WO2017124780A1 - 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法 - Google Patents

含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法 Download PDF

Info

Publication number
WO2017124780A1
WO2017124780A1 PCT/CN2016/101705 CN2016101705W WO2017124780A1 WO 2017124780 A1 WO2017124780 A1 WO 2017124780A1 CN 2016101705 W CN2016101705 W CN 2016101705W WO 2017124780 A1 WO2017124780 A1 WO 2017124780A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
tungsten
silicon carbide
rhenium
protective layer
Prior art date
Application number
PCT/CN2016/101705
Other languages
English (en)
French (fr)
Inventor
田边
蒋庄德
张仲恺
郑晨
于秋跃
史鹏
林启敬
任巍
景蔚萱
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2017124780A1 publication Critical patent/WO2017124780A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/028Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples using microstructures, e.g. made of silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/12Protective devices, e.g. casings for preventing damage due to heat overloading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/04Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials
    • G01K7/06Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials the thermoelectric materials being arranged one within the other with the junction at one end exposed to the object, e.g. sheathed type

Definitions

  • the invention belongs to the technical field of micro temperature sensor chips, and particularly relates to a tungsten germanium film thermocouple sensor and a preparation method thereof.
  • Thermocouple temperature sensor which was first invented in the 1920s, is widely used in the field of temperature measurement. As a kind of standard test and measurement equipment, it has the advantages of simple and convenient manufacturing and high precision inertia in measurement and test. Among them, the high temperature thermocouple temperature sensor is of great value in measuring the temperature under severe conditions. However, for direct contact high-temperature measurement that requires miniaturization, the current technical means are insufficient.
  • the new thin film thermocouple structure using magnetron sputtering technology is a new development direction to solve this problem. Recently, there have been research results based on such structural characteristics, such as the use of a nickel-chromium alloy bonded structure. Although it has a certain effect, it still does not solve the temperature measurement problem under long time high temperature.
  • thermocouple temperature sensor uses the galvanic wire as the core working part, and the working temperature is high, but the disadvantage is that it is large in size and difficult to be applied to special industrial requirements.
  • a thermocouple temperature sensor chip using a tungsten-rhenium alloy film has been proposed in the prior art, and the effect is high on a high temperature measurement below 1000 K, but when the temperature measurement range rises to a higher temperature, that is, in the range of 1000 K to 1700 K, Different failure mechanisms still have insufficient effects.
  • the invention aims to solve the problems of thermal mismatch, oxidation and basic failure near 1400K in the prior art, and proposes a tungsten-rhenium thin film thermocouple sensor with a high temperature protective film group and a preparation method thereof.
  • the time is measured at a high temperature of 1000K to 1700K, and it also has the characteristics of miniaturization.
  • a tungsten-rhenium thin film thermocouple sensor comprising a high temperature protective film group, comprising a silicon carbide substrate, a tungsten germanium alloy film set on the upper surface of the silicon carbide substrate; the positive and negative electrodes of the parallel tungsten germanium alloy film group are respectively connected to the high temperature electrode, and connected in parallel
  • a protective film of an aluminum oxide film and a protective layer of a silicon carbide film are sequentially disposed on the tungsten-rhenium alloy film group.
  • the parallel tungsten-rhodium alloy thin film group has the same thickness on the positive electrode side and the negative electrode side.
  • the high temperature electrode is connected to the cold end of the parallel tungsten-rhenium alloy film group.
  • the parallel tungsten-rhenium alloy film group is completely covered by the aluminum oxide film protective layer, and the thickness of the aluminum oxide film protective layer is 2 to 3 times the thickness of the parallel tungsten-rhenium alloy film group.
  • the protective layer of the silicon carbide film is an amorphous silicon carbide film protective layer.
  • the protective layer of the aluminum oxide film is completely covered by the protective layer of the amorphous silicon carbide film, and the thickness of the protective layer of the amorphous silicon carbide film is the same as the thickness of the parallel tungsten-rhodium alloy film group.
  • a preparation method of a tungsten-rhenium thin film thermocouple sensor comprising a high temperature protective film set comprises the following steps:
  • the present invention has the following beneficial effects:
  • thermocouple Comparing the conventional thermocouple, the tungsten-rhenium alloy thermocouple film sensor without the composite protective film group structure layer and the tungsten-rhenium film thermocouple sensor using the high temperature protective film group of the present invention, the following analysis results are obtained:
  • the invention realizes the high temperature sensor of the miniaturized large Seebeck coefficient material in the high temperature long-term operation in the range of 1000K ⁇ 1700K, which better solves the problem of material transpiration and shedding, and strengthens the anti-oxidation effect.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a front elevational view and operation diagram of the present invention.
  • the tungsten-rhenium thin film thermocouple sensor of the high temperature protective film group of the present invention comprises a silicon carbide substrate 1, and the front surface of the silicon carbide substrate 1 is connected with the parallel tungsten-rhenium alloy film group 2, and the tungsten-rhenium alloy is connected in parallel.
  • the film group 2 is composed of a plurality of sets of tungsten-rhodium galvanic film positive electrodes and tungsten-rhodium galvanic film negative electrodes, which are composed of two different metal thin films to form a thin film galvanic couple.
  • the tungsten-rhenium alloy cathode film in the parallel tungsten-rhenium alloy film group 2 and the tungsten-rhenium alloy anode film are connected to each other to ensure uniform thickness.
  • the parallel tungsten-rhenium alloy thin film group 2 is connected to the high temperature electrode 3.
  • the high temperature electrode 3 and the tungsten-rhenium alloy film group 2 are made of a corresponding proportion of tungsten-rhenium alloy, and are ensured to correspond to the positive and negative electrodes of the tungsten-rhenium alloy film group 2.
  • the high temperature electrode 3 is introduced by laser drilling on the silicon carbide substrate 1 and using a high temperature cement and a high temperature conductive adhesive to connect the galvanic compensation wires.
  • the high temperature electrode 3 is connected to the cold end of the tungsten-rhenium alloy film group 2.
  • the parallel tungsten-rhenium alloy film group 2 is completely covered by the aluminum oxide film protective layer 4, and the thickness of the aluminum oxide film protective layer 4 is about twice the thickness of the tungsten-rhenium alloy film group 2.
  • the aluminum oxide thin film protective layer 4 is completely covered by the amorphous silicon carbide thin film protective layer 5, and the thickness of the amorphous silicon carbide thin film protective layer 5 is substantially the same as the thickness of the tungsten-rhenium alloy thin film group 2.
  • the working principle of the invention is:
  • the present invention exerts an anti-oxidation effect on the tungsten-ruthenium film thermocouple layer without affecting the temperature test, and prolongs the working time by the dense air-insulating effect and the excellent thermal conductivity of the high-temperature protective film group used. Increase the maximum temperature of its work without affecting its fast response time.
  • thermocouple fast response, which is very suitable for measurement.
  • the temperature field of the transient The response time is represented by the time constant ⁇ .
  • thermocouple film Since the thickness of the thermocouple film is usually on the order of micrometers, and the thickness of the substrate is generally relatively thick, it can be considered that the substrate is infinitely large in the thickness direction with respect to the thermocouple film, while ignoring the thermal resistance effect of the oxidation preventing film (the main reason is
  • the high-temperature protective film group has a relatively thin structural layer, usually in the order of micrometers or even nanometers, and has a small thermal resistance. Therefore, heat transfer inside the thin film thermocouple can be regarded as a one-dimensional unsteady heat conduction process.
  • the mathematical model of the response time of the miniature sensor using the high temperature protective film stack structure layer of the tungsten germanium film thermocouple is as follows:
  • ⁇ 1 is the initial temperature of the film
  • ⁇ s is the temperature at which the base material reaches
  • is the film thickness
  • t is the response time
  • erfc is the Gaussian error function
  • ⁇ 1 is the thermal diffusivity of the film
  • K is the thermal conductivity of the film.
  • ⁇ 2 is the thermal diffusivity of the base material
  • k 1 is the thermal conductivity of the film
  • k 2 is the thermal conductivity of the base material
  • a tungsten-rhenium film thermocouple sensor with a high-temperature protective film set is combined with a tungsten-rhenium film thermocouple layer by a thermal expansion coefficient and a material strength matched by a high-temperature protective film set and a tungsten-rhenium film thermocouple layer. It does not cause thermal mismatch problems, thus solving the problem of sensor failure caused by thermal stress at 1000-1700K.
  • a tungsten-rhenium thin film thermocouple sensor with a high temperature protective film set is made of a tungsten-rhenium alloy material.
  • the Seebeck effect is a sensitive principle.
  • the essence of the Seebeck effect is that the contact potential difference occurs when two metals are in contact.
  • the potential difference depends on the electron overflow work in the two metals and the electron concentration in the two metals. The electron diffusion from the heated end to the cold end and the electron free path are affected.
  • S A and S B are the Seebeck coefficients of the two materials
  • T is the thermocouple temperature
  • T 1 is the cold end temperature
  • T 2 is the hot end temperature
  • the sensor chip When the sensor chip is subjected to a certain heat flow, due to the change of the temperature field, according to the Seebeck effect principle, a corresponding electromotive force is generated on the tungsten-rhenium alloy film group, and the external electric signal is received through the high-temperature electrode, so The output voltage of the sensor chip is determined by the temperature value at which it is placed.
  • the sensor chip realizes the function of converting the temperature of the physical quantity into a voltage signal that is easy to collect and measure.
  • the invention also discloses a tungsten-rhenium thin film thermocouple sensor comprising a high temperature protective film group and a preparation method thereof, comprising the following steps:
  • the silicon carbide is pressed and polished into a film having a surface roughness of 10, and is an oxygen-free sintered at 80 to 200 °C.
  • a 150W power, 60sccm flow rate, and a composite tungsten-rhenium alloy film group are selected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种含高温保护薄膜组的钨铼薄膜热电偶传感器,包括碳化硅质基底(1),碳化硅质基底(1)的上表面设置并联钨铼合金薄膜组(2);并联钨铼合金薄膜组(2)的正负极分别连接高温电极(3),并联钨铼合金薄膜组(2)上依次设置有氧化铝薄膜保护层(4)和碳化硅薄膜保护层(5)。还包括一种制备方法,其中钨铼合金薄膜组、高温电极和氧化铝薄膜保护层这三部分均连接在碳化硅质基底上,覆盖非晶态碳化硅薄膜保护层。该热电偶传感器能够能在高温下(1000-1700K),长时间测量温度信号,具有耐高温、防氧化、高塞贝克系数的特性,并同时解决了现有技术中存在的如高温下的热失配、氧化、1400K附近基本失效的问题。

Description

含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法 【技术领域】
本发明属于微型温度传感器芯片技术领域,具体涉及一种含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法。
【背景技术】
热电偶温度传感器,自19世纪20年代被首次发明后,在温度测量领域应用广泛,作为标准测试测量设备的一种,具有在制造使用上简单方便、在测量测试上高精度惯性小的优点。其中的高温热电偶温度传感器,在测量恶劣工况下的温度中有重要价值。然而,对于需要微型化的接触式高温直接测量,现在技术手段不足。采用磁控溅射技术的新型薄膜热电偶结构,是一个解决此问题的新发展方向。最近有基于这种结构特性的研究成果,如使用镍铬合金的结合结构。虽然有一定效果,但仍旧没有解决在长时间高温下的温度测量问题。传统型热电偶温度传感器以电偶丝为核心工作部件,工作温度高,但缺点为体积较大,难于应用于特殊的工业需求之下。目前,现有技术中曾提出一种采用钨铼合金薄膜热电偶温度传感器芯片,在1000K以下高温测量上效果明显,但当测温范围上升到更高的温度,即1000K~1700K范围内,由于不同的失效机理,仍然效果不足。
【发明内容】
本发明的目的在于解决现有技术中高温下的热失配、氧化、1400K附近基本失效等问题,提出一种含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法,使其具有能长时间在1000K~1700K高温下温度测量的同时,还兼具了微型化的特点。
为达到上述目的,本发明采用以下技术方案予以实现:
含高温保护薄膜组的钨铼薄膜热电偶传感器,包括碳化硅质基底,碳化硅质基底的上表面设置并联钨铼合金薄膜组;并联钨铼合金薄膜组的正负极分别连接高温电极,并联钨铼合金薄膜组上依次设置有氧化铝薄膜保护层和碳化硅薄膜保护层。
本发明进一步的改进在于:
所述并联钨铼合金薄膜组的正极一侧与负极一侧厚度相同。
所述高温电极与并联钨铼合金薄膜组的冷端相连。
所述并联钨铼合金薄膜组被氧化铝薄膜保护层完全包覆,氧化铝薄膜保护层的厚度为并联钨铼合金薄膜组厚度的2~3倍。
所述碳化硅薄膜保护层为非晶态碳化硅薄膜保护层。
所述氧化铝薄膜保护层被非晶态碳化硅薄膜保护层完全包覆,非晶态碳化硅薄膜保护层的厚度与并联钨铼合金薄膜组厚度相同。
一种含高温保护薄膜组的钨铼薄膜热电偶传感器的制备方法,包括以下步骤:
1)将碳化硅压制抛光为表面粗糙度为10级的底片,并在80~200℃下进行无氧烧结,得到碳化硅质基底;
2)采用浓硫酸与双氧水的混合溶液,超声波清洗碳化硅质基底;其中,浓硫酸与双氧水的体积比例为3:1;
3)清洗后脱水烘干,单面涂覆光刻胶,采用光薄掩膜板进行紫外线光刻,刻蚀深度为2μm;
4)采用磁控溅射,选取150w功率,60sccm流量,镀并联钨铼合金薄膜组;
5)剥离,使用丙酮溶液洗涤,磁控溅射镀氧化铝薄膜保护层;
6)冷却,磁控溅射镀非晶态碳化硅薄膜保护层;
7)激光打孔,在碳化硅质基底打孔,采用高温水泥与高温导电胶复合连接,将电偶补偿导线引入,制作高温电极。
与现有技术相比,本发明具有以下有益效果:
对传统热电偶、不含复合保护薄膜组结构层的钨铼合金热电偶薄膜传感器和使用本发明的一种含高温保护薄膜组的钨铼薄膜热电偶传感器进行对比,得到如下分析结果:
比较项目
Figure PCTCN2016101705-appb-000001
本发明实现了微型化大塞贝克系数材料的高温度传感器在耐1000K~1700K范围内的高温长时间运行,较好的解决了材料蒸腾与脱落的问题,加强了防氧化的效果。
【附图说明】
图1为本发明的结构示意图;
图2为本发明的正面视图及工作示意图。
【具体实施方式】
下面结合附图对本发明做进一步详细描述:
参见图1和图2,本发明含高温保护薄膜组的钨铼薄膜热电偶传感器,包括碳化硅质基底1,碳化硅质基底1的正面与并联钨铼合金薄膜组2相连,并联钨铼合金薄膜组2由多组钨铼电偶薄膜正极和钨铼电偶薄膜负极这两种成分不同的金属薄膜组成薄膜电偶整体。并联钨铼合金薄膜组2中的钨铼合金正极膜与钨铼合金负极膜互相连接,并保证厚度一致。并联钨铼合金薄膜组2与高温电极3相连。
高温电极3与钨铼合金薄膜组2采用对应比例的钨铼合金,并保证与钨铼合金薄膜组2正负极相互对应。高温电极3通过在碳化硅质基底1激光打孔,采用高温水泥与高温导电胶复合连接,将电偶补偿导线引入。高温电极3与钨铼合金薄膜组2冷端相连。
并联钨铼合金薄膜组2被氧化铝薄膜保护层4完全包覆,氧化铝薄膜保护层4的厚度约为钨铼合金薄膜组2厚度的2倍。氧化铝薄膜保护层4被非晶态碳化硅薄膜保护层5完全包覆,非晶态碳化硅薄膜保护层5的厚度与钨铼合金薄膜组2厚度基本相同。
本发明的工作原理为:
首先,本发明通过所采用的高温保护薄膜组致密的隔绝空气作用与优良的导热性能,对钨铼薄膜热电偶层在不影响温度测试的情况下起到防氧化的作用,延长其工作时间,提升其工作最高温度,且不影响其迅速的响应时间。
薄膜热电偶的特殊结构导致其最主要的优势之一就是响应迅速,非常适合测 量瞬变的温度场。用时间常数τ来表示其响应时间。当薄膜热电偶突然置于温度为T的被测环境中,热量首先由被测介质以对流换热的方式传输到热电偶防氧化膜表面,而在防氧化膜内部和后续的热电偶层以及基底中,热量是以热传导的形式传输的。由于热电偶薄膜的厚度通常为微米量级,而基底的厚度通常都比较厚,所以可以认为基底相对于热电偶薄膜在厚度方向上无限大,同时忽略防氧化薄膜的热阻影响(主要原因是高温保护薄膜组结构层较薄,通常为微米甚至纳米级,热阻作用小),因此热量在薄膜热电偶的内部传输可以视为一维非稳态导热过程。采用对钨铼薄膜热电偶的高温保护薄膜组结构层的微型传感器响应时间数学模型如下:
Figure PCTCN2016101705-appb-000002
式中,θ1为薄膜的初始温度,θs为基底材料的到达温度,δ为薄膜厚度,t为响应时间,erfc为高斯误差函数,α1为薄膜的热扩散系数,K为影响薄膜热电偶响应快慢的因数,且有:
Figure PCTCN2016101705-appb-000003
上式中,α2为基底材料的热扩散系数,k1为薄膜的导热系数,k2为基底材料的导热系数。
其次,一种含高温保护薄膜组的钨铼薄膜热电偶传感器,通过所采用的高温保护薄膜组与钨铼薄膜热电偶层相匹配的热膨胀系数与材料强度,在与钨铼薄膜热电偶层复合时不引起热失配问题,从而解决1000-1700K温度下的热应力造成传感器失效的问题。
最后,一种含高温保护薄膜组的钨铼薄膜热电偶传感器,采用钨铼合金材料 的塞贝克效应作为敏感原理。
塞贝克效应的实质是两种金属接触时会产生接触电势差,该电势差取决于两种金属中的电子溢出功不同及两种金属中电子浓度,受热端向冷端的电子扩散与电子自由程影响,塞贝克效应电势差的计算公式:
Figure PCTCN2016101705-appb-000004
式中:SA与SB分别为两种材料的塞贝克系数,T为热电偶温度,T1为冷端温度,T2为热端温度。
当传感器芯片受到某一热流作用时,由于温度场发生改变,根据塞贝克效应原理,会在钨铼合金薄膜组上产生对应的电动势,经由高温电极传导,外部会接受到对应的电信号,因此传感器芯片的输出电压由其所处的温度值决定,传感器芯片实现了将物理量的温度转换为便于采集与测量的电压信号的功能。
本发明还公开了一种含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法,包括以下步骤:
a)将碳化硅压制抛光为表面粗糙度10级的底片,在80~200摄氏度内无氧烧结。
b)采用硫酸与双氧水以3:1的比例超声波清洗碳化硅基底。
c)清洗后脱水烘干,单面涂覆光刻胶,采用薄掩膜板进行紫外线光刻,刻蚀深度为2μm;
d)采用磁控溅射,选取150w功率,60sccm流量,镀复合钨铼合金薄膜组。
e)剥离,使用丙酮溶液洗涤,磁控溅射镀氧化铝保护膜。
f)冷却,磁控溅射镀非晶态碳化硅保护膜;
g)激光打孔,采用高温水泥与高温导电胶复合连接,将电偶补偿导线引入, 制作高温电极。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (7)

  1. 含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,包括碳化硅质基底(1),碳化硅质基底(1)的上表面设置并联钨铼合金薄膜组(2);并联钨铼合金薄膜组(2)的正负极分别连接高温电极(3),并联钨铼合金薄膜组(2)上依次设置有氧化铝薄膜保护层(4)和碳化硅薄膜保护层(5)。
  2. 根据权利要求1所述的含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,所述并联钨铼合金薄膜组(2)的正极一侧与负极一侧厚度相同。
  3. 根据权利要求1或2所述的含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,所述高温电极(3)与并联钨铼合金薄膜组(2)的冷端相连。
  4. 根据权利要求1或2所述的含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,所述并联钨铼合金薄膜组(2)被氧化铝薄膜保护层(4)完全包覆,氧化铝薄膜保护层(4)的厚度为并联钨铼合金薄膜组(2)厚度的2~3倍。
  5. 根据权利要求1或2所述的含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,所述碳化硅薄膜保护层(5)为非晶态碳化硅薄膜保护层。
  6. 根据权利要求5所述的含高温保护薄膜组的钨铼薄膜热电偶传感器,其特征在于,所述氧化铝薄膜保护层(4)被非晶态碳化硅薄膜保护层完全包覆,非晶态碳化硅薄膜保护层的厚度与并联钨铼合金薄膜组(2)厚度相同。
  7. 一种含高温保护薄膜组的钨铼薄膜热电偶传感器的制备方法,其特征在于,包括以下步骤:
    1)将碳化硅压制抛光为表面粗糙度为10级的底片,并在80~200℃下进行无氧烧结,得到碳化硅质基底;
    2)采用浓硫酸与双氧水的混合溶液,超声波清洗碳化硅质基底;其中,浓硫酸与双氧水的体积比例为3:1;
    3)清洗后脱水烘干,单面涂覆光刻胶,采用光薄掩膜板进行紫外线光刻,刻蚀深度为2μm;
    4)采用磁控溅射,选取150w功率,60sccm流量,镀并联钨铼合金薄膜组;
    5)剥离,使用丙酮溶液洗涤,磁控溅射镀氧化铝薄膜保护层;
    6)冷却,磁控溅射镀非晶态碳化硅薄膜保护层;
    7)激光打孔,在碳化硅质基底打孔,采用高温水泥与高温导电胶复合连接,将电偶补偿导线引入,制作高温电极。
PCT/CN2016/101705 2016-01-18 2016-10-10 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法 WO2017124780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610031404.6A CN105675160B (zh) 2016-01-18 2016-01-18 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法
CN201610031404.6 2016-01-18

Publications (1)

Publication Number Publication Date
WO2017124780A1 true WO2017124780A1 (zh) 2017-07-27

Family

ID=56301283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101705 WO2017124780A1 (zh) 2016-01-18 2016-10-10 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法

Country Status (2)

Country Link
CN (1) CN105675160B (zh)
WO (1) WO2017124780A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945446A (zh) * 2021-02-01 2021-06-11 西安交通大学 一种具有电磁屏蔽功能的高透光柔性锰铜计
CN113433191A (zh) * 2021-03-17 2021-09-24 江苏甫瑞微纳传感科技有限公司 环热式气体传感器及其制备方法
CN114659656A (zh) * 2022-03-08 2022-06-24 中国人民解放军63653部队 一种可耐冲击快响应热电偶
CN114812843A (zh) * 2022-04-11 2022-07-29 北京交通大学 基于多层膜热防护的高温传感器及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675160B (zh) * 2016-01-18 2019-02-05 西安交通大学 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法
CN108287027A (zh) * 2017-12-29 2018-07-17 华中科技大学 一种薄膜型超高温热流传感器敏感元及其制备方法
CN108981941B (zh) * 2018-05-08 2020-07-28 唐山市开平区天诺热电偶厂 一种防腐蚀热电偶
CN110319945B (zh) * 2019-06-20 2021-09-24 西安交通大学 一种耐高温高灵敏柔性碳化硅基温度传感器及制作方法
CN111141401B (zh) * 2019-12-12 2020-10-27 西安交通大学 一种探针式薄膜热电偶及其制备方法
CN112268632B (zh) * 2020-10-19 2022-11-04 中国电子科技集团公司第四十九研究所 一种温度系数可调的耐1000℃高温金属薄膜热电阻及其制备方法
CN113739945B (zh) * 2021-07-22 2022-08-16 西安交通大学 一种基于表面微柱阵列的气膜复合钨铼合金薄膜热电偶
CN114112085B (zh) * 2021-10-19 2022-09-23 北京科技大学 一种高效率mems高温薄膜热电偶传感器的制造方法
CN115200729B (zh) * 2022-08-02 2024-05-17 清华大学 阵列式薄膜温差传感器及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2102507U (zh) * 1991-09-03 1992-04-22 王旭 连续测温传感器
CN2148954Y (zh) * 1992-09-19 1993-12-08 重庆钢洲科技开发公司 抗氧化钨铼热电偶
CN2193544Y (zh) * 1994-05-17 1995-03-29 袁家锦 抗氧化钨铼热电偶
EP0918195A2 (en) * 1997-11-21 1999-05-26 Isuzu Ceramics Research Institute Co., Ltd. Unit sheath
CN2359680Y (zh) * 1999-02-09 2000-01-19 侯永柱 一种钨铼热电偶
US20090268779A1 (en) * 2008-04-29 2009-10-29 Ngk Spark Plug Co., Ltd. Temperature sensor element and method of manufacturing the same
CN201795874U (zh) * 2010-08-24 2011-04-13 沈阳真空技术研究所 真空高温测控用热电偶
CN204043809U (zh) * 2014-07-17 2014-12-24 麦格瑞冶金工程技术(北京)有限公司 一种钢水连续测温装置
CN104655306A (zh) * 2015-02-12 2015-05-27 西安交通大学 一种微型钨铼薄膜热电偶温度传感器芯片及其制作方法
CN105675160A (zh) * 2016-01-18 2016-06-15 西安交通大学 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969956A (en) * 1989-12-19 1990-11-13 The United States Of America As Represented By The Secretary Of Commerce Transparent thin film thermocouple
CN101515002B (zh) * 2009-03-18 2011-01-05 中国计量科学研究院 一种薄膜型热电转换器及测量方法
CN102865938B (zh) * 2012-09-07 2014-02-19 清华大学 热电偶及其形成方法
CN103344350B (zh) * 2013-07-05 2015-07-08 西北工业大学 高温陶瓷基薄膜热电偶及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2102507U (zh) * 1991-09-03 1992-04-22 王旭 连续测温传感器
CN2148954Y (zh) * 1992-09-19 1993-12-08 重庆钢洲科技开发公司 抗氧化钨铼热电偶
CN2193544Y (zh) * 1994-05-17 1995-03-29 袁家锦 抗氧化钨铼热电偶
EP0918195A2 (en) * 1997-11-21 1999-05-26 Isuzu Ceramics Research Institute Co., Ltd. Unit sheath
CN2359680Y (zh) * 1999-02-09 2000-01-19 侯永柱 一种钨铼热电偶
US20090268779A1 (en) * 2008-04-29 2009-10-29 Ngk Spark Plug Co., Ltd. Temperature sensor element and method of manufacturing the same
CN201795874U (zh) * 2010-08-24 2011-04-13 沈阳真空技术研究所 真空高温测控用热电偶
CN204043809U (zh) * 2014-07-17 2014-12-24 麦格瑞冶金工程技术(北京)有限公司 一种钢水连续测温装置
CN104655306A (zh) * 2015-02-12 2015-05-27 西安交通大学 一种微型钨铼薄膜热电偶温度传感器芯片及其制作方法
CN105675160A (zh) * 2016-01-18 2016-06-15 西安交通大学 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, KUIHAN: "Measurement Technology of Temperature under Special Conditions", INDUSTRIAL HEATING, vol. 36, no. 6, 31 December 2007 (2007-12-31), pages 48 - 50 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945446A (zh) * 2021-02-01 2021-06-11 西安交通大学 一种具有电磁屏蔽功能的高透光柔性锰铜计
CN112945446B (zh) * 2021-02-01 2023-10-24 西安交通大学 一种具有电磁屏蔽功能的高透光柔性锰铜计
CN113433191A (zh) * 2021-03-17 2021-09-24 江苏甫瑞微纳传感科技有限公司 环热式气体传感器及其制备方法
CN113433191B (zh) * 2021-03-17 2024-01-16 江苏甫瑞微纳传感科技有限公司 环热式气体传感器及其制备方法
CN114659656A (zh) * 2022-03-08 2022-06-24 中国人民解放军63653部队 一种可耐冲击快响应热电偶
CN114659656B (zh) * 2022-03-08 2024-04-19 中国人民解放军63653部队 一种可耐冲击快响应热电偶
CN114812843A (zh) * 2022-04-11 2022-07-29 北京交通大学 基于多层膜热防护的高温传感器及其制备方法

Also Published As

Publication number Publication date
CN105675160B (zh) 2019-02-05
CN105675160A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017124780A1 (zh) 含高温保护薄膜组的钨铼薄膜热电偶传感器及制备方法
Curtin et al. Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices
CN104655306A (zh) 一种微型钨铼薄膜热电偶温度传感器芯片及其制作方法
CN115077648B (zh) 一种mems质量流量传感器及制备方法
US11686637B2 (en) Silicon carbide-based combined temperature-pressure micro-electro-mechanical system (MEMS) sensor chip and preparation method thereof
CN101620192A (zh) 一种用于测量薄膜导热率的测试结构
CN108287027A (zh) 一种薄膜型超高温热流传感器敏感元及其制备方法
CN111076836B (zh) 一种金属-氧化物型薄膜热电偶及其制备方法
CN103698357B (zh) 一种基于mems双加热器的热导率和热扩散系数传感器
CN108007580A (zh) 基于SiC热电材料的高温热流传感器及其制备方法
CN108011030A (zh) 一种SiC热电堆型高温热流传感器及其制备方法
CN105021303B (zh) 一种铝基敏感材料的温度传感器制造方法
AU2021103686A4 (en) A flexible temperature sensor based on graphene nanowall
CN107765161A (zh) 一种金刚石对顶砧中原位测量材料热电性能的方法
Prasad et al. A low-power, micromachined, double spiral hotplate for MEMS gas sensors
CN207967050U (zh) 一种SiC热电堆型高温热流传感器
CN111157573B (zh) 薄膜热导率的测量装置及测量方法
CN110265539B (zh) 一种铜镍合金薄膜热电偶的加工方法
JPS63318175A (ja) サ−モパイル
CN105910737A (zh) 一种应力定位传感器及其制作方法、应力定位方法
CN116534788A (zh) 基于悬膜结构mems桥式钯合金氢气传感芯片及制备方法
CN209342746U (zh) 一种双加热电极宽量程风速传感器
Fujiki New thin-film multijunction thermal converter design for improved high-frequency performance
CN106323493B (zh) 一种温度场、热流密度场测量一体化装置及其制备方法
WO2017133067A1 (zh) 一种涂覆基质具有高导热能力的厚膜元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886040

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16886040

Country of ref document: EP

Kind code of ref document: A1