WO2017124898A1 - 一种混合波束训练方法、站点及终端 - Google Patents

一种混合波束训练方法、站点及终端 Download PDF

Info

Publication number
WO2017124898A1
WO2017124898A1 PCT/CN2016/112406 CN2016112406W WO2017124898A1 WO 2017124898 A1 WO2017124898 A1 WO 2017124898A1 CN 2016112406 W CN2016112406 W CN 2016112406W WO 2017124898 A1 WO2017124898 A1 WO 2017124898A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
station
training signal
preferred
terminal
Prior art date
Application number
PCT/CN2016/112406
Other languages
English (en)
French (fr)
Inventor
刘星
刘文豪
毕峰
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017124898A1 publication Critical patent/WO2017124898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • This application relates to, but is not limited to, communication technology systems.
  • the high-frequency channel has the disadvantages of large free propagation loss, easy to be absorbed by oxygen, and greatly affected by rain attenuation, which seriously affects the coverage performance of the high-frequency communication system.
  • LTE Long Term Evolution
  • SINR Signal to Interference plus Noise Ratio
  • the former is different.
  • SINR drop of at least 20 dB over the latter.
  • the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements mean that beamforming can be used to improve Antenna gain to ensure high-frequency communication coverage.
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover
  • the transmitting end that is, the base station needs to transmit multiple beams to complete the full coverage.
  • the transmitting end that is, the base station needs to transmit multiple beams to complete the full coverage.
  • the related art design concept of LTE in order to obtain a good beamforming effect, it is necessary to accurately obtain the state information of the channel, thereby obtaining the weight of the beamforming from the state information of the channel. It is found that in order to obtain a better beamforming weight, the receiving terminal needs to feed back the downlink channel state information or weight for the transmitting base station.
  • the base station cannot use the optimal beam coverage to the receiving end before obtaining the weight, so that the receiving end cannot measure the reference signal sent by the base station, or even if the base station covers the terminal, the terminal cannot reach the same coverage of the base station.
  • the content of the feedback base station cannot be known, and thus the selection of the beam weight and the normal communication cannot be performed.
  • the high-frequency network has a large bandwidth, which can well distribute data for the network in the related art. Therefore, the high-frequency carrier is a typical scenario for downlink-only downlink data. However, in such a scenario, how to implement the training and feedback of the preferred downlink beam is a more difficult problem.
  • This paper provides a hybrid beam training method, station and terminal, which realizes the training of the preferred beam of the high-frequency station, which enables the high-frequency station to serve the terminal with the preferred beam and improve the downlink service quality.
  • a hybrid beam training method applied to a first site including:
  • the first station sends a training signal to the terminal in multiple beam directions, and the training signals sent in the multiple beam directions are different from each other;
  • the downlink frequency of the first station is greater than the downlink frequency of the second station, and the preferred beam is determined according to the detection result of the training signal by the terminal.
  • the method further includes: before the first station sends the training signal to the terminal in multiple beam directions, the method further includes:
  • Transmitting the training signal by the first station in multiple beam directions including: the first site root And sending, according to the sending configuration of the training signal, the training signal to the terminal in the multiple beam directions;
  • the training signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and the same Different beam information under one site corresponds to different beam directions.
  • the preferred beam configuration information includes information of the terminal, information of N preferred beams, and information about a manner of transmitting the N preferred beam uplink and downlink data or downlink control information;
  • the first station performs downlink transmission to the terminal on at least part of the preferred beam, including: the first station sends downlink data to the terminal according to the sending manner on the N preferred beams.
  • N is a positive integer greater than or equal to 1.
  • the preferred beam configuration information includes information of the terminal, information of M preferred beams, and channel quality information in a beam direction of the M preferred beams detected by the terminal;
  • the method further includes: determining, by the first station, the N preferred beams and the N preferred beams to be used according to the channel quality information.
  • Performing, by the first station, the downlink transmission to the terminal on the at least part of the preferred beam including: sending, by the first station, the downlink to the terminal according to the determined sending manner on the N preferred beams
  • Data or downlink control information M and N are both positive integers greater than or equal to 1, and N is less than or equal to M.
  • the information of the transmission mode includes one or more of a coding modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the first site is a site for downlink transmission only, and the downlink frequency of the first site
  • the rate is greater than 6 GHz and the downlink frequency of the second station is less than 6 GHz.
  • a first station includes a hybrid beam training device, the hybrid beam training device comprising:
  • the training signal sending module is configured to: send a training signal to the terminal in multiple beam directions, where the training signals sent in the multiple beam directions are different from each other;
  • the downlink transmission module is configured to: receive the preferred beam configuration information sent by the second station, and perform downlink transmission to the terminal on at least part of the preferred beam according to the terminal and the preferred beam indicated by the preferred beam configuration information;
  • the downlink frequency of the first station is greater than the downlink frequency of the second station, and the preferred beam is determined according to the detection result of the training signal by the terminal.
  • the first site further includes:
  • the training signal receiving module is configured to: before the training signal sending module sends the training signal to the terminal in multiple beam directions, receive training signal configuration information sent by the second station, and determine, according to the training signal configuration information, The transmission configuration of the training signal;
  • the training signal sending module sends the training signal to the terminal in multiple beam directions, including: sending, according to the sending configuration of the training signal determined by the training signal receiving module, to the terminal in the multiple beam directions The training signal;
  • the training signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and the same Different beam information under one site corresponds to different beam directions.
  • the preferred beam configuration information received by the downlink transmission module includes information about the terminal, information of N preferred beams, and information about a manner of transmitting the N preferred beam uplink and downlink data or downlink control information; the downlink transmission Performing, by the module, the downlink transmission to the terminal on the at least part of the preferred beam, including: sending downlink data or downlink control information to the terminal according to the sending manner, where N is greater than or a positive integer equal to 1;
  • the preferred beam configuration information received by the downlink transmission module includes information of the terminal, information of M preferred beams, and a message in a beam direction of the M preferred beams detected by the terminal Channel quality information; the downlink transmission module is further configured to: after receiving the preferred beam configuration information sent by the second station, determine, according to the channel quality information, N preferred beams to be used and the N preferred beams And transmitting, by the second station, one or more of the information of the N preferred beams and the information of the sending manner to the terminal by the second station; the downlink transmission Performing, by the module, the downlink transmission to the terminal on the at least part of the preferred beam, including: sending downlink data or downlink control information, M and N, to the terminal according to the determined sending manner on the N preferred beams Both are positive integers greater than or equal to 1, and N is less than or equal to M;
  • the information of the transmission mode includes one or more of a coding modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the first station is a station for downlink transmission only, and the downlink frequency of the first station is greater than 6 GHz.
  • a hybrid beam training method for a second site comprising:
  • the second station receives the preferred beam indication information sent by the terminal, where the preferred beam indication information includes information about the preferred beam determined by the terminal according to the detection result of the training signal;
  • the second station Sending, by the second station, preferred beam configuration information to the first station, where the preferred beam configuration information includes information of at least part of the preferred beam and information of the terminal;
  • the downlink frequency of the second station is smaller than the downlink frequency of the first station, and the training signal is sent by the first station to the terminal in multiple beam directions, and the multiple beam directions are The training signals sent on are different from each other.
  • the preferred beam indication information includes information of M preferred beams, and further includes channel quality information in a beam direction of the M preferred beams detected by the terminal, where M is a positive integer greater than or equal to 1;
  • the method further includes: determining, by the second station, the N preferred beams to be used and the N preferred beams to go up and down according to the channel quality information. How data or downlink control information is sent;
  • the preferred beam configuration information sent by the second station to the first station includes information about the N preferred beams, and information about the transmission mode, where both M and N are positive integers greater than or equal to 1. And N is less than or equal to M.
  • the preferred beam indication information includes information of M preferred beams, and further includes channel quality information in a beam direction of the M preferred beams detected by the terminal, where M is a positive integer greater than or equal to 1;
  • the preferred beam configuration information sent by the second station to the first station includes information about the M preferred beams and the channel quality information;
  • the method further includes: the second station receiving the information that the first station determines to use the N preferred beams and the N One or more of the information of the uplink and downlink data of the beam or the transmission mode of the downlink control information are preferably forwarded to the terminal, and both M and N are positive integers greater than or equal to 1, and N is less than or equal to M.
  • the information of the transmission mode includes one or more of a coding modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the method further includes:
  • the second station sends training signal indication information to the terminal, where the training signal indication information includes resource information of the training signal and corresponding beam information, where the resource information includes time domain resources, frequency domain resources, and sequence resources. And one or more of the power resources, different beam information under the same first station corresponds to different beam directions.
  • the resource information of the training signal includes a sequence resource of the training signal, and the sequence resource of the training signal multiplexes a sequence resource of the synchronization signal.
  • the training signal indication information further includes information of an uplink resource allocated by the second station for the preferred beam indication information
  • the second station Receiving, by the second station, the preferred beam indication information sent by the terminal, the second station receiving, according to the information about the uplink resource, the preferred beam indication information sent by the terminal.
  • the method further includes:
  • the second station sends training signal configuration information to the first station, where the training signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes time domain resources, frequency domain resources, One or more of the sequence resource and the power resource, and different beam information under the same first site corresponds to different beam directions.
  • the sending, by the second station, the training signal configuration information to the first station includes: receiving, by the second station, a negative acknowledgement NACK for the downlink data or a notification that the terminal does not receive the downlink data And transmitting the training signal configuration information to the first station.
  • the resources of the training signals in the configuration information are different
  • the second station Transmitting, by the second station, the preferred beam configuration information to the first station, when the preferred beam indication information includes information of a preferred beam from a plurality of first sites, the second station is configured to have a preferred beam
  • the plurality of first stations respectively send the preferred beam configuration information, so that the multiple first stations perform downlink transmission to the terminal in a spatial diversity or spatial multiplexing manner.
  • the first site is a site for downlink transmission only, and the downlink frequency of the first site
  • the rate is greater than 6 GHz and the downlink frequency of the second station is less than 6 GHz.
  • a second station includes a hybrid beam training device, the hybrid beam training device comprising:
  • the beam information receiving module is configured to: receive the preferred beam indication information sent by the terminal, where the preferred beam indication information includes information of the preferred beam determined by the terminal according to the detection result of the training signal;
  • the beam information configuration module is configured to: send preferred beam configuration information to the first station, where the preferred beam configuration information includes information of at least part of the preferred beam and information of the terminal;
  • the downlink frequency of the second station is smaller than the downlink frequency of the first station, and the training signal is sent by the first station to the terminal in multiple beam directions, and the multiple beam directions are The training signals sent on are different from each other.
  • the preferred beam indication information received by the beam information receiving module includes information of M preferred beams, and further includes channel quality information in a beam direction of the M preferred beams detected by the terminal, where M is greater than or equal to 1 Positive integer
  • the hybrid beam training device further includes:
  • the beam decision module is configured to: determine, according to the channel quality information received by the beam information receiving module, a manner of transmitting N preferred beams to be used and uplink or downlink data or downlink control information of the N preferred beams;
  • a sending mode configuration module configured to: send one or more pieces of information of the N preferred beams and information of the sending mode determined by the beam determining module to the terminal, where both M and N are greater than Or a positive integer equal to 1, and N is less than or equal to M;
  • the preferred beam configuration information sent by the beam information configuration module includes information about the N preferred beams, and information about the transmission mode.
  • the information of the transmission mode includes a coding modulation mode, a scrambling code sequence, and a time domain. One or more of location and frequency domain locations.
  • the preferred beam indication information received by the beam information receiving module includes information of M preferred beams, and further includes channel quality information in a beam direction of the M preferred beams detected by the terminal, where M is greater than or equal to 1 Positive integer
  • the preferred beam configuration information sent by the beam information configuration module includes information of the M preferred beams and the channel quality information;
  • the hybrid beam training device further includes:
  • the sending mode configuration module is configured to: receive one or more of information about N preferred beams to be used by the first station, and information about sending manners of the N preferred beam uplink and downlink data or downlink control information Forwarding to the terminal, both M and N are positive integers greater than or equal to 1, and N is less than or equal to M; the information of the transmission mode includes a coded modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location. One or more of them.
  • the hybrid beam training device further includes:
  • the training signal indication module is configured to: before the beam information receiving module receives the preferred beam indication information sent by the terminal, send training signal indication information to the terminal, where the training signal indication information includes resource information of the training signal and Corresponding beam information, the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and different beam information under the same first site corresponds to different beam directions.
  • the resource information of the training signal sent by the training signal indicating module includes a sequence resource of the training signal, and the sequence resource of the training signal multiplexes a sequence resource of the synchronization signal.
  • the training signal indication information sent by the training signal indication module further includes information about an uplink resource allocated by the second station for the preferred beam indication information;
  • the receiving, by the beam information receiving module, the preferred beam indication information sent by the terminal includes: receiving, according to the information about the uplink resource, the preferred beam indication information sent by the terminal.
  • the hybrid beam training device further includes:
  • the training signal configuration module is configured to: before the beam information receiving module receives the preferred beam indication information sent by the terminal, send training signal configuration information to the first station, where the training The signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and is different under the same first site.
  • the beam information corresponds to different beam directions.
  • the training signal configuration module sends the training signal configuration information to the first station, including: when receiving the negative acknowledgement NACK of the downlink data by the terminal or the notification message of the downlink data not received by the terminal, The first station sends the training signal configuration information.
  • the training signal configuration module sends the training signal configuration information to the first station, including: sending different training signal configuration information to the plurality of first stations, where the training signal configuration information is sent to different first stations.
  • the resources of the training signal are different;
  • Transmitting the preferred beam configuration information to the first station by the beam information configuration module including: when the preferred beam indication information includes information of a preferred beam from a plurality of first sites, to the plurality of preferred beams
  • the first station separately sends the preferred beam configuration information, so that the multiple first stations perform downlink transmission to the terminal in a spatial diversity or spatial multiplexing manner.
  • the downlink frequency of the second station is less than 6 GHz.
  • a hybrid beam training method is applied to a terminal, including:
  • the terminal determines a preferred beam according to the detection result of the training signal, and sends preferred beam indication information to the second station, where the preferred beam indication information includes information of the preferred beam;
  • the downlink frequency of the first station is greater than the downlink frequency of the second station, and the preferred beam is an candidate beam that is performed by the first station to perform downlink transmission to the terminal.
  • Determining, by the terminal, a preferred beam according to the detection result of the training signal including:
  • the terminal Determining, by the terminal, the received result according to the detection result of the received training signal Whether the reception quality of the training signal satisfies the set condition, and the beam in the beam direction corresponding to the one or more training signals whose reception quality satisfies the setting condition is determined as the preferred beam.
  • the method further includes:
  • the preferred beam indication information further includes one or more of the following: channel quality information detected by the terminal in a beam direction of the determined preferred beam, and whether the terminal supports capability information of multiple beam simultaneous reception.
  • the method further includes:
  • the terminal receives the training signal indication information sent by the second station, where the training signal indication information includes resource information of the training signal and corresponding beam information, where the resource information includes a time domain resource, a frequency domain resource, and a sequence.
  • the resources and the power resources, and different beam information under the same first station corresponds to different beam directions;
  • the receiving, by the terminal, the training signal sent by the first station in multiple beam directions includes: the terminal receiving the training signal according to the resource information of the training signal.
  • the resource information of the training signal includes a sequence resource of the training signal, and the sequence resource of the training signal multiplexes a sequence resource of the synchronization signal;
  • the terminal synchronizes with the first station by receiving the training signal during initial access.
  • the first station is a station for downlink transmission only, and the downlink frequency of the first station is greater than 6 GHz GHz, and the downlink frequency of the second station is less than 6 GHz.
  • a terminal includes a hybrid beam training device, the hybrid beam training device comprising:
  • the training signal receiving module is configured to: receive a training signal sent by the first station in multiple beam directions, and detect the received training signal, where the training signals sent in the multiple beam directions are different from each other;
  • the beam selection and indication module is configured to: determine a preferred beam according to the detection result of the training signal by the training signal receiving module, and send preferred beam indication information to the second station, where the preferred beam indication information includes the preferred beam information;
  • the downlink frequency of the first station is greater than the downlink frequency of the second station, and the preferred beam is an candidate beam that is performed by the first station to perform downlink transmission to the terminal.
  • Determining, by the beam selection and indication module, the preferred beam according to the detection result of the training signal comprising: determining, according to the detection result of the received training signal, whether the received quality of the received training signal meets a setting Condition, determining a beam in a beam direction corresponding to one or more training signals whose quality meets the set condition is the preferred beam.
  • the hybrid beam training device further includes a downlink receiving module
  • the downlink receiving module is configured to: after the beam selection and indication module sends the preferred beam indication information, receive information about a manner of sending downlink data or downlink control information sent by the second station, according to the sending manner Receiving the downlink data or the downlink control information sent by the first station on the preferred beam determined by the terminal; or
  • the downlink receiving module is configured to: after the beam selection and indication module sends the preferred beam indication information, receive the information about the preferred beam to be used sent by the second station, and the preferred beam uplink and downlink data to be used. Or information about how the downlink control information is sent, and The preferred beam is used to receive downlink data or downlink control information sent by the first station according to a sending manner indicated by the information of the sending mode.
  • the preferred beam indication information sent by the beam selection and indication module further includes one or more of the following: channel quality information detected by the terminal in a beam direction of the determined preferred beam, whether the terminal supports multiple beam simultaneous reception Ability information.
  • the training signal receiving module is further configured to: before receiving the training signal sent by the first station in multiple beam directions, receive training signal indication information sent by the second station, where the training signal indication information includes The resource information of the training signal and the corresponding beam information, the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and different beam information corresponding to the same first site is different.
  • Beam direction includes the training signal indication information sent by the second station.
  • the training signal receiving module receives the training signal sent by the first station in multiple beam directions, and includes: receiving the training signal according to resource information of the training signal.
  • the resource information of the training signal received by the training signal receiving module includes a sequence resource of the training signal, and the sequence resource of the training signal multiplexes a sequence resource of the synchronization signal;
  • the training signal receiving module is further configured to: synchronize the terminal with the first station by receiving the training signal.
  • the hybrid beam training method, the station, and the terminal provided by the embodiment of the present invention send the training signal to the terminal in multiple beam directions through the first station, and the training signals sent in the multiple beam directions are different from each other;
  • the preferred beam configuration information is sent by the second station, so that the terminal and the preferred beam indicated by the preferred beam configuration information are used for downlink transmission to the terminal on at least part of the preferred beam.
  • the technical solution provided by the embodiment of the present invention is adopted by the second site. Auxiliary, the training of the downlink preferred beam of the first station is implemented, and the first station can serve the terminal with the preferred beam, thereby improving the downlink service quality.
  • FIG. 1 is a schematic diagram of an application scenario of a hybrid beam training method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a hybrid beam training method according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of another hybrid beam training method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a first station according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of a hybrid beam training method according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of another hybrid beam training method according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a second station according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart of a hybrid beam training method according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart of signaling interaction of a hybrid beam training method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another application scenario of a hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of signaling interaction of another hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of signaling interaction of still another hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of signaling interaction of another hybrid beam training method according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present disclosure.
  • FIG. 18 is a signaling interaction process of a hybrid beam training method according to an embodiment of the present invention.
  • FIG. 19 is a flowchart of signaling interaction of a hybrid beam training method according to an embodiment of the present invention.
  • the following is explained by several embodiments.
  • the following embodiment is based on a system including a first station, a second station, and a terminal, where the downlink frequency of the first station is greater than the downlink frequency of the second station.
  • the first station is only used for downlink transmission.
  • There is only downlink transmission between the station and the terminal that is, only downlink data is sent to the terminal, and uplink data of the terminal is not received.
  • the downlink frequency is greater than 6 GHz
  • the downlink frequency of the second station is less than 6 GHz.
  • the interface communication can be directly performed between the first site and the second site, or can be realized by forwarding of the core network side entity.
  • FIG. 1 is a schematic diagram of an application scenario of a hybrid beam training method according to an embodiment of the present invention.
  • a communication system to which the method is applied :
  • the first site is a communication site that employs an antenna transmit beam having beam characteristics to achieve coverage of the intended area by transmission in multiple beam directions.
  • the first station is a high frequency frequency point that operates in a centimeter wave band or a millimeter wave band, for example, above 6 GHz (eg, 45 GHz, 60 GHz, etc.).
  • a high frequency base station For a high frequency base station (HBS), a directional beam is usually transmitted in order to increase the antenna gain, and coverage of an expected area is achieved by combining multiple beam directions.
  • the first station may be a macro base station in a high frequency communication system, a micro station (such as pico, Fetmo, etc.), an access point (such as a relay node Relay, etc.).
  • the second station is a communication station that uses a beamwidth wider than the first station beamwidth or uses sector transmission or uses quasi-omnidirectional or omnidirectional transmission to assist in realizing the first station relative to the end.
  • the second station is a low frequency frequency point operating below 6 GHz, for example, an LTE system evolved Node B (eNB) operating at 2.4 GHz, using a 120 degree sector transmission. .
  • eNB LTE system evolved Node B
  • the second site also includes a communication site that uses a 360-degree omnidirectional antenna, or an approximately omnidirectional (quasi-omnidirectional) antenna for transmission; the second site also includes a communication site that also utilizes an antenna-transmitted beam with beam characteristics, and has Better coverage is achieved than the first station beamwidth that requires auxiliary transmission.
  • the coverage of the cell of the second site (cell1) overlaps with the cell of the cell of the first site (cell2).
  • the cell of the second site (cell1) completely covers the cell of the first site (cell2). Coverage.
  • the eNB is shown as the first site, and other systems, such as the Global System for Mobile Communication (GSM), and the Universal Mobile Telecommunications System (UMTS) ), Code Division Multiple Access (CDMA) 95/Code Division Multiple Access 2000 (ie CDMA95/CDMA2000), Long Term Evolution Technology Upgrade (LTE-Advanced, LTE-A) system, etc.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • CDMA95/CDMA2000 Code Division Multiple Access 2000
  • LTE-A Long Term Evolution Technology Upgrade
  • the terminal supports access to the first station and the second station, that is, the terminal supports working in the high frequency band and the low frequency band.
  • the terminal of the present application may be a terminal in a communication system that can complete the hybrid beam training method of the present application, such as a mobile terminal or an Internet of Things terminal in the related art.
  • FIG. 2 is a flowchart of a hybrid beam training method according to Embodiment 1 of the present invention.
  • the method provided by the embodiment of the present invention is applied to a first site, and the method may include the following steps, that is, step 110 to step 130. :
  • Step 110 The first station sends training signals in multiple beam directions, and the training signals sent in the multiple beam directions are different from each other;
  • Step 120 The first station receives the preferred beam configuration information sent by the second station.
  • Step 130 The terminal and the preferred beam indicated by the first station according to the preferred beam configuration information, Downlink transmission to the terminal is performed on at least part of the preferred beam.
  • the downlink frequency of the first station is greater than the downlink frequency of the second station; in addition, the preferred beam is determined according to the detection result of the training signal by the terminal.
  • FIG. 3 is a flowchart of another hybrid beam training method according to Embodiment 1 of the present invention.
  • the method provided by the embodiment of the present invention may be performed before step 110. include:
  • Step 100 The first station receives training signal configuration information sent by the second station, and determines a sending configuration of the training signal according to the training signal configuration information.
  • the training signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, where the Different beam information under one site corresponds to different beam directions.
  • the beam information may be, for example, a beam index, and a beam direction corresponding to different beam indexes may be configured in a site or agreed in a standard/protocol.
  • a beam direction corresponding to different beam indexes may be configured in a site or agreed in a standard/protocol.
  • the implementation of the foregoing step 110 may include: the first station sends the training signal in multiple beam directions according to the sending configuration of the training signal, and may adopt a timing manner or an event triggering manner, for example, receiving After the training signal configuration information sent by the second station, the training signal is periodically transmitted.
  • the first station and/or the second station may determine a preferred beam to be used and a downlink transmission mode based on the preferred beam detected by the terminal and the corresponding channel quality information.
  • the preferred beam to be used and the downlink transmission mode may be determined by the second station.
  • the preferred beam configuration information in the embodiment of the present invention may include the information of the terminal, the information of the N preferred beams, and the information about the manner in which the N preferred beam uplink and downlink data or the downlink control information is sent.
  • the step 130 is performed.
  • the implementation manner may include: the first station sends downlink data or downlink control information to the terminal according to the sending manner on the N preferred beams, where N is a positive integer greater than or equal to 1.
  • the preferred beam to be used and the downlink transmission mode may also be determined by the first station.
  • the preferred beam configuration information in the embodiment of the present invention may include a letter of the terminal.
  • the information of the M preferred beams and the channel quality information in the beam direction of the M preferred beams detected by the terminal; after the step 120, the embodiment of the present invention may further include:
  • Step 121 The first station determines, according to the channel quality information, the N preferred beams to be used, and the manner in which the N preferred beams are uplink and downlink data or downlink control information, and sends information about the N preferred beams through the second station. One or more of the information in the mode is notified to the terminal.
  • step 121 is selectively performed. If the preferred beam to be used by the second station and the downlink transmission mode are determined, step 121 is not performed, if determined by the first station, Step 121 is performed by using the preferred beam and the downlink transmission mode.
  • the information about the sending manner includes one or more of a coded modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the above channel quality information may be represented by received power in the beam direction of the M preferred beams.
  • the first station or the second station directly determines the preferred beam as the preferred beam to be used, and the information of the preferred beam to be used may not need to be sent to the terminal.
  • the embodiment of the present invention further provides a first station, including a hybrid beam training device 10, as shown in FIG. 4, which is a schematic structural diagram of a first site according to Embodiment 1 of the present invention.
  • the hybrid beam training device 10 in a station may include:
  • the training signal sending module 11 is configured to: send training signals to the terminal in multiple beam directions, and the training signals sent in the multiple beam directions are different from each other;
  • the downlink transmission module 12 is configured to: receive the preferred beam configuration information sent by the second station, and perform downlink transmission to the terminal on the at least part of the preferred beam according to the terminal and the preferred beam indicated by the preferred beam configuration information;
  • the downlink frequency of the first station provided by the embodiment of the present invention is greater than the downlink frequency of the second station, and the preferred beam is determined according to the detection result of the training signal by the terminal.
  • the hybrid beam training device 10 may further include:
  • the training signal receiving module is configured to: before the training signal sending module 11 sends the training signal to the terminal in multiple beam directions, receive the training signal configuration information sent by the second station, and determine the sending of the training signal according to the training signal configuration information. Configuration.
  • the implementation manner that the training signal sending module 11 sends the training signal to the terminal in multiple beam directions may include: transmitting the configuration of the training signal determined by the training signal receiving module to the terminal in multiple beam directions. Send a training signal;
  • the training signal configuration information in the embodiment of the present invention includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and the same first Different beam information under the station corresponds to different beam directions.
  • the preferred beam configuration information received by the downlink transmission module 12 includes the information of the terminal, the information of the N preferred beams, and the information about the manner in which the N preferred beam uplink and downlink data or the downlink control information is sent.
  • the downlink transmission module 12 The implementation of the downlink transmission to the terminal on the at least part of the preferred beam may include: sending, on the N preferred beams, downlink data or downlink control information to the terminal according to the foregoing sending manner, where N is greater than or equal to 1. A positive integer. or
  • the preferred beam configuration information received by the downlink transmission module 12 includes the information of the terminal, the information of the M preferred beams, and the channel quality information in the beam direction of the M preferred beams detected by the terminal.
  • the downlink transmission module 12, The method is further configured to: after receiving the preferred beam configuration information sent by the second station, determine, according to the channel quality information, how to send the N preferred beams and the N preferred beam uplink and downlink data or downlink control information, and pass the The second station notifies the terminal to one or more of the information of the N preferred beams and the information of the determined transmission mode.
  • the downlink transmission module 12 performs the terminal to the terminal on at least part of the preferred beam.
  • the implementation of the downlink transmission may include: sending downlink data or downlink control information to the terminal according to the determined transmission manner on the N preferred beams, where both M and N are positive integers greater than or equal to 1, and N is small. Or equal to M;
  • the information of the foregoing transmission mode includes one or more of a coding modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the first station in the embodiment of the present invention is a station that is only used for downlink transmission, and the downlink frequency of the first station is greater than 6 GHz.
  • FIG. 5 is a flowchart of a hybrid beam training method according to Embodiment 2 of the present invention
  • the method provided by the embodiment of the present invention is applied to a second site, and the method may include the following steps, that is, Step 210 to Step 220 :
  • Step 210 The second station receives the preferred beam indication information sent by the terminal, where the preferred beam indication information includes information about the preferred beam determined by the terminal according to the detection result of the training signal.
  • Step 220 The second station sends the preferred beam configuration information to the first station, where the preferred beam configuration information includes information of at least part of the preferred beam and information of the terminal.
  • the downlink frequency of the second station is smaller than the downlink frequency of the first station
  • the training signal in step 210 is sent by the first station to the terminal in multiple beam directions, and multiple beam directions
  • the training signals sent on are different from each other.
  • FIG. 6 is a flowchart of another hybrid beam training method according to Embodiment 2 of the present invention.
  • the method provided by the embodiment of the present invention may be performed before step 210. include:
  • Step 200 The second station sends training signal configuration information to the first station, and sends training signal indication information to the terminal.
  • the training signal indication information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and the same Different beam information under the first station corresponds to different beam directions.
  • the resource information of the training signal includes a sequence resource of the training signal
  • the sequence resource of the training signal multiplexes the sequence resource of the synchronization signal.
  • the training signal can also be reused under other A row reference signal, or a signal dedicated to downlink preferred beam training.
  • the training signal configuration information includes resource information of the training signal and corresponding beam information, where the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and the same Different beam information under the first station corresponds to different beam directions.
  • the implementation manner that the second station sends the training signal configuration information to the first station in step 200 may include: receiving, by the second station, a negative acknowledgement (NACK) of the downlink data by the terminal or When the terminal sends a notification message that does not receive downlink data, the training signal configuration information is sent to the first station.
  • NACK negative acknowledgement
  • the training signal indication information that is sent to the terminal in step 200 includes information about the uplink resource allocated by the second station for the preferred beam indication information; correspondingly, in the embodiment of the present invention, the foregoing steps
  • the implementation of the method may include: the second station may receive the preferred beam indication information sent by the terminal according to the information about the uplink resource allocated for the preferred beam indication information.
  • the first station and/or the second station may determine a preferred beam to be used and a downlink transmission mode based on the preferred beam detected by the terminal and the corresponding channel quality information.
  • the preferred beam to be used and the downlink transmission mode may be determined by the second station.
  • the preferred beam indication information in the embodiment of the present invention may include information of M preferred beams, and may also include channel quality information in a beam direction of M preferred beams detected by the terminal, where M is a positive integer greater than or equal to 1;
  • the second station may further include:
  • Step 211 The second station determines, according to the channel quality information, the N preferred beams to be used, and the manner in which the N preferred beams are uplink and downlink data or downlink control information.
  • Step 212 The second station sends one or more of the information of the N preferred beams and the information of the sending manner to the terminal.
  • the preferred beam configuration information sent by the second station to the first station in step 220 of the embodiment of the present invention includes information of N preferred beams, and information about the transmission mode, where both M and N are positive integers greater than or equal to 1, and N is less than or equal to M.
  • the preferred beam to be used may also be determined by the first station. And the way the downlink is sent.
  • the preferred beam indication information in the embodiment of the present invention may include information about M preferred beams, and may also include channel quality information in a beam direction of M preferred beams detected by the terminal, where M ⁇ 1 is a positive integer greater than or equal to 1.
  • the preferred beam configuration information sent by the second station to the first station in step 220 includes information of M preferred beams and channel quality information.
  • the method may further include:
  • Step 230 The second station receives one or more information of the information of the N preferred beams to be used by the first station and the information about the manner in which the N preferred beam uplink and downlink data or the downlink control information is sent, and forwards the information to the terminal.
  • M and N ⁇ 1 are both positive integers greater than or equal to 1, and N is less than or equal to M.
  • steps 211 to 212 and step 230 are selectively performed. If the preferred beam to be used and the downlink transmission mode are determined by the second station, step 200 to step 212 are performed. In step 220, if the preferred beam to be used and the downlink transmission mode are determined by the first station, steps 200 to 210 and steps 220 to 230 are performed.
  • the information about the sending manner includes one or more of a coded modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location.
  • the implementation of the step 200 in the embodiment of the present invention may be: the second station may separately send different training signal configuration information to the multiple first sites, where the training signals sent to different first sites are respectively sent.
  • the resources of the training signals in the configuration information are different.
  • the implementation of step 220 may include: the second station may separately send the preferred beams to the plurality of first stations having the preferred beams. The information is configured such that the plurality of first stations perform downlink transmission to the terminal in a spatial diversity or spatial multiplexing manner.
  • the embodiment of the present invention further provides a second station, including a hybrid beam training device 20, as shown in FIG. 7, which is a schematic structural diagram of a second site according to Embodiment 2 of the present invention.
  • the hybrid beam training device 20 in the two stations may include:
  • the beam information receiving module 21 is configured to: receive the preferred beam indication information sent by the terminal, where the preferred beam indication information includes information of the preferred beam determined by the terminal according to the detection result of the training signal;
  • the beam information configuration module 22 is configured to: send preferred beam configuration information to the first station, where the preferred beam configuration information includes information of at least a portion of the preferred beam and information of the terminal.
  • the downlink frequency of the second station is smaller than the downlink frequency of the first station, where the training signal is sent by the first station to the terminal in multiple beam directions, and the training signals sent in the multiple beam directions are mutually Not the same.
  • the preferred beam indication information received by the beam information receiving module 21 may include information of M preferred beams, and may also include channel quality information in the beam direction of the M preferred beams detected by the terminal, where M is a positive integer greater than or equal to 1.
  • the hybrid beam training device 20 in the embodiment of the present invention may further include:
  • the beam decision module is configured to determine, according to the channel quality information received by the beam information receiving module 21, the N preferred beams to be used and the manner in which the N preferred beam uplink and downlink data or the downlink control information are sent;
  • the sending mode configuration module is configured to: send one or more pieces of information of the N preferred beams and information of the sending mode determined by the beam determining module to the terminal, where both M and N are positive integers greater than or equal to And N is less than or equal to M.
  • the preferred beam configuration information sent by the beam information configuration module 22 of the embodiment of the present invention may include information of N preferred beams, and may also include information of the foregoing transmission mode.
  • the information of the transmission mode includes a coded modulation mode, a scrambling code sequence, and a time domain. One or more of location and frequency domain locations.
  • the preferred beam indication information received by the beam information receiving module 21 may include information of M preferred beams, and may also include channel quality information in a beam direction of the M preferred beams detected by the terminal, where M is a positive integer greater than or equal to 1;
  • the preferred beam configuration information sent by the beam information configuration module 22 may include information of the M preferred beams and the channel quality information.
  • the hybrid beam training device 20 in the embodiment of the present invention may further include:
  • the sending mode configuration module is configured to: receive one or more pieces of information of the N preferred beams to be used by the first station, and information about a sending manner of the N preferred beam uplink and downlink data or downlink control information, and forward the information For the terminal, both M and N are positive integers greater than or equal to 1, and N is less than or equal to M; the information of the foregoing transmission mode may include one of a coded modulation mode, a scrambling code sequence, a time domain location, and a frequency domain location or A variety.
  • the hybrid beam training device 20 in the embodiment of the present invention may further include:
  • the training signal indication module is configured to: before the beam information receiving module 21 receives the preferred beam indication information sent by the terminal, send the training signal indication information to the terminal, where the training signal indication information includes the resource information of the training signal and the corresponding beam information, the resource
  • the information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and different beam information under the same first site corresponds to different beam directions.
  • the resource information of the training signal sent by the training signal indicating module includes a sequence resource of the training signal, and the sequence resource of the training signal may multiplex the sequence resource of the synchronization signal.
  • the training signal indication information sent by the training signal indication module further includes information about an uplink resource allocated by the second station for the preferred beam indication information;
  • the beam information receiving module 21 receives the preferred beam indication information sent by the terminal, and may include: receiving the preferred beam indication information sent by the terminal according to the information of the uplink resource.
  • the hybrid beam training device 20 in the embodiment of the present invention may further include:
  • the training signal configuration module is configured to: before the beam information receiving module 21 receives the preferred beam indication information sent by the terminal, send training signal configuration information to the first station, where the training signal configuration information includes resource information of the training signal and corresponding beam information.
  • the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and different beam information under the same first site corresponds to different beam directions.
  • the implementation manner of the training signal configuration module sending the training signal configuration information to the first station may include: receiving a negative acknowledgement (NACK) of the downlink data by the terminal or a notification message that the terminal does not receive the downlink data, A station sends training signal configuration information.
  • NACK negative acknowledgement
  • the implementation manner of the training signal configuration module sending the training signal configuration information to the first station may include: separately transmitting different training signal configuration information to the plurality of first stations, where the training signal configuration information sent to the different first stations is The resources of the training signal are different;
  • the implementation manner of the beam information configuration module 22 transmitting the preferred beam configuration information to the first station may include: when the preferred beam indication information includes information of the preferred beams from the plurality of first sites, to the plurality of first sites having the preferred beam
  • the preferred beam configuration information is separately transmitted, so that the plurality of first stations perform downlink transmission to the terminal in a spatial diversity or spatial multiplexing manner.
  • the downlink frequency of the second station in the embodiment of the present invention is less than 6 GHz.
  • FIG. 8 which is a flowchart of a hybrid beam training method according to Embodiment 3 of the present invention
  • the method provided by the embodiment of the present invention is applied to a terminal, and the method may include the following steps, that is, Step 300 to Step 320:
  • Step 310 The terminal receives the training signal sent by the first station in multiple beam directions, and detects the received training signal, and the training signals sent in the multiple beam directions are different from each other.
  • the method may further include:
  • Step 300 The terminal receives the training signal indication information sent by the second station.
  • the training signal indication information includes resource information of the training signal and corresponding beam information, where the resource information includes one of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, or the same first site.
  • the different beam information corresponds to different beam directions.
  • An example of beam information is beam indexing.
  • the implementation manner of step 310 in the embodiment of the present invention may include: the terminal receiving the training signal according to the resource information of the training signal. If the resource information of the training signal includes a sequence resource of the training signal, the sequence resource of the training signal multiplexes the sequence resource of the synchronization signal; thus, when the terminal is initially accessed, the terminal can perform the first station by receiving the training signal. Synchronization.
  • Step 320 The terminal determines a preferred beam according to the detection result of the training signal, and sends preferred beam indication information to the second station, where the preferred beam indication information includes information of a preferred beam; the preferred beam is a downlink transmission of the first station to the terminal.
  • Alternative beam Alternative beam.
  • the determining, by the terminal, the implementation manner of the preferred beam according to the detection result of the training signal may include: determining, by the terminal, the received training according to the detection result of the received training signal. Whether the reception quality of the signal satisfies the setting condition, and determines a beam in a beam direction corresponding to one or more training signals whose reception quality satisfies the setting condition as a preferred beam.
  • the first station and/or the second station may determine a preferred beam to be used and a downlink transmission mode based on the preferred beam detected by the terminal and the corresponding channel quality information.
  • the preferred beam indication information in the step 320 may further include one or more of the following: channel quality information detected by the terminal in the beam direction of the determined preferred beam, and whether the terminal supports capability information of simultaneous reception of multiple beams.
  • the embodiment of the present invention may further include: the terminal receiving the downlink data sent by the second station or the information about the sending manner of the downlink control information, and determining, according to the sending manner indicated by the sending mode information, the terminal determining The preferred beam receives the downlink data or the downlink control information sent by the first station; or the terminal receives the information of the preferred beam to be used sent by the second station and the manner of transmitting the preferred beam uplink and downlink data or downlink control information to be used.
  • the information is received on the preferred beam to be used, and the downlink data or the downlink control information sent by the first station is received according to the transmission mode indicated by the information of the transmission mode.
  • the first site is a site that is only used for downlink transmission, and the downlink frequency of the first site is greater than 6 GHz, and the downlink frequency of the second site is less than 6 GHz.
  • the embodiment of the present invention further provides a terminal, including a hybrid beam training device 30, as shown in FIG. 9, which is a schematic structural diagram of a terminal according to Embodiment 3 of the present invention, and the hybrid beam training in the terminal provided by the embodiment of the present invention is provided.
  • Device 30 can include:
  • the training signal receiving module 31 is configured to: receive the first station to send in multiple beam directions Training the signal and detecting the received training signal, and the training signals sent in the multiple beam directions are different from each other;
  • the beam selection and indication module 32 is configured to: according to the training signal receiving module 31, determine a preferred beam for the detection result of the training signal, and send preferred beam indication information to the second station, where the preferred beam indication information includes information of the preferred beam;
  • the downlink frequency of the first station is greater than the downlink frequency of the second station
  • the appeal preference beam is an candidate beam that is performed by the first station to perform downlink transmission to the terminal.
  • the beam selection and indication module 32 determines the implementation manner of the preferred beam according to the detection result of the training signal, and may include: determining, according to the detection result of the received training signal, whether the received quality of the received training signal meets the set condition, The beam in the beam direction corresponding to the one or more training signals whose quality meets the set condition is determined to be a preferred beam.
  • the hybrid beam training device 30 in the embodiment of the present invention may further include: a downlink receiving module;
  • the downlink receiving module is configured to: after the beam selection and indication module 32 sends the preferred beam indication information, receive information about a manner of transmitting downlink data or downlink control information sent by the second station, and sending according to the information indicated by the sending mode.
  • the method is: receiving downlink data or downlink control information sent by the first station on a preferred beam determined by the terminal; or
  • the downlink receiving module is configured to: after the beam selection and indication module 32 sends the preferred beam indication information, receive information about the preferred beam to be used sent by the second station, and send the preferred beam uplink and downlink data or downlink control information to be used.
  • the information of the mode, and the downlink data or the downlink control information sent by the first station is received according to the sending manner indicated by the information of the sending mode on the preferred beam to be used.
  • the preferred beam indication information sent by the beam selection and indication module 32 may further include one or more of the following: channel quality information detected by the terminal in the beam direction of the determined preferred beam, and whether the terminal supports capability information of multiple beam simultaneous reception.
  • the training signal receiving module 31 is further configured to: before receiving the training signal sent by the first station in multiple beam directions, receive training signal indication information sent by the second station, where the training signal indication information includes resource information of the training signal and Corresponding beam information, the resource information includes one or more of a time domain resource, a frequency domain resource, a sequence resource, and a power resource, and different beam information in the same first site corresponds to different beam directions;
  • the implementation manner that the training signal receiving module 31 receives the training signal sent by the first station in multiple beam directions may include: receiving the training signal according to the resource information of the training signal.
  • the training signal indication information received by the training signal receiving module 31 may include a sequence resource of the training signal, and the sequence resource of the training signal multiplexes the sequence resource of the synchronization signal;
  • the training signal receiving module 31 is further configured to: synchronize the terminal with the first station by receiving the training signal.
  • FIG. 10 is a flowchart of signaling interaction of a hybrid beam training method according to an embodiment of the present invention, and each node is shown in FIG. A signaling process as a whole.
  • the second station first sends training signal configuration information to the first station, and sends training signal indication information to the terminal.
  • the first station After receiving the training signal configuration information, the first station periodically sends a training signal to the terminal.
  • the terminal receives and detects the training signal, and transmits preferred beam indication information to the second station, assuming that information of a preferred beam and channel quality information detected in the direction of the preferred beam are included therein.
  • the downlink transmission can then be performed in the following two ways:
  • Manner 1 The second station determines the transmission mode of the downlink data or the downlink control information on the preferred beam according to the channel quality information, and sends the information of the preferred beam and the information about the downlink data or the downlink control information to the first a second method, the second station sends the information about the preferred beam and the channel quality information to the first station by using the preferred beam configuration information, and the first station determines, according to the channel quality information, the downlink data or the downlink control information on the preferred beam. After the mode, sending information about the downlink data or the downlink control information to the second site;
  • the second station sends information about the downlink data or the downlink control information transmission manner to the terminal (in the figure) It is indicated by the downlink transmission mode information).
  • the first station sends downlink data or downlink control information to the terminal according to the sending manner indicated by the information of the sending mode.
  • the training of the downlink preferred beam of the first station (high frequency station) for performing downlink transmission is realized by the assistance of the second station (low frequency station), and the training signal transmission of the first station is configured by the second station.
  • the terminal measures the training signal sent by the first station, and the second station collects the measurement result of the preferred beam by the terminal, and configures the downlink data transmission of the first station and the downlink data reception of the terminal based on the measurement result.
  • the technical solution in the foregoing embodiment can enable the first station that is only used for downlink transmission to provide services for the terminal with the preferred beam, thereby improving the downlink service quality.
  • the second station may configure the resources of the training signal by coordinating, so as to avoid collision of the training signals sent by the multiple first stations, thereby reducing the error of the terminal identifying the preferred downlink beam.
  • the transmission of downlink data can also achieve global optimization.
  • FIG. 11 is a schematic diagram of another application scenario of a hybrid beam training method according to an embodiment of the present invention. This example is directed to a training process of a preferred beam of a high frequency station when a terminal initially accesses a high frequency cell, as shown in FIG. 12 is a signaling interaction flowchart of another hybrid beam training method according to an embodiment of the present invention, which is described in detail as follows:
  • Step 1 The eNB sends training signal configuration information to the high frequency station HBS.
  • the training signal configuration information is used to configure the HBS to allocate the resources of the training signal on the plurality of beams, including the time-frequency domain position of the training signal sent in the multiple beam directions, and the training signal sequence to be transmitted, respectively corresponding to the beam index.
  • the training signal configuration of two of the beams is given as shown in Table 1 below: the training signal may multiplex the synchronization signal or other downlink reference signal, or may be dedicated to transmit the signal for downlink preferred beam training.
  • the eNB and the HBS can be connected through a wired or wireless interface and exchange information; in practical applications, for example, through a fiber optic connection, or a wireless air interface (such as a high frequency link).
  • the HBS After receiving the training signal configuration, the HBS periodically transmits the configured training signals in multiple beam directions.
  • Step 2 The eNB sends the training signal indication information to the terminal at the f1 frequency, and is used to indicate to the UE the time-frequency domain position and sequence information of the HBS training signal, and the information of the corresponding beam, and the feedback is satisfied by the UE after the measurement meets the set condition.
  • Beam The content of the information is similar to that in Table 1.
  • the training signal indication information may further include a configuration in which the terminal feeds back the preferred beam, that is, it is agreed on which uplink resources the UE can feed back the preferred beam indication information.
  • Step 3 The UE measures the training signal
  • the UE uses the training signal sequence obtained in the training signal indication information to correlate with the training signal received at the specified time-frequency domain position, identifies the training signal that meets the set condition, and uses the corresponding beam as the preferred beam.
  • the setting condition mentioned here may be that the receiving quality of the training signal satisfies the set quality requirement. If the receiving power of the training signal in a certain beam direction is greater than the preset threshold, the beam is used as a preferred beam, which may be a potential service. For the UE.
  • the UE does not obtain downlink synchronization with the high-frequency station during the initial access process.
  • the training signal can be a synchronization signal at this time
  • the UE completes the optimization beam identification and completes the synchronization with the HBS.
  • the UE needs to make a time domain sliding correlation at a given frequency domain location to determine the location of the synchronization signal.
  • the UE After the UE identifies the preferred beam, information about the preferred beam is obtained, such as a beam index.
  • Step 4 The UE sends the preferred beam indication information to the eNB on the uplink frequency of the eNB cell.
  • the uplink resource occupied by the beam indication information transmission may be a previously agreed resource, or may be a time-frequency domain resource indicated by the eNB in the training signal indication information.
  • the UE provides information about the preferred beam to the eNB, such as (0000), And the received power (eg, -20 dBm) of the training signal in the beam direction.
  • Step 5 The eNB determines the downlink transmission mode of the HBS according to the preferred beam indication information of the UE.
  • the eNB determines to use the beam 0000 as the downlink transmit beam of the HBS to the UE, and determines the coded modulation mode used for transmitting the downlink control information on the downlink transmit beam according to the reception quality of the UE, and indicates the time-frequency domain occupied by the downlink control information. Resource location.
  • the eNB instructs the HBS to send information about the downlink control information transmission mode to the UE.
  • the UE may also acquire parameters such as the time-frequency domain location of the downlink data and the code modulation mode.
  • Step 6 The eNB sends the preferred beam configuration information to the HBS, and sends the information of the downlink control information transmission mode to the UE.
  • the preferred beam configuration information is used to indicate to the HBS the manner in which the downlink control information is transmitted.
  • the preferred beam configuration information may include: a preferred beam to be used, an identifier of the terminal, a coded modulation mode of the downlink control information, a time-frequency domain location, and a scrambling code sequence (generally related to the identifier CRNTI of the corresponding terminal);
  • the information about the downlink control information transmission manner may include: a coding modulation mode of the downlink control information, a time-frequency domain location, and a scrambling code sequence.
  • Step 7 The HBS transmits the downlink control information and the downlink data to the UE by using the beam 0000 at the frequency f2.
  • the transmission mode of the downlink control information adopts the transmission mode indicated in the preferred beam configuration information.
  • the UE descrambles the control information with the corresponding scrambling code sequence on the time-frequency domain resource where the downlink control information is located, and reads the time-frequency domain resource location and the code modulation mode of the downlink data from the control information, thereby finding the location of the downlink data. And receiving decoded downlink data.
  • FIG. 13 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present invention. This example is directed to a joint training process of multiple high frequency station preferred beams when a terminal initially accesses a high frequency cell.
  • FIG. 14 is a flowchart of signaling interaction of another hybrid beam training method according to an embodiment of the present invention, which is described in detail as follows:
  • Step 1 The eNB sends training signal configuration information to HBS1 and HBS2.
  • the unified configuration of the training signals of the HBS1 and HBS2 beams by the eNB avoids the collision of the training signals between the two HBSs. That is, the training signals transmitted by the beams of the two HBSs differ in at least one of the following: time domain location, frequency domain location, and used sequence.
  • Step 2 The eNB sends the training signal indication information to the terminal at the f1 frequency, and is used to indicate to the UE the time-frequency domain location and sequence information of the HBS training signal, and the information of the corresponding beam.
  • the eNB provides training signal configurations for each of the two sites of HBS1 and HBS2.
  • Step 3 The UE measures the training signal
  • the UE uses the training signal sequence obtained in the training signal indication information to correlate with the training signal received at the specified time-frequency domain position, and identifies a beam that meets the set condition as a preferred beam. It is assumed here that the index of the beam that meets the reception quality requirement determined by the UE is: 0000, 0010.
  • Step 4 The UE sends the preferred beam indication information to the eNB on the uplink frequency of the eNB cell.
  • the uplink resource occupied by the beam indication information transmission may be a previously agreed resource, or may be a time-frequency domain resource indicated by the eNB in the training signal indication information.
  • the UE provides the eNB with the index information 0000, 0010 of the preferred beam, and the received power (eg, -20 dBm, -25 dBm) of the training signal in the beam direction, and indicates to the eNB that the UE has both The ability to receive downlink data at beams 0000, 0010.
  • Step 5 The eNB determines, according to the preferred beam indication information of the UE, a manner of transmitting the downlink data of the HBS.
  • the beam 0000 and the beam 0010 belong to the HBS1 and the HBS2, and the eNB determines that the two stations jointly transmit the downlink data to the UE through the beams 0000 and 0010, respectively.
  • the eNB determines a coded modulation scheme for transmitting downlink data on each of the preferred beams.
  • HBS1 and HBS2 use the preferred beam to simultaneously transmit the same data at the same frequency, and form a forward superposition at the UE to enhance the service quality of the network to the UE, that is, the spatial diversity mode; 2.
  • HBS1. HBS2 uses different beams to transmit different data. In this case, when the UE receives data, it can distinguish two channels of data to improve the transmission rate, that is, the spatial multiplexing mode. The latter example will be described as an example.
  • Step 6 The eNB sends the preferred beam configuration information to the HBS1 and the HBS2, and sends the downlink to the UE.
  • Data transmission method information
  • the two preferred beam configuration information are used to indicate to HBS1, HBS2, respectively, the preferred beam to be used and the manner in which the preferred beam uplink and downlink data is transmitted.
  • the two preferred beam configuration information respectively include (corresponding to the HBS): a preferred beam to be used, an identifier of the terminal, a coded modulation mode of the downlink data, a time-frequency domain location, and a scrambling code sequence (usually corresponding to The identity of the terminal is related to CRNTI).
  • the transmission mode information of the downlink data includes: a coding and modulation mode of each of the two downlink data, a time-frequency domain location, and a scrambling code sequence.
  • Step 7 HBS1 transmits the first downlink data to the UE by using the beam 0000 on the frequency f2, and the HBS2 transmits the second downlink data to the UE by using the beam 0010 on the frequency f2.
  • the HBS does not send downlink control information to the terminal, and the eNB notifies the terminal about the manner in which the downlink data is transmitted.
  • the two downlink data are transmitted using the transmission mode indicated in the preferred beam configuration information.
  • the UE reads each downlink data separately on the time-frequency domain resource of each downlink data.
  • two high-frequency stations jointly transmit downlink data for the UE. If the UE capability allows, three or more high-frequency stations jointly transmit downlink data for the UE.
  • the method flow is similar to this example.
  • the present example is directed to the training process of the preferred beam of the high frequency station when the terminal is initially accessing the high frequency cell and the downlink data transmission mode is determined by the high frequency station, as shown in FIG. 15 .
  • a signaling interaction flowchart of another hybrid beam training method provided by an embodiment of the present invention is described in detail as follows:
  • the difference between this example and the first example is that the decision is made by the way the downlink data is sent, not the way the downlink control information is sent, and the way the downlink data is sent is determined by the high-frequency station.
  • the description is as follows:
  • Steps 1 through 4 are the same as those in Example 1, and are not described here.
  • Step 5 After receiving the preferred beam indication information of the UE, the eNB does not perform the decision of the downlink transmission mode, but sends the measurement result (preferred beam information and channel quality information) of the UE to the HBS through the preferred beam configuration information.
  • the preferred beam configuration information includes: the preferred beam is 0000, and the UE receives The received power of the training signal of beam 0000 is -20 dBm.
  • Step 6 The HBS determines the transmission mode of the downlink data, and sends the information of the corresponding transmission mode to the eNB.
  • the HBS determines to use the beam 0000 as the downlink transmit beam of the HBS to the UE, and determines the coded modulation mode, the time-frequency domain resource location, and the scrambling code sequence used for transmitting the downlink data on the downlink transmit beam according to the reception quality of the UE.
  • Step 7 The eNB forwards the sending mode information of the downlink data to the UE.
  • Step 8 The HBS transmits the downlink data to the UE by using the beam 0000 according to the determined transmission mode at the frequency f2.
  • FIG. 16 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present invention.
  • the training process may be as shown in FIG.
  • the flow chart is described in detail as follows:
  • Steps 1 and 2 are the same as steps 1 and 2 of the example, and are not described here.
  • Step 3 UE measures training signals
  • the UE uses the training signal sequence obtained in the training signal indication information to correlate with the training signal received at the specified time-frequency domain position, and identifies a beam that meets the set condition as a preferred beam.
  • the UE is in the initial access process, that is, the downlink synchronization is not obtained with the high frequency station.
  • the training signal is preferably a synchronization signal
  • the UE completes the preferred beam identification described above. Synchronization with HBS.
  • the UE needs to perform a time domain sliding correlation at a given frequency domain location to determine the location of the synchronization signal.
  • the UE After the UE identifies the preferred beam, the corresponding beam index is obtained, and the required beam index includes: 0000, 0010.
  • Step 4 The UE sends the preferred beam indication information to the eNB on the uplink frequency of the eNB cell.
  • the UE provides the eNB with index information 0000, 0010 of the preferred beam, And the received power (for example, -20 dBm, -25 dBm) of the training signal in the beam direction, and the UE supports capability information of simultaneous reception of multiple beams.
  • Step 5 After receiving the preferred beam indication information of the UE, the eNB forwards the measurement result of the UE (that is, the preferred beam information and the received power information) to the HBS through the preferred beam configuration information.
  • the preferred beam configuration information may include: an index of the preferred beam 0000, 0010, and the received power of the training signals received by the UE for the beams 0000 and 0010 are -20 dBm and -25 dBm, respectively.
  • Step 6 The HBS determines the transmission mode of the downlink data, and sends the transmission mode information of the row data to the eNB;
  • the HBS determines to use the beam 0000, 0010 as the downlink transmit beam of the HBS to the UE, and the two beams transmit the same downlink data on the same time-frequency resource to enhance the receiving quality of the UE.
  • the eNB combines the receiving quality of the UE, and considers the gain generated by the forward superposition of the two signals, determines the coded modulation mode used to transmit the downlink data on the downlink transmit beam, and indicates the time-frequency domain resource position occupied by the downlink data.
  • Step 7 The eNB forwards the sending mode information of the downlink data to the UE.
  • Step 8 The HBS transmits downlink data to the UE by using the beams 0000 and 0010 on the frequency f2.
  • the UE receives all directions.
  • FIG. 17 is a schematic diagram of still another application scenario of a hybrid beam training method according to an embodiment of the present invention.
  • a high-frequency station HBS changes with respect to a transmit beam direction of a terminal UE
  • beam training is preferred.
  • FIG. 18 is a flowchart of signaling interaction of a hybrid beam training method according to an embodiment of the present invention, which is described in detail below:
  • Step 1 Beam training triggering
  • the present example is directed to the case where the transmit beam of the HBS is changed with respect to the UE. Therefore, the initial state is that the HBS sends downlink data to the UE through the beam 0010. The UE cannot receive the downlink data transmitted by the beam 0010 due to the UE's movement; Both the eNB and the UE may trigger a beam training procedure (ie, re-acquiring the preferred beam direction procedure).
  • the UE side triggers, and when there is downlink data to be received but the UE does not receive, the UE notifies the eNB. Trigger beam training process;
  • the eNB does not receive the acknowledgment message from the UE for the downlink data. After receiving the downlink data of the HBS, the UE will feed back the ACK/NACK message through the uplink with the eNB. If the eNB does not receive the message, the UE The downlink data sent by the HBS is not received, and the eNB triggers the beam training process.
  • Step 2 The eNB sends training signal configuration information to the HBS.
  • the training signal configuration information is used to configure the HBS to allocate the resources of the training signal on the plurality of beams, including the time-frequency domain position of the training signal sent in the multiple beam directions, and the training signal sequence to be transmitted, respectively corresponding to the beam index.
  • the training signal may be multiplexed with a synchronization signal or other downlink reference signal, or may be a signal specifically transmitted for downlink preferred beam training.
  • the eNB and the HBS can be connected through a wired or wireless interface and exchange information; in practical applications, for example, through a fiber optic connection, or a wireless air interface (such as a high frequency link).
  • the HBS After receiving the training signal configuration information, the HBS triggers it to send the specified training signal in each beam direction. After receiving the training signal configuration information, the HBS may also periodically send the training signal.
  • Step 3 The eNB sends the training signal indication information to the terminal at the f1 frequency, and is used to indicate to the UE the time-frequency domain location and sequence information of the HBS training signal, and the information of the corresponding beam, and the training signal indication information may further include the terminal feedback preference.
  • the configuration of the beam that is, on which uplink resources the UE is subscribed to can feed back the preferred beam indication information.
  • Step 4 The UE measures the training signal
  • the UE uses the training signal sequence obtained in the training signal indication information to correlate with the training signal received at the specified time-frequency domain position, and identifies a beam that meets the set condition as a preferred beam. After the UE identifies the preferred beam training signal, the information of the corresponding beam is 0000.
  • Step 5 The UE sends the preferred beam indication information to the eNB on the uplink frequency of the eNB cell.
  • the UE provides the eNB with index information of the preferred beam, such as 0000, and the received power (eg, -20 dBm) of the training signal in the beam direction of the preferred beam.
  • Step 6 The eNB forwards the new preferred beam index to the HBS, and indicates the received power of the UE to the training signal in the new preferred beam direction.
  • Step 7 The HBS determines to replace the original preferred beam 0010 with the beam 0000, and continues to transmit downlink data for the terminal on the beam 0000, and determines the code modulation mode according to the received power of the UE.
  • Step 8 The HBS sends the transmission mode information that forms the downlink control information to the eNB, and is sent by the eNB to the UE.
  • the information that the HBS sends to the eNB includes: the information of the preferred beam to be used, the identifier of the terminal, the coding and modulation mode of the downlink control information, the time-frequency domain location, and the scrambling code sequence (usually related to the identifier CRNTI of the corresponding terminal);
  • the transmitted information includes information of a preferred beam to be used, a coded modulation mode of downlink control information, a time-frequency domain location, and a scrambling code sequence.
  • Step 7 The HBS is changed to use the beam 0000 to send downlink control information and downlink data to the UE at the frequency f2.
  • the UE descrambles the downlink control information by using the indicated scrambling code sequence on the indicated time-frequency domain resource according to the received transmission mode information, and reads the time-frequency domain resource location and the coding and modulation mode of the downlink data from the downlink control information. . Thereby finding the location of the downlink data and receiving the decoded downlink data.
  • This example is directed to the case where the downlink transmit beam of the high-frequency station changes.
  • the HBS changes the downlink data to the new preferred beam through the terminal's identification and feedback of the training signal. This process and the terminal initial access.
  • the difference in the high frequency beam includes the cause of the trigger, and the operation of the HBS is to change the beam direction from the original preferred beam direction, rather than determining the use of a certain beam direction.
  • the other steps are similar, so the flow described in this embodiment is also applicable to the scenarios described in Method Examples 2 through 4.
  • FIG. 19 is a flowchart of signaling interaction of a hybrid beam training method according to an embodiment of the present invention. This example is a description of how the training signal is configured.
  • the second station (eNB) transmits training signal configuration information to the first station (HBS) for configuring the HBS to configure the time-frequency domain position of the training signal in multiple beam directions and the training signal.
  • the configuration information is sent to the UE in the form of training signal indication information, for the UE to perform the preferred beam identification, and the eNB-based training signal indication information is used for the preferred beam identification, which can save the blind detection overhead of the UE.
  • the eNB sends the training signal configuration information to the HBS, but does not send the training signal indication information to the UE. In this case, in order to avoid collision of multiple HBS transmission training signals, the eNB still configures the training signal transmission mode for the HBS; The UE is indicated how the training signal is transmitted. At this time, the UE performs correlation detection using all possible training signal sequences in a predefined time-frequency resource or resource pool to find a training signal that meets the requirements, and identifies corresponding beam information therefrom.
  • the correspondence between the training signal and the beam index may be known by the UE, or the UE directly feeds back the time domain resource or the frequency domain resource or sequence corresponding to the identified training signal to the eNB, and the eNB may determine the training signal.
  • the corresponding beam may be known by the UE, or the UE directly feeds back the time domain resource or the frequency domain resource or sequence corresponding to the identified training signal to the eNB, and the eNB may determine the training signal.
  • the corresponding beam may be known by the UE, or the UE directly feeds back the time domain resource or the frequency domain resource or sequence corresponding to the identified training signal to the eNB, and the eNB may determine the training signal.
  • the corresponding beam may be known by the UE, or the UE directly feeds back the time domain resource or the frequency domain resource or sequence corresponding to the identified training signal to the eNB, and the eNB may determine the training signal.
  • the corresponding beam may be known by the UE, or the UE directly feeds back
  • the eNB does not send training signal configuration information to the HBS, but sends training signal indication information to the UE.
  • the training signal transmission mode of the HBS is not configured by the eNB.
  • the training signals of the beams in each HBS may be sent by the system planning, or by the network management side (such as the OAM of the operation and management system, the device management system).
  • EMS Network Management System
  • the eNB is aware of the information about the manner in which the training signals are sent.
  • the information may be fed back to the eNB by the HBS, or the eNB obtains the information through the core network side or the network management side, and the training signal is sent by the training signal to indicate the information.
  • the form is sent to the UE.
  • the UE performs correlation detection in the form described in Examples one through five to complete the identification of the preferred beam.
  • the eNB does not send the training signal configuration information to the HBS, and does not send the training signal indication information to the UE. This situation is a combination of the first two cases, and the signaling interaction overhead is the smallest.
  • the training signals of the beams in each HBS can be sent by the system planning, or by the network management side (such as the OAM of the operation and management system, the EMS of the equipment management system, and the network). Management System NMS)
  • the training signal transmission method configured for each HBS.
  • the HBS may not inform the eNB of the manner in which the training signal is transmitted, or may inform the eNB.
  • the information corresponding to the preferred training signal (such as a time domain resource or a frequency domain resource or sequence) is fed back to the eNB, and is fed back to the HBS by the eNB.
  • the preferred beam is determined.
  • the UE can know the mapping relationship between the time domain resource or the frequency domain resource or the sequence and the beam index of the training signal, and the UE can directly determine the preferred beam direction and feed back the information of the corresponding beam.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • the method of the above embodiment can be It can be implemented by means of software plus the necessary general hardware platform, of course, it can also be through hardware, but in many cases the former is a better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in various embodiments of the present invention.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention implements the training of the downlink preferred beam of the first station (high frequency station) for downlink transmission only by the assistance of the second station (low frequency station), and configures the training signal transmission of the first station by the second station.
  • the terminal measures the training signal sent by the first station, and the second site searches
  • the measurement result of the preferred beam by the terminal is configured, and the downlink data transmission of the first station and the downlink data reception of the terminal are configured based on the measurement result.
  • the technical solution in the foregoing embodiment can enable the first station that is only used for downlink transmission to provide services for the terminal with the preferred beam, thereby improving the downlink service quality.
  • the second station may configure the resources of the training signal by coordinating, so as to avoid collision of the training signals sent by the multiple first stations, thereby reducing the error of the terminal identifying the preferred downlink beam.
  • the transmission of downlink data can also achieve global optimization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种混合波束训练方法、站点及终端,其中,第一站点在多个波束方向上向终端发送训练信号,该多个波束方向上发送的训练信号互不相同;该第一站点接收第二站点发送的优选波束配置信息,根据该优选波束配置信息指示的终端和优选波束,在至少部分优选波束上进行到终端的下行传输;其中,该第一站点的下行频率大于第二站点的下行频率,该优选波束为根据终端对训练信号的检测结果确定的。

Description

一种混合波束训练方法、站点及终端 技术领域
本申请涉及但不限于通信技术系统。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,相关技术的商业通信主要使用的300兆赫兹(MHz)~3吉赫兹(GHz)之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在未来无线通信中,将会采用比第四代无线通信(the 4th Generation Mobile Communication,简称为:4G)系统所采用的载波频率更高的载波频率进行通信,例如采用28GHz、45GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。高频信道与长期演进(Long Term Evolution,简称为:LTE)系统相比,相同的覆盖区域可以获得的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称为:SINR)比不同,前者比后者存在至少20dB的SINR下降,为了保证高频通信与LTE系统覆盖范围内具有近似的SINR,需要保证高频通信的天线增益。值得庆幸的是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要发射多个波束才能完成全方位覆盖。由相关技术对LTE的设计思想可知,要想得到好的波束赋型效果需要准确的获得信道的状态信息,从而从信道的状态信息中获得波束赋型的权值。经研究发现,为获得较好的波束赋型权值,对于发送端基站来说,接收端终端需要反馈下行的信道状态信息或者权值。这时就会存在一 个问题:基站在获得权值前,无法利用最优的波束覆盖到接收端,从而接收端无法对基站发送的参考信号进行测量,或者即使基站覆盖到终端,但是终端无法达到基站的同样的覆盖,反馈的内容基站无法获知,从而也不能进行波束权值的选择和正常通信。
另外,高频网络大带宽的特点,可以很好地为相关技术中的网络进行数据分流,因此高频载波作为仅下行链路分流下行数据是一个典型场景。但在这样的场景下,如何实现优选下行波束的训练与反馈是一个更为棘手的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种混合波束训练方法、站点及终端,实现了高频站点下行优选波束的训练,可以使高频站点以优选波束为终端提供服务,提高了下行链路服务质量。
一种混合波束训练方法,应用于第一站点,包括:
所述第一站点在多个波束方向上向终端发送训练信号,所述多个波束方向上发送的训练信号互不相同;
所述第一站点接收第二站点发送的优选波束配置信息;
所述第一站点根据所述优选波束配置信息指示的终端和优选波束,在至少部分所述优选波束上进行到所述终端的下行传输;
其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束为根据所述终端对所述训练信号的检测结果确定的。
可选地,如上所述的混合波束训练方法中,所述第一站点在多个波束方向上向终端发送训练信号之前,所述方法还包括:
所述第一站点接收所述第二站点发送的训练信号配置信息,根据所述训练信号配置信息确定所述训练信号的发送配置;
所述第一站点在多个波束方向上发送训练信号,包括:所述第一站点根 据所述训练信号的发送配置,在所述多个波束方向上向所述终端发送所述训练信号;
其中,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的混合波束训练方法中,
所述优选波束配置信息包含所述终端的信息、N个优选波束的信息及所述N个优选波束上下行数据或下行控制信息的发送方式的信息;
所述第一站点在至少部分所述优选波束上进行到所述终端的下行传输,包括:所述第一站点在所述N个优选波束上,按照所述发送方式向所述终端发送下行数据或下行控制信息,N为大于或等于1的正整数。
可选地,如上所述的混合波束训练方法中,
所述优选波束配置信息包含所述终端的信息、M个优选波束的信息及所述终端检测的所述M个优选波束的波束方向上的信道质量信息;
所述第一站点接收第二站点发送的优选波束配置信息之后,所述方法还包括:所述第一站点根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式的信息,并通过所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项通知给所述终端;
所述第一站点在至少部分所述优选波束上进行到所述终端的下行传输,包括:所述第一站点在所述N个优选波束上,按照所确定的发送方式向所述终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小于或等于M。
可选地,如上所述的混合波束训练方法中,
所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,如上所述的混合波束训练方法中,
所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频 率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
一种第一站点,包括混合波束训练装置,所述混合波束训练装置包括:
训练信号发送模块,设置为:在多个波束方向上向终端发送训练信号,所述多个波束方向上发送的训练信号互不相同;
下行传输模块,设置为:接收第二站点发送的优选波束配置信息,根据所述优选波束配置信息指示的终端和优选波束,在至少部分所述优选波束上进行到所述终端的下行传输;
其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束为根据所述终端对所述训练信号的检测结果确定的。
可选地,如上所述的第一站点中,所述第一站点还包括:
训练信号接收模块,设置为:在所述训练信号发送模块在多个波束方向上向终端发送训练信号之前,接收所述第二站点发送的训练信号配置信息,根据所述训练信号配置信息确定所述训练信号的发送配置;
所述训练信号发送模块在多个波束方向上向终端发送训练信号,包括:根据所述训练信号接收模块确定的所述训练信号的发送配置,在所述多个波束方向上向所述终端发送所述训练信号;
其中,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的第一站点中,
所述下行传输模块接收的所述优选波束配置信息包含所述终端的信息、N个优选波束的信息及所述N个优选波束上下行数据或下行控制信息的发送方式的信息;所述下行传输模块在至少部分所述优选波束上进行到所述终端的下行传输,包括:在所述N个优选波束上,按照所述发送方式向所述终端发送下行数据或下行控制信息,N为大于或等于1的正整数;
或者,
所述下行传输模块接收的所述优选波束配置信息包含所述终端的信息、M个优选波束的信息及所述终端检测的所述M个优选波束的波束方向上的信 道质量信息;所述下行传输模块,还设置为:在接收第二站点发送的优选波束配置信息之后,根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式,并通过所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项通知给所述终端;所述下行传输模块在至少部分所述优选波束上进行到所述终端的下行传输,包括:在所述N个优选波束上,按照所确定的发送方式向所述终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小于或等于M;
其中,所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,如上所述的第一站点中,
所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz。
一种混合波束训练方法,应用于第二站点,包括:
所述第二站点接收终端发送的优选波束指示信息,所述优选波束指示信息包含所述终端根据训练信号的检测结果确定的优选波束的信息;
所述第二站点向所述第一站点发送优选波束配置信息,所述优选波束配置信息包含至少部分所述优选波束的信息和所述终端的信息;
其中,所述第二站点的下行频率小于所述第一站点的下行频率,所述训练信号是所述第一站点在多个波束方向上向所述终端发送的,且所述多个波束方向上发送的训练信号互不相同。
可选地,如上所述的混合波束训练方法中,
所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
所述第二站点接收终端发送的优选波束指示信息之后,所述方法还包括:所述第二站点根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式;
所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项发送给所述终端;
所述第二站点发送给所述第一站点的所述优选波束配置信息包含所述N个优选波束的信息,还包含所述发送方式的信息,M和N都为大于或等于1的正整数,且N小于或等于M。
可选地,如上所述的混合波束训练方法中,
所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
所述第二站点向所述第一站点发送的优选波束配置信息包含所述M个优选波束的信息和所述信道质量信息;
所述第二站点向所述第一站点发送优选波束配置信息后,所述方法还包括:所述第二站点接收所述第一站点确定要使用的N个优选波束的信息和所述N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M。
可选地,如上所述的混合波束训练方法中,
所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,如上所述的混合波束训练方法中,
所述第二站点接收终端发送的优选波束指示信息之前,还包括:
所述第二站点向所述终端发送训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的混合波束训练方法中,
所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源。
可选地,如上所述的混合波束训练方法中,
所述训练信号指示信息还包含所述第二站点为所述优选波束指示信息分配的上行资源的信息;
所述第二站点接收所述终端发送的优选波束指示信息,包括:所述第二站点根据所述上行资源的信息,接收所述终端发送的所述优选波束指示信息。
可选地,如上所述的混合波束训练方法中,
所述第二站点接收终端发送的优选波束指示信息之前,所述方法还包括:
所述第二站点向所述第一站点发送训练信号配置信息,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的混合波束训练方法中,
所述第二站点向所述第一站点发送训练信号配置信息,包括:所述第二站点在接收到所述终端对下行数据的否定应答NACK或所述终端发送的未接收到下行数据的通知消息时,向所述第一站点发送所述训练信号配置信息。
可选地,如上所述的混合波束训练方法中,
所述第二站点向所述第一站点发送训练信号配置信息,包括:所述第二站点向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同;
所述第二站点向所述第一站点发送优选波束配置信息,包括:在所述优选波束指示信息包含来自多个第一站点的优选波束的信息时,所述第二站点向具有优选波束的所述多个第一站点分别发送所述优选波束配置信息,以使得所述多个第一站点以空间分集或空间复用的方式进行到所述终端的下行传输。
可选地,如上所述的混合波束训练方法中,
所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频 率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
一种第二站点,包括混合波束训练装置,所述混合波束训练装置包括:
波束信息接收模块,设置为:接收终端发送的优选波束指示信息,所述优选波束指示信息包含所述终端根据训练信号的检测结果确定的优选波束的信息;
波束信息配置模块,设置为:向第一站点发送优选波束配置信息,所述优选波束配置信息包含至少部分所述优选波束的信息和所述终端的信息;
其中,所述第二站点的下行频率小于所述第一站点的下行频率,所述训练信号是所述第一站点在多个波束方向上向所述终端发送的,且所述多个波束方向上发送的训练信号互不相同。
可选地,如上所述的第二站点中,
所述波束信息接收模块接收的所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
所述混合波束训练装置还包括:
波束决策模块,设置为:根据所述波束信息接收模块接收的所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式;
发送方式配置模块,设置为:将所述波束决策模块确定的所述N个优选波束的信息和所述发送方式的信息中的一项或多项发送给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M;
所述波束信息配置模块发送的所述优选波束配置信息包含所述N个优选波束的信息,还包含所述发送方式的信息;所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,如上所述的第二站点中,
所述波束信息接收模块接收的所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
所述波束信息配置模块发送的所述优选波束配置信息包含所述M个优选波束的信息和所述信道质量信息;
所述混合波束训练装置还包括:
发送方式配置模块,设置为:接收所述第一站点确定要使用的N个优选波束的信息和所述N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M;所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,如上所述的第二站点中,
所述混合波束训练装置还包括:
训练信号指示模块,设置为:在所述波束信息接收模块接收终端发送的优选波束指示信息之前,向所述终端发送训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的第二站点中,
所述训练信号指示模块发送的所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源。
可选地,如上所述的第二站点中,
所述训练信号指示模块发送的所述训练信号指示信息还包含所述第二站点为所述优选波束指示信息分配的上行资源的信息;
所述波束信息接收模块接收所述终端发送的优选波束指示信息,包括:根据所述上行资源的信息,接收所述终端发送的所述优选波束指示信息。
可选地,如上所述的第二站点中,
所述混合波束训练装置还包括:
训练信号配置模块,设置为:在所述波束信息接收模块接收终端发送的优选波束指示信息之前,向所述第一站点发送训练信号配置信息,所述训练 信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,如上所述的第二站点中,
所述训练信号配置模块向所述第一站点发送训练信号配置信息,包括:在接收到所述终端对下行数据的否定应答NACK或所述终端发送的未接收到下行数据的通知消息时,向所述第一站点发送所述训练信号配置信息。
可选地,如上所述的第二站点中,
所述训练信号配置模块向所述第一站点发送训练信号配置信息,包括:向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同;
所述波束信息配置模块向所述第一站点发送优选波束配置信息,包括:在所述优选波束指示信息包含来自多个第一站点的优选波束的信息时,向具有优选波束的所述多个第一站点分别发送所述优选波束配置信息,以使得所述多个第一站点以空间分集或空间复用的方式进行到所述终端的下行传输。
可选地,如上所述的第二站点中,
所述第二站点的下行频率小于6吉赫兹GHz。
一种混合波束训练方法,应用于终端,包括:
所述终端接收第一站点在多个波束方向上发送的训练信号,并对接收到的所述训练信号进行检测,所述多个波束方向上发送的训练信号互不相同;
所述终端根据对所述训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,所述优选波束指示信息包含所述优选波束的信息;
其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束是所述第一站点进行到所述终端的下行传输的备选波束。
可选地,如上所述的混合波束训练方法中,
所述终端根据对所述训练信号的检测结果确定优选波束,包括:
所述终端根据对接收到的所述训练信号的检测结果,判断接收到的所述 训练信号的接收质量是否满足设定条件,将接收质量满足所述设定条件的一个或多个训练信号对应的波束方向上的波束确定为所述优选波束。
可选地,如上所述的混合波束训练方法中,
所述终端向所述第二站点发送优选波束指示信息之后,所述方法还包括:
所述终端接收所述第二站点发送的下行数据或下行控制信息的发送方式的信息,根据所述发送方式的信息所指示的发送方式,在所述终端确定的优选波束上接收所述第一站点发送的下行数据或下行控制信息;或者,
所述终端接收所述第二站点发送的要使用的优选波束的信息及所述要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在所述要使用的优选波束上,根据所述发送方式的信息所指示的发送方式,接收所述第一站点发送的下行数据或下行控制信息。
可选地,如上所述的混合波束训练方法中,
所述优选波束指示信息还包含以下一项或多项:所述终端在所确定的优选波束的波束方向上检测的信道质量信息,所述终端是否支持多波束同时接收的能力信息。
可选地,如上所述的混合波束训练方法中,
所述终端接收第一站点在多个波束方向上发送的训练信号之前,所述方法还包括:
所述终端接收所述第二站点发送的训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向;
所述终端接收第一站点在多个波束方向上发送的训练信号,包括:所述终端根据所述训练信号的资源信息接收所述训练信号。
可选地,如上所述的混合波束训练方法中,
所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源;
所述终端在初始接入时,通过对所述训练信号的接收,进行与所述第一站点的同步。
可选地,如上所述的混合波束训练方法中,
所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
一种终端,包括混合波束训练装置,所述混合波束训练装置包括:
训练信号接收模块,设置为:接收第一站点在多个波束方向上发送的训练信号,并对接收到的所述训练信号进行检测,所述多个波束方向上发送的训练信号互不相同;
波束选择及指示模块,设置为:根据所述训练信号接收模块对所述训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,所述优选波束指示信息包含所述优选波束的信息;
其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束是所述第一站点进行到所述终端的下行传输的备选波束。
可选地,如上所述的终端中,
所述波束选择及指示模块根据对所述训练信号的检测结果确定优选波束,包括:根据对接收到的所述训练信号的检测结果,判断接收到的所述训练信号的接收质量是否满足设定条件,将接收质量满足所述设定条件的一个或多个训练信号对应的波束方向上的波束确定为所述优选波束。
可选地,如上所述的终端中,
所述混合波束训练装置还包括下行接收模块;
所述下行接收模块,设置为:在所述波束选择及指示模块发送优选波束指示信息之后,接收所述第二站点发送的下行数据或下行控制信息的发送方式的信息,根据所述发送方式的信息所指示的发送方式,在所述终端确定的优选波束上接收所述第一站点发送的下行数据或下行控制信息;或者,
所述下行接收模块,设置为:在所述波束选择及指示模块发送优选波束指示信息之后,接收所述第二站点发送的要使用的优选波束的信息及所述要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在所述要 使用的优选波束上,根据所述发送方式的信息所指示的发送方式,接收所述第一站点发送的下行数据或下行控制信息。
可选地,如上所述的终端中,
所述波束选择及指示模块发送的优选波束指示信息还包含以下一项或多项:所述终端在所确定的优选波束的波束方向上检测的信道质量信息,所述终端是否支持多波束同时接收的能力信息。
可选地,如上所述的终端中,
所述训练信号接收模块,还设置为:在接收所述第一站点在多个波束方向上发送的训练信号之前,接收所述第二站点发送的训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向;
所述训练信号接收模块接收第一站点在多个波束方向上发送的训练信号,包括:根据所述训练信号的资源信息接收所述训练信号。
可选地,如上所述的终端中,
所述训练信号接收模块接收的所述训练信号的资源信息包含所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源;
所述训练信号接收模块,还设置为:通过对所述训练信号的接收,进行所述终端与所述第一站点的同步。
本发明实施例提供的混合波束训练方法、站点及终端,通过第一站点在多个波束方向上向终端发送训练信号,并且该多个波束方向上发送的训练信号互不相同;第一站点接收第二站点发送的优选波束配置信息,从而根据优选波束配置信息指示的终端和优选波束,在至少部分优选波束上进行到终端的下行传输;本发明实施例提供的技术方案,通过第二站点的辅助,实现了第一站点下行优选波束的训练,可以使第一站点以优选波束为终端提供服务,提高了下行链路服务质量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的混合波束训练方法的一种应用场景的示意图;
图2为本发明实施例一提供的一种混合波束训练方法的流程图;
图3为本发明实施例一提供的另一种混合波束训练方法的流程图;
图4为本发明实施例一提供的一种第一站点的结构示意图;
图5为本发明实施例二提供的一种混合波束训练方法的流程图;
图6为本发明实施例二提供的另一种混合波束训练方法的流程图;
图7为本发明实施例二提供的一种第二站点的结构示意图;
图8为本发明实施例三提供的一种混合波束训练方法的流程图;
图9为本发明实施例三提供的一种终端的结构示意图;
图10为本发明实施例提供的一种混合波束训练方法的信令交互流程图;
图11为本发明实施例提供的混合波束训练方法的另一种应用场景的示意图;
图12为本发明实施例提供的另一种混合波束训练方法的信令交互流程图;
图13为本发明实施例提供的混合波束训练方法的又一种应用场景的示意图;
图14为本发明实施例提供的又一种混合波束训练方法的信令交互流程图;
图15为本发明实施例提供的再一种混合波束训练方法的信令交互流程图;
图16为本发明实施例提供的混合波束训练方法的再一种应用场景的示意图;
图17为本发明实施例提供的混合波束训练方法的还一种应用场景的示意图;
图18为本发明实施例提供的还一种混合波束训练方法的信令交互流程 图;
图19为本发明实施例提供的还一种混合波束训练方法的信令交互流程图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸根据一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
下面通过几个实施例进行说明。以下实施例基于包括第一站点、第二站点和终端的系统,其中,第一站点的下行频率大于第二站点的下行频率,本发明实施例中,第一站点是仅用于进行下行传输的站点(和终端之间仅存在下行传输,即只向终端发送下行数据,不接收终端的上行数据)且下行频率大于6GHz,第二站点的下行频率小于6GHz。第一站点和第二站点之间可以直接进行接口通信,也可以通过核心网侧实体的转发实现通信。
如图1所示,为本发明实施例提供的混合波束训练方法的一种应用场景的示意图,在该方法应用的通信系统中:
第一站点是采用具有波束特性的天线发射波束的通信站点,通过在多个波束方向上的发射实现对预期区域的覆盖。在一种可能的应用场景中,第一站点为工作在厘米波频段或毫米波频段,例如6GHz以上(如45GHz,60GHz等)的高频频点。对于高频站点(High frequency Base Station,简称为:HBS),通常为了提高天线增益采用定向波束的方式进行传输,通过多个波束方向组合实现对预期区域的覆盖。第一站点可以是高频通信系统中的宏基站,微站(如pico,Fetmo等),接入点(如中继节点Relay等)。
第二站点,是采用比第一站点波束宽度更宽的波束发射或采用扇区发射或采用准全向或采用全向发射的通信站点,用于辅助实现第一站点相对于终 端的优选下行发射波束的识别与反馈,配置第一站点对终端的下行发送方式。在一种可能的应用场景中,第二站点为工作在6GHz以下的低频频点,例如工作在2.4GHz的LTE系统演进型基站(evolved Node B,简称为:eNB),采用120度扇区发射。第二站点中也包括采用360度全向天线,或近似全向(准全向)天线进行传输的通信站点;第二站点中也包括同样利用具有波束特征的天线发射波束的通信站点,且具有比需要辅助发射的第一站点波束宽度更宽,即可以获得更好的覆盖。
第二站点下属小区(cell1)与第一站点下属小区(cell2)的覆盖范围存在交叠;在一种可能的应用场景中,第二站点下属小区(cell1)完全覆盖第一站点下属小区(cell2)的覆盖范围。
本发明实施例中以eNB为第一站点予以示出,其他系统,例如全球移动通信系统(Global System for Mobile Communication,简称为:GSM)、通用移动通信系统(Universal Mobile Telecommunications System,简称为:UMTS)、码分多址(Code Division Multiple Access,简称为:CDMA)95/码分多址2000(即CDMA95/CDMA2000)、长期演进技术升级版(LTE-Advanced,简称为:LTE-A)系统等中的基站与eNB是类似的。
终端,支持接入第一站点和第二站点,即终端支持在高频频段和低频频段工作。本申请的终端可以是相关技术中的移动终端、物联网终端等任何可以完成本申请混合波束训练方法的通信系统中的终端。
实施例一
如图2所示,为本发明实施例一提供的一种混合波束训练方法的流程图,本发明实施例提供的方法应用于第一站点,该方法可以包括以下步骤,即步骤110~步骤130:
步骤110,第一站点在多个波束方向上发送训练信号,该多个波束方向上发送的训练信号互不相同;
步骤120,第一站点接收第二站点发送的优选波束配置信息;
步骤130,第一站点根据该优选波束配置信息指示的终端和优选波束, 在至少部分优选波束上进行到终端的下行传输。
本实施例中,第一站点的下行频率大于第二站点的下行频率;另外,上述优选波束为根据终端对训练信号的检测结果确定的。
可选地,图3为本发明实施例一提供的另一种混合波束训练方法的流程图,在图2所示实施例的基础上,本发明实施例提供的方法,在步骤110之前还可以包括:
步骤100,第一站点接收第二站点发送的训练信号配置信息,根据该训练信号配置信息确定训练信号的发送配置。
本实施例中,训练信号配置信息包含该训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,该第一站点下不同的波束信息对应不同的波束方向。
可选地,在本发明实施例中,上述波束信息例如可以是波束索引,不同的波束索引所对应的波束方向可以在站点中配置,或在标准/协议中约定。通过采用不同的波束赋型权值,可以在发射时实现不同的波束方向。
在本发明实施例中,上述步骤110的实现方式,可以包括:第一站点根据训练信号的发送配置,在多个波束方向上发送训练信号,可以采用定时方式或事件触发方式,例如,在接收到第二站点发送的训练信号配置信息后,周期性地发送训练信号。
在实际应用中,第一站点和/或第二站点可以基于终端检测的优选波束和相应的信道质量信息,确定要使用的优选波束和下行的发送方式。
可选地,在本发明实施例中,可以由第二站点确定要使用的优选波束及下行的发送方式。本发明实施例中的优选波束配置信息可以包含终端的信息、N个优选波束的信息及该N个优选波束上下行数据或下行控制信息的发送方式的信息;本发明实施例中,步骤130的实现方式,可以包括:第一站点在该N个优选波束上,按照发送方式向终端发送下行数据或下行控制信息,其中,N为大于或等于1的正整数。
可选地,在本发明实施例中,还可以由第一站点确定要使用的优选波束及下行的发送方式。本发明实施例中的优选波束配置信息可以包含终端的信 息、M个优选波束的信息及终端检测的该M个优选波束的波束方向上的信道质量信息;本发明实施例在步骤120之后,还可以包括:
步骤121,第一站点根据信道质量信息,确定要使用的N个优选波束及该N个优选波束上下行数据或下行控制信息的发送方式,并通过第二站点将N个优选波束的信息和发送方式的信息中的一项或多项通知给终端。
本发明实施例中,步骤130的实现方式,可以包括:第一站点在N个优选波束上,按照发送方式向终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小于或等于M。如果N=M,步骤121中可以不将这N个优选波束的信息通知终端。
需要说明的是,图3所示流程中,步骤121是选择性执行的,若由第二站点确定要使用的优选波束及下行的发送方式,则不执行步骤121,若由第一站点确定要使用的优选波束及下行的发送方式,则执行步骤121。
可选地,本发明实施例中,上述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。可选地,在一个示例中,上述信道质量信息可以用M个优选波束的波束方向上的接收功率来表示。
可选地,在另一个示例中,如果终端不具有多波束同时接收的能力,终端反馈给第二站点的优选波束指示信息中只包括1个优选波束的信息,即M=1。此时第一站点或第二站点直接将该优选波束确定为要使用的优选波束,可以不需要再向终端发送要使用的优选波束的信息。
本发明实施例还提供了一种第一站点,包括混合波束训练装置10,如图4所示,为本发明实施例一提供的一种第一站点的结构示意图,本发明实施例提供的第一站点中的混合波束训练装置10可以包括:
训练信号发送模块11,设置为:在多个波束方向上向终端发送训练信号,该多个波束方向上发送的训练信号互不相同;
下行传输模块12,设置为:接收第二站点发送的优选波束配置信息,根据该优选波束配置信息指示的终端和优选波束,在至少部分优选波束上进行到终端的下行传输;
本发明实施例提供的第一站点的下行频率大于第二站点的下行频率,上述优选波束为根据终端对训练信号的检测结果确定的。
可选地,在本发明实施例中,混合波束训练装置10还可以包括:
训练信号接收模块,设置为:在训练信号发送模块11在多个波束方向上向终端发送训练信号之前,接收该第二站点发送的训练信号配置信息,根据该训练信号配置信息确定训练信号的发送配置。
本发明实施例中,训练信号发送模块11在多个波束方向上向终端发送训练信号的实现方式,可以包括:根据训练信号接收模块确定的训练信号的发送配置,在多个波束方向上向终端发送训练信号;
本发明实施例中的训练信号配置信息包含训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,在本发明实施例的一种可能的实现方式中,
下行传输模块12接收的优选波束配置信息包含终端的信息、N个优选波束的信息及该N个优选波束上下行数据或下行控制信息的发送方式的信息;本发明实施例中,下行传输模块12在至少部分优选波束上进行到所述终端的下行传输的实现方式,可以包括:在该N个优选波束上,按照上述发送方式向终端发送下行数据或下行控制信息,N为大于或等于1的正整数。或者
可选地,在本发明实施例的另一种可能的实现方式中,
下行传输模块12接收的优选波束配置信息包含终端的信息、M个优选波束的信息及该终端检测的M个优选波束的波束方向上的信道质量信息;本发明实施例中,下行传输模块12,还设置为:在接收第二站点发送的优选波束配置信息之后,根据该信道质量信息,确定要使用的N个优选波束及该N个优选波束上下行数据或下行控制信息的发送方式,并通过第二站点将该N个优选波束的信息和已确定的发送方式的信息中的一项或多项通知给终端;本发明实施例中,下行传输模块12在至少部分优选波束上进行到终端的下行传输的实现方式,可以包括:在N个优选波束上,按照所确定的发送方式向终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小 于或等于M;
在本发明实施例中,上述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,本发明实施例中的第一站点是仅用于进行下行传输的站点,且该第一站点的下行频率大于6GHz。
实施例二
如图5所示,为本发明实施例二提供的一种混合波束训练方法的流程图,本发明实施例提供的方法应用于第二站点,该方法可以包括如下步骤,即步骤210~步骤220:
步骤210,第二站点接收终端发送的优选波束指示信息,该优选波束指示信息包含该终端根据训练信号的检测结果确定的优选波束的信息;
步骤220,第二站点向第一站点发送优选波束配置信息,该优选波束配置信息包含至少部分优选波束的信息和终端的信息。
在本发明实施例中,该第二站点的下行频率小于第一站点的下行频率,步骤210中的训练信号是第一站点在多个波束方向上向所述终端发送的,且多个波束方向上发送的训练信号互不相同。
可选地,图6为本发明实施例二提供的另一种混合波束训练方法的流程图,在图5所示实施例的基础上,本发明实施例提供的方法,在步骤210之前还可以包括:
步骤200,第二站点向第一站点发送训练信号配置信息,向终端发送训练信号指示信息。
本发明实施例中,上述训练信号指示信息包含该训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。可选地,若训练信号的资源信息包括训练信号的序列资源,训练信号的序列资源复用同步信号的序列资源。但不局限于此,训练信号也可以复用其他下 行参考信号,或者是专门用于下行优选波束训练的信号。
本发明实施例中,上述训练信号配置信息包含该训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,在本发明实施例中,步骤200中第二站点向第一站点发送训练信号配置信息的实现方式,可以包括:第二站点在接收到终端对下行数据的否定应答(NACK)或终端发送的未接收到下行数据的通知消息时,向第一站点发送该训练信号配置信息。
可选地,在本发明实施例中,步骤200中向终端发送的训练信号指示信息包含该第二站点为优选波束指示信息分配的上行资源的信息;相应地,本本发明实施例中,上述步骤210的实现方式,可以包括:第二站点可以根据为优选波束指示信息分配的上行资源的信息,接收终端发送的优选波束指示信息。
在实际应用中,第一站点和/或第二站点可以基于终端检测的优选波束和相应的信道质量信息,确定要使用的优选波束和下行的发送方式。
可选地,在本发明实施例中,可以由第二站点确定要使用的优选波束及下行的发送方式。本发明实施例中的优选波束指示信息可以包含M个优选波束的信息,还可以包含终端检测的M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;本发明实施例中,第二站点接收终端发送的优选波束指示信息之后,即在步骤210之后,还可以包括:
步骤211,第二站点根据信道质量信息,确定要使用的N个优选波束及该N个优选波束上下行数据或下行控制信息的发送方式;
步骤212,第二站点将该N个优选波束的信息和发送方式的信息中的一项或多项发送给终端。
本发明实施例的步骤220中第二站点向第一站点发送的优选波束配置信息包含N个优选波束的信息,还包含发送方式的信息,M和N都为大于或等于1的正整数,且N小于或等于M。
可选地,在本发明实施例中,还可以由第一站点确定要使用的优选波束 及下行的发送方式。本发明实施例中的优选波束指示信息可以包含M个优选波束的信息,还可以包含终端检测的M个优选波束的波束方向上的信道质量信息,M≥1为大于或等于1的正整数;本发明实施例中,步骤220中第二站点向第一站点发送的优选波束配置信息包含M个优选波束的信息和信道质量信息。另外,第二站点向第一站点发送优选波束配置信息之后,即在步骤220之后,所述方法还可以包括:
步骤230,第二站点接收第一站点确定要使用的N个优选波束的信息和该N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给终端,M和N≥1都为大于或等于1的正整数,且N小于或等于M。
需要说明的是,图6所示流程中,步骤211~步骤212与步骤230是选择性执行的,若由第二站点确定要使用的优选波束及下行的发送方式,则执行步骤200~步骤212和步骤220,若由第一站点确定要使用的优选波束及下行的发送方式,则执行步骤200~步骤210和步骤220~步骤230。
可选地,本发明实施例中,上述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,本发明实施例的在步骤200的实现方式,还可以为:第二站点可以向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同。通过第二站点的统筹配置,可以避免多个第一站点发送训练信号的冲突,从而减小了终端识别优选下行波束的误差。当步骤210中接收的优选波束指示信息包含来自多个第一站点的优选波束的信息时,步骤220的实现方式可以包括:第二站点可以向具有优选波束的多个第一站点分别发送优选波束配置信息,以使得多个第一站点以空间分集或空间复用的方式进行到终端的下行传输。
本发明实施例还提供了一种第二站点,包括混合波束训练装置20,如图7所示,为本发明实施例二提供的一种第二站点的结构示意图,本发明实施例提供的第二站点中的混合波束训练装置20可以包括:
波束信息接收模块21,设置为:接收终端发送的优选波束指示信息,该优选波束指示信息包含终端根据训练信号的检测结果确定的优选波束的信息;
波束信息配置模块22,设置为:向第一站点发送优选波束配置信息,该优选波束配置信息包含至少部分优选波束的信息和终端的信息。
本发明实施例提供的第二站点的下行频率小于第一站点的下行频率,上述训练信号是第一站点在多个波束方向上向终端发送的,且该多个波束方向上发送的训练信号互不相同。
可选地,在本发明实施例中,
波束信息接收模块21接收的优选波束指示信息可以包含M个优选波束的信息,还可以包含终端检测的M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数。
本发明实施例中的混合波束训练装置20还可以包括:
波束决策模块,设置为:根据波束信息接收模块21接收的信道质量信息,确定要使用的N个优选波束及该N个优选波束上下行数据或下行控制信息的发送方式;
发送方式配置模块,设置为:将波束决策模块确定的N个优选波束的信息和发送方式的信息中的一项或多项发送给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M。
本发明实施例的波束信息配置模块22发送的优选波束配置信息可以包含N个优选波束的信息,还可以包含上述发送方式的信息;该发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,在本发明实施例中,
波束信息接收模块21接收的优选波束指示信息可以包含M个优选波束的信息,还可以包含终端检测的M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
波束信息配置模块22发送的优选波束配置信息可以包含M个优选波束的信息和上述信道质量信息;
本发明实施例中的混合波束训练装置20还可以包括:
发送方式配置模块,设置为:接收第一站点确定要使用的N个优选波束的信息和该N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给终端,M和N都为大于或等于1的正整数,且N小于或等于M;上述发送方式的信息可以包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
可选地,本发明实施例中的混合波束训练装置20还可以包括:
训练信号指示模块,设置为:在波束信息接收模块21接收终端发送的优选波束指示信息之前,向终端发送训练信号指示信息,该训练信号指示信息包含训练信号的资源信息及对应的波束信息,资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,在本发明实施例的一种可能的实现方式中,
上述训练信号指示模块发送的训练信号的资源信息包括训练信号的序列资源,该训练信号的序列资源可以复用同步信号的序列资源。
可选地,在本发明实施例的另一种可能的实现方式中,
训练信号指示模块发送的训练信号指示信息还包含第二站点为优选波束指示信息分配的上行资源的信息;
本发明实施例中,波束信息接收模块21接收终端发送的优选波束指示信息的实现方式,可以包括:根据上行资源的信息,接收终端发送的优选波束指示信息。
可选地,本发明实施例中的混合波束训练装置20还可以包括:
训练信号配置模块,设置为:在波束信息接收模块21接收终端发送的优选波束指示信息之前,向第一站点发送训练信号配置信息,该训练信号配置信息包含训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
可选地,在本发明实施例的一种可能的实现方式中,
训练信号配置模块向第一站点发送训练信号配置信息的实现方式,可以包括:接收到所述终端对下行数据的否定应答(NACK)或终端发送的未接收到下行数据的通知消息时,向第一站点发送训练信号配置信息。
可选地,在本发明实施例的另一种可能的实现方式中,
训练信号配置模块向第一站点发送训练信号配置信息的实现方式,可以包括:向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同;
波束信息配置模块22向第一站点发送优选波束配置信息的实现方式,可以包括:在优选波束指示信息包含来自多个第一站点的优选波束的信息时,向具有优选波束的多个第一站点分别发送优选波束配置信息,以使得多个第一站点以空间分集或空间复用的方式进行到终端的下行传输。
可选地,本发明实施例中的第二站点的下行频率小于6GHz。
实施例三
如图8所示,为本发明实施例三提供的一种混合波束训练方法的流程图,本发明实施例提供的方法应用于终端,该方法可以包括如下步骤,即步骤300~步骤320:
步骤310,终端接收第一站点在多个波束方向上发送的训练信号,并对接收到的训练信号进行检测,该多个波束方向上发送的训练信号互不相同。
可选地,在本发明实施例中,在步骤310之前还可以包括:
步骤300,终端接收第二站点发送的训练信号指示信息;
本发明实施例中,该训练信号指示信息包含训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或,同一第一站点下不同的波束信息对应不同的波束方向。波束信息的一个示例是波束索引。相应地,本发明实施例中步骤310的实现方式可以包括:终端根据训练信号的资源信息接收训练信号。若训练信号的资源信息包括训练信号的序列资源,该训练信号的序列资源复用同步信号的序列资源;这样终端在初始接入时,可以通过对训练信号的接收,进行与第一站点 的同步。
步骤320,终端根据对该训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,该优选波束指示信息包含优选波束的信息;该优选波束是第一站点进行到终端的下行传输的备选波束。
可选地,本发明实施例的步骤320中,终端根据对所述训练信号的检测结果确定优选波束的实现方式,可以包括:终端根据对接收到的训练信号的检测结果,判断接收到的训练信号的接收质量是否满足设定条件,将接收质量满足设定条件的一个或多个训练信号对应的波束方向上的波束确定为优选波束。
在实际应用中,第一站点和/或第二站点可以基于终端检测的优选波束和相应的信道质量信息,确定要使用的优选波束和下行的发送方式。本步骤320中的优选波束指示信息还可以包含以下一项或多项:终端在其确定的优选波束的波束方向上检测的信道质量信息,终端是否支持多波束同时接收的能力信息。
可选地,本发明实施例在步骤320之后,还可以包括:终端接收第二站点发送的下行数据或下行控制信息的发送方式的信息,根据发送方式的信息所指示的发送方式,在终端确定的优选波束上接收第一站点发送的下行数据或下行控制信息;或者,终端接收第二站点发送的要使用的优选波束的信息及要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在要使用的优选波束上,根据发送方式的信息所指示的发送方式,接收第一站点发送的下行数据或下行控制信息。
可选地,在本发明实施例中,第一站点是仅用于进行下行传输的站点,且该第一站点的下行频率大于6GHz,第二站点的下行频率小于6GHz。
本发明实施例还提供一种终端,包括混合波束训练装置30,如图9所示,为本发明实施例三提供的一种终端的结构示意图,本发明实施例提供的终端中的混合波束训练装置30可以包括:
训练信号接收模块31,设置为:接收第一站点在多个波束方向上发送的 训练信号,并对接收到的训练信号进行检测,该多个波束方向上发送的训练信号互不相同;
波束选择及指示模块32,设置为:根据训练信号接收模块31对训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,该优选波束指示信息包含优选波束的信息;
本发明实施例中,第一站点的下行频率大于第二站点的下行频率,上诉优选波束是第一站点进行到终端的下行传输的备选波束。
可选地,本发明实施例中,
波束选择及指示模块32根据对训练信号的检测结果确定优选波束的实现方式,可以包括:根据对接收到的训练信号的检测结果,判断接收到的训练信号的接收质量是否满足设定条件,将接收质量满足设定条件的一个或多个训练信号对应的波束方向上的波束确定为优选波束。
可选地,本发明实施例中的混合波束训练装置30还可以包括:下行接收模块;
该下行接收模块,设置为:在波束选择及指示模块32发送优选波束指示信息之后,接收第二站点发送的下行数据或下行控制信息的发送方式的信息,根据该发送方式的信息所指示的发送方式,在终端确定的优选波束上接收第一站点发送的下行数据或下行控制信息;或者,
该下行接收模块,设置为:在波束选择及指示模块32发送优选波束指示信息之后,接收第二站点发送的要使用的优选波束的信息及要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在要使用的优选波束上,根据发送方式的信息所指示的发送方式,接收第一站点发送的下行数据或下行控制信息。
可选地,在本发明实施例中,
波束选择及指示模块32发送的优选波束指示信息还可以包含以下一项或多项:终端在其确定的优选波束的波束方向上检测的信道质量信息,终端是否支持多波束同时接收的能力信息。
可选地,在本发明实施例中,
训练信号接收模块31,还设置为:在接收第一站点在多个波束方向上发送的训练信号之前,接收第二站点发送的训练信号指示信息,该训练信号指示信息包含训练信号的资源信息及对应的波束信息,该资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向;
训练信号接收模块31接收第一站点在多个波束方向上发送的训练信号的实现方式,可以包括:根据训练信号的资源信息接收所述训练信号。
可选地,在本发明实施例中,
训练信号接收模块31接收的训练信号指示信息可以包含训练信号的序列资源,该训练信号的序列资源复用同步信号的序列资源;
训练信号接收模块31,还设置为:通过对训练信号的接收,进行终端与第一站点的同步。
以上实施例是从第一站点、第二站点和终端侧分别进行描述的,图10为本发明实施例提供的一种混合波束训练方法的信令交互流程图,图10中示出了各个节点之间整体上的一种信令流程。如图10所示,第二站点先向第一站点发送训练信号配置信息,向终端发送训练信号指示信息。第一站点收到训练信号配置信息后,周期性地向终端发送训练信号。终端接收和检测训练信号,向第二站点发送优选波束指示信息,假定其中包含一个优选波束的信息和在该优选波束的方向上检测的信道质量信息。随后可以根据以下两种方式进行下行传输:
方式一:第二站点根据信道质量信息确定在该优选波束上下行数据或下行控制信息的发送方式后,并将该优选波束的信息和下行数据或下行控制信息的发送方式的信息发送给第一站点;方式二,第二站点将该优选波束的信息和信道质量信息通过优选波束配置信息发送给第一站点,第一站点根据信道质量信息确定该优选波束上的下行数据或下行控制信息的发送方式后,将下行数据或下行控制信息的发送方式的信息发送给第二站点;
第二站点向终端发送下行数据或下行控制信息的发送方式的信息(图中 用下行发送方式信息表示)。第一站点按照该发送方式的信息所指示的发送方式向终端发送下行数据或下行控制信息。
上述实施例方案,通过第二站点(低频站点)的辅助,实现了仅用于进行下行传输的第一站点(高频站点)下行优选波束的训练,第二站点配置第一站点的训练信号发射,终端对第一站点发送的训练信号进行测量,第二站点搜集终端对优选波束的测量结果,基于测量结果对第一站点的下行数据传输以及终端的下行数据接收进行配置。上述实施例中的技术方案可以使仅用于进行下行传输的第一站点以优选波束为终端提供服务,提高了下行链路服务质量。另外,向多个第一站点发送训练信号配置信息时,第二站点可以通过统筹配置训练信号的资源,避免多个第一站点发送训练信号的冲突,从而减小了终端识别优选下行波束的误差;并且下行数据的传输也可以达到全局最优。
以下再通过几个示例进行说明:
示例一
如图11所示,为本发明实施例提供的混合波束训练方法的另一种应用场景的示意图,本示例针对终端在初始接入高频小区时,高频站点优选波束的训练过程,如图12所示,为本发明实施例提供的另一种混合波束训练方法的信令交互流程图,详细描述如下:
步骤一:eNB向高频站点HBS发送训练信号配置信息;
训练信号配置信息用于向HBS配置多个波束上发送训练信号的资源,其中包括多个波束方向上发送训练信号的时频域位置,以及要发送的训练信号序列,分别与波束索引相对应。如下表1所示给出了其中两个波束的训练信号配置:训练信号可以复用同步信号或其他下行参考信号,也可以是专门发送用于下行优选波束训练的信号。
表1
波束索引 时域位置 频域位置 序列
0000 子帧0 第N个RB S0
0001 子帧1 第N个RB S1
... ... ... ...
eNB与HBS之间可以通过有线或无线接口相连,并进行信息交互;在实际应用中,例如通过光纤相连,或无线空中接口(如高频链路)。
HBS收到训练信号配置后,周期地在多个波束方向上发送配置的训练信号。
步骤二:eNB在f1频率向终端发送训练信号指示信息,用于向UE指示HBS训练信号的时频域位置以及序列信息,以及相对应波束的信息,供UE测量后反馈满足设定条件的优选波束。信息的内容与表1中相似。另外,训练信号指示信息还可以包含终端反馈优选波束的配置,即约定UE在哪些上行资源上可以反馈优选波束指示信息。
步骤三:UE测量训练信号;
UE采用训练信号指示信息中获得的训练信号序列,与在指定的时频域位置上接收到的训练信号进行相关,识别符合设定条件的训练信号,将相应的波束作为优选波束。这里所说的设定条件可以是训练信号的接收质量满足设定的质量要求,如某一波束方向上的训练信号的接收功率大于预设门限时,将该波束作为优选波束,可以潜在的服务于UE。
本示例中,UE在初始接入过程中,即与高频站点还没有取得下行同步,考虑此时训练信号可以为同步信号,这样UE在完成优选波束识别的同时,也完成了与HBS的同步。这种情况下,UE需要在给定的频域位置做时域的滑动相关,从而确定同步信号的位置。
UE识别优选波束后,得到优选波束的信息,该信息例如为波束索引。
步骤四:UE在eNB小区的上行频率向eNB发送优选波束指示信息;
优选波束指示信息发送所占用的上行资源可以是事先约定的资源,也可以是eNB在训练信号指示信息中指示的时频域资源。
该优选波束指示信息中,UE向eNB提供了优选波束的信息,如(0000), 以及在该波束方向上训练信号的接收功率(如-20dBm)。
步骤五:eNB根据UE的优选波束指示信息,确定HBS下行发送方式;
eNB确定采用波束0000作为HBS对UE的下行发射波束,又根据UE的接收质量,确定在该下行发射波束上发送下行控制信息所采用的编码调制方式,并指示下行控制信息所占用的时频域资源位置。本示例中,eNB指示了HBS向UE发送下行控制信息发送方式的信息,UE在接收到HBS发送的下行控制信息后还可以获取到下行数据的时频域位置以及编码调制方式等参数。
步骤六:eNB向HBS发送优选波束配置信息,并向UE发送下行控制信息发送方式的信息;
优选波束配置信息用于向HBS指示下行控制信息的发送方式。在实际应用中,优选波束配置信息中可以包括:要使用的优选波束,终端的标识,下行控制信息的编码调制方式、时频域位置和扰码序列(通常与对应终端的标识CRNTI相关);下行控制信息发送方式的信息可包括:下行控制信息的编码调制方式、时频域位置和扰码序列。
步骤七:HBS在频率f2上利用波束0000向UE发送下行控制信息和下行数据。
下行控制信息的发送方式采用优选波束配置信息中指示的发送方式。UE在下行控制信息所在时频域资源上用相应的扰码序列解扰控制信息,从控制信息中读取下行数据所在时频域资源位置以及编码调制方式等参数,从而找到下行数据所在位置,并接收解码下行数据。
示例二
如图13所示,为本发明实施例提供的混合波束训练方法的又一种应用场景的示意图,本示例针对终端在初始接入高频小区时,多个高频站点优选波束的联合训练过程,如图14所示,为本发明实施例提供的又一种混合波束训练方法的信令交互流程图,详细描述如下:
本示例与示例一类似,这里重点描述区别:
步骤一:eNB向HBS1、HBS2发送训练信号配置信息;
这里通过eNB对HBS1、HBS2各波束训练信号的统一配置,避免两HBS间训练信号发生冲突的情况。即归属于两HBS各波束所发送的训练信号,在下面至少之一存在区别:时域位置、频域位置、使用的序列。
步骤二:eNB在f1频率向终端发送训练信号指示信息,用于向UE指示HBS训练信号的时频域位置以及序列信息,以及相对应波束的信息。本示例中,eNB提供了HBS1、HBS2两个站点各波束的训练信号配置。
步骤三:UE测量训练信号;
UE采用训练信号指示信息中获得的训练信号序列,与在指定的时频域位置上接收到的训练信号进行相关,识别出符合设定条件的波束,作为优选波束。这里假定UE通过检测确定的符合接收质量要求的波束的索引为:0000、0010。
步骤四:UE在eNB小区的上行频率向eNB发送优选波束指示信息;
优选波束指示信息发送所占用的上行资源可以是事先约定的资源,也可以是eNB在训练信号指示信息中指示的时频域资源。
该优选波束指示信息中,UE向eNB提供了优选波束的索引信息0000、0010,以及在该波束方向上对训练信号的接收功率(如-20dBm,-25dBm),同时,向eNB指示UE具有同时在波束0000、0010接收下行数据的能力。
步骤五:eNB根据UE的优选波束指示信息,确定HBS下行数据的发送方式;
波束0000与波束0010分属于HBS1、HBS2,eNB决定两站点分别通过波束0000和0010联合向UE传输下行数据。
根据UE在各优选波束方向上训练信号的接收功率,eNB确定在各优选波束上发送下行数据的编码调制方式。这里有两种可选方式:1、HBS1、HBS2分别用优选波束同时同频发送相同数据,在UE处形成正向叠加,以增强网络对UE的服务质量,即空间分集方式;2、HBS1、HBS2分别用优选波束传输不同的数据,此时需要UE端接收数据时能够区分两路数据,以提高传输速率,即空间复用方式。本示例以后者为例进行说明。
步骤六:eNB向HBS1、HBS2发送优选波束配置信息,并向UE发送下行 数据的发送方式信息;
两个优选波束配置信息分别用于向HBS1、HBS2指示要使用的优选波束及优选波束上下行数据的发送方式。在实际应用中,两个优选波束配置信息中分别包括(与HBS相对应):要使用的优选波束,终端的标识,下行数据的编码调制方式、时频域位置和扰码序列(通常与对应终端的标识CRNTI相关)。下行数据的发送方式信息包括:两路下行数据各自的编码调制方式,、时频域位置和扰码序列。
步骤七:HBS1在频率f2上利用波束0000向UE发送第一路下行数据,HBS2在频率f2上利用波束0010向UE发送第二路下行数据。
本示例中,HBS不向终端发送下行控制信息,关于下行数据的发送方式由eNB通知终端。两路下行数据采用优选波束配置信息中指示的发送方式发送。UE在每路下行数据所在时频域资源上分别读取每一路下行数据。
本示例中存在两个高频站点联合为UE进行下行数据的传输,如果UE能力允许,三个甚至更多个高频站点联合为UE传输下行数据也是可以的,方法流程与本示例类似。
示例三
同样参照图11所示的应用场景,本示例针对终端在初始接入高频小区时,下行数据发送方式由高频站点决策时,高频站点优选波束的训练过程,如图15所示,为本发明实施例提供的再一种混合波束训练方法的信令交互流程图,详细描述如下:
本示例与示例一的区别在于,决策的是下行数据的发送方式而非下行控制信息的发送方式,且下行数据的发送方式由高频站点决定,描述如下:
步骤一到步骤四与示例一相同,这里不再赘述。
步骤五:eNB接收到UE的优选波束指示信息后,并不进行下行发送方式的决策,而是将UE的测量结果(优选波束信息和信道质量信息)通过优选波束配置信息发送给HBS;
在该应用场景下,优选波束配置信息中包括:优选波束为0000,UE接收 波束0000的训练信号的接收功率为-20dBm。
步骤六:HBS确定下行数据的发送方式,并将相应的发送方式的信息发送给eNB。
HBS确定采用波束0000作为HBS对UE的下行发射波束,根据UE的接收质量,确定在该下行发射波束上发送下行数据所采用的编码调制方式、时频域资源位置和扰码序列。
步骤七:eNB将下行数据的发送方式信息转发给UE;
步骤八:HBS在频率f2上,按照确定的发送方式,利用波束0000向UE发送下行数据。
示例四
如图16所示,为本发明实施例提供的混合波束训练方法的再一种应用场景的示意图,本示例中高频站点通过多波束为同一终端发送下行数据时,训练过程可以参照图15所示的流程图,详细描述如下:
步骤一、二与示例一步骤一、二相同,这里不再赘述。
步骤三:UE测量训练信号
UE采用训练信号指示信息中获得的训练信号序列,与在指定的时频域位置上接收到的训练信号进行相关,识别出符合设定条件的波束,作为优选波束。
本示例中,UE为初始接入过程中,即与高频站点还没有取得下行同步,考虑此时训练信号优选为同步信号,这样UE在完成上面所述的优选波束识别的同时,也完成了与HBS的同步。在该应用场景下,UE需要在给定的频域位置做时域的滑动相关,从而确定同步信号的位置。
UE识别出优选波束后,得到对应的波束索引,满足要求的波束索引包括:0000、0010。
步骤四:UE在eNB小区的上行频率向eNB发送优选波束指示信息;
优选波束指示信息中,UE向eNB提供了优选波束的索引信息0000、0010, 以及在该波束方向上对训练信号的接收功率(如-20dBm,-25dBm),且UE支持多波束同时接收的能力信息。
步骤五:eNB接收到UE的优选波束指示信息后,通过优选波束配置信息将UE的测量结果(即优选波束信息和接收功率信息)转发给HBS;
在该应用场景下,优选波束配置信息中可以包括:优选波束的索引0000,0010,UE接收波束0000、0010的训练信号的接收功率分别为-20dBm,-25dBm。
步骤六:HBS确定下行数据的发送方式,并将行数据的发送方式信息发送给eNB;
本示例中,HBS确定采用波束0000,0010同时作为HBS对UE的下行发射波束,两波束在相同时频资源上发送相同下行数据,以增强UE的接收质量。eNB结合UE的接收质量,同时考虑到两路信号正向叠加后产生的增益,确定在下行发射波束上发送下行数据所采用的编码调制方式,并指示下行数据所占用的时频域资源位置。
步骤七:eNB将下行数据的发送方式信息转发给UE;
步骤八:HBS在频率f2上利用波束0000、0010向UE发送下行数据。UE全向接收。
示例五
如图17所示,为本发明实施例提供的混合波束训练方法的还一种应用场景的示意图,本示例中,当高频站点HBS相对于终端UE的发射波束方向发生变化时,优选波束训练过程如图18所示,为本发明实施例提供的还一种混合波束训练方法的信令交互流程图,下面做详细描述:
步骤一:波束训练触发;
本示例针对HBS相对于UE的发射波束发生变化的情况,因此,初始状态为,HBS通过波束0010向UE发送下行数据,由于UE的移动,UE无法收到波束0010发射的下行数据;此时,eNB和UE均可能触发波束训练流程(即重新获取优选波束方向过程)。
1、UE侧触发,当有下行数据要接收但UE没有接收到时,UE通知eNB 触发波束训练过程;
2、eNB没有收到UE对下行数据的确认消息,即UE收到HBS的下行数据后,会通过与eNB间的上行链路反馈ACK/NACK消息,如果eNB没有收到该消息,说明UE并没有收到HBS发送的下行数据,于是eNB触发波束训练过程。
步骤二:eNB向HBS发送训练信号配置信息;
训练信号配置信息用于向HBS配置多个波束上发送训练信号的资源,其中包括多个波束方向上发送训练信号的时频域位置,以及要发送的训练信号序列,分别与波束索引相对应。训练信号可以复用同步信号或其他下行参考信号,也可以是专门发送用于下行优选波束训练的信号。
eNB与HBS之间可以通过有线或无线接口相连,并进行信息交互;在实际应用中,例如通过光纤相连,或无线空中接口(如高频链路)。
HBS收到训练信号配置信息后,触发其在各个波束方向上发送指定的训练信号。HBS收到训练信号配置信息后,也可以周期性地发送训练信号。
步骤三:eNB在f1频率向终端发送训练信号指示信息,用于向UE指示HBS训练信号的时频域位置以及序列信息,以及相对应波束的信息同时,训练信号指示信息还可以包含终端反馈优选波束的配置,即约定UE在哪些上行资源上可以反馈优选波束指示信息。
步骤四:UE测量训练信号;
UE采用训练信号指示信息中获得的训练信号序列,与在指定的时频域位置上接收到的训练信号进行相关,识别出符合设定条件的波束,作为优选波束。UE识别出优选波束训练信号后,得到对应波束的信息为0000。
步骤五:UE在eNB小区的上行频率向eNB发送优选波束指示信息;
优选波束指示信息中,UE向eNB提供了优选波束的索引信息,如0000,以及在该优选波束的波束方向上对训练信号的接收功率(如-20dBm)。
步骤六:eNB将新的优选波束索引转发给HBS,同时指示在新的优选波束方向上UE对训练信号的接收功率。
步骤七:HBS确定用波束0000更换原优选波束0010,在波束0000上继续为终端发送下行数据,同时根据UE的接收功率,确定编码调制方式。
步骤八:HBS将上述决策结果形成下行控制信息的发送方式信息发送给eNB,并由eNB发送给UE。
HBS向eNB发送的信息包括:要使用的优选波束的信息,终端的标识,下行控制信息的编码调制方式、时频域位置和扰码序列(通常与对应终端的标识CRNTI相关);eNB向UE发送的信息包括:要使用的优选波束的信息、下行控制信息的编码调制方式、时频域位置和扰码序列。
步骤七:HBS在频率f2上改变为利用波束0000向UE发送下行控制信息和下行数据;
UE按照接收的发送方式信息,在其指示的时频域资源上用指示的扰码序列解扰下行控制信息,从下行控制信息中读取下行数据所在时频域资源位置以及编码调制方式等参数。从而找到下行数据所在位置,并接收解码下行数据。
本示例针对高频站点下行发射波束发生变化的情况,在该应用场景下,通过终端对训练信号的识别与反馈,最终HBS变更下行数据发送到新的优选波束上,这个流程与终端初始接入高频波束的区别包括触发原因,以及HBS的操作为由原优选波束方向变更波束方向,而不是确定采用某一波束方向。其他步骤均相似,因此本实施所述的流程也适用于方法示例二到四中所述的场景。
示例六
如图19所示,为本发明实施例提供的还一种混合波束训练方法的信令交互流程图。本示例是针对训练信号配置方式的描述。
在示例一到五中,第二站点(eNB)向第一站点(HBS)发送了训练信号配置信息,用于向HBS配置多个波束方向上发送训练信号的时频域位置以及训练信号所采用的序列,并且将上述配置信息以训练信号指示信息的形式发送给UE,供UE做优选波束识别,基于eNB的训练信号指示信息进行优选波束识别,可以节省UE盲检开销。
上述两个消息也可以不都进行配置,存在如下几种情况:
1、eNB向HBS发送训练信号配置信息,但不向UE发送训练信号指示信息,这种情况下,为了避免多HBS发送训练信号出现冲突,eNB仍然为HBS配置训练信号的发送方式;但并不向UE指示训练信号如何发送。此时UE在预定义的时频资源或资源池内,采用所有可能的训练信号序列进行相关检测,以找到符合要求的训练信号,并从中识别出对应的波束信息。此时,训练信号与波束索引的对应关系可以是UE已知的,或者UE直接将识别出的训练信号所对应的时域资源或频域资源或序列反馈给eNB,eNB可以判断出该训练信号所对应的波束。
2、eNB不向HBS发送训练信号配置信息,但向UE发送训练信号指示信息。这种情况下,HBS的训练信号发送方式并不是有eNB配置的,那么,各个HBS下各波束的训练信号可以是系统规划发送的,或者由网管侧(如运行与管理系统OAM、设备管理系统EMS、网络管理系统NMS)向各个HBS配置的训练信号发送方式。但eNB已知这些训练信号发送方式的相关信息,实际应用中,可以由HBS反馈给eNB,或者eNB通过核心网侧或者网管侧获取该信息,并将训练信号的发送方式以训练信号指示信息的形式发送给UE。UE以示例一到五中所描述的形式进行相关检测,完成优选波束的识别。
3、eNB不向HBS发送训练信号配置信息,也不向UE发送训练信号指示信息。这种情况是前两种情况的组合,信令交互开销最小,各个HBS下各波束的训练信号可以是系统规划发送的,或者由网管侧(如运行与管理系统OAM、设备管理系统EMS、网络管理系统NMS)向各个HBS配置的训练信号发送方式。此时,HBS可以不将训练信号的发送方式告知eNB,也可以告知eNB。当不告知eNB时,UE通过盲检识别出优选的训练信号后,将优选训练信号对应的信息(如时域资源或频域资源或序列)反馈给eNB,并由eNB反馈给HBS,由HBS确定优选波束。或者,UE已知训练信号时域资源或频域资源或序列与波束索引的映射关系,则UE可以直接确定优选波束方向,并反馈对应波束的信息即可。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可 借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的实施例和可选地实施方式,并非因此限制本发明实施例的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明实施例的保护范围内。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(根据系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过第二站点(低频站点)的辅助,实现了仅用于进行下行传输的第一站点(高频站点)下行优选波束的训练,第二站点配置第一站点的训练信号发射,终端对第一站点发送的训练信号进行测量,第二站点搜 集终端对优选波束的测量结果,基于测量结果对第一站点的下行数据传输以及终端的下行数据接收进行配置。上述实施例中的技术方案可以使仅用于进行下行传输的第一站点以优选波束为终端提供服务,提高了下行链路服务质量。另外,向多个第一站点发送训练信号配置信息时,第二站点可以通过统筹配置训练信号的资源,避免多个第一站点发送训练信号的冲突,从而减小了终端识别优选下行波束的误差;并且下行数据的传输也可以达到全局最优。

Claims (44)

  1. 一种混合波束训练方法,应用于第一站点,包括:
    所述第一站点在多个波束方向上向终端发送训练信号,所述多个波束方向上发送的训练信号互不相同;
    所述第一站点接收第二站点发送的优选波束配置信息;
    所述第一站点根据所述优选波束配置信息指示的终端和优选波束,在至少部分所述优选波束上进行到所述终端的下行传输;
    其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束为根据所述终端对所述训练信号的检测结果确定的。
  2. 根据权利要求1所述的方法,其中,
    所述第一站点在多个波束方向上向终端发送训练信号之前,所述方法还包括:
    所述第一站点接收所述第二站点发送的训练信号配置信息,根据所述训练信号配置信息确定所述训练信号的发送配置;
    所述第一站点在多个波束方向上发送训练信号,包括:所述第一站点根据所述训练信号的发送配置,在所述多个波束方向上向所述终端发送所述训练信号;
    其中,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
  3. 根据权利要求1所述的方法,其中,
    所述优选波束配置信息包含所述终端的信息、N个优选波束的信息及所述N个优选波束上下行数据或下行控制信息的发送方式的信息;
    所述第一站点在至少部分所述优选波束上进行到所述终端的下行传输,包括:所述第一站点在所述N个优选波束上,按照所述发送方式向所述终端发送下行数据或下行控制信息,N为大于或等于1的正整数。
  4. 根据权利要求1所述的方法,其中,
    所述优选波束配置信息包含所述终端的信息、M个优选波束的信息及所述终端检测的所述M个优选波束的波束方向上的信道质量信息;
    所述第一站点接收第二站点发送的优选波束配置信息之后,所述方法还包括:所述第一站点根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式的信息,并通过所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项通知给所述终端;
    所述第一站点在至少部分所述优选波束上进行到所述终端的下行传输,包括:所述第一站点在所述N个优选波束上,按照所确定的发送方式向所述终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小于或等于M。
  5. 根据权利要求3或4所述的方法,其中,
    所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
  6. 根据权利要求1-4中任一所述的方法,其中,
    所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
  7. 一种混合波束训练方法,应用于第二站点,包括:
    所述第二站点接收终端发送的优选波束指示信息,所述优选波束指示信息包含所述终端根据训练信号的检测结果确定的优选波束的信息;
    所述第二站点向所述第一站点发送优选波束配置信息,所述优选波束配置信息包含至少部分所述优选波束的信息和所述终端的信息;
    其中,所述第二站点的下行频率小于所述第一站点的下行频率,所述训练信号是所述第一站点在多个波束方向上向所述终端发送的,且所述多个波束方向上发送的训练信号互不相同。
  8. 根据权利要求7所述的方法,其中,
    所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整 数;
    所述第二站点接收终端发送的优选波束指示信息之后,所述方法还包括:所述第二站点根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式;
    所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项发送给所述终端;
    所述第二站点发送给所述第一站点的所述优选波束配置信息包含所述N个优选波束的信息,还包含所述发送方式的信息,M和N都为大于或等于1的正整数,且N小于或等于M。
  9. 根据权利要求7所述的方法,其中,
    所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
    所述第二站点向所述第一站点发送的优选波束配置信息包含所述M个优选波束的信息和所述信道质量信息;
    所述第二站点向所述第一站点发送优选波束配置信息后,所述方法还包括:所述第二站点接收所述第一站点确定要使用的N个优选波束的信息和所述N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M。
  10. 根据权利要求8或9所述的方法,其中,
    所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
  11. 根据权利要求7所述的方法,其中,
    所述第二站点接收终端发送的优选波束指示信息之前,还包括:
    所述第二站点向所述终端发送训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不 同的波束信息对应不同的波束方向。
  12. 根据权利要求11所述的方法,其中,
    所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源。
  13. 根据权利要求11所述的方法,其中,
    所述训练信号指示信息还包含所述第二站点为所述优选波束指示信息分配的上行资源的信息;
    所述第二站点接收所述终端发送的优选波束指示信息,包括:所述第二站点根据所述上行资源的信息,接收所述终端发送的所述优选波束指示信息。
  14. 根据权利要求7-9、12-13中任一所述的方法,其中,
    所述第二站点接收终端发送的优选波束指示信息之前,所述方法还包括:
    所述第二站点向所述第一站点发送训练信号配置信息,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
  15. 根据权利要求14所述的方法,其中,
    所述第二站点向所述第一站点发送训练信号配置信息,包括:所述第二站点在接收到所述终端对下行数据的否定应答NACK或所述终端发送的未接收到下行数据的通知消息时,向所述第一站点发送所述训练信号配置信息。
  16. 根据权利要求14所述的方法,其中,
    所述第二站点向所述第一站点发送训练信号配置信息,包括:所述第二站点向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同;
    所述第二站点向所述第一站点发送优选波束配置信息,包括:在所述优选波束指示信息包含来自多个第一站点的优选波束的信息时,所述第二站点 向具有优选波束的所述多个第一站点分别发送所述优选波束配置信息,以使得所述多个第一站点以空间分集或空间复用的方式进行到所述终端的下行传输。
  17. 根据权利要求7-9、12-13、15-16中任一所述的方法,其中,
    所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
  18. 一种混合波束训练方法,应用于终端,包括:
    所述终端接收第一站点在多个波束方向上发送的训练信号,并对接收到的所述训练信号进行检测,所述多个波束方向上发送的训练信号互不相同;
    所述终端根据对所述训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,所述优选波束指示信息包含所述优选波束的信息;
    其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束是所述第一站点进行到所述终端的下行传输的备选波束。
  19. 根据权利要求18所述的方法,其中,
    所述终端根据对所述训练信号的检测结果确定优选波束,包括:
    所述终端根据对接收到的所述训练信号的检测结果,判断接收到的所述训练信号的接收质量是否满足设定条件,将接收质量满足所述设定条件的一个或多个训练信号对应的波束方向上的波束确定为所述优选波束。
  20. 根据权利要求18所述的方法,其中,
    所述终端向所述第二站点发送优选波束指示信息之后,所述方法还包括:
    所述终端接收所述第二站点发送的下行数据或下行控制信息的发送方式的信息,根据所述发送方式的信息所指示的发送方式,在所述终端确定的优选波束上接收所述第一站点发送的下行数据或下行控制信息;或者,
    所述终端接收所述第二站点发送的要使用的优选波束的信息及所述要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在所述要使用的优选波束上,根据所述发送方式的信息所指示的发送方式,接收所述 第一站点发送的下行数据或下行控制信息。
  21. 根据权利要求18-20中任一所述的方法,其中,
    所述优选波束指示信息还包含以下一项或多项:所述终端在所确定的优选波束的波束方向上检测的信道质量信息,所述终端是否支持多波束同时接收的能力信息。
  22. 根据权利要求18-20中任一所述的方法,其中,
    所述终端接收第一站点在多个波束方向上发送的训练信号之前,所述方法还包括:
    所述终端接收所述第二站点发送的训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向;
    所述终端接收第一站点在多个波束方向上发送的训练信号,包括:所述终端根据所述训练信号的资源信息接收所述训练信号。
  23. 根据权利要求22所述的方法,其中,
    所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源;
    所述终端在初始接入时,通过对所述训练信号的接收,进行与所述第一站点的同步。
  24. 根据权利要求18-20、23中任一所述的方法,其中,
    所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz,所述第二站点的下行频率小于6GHz。
  25. 一种第一站点,其特征在于,包括混合波束训练装置,所述混合波束训练装置包括:
    训练信号发送模块,设置为:在多个波束方向上向终端发送训练信号,所述多个波束方向上发送的训练信号互不相同;
    下行传输模块,设置为:接收第二站点发送的优选波束配置信息,根据 所述优选波束配置信息指示的终端和优选波束,在至少部分所述优选波束上进行到所述终端的下行传输;
    其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束为根据所述终端对所述训练信号的检测结果确定的。
  26. 根据权利要求25所述的第一站点,其中,所述第一站点还包括:
    训练信号接收模块,设置为:在所述训练信号发送模块在多个波束方向上向终端发送训练信号之前,接收所述第二站点发送的训练信号配置信息,根据所述训练信号配置信息确定所述训练信号的发送配置;
    所述训练信号发送模块在多个波束方向上向终端发送训练信号,包括:根据所述训练信号接收模块确定的所述训练信号的发送配置,在所述多个波束方向上向所述终端发送所述训练信号;
    其中,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
  27. 根据权利要求25所述的第一站点,其中,
    所述下行传输模块接收的所述优选波束配置信息包含所述终端的信息、N个优选波束的信息及所述N个优选波束上下行数据或下行控制信息的发送方式的信息;所述下行传输模块在至少部分所述优选波束上进行到所述终端的下行传输,包括:在所述N个优选波束上,按照所述发送方式向所述终端发送下行数据或下行控制信息,N为大于或等于1的正整数;
    或者,
    所述下行传输模块接收的所述优选波束配置信息包含所述终端的信息、M个优选波束的信息及所述终端检测的所述M个优选波束的波束方向上的信道质量信息;所述下行传输模块,还设置为:在接收第二站点发送的优选波束配置信息之后,根据所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式,并通过所述第二站点将所述N个优选波束的信息和所述发送方式的信息中的一项或多项通知给所述终端;所述下行传输模块在至少部分所述优选波束上进行到所述终端的 下行传输,包括:在所述N个优选波束上,按照所确定的发送方式向所述终端发送下行数据或下行控制信息,M和N都为大于或等于1的正整数,且N小于或等于M;
    其中,所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
  28. 根据权利要求25-27中任一所述的第一站点,其中,
    所述第一站点是仅用于进行下行传输的站点,且所述第一站点的下行频率大于6吉赫兹GHz。
  29. 一种第二站点,其特征在于,包括混合波束训练装置,所述混合波束训练装置包括:
    波束信息接收模块,设置为:接收终端发送的优选波束指示信息,所述优选波束指示信息包含所述终端根据训练信号的检测结果确定的优选波束的信息;
    波束信息配置模块,设置为:向第一站点发送优选波束配置信息,所述优选波束配置信息包含至少部分所述优选波束的信息和所述终端的信息;
    其中,所述第二站点的下行频率小于所述第一站点的下行频率,所述训练信号是所述第一站点在多个波束方向上向所述终端发送的,且所述多个波束方向上发送的训练信号互不相同。
  30. 根据权利要求29所述的第二站点,其中,
    所述波束信息接收模块接收的所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
    所述混合波束训练装置还包括:
    波束决策模块,设置为:根据所述波束信息接收模块接收的所述信道质量信息,确定要使用的N个优选波束及所述N个优选波束上下行数据或下行控制信息的发送方式;
    发送方式配置模块,设置为:将所述波束决策模块确定的所述N个优选波束的信息和所述发送方式的信息中的一项或多项发送给所述终端,M和N 都为大于或等于1的正整数,且N小于或等于M;
    所述波束信息配置模块发送的所述优选波束配置信息包含所述N个优选波束的信息,还包含所述发送方式的信息;所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
  31. 根据权利要求29所述的第二站点,其中,
    所述波束信息接收模块接收的所述优选波束指示信息包含M个优选波束的信息,还包含所述终端检测的所述M个优选波束的波束方向上的信道质量信息,M为大于或等于1的正整数;
    所述波束信息配置模块发送的所述优选波束配置信息包含所述M个优选波束的信息和所述信道质量信息;
    所述混合波束训练装置还包括:
    发送方式配置模块,设置为:接收所述第一站点确定要使用的N个优选波束的信息和所述N个优选波束上下行数据或下行控制信息的发送方式的信息中的一项或多项,并转发给所述终端,M和N都为大于或等于1的正整数,且N小于或等于M;所述发送方式的信息包含编码调制方式、扰码序列、时域位置和频域位置中的一种或多种。
  32. 根据权利要求29所述的第二站点,其中,
    所述混合波束训练装置还包括:
    训练信号指示模块,设置为:在所述波束信息接收模块接收终端发送的优选波束指示信息之前,向所述终端发送训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
  33. 根据权利要求32所述的第二站点,其中,
    所述训练信号指示模块发送的所述训练信号的资源信息包括所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源。
  34. 根据权利要求32所述的第二站点,其中,
    所述训练信号指示模块发送的所述训练信号指示信息还包含所述第二站点为所述优选波束指示信息分配的上行资源的信息;
    所述波束信息接收模块接收所述终端发送的优选波束指示信息,包括:根据所述上行资源的信息,接收所述终端发送的所述优选波束指示信息。
  35. 根据权利要求29-34中任一所述的第二站点,其中,
    所述混合波束训练装置还包括:
    训练信号配置模块,设置为:在所述波束信息接收模块接收终端发送的优选波束指示信息之前,向所述第一站点发送训练信号配置信息,所述训练信号配置信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向。
  36. 根据权利要求35所述的第二站点,其中,
    所述训练信号配置模块向所述第一站点发送训练信号配置信息,包括:在接收到所述终端对下行数据的否定应答NACK或所述终端发送的未接收到下行数据的通知消息时,向所述第一站点发送所述训练信号配置信息。
  37. 根据权利要求35所述的第二站点,其中,
    所述训练信号配置模块向所述第一站点发送训练信号配置信息,包括:向多个第一站点分别发送不同的训练信号配置信息,其中,向不同第一站点发送的训练信号配置信息中的训练信号的资源不同;
    所述波束信息配置模块向所述第一站点发送优选波束配置信息,包括:在所述优选波束指示信息包含来自多个第一站点的优选波束的信息时,向具有优选波束的所述多个第一站点分别发送所述优选波束配置信息,以使得所述多个第一站点以空间分集或空间复用的方式进行到所述终端的下行传输。
  38. 根据权利要求29-34、36-37中任一所述的第二站点,其中,
    所述第二站点的下行频率小于6吉赫兹GHz。
  39. 一种终端,其特征在于,包括混合波束训练装置,所述混合波束训练装置包括:
    训练信号接收模块,设置为:接收第一站点在多个波束方向上发送的训练信号,并对接收到的所述训练信号进行检测,所述多个波束方向上发送的训练信号互不相同;
    波束选择及指示模块,设置为:根据所述训练信号接收模块对所述训练信号的检测结果确定优选波束,向第二站点发送优选波束指示信息,所述优选波束指示信息包含所述优选波束的信息;
    其中,所述第一站点的下行频率大于所述第二站点的下行频率,所述优选波束是所述第一站点进行到所述终端的下行传输的备选波束。
  40. 根据权利要求39所述的终端,其中,
    所述波束选择及指示模块根据对所述训练信号的检测结果确定优选波束,包括:根据对接收到的所述训练信号的检测结果,判断接收到的所述训练信号的接收质量是否满足设定条件,将接收质量满足所述设定条件的一个或多个训练信号对应的波束方向上的波束确定为所述优选波束。
  41. 根据权利要求39所述的终端,其中,
    所述混合波束训练装置还包括下行接收模块;
    所述下行接收模块,设置为:在所述波束选择及指示模块发送优选波束指示信息之后,接收所述第二站点发送的下行数据或下行控制信息的发送方式的信息,根据所述发送方式的信息所指示的发送方式,在所述终端确定的优选波束上接收所述第一站点发送的下行数据或下行控制信息;或者,
    所述下行接收模块,设置为:在所述波束选择及指示模块发送优选波束指示信息之后,接收所述第二站点发送的要使用的优选波束的信息及所述要使用的优选波束上下行数据或下行控制信息的发送方式的信息,并在所述要使用的优选波束上,根据所述发送方式的信息所指示的发送方式,接收所述第一站点发送的下行数据或下行控制信息。
  42. 根据权利要求39-41中任一所述的终端,其中,
    所述波束选择及指示模块发送的优选波束指示信息还包含以下一项或多项:所述终端在所确定的优选波束的波束方向上检测的信道质量信息,所述终端是否支持多波束同时接收的能力信息。
  43. 根据权利要求39-41中任一所述的终端,其中,
    所述训练信号接收模块,还设置为:在接收所述第一站点在多个波束方向上发送的训练信号之前,接收所述第二站点发送的训练信号指示信息,所述训练信号指示信息包含所述训练信号的资源信息及对应的波束信息,所述资源信息包含时域资源、频域资源、序列资源和功率资源中的一种或多种,同一第一站点下不同的波束信息对应不同的波束方向;
    所述训练信号接收模块接收第一站点在多个波束方向上发送的训练信号,包括:根据所述训练信号的资源信息接收所述训练信号。
  44. 根据权利要求43所述的终端,其中,
    所述训练信号接收模块接收的所述训练信号的资源信息包含所述训练信号的序列资源,所述训练信号的序列资源复用同步信号的序列资源;
    所述训练信号接收模块,还设置为:通过对所述训练信号的接收,进行所述终端与所述第一站点的同步。
PCT/CN2016/112406 2016-01-19 2016-12-27 一种混合波束训练方法、站点及终端 WO2017124898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610035313.XA CN106982084A (zh) 2016-01-19 2016-01-19 一种混合波束训练方法、站点及终端
CN201610035313.X 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017124898A1 true WO2017124898A1 (zh) 2017-07-27

Family

ID=59339946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112406 WO2017124898A1 (zh) 2016-01-19 2016-12-27 一种混合波束训练方法、站点及终端

Country Status (2)

Country Link
CN (1) CN106982084A (zh)
WO (1) WO2017124898A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156667B (zh) * 2017-12-06 2020-11-03 京信通信系统(中国)有限公司 一种通信的方法及装置
CN108155927B (zh) * 2017-12-06 2021-03-19 京信通信系统(中国)有限公司 一种通信的方法及装置
CN110138526B (zh) * 2018-02-09 2021-04-09 成都华为技术有限公司 一种配置参考信号的方法、装置和系统
CN110445523B (zh) * 2018-05-04 2023-02-14 华为技术有限公司 波束训练方法、相关装置及系统
CN110649947B (zh) * 2018-06-26 2023-09-08 华为技术有限公司 波束赋形训练的方法和装置
JP2021536154A (ja) * 2018-07-06 2021-12-23 日本電気株式会社 ネットワーク機器で実施される方法及び端末機器で実施される方法
CN110753400A (zh) * 2018-07-24 2020-02-04 索尼公司 用户设备、电子设备、无线通信方法和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326339A (zh) * 2009-02-25 2012-01-18 索尼公司 通信装置和通信方法、计算机程序和通信系统
WO2014084912A1 (en) * 2012-11-28 2014-06-05 Intel Corporation Using multiple frequency bands with beamforming assistance in a wireless network
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326339A (zh) * 2009-02-25 2012-01-18 索尼公司 通信装置和通信方法、计算机程序和通信系统
WO2014084912A1 (en) * 2012-11-28 2014-06-05 Intel Corporation Using multiple frequency bands with beamforming assistance in a wireless network
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统

Also Published As

Publication number Publication date
CN106982084A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
KR102352865B1 (ko) 무선 통신 시스템에서 제어 신호 모니터링 방법 및 상기 방법을 이용하는 장치
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
KR102427299B1 (ko) 무선 백홀을 통해서 무선 접속망과의 연결을 제공하는 방법 및 장치
US11917639B2 (en) Scheduling across slot boundaries
WO2017124898A1 (zh) 一种混合波束训练方法、站点及终端
EP4255031A2 (en) Apparatus and method for beam failure recovery in wireless communication system
KR20210108391A (ko) 반지속적 또는 비주기적 타이밍 거동을 갖는 기준 신호 뮤팅 패턴들의 포지셔닝
US9113339B2 (en) Apparatus and method for allocating communication resources in a communication system
US11909489B2 (en) System and method for beam management with emissions limitations
EP3402086A1 (en) Method for information transmission, base station, and user equipment
US11764854B2 (en) Coordinated beam refinement and coordinated beam failure recovery
CN116210281A (zh) 用于自适应地请求按需系统信息的技术
US20220124513A1 (en) Communication system, communication terminal, and base station
JPWO2018173646A1 (ja) 通信システム
US20240049193A1 (en) Indication of slot offset for a sounding reference signal via trigger value
CN112534908A (zh) 无线通信中的链路恢复
KR20230034235A (ko) 광대역 어레이 동작을 지원하기 위한 기법들
KR20230061368A (ko) 멀티모드 2차 셀 그룹 휴면
US20230262781A1 (en) System and methods of random access channel (rach) optimization
US20230105758A1 (en) Mac ce with spatial relation information for srs resources across a list of cells
JP2023526195A (ja) 部分的ランダムアクセスチャネルプロシージャ
WO2021109013A1 (en) Fast uplink resource request based on external assistance
KR20230028152A (ko) 계층적 빔을 이용한 빔 관리 방법 및 이를 위한 장치
CN116783834A (zh) 多天线无线发送器和具有mimo波束成形的方法
KR20230150810A (ko) 셀룰러 보조 사이드링크 발견

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886157

Country of ref document: EP

Kind code of ref document: A1