WO2017125068A1 - 热断路器 - Google Patents

热断路器 Download PDF

Info

Publication number
WO2017125068A1
WO2017125068A1 PCT/CN2017/071897 CN2017071897W WO2017125068A1 WO 2017125068 A1 WO2017125068 A1 WO 2017125068A1 CN 2017071897 W CN2017071897 W CN 2017071897W WO 2017125068 A1 WO2017125068 A1 WO 2017125068A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
metal piece
thermal circuit
temperature
curable material
Prior art date
Application number
PCT/CN2017/071897
Other languages
English (en)
French (fr)
Inventor
潘杰兵
陈建华
胡慧
Original Assignee
瑞侃电子(上海)有限公司
泰科电子公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞侃电子(上海)有限公司, 泰科电子公司 filed Critical 瑞侃电子(上海)有限公司
Publication of WO2017125068A1 publication Critical patent/WO2017125068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/02Housings; Casings; Bases; Mountings
    • H01H71/0207Mounting or assembling the different parts of the circuit breaker
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/08Terminals; Connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/16Electrothermal mechanisms with bimetal element

Definitions

  • the present invention relates to a resettable thermal circuit breaker, and more particularly to a resettable thermal circuit breaker suitable for interconnecting battery packs.
  • thermal protection devices such as a Temporary Cut Off Breaker
  • Temporary Cut Off Breaker are critical to the safe operation of the battery pack.
  • thermal circuit breakers are connected in series with the connection circuit between the battery packs to achieve interconnection between the battery packs.
  • the thermal breaker automatically triggers to disconnect the battery pack, thereby overheating the battery pack. Flow and overvoltage protection.
  • the insulating tape In the interconnection area of the battery pack, in order to prevent short circuit or overlap between the electrode pins of the thermal circuit breaker, in the prior art, the insulating tape is generally wound on the area of the electrode lead of the thermal circuit breaker where insulation is required, thereby Achieve insulation protection for areas that require insulation. Generally, the insulating tape can only be wound manually, which makes the winding precision difficult to control, and the insulating tape is prone to falling off and separating. Once the insulating tape is detached or separated, the thermal circuit breaker may be short-circuited, and the protection function of the battery pack may be lost, which seriously affects The battery pack works safely. In addition, manual winding of insulation tape increases the cost of manufacturing and maintenance of thermal circuit breakers.
  • a thermal circuit breaker comprising: a bimetal switch; an insulative package, the bimetal switch being encapsulated in the insulative package; and a pair of electrode pins electrically connected to Both ends of the bimetal switch.
  • An insulating coating is formed on at least a portion of the pair of electrode leads extending from the insulating package; and the insulating coating is made of a curable material having a curing temperature lower than a trigger temperature of the thermal breaker production.
  • the curable material has a curing temperature of not higher than 60 degrees Celsius.
  • the curable material has a curing time of no more than 30 minutes at a temperature below 60 degrees Celsius.
  • the curable material can withstand a DC test voltage of not less than 500V.
  • the curable material has a leakage current of less than 0.1 mA at a DC test voltage of 500 V or more.
  • the curable material comprises a resin and a curing agent mixed in the resin, and the resin is crosslinked with the curing agent after the curable material is cured .
  • the bimetal switch includes a fixed metal piece and a movable metal piece; when the temperature on the thermal circuit breaker reaches a trigger temperature of the thermal circuit breaker, The movable metal piece is thermally deformed and separated from the fixed metal piece such that the thermal circuit breaker is in an open state; when the temperature on the thermal circuit breaker is lower than a trigger temperature of the thermal circuit breaker, The movable metal piece is in contact with the fixed metal piece such that the thermal circuit breaker is in an on state.
  • the thermal circuit breaker further includes a PTC device encapsulated in the insulating package and connected in parallel with the bimetal switch; After the movable metal piece is separated from the fixed metal piece, the PTC device maintains the temperature of the thermal circuit breaker above the trigger temperature to maintain the thermal circuit breaker in an open state.
  • each of the pair of electrode pins includes: a first metal piece, one end of which is electrically connected to the bimetal switch, and the other end of which extends from the insulating package And a second metal piece soldered on the other end of the first metal piece and extending from the other end of the first metal piece, the second metal piece having better corrosion resistance than the first metal
  • the sheet is corrosion resistant and all portions of the first sheet of metal that are outside the insulating package are wrapped by the insulating coating.
  • a method of manufacturing a thermal circuit breaker including a bimetal switch, an insulating package encapsulating the bimetal switch, and an electrical connection to the bimetal switch, respectively is provided A pair of electrode pins at both ends, the method comprising the steps of:
  • the insulating coating is made of a curable material having a curing temperature lower than a trigger temperature of the thermal circuit breaker.
  • step S100 includes:
  • the curing temperature of the curable material is not higher than 60 degrees Celsius, and in the foregoing step S120, spraying on the pair of electrodes at a temperature not higher than 60 degrees Celsius The curable material on at least a portion of the pins is cured.
  • the curable material has a curing time of no more than 30 minutes at a temperature below 60 degrees Celsius.
  • the curable material can withstand a DC test voltage of not less than 500V.
  • the curable material has a leakage current of less than 0.1 mA at a DC test voltage of 500 V or more.
  • the curable material comprises a resin and a curing agent mixed in the resin, and the resin is crosslinked with the curing agent after the curable material is cured .
  • the bimetal switch includes a fixed metal piece and a movable metal piece; when the temperature on the thermal circuit breaker reaches a trigger temperature of the thermal circuit breaker The movable metal piece is thermally deformed and separated from the fixed metal piece such that the thermal circuit breaker is in an open state; when the temperature on the thermal circuit breaker is lower than a trigger temperature of the thermal circuit breaker The movable metal piece is in contact with the fixed metal piece such that the thermal circuit breaker is in an on state.
  • the thermal circuit breaker further includes a PTC device encapsulated in the insulating package and connected in parallel with the bimetal switch; After the movable metal piece is separated from the fixed metal piece, the PTC device maintains the temperature of the thermal circuit breaker above the trigger temperature to maintain the thermal circuit breaker in an open state.
  • each of the pair of electrode pins includes: a first metal piece, one end of which is electrically connected to the bimetal switch, and the other end of which extends from the insulating package And a second metal piece soldered on the other end of the first metal piece and extending from the other end of the first metal piece, the second metal piece having better corrosion resistance than the first metal
  • the sheet is corrosion resistant and all portions of the first sheet of metal that are outside the insulating package are wrapped by the insulating coating.
  • the insulating coating is accurately formed on the region of the electrode lead of the thermal breaker that requires insulation and is reliably coupled to the electrode lead, so that the electrode of the thermal protection device can be reliably prevented
  • a short circuit between the pins improves the safety of use.
  • the cost of the insulating coating is lower than that of a conventional insulating tape, and therefore, the manufacturing cost of the thermal protection device is lowered.
  • the insulating coating can be efficiently formed using an automated spraying apparatus, thereby improving manufacturing efficiency.
  • FIG. 1 shows a plan view of a thermal circuit breaker in accordance with an exemplary embodiment of the present invention, wherein an insulating coating has not been applied to a pair of electrode pins of a thermal circuit breaker;
  • FIG. 2 shows a plan view of a thermal circuit breaker in which an insulating coating has been applied to a pair of electrode pins of a thermal circuit breaker, in accordance with an exemplary embodiment of the present invention
  • Figure 3a shows a circuit schematic of a thermal circuit breaker in which the bimetal switch is in a closed state, in accordance with an exemplary embodiment of the present invention
  • Figure 3b shows a circuit schematic of a thermal circuit breaker in which the bimetal switch is in a split state, in accordance with an exemplary embodiment of the present invention.
  • a thermal circuit breaker comprising: a bimetal switch; an insulating package, the bimetal switch is encapsulated in the insulating package; and a pair of electrode pins respectively Connected to both ends of the bimetal switch.
  • An insulating coating is formed on at least a portion of the pair of electrode leads extending from the insulating package; and the insulating coating is made of a curable material having a curing temperature lower than a trigger temperature of the thermal breaker production.
  • FIG. 1 shows a schematic plan view of a thermal circuit breaker 100 in accordance with an exemplary embodiment of the present invention, wherein the insulating coating 140 has not been applied to a pair of electrode pins 110, 120 of the thermal circuit breaker 100;
  • Figure 3a shows a circuit schematic of a thermal circuit breaker 100 in accordance with an exemplary embodiment of the present invention, wherein The bimetal switches 101, 102 are in a closed state; and
  • FIG. 3b shows a circuit schematic of the thermal circuit breaker 100 in accordance with an exemplary embodiment of the present invention, wherein the bimetal switches 101, 102 are in a separated state.
  • thermal circuit breaker 100 primarily includes a bimetal switch 101, 102, an insulative package 130 and a pair of electrode pins 110, 120.
  • the bimetal switches 101, 102 are encapsulated in an insulative package 130.
  • a pair of electrode pins 110, 120 are electrically connected to both ends of the bimetal switches 101, 102, respectively, and extend to the outside of the insulating package 130.
  • an insulating coating is formed on at least a portion (a region requiring insulation) of a pair of electrode leads 110, 120 extending from the insulating package 130. 140.
  • the insulating coating 140 is wrapped over the area of the pair of electrode leads 110, 120 that is to be insulated.
  • the bimetal switches 101, 102 of the thermal circuit breaker 100 are sensitive to temperature, if the thermal circuit breaker 100 is subjected to high temperature effects much higher than its trigger temperature, the stability and long-term reliability of the thermal circuit breaker 100 are lowered. Sex.
  • the aforementioned insulating coating 140 is made of a curable material having a curing temperature lower than the trigger temperature of the thermal circuit breaker. In this way, it is possible to prevent the thermal circuit breaker 100 from being subjected to a high temperature influence much higher than its trigger temperature, thereby ensuring the stability and long-term reliability of the thermal circuit breaker 100.
  • the curable material has a curing temperature of no greater than 60 degrees Celsius, preferably no greater than 45 degrees Celsius, and more preferably no greater than 30 degrees Celsius.
  • the curing time of the aforementioned curable material at a temperature below 60 degrees Celsius is no more than 30 minutes, preferably no more than 20 minutes, more preferably no more than 10 minutes.
  • the aforementioned curable material can withstand a DC test voltage of not less than 500V, preferably not less than 800V, more preferably not less than 1000V.
  • the aforementioned curable material has a leakage current of less than 0.1 mA at a DC test voltage of 500 V or more.
  • the aforementioned curable material comprises a resin and a curing agent mixed in the resin, and after the curable material is cured, the resin is crosslinked with the curing agent.
  • the aforementioned curable material has good flow properties prior to being cured and can flow to the sides of the electrode leads.
  • the bimetal switches 101, 102 comprise a fixed metal sheet 101 and a movable metal sheet 102.
  • the movable metal piece 102 is thermally deformed and separated from the fixed metal piece 101, so that the thermal circuit breaker is in an open state.
  • the movable metal piece 102 is in contact with the fixed metal piece 101, so that the thermal circuit breaker is in an on state.
  • the aforementioned thermal circuit breaker further includes a PTC (Positive Temperature Coefficient) device 103, which is encapsulated in an insulating package 130. Medium and in parallel with the bimetal switches 101, 102.
  • PTC Positive Temperature Coefficient
  • each of the pair of electrode pins 110, 120 includes a first metal piece 111, 121 and a second metal piece 112, 122.
  • One end (internal end) of the first metal piece 111, 121 is electrically connected to the bimetal switches 101, 102, and the other end (external end) is extended from the insulating package 130.
  • the second metal pieces 112, 122 are welded to the other end (outer end) of the first metal pieces 111, 121 and extend from the other end of the first metal pieces 111, 121.
  • the corrosion resistance of the second metal sheets 112, 122 is better than that of the first metal sheets 111, 121, and the first metal sheet 111, All portions of 121 that are outside of insulating package 130 are wrapped by insulating coating 140.
  • the first metal sheets 111, 121 which are susceptible to corrosion are wrapped in the insulating coating 140 to protect the first metal sheets 111, 121.
  • the first metal sheets 111, 121 may be made of copper, and the second metal sheets 112, 122 may be made of nickel.
  • the method mainly comprises the following steps:
  • the insulating coating 140 is made of a curable material having a curing temperature lower than a trigger temperature of the thermal circuit breaker.
  • step S100 includes:
  • S120 Curing the curable material sprayed on at least a portion of the pair of electrode leads 110, 120 to form an insulating coating 140.
  • the curable material has a curing temperature of no greater than 60 degrees Celsius, preferably no greater than 45 degrees Celsius, and more preferably no greater than 30 degrees Celsius.
  • step S120 the curable material sprayed on at least a portion of the pair of electrode pins 110, 120 is cured at a temperature not higher than 60 degrees Celsius.
  • the curing time of the aforementioned curable material at a temperature below 60 degrees Celsius is no more than 30 minutes, preferably no more than 20 minutes, more preferably no more than 10 minutes.
  • the aforementioned curable material can withstand a DC test voltage of not less than 500V, preferably not less than 800V, more preferably not less than 1000V.
  • the aforementioned curable material has a leakage current of less than 0.1 mA at a DC test voltage of 500 V or more.
  • the aforementioned curable material comprises a resin and a curing agent mixed in the resin, and after the curable material is cured, the resin is crosslinked with the curing agent.
  • the aforementioned curable material has good flow properties prior to being cured and can flow to the sides of the electrode leads.

Landscapes

  • Thermally Actuated Switches (AREA)

Abstract

一种热断路器,包括:一个双金属开关(101、102);绝缘封装(130),双金属开关被包封在绝缘封装中;和一对电极引脚(110、120),分别电连接至双金属开关的两端。在一对电极引脚的从绝缘封装中延伸出的至少一部分上形成有绝缘涂层(140);并且绝缘涂层由固化温度低于热断路器的触发温度的可固化材料制成。绝缘涂层精确地形成在电极引脚上的需要绝缘的区域上并与电极引脚可靠结合,从而能够可靠地防止热保护器件的电极引脚之间出现短路,提高了使用安全性。此外,该绝缘涂层的成本低于常用的绝缘胶带,因此,降低了热保护器件的制造成本。此外,可以采用自动化喷涂设备高效地形成该绝缘涂层,从而提高了制造效率。

Description

热断路器 技术领域
本发明涉及一种可复位的热断路器,尤其涉及一种适于互联电池组的可复位的热断路器。
背景技术
在现有技术中,热保护器件,例如,可复位的热断路器(Temperature Cut Off Breaker),对于电池组安全工作至关重要。通常,热断路器串联在电池组之间的连接电路上,以实现电池组之间的互联。当电池组出现故障时,例如,当电池组出现过热、过流或过压时,热断路器就会自动触发,以断开电池组之间的连接电路,从而实现对电池组的过热、过流和过压保护。
在电池组的互联区域,为了防止热断路器的电极引脚之间出现短路或搭接,在现有技术中,一般在热断路器的电极引脚的需要绝缘的区域上缠绕绝缘胶带,从而实现对需要绝缘的区域的绝缘保护。通常,只能手动缠绕绝缘胶带,这导致缠绕精度难以控制,并且绝缘胶带容易出现脱落和分离,一旦绝缘胶带脱落或分离,就可能造成热断路器短路,丧失对电池组的保护功能,严重影响电池组的安全工作。此外,手动缠绕绝缘胶带还会增加热断路器的制造和维护成本。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本发明的一个方面,提供一种热断路器,包括:一个双金属开关;绝缘封装,所述双金属开关被包封在所述绝缘封装中;和一对电极引脚,分别电连接至所述双金属开关的两端。在所述一对电极引脚的从所述绝缘封装中延伸出的至少一部分上形成有绝缘涂层;并且所述绝缘涂层由固化温度低于所述热断路器的触发温度的可固化材料制成。
根据本发明的一个实例性的实施例,所述可固化材料的固化温度不高于60摄氏度。
根据本发明的另一个实例性的实施例,所述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟。
根据本发明的另一个实例性的实施例,所述可固化材料能够承受的直流测试电压不低于500V。
根据本发明的另一个实例性的实施例,所述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
根据本发明的另一个实例性的实施例,所述可固化材料包含树脂和混合在所述树脂中的固化剂,在所述可固化材料被固化之后,所述树脂与所述固化剂交联。
根据本发明的另一个实例性的实施例,所述双金属开关包括一个固定金属片和一个可动金属片;当所述热断路器上的温度达到所述热断路器的触发温度时,所述可动金属片热变形并与所述固定金属片分离,使得所述热断路器处于断开状态;当所述热断路器上的温度低于所述热断路器的触发温度时,所述可动金属片与所述固定金属片接触,使得所述热断路器处于接通状态。
根据本发明的另一个实例性的实施例,所述热断路器还包括一个PTC器件,所述PTC器件被包封在所述绝缘封装中,并与所述双金属开关并联;并且在所述可动金属片与所述固定金属片分离之后,所述PTC器件将所述热断路器的温度保持在所述触发温度以上,以便使所述热断路器保持在断开状态。
根据本发明的另一个实例性的实施例,所述一对电极引脚中的每个包括:第一金属片,一端电连接至所述双金属开关,另一端从所述绝缘封装中延伸出;和第二金属片,焊接在所述第一金属片的另一端上,并从所述第一金属片的另一端延伸,所述第二金属片的抗腐蚀性能优于所述第一金属片的抗腐蚀性能,并且所述第一金属片的位于所述绝缘封装之外的所有部分被所述绝缘涂层包裹住。
根据本发明的另一个方面,提供一种制造热断路器的方法,所述热断路器包括一个双金属开关、包封所述双金属开关的绝缘封装和分别电连接至所述双金属开关的两端的一对电极引脚,所述方法包括以下步骤:
S100:在所述一对电极引脚的从所述绝缘封装中延伸出的至少一部分上形成绝缘涂层,
其中,所述绝缘涂层由固化温度低于所述热断路器的触发温度的可固化材料制成。
根据本发明的一个实例性的实施例,前述步骤S100包括:
S110:将液态的可固化材料喷涂到所述一对电极引脚的所述至少一部分上;和
S120:对喷涂在所述一对电极引脚的所述至少一部分上的可固化材料进行固化,以形成所述绝缘涂层。
根据本发明的另一个实例性的实施例,所述可固化材料的固化温度不高于60摄氏度,并且在前述步骤S120中,在不高于60摄氏度的温度下对喷涂在所述一对电极引脚的所述至少一部分上的可固化材料进行固化。
根据本发明的另一个实例性的实施例,所述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟。
根据本发明的另一个实例性的实施例,所述可固化材料能够承受的直流测试电压不低于500V。
根据本发明的另一个实例性的实施例,所述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
根据本发明的另一个实例性的实施例,所述可固化材料包含树脂和混合在所述树脂中的固化剂,在所述可固化材料被固化之后,所述树脂与所述固化剂交联。
根据本发明的另一个实例性的实施例,所述双金属开关包括一个固定金属片和一个可动金属片;当所述热断路器上的温度达到所述热断路器的触发温度 时,所述可动金属片热变形并与所述固定金属片分离,使得所述热断路器处于断开状态;当所述热断路器上的温度低于所述热断路器的触发温度时,所述可动金属片与所述固定金属片接触,使得所述热断路器处于接通状态。
根据本发明的另一个实例性的实施例,所述热断路器还包括一个PTC器件,所述PTC器件被包封在所述绝缘封装中,并与所述双金属开关并联;并且在所述可动金属片与所述固定金属片分离之后,所述PTC器件将所述热断路器的温度保持在所述触发温度以上,以便使所述热断路器保持在断开状态。
根据本发明的另一个实例性的实施例,所述一对电极引脚中的每个包括:第一金属片,一端电连接至所述双金属开关,另一端从所述绝缘封装中延伸出;和第二金属片,焊接在所述第一金属片的另一端上,并从所述第一金属片的另一端延伸,所述第二金属片的抗腐蚀性能优于所述第一金属片的抗腐蚀性能,并且所述第一金属片的位于所述绝缘封装之外的所有部分被所述绝缘涂层包裹住。
在根据本发明的前述各个实施例中,绝缘涂层精确地形成在热断路器的电极引脚上的需要绝缘的区域上并与电极引脚可靠结合,从而能够可靠地防止热保护器件的电极引脚之间出现短路,提高了使用安全性。
此外,在根据本发明的前述各个实施例中,该绝缘涂层的成本低于常用的绝缘胶带,因此,降低了热保护器件的制造成本。
此外,在本发明的一些实施例中,可以采用自动化喷涂设备高效地形成该绝缘涂层,从而提高了制造效率。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的一个实例性的实施例的热断路器的平面示意图,其中绝缘涂层还没有涂覆到热断路器的一对电极引脚上;
图2显示根据本发明的一个实例性的实施例的热断路器的平面示意图,其中绝缘涂层已经涂覆到热断路器的一对电极引脚上;
图3a显示根据本发明的一个实例性的实施例的热断路器的电路原理图,其中,双金属开关处于闭合状态;和
图3b显示根据本发明的一个实例性的实施例的热断路器的电路原理图,其中,双金属开关处于分开状态。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个总体技术构思,提供一种热断路器,包括:一个双金属开关;绝缘封装,所述双金属开关被包封在所述绝缘封装中;和一对电极引脚,分别电连接至所述双金属开关的两端。在所述一对电极引脚的从所述绝缘封装中延伸出的至少一部分上形成有绝缘涂层;并且所述绝缘涂层由固化温度低于所述热断路器的触发温度的可固化材料制成。
图1显示根据本发明的一个实例性的实施例的热断路器100的平面示意图,其中绝缘涂层140还没有涂覆到热断路器100的一对电极引脚110、120上;图2显示根据本发明的一个实例性的实施例的热断路器100的平面示意图,其中绝缘涂层140已经涂覆到热断路器100的一对电极引脚110、120上。图3a显示根据本发明的一个实例性的实施例的热断路器100的电路原理图,其中, 双金属开关101、102处于闭合状态;和图3b显示根据本发明的一个实例性的实施例的热断路器100的电路原理图,其中,双金属开关101、102处于分开状态。
如图1、图2、图3a和3b所示,在图示的实施例中,热断路器100主要包括一个双金属开关101、102,绝缘封装130和一对电极引脚110、120。双金属开关101、102被包封在绝缘封装130中。一对电极引脚110、120分别电连接至双金属开关101、102的两端并延伸至绝缘封装130的外部。
如图1和图2所示,在本发明的一个实施例中,在一对电极引脚110、120的从绝缘封装130中延伸出的至少一部分(需要绝缘的区域)上形成有绝缘涂层140。该绝缘涂层140包裹在一对电极引脚110、120的需要绝缘的区域上。
由于热断路器100的双金属开关101、102对温度很敏感,因此,如果热断路器100遭受远远高于其触发温度的高温影响时,就会降低热断路器100的稳定性和长期可靠性。
为了不影响热断路器100的稳定性和长期可靠性,在本发明的一个实施例中,前述绝缘涂层140由固化温度低于热断路器的触发温度的可固化材料制成。这样,就能够防止热断路器100遭受远远高于其触发温度的高温影响,从而保证了热断路器100的稳定性和长期可靠性。
在本发明的一个实施例中,前述可固化材料的固化温度不高于60摄氏度,优选地,不高于45摄氏度,更优选地,不高于30摄氏度。
在本发明的一个实施例中,前述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟,优选地,不大于20分钟,更优选地,不大于10分钟。
在本发明的一个实施例中,前述可固化材料能够承受的直流测试电压不低于500V,优选地,不低于800V,更优选地,不低于1000V。
在本发明的一个实施例中,前述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
在本发明的一个实施例中,前述可固化材料包含树脂和混合在树脂中的固化剂,在可固化材料被固化之后,树脂与固化剂交联。
在本发明的一个实施例中,前述可固化材料在被固化之前,具有良好的流动性,可以流动到电极引脚的侧边上。
如图1、图2、图3a和3b所示,在本发明的一个实施例中,双金属开关101、102包括一个固定金属片101和一个可动金属片102。
如图3b所示,当热断路器上的温度达到热断路器的触发温度时,可动金属片102热变形并与固定金属片101分离,使得热断路器处于断开状态。如图3a所示,当热断路器上的温度低于热断路器的触发温度时,可动金属片102与固定金属片101接触,使得热断路器处于接通状态。
如图1、图2、图3a和3b所示,在本发明的一个实施例中,前述热断路器还包括一个PTC(Positive Temperature Coefficient)器件103,该PTC器件103被包封在绝缘封装130中,并与双金属开关101、102并联。
如图3b所示,在可动金属片102与固定金属片101分离之后,电流流经PTC器件103,使得PTC器件103的温度升高,这样,PTC器件103就可以将热断路器的温度保持在触发温度以上,以便使热断路器保持在断开状态。
如图1、图2、图3a和3b所示,在本发明的一个实施例中,一对电极引脚110、120中的每个包括第一金属片111、121和第二金属片112、122。第一金属片111、121的一端(内部端)电连接至双金属开关101、102,另一端(外部端)从绝缘封装130中延伸出。第二金属片112、122焊接在第一金属片111、121的另一端(外部端)上,并从第一金属片111、121的另一端延伸。
在本发明的一个实施例中,如图1和图2所示,第二金属片112、122的抗腐蚀性能优于第一金属片111、121的抗腐蚀性能,并且第一金属片111、121的位于绝缘封装130之外的所有部分被绝缘涂层140包裹住。这样就将易于受到腐蚀的第一金属片111、121包裹在绝缘涂层140中,对第一金属片111、121起到保护作用。
在本发明的一个实施例中,前述第一金属片111、121可以由铜制成,前述第二金属片112、122可以由镍制成。
下面将参照附图来详细说明一种制造前述热断路器的方法,该方法主要包括以下步骤:
S100:在一对电极引脚110、120的从绝缘封装130中延伸出的至少一部分上形成绝缘涂层140,
其中,绝缘涂层140由固化温度低于热断路器的触发温度的可固化材料制成。
在本发明的一个实施例中,前述步骤S100包括:
S110:将液态的可固化材料喷涂到一对电极引脚110、120的至少一部分上;和
S120:对喷涂在一对电极引脚110、120的至少一部分上的可固化材料进行固化,以形成绝缘涂层140。
在本发明的一个实施例中,前述可固化材料的固化温度不高于60摄氏度,优选地,不高于45摄氏度,更优选地,不高于30摄氏度。
在前述步骤S120中,在不高于60摄氏度的温度下对喷涂在一对电极引脚110、120的至少一部分上的可固化材料进行固化。
在本发明的一个实施例中,前述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟,优选地,不大于20分钟,更优选地,不大于10分钟。
在本发明的一个实施例中,前述可固化材料能够承受的直流测试电压不低于500V,优选地,不低于800V,更优选地,不低于1000V。
在本发明的一个实施例中,前述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
在本发明的一个实施例中,前述可固化材料包含树脂和混合在树脂中的固化剂,在可固化材料被固化之后,树脂与固化剂交联。
在本发明的一个实施例中,前述可固化材料在被固化之前,具有良好的流动性,可以流动到电极引脚的侧边上。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (19)

  1. 一种热断路器,包括:
    一个双金属开关(101、102);
    绝缘封装(130),所述双金属开关(101、102)被包封在所述绝缘封装(130)中;和
    一对电极引脚(110、120),分别电连接至所述双金属开关(101、102)的两端,
    其特征在于:
    在所述一对电极引脚(110、120)的从所述绝缘封装(130)中延伸出的至少一部分上形成有绝缘涂层(140);并且
    所述绝缘涂层(140)由固化温度低于所述热断路器的触发温度的可固化材料制成。
  2. 根据权利要求1所述的热断路器,其特征在于:所述可固化材料的固化温度不高于60摄氏度。
  3. 根据权利要求2所述的热断路器,其特征在于:所述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟。
  4. 根据权利要求1所述的热断路器,其特征在于:所述可固化材料能够承受的直流测试电压不低于500V。
  5. 根据权利要求4所述的热断路器,其特征在于:所述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
  6. 根据权利要求1所述的热断路器,其特征在于:
    所述可固化材料包含树脂和混合在所述树脂中的固化剂,在所述可固化材料被固化之后,所述树脂与所述固化剂交联。
  7. 根据权利要求1所述的热断路器,其特征在于:
    所述双金属开关(101、102)包括一个固定金属片(101)和一个可动金属片(102);
    当所述热断路器上的温度达到所述热断路器的触发温度时,所述可动金属片(102)热变形并与所述固定金属片(101)分离,使得所述热断路器处于断开状态;
    当所述热断路器上的温度低于所述热断路器的触发温度时,所述可动金属片(102)与所述固定金属片(101)接触,使得所述热断路器处于接通状态。
  8. 根据权利要求7所述的热断路器,其特征在于:
    所述热断路器还包括一个PTC器件(103),所述PTC器件(103)被包封在所述绝缘封装(130)中,并与所述双金属开关(101、102)并联;并且
    在所述可动金属片(102)与所述固定金属片(101)分离之后,所述PTC器件(103)将所述热断路器的温度保持在所述触发温度以上,以便使所述热断路器保持在断开状态。
  9. 根据权利要求1所述的热断路器,其特征在于:
    所述一对电极引脚(110、120)中的每个包括:
    第一金属片(111、121),一端电连接至所述双金属开关(101、102),另一端从所述绝缘封装(130)中延伸出;和
    第二金属片(112、122),焊接在所述第一金属片(111、121)的另一端上,并从所述第一金属片(111、121)的另一端延伸,
    所述第二金属片(112、122)的抗腐蚀性能优于所述第一金属片(111、121)的抗腐蚀性能,并且
    所述第一金属片(111、121)的位于所述绝缘封装(130)之外的所有部分被所述绝缘涂层(140)包裹住。
  10. 一种制造热断路器的方法,
    所述热断路器包括一个双金属开关(101、102)、包封所述双金属开关(101、102)的绝缘封装(130)和分别电连接至所述双金属开关(101、102)的两端的一对电极引脚(110、120),
    其特征在于,所述方法包括以下步骤:
    S100:在所述一对电极引脚(110、120)的从所述绝缘封装(130)中延伸出的至少一部分上形成绝缘涂层(140),
    其中,所述绝缘涂层(140)由固化温度低于所述热断路器的触发温度的可固化材料制成。
  11. 根据权利要求10所述的方法,其特征在于,所述步骤S100包括:
    S110:将液态的可固化材料喷涂到所述一对电极引脚(110、120)的所述至少一部分上;和
    S120:对喷涂在所述一对电极引脚(110、120)的所述至少一部分上的可固化材料进行固化,以形成所述绝缘涂层(140)。
  12. 根据权利要求11所述的方法,其特征在于:所述可固化材料的固化温度不高于60摄氏度,并且在前述步骤S120中,在不高于60摄氏度的温度下对喷涂在所述一对电极引脚(110、120)的所述至少一部分上的可固化材料进行固化。
  13. 根据权利要求12所述的方法,其特征在于:所述可固化材料在60摄氏度以下的温度下的固化时间不大于30分钟。
  14. 根据权利要求11所述的方法,其特征在于:所述可固化材料能够承受的直流测试电压不低于500V。
  15. 根据权利要求14所述的方法,其特征在于:所述可固化材料在500V以上的直流测试电压下的漏电流小于0.1mA。
  16. 根据权利要求11所述的方法,其特征在于:
    所述可固化材料包含树脂和混合在所述树脂中的固化剂,在所述可固化材料被固化之后,所述树脂与所述固化剂交联。
  17. 根据权利要求11所述的方法,其特征在于:
    所述双金属开关(101、102)包括一个固定金属片(101)和一个可动金属片(102);
    当所述热断路器上的温度达到所述热断路器的触发温度时,所述可动金属片(102)热变形并与所述固定金属片(101)分离,使得所述热断路器处于断开状态;
    当所述热断路器上的温度低于所述热断路器的触发温度时,所述可动金属片(102)与所述固定金属片(101)接触,使得所述热断路器处于接通状态。
  18. 根据权利要求17所述的方法,其特征在于:
    所述热断路器还包括一个PTC器件(103),所述PTC器件(103)被包封在所述绝缘封装(130)中,并与所述双金属开关(101、102)并联;并且
    在所述可动金属片(102)与所述固定金属片(101)分离之后,所述PTC器件(103)将所述热断路器的温度保持在所述触发温度以上,以便使所述热断路器保持在断开状态。
  19. 根据权利要求11所述的方法,其特征在于:
    所述一对电极引脚(110、120)中的每个包括:
    第一金属片(111、121),一端电连接至所述双金属开关(101、102),另一端从所述绝缘封装(130)中延伸出;和
    第二金属片(112、122),焊接在所述第一金属片(111、121)的另一端上,并从所述第一金属片(111、121)的另一端延伸,
    所述第二金属片(112、122)的抗腐蚀性能优于所述第一金属片(111、121)的抗腐蚀性能,并且
    所述第一金属片(111、121)的位于所述绝缘封装(130)之外的所有部分被所述绝缘涂层(140)包裹住。
PCT/CN2017/071897 2016-01-21 2017-01-20 热断路器 WO2017125068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610039726.5A CN106992103A (zh) 2016-01-21 2016-01-21 热断路器
CN201610039726.5 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017125068A1 true WO2017125068A1 (zh) 2017-07-27

Family

ID=59361449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071897 WO2017125068A1 (zh) 2016-01-21 2017-01-20 热断路器

Country Status (2)

Country Link
CN (1) CN106992103A (zh)
WO (1) WO2017125068A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607627A (zh) * 2003-10-15 2005-04-20 阿尔卑斯电气株式会社 热动开关及其制造方法
CN203859064U (zh) * 2014-05-23 2014-10-01 宁波生方美丽华电器有限公司 热敏开关

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260220A (ja) * 1998-03-13 1999-09-24 Uchiya Thermostat Kk サーマルプロテクタ
CN201490127U (zh) * 2008-11-17 2010-05-26 邬若军 一种新型过流过热保护器
CN101740399A (zh) * 2008-11-25 2010-06-16 三星电子株式会社 一种在封装件中的金属导线上部分覆盖绝缘层的方法
JP5824210B2 (ja) * 2010-12-16 2015-11-25 矢崎総業株式会社 ワイヤハーネスの防液構造
CN202025689U (zh) * 2011-05-13 2011-11-02 朱天兵 复合型过流、过热保护器
CN202758812U (zh) * 2012-09-11 2013-02-27 常州市常宏同力电器有限公司 一种电流温度双重保护器
CN103346533A (zh) * 2013-06-25 2013-10-09 冯锐 一种具有保护功能的电路结构
CN103617928A (zh) * 2013-12-19 2014-03-05 上海长园维安电子线路保护有限公司 一种薄型电路保护器件
CN104064414A (zh) * 2014-06-03 2014-09-24 东莞市凯恩电子科技有限公司 超温过载瞬间突跳的负载保护装置
CN204885059U (zh) * 2015-08-17 2015-12-16 王小春 一种断路器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607627A (zh) * 2003-10-15 2005-04-20 阿尔卑斯电气株式会社 热动开关及其制造方法
CN203859064U (zh) * 2014-05-23 2014-10-01 宁波生方美丽华电器有限公司 热敏开关

Also Published As

Publication number Publication date
CN106992103A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
KR101389709B1 (ko) 과전류 차단 및 서지 흡수 기능을 갖는 복합 방호부품
US9530545B2 (en) Device comprising a thermal fuse and a resistor
EP1150307B1 (en) A thermally protected metal oxide varistor
EP2660828B1 (en) Apparatus comprising thermal fuse and resistor
US7741946B2 (en) Metal oxide varistor with heat protection
US20110279218A1 (en) Double wound fusible element and associated fuse
CN201057626Y (zh) 半导体器件过热保护电路
US8654497B2 (en) Resistor with thermal element
TWI584308B (zh) 過電流保護元件
US20120067708A1 (en) Switch module
JP2010211928A (ja) 遮断板付spd
JP5256304B2 (ja) 新型の過熱保護式電圧依存性抵抗器
US20180190414A1 (en) Varistor with an isolating arrester
US20170222426A1 (en) Surge protection device with an independent chamber comprising a fuse for overcurrent protection
CN110299272A (zh) 一种具有灭弧介质的温度保险丝
CN208173540U (zh) 一种具有灭弧介质的温度保险丝
WO2017125068A1 (zh) 热断路器
CN102522736A (zh) 双热敏电阻自保护型过压过流保护器件
CN102403705A (zh) 热敏电阻型过流过压保护器件
CN211320041U (zh) 一种基于智能ptc高分子材料的保险丝
US11410801B2 (en) Thermally protected metal oxide varistor
CN207183192U (zh) 一种电流过载保护器结构
CN102412094B (zh) 保护电路
CN205751736U (zh) 一种具有双面热保护的压敏电阻
TWM581762U (zh) Anti-surge winding fusible resistor fuse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741099

Country of ref document: EP

Kind code of ref document: A1