WO2017124572A1 - 一种超滤膜及其制备方法 - Google Patents

一种超滤膜及其制备方法 Download PDF

Info

Publication number
WO2017124572A1
WO2017124572A1 PCT/CN2016/072041 CN2016072041W WO2017124572A1 WO 2017124572 A1 WO2017124572 A1 WO 2017124572A1 CN 2016072041 W CN2016072041 W CN 2016072041W WO 2017124572 A1 WO2017124572 A1 WO 2017124572A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
ultrafiltration membrane
nano
ultrafiltration
cavity
Prior art date
Application number
PCT/CN2016/072041
Other languages
English (en)
French (fr)
Inventor
李健生
潘顺龙
方小峰
王连军
孙秀云
沈锦优
韩卫清
刘晓东
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to US15/540,260 priority Critical patent/US10143972B2/en
Priority to CN201680001280.5A priority patent/CN106794431B/zh
Publication of WO2017124572A1 publication Critical patent/WO2017124572A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00413Inorganic membrane manufacture by agglomeration of particles in the dry state by agglomeration of nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/147Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/28Pore treatments
    • B01D2323/286Closing of pores, e.g. for membrane sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention belongs to the technical field of water treatment, and in particular to the field of membrane separation technology, in particular to an ultrafiltration membrane and a preparation method thereof.
  • Water is the most basic material on which all life on earth depends, but due to human activities and industrial production, large amounts of pollutants are discharged into the water environment, both in developed and developing countries, resulting in a shortage of water-contaminated water resources. This poses a major challenge to human public health and safety.
  • a fundamental problem in human development is how to obtain safe drinking water.
  • an important theme for future world development is energy conservation.
  • the existing water treatment process requires a large amount of energy. In the United States, 3-20% of the total annual energy consumption is used in the water treatment process.
  • the relationship between drinking water safety standards and energy consumption is in a dilemma.
  • researchers have developed many new technologies and methods for drinking water treatment, such as high processing efficiency, low operating energy consumption, and low chemical dosage.
  • membrane separation technology and adsorption technology are becoming the focus of development.
  • membrane separation technology in the water treatment process has been rapidly developed, and the trend of membrane technology becoming the core technology of water treatment has begun to appear.
  • membrane separation technology basically does not require chemical additives, heat energy and regeneration, and can efficiently, selectively and reliably separate pollutants.
  • membrane separation technology mainly has four processes of microfiltration, ultrafiltration, nanofiltration and reverse osmosis.
  • Microfiltration can be applied to the removal of suspended solids, protozoa and bacteria.
  • Ultrafiltration can effectively trap viruses and colloids.
  • reverse osmosis can be applied to desalination.
  • the size distribution of pollutants in water bodies is wide, and membrane separation technology can achieve physical interception of all pollutants in water bodies.
  • nanofiltration technology and reverse osmosis technology can effectively remove small molecular pollutants in water, but the process is mainly driven by high operating pressure, which brings a lot of energy consumption.
  • the ultrafiltration process can replace the process of removing turbidity and sterilization. Ultrafiltration can reduce the turbidity in water to below 0.1 NTU, and can reduce the pollution of water quality by using coagulant. In addition, ultrafiltration removes almost all pathogenic microorganisms, reduces the amount of disinfectant, and significantly reduces the amount of disinfection by-products, thereby increasing the chemical safety of the water.
  • Adsorption technology has always been a common method for removing small molecular pollutants in water, and it has the advantages of low energy consumption, easy operation, and wide processing range.
  • the core of the existing adsorption technology is a conventional adsorption material such as activated carbon, zeolite, natural fiber, etc., which has the disadvantages of low adsorption capacity, poor adsorption selectivity, and weak recyclability.
  • new nano-adsorbed materials such as nano-metal oxides, carbon nanotubes, and porous graphene have received great attention from researchers and have been addressed to solve the problem of traditional adsorbents. Expectation.
  • nano-adsorbed materials Compared with traditional adsorbent materials, nano-adsorbed materials have the advantages of high specific surface area, short particle diffusion distance, multiple active adsorption sites, easy pore structure and surface properties, and high surface specific adsorption capacity.
  • the surface of the nano-adsorbed material is easy to functionalize, and can be modified to have selective adsorption properties for characteristic pollutants.
  • nano-adsorbents are difficult to recycle due to their high recycling cost, and even if they are excellent in performance, they are limited in their efforts in water treatment.
  • nanosorbents may also pose an unnecessary hazard to public health, primarily because of their toxicity and exposure.
  • This technology combines the advantages of ultrafiltration and nano-adsorption technology to achieve the simultaneous removal of small molecules, macromolecules and particulate contaminants at lower operating pressures, and overcomes the shortcomings of ultrafiltration and nanoadsorption technologies.
  • the content of the nano-adsorbed material introduced by the blending in the adsorbent film material and the retention performance of the ultrafiltration membrane are mutually restricted.
  • the excessive amount of the nano-adsorbing material blending may damage the structure of the ultrafiltration membrane and affect the ultrafiltration performance. If the amount of the nano-adsorbed material is too small, the adsorption site of the adsorbent film material is reduced, and the performance of adsorbing small-molecule contaminants is reduced.
  • the film matrix material will wrap the nano-adsorbed material in the blend to make the surface adsorption site lose its effect.
  • the defects of the adsorption film material have affected its practical application and need to be solved to promote the progress of water treatment technology and methods.
  • the present invention provides an ultrafiltration membrane comprising a cavity composed of a sulfone polymer membrane substrate and an organic polymer encapsulating layer, the cavity comprising a nanosorbent.
  • the nanosorbent is filled into the cavity by a reverse filling method.
  • the cavity is made by an immersion-precipitation phase inversion process.
  • the nanosorbent is a nanoporous hollow sphere.
  • the cavity is finger shaped.
  • the cavity has a size of 10-40 ⁇ m x 90-150 ⁇ m. More preferably, the cavity size is 20 ⁇ m ⁇ 120 ⁇ m.
  • the ultrafiltration membrane has a porosity of 65% to 80% before filling and a porosity of 35% to 50% after filling. More preferably, the porosity of the film substrate before filling is 71.2%, and the porosity of the film substrate after filling is 44.1%.
  • the nanosorbent content is from 10% to 70%. More preferably, the nanosorbent content is 68.9%.
  • the invention also provides a preparation method of an ultrafiltration membrane, which comprises the following steps:
  • the nano adsorbent is reversely filled from the bottom of the sulfone polymer film substrate, and after filling, the organic polymer is packaged to obtain an ultrafiltration membrane.
  • the immersion-precipitation phase inversion method firstly comprises continuously stirring a sulfone polymer, polyvinylpyrrolidone (PVP) and NN dimethylformamide in an oil bath to form a homogeneous casting solution. Defoaming, defoaming casting solution is scraped on a clean glass plate, the temperature of the glass plate is 60-100 ° C, then stay in the air, soaked in a coagulation bath, and then taken out and dehydrated in deionized water. A sulfone polymer film substrate was obtained and stored in deionized water for use.
  • PVP polyvinylpyrrolidone
  • the reverse filling is performed by ultrasonically dispersing the nano-adsorbent in water, and filtering the bottom of the sulfone polymer film substrate upward to the nano-adsorbent solution in the ultrafiltration cup, and passing through Pressure controlled filling flux, pressure is 0.01-0.1Mpa.
  • the sulfone polymer is polysulfone and polyethersulfone.
  • the organic polymer is polydopamine or polyvinyl alcohol.
  • the nanosorbent is a nanoporous hollow sphere.
  • the nanoporous hollow spheres are hollow porous hydrated zirconia balls, hollow porous carbon spheres or hollow porous ferrous oxide spheres.
  • the present invention simulates small molecule pollutants such as macromolecular organic pollutants and lead ions by using gold nanoparticles to simulate viruses, polyethylene glycol, and the multifunctional membrane has good effects on these pollutions.
  • the removal effect enables simultaneous removal of multi-component composite micro-contaminants at low pressure.
  • the invention provides a multifunctional ultrafiltration membrane and a preparation method thereof, and the multifunctional ultrafiltration membrane has the dual functions of adsorption and separation, and can be used for synchronous removal of composite micro-pollutants in water.
  • the preparation strategy is to encapsulate the nanoporous hollow spheres with adsorption performance in the finger cavity cavity of the polymer ultrafiltration membrane to obtain a dual function membrane with high loading capacity and low mass transfer resistance.
  • the adsorption performance of the nanomaterial is utilized to impart the ability to remove small molecular pollutants. Simultaneous removal of heavy metals and typical organic contaminants can be achieved while maintaining the retention of macromolecular materials by the original ultrafiltration membrane.
  • the remarkable feature of the technical features is that it breaks through the mutual restriction between the content of nano-adsorbed materials in the adsorbent membrane material and the retention performance of the ultrafiltration membrane, and fully exposes the adsorption sites of the nano-adsorbed materials.
  • the multi-functional membrane synchronizes the multi-component pollutants. Except that it is achieved under low pressure filtration conditions, the operating pressure is only 5% or less of the latter compared to the existing membrane processing.
  • the invention Compared with the existing adsorption membrane material, the invention has the significant advantages: (1) introducing the nanoporous hollow sphere into the finger pore structure of the ultrafiltration membrane by simple reverse filtration filling, which has the advantages of simple operation, low cost, etc. Advantages; (2) Controlling the content of nanoporous hollow spheres in the ultrafiltration membrane matrix by controlling the filling concentration and flow rate; (3) Due to the high porosity of the membrane, a large number of nanoporous hollow spheres can be stored in the membrane matrix, super The membrane substrate still maintains the original structure, which can achieve effective ultrafiltration function, breaks through the mutual restriction between the content of nano-adsorbed materials in the adsorption membrane material and the retention performance of the ultrafiltration membrane, and fully exposes the adsorption sites of the nano-adsorbed materials.
  • the nanoporous hollow spheres can provide rapid mass transfer channels for water molecules, and alleviate the drawbacks of finger-hole clogging caused by nano-material filling to reduce membrane water flux; (5) Under low-pressure filtration conditions, the multi-functional membrane can achieve simultaneous removal of multi-component contaminants, which is less than 5% of the latter compared to existing membrane treatments (reverse osmosis, nanofiltration).
  • the adsorption multifunctional membrane prepared by the method has broad application prospects in the field of water environment pollution repair.
  • FIG. 1 is an electron micrograph of a hollow hydrated zirconia ball, wherein FIG. 1(a) is a transmission electron micrograph of a hollow hydrated zirconia ball obtained in Example 1 of the present invention; and FIG. 1(b) is obtained in Example 1 of the present invention.
  • the hollow hydrated zirconia ball is a scanning electron micrograph.
  • FIG. 2 is a scanning electron micrograph of the bottom and the cross section of the blank film and the multifunctional film, wherein FIG. 2(a) is a bottom scanning electron micrograph of the PES ultrafiltration membrane prepared in Example 1 of the present invention; FIG. 2(b) is the present invention.
  • FIG. 2(c) is a scanning electron micrograph of the PES ultrafiltration membrane prepared in Example 1 of the present invention;
  • FIG. 2(d) is a first embodiment of the present invention 3 Scanning electron micrograph of the cross section of the adsorbed multifunctional membrane.
  • Figure 3 is a scanning electron micrograph of the bottom and section of the multifunctional film and corresponding zirconium energy spectrum scanning, wherein Figure 3 (a) is a scanning electron micrograph of the bottom of the adsorption multifunctional film prepared in Example 1 of the present invention; Figure 3 (b) It is a zirconium element energy spectrum scan corresponding to Fig. 3(a); Fig. 3(c) is a scanning electron micrograph of the cross section of the adsorption multifunctional film of the first embodiment of the present invention; Fig. 3(d) is the zirconium corresponding to Fig. 3(c) Elemental energy spectrum scan.
  • Figure 4 is a thermogravimetric analysis curve.
  • Curve a is the thermogravimetric analysis of the hollow hydrated zirconia ball prepared in Example 1 of the present invention;
  • b is the thermogravimetric analysis of the adsorption multifunctional film prepared in Example 1 of the present invention;
  • c is the PES super obtained in Example 1 of the present invention Filter thermogravimetric analysis.
  • Figure 5 is a graph showing the molecular weight cutoff of blank and multifunctional membranes.
  • Curve a is the molecular weight of the adsorption multifunctional membrane prepared in Example 1 of the present invention;
  • curve b is the thermogravimetric analysis molecular weight of the PES ultrafiltration membrane prepared in Example 1 of the present invention.
  • Fig. 6 is a graph showing the retention of a PEG having a relative molecular mass of 600,000 and a gold nanoparticle having a particle diameter of 20 nm by the adsorption multifunctional film obtained in Example 1 of the present invention.
  • Fig. 7 is a graph showing the retention of the adsorption multifunctional membrane prepared in Example 1 of the present invention at a concentration of lead ions of 100 ⁇ g/L.
  • Figure 8 is a graph showing the stability of the adsorption multifunctional membrane prepared in Example 1 of the present invention under different pH conditions.
  • the ultrafiltration membrane is composed of a cavity composed of a sulfone polymer membrane matrix and an organic polymer encapsulation layer, and the cavity contains a nano adsorbent.
  • the cavity is finger-shaped.
  • the cavity size was measured to be 10-40 ⁇ m ⁇ 90-150 ⁇ m; the porosity of the ultrafiltration membrane before filling was 65%-80%, the porosity after filling was 35%-50%; the content of nano adsorbent was 10 %-70%.
  • the ultrafiltration membrane is produced by the following steps:
  • the nano adsorbent is reversely filled from the bottom of the sulfone polymer film substrate, and after filling, the organic polymer is packaged to obtain an ultrafiltration membrane.
  • the immersion-precipitation phase transformation method firstly comprises continuously stirring a sulfone polymer, polyvinylpyrrolidone (PVP) and NN dimethylformamide in an oil bath to form a homogeneous casting solution, allowing to defoam and defoaming.
  • the casting solution is scraped on a clean glass plate, the temperature of the glass plate is 60-100 ° C, then stays in the air, is placed in a coagulation bath, and then taken out and dehydrated to obtain a sulfone polymer film substrate. Store in deionized water for use.
  • the reverse filling is to ultrasonically disperse the nano-adsorbent in water, and the bottom of the sulfone polymer film substrate is filtered and filled into the nano-adsorbent solution in the ultrafilter cup, and the flux is controlled by pressure control.
  • the pressure is 0.01-0.1 MPa.
  • the ultrafiltration membrane of the invention has both the adsorption and separation functions, and is simply referred to as a multifunctional ultrafiltration membrane.
  • the gold nanoparticle simulation virus, polyethylene glycol simulated macromolecular organic pollutants, lead ions and other simulated small molecule pollutants were used to verify the water treatment performance of the adsorption multifunctional membrane.
  • the ultrafiltration retention property of the multifunctional membrane itself can remove viruses, bacteria, macromolecular organic pollutants, etc., and the adsorbent contained in the membrane matrix can achieve deep removal of small molecular pollutants.
  • Step 1 Synthesis of nanoporous hollow spheres
  • a synthetic porous hollow hydrated zirconia ball is selected as the nanoporous hollow sphere.
  • the preparation of porous hollow hydrated zirconia balls is divided into four steps.
  • SiO 2 pellets were prepared, and 18 mL of ammonia water and 49.5 mL of distilled water were added to 32.5 mL of absolute ethanol. After stirring for half an hour, a mixture of 9 ml of orthosilicate and 91 ml of absolute ethanol was added. Among them, magnetic stirring was continued for 8 hours. After the reaction was completed, the reaction solution was centrifuged, washed alternately with distilled water and ethanol, and the product was repeatedly operated three times to disperse the product in 320 mL of absolute ethanol. In the second step, 1 mL was added to the solution obtained above.
  • FIG. 1 is an electron micrograph of a hollow hydrated zirconia ball
  • FIG. 1(a) is a transmission electron micrograph of a hollow hydrated zirconia ball
  • FIG. 1(b) is a scanning electron micrograph of a hollow hydrated zirconia ball.
  • the synthesized hollow hydrated zirconia ball sample is spherical, and its average diameter is about 400-500 nm.
  • the large spherical particles are agglomerated by small particles of nanometer scale, and some spherical particles have been broken.
  • Nanospheres with a diameter of about 400-500 nm have a high specific surface area and a large number of adsorption sites, which is beneficial to the adsorption of pollutants.
  • polyethersulfone is used to prepare a sulfone polymer film substrate by an immersion-precipitation phase transformation method.
  • the PES ultrafiltration membrane was prepared by immersion-precipitation phase transformation method, and 16 g of polyethersulfone (PES), 8 g of polyvinylpyrrolidone (PVP) and 76 g of NN dimethylformamide were continuously stirred in an oil bath at 70 ° C for 5 h. A homogeneous cast film liquid is formed. The casting solution is allowed to stand for more than 12 hours for defoaming.
  • the defoamed casting solution is smeared at room temperature 25 ° C, 60% relative humidity, on a clean glass plate at 60 ° C, left in the air for 5 s, then placed in a coagulation bath for half an hour, taken out and placed in deionized water. Dip and store in deionized water for use.
  • the pure water flux was 384.6 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 95.5%.
  • FIG. 2 is a scanning electron micrograph of the bottom and the cross section of the blank film and the multifunctional film, wherein FIG. 2(a) is a scanning electron micrograph of the bottom of the PES ultrafiltration membrane; FIG. 2(b) is a scanning electron micrograph of the bottom of the adsorption multifunctional membrane; 2(c) is a scanning electron micrograph of the cross section of the PES ultrafiltration membrane; Fig. 2(d) is a scanning electron micrograph of the cross section of the adsorption multifunctional membrane.
  • the bottom of the PES film has a large hole having a diameter of 10 to 40 ⁇ m and a depth of 90 to 150 ⁇ m, and a straight finger hole of the cross section penetrates the support layer of the film.
  • Step 3 Preparation of adsorption multifunctional membrane
  • the bottom of the polyethersulfone film substrate in the second step is in the Millipore 8050 ultrafiltration cup, and the porous hollow hydrated zirconia ball solution is applied upward.
  • the filter is filled and the flux is controlled by pressure, and the pressure is generally 0.01-0.1 MPa.
  • the bottom membrane pores of the polyethersulfone membrane are polymerized by using 20 mL of a 2 g/L dopamine solution, and after washing, an adsorption multifunctional membrane is finally formed.
  • the porous hollow hydrated zirconia ball has a content of 68.9% of the film matrix mass.
  • the pure water flux was 212.2 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 95.4%.
  • Figure 3 is a scanning electron micrograph of the bottom and section of the multifunctional membrane and the corresponding zirconium energy spectrum scan, wherein Figure 3(a) is a suction The scanning electron micrograph of the bottom of the multifunctional membrane is attached; Fig. 3(b) is the zirconium energy spectrum scan corresponding to Fig. 3(a); Fig. 3(c) is the scanning electron micrograph of the adsorption multifunctional membrane section; Fig. 3(d) is Figure 3 (c) corresponds to the zirconium element spectrum scan.
  • Figures 3(a) and 3(b) demonstrate that the bottom pores of the multifunctional membrane are filled with hollow hydrated zirconia balls.
  • Figures 3(c) and 3(d) further illustrate that the hollow hydrated zirconia balls are well fixed in the finger holes of the membrane.
  • Figure 4 is a thermogravimetric analysis curve.
  • Curve a is the thermogravimetric analysis of the hollow hydrated zirconia sphere prepared in the first step; curve b is the thermogravimetric analysis of the adsorption multifunctional membrane prepared in the third step; curve c is the thermogravimetric analysis of the PES ultrafiltration membrane prepared in the second step.
  • Curve a shows the weight loss curve of hollow hydrated zirconia balls calcined from room temperature to 800 ° C in air, because the hollow hydrated zirconia balls synthesized in this example contain a large amount of hydroxyl groups and bound water, so the high temperature calcination will lose weight, after calcination The product is hollow zirconia balls, accounting for 68.8% of the total mass of the sample.
  • Curve b shows the weight loss curve of the adsorption multifunctional membrane calcined from room temperature to 800 ° C in air. After calcination, the product is hollow zirconia sphere, accounting for 27.9% of the mass of the multifunctional membrane.
  • Curve c shows the weight loss curve of the PES ultrafiltration membrane calcined from room temperature to 800 ° C in air because the membrane matrix is an organic component and is completely decomposed without residue after calcination.
  • thermogravimetric analysis combined with the following formula (1), the mass fraction of the PES ultrafiltration membrane in the PES membrane matrix can be calculated, and the result is 68.9%:
  • Figure 5 is a graph showing the molecular weight cutoff of blank and multifunctional membranes.
  • Curve a is the molecular weight of the adsorption multifunctional membrane prepared in the third step;
  • curve b is the thermogravimetric analysis molecular weight of the PES ultrafiltration membrane prepared in the second step.
  • PEG polyvinyl alcohol
  • the multi-functional membrane and polydopamine-coated blank PES membrane were placed in a Millipore 8050 ultrafiltration cup, and the mixed micro-polluted water was filtered (from 25 nm gold nanoparticle simulated virus at a concentration of 5 mg/L, 50 mg/L).
  • Polyethylene glycol with a molecular weight of 600,000 simulates macromolecular organic pollutants, and 100 ⁇ g/L of lead ions mimic small-molecule contaminants.
  • the composite micro-polluted water was filtered with a flux of 20 L/m 2 ⁇ h ⁇ bar, and each time 100 mL of the filtered sample was taken.
  • Figure 6 and Figure 7 show the results of multi-membrane and polydopamine-coated blank PES membrane filtration of micro-polluted water.
  • the results show that the multifunctional membrane can treat 6L of the above-mentioned micro-polluted water, and the multifunctional membrane can be desorbed by washing. reuse.
  • the polydopamine-coated blank PES membrane is capable of treating 700 mL of micro-contaminated water as above.
  • polydopamine coated blank film and more The functional membranes retain the retention of gold nanoparticles and polyethylene glycol.
  • Figure 8 is the stability of the adsorption multifunctional membrane prepared in the third step under different pH conditions.
  • the multi-functional membrane was shaken in distilled water having a pH of 0.1 to 7 for 96 hours, and then the content of zirconium in the supernatant was analyzed. It can be seen from Fig. 8 that when the pH is more than 2, the presence of zirconium element is not detected in the supernatant, indicating that the multifunctional membrane can be stably present in the environment with pH greater than 2, and also after the adsorption of the multifunctional membrane in the application process. Desorption under acidic conditions provides the possibility.
  • Step 1 Synthesis of nanoporous hollow spheres
  • a synthetic porous hollow carbon sphere is selected as the nanoporous hollow sphere.
  • the dried solid was calcined at 200 ° C, 350 ° C, 500 ° C, 600 ° C for 2 h under nitrogen, and calcined at 800 ° C for 5 h.
  • the porous hollow carbon sphere is finally obtained.
  • a large number of spherical particles having a hollow structure are synthesized and have a particle diameter of about 200 to 300 nm.
  • a polysulfone is used to prepare a sulfone polymer film substrate by an immersion-precipitation phase inversion method.
  • 16 g of polysulfone, 8 g of polyvinylpyrrolidone (PVP) and 76 g of NN dimethylformamide were continuously stirred in an oil bath at 70 ° C for 5 hours to form a homogeneous casting solution. The casting solution is allowed to stand for more than 12 hours for defoaming.
  • the defoamed casting solution is smeared on a clean glass plate at 80 ° C at room temperature 25 ° C and 60% relative humidity, left in the air for 5 s, then immersed in a coagulation bath for half an hour, taken out and placed in deionized water. Wash and store in deionized water for use.
  • the pure water flux was 384.6 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 95.5%.
  • the polysulfone membrane prepared in this example has a large pore at the bottom of 10-20 ⁇ m, and a straight finger hole of the cross section penetrates the support layer of the membrane.
  • a large number of porous hollow carbon spheres are fixed in the finger holes of the membrane, and the finger holes of the membrane become a storage warehouse for the porous hollow carbon spheres.
  • Step 3 Preparation of adsorption multifunctional membrane
  • the bottom of the polysulfone membrane substrate in the second step is upwardly filtered in a Millipore 8050 ultrafiltration cup, and the porous hollow carbon sphere solution is filtered and filled.
  • the flux is controlled by pressure, and the pressure is generally 0.01-0.1 MPa.
  • the bottom membrane pores of the polysulfone membrane substrate are polymerized by using 20 mL of 2 g/L of dopamine solution, and after washing, an adsorption multifunctional membrane is finally formed.
  • the pure water flux was 192 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 95.1%.
  • the membrane of the multifunctional membrane and the unfilled porous hollow hydrated zirconia spheres were placed in a Millipore 8050 ultrafiltration cup, and the composite micro-polluted water was filtered (from 25 nm gold nanoparticle simulating virus at a concentration of 5 mg/L, 50 mg/ Polyethylene glycol with a molecular weight of 600,000 simulates macromolecular organic pollutants, and mimics the composition of small molecules with a 5 mg/L methylene blue dye solution).
  • the composite micro-polluted water was filtered with a flux of 20 L/m 2 ⁇ h ⁇ bar, and each time 100 mL of the filtered sample was taken.
  • the bottom hole of the multifunctional membrane of this embodiment is filled with porous hollow carbon spheres, and the porous hollow carbon spheres are well fixed in the finger holes of the membrane.
  • the hollow carbon sphere, the polysulfone ultrafiltration membrane, and the adsorption multifunctional membrane were calcined from room temperature to 800 ° C in a nitrogen atmosphere. After analysis, the product was a hollow carbon sphere, accounting for 25.9% of the mass of the multifunctional membrane.
  • This example also reflects the molecular weight curve of the blank film and the multifunctional film to reflect the interception effect of the blank film and the multifunctional film on different molecular weight polyvinyl alcohol (PEG).
  • PEG polyvinyl alcohol
  • the multi-functional membrane and the blank membrane were tested by using the composite micro-stained water. The results showed that the multifunctional membrane could treat 10L of the above-mentioned micro-polluted water at one time, and the multifunctional membrane could be reused after washing and desorption.
  • the polydopamine-coated blank polysulfone membrane was capable of treating 700 mL of micro-contaminated water as above.
  • the polydopamine-coated blank polysulfone membrane and multifunctional membrane maintain the retention of gold nanoparticles and polyethylene glycol.
  • Step 1 Synthesis of nanoporous hollow spheres
  • a synthetic porous hollow tetraoxide sphere is selected as the nanoporous hollow sphere.
  • the porous hollow triiron tetroxide is synthesized by a one-step hydrothermal method. 2 mmol of ferric chloride, 4 mmol of sodium citrate and 6 mmol of urea were dissolved in 40 mL of distilled water, then 0.3 g of polyacrylamide was added and stirred until completely dissolved. The obtained solution was transferred to a reaction vessel of a polytetrafluoroethylene liner and reacted at 200 ° C for 12 h. After cooling to room temperature, it was centrifuged to obtain a black solid, which was washed alternately with water and absolute ethanol, and then dried under vacuum to finally obtain a porous hollow tetraoxide sphere. In this embodiment, a large number of spherical particles having a hollow structure are synthesized and have a particle diameter of about 200 to 300 nm.
  • polyethersulfone is used to prepare a sulfone polymer film substrate by an immersion-precipitation phase transformation method.
  • 16 g of polyethersulfone (PES), 8 g of polyvinylpyrrolidone (PVP) and 76 g of NN dimethylformamide were continuously stirred in an oil bath at 70 ° C for 5 h to form a homogeneous casting solution. The casting solution is allowed to stand for more than 12 hours for defoaming.
  • the defoamed casting solution is smeared at room temperature 25 ° C, 60% relative humidity, on a clean glass plate at 100 ° C, left in the air for 5 s, then placed in a coagulation bath for half an hour, taken out and placed in deionized water. Dip and store in deionized water for use.
  • the pure water flux was 384.6 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 95.5%.
  • the bottom of the PES film prepared in this example has a large pore of 10-20 ⁇ m, and the straight finger hole of the cross section penetrates the support layer of the film.
  • a large number of porous hollow ferrous oxide balls are fixed in the finger holes of the membrane, and the finger holes of the membrane become a storage warehouse of porous hollow galvanic oxide balls.
  • Step 3 Preparation of adsorption multifunctional membrane
  • the bottom of the polyethersulfone membrane substrate in the second step is lifted up in the Millipore 8050 ultrafiltration cup to the porous hollow tetraoxide sphere.
  • the solution is filtered and filled, and the flux is controlled by pressure, and the pressure is generally 0.01-0.1 MPa.
  • the bottom film pores of the polyethersulfone membrane are encapsulated by using cross-linked polyvinyl alcohol, and after washing, an adsorption multifunctional membrane is finally formed.
  • the pure water flux was 235 L/m 2 ⁇ h ⁇ bar, and the retention rate of 1 g/L bovine serum albumin (67000 M W ) was 94.1%.
  • the multi-functional membrane and the blank membrane were placed in a Millipore 8050 ultrafiltration cup, and the result of filtering the micro-polluted water was simulated by the 25 nm gold nanoparticle at a concentration of 5 mg/L, 50 mg/L.
  • Polyethylene glycol with a molecular weight of 600,000 simulates macromolecular organic pollutants, and is composed of 1000 ⁇ g/L of chromate mimicking small molecular contaminants.
  • the composite micro-polluted water was filtered with a flux of 20 L/m 2 ⁇ h ⁇ bar, and each time 100 mL of the filtered sample was taken.
  • the bottom hole of the multifunctional membrane of this embodiment is filled with porous hollow ferroferric oxide balls, and the porous hollow tetraoxide spheres are well fixed in the finger holes of the membrane.
  • the hollow ferroferric oxide balls are calcined from room temperature to 800 ° C in the air, because the hollow tecan oxide balls synthesized in this embodiment lose weight after calcination at a high temperature, and the calcined product is a triiron tetroxide ball.
  • the PES ultrafiltration membrane was calcined from room temperature to 800 ° C in air because the membrane matrix was an organic component and completely decomposed without residue after calcination. After calculation, a mass fraction of 49.7% hollow hydrated triiron tetroxide was fixed in the pores of the PES ultrafiltration membrane.
  • This example also reflects the molecular weight curve of the blank film and the multifunctional film to reflect the interception effect of the blank film and the multifunctional film on different molecular weight polyvinyl alcohol (PEG).
  • PEG polyvinyl alcohol
  • the multi-functional membrane and the blank membrane were tested by using the composite micro-staining water. The results showed that the multifunctional membrane could process 5L of the above-mentioned micro-polluted water, and the multifunctional membrane could be reused after washing and desorption.
  • the polyvinyl alcohol-coated blank PES membrane was capable of treating 300 mL of micro-polluted water as above. In addition, the polyvinyl alcohol-coated blank PES membrane can handle both the gold nanoparticles and the polyethylene glycol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种超滤膜及其制备方法,超滤膜由砜类聚合物膜基体构成的空腔和有机聚合物封装层组成,空腔中包含纳米吸附剂。制备方法包括以下步骤:(1)合成纳米吸附剂;(2)采用浸没-沉淀相转化法制备出砜类聚合物膜基体;(3)将纳米吸附剂从砜类聚合物膜基体底部反向灌装,灌装完成后使用有机聚合物封装,得到多功能超滤膜。

Description

一种超滤膜及其制备方法 技术领域
本发明属于水处理技术领域,具体来说属于膜分离技术领域,尤其涉及一种超滤膜及其制备方法。
背景技术
水是地球上所有生命赖以生存的最基本物质,但是由于人类的活动和工业生产,无论在发达或者发展中国家,大量的污染物被排放到水环境中,造成水质污染型水资源短缺,进而对人类公共健康安全构成了重大挑战。如今,世界上每年有8.84亿人缺少安全的饮用水,有180万儿童死于水污染引起的疾病。在未来几十年中,人类发展的一个基本问题就是如何获得安全的饮用水。此外,由于资源的日益紧缺,未来世界发展的一个重要主题就是节能。但现有水处理过程需要消耗大量的能源,在美国,每年消耗能源总量中的3-20%是被用于水处理过程。饮用水安全达标与能耗之间的关系陷于两难。目前,研究人员围绕着处理效率高、运营能耗低、化学药剂投加量少等处理需求,开发了许多饮用水处理新技术和新方法。在众多新技术和新方法中,膜分离技术和吸附技术正成为开发的重点。
膜分离技术在水处理过程中的应用已得到了飞速发展,今后膜技术成为水处理核心技术的态势已初现端倪。与消毒、蒸馏和介质过滤等水处理技术相比,膜分离技术基本不需要化学添加剂,热能和再生,可对污染物进行高效、选择和可靠的分离。目前,膜分离技术中主要有微滤、超滤、纳滤和反渗透四种过程,微滤可应用于悬浮固体、原生动物和细菌的去除,超滤可有效截留病毒和胶体,纳滤可实现硬度、重金属和溶解性有机物的去除,反渗透可应用于脱盐。水体中污染物质大小分布范围广,膜分离技术可实现对水体中污染物全部物理截留。然而,纳滤技术和反渗透技术虽可有效去除水体中小分子污染物,但其过程主要依靠很高的操作压力驱动,带来了大量能源消耗。超滤工艺可以取代以除浊和杀菌为目的的工艺,超滤能将水中的浊度降至0.1NTU以下,可少用或甚至不用混凝剂,从而减少混凝药剂对水质的污染。此外,超滤能去除几乎全部致病微生物,减少了消毒剂的用量,也显著减少了消毒副产物的生成量,从而提高了水的化学安全性。
吸附技术一直以来都是去除水体中小分子污染物的普遍方法,其具有能耗低、易操作、处理范围广等优点。但是现有吸附技术的核心是活性炭、沸石、天然纤维等传统吸附材料,存在着吸附容量低、吸附选择性差、回用能力弱等不足。近来,纳米金属氧化物、碳纳米管、多孔石墨烯等新型纳米吸附材料受到了研究者的极大关注,并被寄以解决传统吸附剂不足的 期望。与传统吸附材料相比,纳米吸附材料具有比表面积高、颗粒扩散距离短、活性吸附位点多、孔结构和表面性质易于调控等优点,可得到很高的单位比表面吸附容量。纳米吸附材料的表面易于功能化,改性后可具备对特征污染物的选择吸附性能。然而,纳米吸附剂由于再生回用困难,导致其使用成本高昂,即使其性能优良,但还是限制了其在水处理领域一展身手。此外,纳米吸附剂还可能带来对公众健康不必要的危害,主要是因为其毒性和暴露性。
近来,有研究者提出将多种水处理技术进行时空上的优化组合,集成水处理多任务和目标于单一器件,简化水处理流程,提高整体水处理效果,克服单一水处理技术存在的缺陷。集成技术特别适用于改良目前分散式和小规模的水处理过程。针对膜分离技术和纳米吸附技术面临的技术瓶颈,结合上述技术集成思想,有研究将纳米吸附技术和超滤膜分离技术耦合。现有研究具体实施方案是在超滤膜制备过程中,在铸膜液体系中共混引入纳米吸附材料,在成型后得到吸附膜材料。该技术结合了超滤和纳米吸附技术的优势,在较低操作压力下,实现同时去除小分子、大分子和颗粒污染物的目的,并克服了超滤和纳米吸附技术存在的不足。但是,吸附膜材料中通过共混引入的纳米吸附材料含量与超滤膜的截留性能存在着相互制约,纳米吸附材料共混量过多,会破坏超滤膜的结构,影响超滤性能,同时,如果纳米吸附材料共混量过少,吸附膜材料的吸附位点随之减少,降低了吸附小分子污染物的性能。此外,膜基体材料会包裹共混其中的纳米吸附材料,使其表面吸附位点失去作用。吸附膜材料存在的缺陷,影响了其实际应用,亟待解决之,以推动水处理技术与方法的进步。
发明内容
技术方案:
实现本发明目的的技术解决方案为:
本发明提供一种超滤膜,所述超滤膜由砜类聚合物膜基体构成的空腔和有机聚合物封装层组成,空腔中包含纳米吸附剂。
在一个优选实施例中,所述纳米吸附剂通过反向灌装法灌装于所述空腔中。
在一个优选实施例中,所述空腔通过浸没-沉淀相转化法制得。
在一个优选实施例中,所述纳米吸附剂为纳米多孔中空小球。
在一个优选实施例中,所述空腔为指状。
在一个优选实施例中,所述空腔大小为10-40μm×90-150μm。更优选地,空腔大小为20μm×120μm。
在一个优选实施例中,所述超滤膜灌装前孔隙率为65%-80%,灌装后孔隙率为35%-50%。更优选地,灌装前膜基体的孔隙率为71.2%,灌装后膜基体的孔隙率为44.1%。
在一个优选实施例中,所述纳米吸附剂含量为10%-70%。更优选地,纳米吸附剂含量为68.9%。
本发明还提供一种超滤膜的制备方法,其特征在于包括以下步骤:
(1)合成纳米吸附剂;
(2)采用浸没-沉淀相转化法制备出砜类聚合物膜基体;
(3)将纳米吸附剂从砜类聚合物膜基体底部反向灌装,灌装完成后使用有机聚合物封装,得到超滤膜。
在一个优选实施例中,所述浸没-沉淀相转化法首先是将砜类聚合物、聚乙烯吡咯烷酮(PVP)和N-N二甲基甲酰胺于油浴中持续搅拌形成均相铸膜液,静置脱泡,脱泡好的铸膜液在干净玻璃板上刮膜,玻璃板温度为60-100℃,然后在空气中停留,放入凝固浴中浸泡,之后取出放入去离子水中浸洗得到砜类聚合物膜基体,保存于去离子水中待用。
在一个优选实施例中,所述反向灌装是将纳米吸附剂超声分散于水中后,在超滤杯中将砜类聚合物膜基体底部向上对纳米吸附剂溶液进行过滤灌装,并通过压力控制灌装通量,压力为0.01-0.1Mpa。
在一个优选实施例中,所述砜类聚合物为聚砜和聚醚砜。
在一个优选实施例中,所述有机聚合物为聚多巴胺或聚乙烯醇。
在一个优选实施例中,所述纳米吸附剂为纳米多孔中空小球。
在一个优选实施例中,所述纳米多孔中空小球为中空多孔水合氧化锆球、中空多孔碳球或中空多孔四氧化三铁球。
多功能超滤膜制备完成后,本发明以金纳米粒子模拟病毒、聚乙二醇模拟大分子有机污染物、铅离子等模拟小分子污染物,该多功能膜对这些污染均有很好的去除效果,能够低压同步去除多组分复合微污染物。
有益效果:
本发明提出多功能超滤膜及其制备方法,所述多功能超滤膜尤其兼具吸附与分离双功能,可用于水中复合微污染物的同步去除。其制备策略是将具有吸附性能的纳米多孔中空小球封装于聚合物超滤膜指状孔空腔内,获得负载量高、传质阻力小的双功能膜。在不改变原有超滤膜结构和性能的基础上,利用纳米材料的吸附性能赋予其小分子污染物的去除能力。在保持原有超滤膜对大分子物质截留的基础上,可实现对重金属和典型有机污染物的同步去除。技术特点的显著特征在于突破了吸附膜材料中纳米吸附材料含量与超滤膜截留性能之间的相互制约,并将纳米吸附材料的吸附位点充分暴露。此外,多功能膜对多组分污染物的同步去 除是在低压过滤条件下实现的,这与现有膜法处理相比,操作压力仅为后者的5%以下。
本发明与现有吸附膜材料相比,其显著优点:(1)通过简单的反向过滤灌装,将纳米多孔中空小球引入超滤膜指状孔结构内,具有操作简单,成本低等优点;(2)通过控制灌装浓度和流速,调控纳米多孔中空小球在超滤膜基体中的含量;(3)由于膜孔隙率高,膜基体中可贮存大量纳米多孔中空小球,超滤膜基体仍保持原有结构,能够实现有效的超滤功能,突破了吸附膜材料中纳米吸附材料含量与超滤膜截留性能之间的相互制约,并将纳米吸附材料的吸附位点充分暴露;(4)纳米多孔中空小球因具有多孔和中空结构,可为水分子提供快速传质通道,减缓因纳米材料填充而带来的指状孔堵塞降低膜水通量的弊端;(5)在低压过滤条件下,多功能膜可实现对多组分污染物的同步去除,这与现有膜法处理(反渗透、纳滤)相比,操作压力仅为后者的5%以下。该法制得的吸附多功能膜在水环境污染修复领域有广阔的应用前景。
附图说明
图1是中空水合氧化锆球的电镜图,其中图1(a)是本发明实施例1制得的中空水合氧化锆球的透射电镜图;图1(b)是本发明实施例1制得的中空水合氧化锆球的是扫描电镜图。
图2是空白膜和多功能膜的底部以及断面的扫描电镜图,其中图2(a)是本发明实施例1制得的PES超滤膜底部扫描电镜图;图2(b)是本发明实施例1制得的吸附多功能膜底部扫描电镜图;图2(c)是本发明实施例1制得的PES超滤膜断面扫描电镜图;图2(d)是本发明实施例1-3制得的吸附多功能膜断面扫描电镜图。
图3多功能膜底部和断面扫描电镜图以及相对应的锆元素能谱扫描图,其中图3(a)是本发明实施例1制得的吸附多功能膜底部扫描电镜图;图3(b)是图3(a)对应的锆元素能谱扫描图;图3(c)是本发明实施例1吸附多功能膜断面扫描电镜图;图3(d)是图3(c)对应的锆元素能谱扫描图。
图4是热重分析曲线。曲线a为本发明实施例1制得的中空水合氧化锆球热重分析;b为本发明实施例1制得的吸附多功能膜热重分析;c为本发明实施例1制得的PES超滤膜热重分析。
图5是空白膜和多功能膜切割分子量曲线。曲线a是本发明实施例1制得的吸附多功能膜切割分子量;曲线b是本发明实施例1制得的PES超滤膜热重分析切割分子量。
图6是本发明实施例1制得的吸附多功能膜对相对分子质量为60万的PEG和粒径为20纳米的金纳米粒子的截留。
图7是本发明实施例1制得的吸附多功能膜对浓度为100μg/L铅离子的截留。
图8是本发明实施例1制得的吸附多功能膜在不同pH条件下的稳定性。
具体实施方式
下面的实施例可使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。本发明所提供的多功能超滤膜的结构、制备流程及工作原理示意图如图9所示。所述超滤膜由砜类聚合物膜基体构成的空腔和有机聚合物封装层组成,空腔中包含纳米吸附剂。
由图9可知,所述空腔为指状。经测量,空腔大小经测量为10-40μm×90-150μm;超滤膜灌装前孔隙率为65%-80%,灌装后孔隙率为35%-50%;纳米吸附剂含量为10%-70%。
所述超滤膜通过如下步骤制得:
(1)合成纳米吸附剂;
(2)采用浸没-沉淀相转化法制备出砜类聚合物膜基体;
(3)将纳米吸附剂从砜类聚合物膜基体底部反向灌装,灌装完成后使用有机聚合物封装,得到超滤膜。
所述浸没-沉淀相转化法首先是将砜类聚合物、聚乙烯吡咯烷酮(PVP)和N-N二甲基甲酰胺于油浴中持续搅拌形成均相铸膜液,静置脱泡,脱泡好的铸膜液在干净玻璃板上刮膜,玻璃板温度为60-100℃,然后在空气中停留,放入凝固浴中浸泡,之后取出放入去离子水中浸洗得到砜类聚合物膜基体,保存于去离子水中待用。
所述反向灌装是将纳米吸附剂超声分散于水中后,在超滤杯中将砜类聚合物膜基体底部向上对纳米吸附剂溶液进行过滤灌装,并通过压力控制灌装通量,压力为0.01-0.1Mpa。
本发明的超滤膜兼具吸附与分离双功能,简称为多功能超滤膜。以金纳米粒子模拟病毒、聚乙二醇模拟大分子有机污染物、铅离子等模拟小分子污染物,对吸附多功能膜的水处理性能进行验证。多功能膜自身的超滤截留性能可实现病毒、细菌、大分子有机污染物等物质的去除,膜基体中含有的吸附剂可实现对小分子污染物的深度去除。
实施例1:
步骤一、纳米多孔中空小球的合成
本实施例选用合成多孔中空水合氧化锆球作为纳米多孔中空小球。
制备多孔中空水合氧化锆球共分为四步。第一步制备SiO2小球,将18mL氨水和49.5mL蒸馏水加入到32.5mL无水乙醇中,搅拌半小时后,将混有9ml的正硅酸乙酯和91ml的无水乙醇的混合液加入其中,继续磁力搅拌8h,反应完成后把反应液离心分离,用蒸馏水和乙醇交替洗涤,反复操作三次,将产物分散在320mL无水乙醇中;第二步,在上述获得的溶液中,加入1mL蒸馏水和0.75g Brij-35,搅拌2h后,将含有4.5mL的正丁醇锆和45.5mL的无水乙醇的混合液添加其中。搅拌8小时后,离心收集产物,分散于50mL蒸馏水中老化 12h后,离心烘干。第三步将获得的上述产品使用丙酮萃取24h以去除模板剂Brij-35;第四步,将去除模板剂后的产物使用5M NaOH处理20h,去除其中的硬模板SiO2小球,最终获得多孔中空水合氧化锆球。
图1是中空水合氧化锆球的电镜图,图1(a)是中空水合氧化锆球的透射电镜图;图1(b)是中空水合氧化锆球的扫描电镜图。由图1(a)可知,合成了大量中空结构的球状颗粒其粒径约为400-500nm,球体周围颜色深而中间部分颜色浅,进一步证明制备的中空水合氧化锆球颗粒为中空结构。由图1(b)可知,所合成的中空水合氧化锆球样品为球状,其平均直径约为400-500nm,大球颗粒由纳米级的小颗粒团聚而成,部分球状颗粒已经破裂能明显看到壳的结构。直径约为400-500nm的纳米小球具有很高的比表面积以及较多的吸附位点,有利于污染物的吸附。
步骤二、聚醚砜(PES)膜基体的制备
本实施例选用聚醚砜(PES)通过浸没-沉淀相转化法制备砜类聚合物膜基体。首先,使用浸没-沉淀相转化法制备PES超滤膜,将16g聚醚砜(PES)、8g聚乙烯吡咯烷酮(PVP)和76g N-N二甲基甲酰胺中,于70℃油浴中持续搅拌5h形成均相铸膜液。铸膜液静置12h以上脱泡待用。脱泡好的铸膜液在室温25℃、60%相对湿度下、在60℃干净玻璃板上刮膜,在空气中停留5s,然后放入凝固浴中浸泡半小时,取出放入去离子水中浸洗,并保存于去离子水中待用。其纯水通量在384.6L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为95.5%。
图2是空白膜和多功能膜的底部以及断面的扫描电镜图,其中图2(a)是PES超滤膜底部扫描电镜图;图2(b)是吸附多功能膜底部扫描电镜图;图2(c)是PES超滤膜断面扫描电镜图;图2(d)是吸附多功能膜断面扫描电镜图。由图2(a)和图2(c)可知,PES膜的底部具有直径10-40μm,深度为90-150μm的大孔,断面的直形指状孔贯穿膜的支撑层。由图2(b)和图2(c)可发现,大量的中空水合氧化锆球被固定在膜的指状孔中,膜的指状孔成为了中空水合氧化锆球的存储仓库。
步骤三、吸附多功能膜的制备
将实施例步骤一中获得的多孔中空水合氧化锆球超声分散于水中后,在密理博8050型超滤杯中将步骤二中聚醚砜膜基体底部向上,对上述多孔中空水合氧化锆球溶液进行过滤灌装,并通过压力控制灌装通量,压力一般为0.01-0.1Mpa。灌装完成后,使用20mL 2g/L多巴胺溶液聚合封装聚醚砜膜底部膜孔,清洗后,最终形成吸附多功能膜。其多孔中空水合氧化锆球含量可达膜基体质量的68.9%。纯水通量在212.2L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为95.4%。
图3多功能膜底部和断面扫描电镜图以及相对应的锆元素能谱扫描图,其中图3(a)是吸 附多功能膜底部扫描电镜图;图3(b)是图3(a)对应的锆元素能谱扫描图;图3(c)是吸附多功能膜断面扫描电镜图;图3(d)是图3(c)对应的锆元素能谱扫描图。图3(a)和图3(b)证明了多功能膜的底部孔中充满了中空水合氧化锆球。图3(c)和图3(d)进一步说明了中空水合氧化锆球被很好的固定在膜的指状孔中。
图4是热重分析曲线。曲线a为步骤一制得的中空水合氧化锆球热重分析;曲线b为步骤三制得的吸附多功能膜热重分析;曲线c为步骤二制得的PES超滤膜热重分析。曲线a显示了中空水合氧化锆球在空气中从室温煅烧至800℃的失重曲线,因为本实施例合成的中空水合氧化锆球含有大量的羟基和结合水,所以高温煅烧会出现失重,煅烧后的产物为中空氧化锆球,占样品总质量的68.8%。曲线b显示了吸附多功能膜在空气中从室温煅烧至800℃的失重曲线,经煅烧后,产物为中空氧化锆球,占多功能膜质量的27.9%。曲线c显示了PES超滤膜在空气中从室温煅烧至800℃的失重曲线,因为膜基体为有机成分,经煅烧后完全分解无残留。
根据热重分析,结合下式(1),可计算出PES超滤膜占PES膜基体的质量分数,结果为68.9%:
Figure PCTCN2016072041-appb-000001
图5是空白膜和多功能膜切割分子量曲线。曲线a是步骤三制得的吸附多功能膜切割分子量;曲线b是步骤二制得的PES超滤膜热重分析切割分子量。反映了空白膜和多功能膜对不同分子量聚乙烯醇(PEG)的截留效果。结果显示空白膜和多功能膜均能够完全截留600kDa以上的PEG,多功能膜截留20kDa到300kDa分子量的PEG的效果好于PES超滤膜。该结果进一步说明了PES超滤膜孔中固定了质量分数为68.9%中空水合氧化锆球,没有影响膜基体的超滤性能。
性能检测将多功能膜和聚多巴胺包覆的空白PES膜置于密理博8050型超滤杯中,过滤复合微污染水(由以浓度为5mg/L的25nm金纳米粒子模拟病毒,50mg/L分子量为60万的聚乙二醇模拟大分子有机污染物、以100μg/L的铅离子模仿小分子污染物组成)。复合微污染水以通量20L/m2·h·bar过滤,每滤出100mL取样一次。
图6和图7是多功能膜和聚多巴胺包覆的空白PES膜过滤复合微污染水的结果,结果显示多功能膜一次可处理6L如上的微污染水,多功能膜经洗涤解吸后,可重复使用。聚多巴胺包覆的空白PES膜能处理700mL如上的微污染水。此外,聚多巴胺包覆的空白膜和多 功能膜均能一直保持对金纳米粒子和聚乙二醇的截留。
图8是步骤三制得的吸附多功能膜在不同pH条件下的稳定性。为了证明不同pH条件下多功能膜的稳定性,本实施例将多功能膜置于pH为0.1到7的蒸馏水中震荡96h后,分析上清液中锆元素的含量。由图8可知,在pH大于2时,上清液中没有检测到锆元素的存在,说明多功能膜能够稳定存在于pH大于2的环境中,同时也为应用过程中多功能膜吸附饱和后,在酸性条件下解吸,提供了可能。
实施例2:
步骤一、纳米多孔中空小球的合成
本实施例选用合成多孔中空碳球作为纳米多孔中空小球。
将1.04g 25wt%CTAC加入到含有19mL蒸馏水、0.1mL氨水和5mL无水乙醇混合溶液中,搅拌半小时后,加入0.2g间苯二酚,继续搅拌半小时。将0.72mL正硅酸乙酯和0.28mL甲醛溶液加入至上述混合溶液,30℃条件下搅拌反应24h。反应结束后,离心获得固体,在80℃下干燥12h。将干燥后的固体在氮气保护下,于200℃、350℃、500℃、600℃煅烧2h,再在800℃煅烧5h。最终获得多孔中空碳球。本实施例合成了大量中空结构的球状颗粒其粒径约为200-300nm。
步骤二、聚砜膜基体的制备
本实施例选用聚砜通过浸没-沉淀相转化法制备砜类聚合物膜基体。将16g聚砜、8g聚乙烯吡咯烷酮(PVP)和76g N-N二甲基甲酰胺中,于70℃油浴中持续搅拌5h形成均相铸膜液。铸膜液静置12h以上脱泡待用。脱泡好的铸膜液在室温25℃、60%相对湿度下在80℃干净玻璃板上刮膜,在空气中停留5s,然后放入凝固浴中浸泡半小时,取出放入去离子水中浸洗,并保存于去离子水中待用。其纯水通量在384.6L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为95.5%。
本实施例制备的聚砜膜的底部具有10-20μm的大孔,断面的直形指状孔贯穿膜的支撑层。大量的多孔中空碳球被固定在膜的指状孔中,膜的指状孔成为了多孔中空碳球的存储仓库。
步骤三、吸附多功能膜的制备
将步骤一中获得的多孔中空碳球超声分散于水中后,在密理博8050型超滤杯中将步骤二中的聚砜膜基体底部向上,对上述多孔中空碳球溶液进行过滤灌装,并通过压力控制灌装通量,压力一般为0.01-0.1Mpa。灌装完成后,使用20mL2·g/L多巴胺溶液聚合封装聚砜膜基体底部膜孔,清洗后,最终形成吸附多功能膜。其纯水通量在192L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为95.1%。
性能检测
将多功能膜和未灌装多孔中空水合氧化锆球的膜置于密理博8050型超滤杯中,过滤复合微污染水(由以浓度为5mg/L的25nm金纳米粒子模拟病毒,50mg/L分子量为60万的聚乙二醇模拟大分子有机污染物、以5mg/L的亚甲蓝染料溶液模仿小分子污染物组成)。复合微污染水以通量20L/m2·h·bar过滤,每滤出100mL取样一次。
本实施例的多功能膜的底部孔中充满了多孔中空碳球,多孔中空碳球被很好的固定在膜的指状孔中。将中空碳球、聚砜超滤膜、吸附多功能膜在氮气气氛中从室温煅烧至800℃,经过分析计算,产物为中空碳球,占多功能膜质量的25.9%。
本实施例也通过空白膜和多功能膜切割分子量曲线来反映了空白膜和多功能膜对不同分子量聚乙烯醇(PEG)的截留效果。结果显示空白膜和多功能膜均能够完全截留600kDa以上的PEG,多功能膜截留20kDa到600kDa分子量的PEG的效果好于PES超滤膜。该结果进一步说明了PES超滤膜孔中固定了质量分数为27.9%的中空水合碳球,没有影响膜基体的超滤性能。
选用复合微沾染水对多功能膜和空白膜过进行测试,结果显示多功能膜一次可处理10L如上的微污染水,多功能膜经洗涤解吸后,可重复使用。聚多巴胺包覆的空白聚砜膜能处理700mL如上的微污染水。此外,聚多巴胺包覆的空白聚砜膜和多功能膜均能一直保持对金纳米粒子和聚乙二醇的截留。
实施例3:
步骤一、纳米多孔中空小球的合成
本实施例选用合成多孔中空四氧化三铁球作为纳米多孔中空小球。
多孔中空四氧化三铁球通过一步水热法合成。2mmol氯化铁,4mmol柠檬酸钠和6mmol尿素溶解于40mL蒸馏水中,然后加入0.3g聚丙烯酰胺,搅拌至完全溶解。将获得的溶液移至聚四氟乙烯内衬的反应釜中,在200℃反应12h。冷却至室温后,离心获得黑色固体,用水和无水乙醇交替洗涤后,在真空条件下干燥,最终获得多孔中空四氧化三铁球。本实施例合成了大量中空结构的球状颗粒其粒径约为200-300nm。
步骤二、PES超滤膜的制备
本实施例选用聚醚砜(PES)通过浸没-沉淀相转化法制备砜类聚合物膜基体。将16g聚醚砜(PES)、8g聚乙烯吡咯烷酮(PVP)和76g N-N二甲基甲酰胺中,于70℃油浴中持续搅拌5h形成均相铸膜液。铸膜液静置12h以上脱泡待用。脱泡好的铸膜液在室温25℃、60%相对湿度下、在100℃干净玻璃板上刮膜,在空气中停留5s,然后放入凝固浴中浸泡半小时,取出放入去离子水中浸洗,并保存于去离子水中待用。其纯水通量在384.6L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为95.5%。
本实施例制备的PES膜的底部具有10-20μm的大孔,断面的直形指状孔贯穿膜的支撑层。大量的多孔中空四氧化三铁球被固定在膜的指状孔中,膜的指状孔成为了多孔中空四氧化三铁球的存储仓库。
步骤三、吸附多功能膜的制备
将步骤一中获得的多孔中空四氧化三铁球超声分散于水中后,在密理博8050型超滤杯中将步骤二中的聚醚砜膜基体底部向上,对上述多孔中空四氧化三铁球溶液进行过滤灌装,并通过压力控制灌装通量,压力一般为0.01-0.1Mpa。灌装完成后,使用交联聚乙烯醇封装聚醚砜膜底部膜孔,清洗后,最终形成吸附多功能膜。其纯水通量在235L/m2·h·bar,1g/L牛血清白蛋白(67000MW)截留率为94.1%。
3-4吸附多功能膜的应用
将多功能膜和空白膜置于密理博8050型超滤杯中,过滤复合微污染水的结果,所述复合微污染水由以浓度为5mg/L的25nm金纳米粒子模拟病毒,50mg/L分子量为60万的聚乙二醇模拟大分子有机污染物、以1000μg/L的铬酸根模仿小分子污染物组成。复合微污染水以通量20L/m2·h·bar过滤,每滤出100mL取样一次。
本实施例的多功能膜的底部孔中充满了多孔中空四氧化三铁球,多孔中空四氧化三铁球被很好的固定在膜的指状孔中。
将中空四氧化三铁球在空气中从室温煅烧至800℃,因为本实施例合成的中空四氧化三铁球在高温煅烧会出现失重,煅烧后的产物为四氧化三铁球。将PES超滤膜在空气中从室温煅烧至800℃,因为膜基体为有机成分,经煅烧后完全分解无残留。经计算,PES超滤膜孔中固定了质量分数为49.7%中空水合四氧化三铁球。
本实施例也通过空白膜和多功能膜切割分子量曲线来反映了空白膜和多功能膜对不同分子量聚乙烯醇(PEG)的截留效果。结果显示空白膜和多功能膜均能够完全截留600kDa以上的PEG,多功能膜截留20kDa到600kDa分子量的PEG的效果好于PES超滤膜。该结果进一步说明了PES超滤膜孔中固定了质量分数为49.7%中空水合四氧化三铁球,没有影响膜基体的超滤性能。
选用复合微沾染水对多功能膜和空白膜过进行测试,结果显示多功能膜一次可处理5L如上的微污染水,多功能膜经洗涤解吸后,可重复使用。聚乙烯醇包覆的空白PES膜能处理300mL如上的微污染水。此外,聚乙烯醇包覆的空白PES膜能处理和多功能膜均能一直保持对金纳米粒子和聚乙二醇的截留。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (10)

  1. 一种超滤膜,其特征在于所述超滤膜由砜类聚合物膜基体构成的空腔和有机聚合物封装层组成,空腔中包含纳米吸附剂。
  2. 根据权利要求1所述的超滤膜,其特征在于所述纳米吸附剂通过反向灌装法灌装于所述空腔中。
  3. 根据权利要求1所述的超滤膜,其特征在于所述空腔通过浸没-沉淀相转化法制得。
  4. 根据权利要求1所述的超滤膜,其特征在于所述纳米吸附剂为纳米多孔中空小球。
  5. 根据权利要求1所述的超滤膜,其特征在于所述空腔为指状。
  6. 根据权利要求1所述的超滤膜,其特征在于所述空腔大小为10-40μm×90-150μm。
  7. 根据权利要求1所述的超滤膜,其特征在于所述超滤膜灌装前孔隙率为65%-80%,灌装后孔隙率为35%-50%。
  8. 根据权利要求1所述的超滤膜,其特征在于所述纳米吸附剂含量为10%-70%。
  9. 一种根据权利要求1所述的超滤膜的制备方法,其特征在于包括以下步骤:
    (1)合成纳米吸附剂;
    (2)采用浸没-沉淀相转化法制备出砜类聚合物膜基体;
    (3)将纳米吸附剂从砜类聚合物膜基体底部反向灌装,灌装完成后使用有机聚合物封装,得到超滤膜。
  10. 根据权利要求9所述的超滤膜的制备方法,其特征在于所述浸没-沉淀相转化法首先是将砜类聚合物、聚乙烯吡咯烷酮和N-N二甲基甲酰胺于油浴中持续搅拌形成均相铸膜液,静置脱泡,脱泡好的铸膜液在干净玻璃板上刮膜,玻璃板温度为60-100℃;然后在空气中停留,放入凝固浴中浸泡;之后取出放入去离子水中浸洗得到砜类聚合物膜基体,保存于去离子水中待用;所述反向灌装是将纳米吸附剂超声分散于水中后,在超滤杯中将砜类聚合物膜基体底部向上对纳米吸附剂溶液进行过滤灌装,并通过压力控制灌装通量,压力为0.01-0.1Mpa。
PCT/CN2016/072041 2016-01-22 2016-01-25 一种超滤膜及其制备方法 WO2017124572A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/540,260 US10143972B2 (en) 2016-01-22 2016-01-25 Ultrafiltration membrane and a preparation method thereof
CN201680001280.5A CN106794431B (zh) 2016-01-22 2016-01-25 一种超滤膜及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610044661.3 2016-01-22
CN201610044661 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017124572A1 true WO2017124572A1 (zh) 2017-07-27

Family

ID=59361513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072041 WO2017124572A1 (zh) 2016-01-22 2016-01-25 一种超滤膜及其制备方法

Country Status (2)

Country Link
US (1) US10143972B2 (zh)
WO (1) WO2017124572A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854603B (zh) * 2018-07-09 2020-05-12 海南立昇净水科技实业有限公司 一种利用多巴胺和功能化碳纳米管共涂覆改性超滤膜的制备方法
CN111318172B (zh) * 2018-12-17 2022-01-25 中国石油化工股份有限公司 一种高分子修饰的石墨烯过滤膜的制备方法
CN110721599B (zh) * 2019-09-24 2022-01-11 江苏大学 一种SGO-ZnO-PSF复合超滤膜的制备方法及其应用
CN110745909A (zh) * 2019-10-23 2020-02-04 李天栋 一种纳米级超滤生物集成膜的制备方法
CN112827358B (zh) * 2019-11-22 2022-05-17 宁波方太厨具有限公司 中空纤维重金属吸附超滤膜的制备方法
CN111892985A (zh) * 2020-08-13 2020-11-06 王东 一种污废润滑油的提纯方法
CN113121859B (zh) * 2021-04-22 2022-09-02 哈尔滨工业大学 一种电聚合聚多巴胺-碳纳米管复合膜的制备方法
CN113426308A (zh) * 2021-06-09 2021-09-24 河南功能高分子膜材料创新中心有限公司 一种耐酸碱、耐高温pass/pp高通量管式超滤膜
CN115254067B (zh) * 2022-09-29 2023-05-05 山东博科科学仪器有限公司 一种硅羟基磁珠及其合成方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791521A (zh) * 2010-04-06 2010-08-04 东华大学 聚醚砜/活性炭复合膜、其制备方法和应用
JP4596171B2 (ja) * 2006-04-28 2010-12-08 東洋紡績株式会社 血液浄化器
CA2893412A1 (en) * 2013-02-20 2014-08-28 Toray Industries, Inc. Hollow-fiber membrane module, method for producing hollow fiber membrane, and method for producing hollow fiber membrane module
CN104039544A (zh) * 2011-10-24 2014-09-10 Tbf有限公司 封装阻隔叠层
CN104492287A (zh) * 2014-12-30 2015-04-08 天津工业大学 一种具有吸附功能的镶嵌分子筛的聚合物多孔膜
CN105107395A (zh) * 2015-09-30 2015-12-02 南京理工大学 中空介孔氧化硅球/聚醚砜复合超滤膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996131A (en) * 1971-06-16 1976-12-07 Universal Oil Products Company Precoat for permeability separation systems
DE102004021351A1 (de) * 2004-04-23 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Funktionalisierter poröser Träger für Mikroarrays
WO2011016478A1 (ja) * 2009-08-04 2011-02-10 独立行政法人物質・材料研究機構 濾過フィルターの製造方法及び濾過フィルター
WO2015142938A1 (en) * 2014-03-17 2015-09-24 Washington University Composite nanostructures having a crumpled graphene oxide shell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596171B2 (ja) * 2006-04-28 2010-12-08 東洋紡績株式会社 血液浄化器
CN101791521A (zh) * 2010-04-06 2010-08-04 东华大学 聚醚砜/活性炭复合膜、其制备方法和应用
CN104039544A (zh) * 2011-10-24 2014-09-10 Tbf有限公司 封装阻隔叠层
CA2893412A1 (en) * 2013-02-20 2014-08-28 Toray Industries, Inc. Hollow-fiber membrane module, method for producing hollow fiber membrane, and method for producing hollow fiber membrane module
CN104492287A (zh) * 2014-12-30 2015-04-08 天津工业大学 一种具有吸附功能的镶嵌分子筛的聚合物多孔膜
CN105107395A (zh) * 2015-09-30 2015-12-02 南京理工大学 中空介孔氧化硅球/聚醚砜复合超滤膜的制备方法

Also Published As

Publication number Publication date
US20180085712A1 (en) 2018-03-29
US10143972B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2017124572A1 (zh) 一种超滤膜及其制备方法
Yang et al. Applications of metal‐organic frameworks in water treatment: a review
Wang et al. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review
Castro-Muñoz et al. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water
Tan et al. A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue
Khosravi et al. Performance improvement of PES membrane decorated by Mil-125 (Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal
Borji et al. How effective are nanomaterials for the removal of heavy metals from water and wastewater?
Ngah et al. Adsorption of dyes and heavy metal ions by chitosan composites: A review
Mariana et al. Recent trends and future prospects of nanostructured aerogels in water treatment applications
Qalyoubi et al. Recent progress and challenges of adsorptive membranes for the removal of pollutants from wastewater. Part II: Environmental applications
Vallinayagam et al. Recent developments in magnetic nanoparticles and nano-composites for wastewater treatment
CN108409981A (zh) 一种改性金属有机框架和复合纳滤膜的制备方法
Kotp Removal of organic pollutants using polysulfone ultrafiltration membrane containing polystyrene silicomolybdate nanoparticles: Case study: Borg El Arab area
Salman et al. Recent advances in the application of silica nanostructures for highly improved water treatment: a review
CN106944005A (zh) 一种深度去除水中微量氟的树脂基纳米复合吸附剂及其制备方法和应用
Wang et al. A review: adsorption and removal of heavy metals based on polyamide-amines composites
Basu et al. Present status of hybrid materials for potable water decontamination: a review
CN106693731A (zh) 一种纳米碳酸钙掺杂聚砜制备高通量超滤膜的方法
Sharma et al. Chitosan-based membranes for wastewater desalination and heavy metal detoxification
Bandehali et al. Nanomaterials for the efficient abatement of wastewater contaminants by means of reverse osmosis and nanofiltration
Mofradi et al. Hydrophilic polymeric membrane supported on silver nanoparticle surface decorated polyester textile: Toward enhancement of water flux and dye removal
CN106794431B (zh) 一种超滤膜及其制备方法
Jin et al. Efficient adsorption of azo anionic dye Congo Red by micro-nano metal-organic framework MIL-68 (Fe) and MIL-68 (Fe)/chitosan composite sponge: preparation, characterization and adsorption performance
Abu Bakar et al. Natural composite membranes for water remediation: Toward a sustainable tomorrow
Hua et al. Synthesis of mesoporous-structured MIL-68 (Al)/MCM-41-NH2 for methyl orange adsorption: optimization and Selectivity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15540260

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885845

Country of ref document: EP

Kind code of ref document: A1