WO2017123005A2 - 공간 공유를 위한 채널 품질을 보고하는 방법 및 장치 - Google Patents

공간 공유를 위한 채널 품질을 보고하는 방법 및 장치 Download PDF

Info

Publication number
WO2017123005A2
WO2017123005A2 PCT/KR2017/000376 KR2017000376W WO2017123005A2 WO 2017123005 A2 WO2017123005 A2 WO 2017123005A2 KR 2017000376 W KR2017000376 W KR 2017000376W WO 2017123005 A2 WO2017123005 A2 WO 2017123005A2
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
measurement
channel
request
channels
Prior art date
Application number
PCT/KR2017/000376
Other languages
English (en)
French (fr)
Other versions
WO2017123005A3 (ko
Inventor
조경태
조한규
김진민
박성진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/070,213 priority Critical patent/US10645605B2/en
Publication of WO2017123005A2 publication Critical patent/WO2017123005A2/ko
Publication of WO2017123005A3 publication Critical patent/WO2017123005A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method for reporting channel quality for spatial sharing and an apparatus using the same.
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11ad standard is a high-speed wireless communications standard that operates in the band above 60 GHz.
  • the reach of the signal is around 10 meters, but the throughput can support more than 6 Gbps. Since operating at higher frequency bands, signal propagation is dominated by ray-like propagation.
  • Signal quality may be improved as the TX (remit) or RX (receive) antenna beam is aligned to face a strong spatial signal path.
  • IEEE 802.11ad provides a beamforming training process for antenna beam alignment. Based on IEEE 802.11ad, the next generation of standards being developed with a target of 20 Gbps or higher is IEEE 802.11ay.
  • One of the requirements discussed in IEEE 802.11ay is to support multiple channels and bonding channels.
  • a method is provided for applying an operation using a single channel to multiple channels.
  • the present invention provides a method and apparatus for reporting channel quality for spatial sharing.
  • a method for reporting channel quality for spatial sharing (SPSH) in a WLAN may include establishing a link using a plurality of receive antennas by performing a sector sweep during an AP (station) access beam (AP) and beamforming training, wherein the STA sets a channel quality for SPSH evaluation from the AP. Receiving a request, and the STA sending a channel quality report to the AP in response to the channel quality request.
  • the channel quality request may include an RX antenna measurement report method field indicating whether to request a channel quality result for each of the plurality of RX antennas or an average of channel quality results using the plurality of RX antennas.
  • the channel quality request may include a measurement channel bitmap field indicating one or more measurement channels to which channel quality of the plurality of channels is measured.
  • the channel quality request may include a channel measurement reporting method field indicating whether to request a channel quality result for each of the one or more measurement channels or an average of channel quality results in all of the one or more measurement channels. have.
  • an apparatus for reporting channel quality for spatial sharing (SPSH) in a WLAN includes a transceiver for transmitting and receiving a wireless signal and a processor coupled to the transceiver.
  • the processor performs a sector sweep during an access point (AP) and beamforming training to establish a link using a plurality of receive antennas, receives a channel quality request for SPSH evaluation from the AP, and sends the request to the AP.
  • the channel quality report is transmitted in response to the channel quality request.
  • FIG. 3 shows an example of a PPDU format for the proposed communication.
  • FIG 4 shows an example of channelization to which an embodiment according to the present invention is applied.
  • FIG 5 shows an example of a spatial sharing (SPSH) protocol in the existing IEEE 802.11ad.
  • SPSH spatial sharing
  • FIG. 6 shows a field format for a channel quality request.
  • FIG. 7 shows a field format for channel quality reporting.
  • FIG. 8 is a flowchart illustrating a measurement method for SPSH evaluation according to an embodiment of the present invention.
  • FIG 9 illustrates a channel quality request according to an embodiment of the present invention.
  • FIG. 10 illustrates a channel quality report according to an embodiment of the present invention.
  • FIG. 11 illustrates a channel quality request according to another embodiment of the present invention.
  • FIG. 12 illustrates a channel quality report according to another embodiment of the present invention.
  • FIG. 13 illustrates a channel quality request according to another embodiment of the present invention.
  • FIG 16 shows another example of an SPSH evaluation according to an embodiment of the present invention.
  • FIG 17 shows another example of SPSH evaluation according to an embodiment of the present invention.
  • FIG. 18 is a block diagram illustrating an apparatus in which an embodiment of the present invention is implemented.
  • the following describes by way of example a wireless communication system operating in a frequency band of 60 GHz or 45 GHz or higher. Multiple channels may be provided, for example one channel may have a bandwidth of 2.16 GHz.
  • a station may be called various names such as a wireless device, a mobile station (MS), a network interface device, a wireless interface device, or simply a user.
  • a basic service set is a building block of a wireless local area network (WLAN) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard.
  • the BSS includes a plurality of STAs capable of directly communicating with each other.
  • WLAN provides two types of independent BSS (IBSS) and personal BSS (PBSS).
  • IBSS is a basic type.
  • PBSS is an ad hoc network and is a type of wireless local area network (WLAN) in which each STA can directly communicate with each other.
  • One STA in the PBSS may serve as a PBSS control point (PCP).
  • the PCP may provide beacon transmission, service period (SP) allocation, and the like.
  • SP service period
  • An access point is an entity that provides access between multiple BSSs.
  • One STA in the BSS may serve as an AP, and STAs belonging to different BSSs may communicate through the AP.
  • the AP manages beacon transmission and association.
  • the AP and the PCP are referred to as APs, not separately.
  • the STA may include a non-AP STA or an AP, unless the STA distinguishes a function from the AP.
  • the STA When described in communication with a STA to an AP, the STA may be interpreted as a non-AP STA.
  • the STA may be a non-AP STA or an AP if it is described in STA-to-STA communication or otherwise requires a function of the AP.
  • FIG. 1 shows a beamforming training process according to the prior art. It may be referred to section 9.35 of the IEEE 802.11ad standard.
  • STA1 is an initiator that initiates beamforming (BF) training.
  • STA2 participating in BF training is a responder.
  • the BF training is to provide signaling required for each STA to determine the appropriate antenna system settings and transmission of a BF training frame using a sector sweep.
  • the BF training course may include a sector level sweep (SLS) process and a beam refinement protocol (BRP) process.
  • SLS process for sector sweep is to enable communication to such a degree that a control PHY (physical layer) between STAs is provided.
  • BRP process is to provide refinement of the antenna weight vector between the transmitter and the receiver.
  • the BF training begins with the SLS by the initiator.
  • the SLS process includes an initiator sector sweep (ISS) for training the initiator link, a responder sector sweep (RSS) for training the responder link, a sector sweep (SSW) feedback, and an SSW ACK.
  • ISS initiator sector sweep
  • RSS responder sector sweep
  • SSW sector sweep
  • SSW SSW ACK
  • the initiator transmits a frame (beacon frame or SSW frame), respectively, over its sectors.
  • the Responder sends SSW frames, respectively, across its sectors.
  • SSW feedback the initiator sends an SSW feedback frame to the responder.
  • the SSW feedback frame may include information about the sector and antenna selected by the initiator.
  • the SSW ACK frame is sent by the responder via the sector and antenna included in the SSW feedback most recently received by the initiator.
  • the sector may correspond to a specific antenna beam or pattern.
  • the TX (transmit) sector is the sector for the TX antenna
  • the RX (receive) sector is the sector for the RX antenna.
  • the SLS process determines the sector (TX sector and / or RX sector) with the best quality for the initiator and the sector (TX sector and / or RX sector) that is best for the responder.
  • the BRP process may include a BRP setup subphase, a multiple sector ID detection (MID) subphase, a beam combining (BC) subphase, and the like.
  • MID multiple sector ID detection
  • BC beam combining
  • the beacon interval is a period during which the beacon frame is transmitted.
  • the beacon transmission interval is the time interval between the first beacon frame transmission and the last beacon frame transmission by the AP within the beacon interval.
  • Association beamforming training (A-BFT) is a time interval including RSS and SSW feedback of the SLS process for BF.
  • Announcement transmission interval (ATI) is a time interval for request-response based management between the AP and the STA.
  • the data transfer interval (DTI) is a time interval for data exchange.
  • A-BFT is performed in units of SSW slots, and the length of the A-BFT is defined as an integer multiple of the SSW slot.
  • A-BFT length information about the length of the A-BFT may be included in the beacon frame.
  • the SSW slot has a length of aSSSlotTime.
  • aSSSlotTime aAirPropagationTime + aSSDuration + MBIFS + aSSFBDuration + MBIFS.
  • aAirPropagationTime is a parameter considering propagation delay between the initiator and the responder.
  • aSSDuration is the time for the responder to transmit M SSW frames in the SSW slot.
  • M Medium Beamforming Interframe Spacing (MBIFS) represents an interval between BTI and A-BFT or an interval between ISS, RSS, SSW feedback, and SSW ACK.
  • MIFS Medium Beamforming Interframe Spacing
  • the responder STA initiates a random backoff process to initiate or resume RSS.
  • the STA randomly selects the backoff count from the uniform distribution [0, (A-BFT length-1)].
  • the STA decrements the backoff count by one at the end of each SSW slot.
  • the STA initiates RSS in the SSW slot when the value of the backoff count is 0 at the start of the SSW slot.
  • the STA may transmit up to M SSW frames. If there are more SSW frames to be sent by the STA, RSS can be restarted in the next SSW slot if A-BFT is not over. If RSS is not completed before A-BFT is terminated, the backoff process is performed again before restarting RSS at the next A-BFT.
  • the AP may send SSW feedback before the SSW slot is terminated.
  • Information included in the SSW feedback may be based on the SSW frame received in the SSW slot through which the SSW feedback is transmitted.
  • SSW feedback may include information about the sector and antenna selected by the AP.
  • the STA has an RSS fail count.
  • the RSS failure count is the continuous number of times RSS was performed during A-BFT (s) but did not receive SSW feedback as a response. For example, suppose that one A-BFT has 8 SSW slots, and the STA transmits an SSW frame in 4 SSW slots over 2 A-BFTs. If the STA has not received the SSW feedback in the 3 SSW slots of the 4 SSW slots, the RSS failure count has a value of 3.
  • the STA selects the random value selected from the uniform distribution [0, RSSBackoff) as the backoff count.
  • the STA decrements the backoff count by one, one at the end of each A-BFT.
  • the STA can restart RSS in A-BFT.
  • the STA may set the RSS failure count to zero.
  • FIG. 3 shows an example of a PPDU format for the proposed communication.
  • Physical layer protocol data units are data blocks exchanged between two physical (PHY) entities.
  • PHY physical
  • EDMG enhanced directional multi-gigabit
  • EDMG PPDUs include the Legacy Short Training field (L-STF), the Legacy Channel Estimation field (L-CEF), the Legacy Header field (L-Header), the EDMG Header A field (EDMG-Header-A), and the EDMG-STF (EDMG Short). Training field), EDMG Channel Estimation field (EDMG-CEF), EDMG Header B field (EDMG-Header-B), Data field, and Training sequences field (TRN). Not all fields are required, some fields may be omitted, and other fields may be added. For example, EDMG Header B field (EDMG-Header-B) may be added after EDMG-CEF.
  • L-STF Legacy Short Training field
  • L-CEF Legacy Channel Estimation field
  • L-Header Legacy Header field
  • EDMG-Header-A the EDMG Header A field
  • TRN Training sequences field
  • the L-CEF is used for channel estimation.
  • the L-Header includes information about reception of a data field.
  • the L-Header may include an Modulation and Coding Scheme (MCS), the length of the payload in the data field, and / or an indication of the presence of EDMG-Header-A.
  • MCS Modulation and Coding Scheme
  • the Data field contains data for the user.
  • EDMG-STF is transmitted in one or more spatial streams, the structure may vary depending on the number of channels used.
  • EDMG-CEF is transmitted in one or more spatial streams, the structure may vary depending on the number of channels used.
  • EDMG-Header-A contains information for interpreting an EDMG PPDU.
  • EDMG-Header-A may include a format field, a bandwidth field, and stream information.
  • the format field indicates whether the corresponding PPDU is a single user (DU) PPDU or a multi-user (MU) PPDU.
  • the bandwidth field indicates the bandwidth over which the corresponding PPDU is transmitted.
  • the stream information represents the number of spatial streams allocated to the receiving STA.
  • EDMG-Header-B is transmitted only in the DMG MU PPDU.
  • EDMG-Header-B includes information about PSDU length and MCS (modulation and coding scheme) in the data field.
  • FIG 4 shows an example of channelization to which an embodiment according to the present invention is applied.
  • each base channel has a bandwidth of 2.16 GHz, there is no limit to the number or bandwidth of base channels.
  • a plurality of basic channels may be bonded to define a bonding channel. For example, by bonding two base channels, a bonding channel with a bandwidth of 4.32 GHz can be defined. By bonding three base channels, a bonding channel with a bandwidth of 6.48 GHz can be defined. By bonding four base channels, a bonding channel with a bandwidth of 8.64 GHz can be defined.
  • FIG 5 shows an example of a spatial sharing (SPSH) protocol in the existing IEEE 802.11ad.
  • SPSH spatial sharing
  • SPSH can increase the overall data rate by simultaneously using one link on the same channel and giving the other links the opportunity to use the link without affecting the link.
  • a service period is a time period scheduled for inter-STA communication.
  • the scheduled SP is called an existing SP, and the SP used to evaluate the SPSH is called a candidate SP.
  • Each SP may correspond to one link.
  • the AP may request the STA to perform radio resource measurement.
  • SP1 is an existing SP and SP2 is a candidate SP.
  • the AP sends a channel quality request to STA C and STA D during SP1.
  • STA A and STA B are communicating during SP1.
  • STA C and STA D measure the channel quality and report the result to the AP.
  • the AP sends a channel quality request to STA A and STA B during SP2.
  • STA C and STA D are communicating during SP2.
  • STA A and STA B measure channel quality and report the result to the AP.
  • the channel quality request is sent to request the STA requested by the requesting STA to perform measurement with the target STA.
  • the Operating Class field indicates a channel set to which a measurement request is applied.
  • the Channel Number field indicates a channel number to which a measurement request is applied.
  • the AID field indicates the target STA.
  • the Measurement Method field indicates a method of performing and reporting a measurement by the requested STA. For example, if this field is 0, this indicates an average noise plus interference power indicator (ANIPI), and if this field is 1, it may indicate a received signal-to-noise indicator (RSNI).
  • ANIPI average noise plus interference power indicator
  • RSNI received signal-to-noise indicator
  • the Measurement Start Time field indicates the time at which the requested measurement starts.
  • the Measurement Duration field indicates the duration of the requested measurement.
  • the Number of Time Blocks field indicates the number of measurement units in a measurement duration. (Measurement Duration / Number of Time Blocks) represents a duration of a measurement unit. .
  • FIG. 7 shows a field format for channel quality reporting.
  • the Operating Class field indicates the channel set to which the measurement report is applied.
  • the Channel Number field indicates the channel number to which the measurement report is applied.
  • the AID field indicates the target STA.
  • the Measurement Method field indicates a method of performing and reporting a measurement by the requested STA. If this field is 0, the Measurement for Time Block field may be represented by ANIPI. If this field is 1, the Measurement for Time Block field may be represented by RSNI.
  • the Measurement Start Time field indicates the time at which the requested measurement starts.
  • the Measurement Duration field indicates the duration of the requested measurement.
  • the Number of Time Blocks field indicates the number of measurement units in a measurement duration.
  • the SPSH evaluation protocol above considers only a single channel. When multiple channels and / or multiple antennas are established, it is possible to perform SPSH evaluation for each channel and exchange channel quality reports respectively, but this may result in excessive message exchange.
  • an AP requests STAs in a candidate link for SPSH to measure channel quality, and a channel in which the received STAs report channel quality is proposed.
  • Channel measurement may be performed in a channel used by the STAs of the candidate link.
  • the AP and the STA may be configured with a plurality of TX (transmit) antennas and / or a plurality of RX (receive) antennas.
  • the antenna may be a logical antenna including one or more physical antennas rather than a physical antenna.
  • Antenna settings may be defined in the TX / RX antennas, respectively.
  • a plurality of antenna settings may be defined, respectively.
  • FIG. 8 is a flowchart illustrating a measurement method for SPSH evaluation according to an embodiment of the present invention.
  • the AP and the STA perform sector sweep during beamforming training to establish a link.
  • step S810 the AP sends a channel quality request for requesting channel quality measurement for SPSH evaluation to the STA through a transmission channel channel.
  • the AP may instruct to measure channel quality on a link that has already been allocated and is in progress of data transmission and / or a candidate link that may participate in SPSH.
  • the STA sends a channel quality report having the channel measurement result to the AP through the transmission channel.
  • the STA may measure channel quality in a link that is a target of channel measurement.
  • the channel targeted for channel quality measurement is called a measurement channel. For example, if four measurement channels are configured, the STA can measure channel quality for each of the four measurement channels.
  • the AP may perform SPSH according to the received channel measurement result. Based on the measurement result, the AP may select a link that satisfies the channel quality enough to use the channel as an SPSH among candidate links, and allow the AP to participate.
  • the transport channel through which the channel quality request and / or the channel quality report is transmitted among the plurality of channels may be selected as follows.
  • the transport channel may be a primary channel of the plurality of channels.
  • the primary channel may be a channel designated by the AP as the primary channel of the BSS. In the primary channel, full carrier sense is maintained.
  • the PPDU carrying the frame may include information about the primary channel.
  • EDMG-Header-A may include information about the primary channel.
  • only the primary channel may be used for the exchange of channel quality requests and / or channel quality reports.
  • the AP / STA in the candidate SP may exchange channel quality requests and / or channel quality reports on the primary channel. All STAs keep the primary channel open at all times and maintain carrier sense. Therefore, power consumption can be reduced because the STA monitors the reception of the channel quality request and / or the channel quality report only in the primary channel.
  • the transmission channel may be a measurement channel subject to channel quality measurement.
  • the AP and the STA may exchange a channel quality request and / or channel quality report on a channel to be used by the STA on the candidate link. If there are a plurality of measurement channels, the channel quality request and / or channel quality report may be sent in each of the plurality of measurement channels.
  • FIG 9 illustrates a channel quality request according to an embodiment of the present invention.
  • the Measurement channel bitmap field indicates a measurement channel in which channel quality is measured. For example, if there are four channels, the Measurement channel bitmap field has 4 bits. If the corresponding bit is 1, the corresponding channel is a measurement channel. As the number of channels increases, the number of bits of the Measurement channel bitmap field may increase.
  • the RX antenna Measurement Report Method field indicates a method of requesting channel quality according to an antenna used for transmission / reception in a measurement channel.
  • the RX antenna Measurement Report Method field may indicate whether to report the result measured during the measurement unit for each RX antenna or the average value of the measurement result for all the RX antennas during the measurement unit. For example, if the RX antenna Measurement Report Method field is 0, the result measured during the measurement unit for each RX antenna may be reported. If the RX antenna Measurement Report Method field is 1, an average value of the measurement results for all RX antennas during the measurement unit may be reported.
  • the Channel Measurement Report Method field indicates a method of requesting channel quality according to a measurement channel.
  • the Channel Measurement Report Method field may indicate whether to report the measured result for each measurement channel or the average of the measured results in all measurement channels. For example, if the Channel Measurement Report Method field is 0, the measured result may be reported for each measurement channel during the measurement unit. If the Channel Measurement Report Method field is 1, an average of the results measured on all measurement channels during the measurement unit may be reported.
  • the Time Measurement Report Method field indicates how to request channel quality according to the measurement unit.
  • the Time Measurement Report Method field may indicate whether to report the measured result for each measuring unit or to report the average of the measured results for all the measuring units. For example, if the Time Measurement Report Method field is 0, the result measured during every measurement unit may be reported. If the Time Measurement Report Method field is 1, an average of the measured results for all measurement units may be reported.
  • Measurement report method measurement interval, number of time blocks, and measurement start time are common to all measurement channels.
  • FIG. 10 illustrates a channel quality report according to an embodiment of the present invention.
  • the Operating Class field, Channel Number field, AID field, Measurement Method field, Measurement Start Time field, Measurement Duration field, Number of Time Blocks field and Measurement for Time Block n field are the same as the description of FIG.
  • the measurement channel bitmap field indicates a measurement channel in which channel quality is measured. For example, if there are four channels, the Measurement channel bitmap field has 4 bits. If the corresponding bit is 1, the corresponding channel is a measurement channel. As the number of channels increases, the number of bits of the Measurement channel bitmap field may increase. For example, if the number of channels is 8, the measurement channel bitmap field may have 8 bits. Alternatively, even if the number of channels is 8, the measurement channel bitmap field may have a compressed bitmap of 6 bits.
  • the RX antenna Measurement Report Method field indicates a method of reporting channel quality according to an antenna used for transmission / reception in a measurement channel.
  • the RX antenna Measurement Report Method field may indicate whether to report the result measured during the measurement unit for each RX antenna or the average value of the measurement result for all the RX antennas during the measurement unit. For example, if the RX antenna Measurement Report Method field is 0, the result measured during the measurement unit for each RX antenna may be reported. If the RX antenna Measurement Report Method field is 1, an average value of the measurement results for all RX antennas during the measurement unit may be reported.
  • the Channel Measurement Report Method field indicates how channel quality is reported according to the measurement channel.
  • the Channel Measurement Report Method field may indicate whether to report the measured result for each measurement channel or the average of the measured results in all measurement channels. For example, if the Channel Measurement Report Method field is 0, the measured result may be reported for each measurement channel during the measurement unit. If the Channel Measurement Report Method field is 1, an average of the results measured on all measurement channels during the measurement unit may be reported.
  • the Time Measurement Report Method field indicates how channel quality is reported according to the measurement unit.
  • the Time Measurement Report Method field may indicate whether to report the measured result for each measuring unit or to report the average of the measured results for all the measuring units. For example, if the Time Measurement Report Method field is 0, the result measured during every measurement unit may be reported. If the Time Measurement Report Method field is 1, an average of the measured results for all measurement units may be reported.
  • Measurement method measurement interval, number of time blocks, and measurement start time are common to all measurement channels.
  • FIG. 11 illustrates a channel quality request according to another embodiment of the present invention.
  • the measurement channel bitmap field includes four bits of ch1, ch2, ch3, and ch4 corresponding to each of the four channels. For example, if ch1 is 1, it may indicate that channel 1 is a measurement channel, and if ch1 is 0, it may indicate that channel 1 is not a measurement channel. This is merely an example, and as the number of available channels increases, the measurement channel bitmap field may have more bits. For example, if the number of channels is 8, the measurement channel bitmap field may have 8 bits. Alternatively, even if the number of channels is 8, the measurement channel bitmap field may have a compressed bitmap of 6 bits.
  • the Measurement Report Method field indicates how channel quality is requested.
  • the Measurement Report Method field may indicate whether to report the measured result for each measurement channel or the average of the measured results in all the measurement channels. For example, if the Measurement Report Method field is 0, the measured result may be reported for each measurement channel during the measurement unit. If the Measurement Report Method field is 1, an average of the results measured on all measurement channels during the measurement unit may be reported.
  • Measurement method measurement interval, number of time blocks, and measurement start time are given individually for each measurement channel.
  • FIG. 12 illustrates a channel quality report according to another embodiment of the present invention.
  • the measurement channel bitmap field includes four bits of ch1, ch2, ch3, and ch4 corresponding to each of the four channels.
  • the Measurement Report Method field indicates how channel quality is reported.
  • the Measurement Report Method field may indicate whether to report the measured result for each measurement channel or the average of the measured results in all the measurement channels. For example, if the Measurement Report Method field is 0, the measured result may be reported for each measurement channel during the measurement unit. If the Measurement Report Method field is 1, an average of the results measured on all measurement channels during the measurement unit may be reported.
  • Measurement method measurement interval, number of time blocks, and measurement start time are given individually for each measurement channel.
  • FIG. 13 illustrates a channel quality request according to another embodiment of the present invention.
  • a report method may be given for each channel.
  • the report method may indicate the above-described RX antenna Measurement Report Method and / or Time Measurement Report Method of FIG. 9.
  • a report method may be given for each channel.
  • the report method may indicate the above-described RX antenna Measurement Report Method and / or Time Measurement Report Method of FIG. 10.
  • STAs a, b, c, and d operate on channel 1
  • STAs e, f, g, and h operate on channel 2.
  • Channel 1 is a measurement channel for STA c and STA d
  • channel 1 is a measurement channel for STA g and STA h.
  • STA c and STA d may report channel quality for channel 1
  • STA g and STA h may report channel quality for channel 2.
  • FIG 16 shows another example of an SPSH evaluation according to an embodiment of the present invention.
  • STAs a and b operate on channel 1, and STAs e and f operate on channel 2.
  • STA c and d may operate in channel 1 and channel 2.
  • the AP requests STA c, d for channel quality in channel 1 and channel 2. Report the channel quality in channel 1 and channel 2 to the STA c, d.
  • the AP may configure SPSH for at least one of channel 1 and channel 2 to STA c and d.
  • FIG 17 shows another example of SPSH evaluation according to an embodiment of the present invention.
  • STAs a and b operate on channel 1 and channel 2 and have an assigned SP. It is assumed that STA c and d operate in channel 1, and STA e and f operate in channel 2.
  • the AP requests STA c, d for channel quality in channel 1.
  • the AP requests STA e, f for channel quality in channel 2.
  • FIG. 18 is a block diagram illustrating an apparatus in which an embodiment of the present invention is implemented.
  • the device 100 includes a processor 110, a memory 120, and a transceiver 130.
  • the memory 120 is connected to the processor 110 to store various instructions executed by the processor 110.
  • the transceiver 130 is connected to the processor 110 to transmit and / or receive a radio signal.
  • the processor 110 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the STA or the AP may be implemented by the processor 110. When the above-described embodiments are implemented as software instructions, the instructions may be stored in the memory 120 and executed by the processor 110 to perform the above-described operations.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

공간 공유(spatial sharing)을 위한 채널 품질을 보고하는 방법 및 장치가 제공된다. 상기 장치는 AP(access point)로부터 공간 공유 평가를 위한 채널 품질 요청을 수신하고, 채널 품질 보고를 전송한다. 상기 채널 품질 요청은 복수의 RX(receive) 안테나 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 복수의 RX 안테나를 이용한 채널 품질 결과의 평균을 요청하는지를 나타내는 정보를 포함한다.

Description

공간 공유를 위한 채널 품질을 보고하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 공간 공유(spatial sharing)를 위한 채널 품질(channel quality)을 보고하는 방법 및 이를 이용한 장치에 관한 것이다.
IEEE(Institute of Electrical and Electronics Engineers) 802.11ad 표준은 60 GHz 이상의 대역에서 동작하는 초고속 무선 통신 규격이다. 신호의 도달 범위는 10 미터 정도이지만, 처리량(throughput)은 6 Gbps 이상을 지원할 수 있다. 높은 주파수 대역에서 동작하므로, 신호 전파(signal propagation)은 광선-형태 전파(ray-like propagation)에 의해 지배된다(dominate). TX(transmit) 또는 RX(receive) 안테나 빔이 강한 공간 시그널 경로(strong spatial signal path)를 향하도록 정렬될수록 신호 품질이 향상될 수 있다.
IEEE 802.11ad 표준은 안테나 빔 정렬을 위한 빔포밍 훈련(beamforming training) 과정을 제공하고 있다. IEEE 802.11ad를 기반으로 20 Gbps 이상의 처리량을 목표로 개발 중인 차세대 표준이 IEEE 802.11ay이다.
IEEE 802.11ay에서 논의되고 있는 요구 사항 중 하나가 다중 채널 및 본딩 채널을 지원하는 것이다. 단일 채널을 사용하는 동작을 다중 채널에 적용하기 위한 방법이 제공된다.
본 발명은 공간 공유(spatial sharing)을 위한 채널 품질을 보고하는 방법 및 장치를 제공한다.
일 양태에서, 무선랜에서 SPSH(spatial sharing)을 위한 채널 품질을 보고하는 방법이 제공된다. 상기 방법은 STA(station)이 AP(access point)와 빔포밍 훈련 동안 섹터 스윕을 수행하여 복수의 RX(receive) 안테나를 이용한 링크를 설정하는 단계, 상기 STA이 상기 AP로부터 SPSH 평가를 위한 채널 품질 요청을 수신하는 단계, 및 상기 STA이 상기 AP로 상기 채널 품질 요청에 대한 응답으로 채널 품질 보고를 전송하는 단계를 포함한다. 상기 채널 품질 요청은 상기 복수의 RX 안테나 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 복수의 RX 안테나를 이용한 채널 품질 결과의 평균을 요청하는지를 나타내는 RX 안테나 측정 보고 방법 필드를 포함할 수 있다.
상기 채널 품질 요청은 복수의 채널 중 채널 품질의 측정이 대상이 되는 하나 또는 그 이상의 측정 채널을 나타내는 측정 채널 비트맵 필드를 포함할 수 있다.
상기 채널 품질 요청은 상기 하나 또는 그 이상의 측정 채널 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 하나 또는 그 이상의 측정 채널 모두에서의 채널 품질 결과의 평균을 요청하는지를 나타내는 채널 측정 보고 방법 필드를 포함할 수 있다.
다른 양태에서, 무선랜에서 SPSH(spatial sharing)을 위한 채널 품질을 보고하는 위한 장치는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 AP(access point)와 빔포밍 훈련 동안 섹터 스윕을 수행하여 복수의 RX(receive) 안테나를 이용한 링크를 설정하고, 상기 AP로부터 SPSH 평가를 위한 채널 품질 요청을 수신하고, 및 상기 AP로 상기 채널 품질 요청에 대한 응답으로 채널 품질 보고를 전송한다.
복수의 안테나 설정과 복수의 채널이 설정된 환경에서 기기간 공간 공유의 효율을 높일 수 있다.
도 1은 종래 기술에 따른 빔포밍 훈련 과정을 나타낸다.
도 2는 SLS 과정의 일 예를 보여준다.
도 3은 제안되는 통신을 위한 PPDU 포맷의 일 예를 보여준다.
도 4는 본 발명에 따른 실시예가 적용되는 채널화(channelization)의 일 예를 보여준다.
도 5는 기존 IEEE 802.11ad에서 SPSH(spatial sharing) 프로토콜의 일 예를 보여준다.
도 6은 채널 품질 요청을 위한 필드 포맷을 보여준다.
도 7은 채널 품질 보고를 위한 필드 포맷을 보여준다.
도 8은 본 발명의 실시예에 따른 SPSH 평가를 위한 측정 방법을 나타내는 흐름도이다.
도 9는 본 발명의 일 실시예에 따른 채널 품질 요청을 나타낸다.
도 10은 본 발명의 일 실시예에 따른 채널 품질 보고를 나타낸다.
도 11은 본 발명의 다른 실시예에 따른 채널 품질 요청을 나타낸다.
도 12는 본 발명의 다른 실시예에 따른 채널 품질 보고를 나타낸다.
도 13은 본 발명의 또 다른 실시예에 따른 채널 품질 요청을 나타낸다.
도 14는 본 발명의 또 다른 실시예에 따른 채널 품질 보고를 나타낸다.
도 15은 본 발명의 실시예에 따른 SPSH 평가의 일 예를 보여준다.
도 16은 본 발명의 실시예에 따른 SPSH 평가의 다른 예를 보여준다.
도 17은 본 발명의 실시예에 따른 SPSH 평가의 또 다른 예를 보여준다.
도 18은 본 발명의 실시예가 구현되는 장치를 나타낸 블록도이다.
이하는 60 GHz 또는 45 GHz 이상의 주파수 대역에서 동작하는 무선 통신 시스템을 예시적으로 기술한다. 복수의 채널이 제공될 수 있으며, 예를 들어, 하나의 채널은 2.16 GHz의 대역폭을 가질 수 있다.
STA(station)은 무선기기, MS(mobile station), 네트워크 인터페이스 기기, 무선 인터페이스 기기 또는 단순히 사용자(user) 등 다양한 명칭으로 불릴 수 있다.
BSS(basic service set)는 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준에 기반하는 WLAN(wireless local area network)의 작성 블록(building block)이다. BSS는 서로 직접 통신이 가능한 복수의 STA을 포함한다. WLAN은 IBSS(independent BSS)와 PBSS(personal BSS)의 2가지 타입을 제공한다. IBSS는 기본적인 타입이다. PBSS은 애드혹(ad hoc) 네트워크로써, 각 STA이 서로 직접 통신할 수 있는 WLAN(wireless local area network)의 타입이다. PBSS 내 하나의 STA은 PCP(PBSS control point)의 역할을 수행할 수 있다. PCP는 비콘 전송, SP(service period) 할당 등을 제공할 수 있다.
AP(access point)는 다중 BSS 간의 접속을 제공하는 엔티티(entity)이다. BSS 내 하나의 STA이 AP의 역할을 수행할 수 있으며, 서로 다른 BSS에 속하는 STA은 AP를 통해 통신할 수 있다. AP는 비콘 전송 및 연결(association)을 관리한다. 이하에서, AP와 PCP는 별도로 구분하지 않고, AP 라고 한다.
STA은 별도로 AP와의 기능을 구분하지 않는 한, non-AP STA 또는 AP를 포함할 수 있다. STA 대 AP와의 통신으로 기술되면, STA는 non-AP STA으로 해석될 수 있다. STA 대 STA 통신으로 기술되거나, 별도로 AP의 기능이 필요하지 않는다면 STA는 non-AP STA 또는 AP 일 수 있다.
도 1은 종래 기술에 따른 빔포밍 훈련 과정을 나타낸다. 이는 IEEE 802.11ad 표준의 9.35절을 참조할 수 있다.
STA1은 BF(beamforming) 훈련(training)을 개시하는 개시자(initiator)이다. BF 훈련에 참여하는 STA2은 응답자(responder)이다.
BF 훈련은 섹터 스윕(sector sweep)을 사용한 BF 훈련 프레임의 전송과 적절한 안테나 시스템 셋팅을 결정하기 위해 각 STA에게 필요한 시그널링을 제공하는 것이다. BF 훈련 과정은 SLS(sector level sweep) 과정과 BRP(beam refinement protocol) 과정을 포함할 수 있다. 섹터 스윕을 위한 SLS 과정은 STA간 제어(control) PHY(physical layer)가 제공될 정도의 통신을 가능케하도록 하기 위함이다. BRP 과정은 전송기와 수신기 간 안테나 가중치 벡터(antenna weight vector)의 개선(refinement)을 제공하기 위함이다.
BF 훈련은 개시자에 의해 SLS 부터 시작된다. SLS 과정은 개시자 링크를 훈련하기 위한 ISS(initiator sector sweep)와 응답자 링크를 훈련하기 위한 RSS(responder sector sweep), SSW(sector sweep) 피드백, SSW ACK을 포함한다.
ISS 동안 개시자는 자신이 가진 섹터들에 걸쳐 각각 프레임(비콘 프레임 또는 SSW 프레임)을 전송한다. RSS 동안 응답자는 자신이 가진 섹터들에 걸쳐 각각 SSW 프레임을 전송한다. SSW 피드백 동안 개시자는 응답자에게 SSW 피드백 프레임을 보낸다. SSW 피드백 프레임은 개시자가 선택한 섹터와 안테나에 관한 정보를 포함할 수 있다. SSW ACK 프레임은 응답자가 개시자에게 가장 최근에 수신된 SSW 피드백에 포함된 섹터와 안테나를 통해 전송한다.
섹터(sector)는 특정 안테나 빔 또는 패턴에 대응될 수 있다. TX(transmit) 섹터는 TX 안테나를 위한 섹터이고, RX(receive) 섹터는 RX 안테나를 위한 섹터이다.
SLS 과정을 통해 개시자에게 가장 좋은 품질을 갖는 섹터(TX 섹터 및/또는 RX 섹터)와 응답자에게 가장 좋은 섹터(TX 섹터 및/또는 RX 섹터)가 결정된다.
SLS 과정이 완료되면, RX 안테나 배열(array)과 TX 안테나 배열을 훈련하기 위한 BRP 과정이 개시될 수 있다. BRP 과정은 BRP 셋업 서브페이즈(subphase), MID(multiple sector ID detection) 서브페이즈, BC(beam combining) 서브페이즈 등을 포함할 수 있다.
도 2는 SLS 과정의 일 예를 보여준다.
개시자가 AP이고, 응답자가 non-AP STA이면, ISS 동안 비콘 프레임이 전송된다. 비콘 인터벌은 비콘 프레임이 전송되는 주기이다.
BTI(beacon transmission interval)는 비콘 인터벌 내에서 AP가 첫번째 비콘 프레임 전송과 마지막 비콘 프레임 전송 간의 시간 인터벌이다. A-BFT(association beamforming training)은 BF을 위한 SLS 과정의 RSS와 SSW 피드백을 포함하는 시간 인터벌이다. ATI(announcement transmission interval)는 AP와 STA 간 요청-응답 기반 관리를 위한 시간 인터벌이다. DTI(data transfer interval)은 데이터 교환을 위한 시간 인터벌이다.
A-BFT은 SSW 슬롯 단위로 수행되고, A-BFT의 길이는 SSW 슬롯의 정수배로 정의된다. A-BFT의 길이에 관한 A-BFT 길이(length) 정보는 비콘 프레임에 포함될 수 있다.
SSW 슬롯은 aSSSlotTime의 길이를 가진다. aSSSlotTime = aAirPropagationTime + aSSDuration + MBIFS + aSSFBDuration + MBIFS 로 정의된다. aAirPropagationTime은 개시자와 응답자 간의 전파 지연(propagation delay)을 고려한 파라미터이다. aSSDuration은 응답자가 SSW 슬롯 내에서 M SSW 프레임을 전송하기 위한 시간이다. SSW 슬롯당 허용되는 SSW 프레임의 수 M에 관한 정보는 비콘 프레임에 포함될 수 있다. 도 2는 M=8인 경우를 나타낸다. MBIFS(Medium Beamforming Interframe Spacing)는 BTI와 A-BFT 사이의 인터벌 또는 ISS, RSS, SSW 피드백, SSW ACK 사이의 인터벌을 나타낸다.
각 A-BFT의 시작에, 응답자인 STA은 RSS를 시작 또는 재시작하기(resume) 위한 랜덤 백오프 과정을 개시한다(invoke). A-BFT의 시작에 STA은 균일 분포(uniform distribution) [0, (A-BFT 길이-1)]로부터 랜덤하게 백오프 카운트를 선택한다. STA은 각 SSW 슬롯의 마지막에 백오프 카운트를 하나씩 감소시킨다. STA은 SSW 슬롯의 시작에 백오프 카운트의 값이 0이면 해당 SSW 슬롯에서 RSS를 개시한다. 해당 SSW 슬롯에서 STA은 최대 M 개의 SSW 프레임을 전송할 수 있다. 만약 STA가 보낼 더 많은 SSW 프레임이 있다면, A-BFT가 종료되기 전이라면 다음 SSW 슬롯에서 RSS를 재시작 할 수 있다. A-BFT가 종료되기 전에 RSS가 완료되지 못하면, 다음 A-BFT에서 RSS를 재시작하기 전에 백오프 과정을 다시 수행한다.
AP는 SSW 슬롯이 종료되기 전에 SSW 피드백을 전송할 수 있다. SSW 피드백에 포함되는 정보는 SSW 피드백이 전송되는 SSW 슬롯에서 수신되는 SSW 프레임을 기반으로 할 수 있다. SSW 피드백은 AP가 선택한 섹터와 안테나에 관한 정보를 포함할 수 있다.
STA은 RSS 실패 카운트(fail count)를 가진다. RSS 실패 카운트는 A-BFT(s) 동안 RSS를 수행했지만 응답으로써 SSW 피드백을 수신하지 못한 연속적인 횟수이다. 예를 들어, 하나의 A-BFT가 8 SSW 슬롯을 가지고 있고, STA이 2 A-BFT에 걸쳐 4 SSW 슬롯에서 STA이 SSW 프레임을 전송했다고 하자. 4 SSW 슬롯 중 3 SSW 슬롯에서 SSW 피드백을 STA가 수신하지 못했다면 RSS 실패 카운트의 값은 3이 된다.
RSS 실패 카운트의 값이 RSS 재시도 한계(retry limit)를 초과하면, STA은 균일 분포 [0, RSSBackoff) 로부터 선택된 랜덤 값을 백오프 카운트로써 선택한다. STA은 각 A-BFT의 마지막에 하나씩 백오프 카운트를 1씩 감소시킨다. 백오프 카운트가 0이 되면, STA은 A-BFT에서 RSS를 재시작할 수 있다. STA은 A-BFT 동안 SSW 피드백을 수신하면, RSS 실패 카운트를 0으로 설정할 수 있다.
도 3은 제안되는 통신을 위한 PPDU 포맷의 일 예를 보여준다.
PPDU(physical layer protocol data units)는 2개의 PHY(physical) 엔티티(entity)에서 교환되는 데이터 블록이다. 기존 802.11 b/g/n/ac 기반 PPDU와의 구분을 위해, EDMG(enhanced directional multi-gigabit) PPDU 이라고도 한다.
EDMG PPDU는 L-STF(legacy Short Training field), L-CEF(legacy Channel Estimation field), L-Header (legacy Header field), EDMG-Header-A(EDMG Header A field), EDMG-STF(EDMG Short Training field), EDMG-CEF(EDMG Channel Estimation field), EDMG-Header-B(EDMG Header B field), Data field, 및 TRN(Training sequences field)을 포함할 수 있다. 모든 필드가 필수적인 것은 아니며, 일부 필드는 생략될 수 있고, 다른 필드가 추가될 수 있다. 예를 들어, EDMG-CEF 다음에 EDMG-Header-B(EDMG Header B field)가 추가될 수 있다.
L-CEF는 채널 추정에 사용된다. L-Header는 데이터 필드의 수신에 관한 정보를 포함한다. L-Header는 MCS(Modulation and Coding Scheme), 데이터 필드내 페이로드의 길이, 및/또는 EDMG-Header-A의 존재의 지시를 포함할 수 있다. Data field는 사용자를 위한 데이터를 포함한다.
EDMG-STF는 하나 또는 그 이상의 공간 스트림(spatial stream)에서 전송되고, 사용되는 채널의 개수에 따라 구조가 달라질 수 있다. EDMG-CEF는 하나 또는 그 이상의 공간 스트림에서 전송되고, 사용되는 채널의 개수에 따라 구조가 달라질 수 있다.
EDMG-Header-A는 EDMG PPDU를 해석하기 위한 정보를 포함한다. EDMG-Header-A는 포맷 필드, 대역폭 필드, 스트림 정보를 포함할 수 있다. 포맷 필드는 해당 PPDU가 SU(single user) PPDU 또는 MU(multi user) PPDU 인지를 가리킨다. 대역폭 필드는 해당 PPDU가 전송되는 대역폭을 가리킨다. 스트림 정보는 수신 STA에 할당되는 공간 스트림의 개수를 나타낸다.
EDMG-Header-B는 DMG MU PPDU에서만 전송된다. EDMG-Header-B는 Data field내 PSDU 길이와 MCS(modulation and coding scheme)에 관한 정보를 포함한다.
도 4는 본 발명에 따른 실시예가 적용되는 채널화(channelization)의 일 예를 보여준다.
8개의 기본 채널이 있다. 각 기본 채널이 2.16 GHz의 대역폭을 가진다고 하지만, 기본 채널의 개수나 대역폭에 제한이 있는 것은 아니다. 복수의 기본 채널이 본딩되어 본딩 채널이 정의될 수 있다. 예를 들어, 2개의 기본 채널을 본딩하여, 4.32 GHz의 대역폭을 갖는 본딩 채널이 정의될 수 있다. 3개의 기본 채널을 본딩하여, 6.48 GHz의 대역폭을 갖는 본딩 채널이 정의될 수 있다. 4개의 기본 채널을 본딩하여, 8.64 GHz의 대역폭을 갖는 본딩 채널이 정의될 수 있다.
도 5는 기존 IEEE 802.11ad에서 SPSH(spatial sharing) 프로토콜의 일 예를 보여준다.
SPSH는 동일한 채널에서 하나의 링크의 사용과 동시에, 그 링크에 영향을 주지 않는 다른 링크에게도 채널 사용의 기회를 주어, 전체적인 데이터 전송률을 높일 수 있다.
SP(service period)는 STA간 통신을 위해 스케줄링된 시간 구간이다. 스케줄링된 SP을 기존(existing) SP라 하고, SPSH를 평가하는데 사용되는 SP를 후보(candidate) SP라 한다. 각 SP는 하나의 링크(link)에 대응될 수 있다.
SPSH을 수행하기 위한 가능성을 평가하기(assess) 위해 AP는 STA에게 무선 자원 측정을 수행하도록 요청할 수 있다.
SP1은 기존 SP이고, SP2는 후보 SP라 한다. AP는 SP1 동안 채널 품질 요청(channel quality request)을 STA C와 STA D로 보낸다. SP1 동안 STA A와 STA B가 통신하고 있다. STA C와 STA D는 채널 품질을 측정하고, AP로 그 결과를 보고한다. AP는 SP2 동안 채널 품질 요청을 STA A와 STA B로 보낸다. SP2 동안 STA C와 STA D가 통신하고 있다. STA A와 STA B는 채널 품질을 측정하고, AP로 그 결과를 보고한다.
도 6은 채널 품질 요청을 위한 필드 포맷을 보여준다. 채널 품질 요청은 요청(requesting) STA에 의해 요청된(requested) STA에게 타겟 STA으로의 측정을 수행하도록 요청하기 위해 전송된다.
Operating Class 필드는 측정 요청이 적용되는 채널 집합을 지시한다. Channel Number 필드는 측정 요청이 적용되는 채널 번호를 지시한다. AID 필드는 타겟 STA를 지시한다.
Measurement Method 필드는 요청된 STA에 의해 측정을 수행하고 보고하는 방법을 지시한다. 예를 들어, 이 필드가 0이면, ANIPI(average noise plus interference power indicator)를 나타내고, 이 필드가 1이면 RSNI(received signal-to-noise indicator)를 나타낼 수 있다.
Measurement Start Time 필드는 요청된 측정이 시작되는 시간을 나타낸다. Measurement Duration 필드는 요청된 측정의 구간(duration)을 나타낸다. Number of Time Blocks field는 측정 구간(Measurement Duration) 내에서 측정 유닛(measurement unit)의 갯수를 나타낸다. (Measurement Duration/Number of Time Blocks)는 측정 유닛의 구간을 나타낸다. .
도 7은 채널 품질 보고를 위한 필드 포맷을 보여준다.
Operating Class 필드는 측정 보고가 적용되는 채널 집합을 지시한다. Channel Number 필드는 측정 보고가 적용되는 채널 번호를 지시한다. AID 필드는 타겟 STA를 지시한다.
Measurement Method 필드는 요청된 STA에 의해 측정을 수행하고 보고하는 방법을 지시한다. 이 필드가 0이면, Measurement for Time Block 필드는 ANIPI로 표현되고, 이 필드가 1이면 Measurement for Time Block 필드는 RSNI로 표현될 수 있다.
Measurement Start Time 필드는 요청된 측정이 시작되는 시간을 나타낸다. Measurement Duration 필드는 요청된 측정의 구간(duration)을 나타낸다. Number of Time Blocks field는 측정 구간(Measurement Duration) 내에서 측정 유닛(measurement unit)의 갯수를 나타낸다. Measurement for Time Block n (1<=n<=N)필드는 n 번째 측정 유닛에 관한 측정 결과를 포함한다.
상기의 SPSH 평가 프토토콜은 단일 채널만을 고려하고 있다. 복수의 채널 및/또는 복수의 안테나가 설정될 때, 각 채널마다 SPSH 평가를 수행하고 각각 채널 품질 보고를 교환할 수 있지만 이는 지나친 메시지의 교환을 초래할 수 있다.
이하의 실시예는, 다음과 같은 SPSH 평가 프로토콜을 제안한다.
첫째, AP가 SPSH을 위한 후보 링크에 있는 STA들에게 채널 품질의 측정을 요청하고, 그 요청을 받은 STA들이 채널 품질을 보고하는 채널이 제안된다. 채널 측정은 후보 링크의 STA들이 사용하는 채널에서 수행될 수 있다.
둘째, 채널 품질 요청을 위한 프레임과 채널 품질 보고를 위한 프레임의 구조가 제안된다.
AP와 STA는 복수의 TX(transmit) 안테나 및/또는 복수의 RX(receive) 안테나가 설정될 수 있다. 이하에서, 안테나는 물리적인 안테나가 아닌 하나 또는 그 이상의 물리적 안테나를 포함하는 논리적 안테나 일 수 있다. TX/RX 안테나에는 각각 안테나 설정이 정의될 수 있다. 복수의 RX 안테나는 복수의 안테나 설정이 각각 정의될 수 있다.
도 8은 본 발명의 실시예에 따른 SPSH 평가를 위한 측정 방법을 나타내는 흐름도이다.
먼저 AP와 STA은 빔포밍 훈련 동안 섹터 스윕을 수행하여 링크가 설정된다.
단계 S810에서, AP는 SPSH 평가를 위한 채널 품질 측정을 요청하는 채널 품질 요청을 전송 채널(transmission channel channel)을 통해 STA에게 보낸다. AP는 이미 할당이 끝나고 데이터 전송을 진행 중인 링크 및/또는 SPSH에 참여할 수 있는 후보 링크에서 채널 품질을 측정하도록 지시할 수 있다.
단계 S820에서, STA은 채널 측정 결과를 갖는 채널 품질 보고를 전송 채널을 통해 AP에게 보낸다. STA는 채널 측정의 대상이 되는 링크에서 채널 품질을 측정할 수 있다. 채널 품질 측정의 대상이 되는 채널을 측정 채널(measurement channel) 이라 한다. 예를 들어, 4개의 측정 채널이 설정되면, STA는 4개의 측정 채널 각각에 대해 채널 품질을 측정할 수 있다.
수신된 채널 측정 결과에 따라 AP는 SPSH를 수행할 수 있다. 그 측정 결과를 바탕으로 AP는 후보 링크 중에 SPSH로써 채널을 사용할 수 있을만큼의 채널 품질을 만족하는 링크를 골라 참여토록 허락할 수 있다.
복수의 채널 중 채널 품질 요청 및/또는 채널 품질 보고가 전송되는 전송 채널은 다음과 같이 선택될 수 있다.
일 실시예에서, 전송 채널은 복수의 채널 중 1차 채널(primary channel) 일 수 있다. 1차 채널은 AP에 의해 BSS의 1차 채널로 지정된 채널일 수 있다. 1차 채널에서는 전체 캐리어 센스(full carrier sense)가 유지된다. 해당 프레임을 나르는 PPDU는 1차 채널에 관한 정보를 포함할 수 있다. 예를 들어, EDMG-Header-A는 1차 채널에 관한 정보를 포함할 수 있다.
후보 링크 상의 STA들이 사용할 채널에 상관 없이 1차 채널만이 채널 품질 요청 및/또는 채널 품질 보고의 교환에 사용될 수 있다. 후보 SP 내의 AP/STA은 1차 채널을 통해 채널 품질 요청 및/또는 채널 품질 보고를 교환할 수 있다. 모든 STA들은 1차 채널을 항상 열어두고(open), 캐리어 센스를 유지하고 있다. 따라서, STA이 1차 채널에서만 채널 품질 요청 및/또는 채널 품질 보고의 수신을 모니터링하기 때문에 파워 소모를 줄일 수 있다.
다른 실시예에서, 전송 채널은 채널 품질 측정의 대상이 되는 측정 채널일 수 있다. AP와 STA은 후보 링크 상에서 STA이 사용할 채널을 통해 채널 품질 요청 및/또는 채널 품질 보고를 교환할 수 있다. 복수의 측정 채널이 존재하면, 채널 품질 요청 및/또는 채널 품질 보고는 복수의 측정 채널 각각에서 전송될 수 있다.
이제 채널 품질 요청과 채널 품질 보고를 위한 프레임 구조에 대해 설명한다. 이하의 실시예에서, 필드 명과 비트 수는 예시에 불과하며, 모든 필드가 필수적인 것은 아니다.
도 9는 본 발명의 일 실시예에 따른 채널 품질 요청을 나타낸다.
Operating Class 필드, Channel Number 필드, AID 필드, Measurement Method 필드, Measurement Start Time 필드, Measurement Duration 필드 및 Number of Time Blocks field는 도 6의 설명과 동일하다.
Measurement channel bitmap 필드는 채널 품질이 측정되는 측정 채널을 가리킨다. 예를 들어, 4개의 채널이 있으면, Measurement channel bitmap 필드는 4 비트를 가지고, 해당 비트가 1이면 해당 채널이 측정 채널이 된다. 채널의 수가 증가하면 Measurement channel bitmap 필드의 비트 수는 증가할 수 있다.
RX antenna Measurement Report Method 필드는 측정 채널에서 송신/수신의 사용되는 안테나에 따라 채널 품질을 요청하는 방법을 지시한다. RX antenna Measurement Report Method 필드는 측정 유닛 동안 측정된 결과를 각 RX 안테나 별로 보고할지 또는 측정 유닛 동안 모든 RX 안테나에 관한 측정 결과의 평균값을 보고할지를 지시할 수 있다. 예를 들어, RX antenna Measurement Report Method 필드가 0 이면, 각 RX 안테나 별로 측정 유닛 동안 측정된 결과가 보고될 수 있다. RX antenna Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 RX 안테나에 관한 측정 결과의 평균값이 보고될 수 있다.
Channel Measurement Report Method 필드는 측정 채널에 따라 채널 품질을 요청하는 방법을 지시한다. Channel Measurement Report Method 필드는 각 측정 채널 마다 측정된 결과를 보고할지 또는 모든 측정 채널에서 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Channel Measurement Report Method 필드가 0 이면, 측정 유닛 동안 각 측정 채널 마다 측정된 결과가 보고될 수 있다. Channel Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 측정 채널에서 측정된 결과의 평균이 보고될 수 있다.
Time Measurement Report Method 필드는 측정 유닛에 따라 채널 품질을 요청하는 방법을 지시한다. Time Measurement Report Method 필드는 매 측정 유닛 마다 측정된 결과를 보고할지 또는 모든 측정 유닛 동안 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Time Measurement Report Method 필드가 0 이면, 매 측정 유닛 동안 측정된 결과가 보고될 수 있다. Time Measurement Report Method 필드가 1 이면, 모든 측정 유닛 동안 측정된 결과의 평균이 보고될 수 있다.
Measurement report method, 측정 구간, 시간 블록의 개수, 측정 시작 시간은 측정 채널 모두에게 공통적으로 적용된다.
도 10은 본 발명의 일 실시예에 따른 채널 품질 보고를 나타낸다.
Operating Class 필드, Channel Number 필드, AID 필드, Measurement Method 필드, Measurement Start Time 필드, Measurement Duration 필드, Number of Time Blocks field 및 Measurement for Time Block n 필드는 도 7의 설명과 동일하다.
Measurement channel bitmap 필드는 채널 품질이 측정된 측정 채널을 가리킨다. 예를 들어, 4개의 채널이 있으면, Measurement channel bitmap 필드는 4 비트를 가지고, 해당 비트가 1이면 해당 채널이 측정 채널이 된다. 채널의 수가 증가하면 Measurement channel bitmap 필드의 비트 수는 증가할 수 있다. 예를 들어, 채널의 수가 8이면 Measurement channel bitmap 필드는 8비트를 가질 수 있다. 또는, 채널의 수가 8이라도, Measurement channel bitmap 필드는 6비트의 압축된 비트맵을 가질 수 있다.
RX antenna Measurement Report Method 필드는 측정 채널에서 송신/수신의 사용되는 안테나에 따라 채널 품질을 보고하는 방법을 지시한다. RX antenna Measurement Report Method 필드는 측정 유닛 동안 측정된 결과를 각 RX 안테나 별로 보고할지 또는 측정 유닛 동안 모든 RX 안테나에 관한 측정 결과의 평균값을 보고할지를 지시할 수 있다. 예를 들어, RX antenna Measurement Report Method 필드가 0 이면, 각 RX 안테나 별로 측정 유닛 동안 측정된 결과가 보고될 수 있다. RX antenna Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 RX 안테나에 관한 측정 결과의 평균값이 보고될 수 있다.
Channel Measurement Report Method 필드는 측정 채널에 따라 채널 품질이 보고되는 방법을 지시한다. Channel Measurement Report Method 필드는 각 측정 채널 마다 측정된 결과를 보고할지 또는 모든 측정 채널에서 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Channel Measurement Report Method 필드가 0 이면, 측정 유닛 동안 각 측정 채널 마다 측정된 결과가 보고될 수 있다. Channel Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 측정 채널에서 측정된 결과의 평균이 보고될 수 있다.
Time Measurement Report Method 필드는 측정 유닛에 따라 채널 품질이 보고되는 방법을 지시한다. Time Measurement Report Method 필드는 매 측정 유닛 마다 측정된 결과를 보고할지 또는 모든 측정 유닛 동안 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Time Measurement Report Method 필드가 0 이면, 매 측정 유닛 동안 측정된 결과가 보고될 수 있다. Time Measurement Report Method 필드가 1 이면, 모든 측정 유닛 동안 측정된 결과의 평균이 보고될 수 있다.
Measurement method, 측정 구간, 시간 블록의 개수, 측정 시작 시간은 측정 채널 모두에게 공통적으로 적용된다.
도 11은 본 발명의 다른 실시예에 따른 채널 품질 요청을 나타낸다.
Measurement channel bitmap 필드는 4개의 채널 각각에 대응하는 ch1, ch2, ch3, ch4의 4비트를 포함한다. 예를 들어, ch1가 1이면 채널 1이 측정 채널임을 지시하고, ch1가 0이면 채널 1이 측정 채널이 아님을 지시할 수 있다. 이는 예시에 불과하며, 사용가능한 채널의 수가 증가하면 Measurement channel bitmap 필드는 더 많은 비트를 가질 수 있다. 예를 들어, 채널의 수가 8이면 Measurement channel bitmap 필드는 8비트를 가질 수 있다. 또는, 채널의 수가 8이라도, Measurement channel bitmap 필드는 6비트의 압축된 비트맵을 가질 수 있다.
Measurement Report Method 필드는 채널 품질이 요청되는 방법을 지시한다. Measurement Report Method 필드는 각 측정 채널 마다 측정된 결과를 보고할지 또는 모든 측정 채널에서 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Measurement Report Method 필드가 0 이면, 측정 유닛 동안 각 측정 채널 마다 측정된 결과가 보고될 수 있다. Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 측정 채널에서 측정된 결과의 평균이 보고될 수 있다.
Measurement method, 측정 구간, 시간 블록의 개수, 측정 시작 시간은 각 측정 채널 마다 개별적으로 주어진다.
도 12는 본 발명의 다른 실시예에 따른 채널 품질 보고를 나타낸다.
Measurement channel bitmap 필드는 4개의 채널 각각에 대응하는 ch1, ch2, ch3, ch4의 4비트를 포함한다.
Measurement Report Method 필드는 채널 품질이 보고되는 방법을 지시한다. Measurement Report Method 필드는 각 측정 채널 마다 측정된 결과를 보고할지 또는 모든 측정 채널에서 측정된 결과의 평균을 보고할지를 지시할 수 있다. 예를 들어, Measurement Report Method 필드가 0 이면, 측정 유닛 동안 각 측정 채널 마다 측정된 결과가 보고될 수 있다. Measurement Report Method 필드가 1 이면, 측정 유닛 동안 모든 측정 채널에서 측정된 결과의 평균이 보고될 수 있다.
Measurement method, 측정 구간, 시간 블록의 개수, 측정 시작 시간은 각 측정 채널 마다 개별적으로 주어진다.
도 13은 본 발명의 또 다른 실시예에 따른 채널 품질 요청을 나타낸다.
도 11의 실시예와 비교하여, 각 채널마다 report method가 주어질 수 있다. Report method는 전술한 도 9의 RX antenna Measurement Report Method 및/또는 Time Measurement Report Method 를 지시할 수 있다.
도 14는 본 발명의 또 다른 실시예에 따른 채널 품질 보고를 나타낸다.
도 12의 실시예와 비교하여, 각 채널마다 report method가 주어질 수 있다. Report method는 전술한 도 10의 RX antenna Measurement Report Method 및/또는 Time Measurement Report Method 를 지시할 수 있다.
도 15은 본 발명의 실시예에 따른 SPSH 평가의 일 예를 보여준다.
STA a, b, c, d는 채널 1에서 동작하고, STA e, f, g,h는 채널 2에서 동작한다고 하자. STA c와 STA d에게는 채널 1이 측정 채널이고, STA g와 STA h에게는 채널 1이 측정 채널이다.
STA c와 STA d는 채널 1에 대한 채널 품질을 보고하고, STA g와 STA h는 채널 2에 대한 채널 품질을 보고할 수 있다.
도 16은 본 발명의 실시예에 따른 SPSH 평가의 다른 예를 보여준다.
STA a, b는 채널 1에서 동작하고, STA e, f는 채널 2에서 동작한다고 하자. STA c, d는 채널 1와 채널 2에서 동작할 수 있다. AP는 STA c, d에게 채널 1 및 채널 2에서의 채널 품질을 요청한다. STA c, d에게 AP에게 채널 1 및 채널 2에서의 채널 품질을 보고한다. AP는 STA c, d에게 채널 1 및 채널 2 중 적어도 어느 하나에 대한 SPSH를 설정할 수 있다.
도 17은 본 발명의 실시예에 따른 SPSH 평가의 또 다른 예를 보여준다.
STA a, b는 채널 1 및 채널 2에서 동작하고, 할당된 SP를 가지고 있다. STA c, d는 채널 1에서 동작하고, STA e, f는 채널 2에서 동작한다고 하자. AP는 STA c, d에게 채널 1에서의 채널 품질을 요청한다. AP는 STA e, f에게 채널 2에서의 채널 품질을 요청한다.
도 18은 본 발명의 실시예가 구현되는 장치를 나타낸 블록도이다.
장치(100)는 프로세서(processor, 110), 메모리(memory, 120) 및 송수신기(transceiver, 130)를 포함한다.
메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(130)는 프로세서(110)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 STA 또는 AP의 동작은 프로세서(110)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(120)에 저장되고, 프로세서(110)에 의해 실행되어 전술한 동작이 수행될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. 무선랜에서 SPSH(spatial sharing)을 위한 채널 품질을 보고하는 방법에 있어서,
    STA(station)이 AP(access point)와 빔포밍 훈련 동안 섹터 스윕을 수행하여 복수의 RX(receive) 안테나를 이용한 링크를 설정하는 단계;
    상기 STA이 상기 AP로부터 SPSH 평가를 위한 채널 품질 요청을 수신하는 단계; 및
    상기 STA이 상기 AP로 상기 채널 품질 요청에 대한 응답으로 채널 품질 보고를 전송하는 단계를 포함하되,
    상기 채널 품질 요청은 상기 복수의 RX 안테나 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 복수의 RX 안테나를 이용한 채널 품질 결과의 평균을 요청하는지를 나타내는 RX 안테나 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 채널 품질 요청은 복수의 채널 중 채널 품질의 측정이 대상이 되는 하나 또는 그 이상의 측정 채널을 나타내는 측정 채널 비트맵 필드를 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 채널 품질 요청은 상기 하나 또는 그 이상의 측정 채널 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 하나 또는 그 이상의 측정 채널 모두에서의 채널 품질 결과의 평균을 요청하는지를 나타내는 채널 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 방법.
  4. 제 2 항에 있어서,
    상기 채널 품질 요청은 상기 복수의 채널 중 하나에서 수신되는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서,
    상기 채널 품질 요청이 수신되는 채널은 1차 채널인 것을 특징으로 하는 방법.
  6. 제1 항에 있어서,
    상기 채널 품질 요청은 요청된 측정이 시작되는 시간을 나타내는 측정 시작 시간(Measurement Start Time) 필드, 요청된 측정 구간의 구간(duration)을 나타내는 측정 구간(Measurement Duration) 필드 및 상기 측정 구간 내에서 측정 유닛(measurement unit)의 갯수를 나타내는 필드를 포함하는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서,
    상기 채널 품질 요청은 매 측정 유닛 마다 채널 품질 결과를 요청하는지 또는 상기 하나 또는 모든 측정 유닛 동안 채널 품질 결과의 평균을 요청하는지를 나타내는 시간 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 채널 품질 보고는 상기 복수의 RX 안테나 각각에 대한 채널 품질 결과가 보고되는지 또는 상기 복수의 RX 안테나를 이용한 채널 품질 결과의 평균이 보고되는지를 나타내는 RX 안테나 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 채널 품질 보고는 복수의 채널 중 채널 품질이 측정된 하나 또는 그 이상의 측정 채널을 나타내는 측정 채널 비트맵 필드를 포함하는 것을 특징으로 하는 방법.
  10. 무선랜에서 SPSH(spatial sharing)을 위한 채널 품질을 보고하는 위한 장치에 있어서,
    무선 신호를 송신 및 수신하는 송수신기;와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    AP(access point)와 빔포밍 훈련 동안 섹터 스윕을 수행하여 복수의 RX(receive) 안테나를 이용한 링크를 설정하고;
    상기 AP로부터 SPSH 평가를 위한 채널 품질 요청을 수신하고; 및
    상기 AP로 상기 채널 품질 요청에 대한 응답으로 채널 품질 보고를 전송하되,
    상기 채널 품질 요청은 상기 복수의 RX 안테나 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 복수의 RX 안테나를 이용한 채널 품질 결과의 평균을 요청하는지를 나타내는 RX 안테나 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 장치.
  11. 제 10 항에 있어서,
    상기 채널 품질 요청은 복수의 채널 중 채널 품질의 측정이 대상이 되는 하나 또는 그 이상의 측정 채널을 나타내는 측정 채널 비트맵 필드를 포함하는 것을 특징으로 하는 장치.
  12. 제 11 항에 있어서,
    상기 채널 품질 요청은 상기 하나 또는 그 이상의 측정 채널 각각에 대한 채널 품질 결과를 요청하는지 또는 상기 하나 또는 그 이상의 측정 채널 모두에서의 채널 품질 결과의 평균을 요청하는지를 나타내는 채널 측정 보고 방법 필드를 포함하는 것을 특징으로 하는 장치.
  13. 제 11 항에 있어서,
    상기 채널 품질 요청은 상기 복수의 채널 중 하나에서 수신되는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서,
    상기 채널 품질 요청이 수신되는 채널은 1차 채널인 것을 특징으로 하는 방법.
PCT/KR2017/000376 2016-01-13 2017-01-11 공간 공유를 위한 채널 품질을 보고하는 방법 및 장치 WO2017123005A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/070,213 US10645605B2 (en) 2016-01-13 2017-01-11 Method and device for reporting channel quality for spatial sharing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662278430P 2016-01-13 2016-01-13
US62/278,430 2016-01-13
US201662305534P 2016-03-09 2016-03-09
US62/305,534 2016-03-09
US201662306080P 2016-03-10 2016-03-10
US62/306,080 2016-03-10

Publications (2)

Publication Number Publication Date
WO2017123005A2 true WO2017123005A2 (ko) 2017-07-20
WO2017123005A3 WO2017123005A3 (ko) 2018-08-02

Family

ID=59311906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000376 WO2017123005A2 (ko) 2016-01-13 2017-01-11 공간 공유를 위한 채널 품질을 보고하는 방법 및 장치

Country Status (2)

Country Link
US (1) US10645605B2 (ko)
WO (1) WO2017123005A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050294A1 (ko) * 2017-09-06 2019-03-14 엘지전자 주식회사 무선랜 시스템에서 파워 세이브 모드에 따른 동작을 수행하는 방법 및 이를 이용한 무선 단말

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922029B (zh) * 2015-12-24 2020-11-06 华为技术有限公司 一种信道资源的调度方法及装置
WO2017164846A1 (en) * 2016-03-22 2017-09-28 Intel Corporation Sector sweeps for establishing two-way data communications with directional antennas
CN109716821B (zh) * 2016-11-04 2021-03-12 Oppo广东移动通信有限公司 波束赋形信息的交互方法和网络设备
KR20190066002A (ko) 2017-12-01 2019-06-12 엘지전자 주식회사 무선랜 시스템에서 채널 측정 정보를 송수신하는 방법 및 이를 위한 장치
US11902816B2 (en) * 2021-10-12 2024-02-13 Qualcomm Incorporated Adaptive cross-link interference measurement and reporting framework

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999771B1 (en) * 2001-09-28 2006-02-14 Arraycomm Llc Channel assignments in a wireless communication system having spatial channels including grouping existing subscribers in anticipation of a new subscriber
KR101417082B1 (ko) * 2008-04-28 2014-07-09 엘지전자 주식회사 무선통신 시스템에서 밴드 비트맵 전송 방법
CN102177742B (zh) 2008-10-29 2015-04-22 马维尔国际贸易有限公司 在多天线通信设备中高效和灵活的传输波束成形扇区扫描
EP2490345B1 (en) * 2009-10-14 2019-04-17 LG Electronics Inc. Method and apparatus for mode switching between a multi-cell coordinated communication mode and a single-cell mimo communication mode
US20130089000A1 (en) * 2011-10-11 2013-04-11 Broadcom Corporation Beamforming training within a wireless communication system utilizing a directional antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050294A1 (ko) * 2017-09-06 2019-03-14 엘지전자 주식회사 무선랜 시스템에서 파워 세이브 모드에 따른 동작을 수행하는 방법 및 이를 이용한 무선 단말

Also Published As

Publication number Publication date
US20190053088A1 (en) 2019-02-14
US10645605B2 (en) 2020-05-05
WO2017123005A3 (ko) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2017123005A2 (ko) 공간 공유를 위한 채널 품질을 보고하는 방법 및 장치
WO2010140742A1 (en) Method for providing information of access point selection
WO2015069090A1 (ko) 스테이션 및 이의 무선 링크 설정 방법
WO2014182137A1 (ko) 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치
WO2016028117A1 (ko) 무선랜에서 상향링크 데이터를 트리거하는 방법 및 장치
WO2018009012A1 (ko) 트리거 정보를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2016060448A1 (ko) 무선랜에서 버퍼 상태 정보를 기반으로 상향링크 전송 자원을 할당하는 방법 및 장치
WO2013125881A1 (en) Method and apparatus for transmitting and receiving signal in communication system
WO2018203603A1 (ko) 빔포밍 훈련
WO2010095802A1 (en) Coexistent channel access method
WO2010044624A2 (en) Method for multicast frame transmission and duplicated multicast frame detection
WO2018056771A1 (ko) 다중 사용자 edca 동작을 위한 무선 통신 단말 및 무선 통신 방법
WO2015133793A1 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in mimo system
WO2017179901A1 (ko) 다중 사용자 캐스캐이딩 전송을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
WO2016140546A1 (ko) 다중 사용자 동시 전송을 위한 무선 통신 단말 및 무선 통신 방법
WO2017048091A1 (ko) 빔포밍 훈련을 위한 방법 및 장치
WO2020091332A1 (ko) 무선랜 시스템에서 멀티 링크를 이용한 통신
WO2019107848A1 (ko) 무선랜 시스템에서 채널 측정 정보를 송수신하는 방법 및 이를 위한 장치
WO2020159197A1 (ko) 분산된 무선랜에서의 다중 사용자 통신 방법 및 장치
WO2017179939A2 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2017043820A1 (ko) 무선랜 시스템에서 빔포밍 전송을 위한 사운딩 방법 및 이를 위한 장치
WO2020180047A1 (ko) 복수의 ap를 이용한 신호 송신을 위한 ap 선택
WO2022098022A1 (ko) 사이드링크 통신에서 sci의 전송 방법 및 장치
WO2021261822A1 (ko) 다중 링크를 지원하는 통신 시스템에서 프레임의 송수신을 위한 방법 및 장치
WO2016003195A1 (ko) 무선 통신 방법 및 무선 통신 단말

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738634

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17738634

Country of ref document: EP

Kind code of ref document: A2