WO2017125039A1 - 一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法 - Google Patents

一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法 Download PDF

Info

Publication number
WO2017125039A1
WO2017125039A1 PCT/CN2017/071676 CN2017071676W WO2017125039A1 WO 2017125039 A1 WO2017125039 A1 WO 2017125039A1 CN 2017071676 W CN2017071676 W CN 2017071676W WO 2017125039 A1 WO2017125039 A1 WO 2017125039A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
latex
cement mortar
layer
concrete
Prior art date
Application number
PCT/CN2017/071676
Other languages
English (en)
French (fr)
Inventor
钟科
吴逸飞
罗桑
陈波
刘国强
马骁琛
丁京
胡承勇
岳光华
常荣华
Original Assignee
交通运输部公路科学研究所
重庆建工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 交通运输部公路科学研究所, 重庆建工集团股份有限公司 filed Critical 交通运输部公路科学研究所
Priority to US15/532,899 priority Critical patent/US9957671B2/en
Publication of WO2017125039A1 publication Critical patent/WO2017125039A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/32Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/022Agglomerated materials, e.g. artificial aggregates agglomerated by an organic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • C08L95/005Aqueous compositions, e.g. emulsions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • E01C7/12Mortar-bound paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/182Aggregate or filler materials, except those according to E01C7/26
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/30Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2676Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/36Bituminous materials, e.g. tar, pitch

Definitions

  • the invention belongs to the field of road engineering construction, and particularly relates to an anti-rut pavement structure and a laying method thereof.
  • cement concrete pavement has the advantages of high strength and good durability, it can effectively solve the problem of road rutting.
  • the technical problem to be solved by the present invention is to provide an anti-rut pavement structure to solve the high temperature existing in the prior art. Under heavy load, it can't resist the rut effectively, and the overall coordination deformation ability and resistance to cracking are not strong.
  • the technical problem to be solved by the present invention is to provide a method for laying the above-described anti-rut pavement structure.
  • the utility model relates to an anti-rudder pavement structure, which comprises a semi-rigid base layer arranged in order from bottom to top, an SBS emulsified asphalt bonding layer, a type II latex cement mortar pouring asphalt concrete lower layer, and a type I latex cement mortar pouring asphalt concrete.
  • SBS emulsified asphalt bonding layer a type II latex cement mortar pouring asphalt concrete lower layer
  • type I latex cement mortar pouring asphalt concrete a type I latex cement mortar pouring asphalt concrete.
  • the type II type latex cement mortar pouring asphalt concrete layer is composed of a macroporous open grade asphalt mixture and a latex cement mortar; wherein the mass ratio of the large pore open grade asphalt mixture and the latex cement mortar is 5 ⁇ 7:1; the porosity of the macroporous open-graded asphalt mixture is 25 ⁇ 35%, which is made by mixing the asphalt mixture with the aggregate below 19mm in a mass ratio of 4-8:100; the latex cement mortar is made of latex.
  • the modifier, the cement, the standard sand and the water are mixed in a mass ratio of 7:100:25:65; wherein the latex cement mortar is poured into the pores of the macroporous open-graded asphalt mixture and penetrates into the macroporous opening stage.
  • the asphalt mixture In the asphalt mixture;
  • the surface layer of the type I latex cement mortar-filled asphalt concrete is composed of a macroporous open grade asphalt mixture and a latex cement mortar; wherein the mass ratio of the macroporous open grade asphalt mixture and the latex cement mortar is 5 ⁇ 7:1; the porosity of the macroporous open-graded asphalt mixture is 20-30%, which is made by mixing the asphalt mixture with the aggregate below 16 mm in a mass ratio of 4-8:100; the latex cement mortar is composed of The latex modifier, cement, standard sand and water are mixed in a mass ratio of 6:100:20:60; wherein the latex cement mortar is poured into the pores of the macroporous open-graded asphalt mixture and penetrates into the large pores. Gradation asphalt mixture;
  • the high-viscosity modified asphalt SMA-13 concrete surface layer is formed by mixing a high-viscosity modified asphalt binder and an aggregate at a mass ratio of 5.5 to 6.5:100; wherein the high-viscosity modified asphalt binder is composed of styrene
  • the butadiene-styrene copolymer modified pitch, the thermoplastic rubber, the binder resin, and the plasticizer are composed in a mass ratio of 100:10:2:1.
  • the SBS emulsified asphalt bonding layer has a spreading amount per unit area of 0.5 to 0.8 kg/m 2 .
  • the thickness of the underlayer of the type II latex cement mortar-filled asphalt concrete is 7-8 cm.
  • the thickness of the surface layer of the type I latex cement mortar-filled asphalt concrete is 5-6 cm.
  • the high viscosity modified asphalt SMA-13 concrete surface layer has a thickness of 4 cm.
  • the latex modifier is an acrylate copolymer.
  • thermoplastic rubber comprises a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer and a polyolefin elastomer.
  • the adhesive resin comprises grafted polyethylene, linear low density polyethylene, polypropylene and polystyrene.
  • the plasticizer comprises dimethyl phthalate, dioctyl phthalate and dipropylene glycol dibenzoate.
  • the method for laying the anti-rut pavement structure is characterized in that it is a SBS emulsified asphalt bonding layer in a semi-rigid base layer, a 7-cm cm type II latex mortar-filled asphalt concrete underlayer, and a 5-6 cm type I. Latex cement mortar inlaid asphalt concrete middle layer and 4cm high viscosity modified asphalt SMA-13 concrete surface layer.
  • the raw materials involved in the present invention need to meet the requirements in Tables 1 to 5, respectively.
  • the invention realizes a rut-proof pavement structure of the immersed asphalt mixture by the above method, which adopts the “high viscosity modified asphalt SMA-13 concrete surface layer + I type latex cement mortar pouring asphalt concrete middle layer + The type of laying structure of type II latex cement mortar pouring asphalt layer + SBS emulsified asphalt bonding layer, wherein the high viscosity modified asphalt SMA-13 concrete layer is a skeleton dense structure, which can provide good roughness.
  • the latex mortar-filled asphalt concrete in the middle and lower layers is used to form the first main body skeleton structure by inserting and squeezing, and the latex cement mortar is poured into the coagulation hardening to form the first
  • the second skeleton structure forms a uniform, dense, and pore-closed structural surface layer material with high strength and rutting resistance, and is resistant to severe ruts in the middle and lower layers caused by high temperature, heavy load and semi-rigid base conditions.
  • SBS emulsified asphalt bonding layer between the semi-rigid base layer and the lower layer, so that the pavement layer and the base layer are fully bonded to ensure the coordination of the overall structure Shape, to reduce cracks, it is possible to prevent the surface layer of water infiltration, serve to protect the pavement layer.
  • the invention improves the phenomenon that the middle and lower layers of the semi-rigid base pavement have a large contribution rate to the rut under the condition of high temperature and heavy load, and the pavement structure can also resist the crack well and improve the surface layer. It has the ability to coordinate with the overall deformation of the base layer, and has short construction and maintenance period, fast open traffic time and excellent economic performance.
  • Figure 1 is a schematic view of the structure of the present invention.
  • the embodiment of the present invention takes into account (1) the pavement structure of the semi-rigid base condition under the action of the driving load, the main shear stress increases first and then decreases with the increase of the depth, and the peak appears in the lower layer of the road surface. Insufficient shear strength of the lower layer in the pavement under high temperature conditions will result in the accumulation of irreversible plastic deformation under vehicle load, which will cause road rutting disease; (2) Considering that the surface layer of the pavement meets the structural requirements, It is necessary to meet the functional requirements, that is, the cracks on the road surface are as small as possible, no need to set the shirring and expansion joints, and at the same time meet the crack resistance requirements under low temperature conditions, to ensure the comfort and safety of the vehicle to the maximum extent; (3) Considering that the thickness of the pavement structure is generally 18 to 20 cm, the thickness of the middle layer is generally 5 to 6 cm, and the thickness of the lower layer is generally 7 to 8 cm.
  • the "Technical Specifications for Highway Asphalt Pavement Construction” shows that for the hot mix hot mix paving asphalt mixture, the compaction thickness of the asphalt layer should not be less than 2.5 to 3 times the maximum nominal particle size of the aggregate.
  • the minimum compaction degree of the asphalt mixture structural layer and the relevant thickness are specified.
  • the maximum nominal particle size of the type II latex cement mortar-filled asphalt concrete is 19mm, corresponding to a suitable thickness of 60-80mm, so only Used in the lower layer, it cannot be used in the 40mm upper layer and the 50mm middle layer, otherwise the structure does not meet the design specifications.
  • Type I latex cement mortar-filled asphalt concrete has a maximum nominal particle size of 16 mm, corresponding to a suitable thickness of 40-60 mm, so it can only be used in the middle layer or the upper layer, and cannot be used in the lower layer of 80 mm, otherwise the structure does not conform to Design specification requirements.
  • Embodiment 1 of the present invention provides a method for laying a rut-resistant pavement structure, which satisfies the above considerations from the following aspects: (1) The lower layer of the pavement structure is made of anti-rut latex cement mortar-filled asphalt mixture. Material, meet the structural requirements of the pavement; (2) The surface layer adopts high-viscosity modified asphalt SMA-13 concrete to meet the functional requirements of the pavement; (3) The middle layer of the pavement adopts type I latex cement mortar-filled asphalt concrete. The maximum nominal particle size of the aggregate is 16mm, and the lower layer is made of type II latex cement mortar-filled asphalt concrete. The maximum nominal particle size of the aggregate is 19mm. The specific implementation of this scheme is shown in Figure 1.
  • the latex modifier used is ZBR-608 latex produced by Yunnan Zhengbang Chemical Co., Ltd.;
  • thermoplastic rubber used is a styrene-butadiene-styrene block copolymer
  • the adhesive resin used is polyethylene
  • the plasticizer used was dioctyl phthalate.
  • the impeller-type asphalt mixture anti-rutting pavement structure As shown in Figure 1, the impeller-type asphalt mixture anti-rutting pavement structure, semi-rigid base layer, SBS emulsified asphalt bonding layer, type II latex cement mortar-filled asphalt concrete layer, type I latex cement arranged in order from bottom to top Mortar-filled asphalt concrete layer and high-viscosity modified asphalt SMA-13 concrete layer.
  • the semi-rigid base layer, SBS emulsified asphalt bonding layer sprinkle amount is 0.6kg/m 2
  • type II latex cement mortar pouring asphalt concrete layer thickness is 8cm
  • type I latex cement mortar pouring asphalt concrete layer thickness is The thickness of the 5cm, high viscosity modified asphalt SMA-13 concrete layer is 4cm.
  • the type II latex cement mortar-filled asphalt concrete material layer is composed of a macroporous open grade asphalt mixture and a latex cement mortar in a mass ratio of 6:1; wherein the large pore open grade asphalt mixture is composed of asphalt Mixture and Aggregates below 19 mm are mixed at a mass ratio of 5:100 and have a porosity of 30%; the latex cement mortar is composed of a latex modifier, cement, standard sand, and a mixing ratio of 7:100:25:65. And water composition; the latex cement mortar is poured into the pore-opening asphalt mixture by the pores of the macroporous open-graded asphalt mixture having a porosity of 30%.
  • the type I latex cement mortar-filled asphalt concrete material layer is composed of a macroporous open grade asphalt mixture and a latex cement mortar in a mass ratio of 6:1; wherein the large pore open grade asphalt mixture is composed of asphalt The mixture is mixed with aggregates of 16 mm or less and mixed at a mass ratio of 6:100, and the porosity thereof is 25%; the latex cement mortar is composed of a latex modifier and cement having a mixing ratio of 6:100:20:60. a standard sand, and a water composition; the latex cement mortar is poured into the pore-opening asphalt mixture by the pores of the macroporous open-graded asphalt mixture having a porosity of 25%;
  • the high viscosity modified asphalt SMA-13 concrete is prepared by mixing a binder with a mixing ratio of 6.0:100 and an aggregate; wherein the high viscosity modified asphalt binder is composed of a mixing ratio of 100:10:2:1 benzene Ethylene-butadiene-styrene copolymer modified asphalt, thermoplastic rubber, cohesive resin, and plasticizer;
  • the composite structure the test piece used in the test process is a "high viscosity modified asphalt SMA-13 concrete + I type latex cement mortar-filled asphalt concrete + formed according to the thickness ratio of the anti-rut pavement laying structure of the present invention.
  • the pavement structure is provided with a semi-rigid base layer, an SBS emulsified asphalt binder layer, an under layer, a middle layer, and a surface layer in this order from bottom to top.
  • the semi-rigid base layer, the SBS emulsified asphalt bonding layer spreads 0.6 kg/m 2
  • the lower layer has a thickness of 8 cm
  • the middle layer has a thickness of 5 cm
  • the surface layer has a thickness of 4 cm.
  • the maximum nominal particle size of the type II latex cement mortar-filled asphalt concrete It is 19mm, corresponding to a suitable thickness of 60 ⁇ 80mm, so it can only be used in the lower layer, can not be used in the 40mm upper layer and 50mm middle layer, otherwise the structure does not meet the design specifications.
  • Type I latex cement mortar-filled asphalt concrete has a maximum nominal particle size of 16 mm, corresponding to a suitable thickness of 40-60 mm, so it can only be used in the middle layer or the upper layer, and cannot be used in the lower layer of 80 mm, otherwise the structure does not conform to Design specification requirements.
  • the comparative examples include:
  • the type II latex cement mortar-filled asphalt concrete material layer is composed of a large pore open grade asphalt mixture and a latex cement mortar in a mass ratio of 6:1; wherein the large pore open grade asphalt mixture The asphalt mixture is mixed with the aggregate of 19 mm or less in a mass ratio of 5:100, and the porosity is 30%; the latex cement mortar is composed of a latex modifier having a mixing ratio of 7:100:25:65, The cement, the standard sand, and the water are composed; the latex cement mortar is poured into the pore-opening asphalt mixture by the pores of the macroporous open-graded asphalt mixture having a porosity of 30%.
  • the type I latex cement mortar-filled asphalt concrete material layer is composed of a macroporous open grade asphalt mixture and a latex cement mortar in a mass ratio of 6:1; wherein the large pore open grade asphalt mixture is composed of asphalt The mixture is mixed with a aggregate of 16 mm or less in a mass ratio of 6:100, and the porosity thereof is 25%; the latex cement mortar is composed of a latex modifier and cement having a mixing ratio of 6:100:20:60. a standard sand, and a water composition; the latex cement mortar is poured into the pore-opening asphalt mixture by the pores of the macroporous open-graded asphalt mixture having a porosity of 25%;
  • the high viscosity modified asphalt SMA-13 concrete is prepared by mixing a binder with a mixing ratio of 6.0:100 and an aggregate; wherein the high viscosity modified asphalt binder is composed of a mixing ratio of 100:10:2:1 benzene Ethylene-butadiene-styrene copolymer modified asphalt, thermoplastic rubber, cohesive resin, and plasticizer;
  • the new laying process applied by the embodiment of the present invention takes into consideration the structural and functional requirements of the road surface.
  • the latex cement mortar-filled asphalt concrete used in the middle and lower layers can effectively resist the formation of ruts, while the high-viscosity modified asphalt SMA-13 concrete used in the surface layer effectively ensures the tensile resistance of the road surface. Crack resistance.
  • the combined use of Type I and Type II latex cement mortar-filled asphalt concrete materials can meet the requirements of the maximum nominal particle size of different surface layers of the road, which can make the road surface better compacted, thus making the road surface high temperature stability.
  • the low-temperature crack resistance and usability have been improved, and it has a great application prospect on new roads and roads for reconstruction and expansion.

Abstract

一种抗车辙路面结构,包括从下至上依次设置的半刚性基层(1)、SBS乳化沥青粘结层(2)、II型乳胶水泥砂浆灌入式沥青混凝土下面层(3)、I型乳胶水泥砂浆灌入式沥青混凝土中面层(4)和高粘度改性沥青SMA-13混凝土表面层(5)。还公开了该抗车辙路面结构的铺设方法。该抗车辙路面结构对高温重载条件下,半刚性基层路面的中、下面层对车辙贡献率大的现象进行了改善,同时也能良好的抵抗裂缝,提高面层与基层的整体变形协调能力,且施工养护期短,经济性能优异。

Description

一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法 技术领域
本发明属于道路工程建设领域,具体涉及一种抗车辙路面结构及其铺设方法。
背景技术
我国的高速公路,城市道路路面结构主要为沥青路面,沥青路面具有黏弹塑性的特殊性质,强度和流动性质均受到温度的影响。在带来路面表面平整,行车舒适性高,噪音低,振动小的同时,也造成了沥青路面结构在车辆反复荷载的作用下车辙病害严重,以及由于半刚性基层的收缩裂缝或低温抗裂性不足而使面层开裂的问题。
水泥混凝土路面虽然具有强度高,耐久性好等优点,且能有效解决道路车辙问题,但是因为其刚度大,接缝设置复杂,工程费用高,施工养护期无法开放交通,易产生唧泥和错台等,不能成为抗车辙路面的首选。
沥青路面的车辙调查与分析一直是国内外研究的重点。早年的车辙调查表明,变形的贡献主要来自上、中面层,而近年来不断出现车辙发生在中、下面层为主的现象,且车辙主要发生在路表下5cm以下处。但是深受最大剪应力理论的影响,这种现象并没有得到应有的重视。最大剪应力理论认为,在中面层产生的最大剪应力是导致车辙的主要原因,而这种以中、下面层为主的车辙现象与该理论十分吻合。试验表明,半刚性基层沥青路面下面层的车辙贡献率(54.4%)大于柔性路面(26.6%),可以认识到,高温、重载和半刚性基层条件下,下面层对于车辙的贡献不可忽视。这是因为路面的升温过程中,上、中面层的温度都非常高,其侧向位移自然特别大,这样会进一步加剧下面层屈服后的塑性永久变形;同时结构层的粘性流动,上、中面层的温度较高,自然比较严重;而下面层压应力水平较低,蠕变自然也较小,下面层的车辙以塑性变形为主,更不具备可恢复性,其危害更为严重。
根据矛盾分析法的哲学思想和对立统一的基本规律,目前需要发明一种融合沥青路面与水泥混凝土路面优点,兼具路表平整性与足够的承载能力,保证路面结构的整体协调性,满足良好的经济价值和较快的施工养护期,取彼之长,补己之短,且能充分针对在半刚性基层、高温、重载条件下抵抗路面中、下面层车辙变形的路面结构。
发明内容
本发明要解决的技术问题是提供一种抗车辙路面结构,以解决现有技术存在的高温 重载下不能有效抵抗车辙,整体协调变形能力和抵抗裂缝能力不强的问题。
本发明还要解决的技术问题是提供上述抗车辙路面结构的铺设方法。
为解决上述技术问题,本发明采用的技术方案如下:
一种抗车辙路面结构,它包括从下至上依次设置的半刚性基层、SBS乳化沥青粘结层、II型乳胶水泥砂浆灌入式沥青混凝土下面层、I型乳胶水泥砂浆灌入式沥青混凝土中面层和高粘度改性沥青SMA-13混凝土表面层;
所述的II型乳胶水泥砂浆灌入式沥青混凝土下面层由大孔隙开级配沥青混合料和乳胶水泥砂浆组成;其中,大孔隙开级配沥青混合料和乳胶水泥砂浆的质量比为5~7∶1;大孔隙开级配沥青混合料的孔隙率为25~35%,它由沥青混合料与19mm以下的集料以4~8∶100的质量比混合而成;乳胶水泥砂浆由乳胶改性剂、水泥、标准砂和水以7∶100∶25∶65的质量比混合而成;其中,乳胶水泥砂浆通过大孔隙开级配沥青混合料的孔隙灌入并渗透至大孔隙开级配沥青混合料中;
所述的I型乳胶水泥砂浆灌入式沥青混凝土中面层由大孔隙开级配沥青混合料和乳胶水泥砂浆组成;其中,大孔隙开级配沥青混合料和乳胶水泥砂浆的质量比为5~7∶1;大孔隙开级配沥青混合料的孔隙率为20~30%,它由沥青混合料与16mm以下的集料以4~8∶100的质量比混合而成;乳胶水泥砂浆由乳胶改性剂、水泥、标准砂和水以6∶100∶20∶60的质量比混合而成;其中,乳胶水泥砂浆通过大孔隙开级配沥青混合料的孔隙灌入并渗透至大孔隙开级配沥青混合料中;
所述的高粘度改性沥青SMA-13混凝土表面层由高粘改性沥青结合料与集料以5.5~6.5∶100的质量比混合而成;其中,高粘改性沥青结合料由苯乙烯-丁二烯-苯乙烯共聚物改性沥青、热塑性橡胶、粘结性树脂和增塑剂以100∶10∶2∶1的质量比组成。
其中,所述的SBS乳化沥青粘结层单位面积的洒布量为0.5~0.8kg/m2
其中,所述的II型乳胶水泥砂浆灌入式沥青混凝土下面层的厚度为7~8cm。
其中,所述的I型乳胶水泥砂浆灌入式沥青混凝土中面层的厚度为5~6cm。
其中,所述的高粘度改性沥青SMA-13混凝土表面层的厚度为4cm。
其中,所述的乳胶改性剂为丙烯酸酯类共聚物。
其中,所述的热塑性橡胶包括苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物和聚烯烃弹性体。
其中,所述的粘结性树脂包括接枝聚乙烯、线性低密度聚乙烯、聚丙烯和聚苯乙烯。
其中,所述的增塑剂包括邻苯二甲酸二甲酯、邻苯二甲酸二辛酯和二丙二醇二苯甲酸酯。
上述抗车辙路面结构的铺设方法,其特征在于,它是在半刚性基层依次铺设SBS乳化沥青粘结层、7~8cm的II型乳胶水泥砂浆灌入式沥青混凝土下面层、5~6cm I型乳胶水泥砂浆灌入式沥青混凝土中面层和4cm的高粘度改性沥青SMA-13混凝土表面层。
本发明涉及的各项原材料需分别满足表1~5中的要求。
表1:高粘度改性沥青SMA-13混凝土用结合料的技术要求
Figure PCTCN2017071676-appb-000001
表2:灌入式沥青混凝土用结合料的技术要求
Figure PCTCN2017071676-appb-000002
表3:乳胶水泥技术要求
Figure PCTCN2017071676-appb-000003
Figure PCTCN2017071676-appb-000004
表4:SBS乳化沥青粘结层技术要求
Figure PCTCN2017071676-appb-000005
表5:高粘度改性沥青SMA-13混凝土、灌入式沥青混凝土、水泥砂浆矿料级配要求
Figure PCTCN2017071676-appb-000006
Figure PCTCN2017071676-appb-000007
有益效果:
本发明通过上述方法实现了一种灌入式沥青混合料抗车辙路面结构,其采用了“高粘度改性沥青SMA-13混凝土表面层+I型乳胶水泥砂浆灌入式沥青混凝土中面层+II型乳胶水泥砂浆灌入式沥青混凝土下面层+SBS乳化沥青粘结层”的铺设结构类型,其中,高粘度改性沥青SMA-13混凝土层为骨架密实型结构,可以提供良好的粗糙度,保证路表上面层的功能性要求;中、下面层的乳胶水泥砂浆灌入式沥青混凝土以开级配集料通过嵌挤作用形成第一主体骨架结构,以乳胶水泥砂浆灌入凝结硬化形成第二骨架结构,形成均一、密实、孔隙闭合的结构面层材料,具有很高的强度和抗车辙性能,能够抵抗在高温、重载以及半刚性基层条件下而产生的中、下面层严重的车辙变形;SBS乳化沥青粘结层在半刚性基层与下面层之间,使路面层与基层充分粘结,保证整体结构的协调变形,减少裂缝的产生,也能够阻止面层水下渗,起到保护路面结构层的作用。
与现有技术相比,本发明对高温重载条件下,半刚性基层路面的中、下面层对车辙贡献率大的现象进行了改善,同时该路面结构也能良好的抵抗裂缝,提高面层与基层的整体变形协调能力,且施工养护期短,开放交通时间快,经济性能优异。
附图说明
图1为本发明结构示意图。
具体实施方式
本发明实施例考虑到(1)半刚性基层条件的路面结构在行车荷载的作用下,主剪应力随深度的增加先增大后减小,峰值出现在路面中下面层。路面中下面层在高温情况下的抗剪切强度不足会在车辆荷载下产生不可恢复的塑性变形的累积,形成路面车辙病害;(2)考虑到路面表面层与满足结构性要求相比,更需要满足功能性的要求,即路面的裂缝尽可能的少,不需要设置缩缝和胀缝,同时在低温条件下满足抗裂性要求,最大限度保证车辆行驶的舒适性与安全性;(3)考虑到路面结构的厚度一般在18~20cm,中面层厚度一般在5~6cm,下面层厚度一般在7~8cm。《公路沥青路面施工技术规范》(JTGF40-2004)中表明,对于热拌热铺密级配沥青混合料,沥青层一层的压实厚度不宜小于集料最大公称粒径的2.5~3倍。同时根据《公路沥青路面设计规范》(JTGD50-2006) 中表4.1.3沥青混合料结构层的最小压实度与适宜厚度的相关规定,II型乳胶水泥砂浆灌入式沥青混凝土的最大公称粒径为19mm,对应适宜厚度60~80mm,所以只能使用在下面层中,无法使用在40mm上面层和50mm中面层中,否则结构不符合设计规范要求。I型乳胶水泥砂浆灌入式沥青混凝土的最大公称粒径为16mm,对应适宜厚度40~60mm,所以只能使用在中面层或者上面层中,无法使用在80mm下面层中,否则结构不符合设计规范要求。
基于以上考虑,本发明实施例1提供了一种抗车辙路面结构的铺设方法,分别从以下角度满足上述考虑因素:(1)路面结构中下面层采用抗车辙的乳胶水泥砂浆灌入式沥青混合料,满足路面结构性要求;(2)表面层采用高粘度改性沥青SMA-13混凝土,满足路面功能性要求;(3)路面的中面层采用I型乳胶水泥砂浆灌入式沥青混凝土,其集料最大公称粒径为16mm,下面层采用II型乳胶水泥砂浆灌入式沥青混凝土,其集料最大公称粒径为19mm。该方案的具体实现方式如图1,所示。
同时,本发明实例2中将半刚性基层条件下不同路面结构进行了对比,比较各路面结构的抗裂抗拉性及抗车辙性能。
在下述实施例中,
所用的乳胶改性剂为云南正邦化工有限公司生产的ZBR-608乳胶;
所用的热塑性橡胶为苯乙烯-丁二烯-苯乙烯嵌段共聚物;
所用的粘结性树脂为聚乙烯;
所用的增塑剂为邻苯二甲酸二辛酯。
实施例1
如图1所示的灌入式沥青混合料抗车辙路面结构,由下至上依次设置的半刚性基层、SBS乳化沥青粘结层、II型乳胶水泥砂浆灌入式沥青混凝土层、I型乳胶水泥砂浆灌入式沥青混凝土层、高粘度改性沥青SMA-13混凝土层。
其中,半刚性基层、SBS乳化沥青粘结层洒布量为0.6kg/m2、II型乳胶水泥砂浆灌入式沥青混凝土层厚度为8cm、I型乳胶水泥砂浆灌入式沥青混凝土层厚度为5cm、高粘度改性沥青SMA-13混凝土层厚度为4cm。
所述II型乳胶水泥砂浆灌入式沥青混凝土材料层由大孔隙开级配沥青混合料和乳胶水泥砂浆以6∶1的质量比组成;其中,所述大孔隙开级配沥青混合料由沥青混合料与 19mm以下的集料以5∶100的质量比混合而成,其孔隙率为30%;所述乳胶水泥砂浆由混合比例为7∶100∶25∶65的乳胶改性剂、水泥、标准砂、和水组成;所述乳胶水泥砂浆通过所述大孔隙开级配沥青混合料的孔隙率为30%的孔隙灌入渗透至所述孔隙开级配沥青混合料中。
所述I型乳胶水泥砂浆灌入式沥青混凝土材料层由大孔隙开级配沥青混合料和乳胶水泥砂浆以6∶1的质量比组成;其中,所述大孔隙开级配沥青混合料由沥青混合料与16mm以下的集料混合以6∶100的质量比混合而成,其孔隙率为25%;所述乳胶水泥砂浆由混合比例为6∶100∶20∶60的乳胶改性剂、水泥、标准砂、和水组成;所述乳胶水泥砂浆通过所述大孔隙开级配沥青混合料的孔隙率为25%的孔隙灌入渗透至所述孔隙开级配沥青混合料中;
高粘度改性沥青SMA-13混凝土由混合比例为6.0∶100的结合料与集料混合而成;其中,所述高粘改性沥青结合料由混合比例为100∶10∶2∶1的苯乙烯-丁二烯-苯乙烯共聚物改性沥青、热塑性橡胶、粘结性树脂、及增塑剂组成;
本实施例中的抗车辙路面铺设结构,各项技术指标均满足路面结构使用要求,具体检测结果见下表6:
表6:检测结果
Figure PCTCN2017071676-appb-000008
其中,复合结构:试验过程中所采用的试件是根据本发明中抗车辙路面铺设结构等厚度比例成型的“高粘度改性沥青SMA-13混凝土+I型乳胶水泥砂浆灌入式沥青混凝土+II型乳胶水泥沥青灌入式沥青混凝土”的结构型式。
实施例2
该对比例中,路面结构由下至上依次设置半刚性基层、SBS乳化沥青粘结层、下面层,中面层、表面层。
其中,半刚性基层、SBS乳化沥青粘结层洒布量为0.6kg/m2、下面层厚度为8cm,中面层厚度为5cm,表面层厚度为4cm。
根据《公路沥青路面设计规范》(JTGD50-2006)中表4.1.3沥青混合料结构层的最小压实度与适宜厚度的相关规定,II型乳胶水泥砂浆灌入式沥青混凝土的最大公称粒径为19mm,对应适宜厚度60~80mm,所以只能使用在下面层中,无法使用在40mm上面层和50mm中面层中,否则结构不符合设计规范要求。I型乳胶水泥砂浆灌入式沥青混凝土的最大公称粒径为16mm,对应适宜厚度40-60mm,所以只能使用在中面层或者上面层中,无法使用在80mm下面层中,否则结构不符合设计规范要求。根据上述混合料最大公称粒径与路面适宜厚度之间的关系,对比例包括:
“高粘度改性沥青SMA-13混凝土表面层+I型乳胶水泥砂浆灌入式沥青混凝土中面层+II型乳胶水泥砂浆灌入式沥青混凝土下面层”结构1,
“I型乳胶水泥砂浆灌入式沥青混凝土上面层+I型乳胶水泥砂浆灌入式沥青混凝土中面层+II型乳胶水泥砂浆灌入式沥青混凝土下面层”结构2。
其中,所述II型乳胶水泥砂浆灌入式沥青混凝土材料层由大孔隙开级配沥青混合料和乳胶水泥砂浆以6∶1的质量比组成;其中,所述大孔隙开级配沥青混合料由沥青混合料与19mm以下的集料以5∶100的质量比混合而成,其孔隙率为30%;所述乳胶水泥砂浆由混合比例为7∶100∶25∶65的乳胶改性剂、水泥、标准砂、和水组成;所述乳胶水泥砂浆通过所述大孔隙开级配沥青混合料的孔隙率为30%的孔隙灌入渗透至所述孔隙开级配沥青混合料中。
所述I型乳胶水泥砂浆灌入式沥青混凝土材料层由大孔隙开级配沥青混合料和乳胶水泥砂浆以6∶1的质量比组成;其中,所述大孔隙开级配沥青混合料由沥青混合料与16mm以下的集料以6∶100的质量比的混合而成,其孔隙率为25%;所述乳胶水泥砂浆由混合比例为6∶100∶20∶60的乳胶改性剂、水泥、标准砂、和水组成;所述乳胶水泥砂浆通过所述大孔隙开级配沥青混合料的孔隙率为25%的孔隙灌入渗透至所述孔隙开级配沥青混合料中;
高粘度改性沥青SMA-13混凝土由混合比例为6.0∶100的结合料与集料混合而成;其中,所述高粘改性沥青结合料由混合比例为100∶10∶2∶1的苯乙烯-丁二烯-苯乙烯共聚物改性沥青、热塑性橡胶、粘结性树脂、及增塑剂组成;
本实施例中的路面铺设结构,各项技术指标均满足路面结构使用要求,具体检测结果对比见下表7:
表7对比检测结果
Figure PCTCN2017071676-appb-000009
由上述本发明实施例提供的具体实施方案,可以看出,本发明实施例运用的新铺设工艺,兼顾了路面的结构性和功能性要求。在半刚性基层条件下,中下面层采用的乳胶水泥砂浆灌入式沥青混凝土能够有效的抵抗车辙形成,而表面层采用的高粘度改性沥青SMA-13混凝土则有效的保证了路面的抗拉抗裂性能。同时,I型和II型乳胶水泥砂浆灌入式沥青混凝土材料的联合使用,适应道路不同面层厚度最大公称粒径的要求,能够使路面得到更好的压实,从而使路面的高温稳定性,低温抗裂性和使用性均得到了提高,在新建道路及改扩建道路上,具有较大的应用前景。

Claims (7)

  1. 一种抗车辙路面结构,其特征在于,它包括从下至上依次设置的半刚性基层(1)、SBS乳化沥青粘结层(2)、II型乳胶水泥砂浆灌入式沥青混凝土下面层(3)、I型乳胶水泥砂浆灌入式沥青混凝土中面层(4)和高粘度改性沥青SMA-13混凝土表面层(5);
    所述的II型乳胶水泥砂浆灌入式沥青混凝土下面层(3)由大孔隙开级配沥青混合料和乳胶水泥砂浆组成;其中,大孔隙开级配沥青混合料和乳胶水泥砂浆的质量比为5~7∶1;大孔隙开级配沥青混合料的孔隙率为25~35%,它由沥青混合料与19mm以下的集料以4~8∶100的质量比混合而成;乳胶水泥砂浆由乳胶改性剂、水泥、标准砂和水以7∶100∶25∶65的质量比混合而成;其中,乳胶水泥砂浆通过大孔隙开级配沥青混合料的孔隙灌入并渗透至大孔隙开级配沥青混合料中;
    所述的I型乳胶水泥砂浆灌入式沥青混凝土中面层(4)由大孔隙开级配沥青混合料和乳胶水泥砂浆组成;其中,大孔隙开级配沥青混合料和乳胶水泥砂浆的质量比为5~7∶1;大孔隙开级配沥青混合料的孔隙率为20~30%,它由沥青混合料与16mm以下的集料以4~8∶100的质量比混合而成;乳胶水泥砂浆由乳胶改性剂、水泥、标准砂和水以6∶100∶20∶60的质量比混合而成;其中,乳胶水泥砂浆通过大孔隙开级配沥青混合料的孔隙灌入并渗透至大孔隙开级配沥青混合料中;
    所述的高粘度改性沥青SMA-13混凝土表面层(5)由高粘改性沥青结合料与集料以5.5~6.5∶100的质量比混合而成;其中,高粘改性沥青结合料由苯乙烯-丁二烯-苯乙烯共聚物改性沥青、热塑性橡胶、粘结性树脂和增塑剂以100∶10∶2∶1的质量比组成。
  2. 根据权利要求1所述的抗车辙路面结构,其特征在于,所述的SBS乳化沥青粘结层(2)单位面积的洒布量为0.5~0.8kg/m2
  3. 根据权利要求1所述的抗车辙路面结构,其特征在于,所述的II型乳胶水泥砂浆灌入式沥青混凝土下面层(3)的厚度为7~8cm。
  4. 根据权利要求1所述的抗车辙路面结构,其特征在于,所述的I型乳胶水泥砂浆灌入式沥青混凝土中面层(4)的厚度为5~6cm。
  5. 根据权利要求1所述的抗车辙路面结构,其特征在于,所述的高粘度改性沥青SMA-13混凝土表面层(5)的厚度为4cm。
  6. 根据权利要求1所述的抗车辙路面结构,其特征在于,所述的乳胶改性剂为丙烯酸酯类共聚物。
  7. 权利要求1所述的抗车辙路面结构的铺设方法,其特征在于,它是在半刚性基层 (1)依次铺设SBS乳化沥青粘结层(2)、7~8cm的II型乳胶水泥砂浆灌入式沥青混凝土下面层(3)、5~6cm I型乳胶水泥砂浆灌入式沥青混凝土中面层(4)和4cm的高粘度改性沥青SMA-13混凝土表面层(5)。
PCT/CN2017/071676 2016-01-22 2017-01-19 一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法 WO2017125039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/532,899 US9957671B2 (en) 2016-01-22 2017-01-19 Latex cement mortar poured anti-rutting pavement structure and paving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610045083.5A CN105672080B (zh) 2016-01-22 2016-01-22 一种抗车辙路面结构及其铺设方法
CN201610045083.5 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017125039A1 true WO2017125039A1 (zh) 2017-07-27

Family

ID=56302344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071676 WO2017125039A1 (zh) 2016-01-22 2017-01-19 一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法

Country Status (3)

Country Link
US (1) US9957671B2 (zh)
CN (1) CN105672080B (zh)
WO (1) WO2017125039A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138122A (zh) * 2020-01-08 2020-05-12 长沙理工大学 一种骨架密实型橡胶沥青超薄磨耗层及其制备方法
CN112001024A (zh) * 2020-09-01 2020-11-27 同济大学 一种沥青路面不同层位高温设计温度确定方法
CN114182595A (zh) * 2021-11-19 2022-03-15 山东省交通科学研究院 一种长寿命沥青道路的施工方法
CN114214888A (zh) * 2021-12-30 2022-03-22 上海浦东路桥(集团)有限公司 一种适用于重载交通的排水路面复合结构
CN114717903A (zh) * 2022-05-06 2022-07-08 山东省路桥集团有限公司 一种沥青路面边部与路缘石间隙填料施工方法
CN114808586A (zh) * 2022-05-16 2022-07-29 中交一公局第一工程有限公司 用于严寒地区沥青路面防裂的施工方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672080B (zh) * 2016-01-22 2017-03-15 交通运输部公路科学研究所 一种抗车辙路面结构及其铺设方法
CN110499692A (zh) * 2018-05-17 2019-11-26 无锡市城市道桥科技有限公司 一种灌入式复合路面施工方法
CN108999050A (zh) * 2018-07-30 2018-12-14 杨芳林 一种路面结构及其施工方法
CN108797259B (zh) * 2018-08-31 2024-02-06 湖南军信环保股份有限公司 一种在垃圾填埋场的垃圾堆体上行车的道路结构
CN109734358A (zh) * 2019-01-22 2019-05-10 长安大学 一种沥青路面钻芯取样后的填补混合用料及方法
CN110130174A (zh) * 2019-05-27 2019-08-16 中国港湾工程有限责任公司 抗车辙的沥青路面的铺设方法
CN110080059A (zh) * 2019-06-12 2019-08-02 吉林省交通规划设计院 一种用于高速公路收费站广场的路面结构
CN110714389A (zh) * 2019-11-11 2020-01-21 上海市市政规划设计研究院有限公司 超薄高性能的复合半柔性面层路面结构及其施工方法
CN110714386A (zh) * 2019-11-11 2020-01-21 上海市市政规划设计研究院有限公司 长寿命的半柔性基层路面结构及其施工方法
CN111170678A (zh) * 2020-01-20 2020-05-19 北京建筑大学 一种聚氨酯为结合料的浇筑式混凝土及其制备方法
CN112030658B (zh) * 2020-07-23 2022-02-18 南京兴佑交通科技有限公司 一种路面预防性养护方法
CN111849416A (zh) * 2020-07-27 2020-10-30 重庆交通职业学院 一种层间粘结剂及其应用
CN111827041B (zh) * 2020-07-29 2021-12-31 重庆交通建设(集团)有限责任公司 一种环保型改性沥青的抑烟阻燃施工方法
CN112645649B (zh) * 2020-12-07 2022-07-19 涌漫(苏州)建设工程有限公司 一种沥青混凝土层及改性沥青的制备方法
CN113235348A (zh) * 2021-05-11 2021-08-10 河北建设集团股份有限公司 一种具有高抗荷载能力的路面的施工方法
CN114182597B (zh) * 2021-12-31 2023-06-20 长安大学 一种高抗滑耐磨表处层及其施工方法
CN114293428B (zh) * 2022-01-10 2023-11-28 江苏瑞文戴尔交通科技有限公司 一种再生型抗滑低噪磨耗层及其施工方法
CN114717901B (zh) * 2022-02-23 2023-08-18 河北工业大学 以钢丝网增强沥青混凝土为基层的全厚式沥青路面结构
CN115418907A (zh) * 2022-08-24 2022-12-02 连云港科创工程质量检测有限公司 一种热自愈沥青路面结构及其热自愈方法
CN115403305A (zh) * 2022-08-29 2022-11-29 重庆特铺路面工程技术有限公司 一种流动性超高rap掺量热再生沥青混合料及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919667A1 (en) * 1996-08-16 1999-06-02 Mitsubishi Materials Corporation NOx REMOVING PAVEMENT STRUCTURE
JP2005068956A (ja) * 2003-08-28 2005-03-17 Taiheiyo Cement Corp 舗装体およびその施工方法
CN101220574A (zh) * 2007-08-23 2008-07-16 孟宪惠 抗车辙路面的铺设方法及改善路面抗车辙性能的产品
CN101532273A (zh) * 2009-05-05 2009-09-16 江西赣粤高速公路股份有限公司 抗车辙路面rs2000改性沥青混合料配比及施工工艺
CN101550670A (zh) * 2008-04-02 2009-10-07 柳浩� 沥青路面抗车辙方法及其应用
CN102733282A (zh) * 2012-06-07 2012-10-17 中铁四局集团第一工程有限公司 亚热带抗车辙路面ac改性沥青混合料配比及施工工艺
CN105672080A (zh) * 2016-01-22 2016-06-15 交通运输部公路科学研究所 一种抗车辙路面结构及其铺设方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175885A (en) * 1977-01-03 1979-11-27 Giselle V. Laurmann Methods for sealing and resealing concrete using microwave energy
JP4004775B2 (ja) * 2001-11-09 2007-11-07 矢作建設工業株式会社 路面温度の上昇抑制機能を備えたアスファルト舗装体およびアスファルト舗装路面構造
US20030215286A1 (en) * 2002-05-14 2003-11-20 Koichi Takamura Polymer modified asphalt emulsions for treatment of road surfaces
JP2005240441A (ja) * 2004-02-27 2005-09-08 Nippo Corporation:Kk 低μ舗装路面およびその構築方法
WO2008128120A2 (en) * 2007-04-12 2008-10-23 Granite Construction Incorporated Method of making and use of a heavy duty pavement structure
US20100047015A1 (en) * 2008-08-21 2010-02-25 Basf Se Composition and process of using an asphalt emulsion to convert an unpaved surface into a paved surface
DE112009003630T5 (de) * 2008-11-28 2012-08-02 Bridge Co., Ltd. Straßenbelagkörper, Verfahren zum Errichten eines Straßenbelagkörpers und eine Gussform für Beton
EP2685001A1 (de) * 2012-07-11 2014-01-15 Sika Technology AG Fahrbahnaufbau und Verfahren zu dessen Herstellung
CN104846714B (zh) * 2014-07-14 2017-03-22 淮阴工学院 热反射雾封层材料的高温重载条件下抗车辙路面结构
CN204608539U (zh) * 2015-05-11 2015-09-02 山西省交通科学研究院 一种环保抗车辙路面
US9783940B2 (en) * 2017-04-05 2017-10-10 Southeast University Structure and method of pavement on steel deck bridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919667A1 (en) * 1996-08-16 1999-06-02 Mitsubishi Materials Corporation NOx REMOVING PAVEMENT STRUCTURE
JP2005068956A (ja) * 2003-08-28 2005-03-17 Taiheiyo Cement Corp 舗装体およびその施工方法
CN101220574A (zh) * 2007-08-23 2008-07-16 孟宪惠 抗车辙路面的铺设方法及改善路面抗车辙性能的产品
CN101550670A (zh) * 2008-04-02 2009-10-07 柳浩� 沥青路面抗车辙方法及其应用
CN101532273A (zh) * 2009-05-05 2009-09-16 江西赣粤高速公路股份有限公司 抗车辙路面rs2000改性沥青混合料配比及施工工艺
CN102733282A (zh) * 2012-06-07 2012-10-17 中铁四局集团第一工程有限公司 亚热带抗车辙路面ac改性沥青混合料配比及施工工艺
CN105672080A (zh) * 2016-01-22 2016-06-15 交通运输部公路科学研究所 一种抗车辙路面结构及其铺设方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138122A (zh) * 2020-01-08 2020-05-12 长沙理工大学 一种骨架密实型橡胶沥青超薄磨耗层及其制备方法
CN111138122B (zh) * 2020-01-08 2021-09-10 长沙理工大学 一种骨架密实型橡胶沥青超薄磨耗层及其制备方法
CN112001024A (zh) * 2020-09-01 2020-11-27 同济大学 一种沥青路面不同层位高温设计温度确定方法
CN112001024B (zh) * 2020-09-01 2023-12-01 同济大学 一种沥青路面不同层位高温设计温度确定方法
CN114182595A (zh) * 2021-11-19 2022-03-15 山东省交通科学研究院 一种长寿命沥青道路的施工方法
CN114182595B (zh) * 2021-11-19 2023-08-11 山东省交通科学研究院 一种长寿命沥青道路的施工方法
CN114214888A (zh) * 2021-12-30 2022-03-22 上海浦东路桥(集团)有限公司 一种适用于重载交通的排水路面复合结构
CN114717903A (zh) * 2022-05-06 2022-07-08 山东省路桥集团有限公司 一种沥青路面边部与路缘石间隙填料施工方法
CN114717903B (zh) * 2022-05-06 2023-12-26 山东省路桥集团有限公司 一种沥青路面边部与路缘石间隙填料施工方法
CN114808586A (zh) * 2022-05-16 2022-07-29 中交一公局第一工程有限公司 用于严寒地区沥青路面防裂的施工方法
CN114808586B (zh) * 2022-05-16 2024-03-15 中交一公局第一工程有限公司 用于严寒地区沥青路面防裂的施工方法

Also Published As

Publication number Publication date
US9957671B2 (en) 2018-05-01
CN105672080A (zh) 2016-06-15
US20180044862A1 (en) 2018-02-15
CN105672080B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2017125039A1 (zh) 一种乳胶水泥砂浆灌入式抗车辙路面结构及其铺设方法
CN101857401B (zh) 自流入式半柔性复合路面及其施工方法
US10072182B2 (en) Resinous penetration permeable pavement material and manufacturing method thereof
CN103952958B (zh) 一种市政道路车辙维修铺装方法
CN110593046B (zh) 一种高强耐久钢渣透水沥青路面结构
CN106186922A (zh) 半刚性沥青路面材料及其制备方法
CN101913799B (zh) 橡胶沥青应力吸收层用混合料及其制备方法与应用
CN101092808A (zh) 高粘度沥青间断半开级配混合料应力吸收结构层
CN203546553U (zh) 一种稳定的水泥混凝土路面铺装结构
CN106587744A (zh) 一种cpc‑ac复合路面纤维沥青混合料及其制备方法
CN107129195B (zh) 一种多功能透水沥青混合料及其制备方法
CN111622043A (zh) 一种排水降噪型沥青路面铺装结构
CN108948752B (zh) 透水路面专用沥青、含有其的混合料及制备方法
CN105463990B (zh) 钢桥面铺装结构和方法
CN110714389A (zh) 超薄高性能的复合半柔性面层路面结构及其施工方法
CN111170678A (zh) 一种聚氨酯为结合料的浇筑式混凝土及其制备方法
CN102795807A (zh) 一种高清沥青路面废料再生技术
CN101220574A (zh) 抗车辙路面的铺设方法及改善路面抗车辙性能的产品
Hlail Toward semi flexible pavement application for Iraqi highway and airport pavements: Review its feasibility
CN211256538U (zh) 超薄高性能的复合半柔性面层路面结构
CN111304994B (zh) 应用于沥青路面维修的半柔性功能组合结构恢复层
CN111138122B (zh) 一种骨架密实型橡胶沥青超薄磨耗层及其制备方法
CN211645819U (zh) 一种旧水泥路面加铺半柔性材料路面结构
CN103321121A (zh) 一种基于均匀沉降的长寿命沥青路面结构
JPH0799002B2 (ja) 透水性セメントコンクリ−ト構築物の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15532899

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741070

Country of ref document: EP

Kind code of ref document: A1