WO2017122991A1 - Low-emissivity glass - Google Patents

Low-emissivity glass Download PDF

Info

Publication number
WO2017122991A1
WO2017122991A1 PCT/KR2017/000338 KR2017000338W WO2017122991A1 WO 2017122991 A1 WO2017122991 A1 WO 2017122991A1 KR 2017000338 W KR2017000338 W KR 2017000338W WO 2017122991 A1 WO2017122991 A1 WO 2017122991A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
low
layer
dielectric layer
protective layer
Prior art date
Application number
PCT/KR2017/000338
Other languages
French (fr)
Korean (ko)
Inventor
김상률
강현민
오영훈
권승민
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2017122991A1 publication Critical patent/WO2017122991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings

Definitions

  • the present invention relates to low-emissivity glass.
  • Low-emission glass is coated with a low-emission layer that has the function of blocking the sun's heat in summer and preserving indoor heat in the winter, and when used as a building exterior material, energy saving effect of the building can be obtained.
  • Such low-emissive glass can be classified into two types according to the manufacturing method, soft low-E glass by the sputtering process and hard by Atmospheric Pressure Chemical Vapor Deposition.
  • Hard Low-E glass Hard Roy has the advantage that post coating is possible because it is an oxide film produced at high temperature, and it is free to handle.However, due to the low electrical conductivity of the coating film, it has a decisive disadvantage that insulation and shielding performance is lower than that of soft Roy. There is a limit to large-scale dissemination.
  • the soft Roy manufactured by the sputtering method is relatively excellent in thermal insulation and shielding performance because the coating film is composed of metal Ag having the highest electrical conductivity, and is also composed of a multilayer film including various auxiliary films.
  • the coating film is composed of metal Ag having the highest electrical conductivity, and is also composed of a multilayer film including various auxiliary films.
  • Temperable Roy Glass is sometimes referred to as Heat Treatable Low-E or Heatable Low-E in the industry.Because it is soft glass, it is able to withstand both tempered and curved processing conditions. It has been applied to various fields requiring post heat treatment such as windshield.
  • Roy glass is usually heated to a temperature of 600-700 ° C. which bends or stresses.
  • the functional reflective metal layer mainly Ag
  • the functional reflective metal layer mainly Ag
  • the functional reflective metal layer is often crystallized due to phenomena such as oxidation and diffusion or aggregation.
  • One of the methods for preventing such deformation, that is, deterioration at high temperature is to laminate the silver metal layer in a sandwich structure using a metal protective film.
  • these methods have also shown limitations in satisfying all desired thermal resistance while maintaining high visible light transmittance.
  • U. S. Patent No. 6,804, 048 describes heat treatable low-emissive glass having a structure of glass / first dielectric layer / low emissive metal layer / protective layer / second dielectric layer.
  • this low-emissive glass has a disadvantage in that a blur occurs in the coating film during the heat treatment or the bending process, and scratches occur due to foreign matters.
  • the present invention provides a low-emissive glass which is excellent in transmittance and exhibits desired heat resistance even after heat treatment, and has improved durability.
  • the low-emissivity glass of this invention is a glass base material; And a first dielectric layer, a first sub dielectric layer, a reflective metal layer, a first metal protective layer, a second sub dielectric layer, a second dielectric layer, and a top protective layer sequentially stacked from the glass substrate.
  • the low-emissivity glass of the present invention is excellent in transmittance and heat resistance even after heat treatment, and also excellent in durability, such as reduction of scratches caused by cloudiness and foreign matter.
  • the low-emissivity glass of this invention is a glass substrate and the 1st dielectric layer, the 1st sub dielectric layer, the reflective metal layer, the 1st metal protective layer, the 2nd sub dielectric layer, the 2nd dielectric layer, and the top protection which were laminated
  • the low emission glass may have an emissivity of about 0.02 to 0.04, and a visible light transmittance of about 50% or more, but may not be limited thereto.
  • the glass substrate conventional glass which can be used in the art, such as for construction or automobile, may be used, for example, soda lime glass may be used, but the present invention may not be limited thereto.
  • the thickness of the glass substrate may be appropriately selected by those skilled in the art according to the purpose of use, and may have a thickness of about 2 to 12 mm, but may not be limited thereto.
  • the first dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 20 to 50 nm, and at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni.
  • Si-based nitride or Si-based oxynitride containing may be included, but may not be limited thereto.
  • the first dielectric layer serves to block Na + from diffusing from the lower glass substrate, such as soda-lime glass, and / or to block oxygen and / or ions transferred to the reflective metal layer during heat treatment such as strengthening or bending. can do.
  • the first sub-dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 10 nm, at least one selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. It may include a Zn-based oxide or Zn-based oxynitride containing an element, but may not be limited thereto.
  • the first sub-dielectric layer may affect the crystallinity of the reflective metal layer to improve thermal performance of the low-emissive glass.
  • the first sub-dielectric layer may induce crystallization of the reflective metal layer well, and prevent oxygen gas from diffusing into the upper and lower dielectric layers during heat treatment of the reflective metal layer, and may suppress the occurrence of optical defects such as aggregation.
  • the first sub-dielectric layer may be Zn-based oxide containing Al, but may not be limited thereto.
  • the reflective metal layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 20 nm, and may include one or more metals selected from the group consisting of Ag, Cu, Au, Al, and Pt, but It may not be limited.
  • the reflective metal layer may serve to selectively transmit and reflect light (solar ray) in the infrared region.
  • the first metal protective layer acts as a barrier to prevent the movement of O 2 in the air during heat treatment for reinforcement and / or bending, and helps the reflective metal layer to perform stable behavior even under high heat treatment conditions. Can be.
  • the second sub-dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 10 nm, and at least one selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. It may include a Zn-based oxide or Zn-based oxynitride containing an element, but may not be limited thereto.
  • the second sub-dielectric layer may affect the crystallinity of the reflective metal layer to improve thermal performance of the low-emissive glass.
  • the second sub-dielectric layer may induce crystallization of the reflective metal layer well, and prevent oxygen gas from diffusing into the upper and lower dielectric layers during heat treatment of the reflective metal layer, and may suppress the occurrence of optical defects such as aggregation.
  • the second sub-dielectric layer may be a Zn-based oxide containing Al, but may not be limited thereto.
  • the second dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 20 to 50 nm, and at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni.
  • Si-based nitride, Si-based oxide, or Si-based oxynitride containing may be included, but may not be limited thereto.
  • the second dielectric layer serves to block Na + from diffusing from the lower glass substrate, eg, soda-lime glass, and / or to block oxygen and / or ions transferred to the reflective metal layer during heat treatment such as strengthening or bending. can do.
  • the thickness of the uppermost protective layer is less than about 2nm, there is a fear that the durability is lowered, and if the thickness of the uppermost protective layer exceeds about 15nm, the transmittance of the low-emissive glass may be reduced or cause clouding.
  • the thickness of the uppermost protective layer may be about 2 to 7 nm.
  • the Ti-based oxynitride included in the uppermost protective layer of the present invention may further contain one or more elements selected from W, Zr, and Si, but may not be limited thereto.
  • the low-emissivity glass of the present invention may further include a second metal protective layer having a thickness of 1.5 to 5 nm between the first sub-dielectric layer and the reflective metal layer, but may not be limited thereto.
  • the second metal protective layer acts as a barrier to prevent the movement of O 2 in the air during heat treatment for reinforcement and / or bending, and also helps the reflective metal layer to perform stable behavior even under high heat treatment conditions. Can be.
  • the ZnAlO layer was then coated at 10 nm under argon / oxygen atmosphere as the first sub-dielectric layer.
  • Ag was then coated with a reflective metal layer at about 10 nm under an argon atmosphere.
  • Example 1 The film structure of the low-emissivity glass of Example 1 prepared was as follows: first dielectric layer / first sub-dielectric layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / second dielectric layer / top protective layer .
  • the low-emissive glass was manufactured under the same conditions as in Example 1 except that the second metal protective layer was further included before the coating of the reflective metal layer and the top protective layer was not included.
  • the second metal protective layer was formed by coating NiCr in an argon atmosphere.
  • the film structure of the low-emissivity glass of Comparative Example 1 prepared was as follows: first dielectric layer / first sub-dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / agent 2 dielectric layers.
  • the low-emissive glass was manufactured under the same conditions as in Example 1 except that the first and second sub-dielectric layers and the uppermost protective layer were not included.
  • the film structure of the low-emissive glass of Comparative Example 2 prepared was as follows: first dielectric layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer.
  • a low-emissive glass was manufactured under the same conditions as in Example 1 except that the uppermost protective layer was not included.
  • the film structure of the low-emissivity glass of Comparative Example 3 prepared was as follows: first dielectric layer / first sub-dielectric layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / second dielectric layer.
  • the low-emissive glass according to the embodiment of the present invention has excellent visible light transmittance before and after heat treatment, and also excellent in sheet resistance, scratch performance and haze performance, suitable for use in building glass, etc. Do. On the other hand, the low-emission glass according to Comparative Examples 1 to 3 was found to be somewhat insufficient to maintain high permeability and at the same time durability and heat resistance performance.
  • the ZnAlO layer was then coated at 10 nm under an argon / oxygen atmosphere as the first sub-dielectric layer.
  • the NiCr layer was then coated 3 nm thick with a second metal protective layer, and the reflective metal layer Ag was coated at about 10 nm under an argon atmosphere.
  • the layer was coated to 25 nm thick under nitrogen / argon atmosphere.
  • the film structure of the low-emissivity glass of Example 2 prepared was as follows: first dielectric layer / first sub-dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / first 2 dielectric layer / top protection layer.
  • a low-emissive glass was prepared under the same conditions as in Example 2 except that the first and second sub-dielectric layers were not included.
  • the film structure of the low-emissivity glass of Comparative Example 4 prepared was as follows: first dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer / top protective layer.
  • a low-emissive glass was produced under the same conditions as in Example 2 except that the first and second sub-dielectric layers and the uppermost protective layer were not included.
  • the film structure of the low-emissive glass of Comparative Example 5 prepared was as follows: first dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer.
  • the low-emissivity glass according to the embodiment of the present invention is excellent in visible light transmittance before and after heat treatment, and also excellent in sheet resistance, scratch performance and haze performance suitable for use in building glass, etc. Do. On the other hand, the low-emissivity glass according to Comparative Examples 4 to 5 was found to be somewhat insufficient to maintain high transmission performance and durability and heat resistance performance.

Abstract

The present invention provides a low-emissivity glass comprising: a glass substrate; and a first dielectric layer, a first sub dielectric layer, a reflective metal layer, a first metal protective layer, a second sub dielectric layer, a second dielectric layer, and the uppermost protective layer, which are sequentially stacked, beginning from the glass substrate.

Description

저방사 유리Low emission glass
본 발명은 저방사 유리에 관한 것이다.The present invention relates to low-emissivity glass.
저방사 유리는 여름철에는 태양열을 차단하고 겨울철에는 실내열을 보존하는 기능을 가진 저방사 층을 유리에 코팅한 것으로, 건물 외장재로 사용시 건축물의 에너지 절감 효과를 얻을 수 있다. 이러한 저방사 유리는 제조 공법에 따라 크게 두 가지로 분류할 수 있는데, 스퍼터링공법(Sputtering Process)에 의한 소프트로이(Soft Low-E) 유리와 상압화학기상증착법(Atmospheric Pressure Chemical Vapor Deposition)에 의한 하드로이(Hard Low-E) 유리가 있다. 하드로이는 코팅막이 고온에서 생성된 산화막이기 때문에 후강화가 가능하고, 취급이 자유롭다는 장점이 있는 반면, 코팅막의 낮은 전기전도성으로 인해 소프트로이에 비해 단열 및 차폐성능이 떨어진다는 결정적인 단점이 있어 대규모 보급에는 한계가 있다. 한편, 스퍼터링 방식으로 제조된 소프트로이는 코팅막이 전기전도성이 가장 우수한 금속 Ag로 구성되어 있기 때문에 상대적으로 단열 및 차폐성능이 우수하고, 또한 여러 보조막들이 포함된 다층막으로 구성되기 때문에 박막간의 간섭 관계에 의해 소비자가 원하는 다양한 특성의 제품을 공급할 수 있는 장점을 가지고 있다. 하지만 고온, 심지어 상온에서조차도 산화해서 변형되기 쉬운 금속 Ag 막의 특성으로 인해 후강화가 불가능하며, 취급에 있어서도 제약이 많은 단점들을 안고 있었다. 이 중 후강화가 불가능하다는 특징은 선강화 후 코팅을 필요로 하기 때문에 제품의 유통적인 측면에서 치명적인 단점이 될 수 있는데, 이를 개선하기 위해 제안된 것이 바로 후강화가 가능한 로이유리(Temperable 로이유리)인 것이다. 이러한, Temperable 로이유리는 업계에서는 때때로 Heat Treatable Low-E 또는 Heatable Low-E 라고도 불리는데, 소프트로이 유리임에도 불구하고 강화조건 및 곡 가공 조건에서도 견딜 수 있기 때문에 강화/반강화 사양의 건축용 유리 및 자동차의 windshield 등 후열처리가 필요한 다양한 분야에 응용이 되어 왔다. Low-emission glass is coated with a low-emission layer that has the function of blocking the sun's heat in summer and preserving indoor heat in the winter, and when used as a building exterior material, energy saving effect of the building can be obtained. Such low-emissive glass can be classified into two types according to the manufacturing method, soft low-E glass by the sputtering process and hard by Atmospheric Pressure Chemical Vapor Deposition. Hard Low-E glass. Hard Roy has the advantage that post coating is possible because it is an oxide film produced at high temperature, and it is free to handle.However, due to the low electrical conductivity of the coating film, it has a decisive disadvantage that insulation and shielding performance is lower than that of soft Roy. There is a limit to large-scale dissemination. On the other hand, the soft Roy manufactured by the sputtering method is relatively excellent in thermal insulation and shielding performance because the coating film is composed of metal Ag having the highest electrical conductivity, and is also composed of a multilayer film including various auxiliary films. By having the advantage that can supply products of various characteristics desired by consumers. However, due to the characteristics of the metal Ag film, which is easily oxidized and deformed even at high temperatures, even at room temperature, post-strengthening is impossible and there are many disadvantages in handling. Among them, the post-reinforcement is impossible because it requires coating after line reinforcement, which can be a fatal drawback in terms of distribution of the product. The proposed to improve this is Roy Glass (Temperable Roy Glass). It is Temperable Roy Glass is sometimes referred to as Heat Treatable Low-E or Heatable Low-E in the industry.Because it is soft glass, it is able to withstand both tempered and curved processing conditions. It has been applied to various fields requiring post heat treatment such as windshield.
이러한 목적으로 통상 로이유리는 구부리거나 응력을 가하는 600~700℃의 온도로 가열되는데, 이러한 열을 가하는 동안 유리 기판상의 기능성 반사 금속층(주로 Ag)은 종종 산화 및 확산 또는 뭉침 등의 현상으로 인해 결정구조학적인 변형을 거치게 된다. 이러한 변형, 즉 고온에서 열화되는 것을 막기 위한 방법 중에 하나가 금속 보호 필름을 사용하여 은 금속층을 샌드위치 구조로 적층하는 것이다. 그러나 이들 방법 역시 높은 가시광선 투과율을 유지하면서 원하는 열 저항성을 모두 만족시키는 데에 한계를 보여 왔다.For this purpose, Roy glass is usually heated to a temperature of 600-700 ° C. which bends or stresses. During this heat, the functional reflective metal layer (mainly Ag) on the glass substrate is often crystallized due to phenomena such as oxidation and diffusion or aggregation. There is a structural transformation. One of the methods for preventing such deformation, that is, deterioration at high temperature, is to laminate the silver metal layer in a sandwich structure using a metal protective film. However, these methods have also shown limitations in satisfying all desired thermal resistance while maintaining high visible light transmittance.
미국 특허 제6,804,048호에는 유리/제1유전층/저방사 금속층/보호층/제2유전층의 구조를 갖는 열처리 가능한 저방사 유리가 기술되어 있다. 그러나, 이 저방사 유리는 열처리 혹은 굽힘 공정 중에 코팅막에 흐림 현상이 발생하고 이물질 등에 의해 스크래치가 발생하는 단점이 있었다.U. S. Patent No. 6,804, 048 describes heat treatable low-emissive glass having a structure of glass / first dielectric layer / low emissive metal layer / protective layer / second dielectric layer. However, this low-emissive glass has a disadvantage in that a blur occurs in the coating film during the heat treatment or the bending process, and scratches occur due to foreign matters.
본 발명은 열처리 후에도 투과율이 우수하고 목적하는 열 저항성을 나타내며, 동시에 내구성이 향상된 저방사 유리를 제공한다.The present invention provides a low-emissive glass which is excellent in transmittance and exhibits desired heat resistance even after heat treatment, and has improved durability.
본 발명의 저방사 유리는 유리 기재; 및 상기 유리 기재로부터 순차적으로 적층된 제 1 유전층, 제 1 서브유전층, 반사금속층, 제 1 금속보호층, 제 2 서브유전층, 제 2 유전층, 및 최상부 보호층을 포함한다.The low-emissivity glass of this invention is a glass base material; And a first dielectric layer, a first sub dielectric layer, a reflective metal layer, a first metal protective layer, a second sub dielectric layer, a second dielectric layer, and a top protective layer sequentially stacked from the glass substrate.
본 발명의 저방사 유리는 열처리 후에도 투과율이 우수하고 목적하는 열 저항성을 나타낼 뿐만 아니라, 흐림 현상 및 이물질 등에 의한 스크래치 발생의 감소 등 내구성이 우수하다.The low-emissivity glass of the present invention is excellent in transmittance and heat resistance even after heat treatment, and also excellent in durability, such as reduction of scratches caused by cloudiness and foreign matter.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 저방사 유리는, 유리 기재, 및 상기 유리 기재로부터 순차적으로 적층된 제 1 유전층, 제 1 서브유전층, 반사금속층, 제 1 금속보호층, 제 2 서브유전층, 제 2 유전층, 및 최상부 보호층을 포함할 수 있다. 상기 저방사 유리는 약 0.02 내지 0.04의 방사율, 및 약 50% 이상의 가시광선 투과율을 가질 수 있으나, 이에 제한되지 않을 수 있다.The low-emissivity glass of this invention is a glass substrate and the 1st dielectric layer, the 1st sub dielectric layer, the reflective metal layer, the 1st metal protective layer, the 2nd sub dielectric layer, the 2nd dielectric layer, and the top protection which were laminated | stacked sequentially from the said glass substrate. It may comprise a layer. The low emission glass may have an emissivity of about 0.02 to 0.04, and a visible light transmittance of about 50% or more, but may not be limited thereto.
상기 유리 기재로서 건축용 또는 자동차용과 같이 당업계에서 사용될 수 있는 통상의 유리가 사용될 수 있으며, 예를 들어 소다라임 유리가 사용될 수 있으나, 이에 제한되지 않을 수 있다. 상기 유리 기재의 두께는 사용 목적에 따라 당업자가 적절하게 선택할 수 있으며, 약 2 내지 12 mm의 두께를 가질 수 있으나, 이에 제한되지 않을 수 있다.As the glass substrate, conventional glass which can be used in the art, such as for construction or automobile, may be used, for example, soda lime glass may be used, but the present invention may not be limited thereto. The thickness of the glass substrate may be appropriately selected by those skilled in the art according to the purpose of use, and may have a thickness of about 2 to 12 mm, but may not be limited thereto.
본 발명의 저방사 유리에 포함되는 상기 제 1 유전층은 약 20 내지 50 nm의 두께를 가질 수 있으며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Si계 질화물 또는 Si계 산질화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 제 1 유전층은 SiAlNx(x=1.3~1.5)기반 구조를 포함할 수 있으나, 이에 제한되지 않을 수 있다.The first dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 20 to 50 nm, and at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. Si-based nitride or Si-based oxynitride containing may be included, but may not be limited thereto. For example, the first dielectric layer may include a SiAlN x (x = 1.3 to 1.5) based structure, but may not be limited thereto.
상기 제 1 유전체층은 강화 또는 굽힘 등의 열처리시 하부 유리 기재, 예를 들어 소다라임 유리로부터 확산되어 넘어오는 Na+를 차단하고 및/또는 반사금속층으로 전달되는 산소 및/또는 이온을 차단하는 역할을 할 수 있다.The first dielectric layer serves to block Na + from diffusing from the lower glass substrate, such as soda-lime glass, and / or to block oxygen and / or ions transferred to the reflective metal layer during heat treatment such as strengthening or bending. can do.
본 발명의 저방사 유리에 포함되는 상기 제 1 서브유전층은 약 5 내지 10 nm의 두께를 가질 수 있으며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Zn계 산화물 또는 Zn계 산질화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 1 서브유전층은 반사금속층의 결정화도에 영향을 주어 저방사 유리의 열성능을 향상시킬 수 있다.The first sub-dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 10 nm, at least one selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. It may include a Zn-based oxide or Zn-based oxynitride containing an element, but may not be limited thereto. The first sub-dielectric layer may affect the crystallinity of the reflective metal layer to improve thermal performance of the low-emissive glass.
상기 제 1 서브유전층은 반사금속층의 결정화가 잘 이루어질 수 있도록 유도하는 동시에, 반사금속층 열처리시 산소 기체가 상하부 유전막으로 확산되는 것을 방지하고, 뭉침과 같은 광학적 결함이 발생하는 것을 억제하는 역할을 할 수 있다. 바람직하게는, 상기 제 1 서브유전층은 Al을 함유하는 Zn계 산화물일수 있으나, 이에 제한되지 않을 수 있다.The first sub-dielectric layer may induce crystallization of the reflective metal layer well, and prevent oxygen gas from diffusing into the upper and lower dielectric layers during heat treatment of the reflective metal layer, and may suppress the occurrence of optical defects such as aggregation. have. Preferably, the first sub-dielectric layer may be Zn-based oxide containing Al, but may not be limited thereto.
본 발명의 저방사 유리에 포함되는 상기 반사금속층은 약 5 내지 20nm의 두께를 가질 수 있으며, Ag, Cu, Au, Al, 및 Pt로 이루어지는 군으로부터 선택되는 하나 이상의 금속을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 반사금속층은 적외선 영역의 빛 (태양열선)을 선택적으로 투과 반사시키는 역할을 할 수 있다. The reflective metal layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 20 nm, and may include one or more metals selected from the group consisting of Ag, Cu, Au, Al, and Pt, but It may not be limited. The reflective metal layer may serve to selectively transmit and reflect light (solar ray) in the infrared region.
본 발명의 저방사 유리에 포함되는 상기 제 1 금속보호층은 약 0.5 내지 2 nm의 두께를 가질 수 있으며, Ni, Cr, Ni-Cr 합금, 및 NiCrNx(x=0.8~1)로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속 보호층으로 인하여 본 발명의 저방사 유리의 내구성이 강화될 수 있으며, 열처리시 상기 금속 보호층이 상기 반사금속층을 보호하는 기능을 할 수 있다.The first metal protective layer included in the low-emissivity glass of the present invention may have a thickness of about 0.5 to 2 nm, a group consisting of Ni, Cr, Ni-Cr alloy, and NiCrN x (x = 0.8 to 1). It may include one or more selected from, but may not be limited thereto. Due to the metal protective layer, the durability of the low-emissivity glass of the present invention may be enhanced, and the metal protective layer may function to protect the reflective metal layer during heat treatment.
상기 제 1 금속보호층은 강화 및/또는 굽힘 등을 위한 열처리시에 공기 중의 O2의 이동을 방해하는 장벽 역할을 함과 동시에, 반사금속층이 높은 열처리 조건에서도 안정적인 거동이 가능하도록 돕는 역할을 할 수 있다.The first metal protective layer acts as a barrier to prevent the movement of O 2 in the air during heat treatment for reinforcement and / or bending, and helps the reflective metal layer to perform stable behavior even under high heat treatment conditions. Can be.
본 발명의 저방사 유리에 포함되는 상기 제 2 서브유전층은 약 5 내지 10 nm의 두께를 가질 수 있으며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Zn계 산화물 또는 Zn계 산질화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 2 서브유전층은 반사금속층의 결정화도에 영향을 주어 저방사 유리의 열성능을 향상시킬 수 있다.The second sub-dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 5 to 10 nm, and at least one selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. It may include a Zn-based oxide or Zn-based oxynitride containing an element, but may not be limited thereto. The second sub-dielectric layer may affect the crystallinity of the reflective metal layer to improve thermal performance of the low-emissive glass.
상기 제 2 서브유전층은 반사금속층의 결정화가 잘 이루어질 수 있도록 유도하는 동시에, 반사금속층 열처리시 산소 기체가 상하부 유전막으로 확산되는 것을 방지하고, 뭉침과 같은 광학적 결함이 발생하는 것을 억제하는 역할을 할 수 있다. 바람직하게는, 상기 제 2 서브유전층은 Al을 함유하는 Zn계 산화물일 수 있으나, 이에 제한되지 않을 수 있다.The second sub-dielectric layer may induce crystallization of the reflective metal layer well, and prevent oxygen gas from diffusing into the upper and lower dielectric layers during heat treatment of the reflective metal layer, and may suppress the occurrence of optical defects such as aggregation. have. Preferably, the second sub-dielectric layer may be a Zn-based oxide containing Al, but may not be limited thereto.
본 발명의 저방사 유리에 포함되는 상기 제 2 유전층은 약 20 내지 50 nm의 두께를 가질 수 있으며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Si계 질화물, Si계 산화물, 또는 Si계 산질화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다.The second dielectric layer included in the low-emissivity glass of the present invention may have a thickness of about 20 to 50 nm, and at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. Si-based nitride, Si-based oxide, or Si-based oxynitride containing may be included, but may not be limited thereto.
상기 제 2 유전층은 강화 또는 굽힘 등의 열처리시 하부 유리 기재, 예를 들어 소다라임 유리로부터 확산되어 넘어오는 Na+를 차단하고 및/또는 반사금속층으로 전달되는 산소 및/또는 이온을 차단하는 역할을 할 수 있다.The second dielectric layer serves to block Na + from diffusing from the lower glass substrate, eg, soda-lime glass, and / or to block oxygen and / or ions transferred to the reflective metal layer during heat treatment such as strengthening or bending. can do.
본 발명의 저방사 유리에 포함되는 상기 최상부 보호층은 약 2 내지 15 nm의 두께를 가질 수 있으며, TiOxNy (x=0.9~0.98, y=0.02~0.1, y/x < 1)인 Ti계 산질화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 최상부 보호층으로 인해 본 발명의 저방사 유리의 내구성이 강화될 수 있다. 상기 최상부 보호층은 저방사 유리 표면의 거칠기를 감소시키고, 내스크래치성을 증대시키며, 코팅막의 기계적·화학적 내구성을 증대시키는 역할을 할 수 있다. 상기 최상부 보호층의 두께가 약 2nm 미만이면 내구성이 저하될 우려가 있고, 약 15 nm를 초과하면 저방사 유리의 투과율이 저하되거나 흐림을 발생시키는 원인이 될 수 있다. 바람직하게는, 상기 최상부 보호층의 두께는 약 2 내지 7 nm일 수 있다.The uppermost protective layer included in the low-emissivity glass of the present invention may have a thickness of about 2 to 15 nm, TiO x N y (x = 0.9 ~ 0.98, y = 0.02 ~ 0.1, y / x <1) Ti-based oxynitride may include, but may not be limited thereto. Due to the uppermost protective layer, the durability of the low-emission glass of the present invention can be enhanced. The uppermost protective layer may serve to reduce the roughness of the surface of the low-emissive glass, increase scratch resistance, and increase mechanical and chemical durability of the coating film. If the thickness of the uppermost protective layer is less than about 2nm, there is a fear that the durability is lowered, and if the thickness of the uppermost protective layer exceeds about 15nm, the transmittance of the low-emissive glass may be reduced or cause clouding. Preferably, the thickness of the uppermost protective layer may be about 2 to 7 nm.
본 발명의 최상부 보호층에 포함되는 상기 Ti계 산질화물은 W, Zr, 및 Si로부터 선택되는 하나 이상의 원소를 더 함유할 수 있으나, 이에 제한되지 않을 수 있다.The Ti-based oxynitride included in the uppermost protective layer of the present invention may further contain one or more elements selected from W, Zr, and Si, but may not be limited thereto.
본 발명의 저방사 유리는 상기 제 1 서브유전층과 상기 반사금속층 사이에 1.5 내지 5 nm 두께의 제 2 금속보호층을 더 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 2 금속보호층은 강화 및/또는 굽힘 등을 위한 열처리 시에 공기 중의 O2의 이동을 방해하는 장벽 역할을 함과 동시에, 반사금속층이 높은 열처리 조건에서도 안정적인 거동이 가능하도록 돕는 역할을 할 수 있다.The low-emissivity glass of the present invention may further include a second metal protective layer having a thickness of 1.5 to 5 nm between the first sub-dielectric layer and the reflective metal layer, but may not be limited thereto. The second metal protective layer acts as a barrier to prevent the movement of O 2 in the air during heat treatment for reinforcement and / or bending, and also helps the reflective metal layer to perform stable behavior even under high heat treatment conditions. Can be.
본 발명의 저방사 유리에 포함되는 상기 제 2 금속보호층은 Ni, Cr, Ni-Cr 합금, 및 NiCrNx(x=0.8~1)로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있으나, 이에 제한되지 않을 수 있다.The second metal protective layer included in the low-emissivity glass of the present invention may include one or more selected from the group consisting of Ni, Cr, Ni-Cr alloy, and NiCrN x (x = 0.8 to 1), but It may not be limited.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention in any sense is not limited to these examples.
[실시예]EXAMPLE
저방사Low radiation 유리의 제조 1 -  Manufacture of glass 1- 실시예Example 1 One
6 mm 두께의 투명 유리에 먼저 제 1 유전층으로 SiAlNx(x=1.3~1.5)층을 질소/아르곤 분위기 하에서 두께 25 nm로 코팅하였다. 이어서 제 1 서브유전층으로 ZnAlO 층을 아르곤/산소 분위기 하에서 10 nm로 코팅하였다. 이어서 반사금속층으로 Ag를 아르곤 분위기 하에서 약 10 nm로 코팅하였다. 제 1 금속보호층으로 NiCr 층을 0.8 nm 두께로 코팅하였고, 이어서 아르곤/산소 분위기 하에서 제 2 서브유전층으로 ZnAlO 층을 10 nm 두께로, 그리고 제 2 유전층으로 SiAlNx(x=1.3~1.5)층을 질소/아르곤 분위기 하에서 25 nm 두께로 코팅하였다. 마지막으로 최상부 보호층으로 TiOxNy(x=0.9~0.98, y=0.02~0.1, y/x < 1)층을 아르곤 질소 분위기 하에서 약 5 nm두께로 코팅하여 실시예 1의 저방사 유리를 제조하였다. 제조된 실시예 1의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 1 서브유전층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 서브유전층 / 제 2 유전층 / 최상부 보호층.A 6 mm thick transparent glass was first coated with a SiAlN x (x = 1.3-1.5) layer with a thickness of 25 nm under a nitrogen / argon atmosphere as the first dielectric layer. The ZnAlO layer was then coated at 10 nm under argon / oxygen atmosphere as the first sub-dielectric layer. Ag was then coated with a reflective metal layer at about 10 nm under an argon atmosphere. The NiCr layer was coated 0.8 nm thick with a first metal protective layer, followed by a 10 nm thick ZnAlO layer with a second sub-dielectric layer under an argon / oxygen atmosphere, and a SiAlN x (x = 1.3-1.5) layer with a second dielectric layer. Was coated to a thickness of 25 nm under nitrogen / argon atmosphere. Finally, the TiO x N y (x = 0.9 to 0.98, y = 0.02 to 0.1, y / x <1) layer was coated with a thickness of about 5 nm under an argon nitrogen atmosphere as the uppermost protective layer. Prepared. The film structure of the low-emissivity glass of Example 1 prepared was as follows: first dielectric layer / first sub-dielectric layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / second dielectric layer / top protective layer .
저방사 유리의 제조 1 - 비교예 1Preparation of Low Emissive Glass 1-Comparative Example 1
반사금속층의 코팅 전에 제 2 금속보호층을 하나 더 포함하고 최상부 보호층을 포함하지 않는다는 점을 제외하고는 실시예 1과 동일한 조건으로 저방사 유리를 제조하였다. 제 2 금속보호층은 NiCr을 아르곤 분위기에서 코팅하여 형성되었다. 제조된 비교예 1의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 1 서브유전층 / 제 2 금속보호층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 서브유전층 / 제 2 유전층.The low-emissive glass was manufactured under the same conditions as in Example 1 except that the second metal protective layer was further included before the coating of the reflective metal layer and the top protective layer was not included. The second metal protective layer was formed by coating NiCr in an argon atmosphere. The film structure of the low-emissivity glass of Comparative Example 1 prepared was as follows: first dielectric layer / first sub-dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / agent 2 dielectric layers.
저방사 유리의 제조 1 - 비교예 2Preparation of Low Emissive Glass 1-Comparative Example 2
제 1 및 제 2 서브유전층, 및 최상부 보호층을 포함하지 않는다는 점을 제외하고는 실시예 1과 동일한 조건으로 저방사 유리를 제조하였다. 제조된 비교예 2의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 유전층.The low-emissive glass was manufactured under the same conditions as in Example 1 except that the first and second sub-dielectric layers and the uppermost protective layer were not included. The film structure of the low-emissive glass of Comparative Example 2 prepared was as follows: first dielectric layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer.
저방사 유리의 제조 1 - 비교예 3Preparation of Low Emissive Glass 1-Comparative Example 3
최상부 보호층을 포함하지 않는다는 점을 제외하고는 실시예 1과 동일한 조건으로 저방사 유리를 제조하였다. 제조된 비교예 3의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 1 서브유전층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 서브유전층 / 제 2 유전층.A low-emissive glass was manufactured under the same conditions as in Example 1 except that the uppermost protective layer was not included. The film structure of the low-emissivity glass of Comparative Example 3 prepared was as follows: first dielectric layer / first sub-dielectric layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / second dielectric layer.
저방사Low radiation 유리의 제조 1 - 물성 평가 Preparation of Glass 1-Property Evaluation
상기 제조된 실시예 1 및 비교예 1 내지 3의 저방사 유리 샘플들은, 강화 유리 생산시 사용되는 일반적인 강화로에서 상 하부 온도를 약 600~700℃의 온도로 유지한 상태에서 상기 저방사 유리 샘플을 통과시켜 약 5 분 동안 가열한 뒤 급냉하는 조건으로 열처리 되었다.The low-emissive glass samples of Examples 1 and Comparative Examples 1 to 3 prepared above, the low-emissive glass sample while maintaining the temperature of the bottom of the phase at a temperature of about 600 ~ 700 ℃ in a general strengthening furnace used for producing tempered glass Heated for about 5 minutes to pass through and then quenching conditions.
열처리 전 후 각 380~780 nm의 파장 범위에서 D65 표준 광원 10도 KS L 2514 규격에 따라 가시광 투과율을 측정하였고, 표면 저항 측정기 (비접촉식 면저항 측정기)를 통해 면저항을 측정하였다. 방사율은 적외선분광기 (FTIR)을 사용하여 KS L 2525 규격에 따라 측정하였다. 방사율은 반사금속층인 Ag에 의해 측정되는 값으로, 저방사 유리로서의 성능을 가늠할 수 있는 물성 중 하나이다. 스크래치는 Elcometer 1720 장비를 사용하여 측정하였으며, 구체적으로는 유리시편을 측정기 위에 놓고 물을 뿌린 후 (세척조건과 일치) 브러쉬의 왕복운동을 통해 브러쉬가 지나간 시편 중앙 브러쉬 중첩 부위의 스크래치의 폭 및 개수를 확인하여 레벨(Lv)로 평가하였다. Haze는 저방사 유리를 열처리 후 코팅막이 흐려지는 정도를 평가하는 방법으로, 육안 관찰로 레벨(Lv)을 평가하였다.Before and after the heat treatment, visible light transmittance was measured according to the KS L 2514 standard at 10 degrees of D65 standard light source in the wavelength range of 380 to 780 nm, and the sheet resistance was measured by a surface resistance measuring instrument (non-contact sheet resistance measuring instrument). Emissivity was measured according to KS L 2525 standard using an infrared spectrometer (FTIR). Emissivity is a value measured by Ag, which is a reflective metal layer, and is one of physical properties that can be used as a low-emissivity glass. The scratches were measured using an Elcometer 1720 instrument. Specifically, the glass specimen was placed on the measuring instrument, sprinkled with water, and matched with the cleaning conditions. Was confirmed and evaluated as level (Lv). Haze is a method of evaluating the degree of clouding of the coating film after heat treatment of the low-emission glass, and the level (Lv) was evaluated by visual observation.
상기 항목들에 대한 측정 결과를 아래 표 1에 나타내었다.The measurement results for the above items are shown in Table 1 below.
샘플Sample 비고Remarks 가시광선Visible light 면저항Sheet resistance 방사율Emissivity 스크래치scratch HazeHaze
투과율(%)Transmittance (%) (Ω/sq)(Ω / sq) Lv.Lv. Lv.Lv.
실시예 1Example 1 열처리 전Before heat treatment 81.781.7 6.86.8 0.060.06 22 XX
열처리 후After heat treatment 86.886.8 4.84.8 0.040.04 22 22
비교예 1Comparative Example 1 열처리 전Before heat treatment 74.674.6 6.826.82 0.060.06 33 XX
열처리 후After heat treatment 81.481.4 4.354.35 0.040.04 33 22
비교예 2Comparative Example 2 열처리 전Before heat treatment 82.382.3 7.57.5 0.070.07 22 XX
열처리 후After heat treatment 87.187.1 5.55.5 0.050.05 44 44
비교예 3Comparative Example 3 열처리 전Before heat treatment 80.480.4 6.816.81 0.060.06 33 XX
열처리 후After heat treatment 85.885.8 4.84.8 0.040.04 33 22
X : 흐림이 없는 상태X: no blur
상기 [표 1]에서 확인할 수 있는 바와 같이, 본 발명의 실시예에 따른 저방사 유리는 열처리 전후의 가시광 투과율이 우수하고, 면저항, 스크래치 성능 및 haze 성능도 매우 우수하여 건축용 유리 등에 사용하기에 적합하다. 반면 비교예 1 내지 3에 따른 저방사 유리는 높은 투과 성능과 동시에 내구성 및 열저항 성능을 유지하기에는 다소 부족한 것으로 확인된다.As can be seen in Table 1, the low-emissive glass according to the embodiment of the present invention has excellent visible light transmittance before and after heat treatment, and also excellent in sheet resistance, scratch performance and haze performance, suitable for use in building glass, etc. Do. On the other hand, the low-emission glass according to Comparative Examples 1 to 3 was found to be somewhat insufficient to maintain high permeability and at the same time durability and heat resistance performance.
저방사Low radiation 유리의 제조 2 -  Manufacture of glass 2- 실시예Example 2 2
6 mm 두께 투명 유리에 먼저 제 1 유전층으로 SiAlNx(x=1.3~1.5)층을 질소/아르곤 분위기 하에서 두께 25 nm로 코팅하였다. 이어서 제 1 서브유전층으로 ZnAlO층을 아르곤/산소 분위기 하에서 10 nm로 코팅하였다. 이어서 제 2 금속보호층으로 NiCr 층을 3 nm 두께로 코팅하고, 반사금속층 Ag를 아르곤 분위기 하에서 약 10 nm로 코팅하였다. 이후 제 1 금속보호층으로 NiCr 층을 1.5 nm 두께로 코팅하고, 이어서 아르곤/산소 분위기 하에서 제 2 서브유전층으로 ZnAlO 층을 10 nm 두께로, 그리고 제 2 유전층으로 SiAlNx(x=1.3~1.5)층을 질소/아르곤 분위기 하에서 25 nm 두께로 코팅하였다. 마지막으로 최상부 보호층으로 TiOxNy (x=0.9~0.98, y=0.02~0.1, y/x < 1)층을 아르곤/질소 분위기 하에서 약 5 nm두께로 코팅하여 실시예 2의 저방사 유리를 제조하였다. 제조된 실시예 2의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 1 서브유전층 / 제 2 금속보호층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 서브유전층 / 제 2 유전층 / 최상부 보호층.The 6 mm thick transparent glass was first coated with a SiAlN x (x = 1.3-1.5) layer with a thickness of 25 nm under nitrogen / argon atmosphere as the first dielectric layer. The ZnAlO layer was then coated at 10 nm under an argon / oxygen atmosphere as the first sub-dielectric layer. The NiCr layer was then coated 3 nm thick with a second metal protective layer, and the reflective metal layer Ag was coated at about 10 nm under an argon atmosphere. The NiCr layer was then coated with a first metal protective layer 1.5 nm thick, followed by a 10 nm thick ZnAlO layer with a second sub-dielectric layer under an argon / oxygen atmosphere and SiAlN x (x = 1.3-1.5) as a second dielectric layer. The layer was coated to 25 nm thick under nitrogen / argon atmosphere. Finally, the TiO x N y (x = 0.9-0.98, y = 0.02-0. 1, y / x <1) layer was coated with a thickness of about 5 nm under an argon / nitrogen atmosphere as the uppermost protective layer. Was prepared. The film structure of the low-emissivity glass of Example 2 prepared was as follows: first dielectric layer / first sub-dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second sub-dielectric layer / first 2 dielectric layer / top protection layer.
저방사Low radiation 유리의 제조 2 -  Manufacture of glass 2- 비교예Comparative example 4 4
제 1 및 제 2 서브유전층을 포함하지 않는다는 점을 제외하고는 실시예 2와 동일한 조건으로 저방사 유리를 제조하였다. 제조된 비교예 4의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 2 금속보호층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 유전층 / 최상부 보호층.A low-emissive glass was prepared under the same conditions as in Example 2 except that the first and second sub-dielectric layers were not included. The film structure of the low-emissivity glass of Comparative Example 4 prepared was as follows: first dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer / top protective layer.
저방사Low radiation 유리의 제조 2 -  Manufacture of glass 2- 비교예Comparative example 5 5
제 1 및 제 2 서브유전층 및 최상부 보호층을 포함하지 않는다는 점을 제외하고는 실시예 2와 동일한 조건으로 저방사 유리를 제작하였다. 제조된 비교예 5의 저방사 유리의 막구조는 다음과 같다: 제 1 유전층 / 제 2 금속보호층 / 반사금속층 (Ag) / 제 1 금속보호층 / 제 2 유전층.A low-emissive glass was produced under the same conditions as in Example 2 except that the first and second sub-dielectric layers and the uppermost protective layer were not included. The film structure of the low-emissive glass of Comparative Example 5 prepared was as follows: first dielectric layer / second metal protective layer / reflective metal layer (Ag) / first metal protective layer / second dielectric layer.
저방사Low radiation 유리의 제조 2 - 물성 평가 Preparation of Glass 2-Evaluation of Properties
상기 제조된 실시예 2 및 비교예 4 내지 5의 저방사 유리 샘플들은, 강화 유리 생산시 사용되는 일반적인 강화로에서 상 하부 온도를 약 600~700℃의 온도로 유지한 상태에서 상기 저방사 유리 샘플을 통과시켜 약 5 분 동안 가열한 뒤 급냉하는 조건으로 열처리 되었다.The low-emissive glass samples of Examples 2 and Comparative Examples 4 to 5 prepared above, the low-emissive glass sample while maintaining the temperature of the bottom of the phase at a temperature of about 600 ~ 700 ℃ in a general strengthening furnace used for producing tempered glass Heated for about 5 minutes to pass through and then quenching conditions.
열처리 전 후 각 380~780 nm의 파장 범위에서 D65 표준 광원 10도 KS L 2514 규격에 따라 가시광 투과율을 측정하였고, 표면 저항 측정기 (비접촉식 면저항 측정기)를 통해 면저항을 측정하였다. 방사율은 적외선분광기 (FTIR)을 사용하여 KS L 2525 규격에 따라 측정하였다. 방사율은 반사금속층인 Ag에 의해 측정되는 값으로, 저방사 유리로서의 성능을 가늠할 수 있는 물성 중 하나이다. 스크래치는 Elcometer 1720 장비를 사용하여 측정하였으며, 구체적으로는 유리시편을 측정기 위에 놓고 물을 뿌린 후 (세척조건과 일치) 브러쉬의 왕복운동을 통해 브러쉬가 지나간 시편 중앙 브러쉬 중첩 부위의 스크래치의 폭 및 개수를 확인하여 레벨(Lv)로 평가하였다. Haze는 저방사 유리를 열처리 후 코팅막이 흐려지는 정도를 평가하는 방법으로, 육안 관찰로 레벨(Lv)을 평가하였다.Before and after the heat treatment, visible light transmittance was measured according to the KS L 2514 standard at 10 degrees of D65 standard light source in the wavelength range of 380 to 780 nm, and the sheet resistance was measured by a surface resistance measuring instrument (non-contact sheet resistance measuring instrument). Emissivity was measured according to KS L 2525 standard using an infrared spectrometer (FTIR). Emissivity is a value measured by Ag, which is a reflective metal layer, and is one of physical properties that can be used as a low-emissivity glass. The scratches were measured using an Elcometer 1720 instrument. Specifically, the glass specimen was placed on the measuring instrument, sprinkled with water, and matched with the cleaning conditions. Was confirmed and evaluated as level (Lv). Haze is a method of evaluating the degree of clouding of the coating film after heat treatment of the low-emission glass, and the level (Lv) was evaluated by visual observation.
상기 항목에 대한 측정 결과를 아래 표 2에 나타내었다.The measurement results for the above items are shown in Table 2 below.
샘플Sample 비고Remarks 가시광선Visible light 면저항Sheet resistance 방사율Emissivity 스크래치scratch HazeHaze
투과율(%)Transmittance (%) (Ω/sq)(Ω / sq) Lv.Lv. Lv.Lv.
실시예 2Example 2 열처리 전Before heat treatment 52.052.0 4.24.2 0.040.04 1One XX
열처리 후After heat treatment 59.059.0 2.62.6 0.020.02 1One 1One
비교예 4Comparative Example 4 열처리 전Before heat treatment 53.053.0 5.05.0 0.040.04 22 XX
열처리 후After heat treatment 56.056.0 3.83.8 0.030.03 33 33
비교예 5Comparative Example 5 열처리 전Before heat treatment 52.452.4 5.025.02 0.050.05 22 XX
열처리 후After heat treatment 55.855.8 3.853.85 0.030.03 33 22
X : 흐림이 없는 상태X: no blur
상기 [표 2]에서 확인할 수 있는 바와 같이, 본 발명의 실시예에 따른 저방사 유리는 열처리 전후의 가시광 투과율이 우수하고, 면저항, 스크래치 성능 및 haze 성능도 매우 우수하여 건축용 유리 등에 사용하기에 적합하다. 반면 비교예 4 내지 5에 따른 저방사 유리는 높은 투과 성능과 동시에 내구성 및 열저항 성능을 유지하기에는 다소 부족한 것으로 확인된다.As can be seen in Table 2, the low-emissivity glass according to the embodiment of the present invention is excellent in visible light transmittance before and after heat treatment, and also excellent in sheet resistance, scratch performance and haze performance suitable for use in building glass, etc. Do. On the other hand, the low-emissivity glass according to Comparative Examples 4 to 5 was found to be somewhat insufficient to maintain high transmission performance and durability and heat resistance performance.

Claims (11)

  1. 유리 기재; 및 상기 유리 기재로부터 순차적으로 적층된,Glass substrates; And sequentially laminated from the glass substrate,
    제 1 유전층;A first dielectric layer;
    제 1 서브유전층;A first subdielectric layer;
    반사금속층;Reflective metal layer;
    제 1 금속보호층;A first metal protective layer;
    제 2 서브유전층;A second subdielectric layer;
    제 2 유전층; 및A second dielectric layer; And
    최상부 보호층Top protective layer
    을 포함하는, 저방사 유리.Including, low-emissivity glass.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 유전층은 20 내지 50 nm의 두께를 가지며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Si계 질화물 또는 Si계 산질화물을 포함하는 것인, 저방사 유리.The first dielectric layer has a thickness of 20 to 50 nm and includes Si-based nitride or Si-based oxynitride containing at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti and Ni. It is to contain, low radiation glass.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 서브유전층은 5 내지 10 nm의 두께를 가지며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Zn계 산화물 또는 Zn계 산질화물을 포함하는 것인, 저방사 유리.The first sub-dielectric layer has a thickness of 5 to 10 nm and contains Zn-based oxides or Zn-based oxynitrides containing at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni. To include, low-emissivity glass.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 반사금속층은 5 내지 20 nm의 두께를 가지며, Ag, Cu, Au, Al, 및 Pt로 이루어지는 군으로부터 선택되는 하나 이상의 금속을 포함하는 것인, 저방사 유리.The reflective metal layer has a thickness of 5 to 20 nm, and comprises one or more metals selected from the group consisting of Ag, Cu, Au, Al, and Pt, low radiation glass.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 금속보호층은 0.5 내지 2 nm의 두께를 가지며, Ni, Cr, Ni-Cr 합금, 및 NiCrNx(x=0.8~1)로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 저방사 유리.The first metal protective layer has a thickness of 0.5 to 2 nm, and comprises at least one selected from the group consisting of Ni, Cr, Ni-Cr alloy, and NiCrN x (x = 0.8 to 1), Spinning glass.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 서브유전층은 5 내지 10 nm의 두께를 가지며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Zn계 산화물 또는 Zn계 산질화물을 포함하는 것인, 저방사 유리.The second subdielectric layer has a thickness of 5 to 10 nm and contains Zn-based oxide or Zn-based oxynitride containing at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti and Ni. To include, low-emissivity glass.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 유전층은 20 내지 50 nm의 두께를 가지며, Sn, Nb, Al, Sb, Mo, Cr, Ti 및 Ni로 이루어지는 군으로부터 선택되는 하나 이상의 원소를 함유하는 Si계 질화물, Si계 산화물, 또는 Si계 산질화물을 포함하는 것인, 저방사 유리.The second dielectric layer has a thickness of 20 to 50 nm, and contains Si-based nitride, Si-based oxide, or at least one element selected from the group consisting of Sn, Nb, Al, Sb, Mo, Cr, Ti, and Ni; or A low radiation glass containing Si type oxynitride.
  8. 제 1 항에 있어서, 상기 최상부 보호층은 2 내지 15 nm의 두께를 가지며, TiOxNy(x=0.9~0.98, y=0.02~0.1, y/x < 1)인 Ti계 산질화물을 포함하는 것인, 저방사 유리.The top protective layer of claim 1, wherein the uppermost protective layer has a thickness of 2 to 15 nm and includes Ti-based oxynitride having TiO x N y (x = 0.9-0.98, y = 0.02-0.1, y / x <1). Low emission glass which is to.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 Ti계 산질화물은 W, Zr, 및 Si로부터 선택되는 하나 이상의 원소를 더 함유하는 것인, 저방사 유리.The Ti-based oxynitride further comprises one or more elements selected from W, Zr, and Si, low-emissivity glass.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 서브유전층과 상기 반사금속층 사이에 1.5 내지 5 nm 두께의 제 2 금속보호층을 더 포함하는, 저방사 유리.And a second metal protective layer 1.5 to 5 nm thick between the first sub-dielectric layer and the reflective metal layer.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제 2 금속보호층은 Ni, Cr, Ni-Cr 합금, 및 NiCrNx(x=0.8~1)로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 저방사 유리.The second metal protective layer is Ni, Cr, Ni-Cr alloy, and NiCrN x (x = 0.8 ~ 1), wherein the low-emissive glass containing at least one selected from the group consisting of.
PCT/KR2017/000338 2016-01-11 2017-01-10 Low-emissivity glass WO2017122991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160003379A KR101756581B1 (en) 2016-01-11 2016-01-11 Low-emissivity GLASS
KR10-2016-0003379 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017122991A1 true WO2017122991A1 (en) 2017-07-20

Family

ID=59311961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000338 WO2017122991A1 (en) 2016-01-11 2017-01-10 Low-emissivity glass

Country Status (2)

Country Link
KR (1) KR101756581B1 (en)
WO (1) WO2017122991A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190128917A (en) * 2018-05-09 2019-11-19 쌩-고벵 글래스 프랑스 Clear substrate provided with multilayer coating and insulation glazing unit including the same
CN112679112A (en) * 2020-12-11 2021-04-20 安徽凤阳玻璃有限公司 Off-line high-transmittance clean-color low-radiation steel-coated glass and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082424B1 (en) * 2017-07-25 2020-02-27 주식회사 케이씨씨 Low-emissivity glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024843A (en) * 1998-11-13 2001-03-26 뮐러 르네 Glazing provided with a low-emissive stack of layers
KR20090099364A (en) * 2008-03-17 2009-09-22 주식회사 케이씨씨 A temperable low-emissivity glass with enhanced durability and a method for preparing the same
KR101015072B1 (en) * 2009-02-27 2011-02-16 주식회사 케이씨씨 A temperable low-emissivity glass with reduced hazing after thermal treatment and a method for preparing the same
KR20110062566A (en) * 2009-12-03 2011-06-10 현대자동차주식회사 Bendable and heat treatable low-emissivity glass and method for preparing the same
KR101047177B1 (en) * 2004-12-31 2011-07-07 주식회사 케이씨씨 Durable low emission glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024843A (en) * 1998-11-13 2001-03-26 뮐러 르네 Glazing provided with a low-emissive stack of layers
KR101047177B1 (en) * 2004-12-31 2011-07-07 주식회사 케이씨씨 Durable low emission glass
KR20090099364A (en) * 2008-03-17 2009-09-22 주식회사 케이씨씨 A temperable low-emissivity glass with enhanced durability and a method for preparing the same
KR101015072B1 (en) * 2009-02-27 2011-02-16 주식회사 케이씨씨 A temperable low-emissivity glass with reduced hazing after thermal treatment and a method for preparing the same
KR20110062566A (en) * 2009-12-03 2011-06-10 현대자동차주식회사 Bendable and heat treatable low-emissivity glass and method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190128917A (en) * 2018-05-09 2019-11-19 쌩-고벵 글래스 프랑스 Clear substrate provided with multilayer coating and insulation glazing unit including the same
KR102509032B1 (en) 2018-05-09 2023-03-09 쌩-고벵 글래스 프랑스 Clear substrate provided with multilayer coating and insulation glazing unit including the same
CN112679112A (en) * 2020-12-11 2021-04-20 安徽凤阳玻璃有限公司 Off-line high-transmittance clean-color low-radiation steel-coated glass and manufacturing method thereof

Also Published As

Publication number Publication date
KR101756581B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
US10570058B2 (en) Coated article with low-E coating having low visible transmission
US10196303B2 (en) Coated article with low-E coating having low visible transmission
US7858193B2 (en) Low emissivity (low-E) thin coating stacks with intermediate antidiffusion layers
US11402557B2 (en) Solar control coating with enhanced solar control performance
EP2432745B1 (en) Coated article with low-e coating having zinc stannate based layer between ir reflecting layers for reduced mottling and corresponding method
KR101397369B1 (en) Solar control coating with high solar heat gain coefficient
US10227819B2 (en) Coated article with low-E coating having doped silver IR reflecting layer(s)
WO2013191345A1 (en) Low-emissivity transparent laminated body and building material comprising same
WO2018012883A1 (en) Low-emissivity glass
WO2017122991A1 (en) Low-emissivity glass
WO2017126875A1 (en) Low-emissivity glass and method for producing same
US10618252B2 (en) Solar control coating for laminated glazing
EP3529220B1 (en) Coated article with low-e coating having low visible transmission
WO2020159050A1 (en) Low emissivity glass
WO2018199598A2 (en) Low-emissivity glass
WO2019022484A2 (en) Low-emissivity glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738620

Country of ref document: EP

Kind code of ref document: A1