disposed in the spring housing, the first end of the spring is fixedly coupled to the bottom of the spring housing, and the second end of the spring is coupled to the second end of the post for elastic force
  • the telescopic force moves the column in the vertical direction.
  • the second end of the column is provided with a limiting block connected to the second end of the spring, and the limiting block is stretched by the spring at the top of the limiting node and the spring housing Movement is made between the columns to move in the vertical direction.
  • the limiting block of the first column is in contact with the top of the spring housing of the first moving connector when in the initial position
  • the limiting block of the second column is in contact with the limiting node of the spring housing of the second moving connector when in the initial position.
  • the method further includes: the first end of the second column is connected to the beam hinge by a sliding connection, and the beam is displaced in a horizontal direction by the sliding connection.
  • the sliding connector includes: a slide rail disposed on the cross beam, a first joint head located in the slide rail, and a first end disposed at the second pillar and the first end a second joint hinged by the hinge, the first joint being displaced in the slide to displace the beam in a horizontal direction relative to the first joint.
  • the first moving connecting member includes: a housing fixed on the foundation, wherein the housing is provided with a horizontally extending inclined rail; correspondingly,
  • a second end of the first upright is provided with a roller, the roller is located in the inclined track for moving along the inclined track according to the wind force to move the first column in a vertical direction to adjust The angle of inclination of the beam.
  • the photovoltaic bracket provided by the embodiment of the invention includes a first moving connecting member on the foundation and connected to the second end of the first pillar, wherein the first moving connecting member can be automatically adjusted according to the wind to make the first pillar vertical Move in the direction to achieve the effect of adjusting the tilt angle of the beam.
  • Photovoltaic support provided by the invention Not only can it adjust the angle adaptively in the strong wind, but it can also be automatically reset after the strong wind.
  • the structure is simple and easy to maintain, no manual adjustment is needed, and no complicated electrical control system is needed.
  • the existing photovoltaic bracket can not automatically adjust the angle of the PV module and cannot be automatically reset. And the problem of high cost of photovoltaic supports.
  • FIG. 1a is a cross-sectional view of a first photovoltaic support according to Embodiment 1 of the present invention
  • FIG. 1b is a cross-sectional view of a second photovoltaic support according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a photovoltaic holder according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a photovoltaic support according to Embodiment 3 of the present invention.
  • Embodiment 4 is a cross-sectional view of a photovoltaic support provided in Embodiment 4 of the present invention.
  • FIG. 1 is a cross-sectional view of a photovoltaic support according to Embodiment 1 of the present invention.
  • the present embodiment is applicable to a situation in which a photovoltaic support is adaptively adjusted according to wind power.
  • the photovoltaic bracket provided in this embodiment includes a first pillar 110 and a second pillar 120 on the foundation, and a beam 130 respectively hinged with the first end of the first pillar 110 and the first end of the second pillar 120, and further includes a first moving link 140 located on the foundation and connected to the second end of the first upright 110, the first moving link 140 is automatically adjusted according to the wind force to move the first upright 110 in the vertical direction to adjust the beam 130 The angle of inclination.
  • the photovoltaic support can be directly disposed on the ground, on the roof, or other positions according to the use condition. This embodiment is described by taking the photovoltaic support on the ground.
  • the beam 130 has a certain inclination angle when the photovoltaic bracket is initially installed, and the first column 110 and the beam 130
  • the hinge portion and the hinge of the second column 120 and the beam 130 have a certain rotating function.
  • the first column 110 and the second column 120 of the photovoltaic support support the entire photovoltaic system.
  • the beam 130 is respectively hinged with the first column 110 and the second column 120, and the solar panel, that is, the photovoltaic module, is mounted on the photovoltaic frame.
  • the first moving connecting member 140 is respectively connected with the ground and the second end of the first upright 110, the second upright 120 is connected to the foundation, and the first moving connecting member 140 is automatically adjusted according to the wind to control the second end of the first upright 110.
  • the displacement in the vertical direction causes the inclination angle of the beam 130 to change.
  • the first moving link 140 has a movement threshold. When the wind force applied to the photovoltaic module is greater than the movement threshold of the first moving link 140, the first moving link 140 controls the first column 110 under the force. Moving in the vertical direction, when the wind force applied to the photovoltaic module is less than or equal to the movement threshold of the first moving link 140, the first moving link 140 controls the first column 110 to be reset under the force.
  • the wind direction may be divided into a positive wind direction and a negative wind direction according to an external environment.
  • the wind direction is positive wind direction
  • the front side of the solar panel is subjected to positive wind pressure
  • the photovoltaic bracket generates downward pressure
  • the second column 120 is fixed
  • the first moving connecting member 140 is controlled by the positive wind pressure.
  • the second end of the first upright 110 is displaced downward in the vertical direction, and the angle of inclination of the beam 130 is reduced.
  • the wind direction is a negative wind direction
  • the back of the solar panel is subjected to a negative wind pressure.
  • the beam 130 is subjected to a large wind force near the second pillar 120 side, but the second pillar 120 cannot be stretched, and the first moving joint is based on the principle of the lever. 140 controls the second end of the first upright 110 to be displaced downward in the vertical direction under the action of the negative wind pressure, and the inclination angle of the beam 130 is reduced.
  • the first moving link 140 controls the second end of the first upright 110 to gradually move and return to the initial position.
  • the solar panel When the tilt angle of the beam 130 is reduced, the solar panel tends to be parallel to the wind direction, and the wind pressure on the solar panel is reduced, so that the solar panel is protected from typhoon or sudden wind.
  • the change in the inclination angle of the beam 130 changes the angle of the photovoltaic module supported thereby, so that the photovoltaic support can adaptively adjust the angle of the photovoltaic module according to the wind and automatically reset.
  • first moving link 140 may be provided with a slide rail or a spring or other component that can displace the second end 110 of the first post 110, or
  • the first moving link 140 itself has a function of displacement in a vertical direction such as a mechanical seal or the like, and when the wind force is greater than the friction or elastic force of the first moving link 140, the first moving link 140 controls the displacement of the first upright 110, The cost of the first mobile connector 140 is low.
  • FIG. 1b is a cross-sectional view of a second photovoltaic support provided by Embodiment 1 of the present invention, and the implementation The example can be applied to the case where the photovoltaic support is adaptively adjusted according to the wind.
  • the photovoltaic bracket provided in this embodiment includes a first pillar 210 and a second pillar 220 on the foundation, and a beam 230 respectively hinged with the first end of the first pillar 210 and the first end of the second pillar 220, and further includes a first moving link 240 located on the foundation and connected to the second end of the first upright 210, the first moving link 240 is automatically adjusted according to the wind force to move the first upright 210 in the vertical direction to adjust the beam 230 The angle of inclination.
  • the beam 230 is subjected to a large wind force near the second pillar 220 side but the second pillar 220 cannot be compressed, based on the similarity Principle of the lever
  • the beam 230 generates a force for stretching the first column 210, and then the first moving link 240 controls the second end of the first column 210 to be displaced upward in the vertical direction under the action of the positive wind pressure, the beam 230 The tilt angle is reduced.
  • the first moving connecting member controls the second end of the first column 210 under the negative wind pressure. Displacement in the straight direction upward, the inclination angle of the beam 230 is reduced.
  • the first moving link 240 controls the second end of the first upright 210 to gradually move and return to the initial position.
  • the photovoltaic support provided by the first embodiment of the present invention includes a first mobile connecting member 140 on the foundation and connected to the second end of the first upright 110, where the first mobile connecting member 140 can be automatically adjusted according to the wind to make the first
  • the column 110 moves in the vertical direction to achieve the effect of adjusting the inclination angle of the beam 130.
  • the photovoltaic support provided by the embodiment can be adaptively adjusted not only in high wind but also automatically reset after high winds.
  • the structure is simple and easy to maintain, no manual adjustment is needed, and a complicated electrical control system is not needed, which solves the problem that the existing photovoltaic support cannot be automatically adjusted. PV module angle, automatic reset, and high cost of photovoltaic mounts.
  • the second embodiment of the present invention provides a photovoltaic support, which can be applied to the situation that the photovoltaic support is adaptively adjusted according to the wind.
  • the photovoltaic support shown in FIG. 1a is taken as an example and the reference mark shown in FIG. 1a is used.
  • the photovoltaic support provided in this embodiment also includes: a grounding base and a second end connected to the second upright 120.
  • the second moving link 150, the second moving link 150 is automatically adjusted according to the wind force to move the second upright 120 in the vertical direction to adjust the tilt angle of the beam 130.
  • the structure and movement thresholds of the first moving link 140 and the second moving link 150 are the same.
  • the first moving connecting member 140 controls the second end of the first upright 110 to be displaced downward in the vertical direction under the action of the positive wind pressure, and the relative force of the second moving connecting member 150 at the first moving connecting member 140.
  • the second end of the second column 120 is controlled to be displaced upward in the vertical direction under the action of the wind pressure, and the inclination angle of the beam 130 is decreased.
  • the second moving connecting member 150 controls the second end of the second upright 120 to be displaced upward in the vertical direction under the negative wind pressure, and the first moving connecting member 140 is in the second moving connection.
  • the relative force of the member 150 and the wind pressure control the second end of the first upright 110 to be displaced downward in the vertical direction, and the inclination angle of the beam 130 is reduced.
  • the third embodiment of the present invention provides a photovoltaic support, which can be applied to the situation that the photovoltaic support is adaptively adjusted according to the wind.
  • the present embodiment provides a photovoltaic support as shown in FIG. 3, wherein the first movable connecting member 140 and the second movable connecting member 150 have the same structure. This is described in the structure of any one of the moving links.
  • the moving connecting member includes: a spring housing 141 fixed on the foundation, and a limiting node 142 is disposed in the inner wall of the spring housing 141 for restricting a moving path of the corresponding column; a spring 143 disposed in the spring housing 141, The first end of the spring 143 is fixedly coupled to the bottom of the spring housing 141, and the second end of the spring 143 is coupled to the second end of the post for telescopic expansion to move the post in a vertical direction.
  • the moving connecting member is automatically adjusted according to the wind, in particular, the spring 143 is deformed under the action of the wind to move the corresponding column in the vertical direction, and the moving threshold of the moving connecting member is the spring force threshold of the spring 143 when the wind Above the spring force threshold, the spring 143 in the moving link deforms such that the corresponding column is displaced.
  • the limit node 142 limits the moving distance of the column in the horizontal direction and the moving path in the vertical direction.
  • the second end of the optional column is provided with a limiting block 144 connected to the second end of the spring 143.
  • the limiting block 144 is moved between the limiting node 142 and the top of the spring housing 141 by the expansion and contraction of the spring 143 to make the column Move in the vertical direction.
  • the limiting block 144 of the first column 110 can maintain the spring 143 corresponding to the first column 110 in a certain state, and the limiting block 144 of the second column 120 can make the second column 120
  • the corresponding spring 143 is maintained in a certain state, and the spring 143 remains unchanged.
  • the positive or negative wind pressure on the photovoltaic module breaks the force balance between the stop block 144 and the spring 143, and the spring 143 is deformed such that the corresponding column moves in the vertical direction.
  • the limiting block 144 of the first upright 110 is in contact with the top of the spring housing 141 of the first moving link 140 in the initial position; the limiting block 144 of the second upright 120 is in the initial position and the second movement
  • the limit nodes 142 of the spring housing 141 of the connector 150 are in contact.
  • the beam 130 of the photovoltaic support should maintain a certain angle of inclination in the initial state, which is preferably the initial installation angle of the photovoltaic support.
  • the working principle is: when the photovoltaic module on the photovoltaic support is subjected to positive wind pressure, the front side of the photovoltaic assembly is forced to generate a spring 143 corresponding to each of the first column 110 and the second column 120. trend.
  • the limiting block 144 of the second pillar 120 is located outside the limiting node 142 such that its corresponding spring 143 cannot be compressed, only the spring 143 corresponding to the first pillar 110 is compressed, and the inclination of the corresponding photovoltaic module is reduced, so that the photovoltaic
  • the component plane tends to be parallel to the wind direction, effectively reducing the frontal force of the photovoltaic module and avoiding damage to the photovoltaic module caused by typhoons or sudden winds.
  • the spring 143 of the first upright 110 recovers to reset the photovoltaic assembly to an angle of inclination prior to the wind.
  • the photovoltaic module backing plate When the photovoltaic module is subjected to negative wind pressure, the photovoltaic module backing plate is stressed, creating a tendency to stretch the respective springs 143 of the first upright 110 and the second upright 120. Since the limiting block 144 of the first upright 110 is in contact with the top of the spring case 141, the spring 143 of the first upright 110 cannot be stretched under the restriction of the spring case 141 and the limit block 144 of the first upright 110. .
  • the spring 143 of the second column 120 is stretched, and the inclination of the corresponding photovoltaic module is reduced, so that the plane of the photovoltaic component tends to be parallel to the wind direction, effectively reducing the pressure on the wind side of the photovoltaic module, and avoiding the wind to the photovoltaic component. Damage.
  • the spring 143 of the second column 120 automatically returns to return the photovoltaic module to the desired angle of inclination.
  • the beam 130 is respectively hinged with the first column 110 and the second column 120.
  • the change of the inclination of the beam 130 causes a lateral direction between the second column 120 and the beam 130.
  • the first end of the optional second post 120 is coupled to the cross member 130 by a sliding joint 160, and the cross member 130 is displaced in the horizontal direction by the sliding joint 160.
  • the inclination of the beam 130 is increased or decreased, the beam 130 is displaced in the horizontal direction by the sliding joint 160 so that the second column 120 does not cause displacement in the horizontal direction, which improves the stability of the photovoltaic support.
  • the sliding connector 160 includes: a slide rail disposed on the beam 130, a first joint head located in the slide rail, and a second hinge disposed at the first end of the second pillar 120 and hinged with the first joint head The head, the first hinge is displaced in the slide rail to displace the beam 130 in a horizontal direction relative to the first joint. It can also be understood by those skilled in the art that the sliding connector 160 can also be in other forms, and details are not described herein.
  • the photovoltaic support provided by the embodiment is automatically adjusted according to the wind receiving surface of the photovoltaic module by the automatic expansion and contraction of the spring structure, and is adapted to the wind to automatically adjust the angle of the photovoltaic component, and is automatically reset to the proper angle after the strong wind passes.
  • No complicated electrical control system is required, no manual adjustment is required, the structure is simple and easy to maintain, and the existing photovoltaic support can not be adapted to wind regulation in severe weather such as typhoon.
  • the photovoltaic module angle and the defects that cannot be automatically reset improve the wind resistance of the photovoltaic support system.
  • the fourth embodiment of the present invention further provides a photovoltaic bracket, which can be applied to the situation that the photovoltaic bracket is adaptively adjusted according to the wind.
  • the photovoltaic bracket is different from the above embodiment in that the first moving connecting member comprises: a housing 341 fixed on the foundation, wherein the housing 341 is provided with a horizontally extending inclined rail 342;
  • the second end of the first column 310 is provided with a roller 311, and the roller 311 is located in the inclined rail 342 for moving along the inclined rail 342 according to the wind force to move the first column 310 in the vertical direction to adjust the beam 330. slope.
  • the first end of the second upright 320 is hinged to the beam 330 by a sliding connection 350, and the beam 330 is displaced in the horizontal direction by the sliding connection 350.
  • the roller 311 of the first upright 310 is located at the top of the inclined track 342 in the initial position.
  • the photovoltaic bracket In the case of a large wind, when the wind direction is positive wind direction, the front side of the solar panel is subjected to positive wind pressure, the photovoltaic bracket generates pressure for compressing the column, the second column 320 is fixed, and the second column 310 is second.
  • the end is displaced downward in the vertical direction, that is, the first column 310 moves downward along the inclined rail 342, the beam 330 moves in the horizontal direction by the sliding link 350, and the inclination angle of the beam 330 is reduced.
  • the back side of the solar panel is subjected to a negative wind pressure.
  • the beam 330 is subjected to a large wind force near the second pillar 320 side but the second pillar 320 cannot be compressed, and the second end of the first pillar 310 is vertical.
  • the direction of the downward displacement, the inclination angle of the beam 330 is reduced.
  • the photovoltaic bracket provided by the present embodiment can automatically adjust the angle of the photovoltaic component by the automatic displacement of the roller structure of the column according to the wind receiving surface of the photovoltaic module, and the structure is simple and easy to maintain, and the existing solution is solved.
  • the photovoltaic bracket can not adapt to the defects of the wind-regulating photovoltaic module angle in severe weather such as typhoon, and improves the wind-resistant capability of the photovoltaic bracket system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏支架,该光伏支架包括位于地基上的第一立柱(110)和第二立柱(120)、以及与所述第一立柱(110)的第一端和所述第二立柱(120)的第一端分别铰接的横梁(130),还包括:位于所述地基上且与所述第一立柱(110)的第二端连接的第一移动连接件(140),所述第一移动连接件(140)根据风力自动调节,以使所述第一立柱(110)在竖直方向上移动以调节所述横梁(130)的倾斜角度。该光伏支架不仅在大风时可自适应调节角度还可在大风过后自动复位,结构简单易于维护、无需人工调节也不需要复杂的电气控制系统,解决了现有光伏支架不能自动调整光伏组件角度、不能自动复位、以及光伏支架成本高的问题。

Description

一种光伏支架
本申请要求于2016年01月22日提交中国专利局、申请号为201610046168.5、发明名称为“一种光伏支架”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及光伏技术,尤其涉及一种光伏支架。
背景技术
随着新能源产业的迅猛发展,太阳能作为各种可生能源中最重要的基本能源,其太阳能发电技术即光伏产业发展飞速。光伏支架是太阳能光伏发电系统中用于支撑太阳能面板的支架,可通过调整其紧固件使太阳能面板的斜面适应光线的不同角度,提高太阳能的转换效率。
现有的光伏支架大致分为:最佳倾角固定式光伏支架,手动调节式光伏支架,以及水平单轴跟踪式、斜单轴跟踪式、双轴跟踪式等轴跟踪式光伏支架。固定式光伏支架的结构简单便于维护,但在遭遇恶劣天气或强风时,无法根据外界环境调整光伏组件的角度,使得光伏组件容易被损毁。手动调节式光伏支架受人力因素限制,无法迅速准确反应及时应对灾害,也容易出现光伏组件损毁的现象。轴跟踪式光伏支架虽然能够根据外界环境因素及时调节光伏组件的倾角,但其结构复杂、成本较高,不便于广泛应用。
发明内容
本发明实施例提供一种光伏支架,以解决现有光伏支架无法根据外界环境自动调整光伏组件角度、以及光伏支架成本高的问题。
本发明实施例提供了一种光伏支架,包括位于地基上的第一立柱和第二立柱、以及与所述第一立柱的第一端和所述第二立柱的第一端分别铰接的横梁,还包括:
位于所述地基上且与所述第一立柱的第二端连接的第一移动连接件,所述第一移动连接件根据风力自动调节,以使所述第一立柱在竖直方向上移动以调节所述横梁的倾斜角度。
进一步地,还包括:
位于所述地基上且与所述第二立柱的第二端连接的第二移动连接件,所述第二移动连接件根据风力自动调节,以使所述第二立柱在竖直方向上移动以调节所述横梁的倾斜角度。
进一步地,所述第一移动连接件和所述第二移动连接件的结构相同;相应的,所述移动连接件包括:
固定在所述地基上的弹簧壳体,所述弹簧壳体的内壁中设置有限位节点,用于限制对应立柱的移动路径;
设置在所述弹簧壳体中的弹簧,所述弹簧的第一端与所述弹簧壳体的底部固定连接,所述弹簧的第二端与所述立柱的第二端连接,用于通过弹力伸缩以使所述立柱在竖直方向上移动。
进一步地,所述立柱的第二端设置有与所述弹簧的第二端连接的限位块,所述限位块通过所述弹簧的伸缩在所述限位节点和所述弹簧壳体顶部之间进行移动以使所述立柱在竖直方向上移动。
进一步地,所述第一立柱的限位块在初始位置时与所述第一移动连接件的弹簧壳体的顶部相接触;
所述第二立柱的限位块在初始位置时与所述第二移动连接件的弹簧壳体的限位节点相接触。
进一步地,还包括:所述第二立柱的第一端与所述横梁铰接处通过滑动连接件连接,所述横梁通过所述滑动连接件在水平方向上位移。
进一步地,所述滑动连接件包括:设置在所述横梁上的滑轨、位于所述滑轨中的第一铰接头、以及设置在所述第二立柱的第一端且与所述第一铰接头铰接的第二铰接头,所述第一铰接头在所述滑轨中位移以使所述横梁相对所述第一铰接头在水平方向上位移。
进一步地,所述第一移动连接件包括:固定在所述地基上的壳体,其中,所述壳体上设置有水平贯穿的倾斜轨道;相应的,
所述第一立柱的第二端设置有滚轴,所述滚轴位于所述倾斜轨道中,用于根据风力沿所述倾斜轨道运动以使所述第一立柱在竖直方向上移动以调节所述横梁的倾斜角度。
本发明实施例提供的光伏支架,包括位于地基上且与第一立柱的第二端连接的第一移动连接件,在此第一移动连接件可根据风力自动调节以使第一立柱在竖直方向上移动,达到调节横梁的倾斜角度的效果。本发明提供的光伏支架 不仅在大风时可自适应调节角度还可在大风过后自动复位,结构简单易于维护、无需人工调节也不需要复杂的电气控制系统,解决了现有光伏支架不能自动调整光伏组件角度、不能自动复位、以及光伏支架成本高的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本发明实施例一提供的第一种光伏支架的剖视图;
图1b是本发明实施例一提供的第二种光伏支架的剖视图;
图2是本发明实施例二提供的光伏支架的剖视图;
图3是本发明实施例三提供的光伏支架的剖视图;
图4是本发明实施例四提供的光伏支架的剖视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下将参照本发明实施例中的附图,通过实施方式清楚、完整地描述本发明的技术方案,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1a所示为本发明实施例一提供的光伏支架的剖视图,本实施例可适用于光伏支架根据风力自适应调节的情况。本实施例提供的光伏支架,包括位于地基上的第一立柱110和第二立柱120、以及与第一立柱110的第一端和第二立柱120的第一端分别铰接的横梁130,还包括:位于地基上且与第一立柱110的第二端连接的第一移动连接件140,第一移动连接件140根据风力自动调节,以使第一立柱110在竖直方向上移动以调节横梁130的倾斜角度。
如上所述,光伏支架可以根据使用情况的不同直接设置在地面上、房顶上或其他位置,本实施例以光伏支架设置在地基上为例描述。需要说明的是光伏支架初始安装时横梁130具有一定的倾斜角度,且第一立柱110和横梁130 的铰接处、以及第二立柱120和横梁130的铰接处具有一定的转动功能。光伏支架的第一立柱110和第二立柱120支撑整个光伏系统上,横梁130分别与第一立柱110和第二立柱120铰接,太阳能面板即光伏组件搭载在光伏支架上。
第一移动连接件140分别与地基和第一立柱110的第二端连接,第二立柱120与地基连接,第一移动连接件140根据风力自动调节,以控制第一立柱110的第二端在竖直方向上位移,使得横梁130的倾斜角度发生变化。具体地,第一移动连接件140具有移动临界值,当施加在光伏组件上的风力大于第一移动连接件140的移动临界值时,第一移动连接件140在力作用下控制第一立柱110在竖直方向上移动,当施加在光伏组件上的风力小于或等于第一移动连接件140的移动临界值时,第一移动连接件140在力作用下控制第一立柱110复位。
对于风力大于第一移动连接件140的移动临界值的情况,根据外部环境,风向可分为正风向和负风向。当风向为正风向时,太阳能面板正面受力即受到正风压,则光伏支架产生了向下的压力,第二立柱120固定不动,第一移动连接件140在正风压的作用下控制第一立柱110的第二端在竖直方向上向下位移,横梁130的倾斜角度减小。当风向为负风向时,太阳能面板背面受力即受到负风压,此时横梁130靠近第二立柱120侧受到大风力但第二立柱120无法拉伸,则基于杠杆的原理第一移动连接件140在负风压的作用下控制第一立柱110的第二端在竖直方向上向下位移,横梁130的倾斜角度减小。
对于风力小于或等于第一移动连接件140的移动临界值的情况,第一移动连接件140控制第一立柱110的第二端逐渐移动并回复至初始位置。
当横梁130的倾斜角度减小时,太阳能面板趋于与风向平行,则太阳能面板所受的风压降低,使得太阳能面板免受台风或突袭大风的损害。横梁130倾斜角度改变使其支撑的光伏组件的角度发生改变,因此该光伏支架能够根据风力自适应调节光伏组件的角度并自动复位。本领域技术人员可以理解,第一移动连接件140中可设置有控制第一立柱110的第二端在竖直方向上位移的滑轨或弹簧或其他可使第一立柱110位移的部件,或者第一移动连接件140自身具有在竖直方向上位移的功能如机械密封等,则风力大于第一移动连接件140的摩擦力或弹力时,第一移动连接件140控制第一立柱110位移,第一移动连接件140的成本低。
如图1b所示为本发明实施例一提供的第二种光伏支架的剖视图,本实施 例可适用于光伏支架根据风力自适应调节的情况。本实施例提供的光伏支架,包括位于地基上的第一立柱210和第二立柱220、以及与第一立柱210的第一端和第二立柱220的第一端分别铰接的横梁230,还包括:位于地基上且与第一立柱210的第二端连接的第一移动连接件240,第一移动连接件240根据风力自动调节,以使第一立柱210在竖直方向上移动以调节横梁230的倾斜角度。
具体地,对于风力大于第一移动连接件240的移动临界值的情况,当太阳能面板受到正风压时,横梁230靠近第二立柱220侧受到大风力但第二立柱220无法压缩,则基于类似杠杆的原理横梁230产生了拉伸第一立柱210的力,那么第一移动连接件240在正风压的作用下控制第一立柱210的第二端在竖直方向上向上位移,横梁230的倾斜角度减小。当太阳能面板受到负风压时,第二立柱220无法拉伸,第一立柱210受到拉伸力,那么第一移动连接部件在负风压的作用下控制第一立柱210的第二端在竖直方向上向上位移,横梁230的倾斜角度减小。对于风力小于或等于第一移动连接件240的移动临界值的情况,第一移动连接件240控制第一立柱210的第二端逐渐移动并回复至初始位置。
本发明实施例一提供的光伏支架,包括位于地基上且与第一立柱110的第二端连接的第一移动连接件140,在此第一移动连接件140可根据风力自动调节以使第一立柱110在竖直方向上移动,达到调节横梁130的倾斜角度的效果。本实施例提供的光伏支架不仅在大风时可自适应调节角度还可在大风过后自动复位,结构简单易于维护、无需人工调节也不需要复杂的电气控制系统,解决了现有光伏支架不能自动调整光伏组件角度、不能自动复位、以及光伏支架成本高的问题。
在上述技术方案的基础上,本发明实施例二提供了一种光伏支架,可适用于光伏支架根据风力自适应调节的情况。仅以图1a所示光伏支架为例并沿用图1a所示附图标记,如图2所示本实施例提供的光伏支架还包括:位于地基上且与第二立柱120的第二端连接的第二移动连接件150,第二移动连接件150根据风力自动调节,以使第二立柱120在竖直方向上移动以调节横梁130的倾斜角度。在此第一移动连接件140和第二移动连接件150的结构和移动临界值均相同。
对于风力大于移动连接件的移动临界值的情况。当光伏组件受到正风压 时,第一移动连接件140在正风压的作用下控制第一立柱110的第二端在竖直方向上向下位移,第二移动连接件150在第一移动连接件140的相对作用力和风压的作用下控制第二立柱120的第二端在竖直方向上向上位移,横梁130的倾斜角度减小。当光伏组件受到负风压时,第二移动连接件150在负风压的作用下控制第二立柱120的第二端在竖直方向上向上位移,第一移动连接件140在第二移动连接件150的相对作用力和风压的作用下控制第一立柱110的第二端在竖直方向上向下位移,横梁130的倾斜角度减小。
在上述任意实施例的基础上,本发明实施例三提供了一种光伏支架,可适用于光伏支架根据风力自适应调节的情况。以图2所示光伏支架为例并沿用图2所示附图标记,本实施例提供如图3所示光伏支架,其中,第一移动连接件140和第二移动连接件150的结构相同,在此以任意一个移动连接件的结构进行描述。
在此移动连接件包括:固定在地基上的弹簧壳体141,弹簧壳体141的内壁中设置有限位节点142,用于限制对应立柱的移动路径;设置在弹簧壳体141中的弹簧143,弹簧143的第一端与弹簧壳体141的底部固定连接,弹簧143的第二端与立柱的第二端连接,用于通过弹力伸缩以使立柱在竖直方向上移动。在此移动连接件根据风力自动调节,具体为在风力作用下弹簧143发生形变以使对应的立柱在竖直方向上移动,移动连接件的移动临界值即为弹簧143的弹力临界值,当风力大于弹力临界值时,移动连接件中的弹簧143形变使得对应立柱发生位移。为了避免立柱在水平方向上产生大范围位移,在此限位节点142限制了立柱在水平方向上的移动距离以及在竖直方向上的移动路径。
可选立柱的第二端设置有与弹簧143的第二端连接的限位块144,限位块144通过弹簧143的伸缩在限位节点142和弹簧壳体141顶部之间进行移动以使立柱在竖直方向上移动。具体地,在风力较小时,第一立柱110的限位块144可使第一立柱110对应的弹簧143维持在一定的状态上,以及第二立柱120的限位块144可使第二立柱120对应的弹簧143维持在一定的状态上,弹簧143维持不变。当风力较大时,光伏组件上的正风压或负风压打破了限位块144与弹簧143之间的力平衡,弹簧143发生形变使得对应的立柱在竖直方向上移动。
可选地第一立柱110的限位块144在初始位置时与第一移动连接件140的弹簧壳体141的顶部相接触;第二立柱120的限位块144在初始位置时与第二移动 连接件150的弹簧壳体141的限位节点142相接触。光伏支架的横梁130在初始状态下应保持一定的倾斜角度,该倾斜角度优选为光伏支架的初始安装角度。
对于图3所示的光伏支架,其工作原理为:当光伏支架上的光伏组件受到正风压时,光伏组件正面受力,产生压缩第一立柱110和第二立柱120各对应的弹簧143的趋势。由于第二立柱120的限位块144位于限位节点142的外部使得其对应的弹簧143无法压缩,所以仅第一立柱110对应的弹簧143被压缩,相应的光伏组件的倾角减小,使得光伏组件平面趋于与风向平行,有效降低了光伏组件的正面受力情况,避免了台风或突袭大风对光伏组件的损害。当风力减小时,第一立柱110的弹簧143恢复使得光伏组件复位到风起之前的倾斜角度。
当光伏组件受到负风压时,光伏组件背板受力,产生拉伸第一立柱110和第二立柱120各对应的弹簧143的趋势。由于第一立柱110的限位块144与弹簧壳体141的顶部相接触,因此在第一立柱110的弹簧壳体141和限位块144的限制下,第一立柱110的弹簧143无法拉伸。此时仅第二立柱120的弹簧143被拉伸,相应的光伏组件的倾角减小,使得光伏组件平面趋于与风向平行,有效降低了光伏组件受风一侧的压力,避免大风对光伏组件的损害。风力减小后第二立柱120的弹簧143自动回复使光伏组件回到应有的倾斜角度。
需要说明的是,横梁130与第一立柱110和第二立柱120分别铰接,当第一立柱110在竖直方向上位移时,横梁130倾角的变化导致第二立柱120与横梁130之间产生横向位移,因此在上述任意实施例的基础上,可选第二立柱120的第一端与横梁130铰接处通过滑动连接件160连接,横梁130通过滑动连接件160在水平方向上位移。当横梁130的倾角增加或减小时,横梁130通过滑动连接件160在水平方向上位移,以使第二立柱120不会产生水平方向上的位移,提高了光伏支架的稳定性。
可选地滑动连接件160包括:设置在横梁130上的滑轨、位于滑轨中的第一铰接头、以及设置在第二立柱120的第一端且与第一铰接头铰接的第二铰接头,第一铰接头在滑轨中位移以使横梁130相对第一铰接头在水平方向上位移。本领域技术人员还可以理解,滑动连接件160还可以是其他形式,在此不再赘述。
本实施例提供的光伏支架在台风或突袭强风情况下,根据光伏组件的受风面不同,通过弹簧结构的自动伸缩,适应风力自动调节光伏组件角度,在大风过去后自动复位到应有角度,不需要复杂的电气控制系统,不需要人工调节,结构简单易于维护,解决了现有光伏支架在台风等恶劣天气不能适应风力调节 光伏组件角度、以及不能自动复位的缺陷,提高了光伏支架系统的抗风能力。
本发明实施例四还提供了一种光伏支架,可适用于光伏支架根据风力自适应调节的情况。如图4所示,该光伏支架与上述实施例的区别在于,第一移动连接件包括:固定在地基上的壳体341,其中,壳体341上设置有水平贯穿的倾斜轨道342;相应的,第一立柱310的第二端设置有滚轴311,滚轴311位于倾斜轨道342中,用于根据风力沿倾斜轨道342运动以使第一立柱310在竖直方向上移动以调节横梁330的倾斜角度。其中,第二立柱320的第一端与横梁330铰接处通过滑动连接件350连接,横梁330通过滑动连接件350在水平方向上位移。
如上所述,第一立柱310的滚轴311在初始位置是位于倾斜轨道342的顶部。对于风力较大的情况,当风向为正风向时,太阳能面板正面受力即受到正风压,则光伏支架产生了压缩立柱的压力,第二立柱320固定不动,第一立柱310的第二端在竖直方向上向下位移即第一立柱310沿着倾斜轨道342向下移动、横梁330通过滑动连接件350在水平方向上移动,横梁330的倾斜角度减小。
当风向为负风向时,太阳能面板背面受力即受到负风压,此时横梁330靠近第二立柱320侧受到大风力但第二立柱320无法压缩,第一立柱310的第二端在竖直方向上向下位移,横梁330的倾斜角度减小。
本实施例提供的光伏支架在台风或突袭强风情况下,根据光伏组件的受风面不同,通过立柱滚轴结构的自动位移,适应风力自动调节光伏组件角度,结构简单易于维护,解决了现有光伏支架在台风等恶劣天气不能适应风力调节光伏组件角度的缺陷,提高了光伏支架系统的抗风能力。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (8)

  1. 一种光伏支架,包括位于地基上的第一立柱和第二立柱、以及与所述第一立柱的第一端和所述第二立柱的第一端分别铰接的横梁,其特征在于,还包括:
    位于所述地基上且与所述第一立柱的第二端连接的第一移动连接件,所述第一移动连接件根据风力自动调节,以使所述第一立柱在竖直方向上移动以调节所述横梁的倾斜角度。
  2. 根据权利要求1所述的光伏支架,其特征在于,还包括:
    位于所述地基上且与所述第二立柱的第二端连接的第二移动连接件,所述第二移动连接件根据风力自动调节,以使所述第二立柱在竖直方向上移动以调节所述横梁的倾斜角度。
  3. 根据权利要求2所述的光伏支架,其特征在于,所述第一移动连接件和所述第二移动连接件的结构相同;相应的,所述移动连接件包括:
    固定在所述地基上的弹簧壳体,所述弹簧壳体的内壁中设置有限位节点,用于限制对应立柱的移动路径;
    设置在所述弹簧壳体中的弹簧,所述弹簧的第一端与所述弹簧壳体的底部固定连接,所述弹簧的第二端与所述立柱的第二端连接,用于通过弹力伸缩以使所述立柱在竖直方向上移动。
  4. 根据权利要求3所述的光伏支架,其特征在于,所述立柱的第二端设置有与所述弹簧的第二端连接的限位块,所述限位块通过所述弹簧的伸缩在所述限位节点和所述弹簧壳体顶部之间进行移动以使所述立柱在竖直方向上移动。
  5. 根据权利要求4所述的光伏支架,其特征在于,所述第一立柱的限位块在初始位置时与所述第一移动连接件的弹簧壳体的顶部相接触;
    所述第二立柱的限位块在初始位置时与所述第二移动连接件的弹簧壳体的限位节点相接触。
  6. 根据权利要求1所述的光伏支架,其特征在于,还包括:
    所述第二立柱的第一端与所述横梁铰接处通过滑动连接件连接,所述横梁通过所述滑动连接件在水平方向上位移。
  7. 根据权利要求6所述的光伏支架,其特征在于,所述滑动连接件包括:设置在所述横梁上的滑轨、位于所述滑轨中的第一铰接头、以及设置在所述第 二立柱的第一端且与所述第一铰接头铰接的第二铰接头,所述第一铰接头在所述滑轨中位移以使所述横梁相对所述第一铰接头在水平方向上位移。
  8. 根据权利要求6所述的光伏支架,其特征在于,所述第一移动连接件包括:固定在所述地基上的壳体,其中,所述壳体上设置有水平贯穿的倾斜轨道;相应的,
    所述第一立柱的第二端设置有滚轴,所述滚轴位于所述倾斜轨道中,用于根据风力沿所述倾斜轨道运动以使所述第一立柱在竖直方向上移动以调节所述横梁的倾斜角度。
PCT/CN2017/071923 2016-01-22 2017-01-20 一种光伏支架 WO2017125071A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/071,758 US11101767B2 (en) 2016-01-22 2017-01-20 Photovoltaic support
EP17741102.2A EP3407484B1 (en) 2016-01-22 2017-01-20 Photovoltaic support
AU2017209348A AU2017209348B2 (en) 2016-01-22 2017-01-20 Photovoltaic support
CA3012274A CA3012274C (en) 2016-01-22 2017-01-20 Photovoltaic support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610046168.5A CN105515507B (zh) 2016-01-22 2016-01-22 一种光伏支架
CN201610046168.5 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017125071A1 true WO2017125071A1 (zh) 2017-07-27

Family

ID=55723234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071923 WO2017125071A1 (zh) 2016-01-22 2017-01-20 一种光伏支架

Country Status (6)

Country Link
US (1) US11101767B2 (zh)
EP (1) EP3407484B1 (zh)
CN (1) CN105515507B (zh)
AU (1) AU2017209348B2 (zh)
CA (1) CA3012274C (zh)
WO (1) WO2017125071A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515507B (zh) 2016-01-22 2019-03-22 珠海格力电器股份有限公司 一种光伏支架
CN107976951A (zh) * 2017-09-14 2018-05-01 北京汉能光伏投资有限公司 光伏支架控制方法及控制系统
CN108183671A (zh) * 2018-02-06 2018-06-19 浙江辉弘光能股份有限公司 一种可抗风的光伏面板安装支架
CN108288949A (zh) * 2018-04-08 2018-07-17 浙江双鸿新能源科技有限公司 一种防风型光伏支架
JP2022525631A (ja) 2019-03-20 2022-05-18 ワイ-チャージ リミテッド レーザビームパワー検出のための光起電セル
US10917036B2 (en) 2019-05-01 2021-02-09 Jan Christopher Schilling Tilting solar panel mount
CN110278825B (zh) * 2019-08-10 2024-01-19 赵国柱 抗风支撑架
CN111158405A (zh) * 2020-01-19 2020-05-15 浙江正泰新能源开发有限公司 精准追日光伏跟踪系统
CN113911272A (zh) * 2020-07-07 2022-01-11 刘勇 浮体部件及浮体阵组
CN112066345B (zh) * 2020-09-21 2022-10-28 浙江三星骋源能源科技有限公司 一种基于led路灯的防风型光伏板
CN114531095B (zh) * 2022-01-31 2022-11-29 江苏中川通大科技有限公司 一种太阳能产业的热镀锌可调节支撑架
CN114843970A (zh) * 2022-05-31 2022-08-02 国家电网有限公司 适用于山区的输电结构
CN114759864B (zh) * 2022-06-16 2022-08-23 山西博科新能源有限公司 一种具有抗风结构的自然能热利用装置
CN115307319B (zh) * 2022-08-11 2023-04-18 海南蓝冠环保节能科技有限公司 一种可调节式太阳能集热器
CN118399858A (zh) * 2024-04-24 2024-07-26 佛山市博蔚金属制品有限公司 一种具有柔性支撑结构的光伏板支架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201601135U (zh) * 2010-02-09 2010-10-06 陈薛邦 太阳能电池板支架可调节支撑机构
CN202042492U (zh) * 2011-03-24 2011-11-16 比亚迪股份有限公司 一种太阳能电池支架
US20140158650A1 (en) * 2012-12-06 2014-06-12 Goal Zero Llc Solar panel positioning system
CN104242800A (zh) * 2014-09-22 2014-12-24 浙江国利英核能源有限公司 柔性光伏支架
CN204156786U (zh) * 2014-10-11 2015-02-11 昊坤能源科技(上海)有限公司 一种倾角可调的光伏支架
CN204271983U (zh) * 2014-11-03 2015-04-15 中节能绿洲(北京)太阳能科技有限公司 高度可调节的光伏支架立柱
CN105245160A (zh) * 2015-10-28 2016-01-13 江苏松立太阳能科技有限公司 一种太阳能分布式电站
CN105515507A (zh) * 2016-01-22 2016-04-20 珠海格力电器股份有限公司 一种光伏支架
CN205545084U (zh) * 2016-01-22 2016-08-31 珠海格力电器股份有限公司 一种光伏支架

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1668538A (en) * 1927-03-02 1928-05-01 Charles D Brandt Radiator cover
US2051420A (en) * 1935-02-11 1936-08-18 Dictaphone Corp Rack
US2624471A (en) * 1946-12-13 1953-01-06 Magor Car Corp Car buffer
US3827663A (en) * 1972-11-08 1974-08-06 Johnson Ind Inc Self-adjusting furniture support
US4151534A (en) * 1977-09-14 1979-04-24 Bond Orville R Antenna telescoping tower
NZ214968A (en) * 1985-02-05 1989-04-26 Alec David Ward Screen retained between spaced apart rails
JP2753609B2 (ja) * 1988-09-26 1998-05-20 シャープ株式会社 太陽電池設置用架台
US5251858A (en) * 1992-05-29 1993-10-12 Ultee Arnoldus J Wobble-resisting furniture
US5657958A (en) * 1995-02-28 1997-08-19 Monroe Clevite Elastomers Division Of The Pullman Company Seat post assembly
DE29605222U1 (de) * 1996-03-22 1996-06-13 Glück, Rainer, 90766 Fürth Haltevorrichtung
US20020084389A1 (en) * 2000-12-01 2002-07-04 Larson John E. Unaligned multiple-column height adjustable pedestals for tables and chairs that tilt and slide
US20040178306A1 (en) * 2003-03-14 2004-09-16 Hallberg Edwin A. Self-stabilizing telescopic leg
DE202004001642U1 (de) 2004-02-03 2004-05-27 Deger, Artur Solaranlagengestell
US7530542B2 (en) * 2006-12-07 2009-05-12 Deere & Company Locking mounting assembly
CN101431304A (zh) 2007-11-07 2009-05-13 林健峯 太阳跟踪系统
CN101619896B (zh) * 2008-07-04 2011-05-18 八阳光电股份有限公司 追日装置
EP2387693B1 (fr) * 2009-01-15 2020-03-04 Thierry Noglotte Dispositif de panneaux solaires
US8707949B2 (en) 2009-08-29 2014-04-29 James Theodore Hoffman Tracking solar panel mount
TW201037849A (en) * 2010-04-16 2010-10-16 Fung Gin Da Energy Science & Technology Co Ltd Electrical energy generation device capable of chasing the sun for focusing light
US8375935B2 (en) * 2010-06-08 2013-02-19 Fung Gin Da Energy Science And Technology Co., Ltd. Water heating apparatus using solar power
US9188714B2 (en) * 2011-02-16 2015-11-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus to control a focal length of a curved reflector in real time
US9146044B2 (en) 2011-05-09 2015-09-29 Anthony Surganov Solar panel system and methods of passive tracking
AU2013263123B2 (en) * 2012-05-16 2017-06-08 Alion Energy, Inc. Rotatable support systems for photovoltaic modules and methods thereof
WO2013171718A2 (pt) * 2012-05-17 2013-11-21 Faculdade De Arquitectura Da Universidade Técnica De Lisboa Sistema periférico de modificação da fachada exterior de um edifício
US9496822B2 (en) 2012-09-24 2016-11-15 Lockheed Martin Corporation Hurricane proof solar tracker
CN203150574U (zh) * 2013-03-14 2013-08-21 山东中鸿新能源科技有限公司 一种用于固定太阳能电池板的柔性装置
JP6070376B2 (ja) 2013-04-03 2017-02-01 住友電気工業株式会社 太陽追尾型太陽光発電システムの制御装置及び太陽追尾型太陽光発電システム
DE102014107701A1 (de) * 2014-06-02 2015-12-03 Lisega SE Teleskopierbare Federstütze
CN104132229B (zh) * 2014-07-30 2016-03-23 江苏福克斯新能源科技有限公司 一种自动调节角度的光伏固定装置
CN204271981U (zh) * 2014-12-04 2015-04-15 常州亿晶光电科技有限公司 光伏组件防开裂装置
KR101552502B1 (ko) * 2015-03-20 2015-09-14 서평전기공업(주) 태양광 발전장치를 위한 제설기능을 갖는 내진장치
CN204832966U (zh) * 2015-07-06 2015-12-02 浙江贝立德能源科技有限公司 一种旋转式太阳能板
US9862581B2 (en) * 2015-09-10 2018-01-09 Bosch Automotive Service Solutions Inc. Adjustable load supporting stand apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201601135U (zh) * 2010-02-09 2010-10-06 陈薛邦 太阳能电池板支架可调节支撑机构
CN202042492U (zh) * 2011-03-24 2011-11-16 比亚迪股份有限公司 一种太阳能电池支架
US20140158650A1 (en) * 2012-12-06 2014-06-12 Goal Zero Llc Solar panel positioning system
CN104242800A (zh) * 2014-09-22 2014-12-24 浙江国利英核能源有限公司 柔性光伏支架
CN204156786U (zh) * 2014-10-11 2015-02-11 昊坤能源科技(上海)有限公司 一种倾角可调的光伏支架
CN204271983U (zh) * 2014-11-03 2015-04-15 中节能绿洲(北京)太阳能科技有限公司 高度可调节的光伏支架立柱
CN105245160A (zh) * 2015-10-28 2016-01-13 江苏松立太阳能科技有限公司 一种太阳能分布式电站
CN105515507A (zh) * 2016-01-22 2016-04-20 珠海格力电器股份有限公司 一种光伏支架
CN205545084U (zh) * 2016-01-22 2016-08-31 珠海格力电器股份有限公司 一种光伏支架

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407484A4 *

Also Published As

Publication number Publication date
EP3407484A1 (en) 2018-11-28
EP3407484A4 (en) 2019-09-18
CN105515507B (zh) 2019-03-22
CA3012274C (en) 2020-06-23
CA3012274A1 (en) 2017-07-27
AU2017209348A1 (en) 2018-08-16
AU2017209348B2 (en) 2019-11-14
US20190036476A1 (en) 2019-01-31
US11101767B2 (en) 2021-08-24
CN105515507A (zh) 2016-04-20
EP3407484B1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2017125071A1 (zh) 一种光伏支架
KR101837949B1 (ko) 태양광 패널 지지조립체
WO2021218051A1 (zh) 太阳能发电组件、太阳能自动跟随系统及智慧路灯
KR101322965B1 (ko) 태양집광판의 각도조절장치
CN206790402U (zh) 一种太阳能发电墙板
KR101346684B1 (ko) 태양광 발전용 추적장치
CN111010070A (zh) 一种高效的太阳能用支撑架
TWI589819B (zh) Solar power generation method and device with non-same chasing day stage
CN101859015B (zh) 一种单元反射镜的调形装置及其调整方法
CN202424582U (zh) 一种太阳能光伏电池
KR20190050044A (ko) 가동형 태양광패널 시스템
CN202502411U (zh) 太阳能三轴并联跟踪器
CN205545084U (zh) 一种光伏支架
CN102638194A (zh) 一种太阳能三轴并联跟踪器
KR101947993B1 (ko) 계절에 따른 태양광 입사각 변화 추적이 가능한 태양전지패널 조정장치
KR20200092753A (ko) 가변형 태양광 모듈지지 수상태양광 발전장치
CN114374358A (zh) 一种可调节角度的太阳能电板机构
KR20230081236A (ko) 건물일체형 태양광 모듈 고정장치
KR20220163681A (ko) 펜스형 태양광 발전 구조물
CN202363479U (zh) 可自由设定倾角的固定式太阳能接收板卡式安装支架
CN109510572A (zh) 高效太阳能光伏装置
CN111987984A (zh) 一种可调节朝向和倾角的太阳能电池板组件
CN110611479A (zh) 一种太阳能板可调节固定架
CN220475692U (zh) 一种光伏跟踪支架
KR20190128537A (ko) 각도조절수단이 구비된 태양광 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3012274

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017209348

Country of ref document: AU

Date of ref document: 20170120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017741102

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741102

Country of ref document: EP

Effective date: 20180822