WO2020159050A1 - Low emissivity glass - Google Patents

Low emissivity glass Download PDF

Info

Publication number
WO2020159050A1
WO2020159050A1 PCT/KR2019/015955 KR2019015955W WO2020159050A1 WO 2020159050 A1 WO2020159050 A1 WO 2020159050A1 KR 2019015955 W KR2019015955 W KR 2019015955W WO 2020159050 A1 WO2020159050 A1 WO 2020159050A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass
protective layer
low
metal protective
Prior art date
Application number
PCT/KR2019/015955
Other languages
French (fr)
Korean (ko)
Inventor
오영훈
강현민
김민주
유보나
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to MYPI2021004225A priority Critical patent/MY197506A/en
Publication of WO2020159050A1 publication Critical patent/WO2020159050A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other

Definitions

  • the present invention relates to a low-emissivity glass exhibiting excellent durability and a strong blue surface.
  • Low-emission glass deposits a metal with high reflectivity in the infrared region, such as silver (Ag), in transparent glass, while maintaining the transparency of the glass, blocking indoor heat from being leaked to the outside in winter and entering the room in summer. It means a functional building material that reflects radiant heat.
  • Low-emission glass has been used only for non-residential buildings with a large glass construction area, but recently, as the need for energy saving increases, cases applied to residential buildings are increasing, and the demand for low-emission glass with the appropriate characteristics is increasing.
  • the glass used in non-residential buildings has a high amount of usage, and thus it is necessary to secure excellent durability at a level that can be distributed in many places.
  • the structure of the low-emission glass manufactured by the sputtering method includes an infrared reflective metal layer, and it is common to have a dielectric layer on the upper and lower metal layers to protect the infrared reflective metal layer.
  • the dielectric layer is deposited on the infrared reflective metal layer, since the metal is used as a target raw material in an oxygen or nitrogen atmosphere, the infrared reflective metal layer is oxidized or nitrided by oxygen or nitrogen injected into the chamber, thereby interlayering between the infrared reflective metal layer and the dielectric layer.
  • the boundary becomes ambiguous.
  • due to the ambiguity of the interlayer boundary as described above there is a problem in that the emissivity value of the manufactured glass is increased and the properties of the low-emission glass are lost.
  • Patent Document 1 includes a first undercoating layer comprising a dielectric material, an infrared reflecting layer, and a second undercoating layer comprising a dielectric material.
  • Low-emission glass is disclosed.
  • the low-emission glass of Patent Document 1 has a weak chemical durability, and thus the coating film is easily damaged, and thus has a disadvantage that blurring (haze) occurs in the coating film during the heat treatment or bending process.
  • Korean Patent No. 215,380 includes a transparent non-metallic substrate, an anti-reflective base film containing zinc-tin oxide, a metallic film containing silver (Ag) and reflecting infrared rays, and zinc oxide.
  • a coated product that reduces the blurring effect during heat treatment, including a crystalline metal contact film portion.
  • the coated product of Patent Document 2 may have a problem that the metallic film is damaged when the coating film is exposed to the outside for a long time due to the weak durability of the zinc oxide of the coating layer located above and below the metallic film.
  • the present invention is to provide a low-emission glass having a strong blue surface, excellent chemical and mechanical durability, and low emissivity.
  • the present invention includes a form in which a glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer, and an overcoat layer are sequentially stacked, and a* value is -4 to 1 , B* value is -15 or less, and the first metal protection layer and the second metal protection layer provide a low-emission glass having a thickness ratio of 1: 0.5 to 0.6.
  • the low-emission glass according to the present invention has a strong blue surface, excellent chemical and mechanical durability both before and after heat treatment, and low emissivity. Due to this, the low-emission glass is suitable as a building material for residential and non-residential buildings.
  • the'a* value' and'b* value' of the glass are glass measured according to the KS L 2514 standard using a D65 standard light source in a wavelength range of 380 to 780 nm based on the average thickness of the glass substrate 6 mm. It means the a* value and b* value of the surface.
  • the low-emission glass according to the present invention includes a form in which a glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer, and an overcoat layer are sequentially stacked, and a* value This -4 to 1, b* value is -15 or less, and the first metal protective layer and the second metal protective layer have a thickness ratio of 1: 0.5 to 0.6.
  • glass substrate conventional glass such as soda-lime glass, which is used for construction or automobiles, can be used.
  • glass substrate glass having an appropriate thickness may be used according to the purpose of use.
  • a transparent soda-lime glass having an average thickness of 2 to 12 mm or 5 to 6 mm may be used as the glass substrate.
  • Each of the first dielectric layer and the second dielectric layer serves to protect the infrared reflective metal layer from ions or oxygen during heat treatment and to control the optical properties of the manufactured glass.
  • the first dielectric layer and the second dielectric layer may each include one or more selected from the group consisting of nitride and nitride oxide.
  • the first dielectric layer and the second dielectric layer may each include silicon-containing nitride.
  • the first dielectric layer and the second dielectric layer may each include SiAlN x or Si y N z , where x is an integer from 1 to 3, y is 2 or 3, and z is 3 or It can be 4.
  • Each of the first dielectric layer and the second dielectric layer may have a refractive index of 1.8 to 2.5, and an absorption coefficient of 0.1 or less. Specifically, each of the first dielectric layer and the second dielectric layer may have a refractive index of 1.8 to 2.2 and an absorption coefficient of 0 to 0.1. When the refractive index and the absorption coefficient of each of the first dielectric layer and the second dielectric layer are within the above ranges, it is possible to prevent a problem that the visible light transmittance of the manufactured glass is reduced.
  • each of the first dielectric layer and the second dielectric layer may have an average thickness of 50 to 70 nm.
  • the average thickness of each of the first dielectric layer and the second dielectric layer is within the above range, it is possible to prevent a problem of a decrease in durability of the manufactured glass and a decrease in blue of the surface color.
  • the first metal protective layer and the second metal protective layer improve the adhesion between the infrared reflective metal layer and the dielectric layer, and serve to prevent the movement of Na and oxygen (O 2 ) diffused in the glass during heat treatment and the infrared reflective metal layer. It plays a role in helping fusion of the infrared reflecting metal to enable stable behavior even at high heat treatment temperatures, and absorbing oxygen (O 2 ) penetrating the infrared reflecting metal layer helps to maintain the low emission performance of the glass.
  • Each of the first metal protection layer and the second metal protection layer may include one or more selected from the group consisting of nickel (Ni), chromium (Cr), and nickel (Ni)-chromium (Cr) alloys.
  • each of the first metal protection layer and the second metal protection layer may include a nickel (Ni)-chromium (Cr) alloy.
  • the nickel (Ni)-chromium (Cr) alloy may include 75 to 85% by weight of nickel and 15 to 25% by weight of chromium based on the total weight of the alloy.
  • each of the first metal protection layer and the second metal protection layer may have an average thickness of 4 to 20 nm.
  • each of the first metal protective layer and the second metal protective layer may have an average thickness of 4 to 10 nm.
  • the first metal protective layer and the second metal protective layer have a thickness ratio of 1: 0.5 to 0.6.
  • the thickness ratio of the first metal protective layer and the second metal protective layer is within the above range, it is possible to prevent a problem in which durability of the manufactured glass is lowered and a problem in which the blue color of the glass surface is reduced.
  • the thickness ratio of the first metal protective layer and the second metal protective layer must be maintained within the above range so that the manufactured glass may have an appropriate absorption rate.
  • the infrared reflective metal layer serves to provide high shielding performance of the glass manufactured by selectively reflecting the sun's radiation and at the same time to realize low emission.
  • the infrared reflective metal layer may include a metal having excellent conductivity, and may include, for example, one or more metals selected from the group consisting of gold, silver, platinum, aluminum and copper.
  • the infrared reflective metal layer may include silver (Ag). More specifically, the infrared reflective metal layer may be made of silver.
  • the average thickness of the infrared reflective metal layer may be 10 to 15 nm.
  • the thickness of the infrared reflecting metal layer is within the above range, the problem of insufficient formation of the low-emission performance of the manufactured glass because the formation of the infrared reflecting metal layer is not normally performed, and the problem of a decrease in the blue color of the glass surface due to a high reflectance of the manufactured glass. Can be prevented.
  • the overcoat layer serves to protect the second dielectric layer and the infrared reflective metal layer.
  • the overcoat layer may include a material having high mechanical strength, low surface roughness, and high visible light transmittance.
  • the overcoat layer may include silicon (Si), niobium (Nb), titanium (Ti), zirconium (Zr), tantalum (Ta), or alloys, oxides, nitrides, or nitrides thereof.
  • the overcoat layer may include zirconium-containing oxide or nitride, or titanium-containing oxide or nitride.
  • the titanium-containing nitroxide may be, for example, TiO x N y , where x and y may be a molar ratio of 100:0 to 75:25 based on 100 mol% of x and y in total.
  • the average thickness of the overcoat layer may be 2 to 15 nm.
  • the average thickness of the overcoat layer is within the above range, it is possible to prevent a problem that durability of the manufactured glass is lowered, and a problem that fogging occurs after heat treatment of the manufactured glass.
  • the low-emission glass according to the present invention has an a* value of -4 to 1, and a b* value of -15 or less.
  • the low-emission glass may have an a* value of -3 to 1 and a b* value of -30 to -18.
  • the low-emissivity glass may have an emissivity of 0.2 or less, or 0.1 or less.
  • Emissivity is the ratio of energy that re-radiates after absorbing external light energy or re-radiates when surface reflection occurs. The maximum value is 1, and the smaller the value, the greater the ratio of energy to re-radiate or re-radiate. it means.
  • the low-emission glass according to the present invention as described above has a strong blue surface, and has excellent chemical and mechanical durability both before and after heat treatment. Due to this, the low-emission glass is suitable as a building material for residential and non-residential buildings.
  • the low-emission glass according to the present invention can be manufactured using a vacuum sputtering method as a thin film forming method for forming each layer. That is, the method for manufacturing low-emission glass according to the present invention may include forming each layer by sputtering deposition.
  • each layer was adjusted and laminated as described in Tables 1 and 2. Specifically, the first dielectric layer was coated on a 6 mm thick transparent glass substrate using a SiAl Rotary target under a nitrogen and argon atmosphere. Subsequently, a first metal protective layer was coated on the first dielectric layer using an NiCr Planar target in an argon atmosphere, and an infrared reflective metal layer was coated on the first metal protective layer using an Ag Planar target under an argon atmosphere. Thereafter, a second metal protective layer was coated on the infrared reflective metal layer using a NiCr Planar target in an argon atmosphere.
  • a second dielectric layer is coated on the second metal protective layer using a SiAl Rotary target under a nitrogen and argon atmosphere, and finally, an overcoat layer is coated on the second dielectric layer using a Zr Rotary target under an argon and nitrogen atmosphere.
  • Low-emission glass was prepared.
  • the low-emission glass prepared in Examples and Comparative Examples was heat treated at 650° C. for 5 minutes, quenched, and properties were evaluated.
  • the 10° reflection color of the glass surface was measured according to the KS L 2514 standard.
  • the sheet resistance was measured using a surface resistance meter (non-contact sheet resistance meter, manufactured by SURAGUS).
  • the sheet resistance of glass is a value measured by a silver (Ag) layer, which is an infrared reflecting metal layer, for a solar heat ray, and is one of evaluation properties that can measure performance as a low-emission glass even after heat treatment.
  • the nylon brush with a thickness of 0.5 mm was moved 200 times horizontally to the coated surface of the glass, and then the number of scratches generated on the coated surface was measured to improve the scratch resistance. Was evaluated.
  • the moisture resistance was evaluated by measuring the number of pinholes generated on the surface of the overcoat layer.
  • Haze was evaluated by observing the degree of blurring of the surface of the overcoat layer after heat treatment of the prepared low-emission glass.
  • the emissivity was calculated based on the KS L 2525 standard after measuring the reflection spectrum of the infrared wavelength region (2,500 to 25,000 nm) using FT-IR after heat treatment of the low-emission glass.
  • the visible light transmittance was measured using a spectrophotometer (Spectrophotometer, Rambda950, manufactured by Perkinelmer) after heat treatment of the low-emission glass, and the transmission spectrum of the visible light wavelength range (380 to 780 nm) was calculated using the KS L 2514 standard.
  • the low-emission glass of Examples 1 to 11 has a low sheet resistance of 9 ⁇ /sq or less even after heat treatment, has excellent durability such as moisture resistance and scratch resistance, and causes haze of the coating film due to heat treatment Without, the color of the glass surface was strong blue, and showed a high visible light transmittance of 47% or more.
  • Comparative Examples 1 to 3 in which the thicknesses of the first metal protective layer and the second metal protective layer were thin were insufficient in moisture resistance and haze occurred in the coating film after heat treatment.
  • Comparative Examples 1 and 12 in which the thickness ratio between the first metal protective layer and the second metal protective layer was less than 0.5 a* value of the glass surface was greater than 1.1 and there was a problem in that the red color increased.
  • Comparative Examples 2, 3 and 13 in which the thickness ratio exceeded 0.6 did not show a strong blue color.
  • Comparative Examples 4 to 9 in which the first dielectric layer and/or the second dielectric layer were thin or thick there was a problem in that the strong blue color was reduced because the b* value of the glass surface was greater than -11.
  • Comparative Examples 10 to 13 in which the overcoat layer was thin or thick haze was generated after heat treatment, and thus the durability was insufficient.
  • Comparative Examples 10 and 11 with or without an overcoat layer scratch resistance and moisture resistance after heat treatment were remarkably insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to low emissivity glass in which a glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer and an overcoat layer are sequentially laminated. An a* value is -4 to 1, and a b* value is -15 or lower. The width ratio of the first metal protective layer and second metal protective layer is 1:0.5 to 0.6.

Description

저방사 유리Low-emission glass
본 발명은 내구성이 우수하고 표면이 강한 파란색을 나타내는 저방사 유리에 관한 것이다.The present invention relates to a low-emissivity glass exhibiting excellent durability and a strong blue surface.
저방사 유리는 은(Ag)과 같이 적외선 영역에서 반사율이 높은 금속을 투명한 유리에 증착하여 유리의 투명함은 유지시키면서, 겨울철에는 실내 난방열이 외부로 유출되는 것을 차단하고 여름철에는 실내로 유입되는 태양복사열을 반사시키는 기능성 건축 소재를 뜻한다. 저방사 유리는 유리 시공 면적이 넓은 비주거용 건물에 한정적으로 사용되었으나, 최근 에너지 절감의 필요성이 증가하면서 주거용 건물에 적용되는 사례가 증가하고 있으며, 그에 맞는 특성을 가진 저방사 유리의 수요가 커지고 있다.Low-emission glass deposits a metal with high reflectivity in the infrared region, such as silver (Ag), in transparent glass, while maintaining the transparency of the glass, blocking indoor heat from being leaked to the outside in winter and entering the room in summer. It means a functional building material that reflects radiant heat. Low-emission glass has been used only for non-residential buildings with a large glass construction area, but recently, as the need for energy saving increases, cases applied to residential buildings are increasing, and the demand for low-emission glass with the appropriate characteristics is increasing.
특히, 비주거용 건물에 사용되는 저방사 유리의 경우, 높은 가시광 투과율 대신 우수한 단열 및 차폐 성능과 우수한 외관 등이 우선적으로 요구되는데 반해, 주거용 건물에 사용되는 저방사 유리는 시야감을 위해 높은 가시광 투과율이 우선적으로 요구된다. 또한, 비주거용 건물에 사용되는 저방사 유리와 비교하여, 거주용 건물에 사용되는 유리는 사용량이 많기 때문에 많은 곳에서 유통 가능한 수준의 우수한 내구성이 확보되어야 한다.In particular, in the case of low-emissive glass used in non-residential buildings, high insulation and shielding performance and excellent appearance are preferentially required instead of high visible light transmittance, whereas low-visibility glass used in residential buildings prefers high visible light transmittance for visibility. Is required. In addition, compared to the low-emission glass used in non-residential buildings, the glass used in residential buildings has a high amount of usage, and thus it is necessary to secure excellent durability at a level that can be distributed in many places.
한편, 스퍼터링 방식으로 제조되는 저방사 유리의 구조는 적외선 반사 금속층을 포함하고, 상기 적외선 반사 금속층을 보호하기 위해 금속층 상하부에 유전체층을 갖는 것이 일반적이다. 그러나, 적외선 반사 금속층 상에 유전체층을 증착할 경우, 산소 또는 질소 분위기 상에서 금속을 타겟 원료로 사용하기 때문에 챔버 내 주입된 산소 또는 질소에 의하여 적외선 반사 금속층이 산화 또는 질화되어 적외선 반사 금속층과 유전체층 간의 층간 경계가 모호해진다는 문제점이 있다. 또한, 상술한 바와 같은 층간 경계의 모호성으로 인하여 제조된 유리의 방사율 값이 높아져서 저방사 유리의 특성을 상실한다는 문제점이 있다.On the other hand, the structure of the low-emission glass manufactured by the sputtering method includes an infrared reflective metal layer, and it is common to have a dielectric layer on the upper and lower metal layers to protect the infrared reflective metal layer. However, when the dielectric layer is deposited on the infrared reflective metal layer, since the metal is used as a target raw material in an oxygen or nitrogen atmosphere, the infrared reflective metal layer is oxidized or nitrided by oxygen or nitrogen injected into the chamber, thereby interlayering between the infrared reflective metal layer and the dielectric layer. There is a problem that the boundary becomes ambiguous. In addition, due to the ambiguity of the interlayer boundary as described above, there is a problem in that the emissivity value of the manufactured glass is increased and the properties of the low-emission glass are lost.
이에 대한 대안으로, 미국 등록특허 제6,804,048호(특허문헌 1)에는 유전물질을 포함하는 제1 언더코팅층, 적외선 반사층, 및 유전물질을 포함하는 제2 언더코팅층을 포함하는, 다층 구조를 갖는 열처리 가능한 저방사 유리가 개시되어 있다. 그러나, 상기 특허문헌 1의 저방사 유리는 화학적 내구성이 약해 코팅막 손상이 쉽게 발생함으로, 열처리 또는 굽힘 공정 중에 코팅막에 흐림 현상(헤이즈)이 발생하는 단점이 있다.As an alternative to this, U.S. Patent No. 6,804,048 (Patent Document 1) includes a first undercoating layer comprising a dielectric material, an infrared reflecting layer, and a second undercoating layer comprising a dielectric material. Low-emission glass is disclosed. However, the low-emission glass of Patent Document 1 has a weak chemical durability, and thus the coating film is easily damaged, and thus has a disadvantage that blurring (haze) occurs in the coating film during the heat treatment or bending process.
또한, 한국 등록특허 제215,380호(특허문헌 2)에는 투명한 비금속성 기판, 아연-주석 산화물을 포함하는 반사방지성 기재 필름, 은(Ag)을 포함하고 적외선을 반사하는 금속성 필름, 산화아연을 포함하는 결정질 금속 접촉 필름부를 포함하여 열처리시 흐림 현상을 감소시킨 피복 제품이 개시되어 있다. 그러나, 상기 특허문헌 2의 피복 제품은 금속성 필름의 상하에 위치한 코팅층의 아연계 산화물의 약한 내구성으로 인해 장시간 코팅막이 외부에 노출될 경우, 금속성 필름이 손상되는 문제가 발생할 수 있다.In addition, Korean Patent No. 215,380 (Patent Document 2) includes a transparent non-metallic substrate, an anti-reflective base film containing zinc-tin oxide, a metallic film containing silver (Ag) and reflecting infrared rays, and zinc oxide. Disclosed is a coated product that reduces the blurring effect during heat treatment, including a crystalline metal contact film portion. However, the coated product of Patent Document 2 may have a problem that the metallic film is damaged when the coating film is exposed to the outside for a long time due to the weak durability of the zinc oxide of the coating layer located above and below the metallic film.
따라서, 화학적 및 기계적 내구성이 우수하고, 가시광 투과율이 우수한 저방사 유리에 대한 연구개발이 필요한 실정이다.Therefore, there is a need for research and development on low-emission glass having excellent chemical and mechanical durability and excellent visible light transmittance.
이에, 본 발명은 표면이 강한 파란색을 나타내며, 화학적 및 기계적 내구성이 우수하고 방사율이 낮은 저방사 유리를 제공하고자 한다.Accordingly, the present invention is to provide a low-emission glass having a strong blue surface, excellent chemical and mechanical durability, and low emissivity.
본 발명은 유리 기판, 제1 유전체층, 제1 금속 보호층, 적외선 반사 금속층, 제2 금속 보호층, 제2 유전체층 및 오버코트층이 순차적으로 적층된 형태를 포함하고, a*값이 -4 내지 1이고, b*값이 -15 이하이며, 상기 제1 금속 보호층과 제2 금속 보호층은 두께비가 1: 0.5 내지 0.6인, 저방사 유리를 제공한다.The present invention includes a form in which a glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer, and an overcoat layer are sequentially stacked, and a* value is -4 to 1 , B* value is -15 or less, and the first metal protection layer and the second metal protection layer provide a low-emission glass having a thickness ratio of 1: 0.5 to 0.6.
본 발명에 따른 저방사 유리는 표면이 강한 파란색을 띄며, 열처리 전 및 후 모두 화학적 및 기계적 내구성이 우수하며 방사율이 낮다. 이로 인해, 상기 저방사 유리는 거주용 건물 및 비거주용 건물의 건축 소재로 적합하다.The low-emission glass according to the present invention has a strong blue surface, excellent chemical and mechanical durability both before and after heat treatment, and low emissivity. Due to this, the low-emission glass is suitable as a building material for residential and non-residential buildings.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 있어서, 유리의 'a*값' 및 'b*값'은 유리 기판 평균 두께 6mm를 기준으로 380 내지 780 nm의 파장 범위에서 D65 표준 광원을 이용하여 KS L 2514 규격에 따라 측정된 유리 표면의 a*값 및 b*값을 의미한다.In the present invention, the'a* value' and'b* value' of the glass are glass measured according to the KS L 2514 standard using a D65 standard light source in a wavelength range of 380 to 780 nm based on the average thickness of the glass substrate 6 mm. It means the a* value and b* value of the surface.
본 발명에 따른 저방사 유리는 유리 기판, 제1 유전체층, 제1 금속 보호층, 적외선 반사 금속층, 제2 금속 보호층, 제2 유전체층 및 오버코트층이 순차적으로 적층된 형태를 포함하고, a*값이 -4 내지 1이고, b*값이 -15 이하이며, 상기 제1 금속 보호층과 제2 금속 보호층은 두께비가 1: 0.5 내지 0.6이다.The low-emission glass according to the present invention includes a form in which a glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer, and an overcoat layer are sequentially stacked, and a* value This -4 to 1, b* value is -15 or less, and the first metal protective layer and the second metal protective layer have a thickness ratio of 1: 0.5 to 0.6.
유리 기판Glass substrate
유리 기판으로는 건축용 혹은 자동차용으로 사용되고 있는 소다라임 유리와 같은 통상의 유리를 사용할 수 있다.As the glass substrate, conventional glass such as soda-lime glass, which is used for construction or automobiles, can be used.
또한, 상기 유리 기판으로는 사용 목적에 따라 적절한 두께의 유리를 사용할 수 있다. 예를 들어, 상기 유리 기판으로는 평균 두께가 2 내지 12 mm, 또는, 5 내지 6 mm인 투명 소다라임 유리를 사용할 수 있다.Further, as the glass substrate, glass having an appropriate thickness may be used according to the purpose of use. For example, a transparent soda-lime glass having an average thickness of 2 to 12 mm or 5 to 6 mm may be used as the glass substrate.
제1 유전체층 및 제2 유전체층First dielectric layer and second dielectric layer
제1 유전체층 및 제2 유전체층 각각은 열처리시 적외선 반사 금속층을 이온 또는 산소로부터 보호하며 제조된 유리의 광학 물성을 조절하는 역할을 한다.Each of the first dielectric layer and the second dielectric layer serves to protect the infrared reflective metal layer from ions or oxygen during heat treatment and to control the optical properties of the manufactured glass.
상기 제1 유전체층 및 제2 유전체층은 각각 질화물 및 질화산화물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 제1 유전체층 및 제2 유전체층은 각각 규소 함유 질화물을 포함할 수 있다. 보다 구체적으로, 상기 제1 유전체층 및 제2 유전체층은 각각 SiAlNx 또는 SiyNz를 포함할 수 있으며, 이때, 상기 x는 1 내지 3의 정수이고, y는 2 또는 3이며, z는 3 또는 4일 수 있다.The first dielectric layer and the second dielectric layer may each include one or more selected from the group consisting of nitride and nitride oxide. Specifically, the first dielectric layer and the second dielectric layer may each include silicon-containing nitride. More specifically, the first dielectric layer and the second dielectric layer may each include SiAlN x or Si y N z , where x is an integer from 1 to 3, y is 2 or 3, and z is 3 or It can be 4.
상기 제1 유전체층 및 제2 유전체층 각각은 굴절률이 1.8 내지 2.5이며, 흡수 계수가 0.1 이하일 수 있다. 구체적으로, 상기 제1 유전체층 및 제2 유전체층 각각은 굴절률이 1.8 내지 2.2이며, 흡수 계수가 0 내지 0.1일 수 있다. 제1 유전체층 및 제2 유전체층 각각의 굴절률 및 흡수 계수가 상기 범위 내일 경우, 제조된 유리의 가시광 투과율이 감소되는 문제를 방지할 수 있다.Each of the first dielectric layer and the second dielectric layer may have a refractive index of 1.8 to 2.5, and an absorption coefficient of 0.1 or less. Specifically, each of the first dielectric layer and the second dielectric layer may have a refractive index of 1.8 to 2.2 and an absorption coefficient of 0 to 0.1. When the refractive index and the absorption coefficient of each of the first dielectric layer and the second dielectric layer are within the above ranges, it is possible to prevent a problem that the visible light transmittance of the manufactured glass is reduced.
또한, 상기 제1 유전체층 및 제2 유전체층 각각은 평균 두께가 50 내지 70 nm일 수 있다. 제1 유전체층 및 제2 유전체층 각각의 평균 두께가 상기 범위 내일 경우, 제조된 유리의 내구성이 떨어지는 문제 및 표면 색상의 파란색이 감소하는 문제를 방지할 수 있다.In addition, each of the first dielectric layer and the second dielectric layer may have an average thickness of 50 to 70 nm. When the average thickness of each of the first dielectric layer and the second dielectric layer is within the above range, it is possible to prevent a problem of a decrease in durability of the manufactured glass and a decrease in blue of the surface color.
제1 금속 보호층 및 제2 금속 보호층First metal protective layer and second metal protective layer
제1 금속 보호층 및 제2 금속 보호층은 적외선 반사 금속층과 유전체층 사이의 접착력을 향상시키고, 열처리시 유리에서 확산되는 Na 및 공기 중의 산소(O2)의 이동을 방해하는 역할 및 적외선 반사 금속층이 높은 열처리 온도에서도 안정적인 거동이 가능하도록 적외선 반사 금속의 융착을 돕는 역할을 하며, 적외선 반사 금속층으로 침투하는 산소(O2)를 흡수하여 유리의 저방사 성능을 유지하도록 돕는 역할을 한다.The first metal protective layer and the second metal protective layer improve the adhesion between the infrared reflective metal layer and the dielectric layer, and serve to prevent the movement of Na and oxygen (O 2 ) diffused in the glass during heat treatment and the infrared reflective metal layer. It plays a role in helping fusion of the infrared reflecting metal to enable stable behavior even at high heat treatment temperatures, and absorbing oxygen (O 2 ) penetrating the infrared reflecting metal layer helps to maintain the low emission performance of the glass.
상기 제1 금속 보호층 및 제2 금속 보호층 각각은 니켈(Ni), 크롬(Cr) 및 니켈(Ni)-크롬(Cr) 합금으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 제1 금속 보호층 및 제2 금속 보호층 각각은 니켈(Ni)-크롬(Cr) 합금을 포함할 수 있다. 이때, 상기 니켈(Ni)-크롬(Cr) 합금은 합금 총 중량을 기준으로 75 내지 85 중량%의 니켈 및 15 내지 25 중량%의 크롬을 포함할 수 있다.Each of the first metal protection layer and the second metal protection layer may include one or more selected from the group consisting of nickel (Ni), chromium (Cr), and nickel (Ni)-chromium (Cr) alloys. Specifically, each of the first metal protection layer and the second metal protection layer may include a nickel (Ni)-chromium (Cr) alloy. In this case, the nickel (Ni)-chromium (Cr) alloy may include 75 to 85% by weight of nickel and 15 to 25% by weight of chromium based on the total weight of the alloy.
또한, 상기 제1 금속 보호층 및 제2 금속 보호층 각각은 평균 두께가 4 내지 20 nm일 수 있다. 구체적으로, 상기 제1 금속 보호층 및 제2 금속 보호층 각각은 평균 두께가 4 내지 10 nm일 수 있다. 제1 금속 보호층 및 제2 금속 보호층 각각의 평균 두께가 상기 범위 내일 경우, 제조된 유리의 내구성 및/또는 가시광 투과율이 저하되는 문제 및 열처리 및 굽힘 공정 후 코팅막의 흐림이 증가하는 문제를 방지할 수 있다.In addition, each of the first metal protection layer and the second metal protection layer may have an average thickness of 4 to 20 nm. Specifically, each of the first metal protective layer and the second metal protective layer may have an average thickness of 4 to 10 nm. When the average thickness of each of the first metal protective layer and the second metal protective layer is within the above range, the durability and/or visible light transmittance of the manufactured glass is reduced, and the problem of increased fogging of the coating film after heat treatment and bending is prevented. can do.
상기 제1 금속 보호층과 제2 금속 보호층은 두께비가 1: 0.5 내지 0.6이다. 제1 금속 보호층과 제2 금속 보호층의 두께비가 상기 범위 내일 경우, 제조된 유리의 내구성이 저하되는 문제 및 유리 표면의 파란 색감이 감소하는 문제를 방지할 수 있다. 특히, 제1 금속 보호층과 제2 금속 보호층의 두께비가 상기 범위 내로 유지되어야 제조된 유리가 적정 흡수율을 가질 수 있다.The first metal protective layer and the second metal protective layer have a thickness ratio of 1: 0.5 to 0.6. When the thickness ratio of the first metal protective layer and the second metal protective layer is within the above range, it is possible to prevent a problem in which durability of the manufactured glass is lowered and a problem in which the blue color of the glass surface is reduced. In particular, the thickness ratio of the first metal protective layer and the second metal protective layer must be maintained within the above range so that the manufactured glass may have an appropriate absorption rate.
적외선 반사 금속층Infrared reflective metal layer
적외선 반사 금속층은 태양의 복사선을 선택적으로 반사시켜 제조된 유리의 높은 차폐 성능을 제공함과 동시에 저방사를 구현하는 역할을 한다.The infrared reflective metal layer serves to provide high shielding performance of the glass manufactured by selectively reflecting the sun's radiation and at the same time to realize low emission.
상기 적외선 반사 금속층은 전도성이 우수한 금속을 포함할 수 있으며, 예컨대, 금, 은, 백금, 알루미늄 및 구리로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다. 구체적으로, 상기 적외선 반사 금속층은 은(Ag)을 포함할 수 있다. 보다 구체적으로, 상기 적외선 반사 금속층은 은으로 이루어질 수 있다.The infrared reflective metal layer may include a metal having excellent conductivity, and may include, for example, one or more metals selected from the group consisting of gold, silver, platinum, aluminum and copper. Specifically, the infrared reflective metal layer may include silver (Ag). More specifically, the infrared reflective metal layer may be made of silver.
또한, 상기 적외선 반사 금속층의 평균 두께는 10 내지 15 nm일 수 있다. 적외선 반사 금속층의 두께가 상기 범위 내일 경우, 적외선 반사 금속층의 형성이 정상적으로 이루어지지 않아 제조된 유리의 저방사 성능이 부족한 문제, 및 제조된 유리의 반사율이 높아져 유리 표면의 파란 색감이 저하되는 문제를 방지할 수 있다.In addition, the average thickness of the infrared reflective metal layer may be 10 to 15 nm. When the thickness of the infrared reflecting metal layer is within the above range, the problem of insufficient formation of the low-emission performance of the manufactured glass because the formation of the infrared reflecting metal layer is not normally performed, and the problem of a decrease in the blue color of the glass surface due to a high reflectance of the manufactured glass. Can be prevented.
오버코트층Overcoat layer
오버코트층은 제2 유전체층과 적외선 반사 금속층을 보호하는 역할을 한다.The overcoat layer serves to protect the second dielectric layer and the infrared reflective metal layer.
상기 오버코트층은 기계적 강도가 높고 표면 거칠기가 적으며 가시광 투과율이 높은 재료를 포함할 수 있다. 예컨대, 상기 오버코트층은 규소(Si), 니오븀(Nb), 티타늄(Ti), 지르코늄(Zr), 탄탈럼(Ta), 또는 이들의 합금, 산화물, 질화물 또는 질산화물을 포함할 수 있다. 구체적으로, 상기 오버코트층으로 지르코늄 함유 산화물 또는 질화물, 또는 티타늄 함유 산화물 또는 질산화물을 포함할 수 있다. 이때, 상기 티타늄 함유 질산화물은 예를 들어, TiOxNy일 수 있으며, 여기서 x 및 y는 x와 y의 총합 100몰%를 기준으로, 100:0 내지 75:25의 몰비일 수 있다.The overcoat layer may include a material having high mechanical strength, low surface roughness, and high visible light transmittance. For example, the overcoat layer may include silicon (Si), niobium (Nb), titanium (Ti), zirconium (Zr), tantalum (Ta), or alloys, oxides, nitrides, or nitrides thereof. Specifically, the overcoat layer may include zirconium-containing oxide or nitride, or titanium-containing oxide or nitride. In this case, the titanium-containing nitroxide may be, for example, TiO x N y , where x and y may be a molar ratio of 100:0 to 75:25 based on 100 mol% of x and y in total.
또한, 상기 오버코트층의 평균 두께는 2 내지 15 nm일 수 있다. 오버코트층의 평균 두께가 상기 범위 내일 경우, 제조된 유리의 내구성이 저하되는 문제, 및 제조된 유리를 열처리한 후 흐림이 발생하는 문제를 방지할 수 있다.In addition, the average thickness of the overcoat layer may be 2 to 15 nm. When the average thickness of the overcoat layer is within the above range, it is possible to prevent a problem that durability of the manufactured glass is lowered, and a problem that fogging occurs after heat treatment of the manufactured glass.
본 발명에 따른 저방사 유리는 a*값이 -4 내지 1이고, b*값이 -15 이하이다. 구체적으로, 상기 저방사 유리는 a*값이 -3 내지 1이고, b*값이 -30 내지 -18일 수 있다.The low-emission glass according to the present invention has an a* value of -4 to 1, and a b* value of -15 or less. Specifically, the low-emission glass may have an a* value of -3 to 1 and a b* value of -30 to -18.
또한, 상기 저방사 유리는 방사율이 0.2 이하, 또는 0.1 이하일 수 있다. 방사율(emissivity)은 외부 광 에너지를 흡수한 후 일부 재방사하거나 표면 반사 현상이 일어날 때 재복사하는 에너지 비율을 의미하며, 최대값은 1이고 값이 작을수록 재방사 또는 재복사하는 에너지 비율이 큼을 의미한다. In addition, the low-emissivity glass may have an emissivity of 0.2 or less, or 0.1 or less. Emissivity is the ratio of energy that re-radiates after absorbing external light energy or re-radiates when surface reflection occurs. The maximum value is 1, and the smaller the value, the greater the ratio of energy to re-radiate or re-radiate. it means.
상술한 바와 같은 본 발명에 따른 저방사 유리는 표면이 강한 파란색을 띄며, 열처리 전 및 후 모두 화학적 및 기계적 내구성이 우수하다. 이로 인해, 상기 저방사 유리는 거주용 건물 및 비거주용 건물의 건축 소재로 적합하다.The low-emission glass according to the present invention as described above has a strong blue surface, and has excellent chemical and mechanical durability both before and after heat treatment. Due to this, the low-emission glass is suitable as a building material for residential and non-residential buildings.
본 발명에 따른 저방사 유리는 각 층을 형성하기 위한 박막 형성 방법으로서 진공 스퍼터링 방식을 이용하여 제조될 수 있다. 즉, 본 발명에 따른 저방사 유리의 제조방법은, 스퍼터링 증착법에 의해 각 층을 형성하는 단계를 포함할 수 있다.The low-emission glass according to the present invention can be manufactured using a vacuum sputtering method as a thin film forming method for forming each layer. That is, the method for manufacturing low-emission glass according to the present invention may include forming each layer by sputtering deposition.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.
[실시예][Example]
실시예 1 내지 11 및 비교예 1 내지 13. 저방사 유리의 제조Examples 1 to 11 and Comparative Examples 1 to 13. Preparation of low-emission glass
각 층의 두께를 표 1 및 2에 기재된 바와 같이 조절하여 적층하였다. 구체적으로, 6mm 두께의 투명 유리 기판에 질소 및 아르곤 분위기 하에서 SiAl Rotary target을 이용하여 제1 유전체층을 코팅하였다. 이후 제1 유전체층 상에 아르곤 분위기에서 NiCr Planar target를 이용하여 제1 금속 보호층을 코팅하고, 제1 금속 보호층 상에 아르곤 분위기 하에서 Ag Planar target을 이용하여 적외선 반사 금속층을 코팅하였다. 이후 적외선 반사 금속층 상에 아르곤 분위기에서 NiCr Planar target을 이용하여 제2 금속 보호층을 코팅하였다. 이후, 제2 금속 보호층 상에 질소 및 아르곤 분위기 하에서 SiAl Rotary target을 이용하여 제2 유전체층을 코팅하고, 마지막으로 제2 유전체층 상에 아르곤 및 질소 분위기 하에서 Zr Rotary target을 이용하여 오버코트층을 코팅하여 저방사 유리를 제조하였다.The thickness of each layer was adjusted and laminated as described in Tables 1 and 2. Specifically, the first dielectric layer was coated on a 6 mm thick transparent glass substrate using a SiAl Rotary target under a nitrogen and argon atmosphere. Subsequently, a first metal protective layer was coated on the first dielectric layer using an NiCr Planar target in an argon atmosphere, and an infrared reflective metal layer was coated on the first metal protective layer using an Ag Planar target under an argon atmosphere. Thereafter, a second metal protective layer was coated on the infrared reflective metal layer using a NiCr Planar target in an argon atmosphere. Thereafter, a second dielectric layer is coated on the second metal protective layer using a SiAl Rotary target under a nitrogen and argon atmosphere, and finally, an overcoat layer is coated on the second dielectric layer using a Zr Rotary target under an argon and nitrogen atmosphere. Low-emission glass was prepared.
(두께 nm)(Thickness nm) 오버코트층Overcoat layer 제2 유전체층Second dielectric layer 제2 금속 보호층Second metal protective layer 적외선 반사 금속층Infrared reflective metal layer 제1 금속 보호층First metal protective layer 제1 유전체층First dielectric layer
실시예 1Example 1 77 6060 44 1212 88 6060
실시예 2Example 2 77 6060 4.84.8 1212 88 6060
실시예 3Example 3 77 6060 55 1212 1010 6060
실시예 4Example 4 77 6060 66 1212 1010 6060
실시예 5Example 5 1010 6060 44 1212 77 6060
실시예 6Example 6 77 6565 44 1010 6.76.7 5555
실시예 7Example 7 88 5050 4.44.4 1111 88 5050
실시예 8Example 8 88 7070 4.44.4 1414 88 7070
실시예 9Example 9 22 6060 4.44.4 1111 88 6060
실시예 10Example 10 88 6060 4.44.4 1212 88 6060
실시예 11Example 11 1515 6060 4.44.4 1313 88 6060
(두께 nm)(Thickness nm) 오버코트층Overcoat layer 제2 유전체층Second dielectric layer 제2 금속 보호층Second metal protective layer 적외선 반사 금속층Infrared reflective metal layer 제1 금속 보호층First metal protective layer 제1 유전체층First dielectric layer
비교예 1Comparative Example 1 77 6060 1.41.4 1212 33 6060
비교예 2Comparative Example 2 77 6060 1.91.9 1212 33 6060
비교예 3Comparative Example 3 77 6060 33 1212 33 6060
비교예 4Comparative Example 4 77 4040 66 1212 1010 4040
비교예 5Comparative Example 5 77 4545 66 1212 1010 4545
비교예 6Comparative Example 6 77 4848 66 1212 1010 4848
비교예 7Comparative Example 7 77 7272 66 1212 1010 7272
비교예 8Comparative Example 8 77 7575 66 1212 1010 7575
비교예 9Comparative Example 9 77 8080 66 1212 1010 8080
비교예 10Comparative Example 10 00 6060 66 1212 1212 6060
비교예 11Comparative Example 11 1One 6060 66 1212 1414 6060
비교예 12Comparative Example 12 1616 6060 99 1212 2020 6060
비교예 13Comparative Example 13 1818 6060 1515 1212 2020 6060
시험예: 유리의 특성 평가Test Example: Evaluation of glass properties
실시예 1 내지 11 및 비교예 1 내지 13에서 제조한 저방사 유리를 대상으로 물성들을 하기와 같은 방법으로 측정하여 그 결과를 표 3에 나타냈다. The properties of the low-emission glass prepared in Examples 1 to 11 and Comparative Examples 1 to 13 were measured in the following manner, and the results are shown in Table 3.
구체적으로, 실시예 및 비교예에서 제조한 저방사 유리는 650℃로 5분 동안 열처리하고 급냉한 후 물성들을 평가하였다.Specifically, the low-emission glass prepared in Examples and Comparative Examples was heat treated at 650° C. for 5 minutes, quenched, and properties were evaluated.
(1) 유리 표면의 색상(1) color of the glass surface
380 내지 780 nm의 파장 범위에서 D65 표준 광원을 이용하여 KS L 2514 규격에 따라 유리 표면의 10°반사 색상을 측정하였다.Using the D65 standard light source in the wavelength range of 380 to 780 nm, the 10° reflection color of the glass surface was measured according to the KS L 2514 standard.
(2) 면저항(2) sheet resistance
표면 저항 측정기(비접촉식 면저항 측정기, SURAGUS사 제품)를 이용하여 면저항을 측정하였다. 유리의 면저항은 태양열선을 대상으로 적외선 반사 금속층인 은(Ag)층에 의해 측정되는 값이며, 열처리 후에도 저방사 유리로서의 성능을 가늠할 수 있는 평가 물성 중 하나이다.The sheet resistance was measured using a surface resistance meter (non-contact sheet resistance meter, manufactured by SURAGUS). The sheet resistance of glass is a value measured by a silver (Ag) layer, which is an infrared reflecting metal layer, for a solar heat ray, and is one of evaluation properties that can measure performance as a low-emission glass even after heat treatment.
(3) 내스크래치성(3) Scratch resistance
제조된 유리의 코팅면에 석영가루를 섞은 증류수를 분사한 후 굵기 0.5mm의 나일론 브러시를 유리의 코팅면과 수평하게 200회 왕복 이동시킨 후 코팅면에 발생한 스크래치의 개수를 측정하여 내스크래치성을 평가하였다.After spraying distilled water mixed with quartz powder on the coated surface of the manufactured glass, the nylon brush with a thickness of 0.5 mm was moved 200 times horizontally to the coated surface of the glass, and then the number of scratches generated on the coated surface was measured to improve the scratch resistance. Was evaluated.
구체적으로, 스크래치 발생이 없는 경우 1등급, 폭 1mm 이상의 스크래치가 없고 폭 1mm 미만의 스크래치가 5개 미만으로 생성된 경우 2등급, 폭 1mm 이상의 스크래치가 없고 폭 1mm 미만의 스크래치가 5개 이상으로 생성된 경우 3등급, 폭 1mm 이상의 굵은 스크래치가 1개 또는 2개 생성된 경우 4등급, 폭 1mm 이상의 굵은 스크래치가 3개 이상 생성된 경우 5등급, 코팅막이 유리 기판으로부터 박리된 경우 6등급으로 평가하였다.Specifically, when there are no scratches, there are no scratches of grade 1, width of 1 mm or more, and less than 5 scratches of grade 2, grade 2, width of 1 mm or more, and scratches of width of 1 mm or less are generated by 5 or more. 3 grades, 1 or 2 thick scratches with a width of 1 mm or more were created, 4 grades with 3 or more thick scratches with a width of 1 mm or more, 5 grades, and 6 with a coating film peeled off the glass substrate .
(4) 내습성(4) Moisture resistance
제조된 저방사 유리를 30℃ 및 80% 상대습도에서 7일 동안 보관한 후 오버코트층 표면에 발생한 핀홀 개수를 측정하여 내습성을 평가하였다.After the prepared low-emission glass was stored at 30°C and 80% relative humidity for 7 days, the moisture resistance was evaluated by measuring the number of pinholes generated on the surface of the overcoat layer.
(5) 헤이즈(haze)(5) Haze
헤이즈는 제조된 저방사 유리를 열처리한 후 오버코트층 표면이 흐려지는 정도를 육안으로 관찰하여 평가하였다.Haze was evaluated by observing the degree of blurring of the surface of the overcoat layer after heat treatment of the prepared low-emission glass.
(6) 방사율(6) Emissivity
방사율은 저방사 유리를 열처리한 후 FT-IR을 이용하여 적외선 파장 영역(2,500 내지 25,000 nm)의 반사 스펙트럼을 측정하고 KS L 2525 규격 기준으로 계산하였다. The emissivity was calculated based on the KS L 2525 standard after measuring the reflection spectrum of the infrared wavelength region (2,500 to 25,000 nm) using FT-IR after heat treatment of the low-emission glass.
(7) 가시광 투과율(7) Visible light transmittance
가시광 투과율은 저방사 유리를 열처리한 후 분광 광도계(Spectrophotometer, Rambda950, Perkinelmer사 제품)를 이용하여 가시광선 파장 영역(380 내지 780 nm)의 투과 스펙트럼을 측정하고 KS L 2514 규격으로 계산하였다.The visible light transmittance was measured using a spectrophotometer (Spectrophotometer, Rambda950, manufactured by Perkinelmer) after heat treatment of the low-emission glass, and the transmission spectrum of the visible light wavelength range (380 to 780 nm) was calculated using the KS L 2514 standard.
구분division 유리 표면의 색상Color of the glass surface 면저항(Ω/sq)Sheet resistance (Ω/sq) 내스크래치성Scratch resistance 내습성(핀홀 개수)Moisture resistance (number of pinholes) 헤이즈Hayes 방사율Emissivity 가시광투과율(%)Visible light transmittance (%)
YY LL a*a* b*b*
실시예 1Example 1 15.815.8 46.746.7 -0.2-0.2 -20.5-20.5 77 2등급Level 2 없음none 없음none 0.0810.081 54.854.8
실시예 2Example 2 17.617.6 49.049.0 -0.9-0.9 -20.1-20.1 77 2등급Level 2 없음none 없음none 0.0810.081 5353
실시예 3Example 3 18.018.0 49.549.5 -1.1-1.1 -20.0-20.0 77 2등급Level 2 없음none 없음none 0.0810.081 5151
실시예 4Example 4 20.420.4 52.352.3 -1.8-1.8 -19.8-19.8 77 2등급Level 2 없음none 없음none 0.0810.081 4747
실시예 5Example 5 15.315.3 46.046.0 -0.7-0.7 -22.5-22.5 77 2등급Level 2 없음none 없음none 0.0810.081 54.354.3
실시예 6Example 6 14.714.7 45.245.2 -0.2-0.2 -21-21 88 2등급Level 2 없음none 없음none 0.0950.095 5656
실시예 7Example 7 15.615.6 46.446.4 0.00.0 -20.5-20.5 7.57.5 2등급Level 2 없음none 없음none 0.0880.088 54.854.8
실시예 8Example 8 18.018.0 49.549.5 -1.2-1.2 -20.7-20.7 66 2등급Level 2 없음none 없음none 0.0680.068 5151
실시예 9Example 9 13.813.8 43.943.9 -0.4-0.4 -20.0-20.0 7.57.5 2등급Level 2 없음none 없음none 0.0880.088 56.556.5
실시예10Example 10 15.615.6 46.546.5 -1.3-1.3 -20.0-20.0 77 2등급Level 2 없음none 없음none 0.0810.081 5454
실시예11Example 11 19.219.2 50.950.9 -2.9-2.9 -19.7-19.7 6.56.5 2등급Level 2 없음none 없음none 0.0750.075 50.150.1
비교예 1Comparative Example 1 11.811.8 40.940.9 3.13.1 -18.8-18.8 77 6등급Grade 6 10개10 things 발생Occur 0.0810.081 57.557.5
비교예 2Comparative Example 2 13.013.0 4343 2.22.2 -20.5-20.5 77 5등급Grade 5 5개5 발생Occur 0.0810.081 57.357.3
비교예 3Comparative Example 3 15.515.5 46.346.3 1.11.1 -21.3-21.3 77 3등급Level 3 3개Three 미세 발생Fine occurrence 0.0810.081 55.155.1
비교예 4Comparative Example 4 16.616.6 47.847.8 1.41.4 -0.5-0.5 77 3등급Level 3 없음none 발생Occur 0.0810.081 54.654.6
비교예 5Comparative Example 5 17.517.5 48.948.9 0.90.9 -5.0-5.0 77 3등급Level 3 없음none 발생Occur 0.0810.081 53.453.4
비교예 6Comparative Example 6 18.418.4 50.050.0 0.50.5 -7.8-7.8 77 3등급Level 3 없음none 발생Occur 0.0810.081 52.452.4
비교예 7Comparative Example 7 35.435.4 66.166.1 -7.8-7.8 -10.3-10.3 77 2등급Level 2 없음none 발생Occur 0.0810.081 40.140.1
비교예 8Comparative Example 8 38.638.6 68.468.4 -8.6-8.6 -7.4-7.4 77 2등급Level 2 없음none 발생Occur 0.0810.081 38.338.3
비교예 9Comparative Example 9 42.142.1 70.970.9 -8.9-8.9 -3.1-3.1 77 2등급Level 2 없음none 발생Occur 0.0810.081 35.835.8
비교예10Comparative Example 10 24.624.6 56.756.7 -2.5-2.5 -14.2-14.2 77 5등급Grade 5 10개10 things 발생Occur 0.0810.081 46.246.2
비교예11Comparative Example 11 25.125.1 57.257.2 -2.8-2.8 -14.7-14.7 77 5등급Grade 5 10개10 things 발생Occur 0.0810.081 46.146.1
비교예12Comparative Example 12 1414 44.444.4 1.51.5 -14.2-14.2 77 2등급Level 2 없음none 발생Occur 0.0810.081 56.756.7
비교예13Comparative Example 13 17.517.5 4949 1.21.2 -8.3-8.3 77 2등급Level 2 없음none 발생Occur 0.0810.081 42.342.3
표 3에서 보는 바와 같이, 실시예 1 내지 11의 저방사 유리는 열처리 후에도 면저항이 9 Ω/sq 이하로 낮고, 내습성 및 내스크래치성 등의 내구성이 우수하며, 열처리로 인해 코팅막의 헤이즈가 발생하지 않고, 유리 표면의 색상이 강한 파란색을 띄며, 47% 이상의 높은 가시광 투과율을 나타냈다.As shown in Table 3, the low-emission glass of Examples 1 to 11 has a low sheet resistance of 9 Ω/sq or less even after heat treatment, has excellent durability such as moisture resistance and scratch resistance, and causes haze of the coating film due to heat treatment Without, the color of the glass surface was strong blue, and showed a high visible light transmittance of 47% or more.
반면, 제1 금속 보호층 및 제2 금속 보호층의 두께가 얇은 비교예 1 내지 3은 내습성이 부족하고 열처리 후 코팅막에 헤이즈가 발생했다. 특히, 제1 금속 보호층과 제2 금속 보호층의 두께비가 0.5 미만인 비교예 1 및 12는 유리 표면의 a*값이 1.1 이상으로 커 붉은색이 증가하는 문제가 있었다. 더불어, 상기 두께비가 0.6을 초과하는 비교예 2, 3 및 13도 강한 파란색을 띄지 못하였다. 또한, 제1 유전체층 및/또는 제2 유전체층이 얇거나 두꺼운 비교예 4 내지 9는 유리 표면의 b*값이 -11 이상으로 커 강한 파란색이 감소되는 문제가 있었다. 나아가, 오버코트층이 얇거나 두꺼운 비교예 10 내지 13은 열처리 후 헤이즈가 발생하여 내구성이 부족했다. 특히, 오버코트층이 얇거나 없는 비교예 10 및 11은 열처리 후 내스크래치성 및 내습성이 현저히 부족하였다.On the other hand, Comparative Examples 1 to 3 in which the thicknesses of the first metal protective layer and the second metal protective layer were thin were insufficient in moisture resistance and haze occurred in the coating film after heat treatment. Particularly, in Comparative Examples 1 and 12 in which the thickness ratio between the first metal protective layer and the second metal protective layer was less than 0.5, a* value of the glass surface was greater than 1.1 and there was a problem in that the red color increased. In addition, Comparative Examples 2, 3 and 13 in which the thickness ratio exceeded 0.6 did not show a strong blue color. In addition, in Comparative Examples 4 to 9 in which the first dielectric layer and/or the second dielectric layer were thin or thick, there was a problem in that the strong blue color was reduced because the b* value of the glass surface was greater than -11. Further, in Comparative Examples 10 to 13 in which the overcoat layer was thin or thick, haze was generated after heat treatment, and thus the durability was insufficient. Particularly, in Comparative Examples 10 and 11 with or without an overcoat layer, scratch resistance and moisture resistance after heat treatment were remarkably insufficient.

Claims (4)

  1. 유리 기판, 제1 유전체층, 제1 금속 보호층, 적외선 반사 금속층, 제2 금속 보호층, 제2 유전체층 및 오버코트층이 순차적으로 적층된 형태를 포함하고,A glass substrate, a first dielectric layer, a first metal protective layer, an infrared reflective metal layer, a second metal protective layer, a second dielectric layer and an overcoat layer are sequentially stacked.
    a*값이 -4 내지 1이고, b*값이 -15 이하이며, 상기 제1 금속 보호층과 제2 금속 보호층은 두께비가 1: 0.5 내지 0.6인, 저방사 유리. Low-emission glass, wherein a* value is -4 to 1, b* value is -15 or less, and the first metal protective layer and the second metal protective layer have a thickness ratio of 1: 0.5 to 0.6.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 유전체층은 평균 두께가 50 내지 70 nm이고,The first dielectric layer has an average thickness of 50 to 70 nm,
    상기 제1 금속 보호층은 평균 두께가 4 내지 20 nm이며,The first metal protective layer has an average thickness of 4 to 20 nm,
    상기 적외선 반사 금속층은 평균 두께가 10 내지 15 nm이고,The infrared reflective metal layer has an average thickness of 10 to 15 nm,
    상기 제2 금속 보호층은 평균 두께가 4 내지 20 nm이며,The second metal protective layer has an average thickness of 4 to 20 nm,
    상기 제2 유전체층은 평균 두께가 50 내지 70 nm이고,The second dielectric layer has an average thickness of 50 to 70 nm,
    상기 오버코트층은 평균 두께가 2 내지 15 nm인, 저방사 유리.The overcoat layer has an average thickness of 2 to 15 nm, low-emission glass.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 유전체층 및 제2 유전체층은 각각 질화물 및 질화산화물로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 굴절률이 1.8 내지 2.5이며, 흡수 계수가 0.1 이하인, 저방사 유리.The first dielectric layer and the second dielectric layer each include at least one selected from the group consisting of nitride and nitride oxide, the refractive index is 1.8 to 2.5, the absorption coefficient is 0.1 or less, low-emission glass.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 금속 보호층 및 제2 금속 보호층은 각각 니켈, 크롬 및 니켈-크롬 합금으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 저방사 유리.The first metal protective layer and the second metal protective layer each include at least one selected from the group consisting of nickel, chromium, and nickel-chromium alloys, low-emission glass.
PCT/KR2019/015955 2019-01-29 2019-11-20 Low emissivity glass WO2020159050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2021004225A MY197506A (en) 2019-01-29 2019-11-20 Low emissivity glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190011109A KR102207188B1 (en) 2019-01-29 2019-01-29 Low-emissivity glass
KR10-2019-0011109 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020159050A1 true WO2020159050A1 (en) 2020-08-06

Family

ID=71841829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015955 WO2020159050A1 (en) 2019-01-29 2019-11-20 Low emissivity glass

Country Status (3)

Country Link
KR (1) KR102207188B1 (en)
MY (1) MY197506A (en)
WO (1) WO2020159050A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102485863B1 (en) * 2020-08-21 2023-01-09 한국유리공업 주식회사 Transpatent substrate having multilayer thin film coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062574A1 (en) * 2009-11-19 2011-05-26 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Bronze colored coated article with low-e coating
KR20110062566A (en) * 2009-12-03 2011-06-10 현대자동차주식회사 Bendable and heat treatable low-emissivity glass and method for preparing the same
KR20130020029A (en) * 2011-08-18 2013-02-27 (주)엘지하우시스 Temperable low-emissivity glass and method for preparing thereof
KR20150069534A (en) * 2013-12-12 2015-06-23 (주)엘지하우시스 Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
KR20160147387A (en) * 2015-06-15 2016-12-23 주식회사 케이씨씨 Temperable low-emissivity glass with improved durability and method for preparing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728559B1 (en) 1994-12-23 1997-01-31 Saint Gobain Vitrage GLASS SUBSTRATES COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION
US5821001A (en) 1996-04-25 1998-10-13 Ppg Industries, Inc. Coated articles
KR101972364B1 (en) * 2016-09-09 2019-04-25 (주)엘지하우시스 Low-emissivity coat and functional building material including low-emissivity coat for windows

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062574A1 (en) * 2009-11-19 2011-05-26 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Bronze colored coated article with low-e coating
KR20110062566A (en) * 2009-12-03 2011-06-10 현대자동차주식회사 Bendable and heat treatable low-emissivity glass and method for preparing the same
KR20130020029A (en) * 2011-08-18 2013-02-27 (주)엘지하우시스 Temperable low-emissivity glass and method for preparing thereof
KR20150069534A (en) * 2013-12-12 2015-06-23 (주)엘지하우시스 Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
KR20160147387A (en) * 2015-06-15 2016-12-23 주식회사 케이씨씨 Temperable low-emissivity glass with improved durability and method for preparing the same

Also Published As

Publication number Publication date
KR102207188B1 (en) 2021-01-25
KR20200093862A (en) 2020-08-06
MY197506A (en) 2023-06-19

Similar Documents

Publication Publication Date Title
US20220326421A1 (en) Solar Control Coating with Enhanced Solar Control Performance
US10196303B2 (en) Coated article with low-E coating having low visible transmission
US10345499B2 (en) Solar control coating with enhanced solar control performance
KR101677572B1 (en) Substrate provided with a stack with thermal properties and comprising high refractive index layers
CN110461790B (en) Heat-treatable coated article with IR reflecting layer based on titanium nitride and ITO
MX2010013513A (en) Coated article with low-e coating including zirconium oxide and/or zirconium silicon oxynitride and methods of making same.
MX2013010952A (en) Transparent substrate equipped with a thin-film multilayer.
US10227819B2 (en) Coated article with low-E coating having doped silver IR reflecting layer(s)
WO2018147666A1 (en) Low-reflection coating glass
US20190084873A1 (en) Coated article having low-e coating with ir reflecting layer(s) and high index nitrided dielectric layers
KR20160147387A (en) Temperable low-emissivity glass with improved durability and method for preparing the same
WO2017126875A1 (en) Low-emissivity glass and method for producing same
WO2018012883A1 (en) Low-emissivity glass
WO2018151485A1 (en) Reflective coating substrate
AU2018225650A1 (en) Heat treatable coated article having zirconium nitride and ITO based IR reflecting layers
US10618252B2 (en) Solar control coating for laminated glazing
WO2020159050A1 (en) Low emissivity glass
WO2017122991A1 (en) Low-emissivity glass
WO2024167147A1 (en) Laminate for low-emissivity glass
KR20210033847A (en) Low-emissivity glass
KR20210079074A (en) Low-emissivity glass
KR102269783B1 (en) Low-emissivity glass
KR20180028700A (en) Low-emissivity coat and functional building material including low-emissivity coat for windows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913914

Country of ref document: EP

Kind code of ref document: A1