WO2017122775A1 - Biaxially-oriented sheet and molded article thereof - Google Patents

Biaxially-oriented sheet and molded article thereof Download PDF

Info

Publication number
WO2017122775A1
WO2017122775A1 PCT/JP2017/001000 JP2017001000W WO2017122775A1 WO 2017122775 A1 WO2017122775 A1 WO 2017122775A1 JP 2017001000 W JP2017001000 W JP 2017001000W WO 2017122775 A1 WO2017122775 A1 WO 2017122775A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
biaxially stretched
methacrylic acid
stretched sheet
resin composition
Prior art date
Application number
PCT/JP2017/001000
Other languages
French (fr)
Japanese (ja)
Inventor
学 横塚
大輔 吉村
大介 元井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59311221&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017122775(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020187013910A priority Critical patent/KR102638037B1/en
Priority to JP2017561180A priority patent/JP6389574B2/en
Priority to CN201780005854.0A priority patent/CN108472859B/en
Publication of WO2017122775A1 publication Critical patent/WO2017122775A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3461Flexible containers, e.g. bags, pouches, envelopes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof

Definitions

  • the present invention relates to a biaxially stretched sheet comprising a styrenic resin composition that can be suitably used for food packaging containers heated in a microwave oven, and a molded product thereof.
  • Polystyrene biaxially stretched sheets are excellent in transparency and rigidity, and thus are molded and used mainly in molded products such as lightweight containers. However, since these containers are inferior in heat resistance, they are rarely used for applications that directly contact boiling water or those that are heated in a microwave oven. Thus, attempts have been made to impart heat resistance to polystyrene as a raw material.
  • Examples of polystyrene having improved heat resistance include styrene-acrylic acid copolymer or styrene-methacrylic acid copolymer (Patent Document 1, Patent Document 2), styrene-maleic anhydride copolymer (Patent Document 3, Patent document 4) is mentioned. These are generally known as styrenic heat-resistant resins, and improve heat resistance without impairing transparency and rigidity.
  • Patent Documents 2 and 4 A technique for obtaining a molded article using a sheet having excellent heat resistance by biaxially stretching a styrene-based heat resistant resin into a sheet has been studied (Patent Documents 2 and 4).
  • styrenic heat-resistant resins have lower fluidity during melt extrusion than ordinary polystyrene, and it is difficult to increase the resin production capacity and sheet production capacity.
  • a method of increasing the extrusion temperature is conceivable.
  • the carboxylic acid groups in the styrenic heat-resistant resin react to form a gel-like foreign material, and the sheet There is a problem that the quality deteriorates.
  • biaxially stretched sheets of styrenic heat-resistant resin have poor crack resistance, and have the problem that the quality of the molded product deteriorates due to defective die-cutting or generation of powder when secondary forming the sheet. ing.
  • the shape of the lid and the body can be fitted together without any gap, and the lid is on the inside, It is often a so-called inner fitting lid.
  • An inner fitting lid made of a biaxially stretched sheet of styrene-based heat-resistant resin has a problem that the fitting portion is easily broken when the lid is closed.
  • the inner fitting lid is usually provided with a ventilation valve for releasing air when the lid is closed, and this ventilation valve also has a function of releasing steam generated during heating of the microwave oven.
  • this ventilation valve In order to provide such a vent valve in a molded product, it is usually necessary to make a hole using a punching blade.
  • biaxially stretched sheets of styrenic heat-resistant resin are liable to cause powder adhesion and cracking in this step. For these reasons, there is a demand for a sheet having high cracking resistance while maintaining performance such as transparency, strength, heat resistance, and film-forming property as a biaxially stretched sheet of a styrene-based heat resistant resin.
  • the present invention is a biaxially stretched sheet comprising a styrene resin composition having excellent transparency, strength, heat resistance, film forming property, moldability during secondary molding, and excellent crack resistance during trimming, and It was made for the purpose of providing a molded article.
  • the present inventors investigated a styrene resin excellent in heat resistance and strength, investigated an additive component to the styrene resin, and further about stretching conditions for improving crack resistance.
  • the purpose is achieved by selecting a styrene resin to be used, adding a predetermined amount of high-impact polystyrene having an appropriate composition, and adjusting the orientation relaxation stress according to the stretching conditions. It came to complete.
  • the present invention has the following configuration.
  • (1) Containing styrene-methacrylic acid copolymer (A) and high impact polystyrene (B) in a mass ratio (A) / (B) 97.0 / 3.0 to 99.9 / 0.1
  • a biaxially stretched sheet comprising a styrene resin composition, wherein the styrene-methacrylic acid copolymer (A) has a methacrylic acid monomer unit content of 3 to 14% by mass, and the styrene resin composition
  • the styrene-methacrylic acid copolymer (A) has a weight average molecular weight (Mw) of 120,000 to 250,000, and a ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn). Is 2.0 to 3.0, and the ratio Mz / Mw of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 1.5 to 2.0. Sheet.
  • the content of the rubber component derived from the high impact polystyrene (B) is 0.005 to 0.36% by mass with respect to the styrenic resin composition.
  • the content of the unreacted styrene monomer in the styrenic resin composition is 1000 ppm or less, and the content of the unreacted methacrylic acid monomer is 150 ppm or less. Biaxially stretched sheet.
  • a molded article comprising the biaxially stretched sheet according to any one of (1) to (8).
  • the biaxially stretched sheet of the present invention and its molded product are excellent in transparency, strength, heat resistance, film-forming property, moldability during secondary molding, and excellent crack resistance during trimming.
  • the biaxially stretched sheet and the molded product of the present invention can be suitably used for food packaging containers heated in a microwave oven.
  • the biaxially stretched sheet of the present invention comprises a styrene resin composition containing a styrene-methacrylic acid copolymer (A) and a high impact polystyrene (B) at a specific mass ratio.
  • the biaxially stretched sheet of the present invention can be obtained by extruding the styrene resin composition and biaxially stretching the obtained unstretched sheet.
  • each component of the styrene resin composition will be described.
  • the styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid.
  • a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid.
  • the copolymerization ratio of styrene and methacrylic acid can be variously set depending on the desired heat resistance and mechanical strength.
  • the content of the methacrylic acid monomer unit needs to be 3 to 14% by mass from the viewpoint that a resin excellent in balance of heat resistance, mechanical strength, and transparency when formed into a sheet can be easily obtained. .
  • the content of the methacrylic acid monomer unit is preferably 6% by mass or more, more preferably 8% by mass or more.
  • the content of the methacrylic acid monomer unit is preferably 12% by mass or less, more preferably 10% by mass or less.
  • the styrene-methacrylic acid copolymer (A) may be appropriately copolymerized with other monomers other than styrene and methacrylic acid, if necessary, as long as the effects of the invention are not impaired.
  • the content of other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the content of other monomers exceeds 10% by mass, the ratio of styrene or methacrylic acid decreases, and sufficient transparency, mechanical strength, and heat resistance may not be obtained.
  • the weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer (A) is preferably 120,000 to 250,000, more preferably 140,000 to 220,000, and even more preferably 150,000 to 200,000.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than 120,000, the film tends to deteriorate due to film formation such as sheet drawdown and neck-in, insufficient stretch orientation, and contact with the hot plate during container molding.
  • the weight average molecular weight exceeds 250,000, unevenness in thickness at the time of film formation due to lowering of fluidity, deterioration of sheet appearance such as die lines, and poor molding at the time of container molding tend to occur.
  • the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the styrene-methacrylic acid copolymer (A) is preferably 2.0 to 3.0, more preferably. 2.2 to 2.8.
  • Mw / Mn exceeds 3.0, surface roughness due to hot plate contact during container molding tends to occur.
  • Mw / Mn is less than 2.0, unevenness in thickness at the time of film formation due to a decrease in fluidity and molding failure at the time of container molding tend to occur.
  • the ratio Mz / Mw between the Z average molecular weight (Mz) and Mw is preferably 1.5 to 2.0, more preferably 1.6 to 1.9.
  • Mz / Mw When Mz / Mw is less than 1.5, the sheet is likely to be drawn down, necking-in and the like, and the film-forming property is lowered, and the stretch orientation is insufficient. On the other hand, when Mz / Mw exceeds 2.0, sheet appearance deterioration such as unevenness of thickness during film formation and die line due to decrease in fluidity is likely to occur.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) described above are calculated by the GPC measurement and the molecular weight at each elution time from the elution curve of monodisperse polystyrene by the following method. And calculated as a molecular weight in terms of polystyrene.
  • Mobile phase Tetrahydrofuran Sample concentration: 0.2% by mass
  • Temperature 40 ° C oven, 35 ° C inlet, 35 ° C detector
  • Detector Differential refractometer
  • Examples of the polymerization method of the styrene-methacrylic acid copolymer (A) include known polymerization methods such as a bulk polymerization method, a solution polymerization method, and a suspension polymerization method that are industrialized with polystyrene and the like. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable.
  • the solvent for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used.
  • a polymerization initiator and a chain transfer agent can be used as necessary.
  • An organic peroxide can be used as the polymerization initiator. Specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3.
  • the high impact polystyrene (B) in the present invention may be a styrene resin containing a particulate rubber component, and a styrene homopolymer containing a rubber component, a styrene-methacrylic acid copolymer Any of those containing a rubber component can be suitably used.
  • the rubber component may be dispersed in the form of particles independently in the polystyrene or styrene-methacrylic acid copolymer used as the matrix resin, or the rubber component may be grafted with polystyrene or styrene-methacrylic acid copolymer. It may be polymerized and dispersed in the form of particles.
  • the rubber component examples include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, and the like. In particular, it is preferably contained as a polybutadiene or styrene-butadiene copolymer.
  • high impact polystyrene (B) is obtained by copolymerizing styrene and butadiene to obtain a styrene-butadiene copolymer, and then dissolving the copolymer in styrene alone or in a mixture of styrene and methacrylic acid.
  • the copolymer can be obtained as a styrene resin that becomes particles dispersed in a matrix resin (polystyrene or styrene-methacrylic acid) that becomes a continuous layer.
  • the content of the rubber component of the high impact polystyrene (B) is preferably, for example, 5.0 to 12.0% by mass in consideration of the amount of the rubber component in the styrene resin composition.
  • the mass ratio (A) / (B) is more preferably 99.0 / 1.0 to 99.5 / 0.5.
  • the content of unreacted styrene monomer in the styrene-based resin composition is preferably 1000 ppm or less, and the content of unreacted methacrylic acid monomer is preferably 150 ppm or less. If the content of these unreacted monomers is larger than the specified amount, the sheet surface tends to bleed out, or when it comes into contact with the roll of an extruder or stretching machine, surface roughness and dirt are likely to occur. Further, when the sheet is formed, there is a concern that it adheres to the mold or the like of the molding machine and damages the appearance of the molded product or causes the mold to become dirty, thereby damaging the appearance of the subsequent molded product.
  • two adjacent methacrylic acid monomer units contained in the styrene-methacrylic acid copolymer (A) may form a six-membered cyclic acid anhydride in an extrusion process at high temperature and high vacuum.
  • the styrene-based resin composition containing a large amount of the six-membered cyclic acid anhydride is manifested as a transparent gel-like foreign material when formed into a sheet, which may impair the appearance of the sheet. Therefore, the content of the six-membered cyclic acid anhydride in the styrene resin composition is preferably 1.0% by mass or less.
  • the content of the six-membered cyclic acid anhydride was determined from the integral ratio of the spectrum measured with a carbon nuclear magnetic resonance ( 13 C-NMR) measuring device.
  • the styrenic resin composition must have a Vicat softening temperature in the range of 106 to 132 ° C.
  • the Vicat softening temperature is preferably 112 ° C or higher, more preferably 116 ° C or higher.
  • the Vicat softening temperature exceeds 132 ° C., the workability during film formation and container molding may be reduced.
  • the Vicat softening temperature is preferably 128 ° C. or lower, more preferably 126 ° C. or lower.
  • the Vicat softening temperature was measured in accordance with JIS K-7206 under conditions of a heating rate of 50 ° C./hr and a test load of 50 N.
  • the melt flow index (MFI) of the styrenic resin composition is preferably in the range of 0.5 to 4.5 g / 10 minutes, more preferably 0 from the viewpoint of drawdown during film formation and thickness uniformity. 9.9 to 3.6 g / 10 min, more preferably 1.3 to 2.7 g / 10 min.
  • the melt flow index (MFI) was measured according to JIS K7210 H condition (200 ° C., 5 kg).
  • additives include antioxidants, anti-gelling agents, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mineral oils, glass fibers, and carbon fibers. And reinforcing fibers such as aramid fibers, and fillers such as talc, silica, mica and calcium carbonate.
  • blend antioxidant and an antigelling agent individually or in combination of 2 or more types from a viewpoint of the external appearance when the said styrene-type resin composition is sheeted.
  • additives may be added in the polymerization process or devolatilization process or granulation process of the styrene-methacrylic acid copolymer (A) and the high impact polystyrene (B), or a styrene resin composition is produced. You may add when you do. Although there is no restriction
  • MFI melt flow index
  • the gelation inhibitor has an effect of suppressing the gelation reaction due to the dehydration reaction of methacrylic acid.
  • an aliphatic alcohol is effective.
  • Common aliphatic alcohols include 7-methyl-2- (3-methylbutyl) -1-octanol, 5-methyl-2- (1-methylbutyl) -1-octanol, 5-methyl-2- (3-methylbutyl ) -1-octanol, 2-hexyl-1-decanol, 5,7,7-trimethyl-2- (1,3,3-trimethylbutyl) -1-octanol, 8-methyl-2- (4-methylhexyl) ) -1-decanol, 2-heptyl-1-undecanol, 2-heptyl-4-methyl-1-decanol, 2- (1,5-dimethylhexyl)-(5,9-dimethyl) -1-decanol, etc. It is done.
  • antioxidants examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4 -Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-tert-butylphenol) and 1,3,5-trimethyl-2,4,6 -Phenolic antioxidants such as tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, ditridecyl-3,3'-thiodipropione Dilauryl-3,3′-
  • the biaxially stretched sheet of the present invention can be produced by the following method. First, the styrene resin composition is melt-kneaded by an extruder and extruded from a die (particularly a T die). Next, the biaxially stretched sheet is stretched sequentially or simultaneously in the biaxial directions of the machine direction (sheet flow direction, MD; Machine Direction) and the transverse direction (direction perpendicular to the sheet flow direction, TD; Transverse Direction). Is manufactured.
  • the thickness of the biaxially stretched sheet is preferably 0.1 mm or more, more preferably 0.15 mm or more, and further preferably 0.2 mm or more in order to ensure the strength and particularly rigidity of the sheet and the container.
  • the thickness of the biaxially stretched sheet is preferably 0.7 mm or less, more preferably 0.6 mm or less, and even more preferably 0.5 mm or less.
  • the stretching ratio in the machine direction and the transverse direction of the biaxially stretched sheet is preferably in the range of 1.8 to 3.2 times.
  • the draw ratio is less than 1.8 times, the folding resistance of the sheet tends to decrease.
  • the draw ratio exceeds 3.2 times, there is a possibility that the shapeability may be impaired due to the excessive shrinkage during thermoforming.
  • the measuring method of the draw ratio of this invention is as follows. A straight line Y having a length of 100 mm is drawn in the machine direction (MD) and the transverse direction (TD) with respect to the test piece of the biaxially stretched sheet. The length Z [mm] of the straight line after the test piece is left to shrink for 60 minutes in an oven having a temperature 30 ° C.
  • the biaxially stretched sheet of the present invention can be obtained by biaxially stretching the styrene resin composition. Furthermore, in order to ensure the strength of the sheet and the molded product, particularly crack resistance, it is necessary that the orientation relaxation stress in the longitudinal and lateral directions of the sheet satisfy the range of 0.5 to 1.2 MPa. If the orientation relaxation stress is less than 0.5 MPa, the crack resistance of the sheet cannot be ensured, tearing or chipping in the trimming process, cracking or chipping in the container punching process occur frequently, and sheet and molding The productivity of the product is significantly impaired. On the other hand, when the orientation relaxation stress exceeds 1.2 MPa, it becomes difficult to achieve both stable stretchability and mass productivity in the sheet stretching step, and shapeability at the time of container molding is impaired.
  • the orientation relaxation stress of the biaxially stretched sheet of the present invention is a value measured as a peak stress value in silicone oil at a temperature 30 ° C. higher than the Vicat softening temperature of the resin composition constituting the sheet according to ASTM D1504. It is.
  • the content of the rubber component derived from the high impact polystyrene (B) in the styrene resin composition in the present invention is preferably 0.005 to 0.36% by mass with respect to the styrene resin composition.
  • the rubber component content is preferably 0.005% by weight or more. 0.010% by weight or more is more preferable, and 0.040% by weight or more is more preferable.
  • the content of the rubber component is preferably 0.36% by weight or less in order to maintain the transparency of the biaxially stretched sheet. 0.24% by weight or less is more preferable, and 0.12% by weight or less is more preferable.
  • the content of the rubber component in the styrene resin composition is obtained by dissolving the styrene resin composition in chloroform, adding iodine monochloride to react the double bond in the rubber component, adding potassium iodide, The remaining iodine monochloride is converted to iodine and measured by the iodine monochloride method in which back titration is performed with sodium thiosulfate.
  • the average rubber particle diameter of the rubber component derived from the high impact polystyrene (B) in the biaxially stretched sheet of the present invention is preferably 1 to 9 ⁇ m.
  • the average rubber particle size of the rubber component is preferably 1 ⁇ m or more in order to prevent blocking of the sheet.
  • the average rubber particle diameter of the rubber component is preferably 9 ⁇ m or less in order to maintain the transparency of the biaxially stretched sheet.
  • the average rubber particle size of the rubber component in the biaxially stretched sheet is cut by an ultrathin section method so that the observation surface is parallel to the sheet plane, and the rubber component is dyed with osmium tetroxide (OsO 4 ).
  • the particle diameter of 100 particles is measured with a transmission microscope, and is a value calculated by the following equation.
  • Average rubber particle size ⁇ ni (Di) 4 / ⁇ ni (Di) 3
  • ni represents the number of measured particles
  • Di represents the measured particle size.
  • the biaxially stretched sheet of the present invention includes known release agents / release agents (for example, silicone oil), antifogging agents (for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.) and an antistatic agent (for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.) and at least one of the sheets is mixed.
  • release agents / release agents for example, silicone oil
  • antifogging agents for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.
  • an antistatic agent for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.
  • silicone oil used as the release agent / release agent of the present invention examples include, for example, methyl hydrogen polysiloxane, dimethyl polysiloxane, methylphenyl polysiloxane, diphenyl polysiloxane and the like known as this type of release agent.
  • a modified product in which a functional group is partially introduced into the silicone oil for example, a polyether-modified silicone oil, an amino-modified silicone oil, an epoxy-modified silicone oil, a carboxyl-modified silicone oil, a fluorine-modified silicone oil, or the like may be used.
  • dimethylpolysiloxane is particularly preferable from the viewpoints of releasability, odor and economy.
  • the method for coating these coating agents on the biaxially stretched sheet is not particularly limited, and a method of coating using a roll coater, a knife coater, a gravure roll coater or the like can be simply mentioned. Moreover, spraying, immersion, etc. can also be employ
  • the method for obtaining a molded product from the biaxially stretched sheet of the present invention is not particularly limited, and a method commonly used in the conventional secondary molding method of a biaxially stretched sheet can be used.
  • the secondary molding can be performed by a thermoforming method such as a vacuum forming method or a pressure forming method. These methods are described in, for example, “Plastic Processing Technology Handbook” edited by the Society of Polymer Science, Nikkan Kogyo Shimbun (1995).
  • the use of the molded product of the biaxially stretched sheet of the present invention includes various containers and can be widely used for packaging containers for various articles.
  • a food packaging container for heating a microwave oven is preferable because the features of the present invention are sufficiently exhibited.
  • a molded product having a main body portion and a lid material that can be fitted to the main body portion, the shape of the fitting portion being an internal fitting is further enhanced by the excellent crack resistance of the present invention. Therefore, it is particularly preferable.
  • Example 1 [Production of styrene-methacrylic acid copolymer (A-1)] 100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and stirred at 130 rpm. Subsequently, 72.0 kg of styrene, 8.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was carried out for 5 hours (Step 1). Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 2).
  • the obtained beads were washed, dehydrated, dried and then extruded to obtain pellet-shaped styrene-methacrylic acid copolymer (A-1) shown in Table 1.
  • A-1 pellet-shaped styrene-methacrylic acid copolymer
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mz Z average molecular weight
  • the obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-21).
  • A-21 styrene-methacrylic acid copolymer
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mz Z average molecular weight
  • the obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-22).
  • a mass ratio of styrene monomer unit / maleic anhydride monomer unit / methacrylic acid monomer unit was 85/5/10.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
  • the obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-23).
  • the mass ratio of styrene monomer unit / methyl methacrylate monomer unit / methacrylic acid monomer unit was 85/5/10.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
  • Example 24 [Production of styrene-methacrylic acid copolymer (A-24)] Polymerization was carried out by the same formulation and polymerization method as in Example 1. After washing, dehydrating and drying the obtained beads, 1 part by mass of liquid paraffin (“White Rex 335” manufactured by Mobil Petroleum) was added to 100 parts by mass of the resulting styrene-methacrylic acid copolymer and extruded. The pellet-shaped styrene-methacrylic acid copolymer (A-24) shown in Table 2 was obtained. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mz Z average molecular weight
  • This polymerization raw material was supplied at 12.5 kg / hr to a 14-liter jacketed reactor (R-01) equipped with a vertical stirring blade having a blade diameter of 0.285 m.
  • the reaction was carried out at a reaction temperature of 140 ° C. and a rotation speed of 2.17 sec ⁇ 1 .
  • the obtained resin solution was introduced into two jacketed plug flow reactors having an internal volume of 21 liters arranged in series.
  • the reaction temperature is 120 to 140 ° C. in the flow direction of the resin liquid.
  • the reaction temperature is resin.
  • the jacket temperature was adjusted to have a gradient of 130 to 160 ° C. in the liquid flow direction.
  • the resin ratio at the R-01 outlet was 25%, and the resin ratio at the R-02 outlet was 50%.
  • the obtained resin liquid was heated to 230 ° C. and then sent to a devolatilization tank having a vacuum degree of 5 torr to separate and recover unreacted monomers and solvents. After that, it was extracted from the devolatilization tank with a gear pump, turned into a strand through a die plate, cooled in a water tank, pelletized through a pelletizer, and recovered as a product to obtain high impact polystyrene (B-1) shown in Table 3 It was.
  • the resin ratio of the obtained resin (B-1) was 70%.
  • the resin rate is calculated by the following formula.
  • Resin ratio (%) 100 ⁇ (Amount of polymer produced) / ⁇ (Amount of monomer charged) + (Amount of solvent) ⁇ Further, the rubber component content in the obtained resin (B-1) was 8.0% by mass, and the average rubber particle size of the rubber component was 2.0 ⁇ m.
  • Example 1 99.0% by mass of the styrene-methacrylic acid copolymer (A-1) of Experimental Example 1 and 1.0% by mass of the high impact polystyrene (B-1) of Experimental Example 25 were hand blended, and a pellet extruder (vacuum vent) Using a twin-screw co-directional extruder TEM35B (manufactured by Toshiba Machine) with a extrusion temperature of 230 ° C., a rotational speed of 250 rpm, and a vacuum vent gauge pressure of ⁇ 760 mmHg, the strand is passed through a die plate, and then cooled in a water bath. Pelletized through a pelletizer to obtain a resin composition.
  • TEM35B twin-screw co-directional extruder
  • the gauge pressure of the vacuum vent is shown as a differential pressure value with respect to normal pressure.
  • the content of the unreacted styrene monomer in the obtained resin composition was 500 ppm, the content of the unreacted methacrylic acid monomer was 50 ppm, and the six-membered cyclic acid anhydride derived from the styrene-methacrylic acid copolymer (A-1) The content was 0.5% by mass.
  • the Vicat softening temperature at a heating rate of 50 ° C./hr, a test load of 50 N was 120 ° C.
  • the melt flow index (MFI) under JIS K7210 H condition 200 ° C., 5 kg
  • the above resin composition was unstretched using a sheet extruder (T-die width 500 mm, lip opening 1.5 mm, ⁇ 40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd.)) at an extrusion temperature of 230 ° C. and a discharge rate of 20 kg / h.
  • a sheet was obtained.
  • This sheet is preheated to (Vicat softening temperature +30) ° C. with a batch type biaxial stretching machine (Toyo Seiki), and the strain rate is 0.1 / sec.
  • the MD direction is 2.4 times and the TD direction is 2.4 times (surface magnification 5). .8 times) to obtain a biaxially stretched sheet shown in Table 1.
  • the thickness of the obtained sheet was 0.25 mm, and the orientation relaxation stress (longitudinal / lateral) of the obtained sheet was 0.7 / 0.7 MPa.
  • the rubber component content in the sheet was 0.080% by mass, and the average rubber particle size of the rubber component was 5.0 ⁇ m.
  • a silicone emulsion (TSM6343 (manufactured by Momentive Performance Materials. Inc.)) was applied to both sides of the obtained sheet with a bar coater, dried in an oven at 105 ° C. for 1 minute, and the biaxially stretched sheet described in Table 4 Got.
  • Examples 2 to 58, Comparative Examples 1 to 10 The blending amounts of the styrene-methacrylic acid copolymer (A) and high impact polystyrene (B) of Example 1, the resin composition extrusion conditions, sheet film forming conditions and stretching conditions, and coating conditions were adjusted. Biaxially stretched sheets described in Table 8 (Examples 2 to 58, Comparative Examples 1 to 10) were obtained.
  • ⁇ Thickness uniformity> The film-forming sheet is biaxially stretched, the thickness is measured using a microgauge at 25 intersection points when five straight lines are drawn in a grid pattern at intervals of 50 mm in the vertical and horizontal directions, and the average thickness and the maximum value are measured. The minimum value was calculated and evaluated according to the following criteria from the thickness range. ⁇ : Average thickness 0.24 to 0.26 mm, thickness range: 0.23 to 0.27 mm ⁇ : Average thickness 0.24 to 0.26 mm, thickness range: 0.21 to 0.29 mm X: Thickness range other than the above
  • Sheet strength ⁇ Tear strength> In accordance with JIS K-7128-2, Part 3 In accordance with the right-angled tearing method, the tear strength in the longitudinal direction and the transverse direction was measured, and the minimum value was determined and evaluated as follows. ⁇ : 10 MPa or more ⁇ : 5 MPa or more, less than 10 MPa ⁇ : less than 5 MPa
  • ⁇ Appearance> The appearance of the food pack was evaluated according to the following criteria, with 1) whitening due to surface roughness, 2) transfer of dirt such as molds, and 3) raindrops as defects.
  • ⁇ Microwave heating resistance> Nine points of mayonnaise are attached to the center of the lid of the above food pack in a range of 5 mm ⁇ 5 mm, put 300 g of water into the container body, cover the lid container and heat for 90 seconds in a 1500 W microwave oven, The state was visually evaluated. ⁇ : No change ⁇ : Whitening occurred, container slightly deformed ⁇ : Perforated, container deformed significantly
  • Examples 1 to 58 all satisfy the provisions of the present invention, and film forming properties (drawdown, thickness uniformity, appearance, stretch uniformity), transparency ( Haze), sheet strength (tear strength, folding resistance), moldability (formability, appearance, crack resistance during trimming (pullability)), heat resistance (thermal deformation rate, resistance to microwave heating), lubricity In any performance of (friction angle), it had excellent performance.
  • Comparative Example 1 has a low Vicat softening temperature due to a low content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-2), and is inferior in thermal deformation rate and resistance to microwave heating. It was a thing.
  • the content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-8) is large, resulting in poor thickness uniformity, appearance, and moldability during film formation. It was.
  • the content of high impact polystyrene (B) was large, the content of the rubber component in the styrene resin composition was large, and the appearance and transparency during film formation were poor.
  • Comparative Example 4 does not contain high impact polystyrene (B), does not contain a rubber component in the styrene resin composition, has sheet strength (tear strength, folding resistance), cracking resistance during trimming, sliding It was inferior in nature.
  • Comparative Example 5 the content of the methacrylic acid monomer unit in the styrene-methacrylic acid copolymer (A-25) is relatively small, and further, since butadiene is included as the copolymerization monomer, the Vicat softening temperature is low, It was inferior in heat distortion rate and microwave oven heat resistance.
  • Comparative Example 6 has a relatively high content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-26), and further contains maleic anhydride as a copolymerization monomer. It was high and inferior in formability.
  • Comparative Example 7 had a high orientation relaxation stress in the lateral direction, and was inferior in tear strength, moldability, and crack resistance during trimming.
  • Comparative Example 8 both the longitudinal and lateral orientation relaxation stresses were low, and the folding resistance and the crack resistance during trimming were inferior. In Comparative Example 9, both the longitudinal and lateral orientation relaxation stresses were high, and the moldability was inferior. Comparative Example 10 had a low orientational relaxation stress in the lateral direction, and was inferior in tear strength and crack resistance during trimming.

Abstract

Provided are: a biaxially-oriented sheet that comprises a styrene resin composition and has excellent transparency, strength, heat resistance, film forming properties, and formability during secondary molding, as well as superior resistance to cracking during trimming; and a molded article of the biaxially-oriented sheet. The biaxially-oriented sheet comprises a styrene resin composition that includes a styrene-methacrylic acid copolymer (A) and a high impact polystyrene (B) in a mass ratio (A)/(B) of 97.0/3.0 to 99.9/0.1, wherein the content of a methacrylic acid monomer unit in the styrene-methacrylic acid copolymer (A) is 3–14 mass%, the Vicat softening temperature of the styrene resin composition is in the range of 106–132°C, and the orientation release stress in both the longitudinal direction and the transverse direction of the biaxially-oriented sheet is 0.5–1.2 MPa. The molded article is a molded article of said biaxially-oriented sheet.

Description

二軸延伸シートおよびその成形品Biaxially stretched sheet and molded product thereof
 本発明は、電子レンジで加熱する食品の包装容器の用途に好適に用いることができるスチレン系樹脂組成物からなる二軸延伸シートおよびその成形品に関するものである。 The present invention relates to a biaxially stretched sheet comprising a styrenic resin composition that can be suitably used for food packaging containers heated in a microwave oven, and a molded product thereof.
 ポリスチレンの二軸延伸シートは、その透明性、剛性に優れることから、型成形されて主に軽量容器等の成形品に大量に使用されている。しかしながら、これらの容器は、耐熱性に劣ることから、沸騰水に直接接触する用途や、電子レンジで加熱する用途へはあまり使用されていない。そこで、原料であるポリスチレンに耐熱性を付与する試みがなされてきた。耐熱性を向上させたポリスチレンとしては、例えば、スチレン-アクリル酸共重合体またはスチレン-メタクリル酸共重合体(特許文献1、特許文献2)、スチレン-無水マレイン酸共重合体(特許文献3、特許文献4)が挙げられる。これらは一般的にスチレン系耐熱性樹脂として知られており、透明性、剛性を損なわずに耐熱性を向上させている。 Polystyrene biaxially stretched sheets are excellent in transparency and rigidity, and thus are molded and used mainly in molded products such as lightweight containers. However, since these containers are inferior in heat resistance, they are rarely used for applications that directly contact boiling water or those that are heated in a microwave oven. Thus, attempts have been made to impart heat resistance to polystyrene as a raw material. Examples of polystyrene having improved heat resistance include styrene-acrylic acid copolymer or styrene-methacrylic acid copolymer (Patent Document 1, Patent Document 2), styrene-maleic anhydride copolymer (Patent Document 3, Patent document 4) is mentioned. These are generally known as styrenic heat-resistant resins, and improve heat resistance without impairing transparency and rigidity.
 スチレン系耐熱性樹脂を二軸延伸してシート化することにより、耐熱性に優れたシートを用いた成形品を得る技術が検討されてきた(特許文献2、特許文献4)。
 しかし、スチレン系耐熱性樹脂は通常のポリスチレンよりも溶融押出時の流動性が低く、樹脂の生産能力やシートの生産能力を上げることが難しい。スチレン系耐熱性樹脂の流動性を上げるためには、押出温度を高くする方法が考えられるが、高温ではスチレン系耐熱性樹脂中のカルボン酸基が反応し、ゲル状の異物となってシートの品質低下を招くという問題点を有している。
A technique for obtaining a molded article using a sheet having excellent heat resistance by biaxially stretching a styrene-based heat resistant resin into a sheet has been studied (Patent Documents 2 and 4).
However, styrenic heat-resistant resins have lower fluidity during melt extrusion than ordinary polystyrene, and it is difficult to increase the resin production capacity and sheet production capacity. In order to increase the fluidity of the styrenic heat-resistant resin, a method of increasing the extrusion temperature is conceivable. However, at high temperatures, the carboxylic acid groups in the styrenic heat-resistant resin react to form a gel-like foreign material, and the sheet There is a problem that the quality deteriorates.
 そこで、スチレン系耐熱性樹脂の流動性を向上する試みがなされてきた。スチレン系耐熱性樹脂の流動性を上げる方法として、例えば、流動パラフィンなどの可塑剤を添加する方法が存在する。また、上記ゲル化を抑制する方法として、カルボン酸基の反応阻害効果のあるアルコールを添加する方法(特許文献5)が挙げられる。しかし、これら添加剤を含有するシートは、透明性が低かったり、成形時の熱でブリードアウトするなどして成形品の品質低下を招きやすい。 Therefore, attempts have been made to improve the fluidity of styrene-based heat-resistant resins. As a method for increasing the fluidity of the styrene-based heat resistant resin, for example, there is a method of adding a plasticizer such as liquid paraffin. Moreover, as a method for suppressing the gelation, a method of adding an alcohol having an effect of inhibiting the reaction of carboxylic acid groups (Patent Document 5) can be mentioned. However, a sheet containing these additives is low in transparency, and tends to cause deterioration in the quality of a molded product due to bleeding out due to heat during molding.
 また、スチレン系耐熱性樹脂の二軸延伸シートは耐割れ性に乏しく、シートを二次成形する際に、型抜き不良や抜き粉の発生によって成形品の品質が低下するという問題点を有している。
 さらに、近年需要が拡大している電子レンジ用容器の蓋材は、加熱時に内容物を漏れにくくするため、蓋と本体を隙間なく嵌め合わることができて、かつ蓋が内側である形状、いわゆる内嵌合蓋であることが多い。スチレン系耐熱性樹脂の二軸延伸シートからなる内嵌合蓋は、蓋を閉めたときに嵌合部が割れやすいという問題点を有している。
In addition, biaxially stretched sheets of styrenic heat-resistant resin have poor crack resistance, and have the problem that the quality of the molded product deteriorates due to defective die-cutting or generation of powder when secondary forming the sheet. ing.
Furthermore, in order to make it difficult for the contents of the lid for the microwave oven container to leak during heating, the shape of the lid and the body can be fitted together without any gap, and the lid is on the inside, It is often a so-called inner fitting lid. An inner fitting lid made of a biaxially stretched sheet of styrene-based heat-resistant resin has a problem that the fitting portion is easily broken when the lid is closed.
 また、内嵌合蓋には、蓋を閉じる時に空気を逃がすための通気弁を設けることが普通であり、この通気弁は電子レンジ加熱時に発生する蒸気を逃がす役目も持っている。成形品にこのような通気弁を設けるためには、通常、抜き刃を用いて穴を開ける必要がある。しかし、スチレン系耐熱性樹脂の二軸延伸シートは、この工程において抜き粉の付着やひび割れが発生しやすい。
 このような理由から、スチレン系耐熱性樹脂の二軸延伸シートとしての透明性、強度、耐熱性、製膜性等の性能を保持しつつ、高い耐割れ性を有するシートが求められている。
Further, the inner fitting lid is usually provided with a ventilation valve for releasing air when the lid is closed, and this ventilation valve also has a function of releasing steam generated during heating of the microwave oven. In order to provide such a vent valve in a molded product, it is usually necessary to make a hole using a punching blade. However, biaxially stretched sheets of styrenic heat-resistant resin are liable to cause powder adhesion and cracking in this step.
For these reasons, there is a demand for a sheet having high cracking resistance while maintaining performance such as transparency, strength, heat resistance, and film-forming property as a biaxially stretched sheet of a styrene-based heat resistant resin.
米国特許第3035033号公報US Patent No. 3035033 特開2003-12734公報JP 2003-12734 A 特公昭59-15133号公報Japanese Patent Publication No.59-15133 特開昭55-71530号公報JP-A-55-71530 特開2010-270179号公報JP 2010-270179 A
 本発明は、透明性、強度、耐熱性、製膜性、二次成形時の賦型性が良好で、トリミング時の耐割れ性に優れたスチレン系樹脂組成物からなる二軸延伸シートおよびその成形品を提供することを目的になされたものである。 The present invention is a biaxially stretched sheet comprising a styrene resin composition having excellent transparency, strength, heat resistance, film forming property, moldability during secondary molding, and excellent crack resistance during trimming, and It was made for the purpose of providing a molded article.
 本発明者らは、上記の課題を解決すべく、耐熱性および強度に優れたスチレン系樹脂を調査し、当該スチレン系樹脂への添加成分を調査し、さらに耐割れ性を向上させる延伸条件について鋭意検討を重ねた。その結果、使用するスチレン系樹脂を選定し、適当な組成のハイインパクトポリスチレンを所定量添加し、さらに延伸条件によって配向緩和応力を調整することよって、その目的が達成されることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors investigated a styrene resin excellent in heat resistance and strength, investigated an additive component to the styrene resin, and further about stretching conditions for improving crack resistance. We studied earnestly. As a result, it was found that the purpose is achieved by selecting a styrene resin to be used, adding a predetermined amount of high-impact polystyrene having an appropriate composition, and adjusting the orientation relaxation stress according to the stretching conditions. It came to complete.
 すなわち本発明は、以下のような構成を有している。
(1)スチレン-メタクリル酸共重合体(A)とハイインパクトポリスチレン(B)とを質量比(A)/(B)=97.0/3.0~99.9/0.1で含有するスチレン系樹脂組成物からなる二軸延伸シートであって、前記スチレン-メタクリル酸共重合体(A)のメタクリル酸単量体単位の含有量が3~14質量%であり、前記スチレン系樹脂組成物のビカット軟化温度が106~132℃の範囲であり、前記二軸延伸シートの縦方向と横方向の配向緩和応力がいずれも0.5~1.2MPaである二軸延伸シート。
That is, the present invention has the following configuration.
(1) Containing styrene-methacrylic acid copolymer (A) and high impact polystyrene (B) in a mass ratio (A) / (B) = 97.0 / 3.0 to 99.9 / 0.1 A biaxially stretched sheet comprising a styrene resin composition, wherein the styrene-methacrylic acid copolymer (A) has a methacrylic acid monomer unit content of 3 to 14% by mass, and the styrene resin composition A biaxially stretched sheet in which the Vicat softening temperature of the product is in the range of 106 to 132 ° C., and the orientation relaxation stress in the longitudinal direction and the transverse direction of the biaxially stretched sheet is 0.5 to 1.2 MPa.
(2)前記スチレン-メタクリル酸共重合体(A)は、重量平均分子量(Mw)が12万~25万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnが2.0~3.0であり、Z平均分子量(Mz)と重量平均分子量(Mw)との比Mz/Mwが1.5~2.0である前記(1)に記載の二軸延伸シート。 (2) The styrene-methacrylic acid copolymer (A) has a weight average molecular weight (Mw) of 120,000 to 250,000, and a ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn). Is 2.0 to 3.0, and the ratio Mz / Mw of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 1.5 to 2.0. Sheet.
(3)前記ハイインパクトポリスチレン(B)に由来するゴム成分の含有量が、前記スチレン系樹脂組成物に対して0.005~0.36質量%である前記(1)または前記(2)に記載の二軸延伸シート。 (3) In the above (1) or (2), the content of the rubber component derived from the high impact polystyrene (B) is 0.005 to 0.36% by mass with respect to the styrenic resin composition. The biaxially stretched sheet as described.
(4)前記スチレン系樹脂組成物中の未反応スチレンモノマーの含有量が1000ppm以下、未反応メタクリル酸モノマーの含有量が150ppm以下である前記(1)~(3)のいずれか1項に記載の二軸延伸シート。 (4) The content of the unreacted styrene monomer in the styrenic resin composition is 1000 ppm or less, and the content of the unreacted methacrylic acid monomer is 150 ppm or less. Biaxially stretched sheet.
(5)前記スチレン系樹脂組成物中の六員環酸無水物の含有量が1.0質量%以下である前記(1)~(4)のいずれか1項に記載の二軸延伸シート。 (5) The biaxially stretched sheet according to any one of (1) to (4), wherein the content of the six-membered cyclic acid anhydride in the styrene-based resin composition is 1.0% by mass or less.
(6)前記スチレン系樹脂組成物は、200℃におけるメルトフローインデックスが0.5~4.5g/10分である前記(1)~(5)のいずれか1項に記載の二軸延伸シート。 (6) The biaxially stretched sheet according to any one of (1) to (5), wherein the styrene-based resin composition has a melt flow index at 200 ° C. of 0.5 to 4.5 g / 10 minutes. .
(7)前記ハイインパクトポリスチレン(B)に由来するゴム成分が、平均ゴム粒子径1~9μmである前記(1)~(6)のいずれか1項に記載の二軸延伸シート。 (7) The biaxially stretched sheet according to any one of (1) to (6), wherein the rubber component derived from the high impact polystyrene (B) has an average rubber particle diameter of 1 to 9 μm.
(8)少なくとも一方の表面にシリコーンオイル塗膜を有する前記(1)~(7)のいずれか1項に記載の二軸延伸シート。 (8) The biaxially stretched sheet according to any one of (1) to (7), which has a silicone oil coating film on at least one surface.
(9)前記(1)~(8)のいずれか1項に記載の二軸延伸シートからなる成形品。 (9) A molded article comprising the biaxially stretched sheet according to any one of (1) to (8).
(10)電子レンジ加熱用食品包装容器である前記(9)に記載の成形品。 (10) The molded product according to (9), which is a food packaging container for heating in a microwave oven.
(11)本体部分と当該本体部分と嵌合可能な蓋材とからなるフードパックであり、嵌合部分の形状が内嵌合である前記(9)または前記(10)に記載の成形品。 (11) The molded article according to (9) or (10) above, which is a hood pack composed of a main body portion and a lid material that can be fitted to the main body portion, and the shape of the fitting portion is an inner fitting.
 本発明の二軸延伸シートおよびその成形品は、透明性、強度、耐熱性、製膜性、二次成形時の賦型性が良好で、トリミング時の耐割れ性に優れている。本発明の二軸延伸シートおよびその成形品は、電子レンジで加熱する食品の包装容器に好適に用いることができる。 The biaxially stretched sheet of the present invention and its molded product are excellent in transparency, strength, heat resistance, film-forming property, moldability during secondary molding, and excellent crack resistance during trimming. The biaxially stretched sheet and the molded product of the present invention can be suitably used for food packaging containers heated in a microwave oven.
 本発明の実施形態について以下説明する。但し、本発明の実施形態は、以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described below. However, embodiments of the present invention are not limited to the following embodiments.
 本発明の二軸延伸シートは、スチレン-メタクリル酸共重合体(A)とハイインパクトポリスチレン(B)とを特定の質量比で含有するスチレン系樹脂組成物からなる。本発明の二軸延伸シートは、前記スチレン系樹脂組成物を押出成形し、得られた未延伸シートを二軸延伸することによって得ることができる。以下、スチレン系樹脂組成物の各成分について説明する。 The biaxially stretched sheet of the present invention comprises a styrene resin composition containing a styrene-methacrylic acid copolymer (A) and a high impact polystyrene (B) at a specific mass ratio. The biaxially stretched sheet of the present invention can be obtained by extruding the styrene resin composition and biaxially stretching the obtained unstretched sheet. Hereinafter, each component of the styrene resin composition will be described.
(スチレン-メタクリル酸共重合体(A))
 本発明におけるスチレン系樹脂組成物は、スチレンとメタクリル酸とを共重合させてなるスチレン-メタクリル酸共重合体(A)を含有する。本発明に用いるスチレン-メタクリル酸共重合体(A)において、スチレンとメタクリル酸の共重合比率は、所望とする耐熱性と機械的強度等によって種々設定可能である。耐熱性、機械的強度、シートにしたときの透明性のバランスに優れた樹脂が容易に得られる点から、メタクリル酸単量体単位の含有量は3~14質量%とすることが必要である。メタクリル酸単量体単位の含有量が3質量%未満であると、耐熱性が不足し、また電子レンジ加熱時に穴あき、変形が起こり易くなる。メタクリル酸単量体単位の含有量は、好ましくは6質量%以上、さらに好ましくは8質量%以上である。一方、メタクリル酸単量体単位の含有量が14質量%を超えると、製膜時の流動性の低下、ゲル発生による外観低下が発生し易くなる。メタクリル酸単量体単位の含有量は、好ましくは12質量%以下、さらに好ましくは10質量%以下である。また、スチレン-メタクリル酸共重合体(A)は、必要に応じて、発明の効果を損なわない限りにおいて、スチレンとメタクリル酸以外の他のモノマーを適宜、共重合させてもよい。他のモノマーの含有率は10質量%以下であることが好ましく、より好ましくは5%質量以下、さらに好ましくは3質量%以下である。他のモノマーの含有率が10質量%を超えると、スチレンまたはメタクリル酸の比率が低下し、十分な透明性、機械的強度及び耐熱性が得られない場合がある。
(Styrene-methacrylic acid copolymer (A))
The styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid. In the styrene-methacrylic acid copolymer (A) used in the present invention, the copolymerization ratio of styrene and methacrylic acid can be variously set depending on the desired heat resistance and mechanical strength. The content of the methacrylic acid monomer unit needs to be 3 to 14% by mass from the viewpoint that a resin excellent in balance of heat resistance, mechanical strength, and transparency when formed into a sheet can be easily obtained. . When the content of the methacrylic acid monomer unit is less than 3% by mass, the heat resistance is insufficient, and holes are formed during the microwave heating, and deformation is likely to occur. The content of the methacrylic acid monomer unit is preferably 6% by mass or more, more preferably 8% by mass or more. On the other hand, when the content of the methacrylic acid monomer unit exceeds 14% by mass, fluidity during film formation and appearance deterioration due to gel generation are likely to occur. The content of the methacrylic acid monomer unit is preferably 12% by mass or less, more preferably 10% by mass or less. In addition, the styrene-methacrylic acid copolymer (A) may be appropriately copolymerized with other monomers other than styrene and methacrylic acid, if necessary, as long as the effects of the invention are not impaired. The content of other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the content of other monomers exceeds 10% by mass, the ratio of styrene or methacrylic acid decreases, and sufficient transparency, mechanical strength, and heat resistance may not be obtained.
 スチレン-メタクリル酸共重合体(A)の重量平均分子量(Mw)は、12万~25万であることが好ましく、より好ましくは14万~22万、さらに好ましくは15万~20万である。重量平均分子量が12万未満であると、シートのドローダウン、ネックインが発生するなどの製膜性の低下、延伸配向の不足、容器成形時の熱板接触による表面荒れが発生し易くなる。一方、重量平均分子量が25万を超えると、流動性低下による製膜時の厚みムラ、ダイラインなどのシート外観低下、容器成形時の賦型不良などが発生し易くなる。 The weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer (A) is preferably 120,000 to 250,000, more preferably 140,000 to 220,000, and even more preferably 150,000 to 200,000. When the weight average molecular weight is less than 120,000, the film tends to deteriorate due to film formation such as sheet drawdown and neck-in, insufficient stretch orientation, and contact with the hot plate during container molding. On the other hand, when the weight average molecular weight exceeds 250,000, unevenness in thickness at the time of film formation due to lowering of fluidity, deterioration of sheet appearance such as die lines, and poor molding at the time of container molding tend to occur.
 また、スチレン-メタクリル酸共重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnは、2.0~3.0であることが好ましく、より好ましくは2.2~2.8である。Mw/Mnが3.0を超えると、容器成形時の熱板接触による表面荒れが発生し易くなる。一方、Mw/Mnが2.0未満であると、流動性低下による製膜時の厚みムラや容器成形時の賦型不良が発生し易くなる。また、Z平均分子量(Mz)とMwとの比Mz/Mwは、1.5~2.0であることが好ましく、より好ましくは1.6~1.9である。Mz/Mwが1.5未満であると、シートのドローダウン、ネックインが発生するなどの製膜性の低下、延伸配向の不足が発生し易くなる。一方、Mz/Mwが2.0を超えると、流動性低下による製膜時の厚みムラやダイラインなどのシート外観低下が発生し易くなる。 The ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the styrene-methacrylic acid copolymer (A) is preferably 2.0 to 3.0, more preferably. 2.2 to 2.8. When Mw / Mn exceeds 3.0, surface roughness due to hot plate contact during container molding tends to occur. On the other hand, when Mw / Mn is less than 2.0, unevenness in thickness at the time of film formation due to a decrease in fluidity and molding failure at the time of container molding tend to occur. Further, the ratio Mz / Mw between the Z average molecular weight (Mz) and Mw is preferably 1.5 to 2.0, more preferably 1.6 to 1.9. When Mz / Mw is less than 1.5, the sheet is likely to be drawn down, necking-in and the like, and the film-forming property is lowered, and the stretch orientation is insufficient. On the other hand, when Mz / Mw exceeds 2.0, sheet appearance deterioration such as unevenness of thickness during film formation and die line due to decrease in fluidity is likely to occur.
 なお、上述の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)は、GPC測定にて、以下の方法にて単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
 機種:昭和電工株式会社製Shodex GPC-101
 カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED-B
 移動相:テトラヒドロフラン
 試料濃度:0.2質量%
 温度:オーブン40℃、注入口35℃、検出器35℃
 検出器:示差屈折計
The number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) described above are calculated by the GPC measurement and the molecular weight at each elution time from the elution curve of monodisperse polystyrene by the following method. And calculated as a molecular weight in terms of polystyrene.
Model: Shodex GPC-101 manufactured by Showa Denko KK
Column: PLgel 10 μm MIXED-B manufactured by Polymer Laboratories
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer
 スチレン-メタクリル酸共重合体(A)の重合方法としては、ポリスチレン等で工業化されている塊状重合法、溶液重合法、懸濁重合法等の公知の重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒としては例えば、ベンゼン、トルエン、エチルベンゼンおよびキシレン等のアルキルベンゼン類、アセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素類が使用できる。 Examples of the polymerization method of the styrene-methacrylic acid copolymer (A) include known polymerization methods such as a bulk polymerization method, a solution polymerization method, and a suspension polymerization method that are industrialized with polystyrene and the like. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable. As the solvent, for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used.
 スチレン-メタクリル酸共重合体(A)の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、有機過酸化物を使用することができる。有機過酸化物の具体例としては、過酸化ベンゾイル、t-ブチルパーオキシベンゾネート、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、t-ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)、エチル-3,3-ジ(t-ブチルパーオキシ)ブチレート、t-ブチルパーオキシイソブチレート等が挙げられる。連鎖移動剤の具体例としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマーおよびテルピノーレン等が挙げられる。 When the styrene-methacrylic acid copolymer (A) is polymerized, a polymerization initiator and a chain transfer agent can be used as necessary. An organic peroxide can be used as the polymerization initiator. Specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3. , 3,5-trimethylcyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, t-butylperoxyisopropyl carbonate, dicumyl peroxide, t-butylcumyl peroxide, t -Butyl peroxyacetate, t-butylperoxy-2-ethylhexanoate, polyether tetrakis (t-butylperoxycarbonate), ethyl-3,3-di (t-butylperoxy) butyrate, t-butyl Examples include peroxyisobutyrate. Specific examples of the chain transfer agent include aliphatic mercaptans, aromatic mercaptans, pentaphenylethane, α-methylstyrene dimer, terpinolene and the like.
(ハイインパクトポリスチレン(B))
 本発明におけるハイインパクトポリスチレン(B)は、粒子状のゴム成分が含まれるスチレン系樹脂であればよく、スチレンの単独重合体中にゴム成分が含まれているもの、スチレン-メタクリル酸共重合体中にゴム成分が含まれているもの等、いずれも好適に用いることができる。ゴム成分は、マトリックス樹脂となるポリスチレンやスチレン-メタクリル酸共重合体中に、独立して粒子状になって分散していてもよいし、ゴム成分にポリスチレンやスチレン-メタクリル酸共重合体がグラフト重合して粒子状に分散しているものであってもよい。
(High impact polystyrene (B))
The high impact polystyrene (B) in the present invention may be a styrene resin containing a particulate rubber component, and a styrene homopolymer containing a rubber component, a styrene-methacrylic acid copolymer Any of those containing a rubber component can be suitably used. The rubber component may be dispersed in the form of particles independently in the polystyrene or styrene-methacrylic acid copolymer used as the matrix resin, or the rubber component may be grafted with polystyrene or styrene-methacrylic acid copolymer. It may be polymerized and dispersed in the form of particles.
 ゴム成分としては、例えば、ポリブタジエン、スチレン-ブタジエン共重合体、ポリイソプレン、ブタジエン-イソプレン共重合体などが挙げられる。特に、ポリブタジエン、スチレン-ブタジエン共重合体として含まれていることが好ましい。 Examples of the rubber component include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, and the like. In particular, it is preferably contained as a polybutadiene or styrene-butadiene copolymer.
 ハイインパクトポリスチレン(B)は、例えば、スチレンとブタジエンとを共重合させてスチレン-ブタジエン共重合体を得たのち、スチレン単独、あるいは、スチレンとメタクリル酸との混合物に該共重合体を溶解させて重合を行うことにより、該共重合体が、連続層となるマトリックス樹脂(ポリスチレンあるいはスチレン-メタクリル酸)中に分散する粒子となるスチレン系樹脂として得ることができる。 For example, high impact polystyrene (B) is obtained by copolymerizing styrene and butadiene to obtain a styrene-butadiene copolymer, and then dissolving the copolymer in styrene alone or in a mixture of styrene and methacrylic acid. By performing polymerization, the copolymer can be obtained as a styrene resin that becomes particles dispersed in a matrix resin (polystyrene or styrene-methacrylic acid) that becomes a continuous layer.
 ハイインパクトポリスチレン(B)のゴム成分の含有量は、スチレン系樹脂組成物におけるゴム成分量を考慮して、例えば、5.0~12.0質量%であることが好ましい。 The content of the rubber component of the high impact polystyrene (B) is preferably, for example, 5.0 to 12.0% by mass in consideration of the amount of the rubber component in the styrene resin composition.
(スチレン系樹脂組成物)
 本発明におけるスチレン系樹脂組成物は、スチレン-メタクリル酸共重合体(A)とハイインパクトポリスチレン(B)とを質量比(A)/(B)=97.0/3.0~99.9/0.1で含有することが必要である。質量比(A)/(B)は、より好ましくは、99.0/1.0~99.5/0.5である。この質量比で混合することによって、得られるシートおよび成形品の透明性を維持することができると共に、シートトリミング時の破断や切粉の発生、成形品の型抜き不良や抜き粉の発生を起こりにくくすることができる。
(Styrenic resin composition)
In the styrene resin composition of the present invention, the styrene-methacrylic acid copolymer (A) and the high impact polystyrene (B) have a mass ratio (A) / (B) = 97.0 / 3.0 to 99.9. It is necessary to contain at /0.1. The mass ratio (A) / (B) is more preferably 99.0 / 1.0 to 99.5 / 0.5. By mixing at this mass ratio, it is possible to maintain the transparency of the obtained sheet and molded product, as well as breakage and generation of chips during sheet trimming, occurrence of defective mold release and generation of extracted powder. Can be difficult.
 スチレン系樹脂組成物中の未反応スチレンモノマーの含有量が1000ppm以下、未反応メタクリル酸モノマーの含有量が150ppm以下であることが好ましい。これらの未反応のモノマーの含有量が規定量よりも多いと、シート表面にブリードアウトしたり、押出機、延伸機のロールと接触した際に表面荒れや汚れを起こしやすい。また、シートを成形加工する際に成形加工機の金型等に付着して、成形品の外観を損ねたり、金型汚れを引き起こしてその後の成形品の外観を損なう懸念がある。
 なお、未反応スチレンモノマーおよび未反応メタクリル酸モノマーの定量は、下記記載のガスクロマトグラフィーを用いて、内部標準法にて測定した。
 装置名:GC-12A(島津製作所社製)
 カラム:ガラスカラム φ3[mm]×3[m]
 定量法:内部標準法(シクロペンタノール)
The content of unreacted styrene monomer in the styrene-based resin composition is preferably 1000 ppm or less, and the content of unreacted methacrylic acid monomer is preferably 150 ppm or less. If the content of these unreacted monomers is larger than the specified amount, the sheet surface tends to bleed out, or when it comes into contact with the roll of an extruder or stretching machine, surface roughness and dirt are likely to occur. Further, when the sheet is formed, there is a concern that it adheres to the mold or the like of the molding machine and damages the appearance of the molded product or causes the mold to become dirty, thereby damaging the appearance of the subsequent molded product.
The unreacted styrene monomer and unreacted methacrylic acid monomer were quantified by an internal standard method using gas chromatography described below.
Device name: GC-12A (manufactured by Shimadzu Corporation)
Column: Glass column φ3 [mm] x 3 [m]
Quantitative method: Internal standard method (cyclopentanol)
 また、スチレン-メタクリル酸共重合体(A)中に含まれる隣接する2つのメタクリル酸単量体単位が、高温、高真空の押出工程において、六員環酸無水物を形成する場合がある。この六員環酸無水物を多く含むスチレン系樹脂組成物は、シート化したときに透明なゲル状異物として顕在化し、シートの外観を損ねる恐れがある。そのため、スチレン系樹脂組成物中の六員環酸無水物の含有量は、1.0質量%以下であることが好ましい。
 なお、上記六員環酸無水物の含有量は、カーボン核磁気共鳴(13C-NMR)測定装置で測定したスペクトルの積分比から求めた。
In addition, two adjacent methacrylic acid monomer units contained in the styrene-methacrylic acid copolymer (A) may form a six-membered cyclic acid anhydride in an extrusion process at high temperature and high vacuum. The styrene-based resin composition containing a large amount of the six-membered cyclic acid anhydride is manifested as a transparent gel-like foreign material when formed into a sheet, which may impair the appearance of the sheet. Therefore, the content of the six-membered cyclic acid anhydride in the styrene resin composition is preferably 1.0% by mass or less.
The content of the six-membered cyclic acid anhydride was determined from the integral ratio of the spectrum measured with a carbon nuclear magnetic resonance ( 13 C-NMR) measuring device.
 スチレン系樹脂組成物は、ビカット軟化温度が106~132℃の範囲であることが必須である。ビカット軟化温度が106℃未満であると、シートの耐熱性が不足し、電子レンジ加熱時に変形が起こり易くなる。ビカット軟化温度は好ましくは112℃以上、さらに好ましくは116℃以上である。一方、ビカット軟化温度が132℃を超えると、製膜時および容器成形時の加工性が低下するおそれがある。ビカット軟化温度は好ましくは128℃以下、さらに好ましくは126℃以下である。なお、ビカット軟化温度は、JIS K-7206に準拠して、昇温速度50℃/hr、試験荷重50Nの条件で測定した。 The styrenic resin composition must have a Vicat softening temperature in the range of 106 to 132 ° C. When the Vicat softening temperature is less than 106 ° C., the heat resistance of the sheet is insufficient, and deformation easily occurs during heating in the microwave oven. The Vicat softening temperature is preferably 112 ° C or higher, more preferably 116 ° C or higher. On the other hand, if the Vicat softening temperature exceeds 132 ° C., the workability during film formation and container molding may be reduced. The Vicat softening temperature is preferably 128 ° C. or lower, more preferably 126 ° C. or lower. The Vicat softening temperature was measured in accordance with JIS K-7206 under conditions of a heating rate of 50 ° C./hr and a test load of 50 N.
 スチレン系樹脂組成物のメルトフローインデックス(MFI)は、製膜時のドローダウン、厚み均一性の観点から、0.5~4.5g/10分の範囲にあることが好ましく、より好ましくは0.9~3.6g/10分、さらには好ましくは1.3~2.7g/10分である。なお、メルトフローインデックス(MFI)は、JIS K7210のH条件(200℃、5kg)に従って測定した。 The melt flow index (MFI) of the styrenic resin composition is preferably in the range of 0.5 to 4.5 g / 10 minutes, more preferably 0 from the viewpoint of drawdown during film formation and thickness uniformity. 9.9 to 3.6 g / 10 min, more preferably 1.3 to 2.7 g / 10 min. The melt flow index (MFI) was measured according to JIS K7210 H condition (200 ° C., 5 kg).
 さらに、本発明におけるスチレン系樹脂組成物には、用途に応じて各種添加剤を配合してもよい。添加剤としては、例えば、酸化防止剤、ゲル化防止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、着色剤、帯電防止剤、難燃剤、鉱油等の添加剤、ガラス繊維、カーボン繊維およびアラミド繊維等の補強繊維、タルク、シリカ、マイカ、炭酸カルシウムなどの充填剤が挙げられる。また、上記スチレン系樹脂組成物をシート化したときの外観の観点から、酸化防止剤およびゲル化防止剤を単独または2種類以上を併用して配合することが好ましい。これらの添加剤は、スチレン-メタクリル酸共重合体(A)およびハイインパクトポリスチレン(B)の重合工程または脱揮工程、造粒工程にて添加しても良いし、スチレン系樹脂組成物を製造するときに添加しても良い。
 上記添加剤の添加量に制限はないが、スチレン系樹脂組成物のビカット軟化温度およびメルトフローインデックス(MFI)の範囲から外れないように添加することが好ましい。
Furthermore, you may mix | blend various additives with the styrene resin composition in this invention according to a use. Examples of additives include antioxidants, anti-gelling agents, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mineral oils, glass fibers, and carbon fibers. And reinforcing fibers such as aramid fibers, and fillers such as talc, silica, mica and calcium carbonate. Moreover, it is preferable to mix | blend antioxidant and an antigelling agent individually or in combination of 2 or more types from a viewpoint of the external appearance when the said styrene-type resin composition is sheeted. These additives may be added in the polymerization process or devolatilization process or granulation process of the styrene-methacrylic acid copolymer (A) and the high impact polystyrene (B), or a styrene resin composition is produced. You may add when you do.
Although there is no restriction | limiting in the addition amount of the said additive, It is preferable to add so that it may not remove from the range of the Vicat softening temperature and melt flow index (MFI) of a styrene-type resin composition.
 ゲル化防止剤は、メタクリル酸の脱水反応によるゲル化反応を抑制する効果を有する。ゲル化防止剤としては、例えば、脂肪族アルコール等が有効である。一般的な脂肪族アルコールとして、7-メチル-2-(3-メチルブチル)-1-オクタノール、5-メチル-2-(1-メチルブチル)-1-オクタノール、5-メチル-2-(3-メチルブチル)-1-オクタノール、2-ヘキシル-1-デカノール、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)-1-オクタノール、8-メチル-2-(4-メチルヘキシル)-1-デカノール、2-ヘプチル-1-ウンデカノール、2-ヘプチル-4メチル-1-デカノール、2-(1,5-ジメチルヘキシル)-(5,9-ジメチル)-1-デカノールなどが挙げられる。 The gelation inhibitor has an effect of suppressing the gelation reaction due to the dehydration reaction of methacrylic acid. As an anti-gelling agent, for example, an aliphatic alcohol is effective. Common aliphatic alcohols include 7-methyl-2- (3-methylbutyl) -1-octanol, 5-methyl-2- (1-methylbutyl) -1-octanol, 5-methyl-2- (3-methylbutyl ) -1-octanol, 2-hexyl-1-decanol, 5,7,7-trimethyl-2- (1,3,3-trimethylbutyl) -1-octanol, 8-methyl-2- (4-methylhexyl) ) -1-decanol, 2-heptyl-1-undecanol, 2-heptyl-4-methyl-1-decanol, 2- (1,5-dimethylhexyl)-(5,9-dimethyl) -1-decanol, etc. It is done.
 酸化防止剤としては、例えば、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチルテトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-t-ブチルフェノール)および1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノール系酸化防止剤、ジトリデシル-3,3’-チオジプロピオネート、ジラウリル-3,3’-チオジプロピオネート、ジテトラデシル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ジオクチル-3,3’-チオジプロピオネート等の硫黄系酸化防止剤、トリスノニルフェニルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルージートリデシル)ホスファイト、(トリデシル)ペンタエリスリトールジホスファイト、ビス(オクタデシル)ペンタエリスリトールジホスファイト、ビス(ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ジノニルフェニルオクチルホスフォナイト、テトラキス(2,4-ジ-t-ブチルフェニル)1,4-フェニレンージーホスフォナイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジ-ホスフォナイト、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン等の燐系酸化防止剤が挙げられる。 Examples of the antioxidant include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4 -Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-tert-butylphenol) and 1,3,5-trimethyl-2,4,6 -Phenolic antioxidants such as tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, ditridecyl-3,3'-thiodipropione Dilauryl-3,3′-thiodipropionate, ditetradecyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, dioctyl-3,3′-thiodipropionate Sulfur-based antioxidants such as trisnonylphenyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-ditridecyl) phosphite, (tridecyl) pentaerythritol diphosphite, bis (Octadecyl) pentaerythritol diphosphite, bis (di-tert-butylphenyl) pentaerythritol diphosphite, bis (di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, dinonylphenyloctylphosphonite Tetrakis (2,4-di-t-butylpheny ) 1,4-phenylene diphosphonite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene di-phosphonite, 10-decyloxy-9,10-dihydro-9-oxa Examples thereof include phosphorus-based antioxidants such as 10-phosphaphenanthrene.
(二軸延伸シート)
 本発明の二軸延伸シートは、次のような方法で製造することができる。まず、前記スチレン系樹脂組成物を押出機により溶融混練して、ダイ(特にTダイ)から押し出す。次に、縦方向(シート流れ方向、MD;Machine Direction)および横方向(シート流れ方向に垂直な方向、TD;Transverse Direction)の二軸方向に逐次又は同時で延伸することによって、二軸延伸シートが製造される。
(Biaxially stretched sheet)
The biaxially stretched sheet of the present invention can be produced by the following method. First, the styrene resin composition is melt-kneaded by an extruder and extruded from a die (particularly a T die). Next, the biaxially stretched sheet is stretched sequentially or simultaneously in the biaxial directions of the machine direction (sheet flow direction, MD; Machine Direction) and the transverse direction (direction perpendicular to the sheet flow direction, TD; Transverse Direction). Is manufactured.
 二軸延伸シートの厚みは、シートおよび容器の強度、特に剛性を確保するために、好ましくは0.1mm以上であり、より好ましくは0.15mm以上、さらに好ましくは0.2mm以上である。一方、賦型性および経済性の観点から、二軸延伸シートの厚みは、好ましくは0.7mm以下であり、より好ましくは0.6mm以下、さらに好ましくは0.5mm以下である。 The thickness of the biaxially stretched sheet is preferably 0.1 mm or more, more preferably 0.15 mm or more, and further preferably 0.2 mm or more in order to ensure the strength and particularly rigidity of the sheet and the container. On the other hand, from the viewpoints of formability and economy, the thickness of the biaxially stretched sheet is preferably 0.7 mm or less, more preferably 0.6 mm or less, and even more preferably 0.5 mm or less.
 二軸延伸シートの縦方向および横方向の延伸倍率はいずれも、1.8~3.2倍の範囲にあることが好ましい。延伸倍率が1.8倍未満では、シートの耐折性が低下し易い。一方、延伸倍率が3.2倍を超えると、熱成形時の収縮率が大きすぎることにより賦形性が損なわれるおそれがある。
 なお、本発明の延伸倍率の測定方法は、以下のとおりである。二軸延伸シートの試験片に対して、縦方向(MD)および横方向(TD)に100mm長の直線Yを引く。JIS K7206に準拠して測定したシートのビカット軟化温度より30℃高い温度のオーブンに、上記試験片を60分間静置し収縮させた後の、上記直線の長さZ[mm]を測定する。縦方向および横方向の延伸倍率(倍)は、それぞれ次式によって算出した数値である。
  延伸倍率(倍)=100/Z
The stretching ratio in the machine direction and the transverse direction of the biaxially stretched sheet is preferably in the range of 1.8 to 3.2 times. When the draw ratio is less than 1.8 times, the folding resistance of the sheet tends to decrease. On the other hand, when the draw ratio exceeds 3.2 times, there is a possibility that the shapeability may be impaired due to the excessive shrinkage during thermoforming.
In addition, the measuring method of the draw ratio of this invention is as follows. A straight line Y having a length of 100 mm is drawn in the machine direction (MD) and the transverse direction (TD) with respect to the test piece of the biaxially stretched sheet. The length Z [mm] of the straight line after the test piece is left to shrink for 60 minutes in an oven having a temperature 30 ° C. higher than the Vicat softening temperature of the sheet measured in accordance with JIS K7206 is measured. The draw ratio (times) in the machine direction and the transverse direction are numerical values calculated by the following equations, respectively.
Stretch ratio (times) = 100 / Z
 本発明の二軸延伸シートは、前記スチレン系樹脂組成物を二軸延伸することによって得ることができる。さらにシートおよび成形品の強度、特に耐割れ性を確保するために、シートの縦方向および横方向の配向緩和応力が0.5~1.2MPaの範囲を満足することが必要である。配向緩和応力が0.5MPa未満では、シートの耐割れ性を確保できず、トリミング工程での引き裂けや切粉の発生、容器の抜き工程での割れや抜き粉の発生が頻発し、シートおよび成形品の生産性を著しく損なう。一方、配向緩和応力が1.2MPaを超えると、シート延伸工程での安定延伸性と量産性の両立が難しくなるほか、容器成形時の賦形性が損なわれる。また、縦方向および横方向いずれかの配向緩和応力が上記の数値範囲から外れた場合には、より配向緩和応力が高い方向に引き裂けやすくなり、シートトリミング工程や容器の抜き工程でシートの破断が発生しやすくなる。
 なお、本発明の二軸延伸シートの配向緩和応力は、ASTM D1504に準じて、シートを構成する樹脂組成物のビカット軟化温度より30℃高い温度のシリコーンオイル中でのピーク応力値として測定した値である。
The biaxially stretched sheet of the present invention can be obtained by biaxially stretching the styrene resin composition. Furthermore, in order to ensure the strength of the sheet and the molded product, particularly crack resistance, it is necessary that the orientation relaxation stress in the longitudinal and lateral directions of the sheet satisfy the range of 0.5 to 1.2 MPa. If the orientation relaxation stress is less than 0.5 MPa, the crack resistance of the sheet cannot be ensured, tearing or chipping in the trimming process, cracking or chipping in the container punching process occur frequently, and sheet and molding The productivity of the product is significantly impaired. On the other hand, when the orientation relaxation stress exceeds 1.2 MPa, it becomes difficult to achieve both stable stretchability and mass productivity in the sheet stretching step, and shapeability at the time of container molding is impaired. In addition, if the orientation relaxation stress in either the longitudinal direction or the lateral direction is out of the above numerical range, it becomes easier to tear in the direction in which the orientation relaxation stress is higher, and the sheet breaks in the sheet trimming process or the container removal process. It tends to occur.
The orientation relaxation stress of the biaxially stretched sheet of the present invention is a value measured as a peak stress value in silicone oil at a temperature 30 ° C. higher than the Vicat softening temperature of the resin composition constituting the sheet according to ASTM D1504. It is.
 本発明におけるスチレン系樹脂組成物中のハイインパクトポリスチレン(B)に由来するゴム成分の含有量は、スチレン系樹脂組成物に対して0.005~0.36質量%であることが好ましい。二軸延伸シートのブロッキングを防止するためには、ゴム成分の含有量は0.005重量%以上であることが好ましい。0.010重量%以上がより好ましく、0.040重量%以上がさらに好ましい。一方、二軸延伸シートの透明性を保持するために、ゴム成分の含有量は0.36重量%以下が好ましい。0.24重量%以下がより好ましく、0.12重量%以下がさらに好ましい。スチレン系樹脂組成物中のゴム成分の含有量は、スチレン系樹脂組成物をクロロホルムに溶解し、一塩化ヨウ素を加えてゴム成分中の二重結合を反応させた後、ヨウ化カリウムを加え、残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定する一塩化ヨウ素法によって測定される。 The content of the rubber component derived from the high impact polystyrene (B) in the styrene resin composition in the present invention is preferably 0.005 to 0.36% by mass with respect to the styrene resin composition. In order to prevent blocking of the biaxially stretched sheet, the rubber component content is preferably 0.005% by weight or more. 0.010% by weight or more is more preferable, and 0.040% by weight or more is more preferable. On the other hand, the content of the rubber component is preferably 0.36% by weight or less in order to maintain the transparency of the biaxially stretched sheet. 0.24% by weight or less is more preferable, and 0.12% by weight or less is more preferable. The content of the rubber component in the styrene resin composition is obtained by dissolving the styrene resin composition in chloroform, adding iodine monochloride to react the double bond in the rubber component, adding potassium iodide, The remaining iodine monochloride is converted to iodine and measured by the iodine monochloride method in which back titration is performed with sodium thiosulfate.
 本発明の二軸延伸シート中のハイインパクトポリスチレン(B)に由来するゴム成分の平均ゴム粒子径は、1~9μmであることが好ましい。ゴム成分の平均ゴム粒子径は、シートのブロッキングを防止するために、1μm以上であることが好ましい。一方、ゴム成分の平均ゴム粒子径は、二軸延伸シートの透明性を保持するために、9μm以下であることが好ましい。
 二軸延伸シート中のゴム成分の平均ゴム粒子径は、超薄切片法にて観察面がシート平面と平行方向となるように切削し、四酸化オスミウム(OsO)でゴム成分を染色した後、透過型顕微鏡にて粒子100個の粒子径を測定し、以下の式により算出した値である。
 平均ゴム粒子径=Σni(Di)/Σni(Di)
 ここで、niは測定個数、Diは測定した粒子径を示す。
The average rubber particle diameter of the rubber component derived from the high impact polystyrene (B) in the biaxially stretched sheet of the present invention is preferably 1 to 9 μm. The average rubber particle size of the rubber component is preferably 1 μm or more in order to prevent blocking of the sheet. On the other hand, the average rubber particle diameter of the rubber component is preferably 9 μm or less in order to maintain the transparency of the biaxially stretched sheet.
The average rubber particle size of the rubber component in the biaxially stretched sheet is cut by an ultrathin section method so that the observation surface is parallel to the sheet plane, and the rubber component is dyed with osmium tetroxide (OsO 4 ). The particle diameter of 100 particles is measured with a transmission microscope, and is a value calculated by the following equation.
Average rubber particle size = Σni (Di) 4 / Σni (Di) 3
Here, ni represents the number of measured particles, and Di represents the measured particle size.
 本発明の二軸延伸シートには、公知の離型剤・剥離剤(例えばシリコーンオイル)、防曇剤(例えばショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル等のノニオン系界面活性剤、ポリエーテル変性シリコーンオイル、二酸化珪素等)、帯電防止剤(例えば各種ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等)の内の1種または2種以上を混合して、シートの少なくとも一方の表面に塗布してもよい。特に、シートおよび成形品の剥離性の面から、本発明の二軸延伸シートは、その少なくとも一方の表面にシリコーンオイルの塗膜を有することが好ましい。 The biaxially stretched sheet of the present invention includes known release agents / release agents (for example, silicone oil), antifogging agents (for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.) and an antistatic agent (for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.) and at least one of the sheets is mixed. You may apply to the surface of. In particular, the biaxially stretched sheet of the present invention preferably has a silicone oil coating on at least one surface in terms of the peelability of the sheet and the molded product.
 本発明の離型剤・剥離剤として使用するシリコーンオイルとしては、この種の離型剤として公知の、例えば、メチル水素ポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等が挙げられる。また、前記シリコーンオイルに一部官能基を導入した変性体、例えば、ポリエーテル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、フッ素変性シリコーンオイル等を用いても良い。これらの中で、離型性、匂いおよび経済性等の点から、ジメチルポリシロキサンが特に好ましい。 Examples of the silicone oil used as the release agent / release agent of the present invention include, for example, methyl hydrogen polysiloxane, dimethyl polysiloxane, methylphenyl polysiloxane, diphenyl polysiloxane and the like known as this type of release agent. . Further, a modified product in which a functional group is partially introduced into the silicone oil, for example, a polyether-modified silicone oil, an amino-modified silicone oil, an epoxy-modified silicone oil, a carboxyl-modified silicone oil, a fluorine-modified silicone oil, or the like may be used. Among these, dimethylpolysiloxane is particularly preferable from the viewpoints of releasability, odor and economy.
 これら塗工剤を二軸延伸シートに塗工する方法は特に限定されることはなく、簡便にはロールコーター、ナイフコーター、グラビアロールコーター等を用い塗工する方法が挙げられる。また、噴霧、浸漬等を採用することも出来る。 The method for coating these coating agents on the biaxially stretched sheet is not particularly limited, and a method of coating using a roll coater, a knife coater, a gravure roll coater or the like can be simply mentioned. Moreover, spraying, immersion, etc. can also be employ | adopted.
 本発明の二軸延伸シートから成形品を得る方法としては、特に制限はなく、従来の二軸延伸シートの二次成形方法において慣用されている方法を用いることができる。例えば、真空成形法や圧空成形法等の熱成形方法によって二次成形を行うことができる。これらの方法は例えば高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社(1995)に記載されている。 The method for obtaining a molded product from the biaxially stretched sheet of the present invention is not particularly limited, and a method commonly used in the conventional secondary molding method of a biaxially stretched sheet can be used. For example, the secondary molding can be performed by a thermoforming method such as a vacuum forming method or a pressure forming method. These methods are described in, for example, “Plastic Processing Technology Handbook” edited by the Society of Polymer Science, Nikkan Kogyo Shimbun (1995).
 本発明の二軸延伸シートの成形品の用途としては、各種の容器があり、各種物品の包装容器等に広く用いることができる。中でも、電子レンジ加熱用食品包装容器等が本発明の特徴が十分に発揮されるため、好ましい。また、本体部分と当該本体部分と嵌合可能な蓋材とからなるフードパックであって、嵌合部分の形状が内嵌合である成形品は、本発明の優れた耐割れ性が一層生かされるため、特に好ましい。 The use of the molded product of the biaxially stretched sheet of the present invention includes various containers and can be widely used for packaging containers for various articles. Among these, a food packaging container for heating a microwave oven is preferable because the features of the present invention are sufficiently exhibited. In addition, a molded product having a main body portion and a lid material that can be fitted to the main body portion, the shape of the fitting portion being an internal fitting, is further enhanced by the excellent crack resistance of the present invention. Therefore, it is particularly preferable.
 以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the embodiment of the present invention will be described more specifically using examples and comparative examples, but the present invention is not limited to these examples.
(実験例1)[スチレン-メタクリル酸共重合体(A-1)の製造]
 内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビ二ルアルコール100gを加え、130rpmで攪拌した。続いてスチレン72.0kg、メタクリル酸8.0kgおよびt-ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。さらに140℃で3時間保持し、重合を完結させた(ステップ2)。得られたビーズを洗浄、脱水、乾燥した後、押出し、表1に記載のペレット状のスチレン-メタクリル酸共重合体(A-1)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/メタクリル酸単量体単位の質量比は90/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 1) [Production of styrene-methacrylic acid copolymer (A-1)]
100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and stirred at 130 rpm. Subsequently, 72.0 kg of styrene, 8.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was carried out for 5 hours (Step 1). Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 2). The obtained beads were washed, dehydrated, dried and then extruded to obtain pellet-shaped styrene-methacrylic acid copolymer (A-1) shown in Table 1. As a result of analysis using pyrolysis gas chromatography, the mass ratio of styrene monomer unit / methacrylic acid monomer unit was 90/10. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
(実験例2~20)[スチレン-メタクリル酸共重合体(A-2~20)の製造]
 実験例1の各種原料仕込み量を調整し、表1、表2に記載の各種スチレン-メタクリル酸共重合体(A-2~20)を得た。
(Experimental Examples 2 to 20) [Production of styrene-methacrylic acid copolymer (A-2 to 20)]
Various raw material charges in Experimental Example 1 were adjusted to obtain various styrene-methacrylic acid copolymers (A-2 to 20) shown in Tables 1 and 2.
(実験例21)[スチレン-メタクリル酸共重合体(A-21)の製造]
 内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビ二ルアルコール100gを加え、130rpmで攪拌した。続いてスチレン64.0kg、ブタジエン4.0kg、メタクリル酸8.0kgおよびt-ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。さらに140℃で3時間保持し、重合を完結させた(ステップ2)。得られたビーズを実験例1と同様の方法でペレット化して、スチレン-メタクリル酸共重合体(A-21)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/ブタジエン単量体単位/メタクリル酸単量体単位の質量比は、85/5/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 21) [Production of styrene-methacrylic acid copolymer (A-21)]
100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and stirred at 130 rpm. Subsequently, 64.0 kg of styrene, 4.0 kg of butadiene, 8.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was carried out for 5 hours (Step 1). . Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 2). The obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-21). As a result of analysis using pyrolysis gas chromatography, the mass ratio of styrene monomer unit / butadiene monomer unit / methacrylic acid monomer unit was 85/5/10. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
(実験例22)[スチレン-メタクリル酸共重合体(A-22)の製造]
 内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビ二ルアルコール100gを加え、130rpmで攪拌した。続いてスチレン64.0kg、無水マレイン酸4.0kg、メタクリル酸8.0kgおよびt-ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。さらに140℃で3時間保持し、重合を完結させた(ステップ2)。得られたビーズを実験例1と同様の方法でペレット化して、スチレン-メタクリル酸共重合体(A-22)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/無水マレイン酸単量体単位/メタクリル酸単量体単位の質量比は、85/5/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 22) [Production of styrene-methacrylic acid copolymer (A-22)]
100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and stirred at 130 rpm. Subsequently, 64.0 kg of styrene, 4.0 kg of maleic anhydride, 8.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was carried out for 5 hours (step 1). Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 2). The obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-22). As a result of analysis using pyrolysis gas chromatography, the mass ratio of styrene monomer unit / maleic anhydride monomer unit / methacrylic acid monomer unit was 85/5/10. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
(実験例23)[スチレン-メタクリル酸共重合体(A-23)の製造]
 内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビ二ルアルコール100gを加え、130rpmで攪拌した。続いてスチレン64.0kg、メタクリル酸メチル4.0kg、メタクリル酸8.0kgおよびt-ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。さらに140℃で3時間保持し、重合を完結させた(ステップ2)。得られたビーズを実験例1と同様の方法でペレット化して、スチレン-メタクリル酸共重合体(A-23)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/メタクリル酸メチル単量体単位/メタクリル酸単量体単位の質量比は、85/5/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 23) [Production of styrene-methacrylic acid copolymer (A-23)]
100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and stirred at 130 rpm. Subsequently, 64.0 kg of styrene, 4.0 kg of methyl methacrylate, 8.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was performed for 5 hours (Step). 1). Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 2). The obtained beads were pelletized by the same method as in Experimental Example 1 to obtain a styrene-methacrylic acid copolymer (A-23). As a result of analysis using pyrolysis gas chromatography, the mass ratio of styrene monomer unit / methyl methacrylate monomer unit / methacrylic acid monomer unit was 85/5/10. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
(実験例24)[スチレン-メタクリル酸共重合体(A-24)の製造]
 実施例1と同様の配合および重合方法にて重合を実施した。得られたビーズを洗浄、脱水、乾燥した後、得られたスチレン-メタクリル酸共重合体100質量部に対して流動パラフィン(モービル石油社製「ホワイトレックス335」)を1質量部添加して押出し、表2に記載のペレット状のスチレン-メタクリル酸共重合体(A-24)を得た。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 24) [Production of styrene-methacrylic acid copolymer (A-24)]
Polymerization was carried out by the same formulation and polymerization method as in Example 1. After washing, dehydrating and drying the obtained beads, 1 part by mass of liquid paraffin (“White Rex 335” manufactured by Mobil Petroleum) was added to 100 parts by mass of the resulting styrene-methacrylic acid copolymer and extruded. The pellet-shaped styrene-methacrylic acid copolymer (A-24) shown in Table 2 was obtained. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
(実験例25)[スチレン-メタクリル酸共重合体(A-25)の製造]
スチレン75.2kg、ブタジエン2.4kg、メタクリル酸2.4kgとした以外は実験例21と同様の配合および重合方法にて重合を実施して、スチレン-メタクリル酸共重合体(A-25)を得た。
(Experimental example 25) [Production of styrene-methacrylic acid copolymer (A-25)]
Polymerization was carried out by the same blending and polymerization method as in Experimental Example 21 except that 75.2 kg of styrene, 2.4 kg of butadiene and 2.4 kg of methacrylic acid were used, and a styrene-methacrylic acid copolymer (A-25) was obtained. Obtained.
(実験例26)[スチレン-メタクリル酸共重合体(A-26)の製造]
スチレン66.4kg、無水マレイン酸2.4kg、メタクリル酸11.2kgとした以外は実験例22と同様の配合および重合方法にて重合を実施して、スチレン-メタクリル酸共重合体(A-26)を得た。
Experimental Example 26 [Production of styrene-methacrylic acid copolymer (A-26)]
Polymerization was carried out by the same composition and polymerization method as in Experimental Example 22 except that 66.4 kg of styrene, 2.4 kg of maleic anhydride and 11.2 kg of methacrylic acid were used, and a styrene-methacrylic acid copolymer (A-26) was obtained. )
(実験例27)[ハイインパクトポリスチレン(B-1)の製造]
 ゴム状重合体として5.5質量%のローシスポリブタジエンゴム(旭化成製、商品名ジエン55AS)を使用し、89.5質量%のスチレンと、溶剤として5.0質量%のエチルベンゼンに溶解して重合原料とした。また、ゴムの酸化防止剤(チバガイギー製、商品名イルガノックス1076)0.1質量部を添加した。この重合原料を翼径0.285mの錨型撹拌翼を備えた14リットルのジャケット付き反応器(R-01)に12.5kg/hrで供給した。反応温度は140℃、回転数は2.17sec-1で反応させた。得られた樹脂液を直列に配置した2基の内容積21リットルのジャケット付きプラグフロー型反応器に導入した。1基目のプラグフロー型反応器(R-02)では、反応温度が樹脂液の流れ方向に120~140℃、2基目のプラグフロー型反応器(R-03)では、反応温度が樹脂液の流れ方向に130~160℃の勾配を持つようにジャケット温度を調整した。R-01出口での樹脂率は25%、R-02出口での樹脂率は50%であった。得られた樹脂液は230℃に加熱後、真空度5torrの脱揮槽に送られ、未反応モノマー、溶剤を分離・回収した。その後、脱揮槽からギヤポンプで抜き出し、ダイプレートを通してストランドとした後、水槽にて冷却したのち、ペレタイザーを通してペレット化し、製品として回収し、表3に記載のハイインパクトポリスチレン(B-1)を得た。得られた樹脂(B-1)の樹脂率は70%であった。ここで、樹脂率とは、下記式によって算出される。
 樹脂率(%)=100×(生成したポリマー量)/{(仕込んだモノマー量)+(溶剤量)}
 また、得られた樹脂(B-1)中のゴム成分含有量は8.0質量%、ゴム成分の平均ゴム粒子径は2.0μmであった。
(Experimental example 27) [Production of high impact polystyrene (B-1)]
Using 5.5% by mass low-cis polybutadiene rubber (product name: Diene 55AS, manufactured by Asahi Kasei) as a rubbery polymer, dissolved in 89.5% by mass of styrene and 5.0% by mass of ethylbenzene as a solvent. A polymerization raw material was used. Moreover, 0.1 mass part of antioxidant (made by Ciba Geigy, trade name Irganox 1076) of rubber was added. This polymerization raw material was supplied at 12.5 kg / hr to a 14-liter jacketed reactor (R-01) equipped with a vertical stirring blade having a blade diameter of 0.285 m. The reaction was carried out at a reaction temperature of 140 ° C. and a rotation speed of 2.17 sec −1 . The obtained resin solution was introduced into two jacketed plug flow reactors having an internal volume of 21 liters arranged in series. In the first plug flow reactor (R-02), the reaction temperature is 120 to 140 ° C. in the flow direction of the resin liquid. In the second plug flow reactor (R-03), the reaction temperature is resin. The jacket temperature was adjusted to have a gradient of 130 to 160 ° C. in the liquid flow direction. The resin ratio at the R-01 outlet was 25%, and the resin ratio at the R-02 outlet was 50%. The obtained resin liquid was heated to 230 ° C. and then sent to a devolatilization tank having a vacuum degree of 5 torr to separate and recover unreacted monomers and solvents. After that, it was extracted from the devolatilization tank with a gear pump, turned into a strand through a die plate, cooled in a water tank, pelletized through a pelletizer, and recovered as a product to obtain high impact polystyrene (B-1) shown in Table 3 It was. The resin ratio of the obtained resin (B-1) was 70%. Here, the resin rate is calculated by the following formula.
Resin ratio (%) = 100 × (Amount of polymer produced) / {(Amount of monomer charged) + (Amount of solvent)}
Further, the rubber component content in the obtained resin (B-1) was 8.0% by mass, and the average rubber particle size of the rubber component was 2.0 μm.
(実験例28~36)[ハイインパクトポリスチレン(B-2~10)の製造]
 実験例27の各種原料仕込み量を調整し、表3に記載の各種ハイインパクトポリスチレン(B-2~10)を得た。
(Experimental examples 28 to 36) [Production of high impact polystyrene (B-2 to 10)]
Various raw material charges in Experimental Example 27 were adjusted to obtain various high impact polystyrenes (B-2 to 10) shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1>
 実験例1のスチレン-メタクリル酸共重合体(A-1)99.0質量%と実験例25のハイインパクトポリスチレン(B-1)1.0質量%をハンドブレンドし、ペレット押出機(真空ベント付き二軸同方向押出機 TEM35B (東芝機械製))を用い、押出温度230℃、回転数250rpm、真空ベントのゲージ圧力-760mmHgにてダイプレートを通してストランドとした後、水槽にて冷却したのち、ペレタイザーを通してペレット化し、樹脂組成物を得た。なお、真空ベントのゲージ圧力は、常圧に対する差圧値として示した。得られた樹脂組成物中の未反応スチレンモノマーの含有量は500ppm、未反応メタクリル酸モノマーの含有量は50ppm、スチレン-メタクリル酸共重合体(A-1)由来の六員環酸無水物の含有量は0.5質量%であった。また、昇温速度50℃/hr、試験荷重50Nにおけるビカット軟化温度は120℃、JIS K7210のH条件(200℃、5kg)におけるメルトフローインデックス(MFI)は1.8g/10minであった。上記樹脂組成物をシート押出機(Tダイ幅500mm、リップ開度1.5mm、φ40mmのエキストルーダー(田辺プラスチック機械社製))を用い、押出温度230℃、吐出量20kg/hにて未延伸シートを得た。このシートをバッチ式二軸延伸機(東洋精機)で(ビカット軟化温度+30)℃に予熱し、歪み速度0.1/secでMD方向2.4倍、TD方向2.4倍(面倍率5.8倍)に延伸し、表1に記載の二軸延伸シートを得た。得られたシートの厚みは0.25mm、得られたシートの配向緩和応力(縦方向/横方向)は0.7/0.7MPaであった。また、シート中のゴム成分含有量は0.080質量%、ゴム成分の平均ゴム粒子径は5.0μmであった。得られたシートの両面に、バーコーターにてシリコーンエマルジョン(TSM6343(Momentive Performance Materials.inc社製))を塗布し、105℃のオーブンにて1分間乾燥させ、表4に記載の二軸延伸シートを得た。
<Example 1>
99.0% by mass of the styrene-methacrylic acid copolymer (A-1) of Experimental Example 1 and 1.0% by mass of the high impact polystyrene (B-1) of Experimental Example 25 were hand blended, and a pellet extruder (vacuum vent) Using a twin-screw co-directional extruder TEM35B (manufactured by Toshiba Machine) with a extrusion temperature of 230 ° C., a rotational speed of 250 rpm, and a vacuum vent gauge pressure of −760 mmHg, the strand is passed through a die plate, and then cooled in a water bath. Pelletized through a pelletizer to obtain a resin composition. The gauge pressure of the vacuum vent is shown as a differential pressure value with respect to normal pressure. The content of the unreacted styrene monomer in the obtained resin composition was 500 ppm, the content of the unreacted methacrylic acid monomer was 50 ppm, and the six-membered cyclic acid anhydride derived from the styrene-methacrylic acid copolymer (A-1) The content was 0.5% by mass. Further, the Vicat softening temperature at a heating rate of 50 ° C./hr, a test load of 50 N was 120 ° C., and the melt flow index (MFI) under JIS K7210 H condition (200 ° C., 5 kg) was 1.8 g / 10 min. The above resin composition was unstretched using a sheet extruder (T-die width 500 mm, lip opening 1.5 mm, φ40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd.)) at an extrusion temperature of 230 ° C. and a discharge rate of 20 kg / h. A sheet was obtained. This sheet is preheated to (Vicat softening temperature +30) ° C. with a batch type biaxial stretching machine (Toyo Seiki), and the strain rate is 0.1 / sec. The MD direction is 2.4 times and the TD direction is 2.4 times (surface magnification 5). .8 times) to obtain a biaxially stretched sheet shown in Table 1. The thickness of the obtained sheet was 0.25 mm, and the orientation relaxation stress (longitudinal / lateral) of the obtained sheet was 0.7 / 0.7 MPa. The rubber component content in the sheet was 0.080% by mass, and the average rubber particle size of the rubber component was 5.0 μm. A silicone emulsion (TSM6343 (manufactured by Momentive Performance Materials. Inc.)) was applied to both sides of the obtained sheet with a bar coater, dried in an oven at 105 ° C. for 1 minute, and the biaxially stretched sheet described in Table 4 Got.
<実施例2~58、比較例1~10>
 実施例1のスチレン-メタクリル酸共重合体(A)およびハイインパクトポリスチレン(B)の配合量、樹脂組成物の押出条件、シート製膜条件および延伸条件、塗工条件を調整し、表4~表8に記載の二軸延伸シート(実施例2~58、比較例1~10)を得た。
<Examples 2 to 58, Comparative Examples 1 to 10>
The blending amounts of the styrene-methacrylic acid copolymer (A) and high impact polystyrene (B) of Example 1, the resin composition extrusion conditions, sheet film forming conditions and stretching conditions, and coating conditions were adjusted. Biaxially stretched sheets described in Table 8 (Examples 2 to 58, Comparative Examples 1 to 10) were obtained.
 得られたシートについて、以下の方法にて測定、評価を行った。○、△、×の相対評価においては、○または△のときを合格と判定した。結果は表4~表8に記載した。 The obtained sheet was measured and evaluated by the following method. In relative evaluation of (circle), (triangle | delta), and x, the time of (circle) or (triangle | delta) was determined as the pass. The results are shown in Tables 4 to 8.
(1)成膜性
<ドローダウン>
 上記シート押出条件(Tダイ幅500mm、リップ開度1.5mm、φ40mmのエキストルーダー(田辺プラスチック機械社製)、押出温度230℃)にて製膜したときの、製膜可能な引取速度の最小値を下記基準で評価した。
  ○:0.5m/分未満
  △:0.5m/分以上、10.0m/分未満
  ×:10.0m/分以上
(1) Film formability <Drawdown>
The minimum take-off speed at which film formation is possible when film formation is performed under the above sheet extrusion conditions (T-die width 500 mm, lip opening 1.5 mm, φ40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd., extrusion temperature 230 ° C.)) The value was evaluated according to the following criteria.
○: Less than 0.5 m / min Δ: 0.5 m / min or more, less than 10.0 m / min ×: 10.0 m / min or more
<厚み均一性>
 上記製膜シートを二軸延伸し、縦方向および横方向に50mm間隔で直線を5本ずつ格子状に引いた時の交点25点についてマイクロゲージを用いて厚みを測定し、平均厚みと最大値、最小値を算出し、厚み範囲から、下記基準で評価した。
  ○:平均厚み0.24~0.26mm、厚み範囲:0.23~0.27mm
  △:平均厚み0.24~0.26mm、厚み範囲:0.21~0.29mm
  ×:上記以外の厚み範囲
<Thickness uniformity>
The film-forming sheet is biaxially stretched, the thickness is measured using a microgauge at 25 intersection points when five straight lines are drawn in a grid pattern at intervals of 50 mm in the vertical and horizontal directions, and the average thickness and the maximum value are measured. The minimum value was calculated and evaluated according to the following criteria from the thickness range.
○: Average thickness 0.24 to 0.26 mm, thickness range: 0.23 to 0.27 mm
Δ: Average thickness 0.24 to 0.26 mm, thickness range: 0.21 to 0.29 mm
X: Thickness range other than the above
<外観>
 二軸延伸シート350mm×350mmの範囲について、1)面積100mm以上のロール付着跡、2)面積10mm以上の気泡、3)透明および不透明異物、4)付着欠陥、5)幅3mm以上のダイライン(成膜時にTダイ出口で発生するシート流れ方向に走る欠陥)を欠点とし、欠点の個数を下記基準で評価した。
  ○:0個
  △:1~4個
  ×:5個以上
<Appearance>
Regarding the range of biaxially stretched sheet 350 mm × 350 mm, 1) roll adherence with area of 100 mm 2 or more, 2) air bubbles with area of 10 mm 2 or more, 3) transparent and opaque foreign matter, 4) adhesion defect, 5) die line with width of 3 mm or more (Defects running in the sheet flow direction generated at the T-die outlet during film formation) were regarded as defects, and the number of defects was evaluated according to the following criteria.
○: 0 △: 1 to 4 ×: 5 or more
<延伸均一性>
 二軸延伸シートから100mm×100mmのシート片を9枚切り出し、前記樹脂組成物のビカット軟化温度より30℃高い温度のオーブンに、上記試験片を60分間静置し収縮させた後の縦および横方向のシート片の長さ[X]および[Y](単位:mm)を測定した。次式より算出される値について条件を満たすシート片の個数を計測し、以下の基準で評価した。
 2.2≦100/[X]≦2.6、かつ、2.2≦100/[Y]≦2.6 ・・・式(A)
  ○:式(A)を満たすシート片の個数が15個以上
  △:式(A)を満たすシート片の個数が9~14個
  ×:式(A)を満たすシート片の個数が8個未満
<Elongation uniformity>
9 sheets of 100 mm × 100 mm pieces were cut out from the biaxially stretched sheet, and the test piece was left to shrink for 60 minutes in an oven having a temperature 30 ° C. higher than the Vicat softening temperature of the resin composition. The lengths [X] and [Y] (unit: mm) of the sheet pieces in the direction were measured. The number of sheet pieces satisfying the condition calculated for the value calculated from the following equation was measured and evaluated according to the following criteria.
2.2 ≦ 100 / [X] ≦ 2.6 and 2.2 ≦ 100 / [Y] ≦ 2.6 Formula (A)
○: The number of sheet pieces satisfying the formula (A) is 15 or more. Δ: The number of sheet pieces satisfying the formula (A) is 9 to 14. ×: The number of sheet pieces satisfying the formula (A) is less than 8.
(2)透明性
 JIS K-7361-1に準じ、ヘーズメーターNDH5000(日本電色社)を用いて、二軸延伸シートのヘーズを測定した。
  ○:ヘーズ1.5%未満
  △:ヘーズ1.5%以上、3.0%未満
  ×:ヘーズ3.0%以上
(2) Transparency According to JIS K-7361-1, the haze of the biaxially stretched sheet was measured using a haze meter NDH5000 (Nippon Denshoku).
○: Haze less than 1.5% Δ: Haze 1.5% or more, less than 3.0% ×: Haze 3.0% or more
(3)シート強度
<引裂き強度>
 JIS K-7128-2 第3部 直角形引裂き法に準じて、縦方向、横方向の引裂き強度を測定し、最小値を求めて、以下のように評価した。
  ○:10MPa以上
  △:5MPa以上、10MPa未満
  ×:5MPa未満
(3) Sheet strength <Tear strength>
In accordance with JIS K-7128-2, Part 3 In accordance with the right-angled tearing method, the tear strength in the longitudinal direction and the transverse direction was measured, and the minimum value was determined and evaluated as follows.
○: 10 MPa or more Δ: 5 MPa or more, less than 10 MPa ×: less than 5 MPa
<耐折性>
 ASTM D2176に準じて、シート押出方向(縦方向)とそれに垂直な方向(横方向)の耐折曲げ強さを測定し、最小値を求め、以下のように評価した。
  ○:5回以上
  △:2回以上、5回未満
  ×:2回未満
<Folding resistance>
In accordance with ASTM D2176, the bending strength in the sheet extrusion direction (longitudinal direction) and the direction perpendicular thereto (lateral direction) was measured, the minimum value was obtained, and evaluated as follows.
○: 5 times or more △: 2 times or more and less than 5 times ×: Less than 2 times
(4)成形性
<賦型性>
 熱板成形機HPT?400A(脇坂エンジ二アリング社製)にて、熱板温度150℃、加熱時間2.0秒の条件で、フードパック(寸法 蓋:縦150×横130×高さ30mm、本体:縦150×横130×高さ20mm)を成形し、賦型性を下記基準にて評価した。
  ○:良好
  △:コーナー部に僅かな形状不良
  ×:寸法と異なる形状またはコーナー部に著しい形状不良
(4) Formability <Shaping property>
With a hot plate molding machine HPT-400A (Wakisaka Engineering Co., Ltd.), under the conditions of a hot plate temperature of 150 ° C. and a heating time of 2.0 seconds, the food pack (dimension lid: length 150 × width 130 × height 30 mm, Main body: 150 (vertical) × 130 (horizontal) × 20 mm (height)) was molded, and the moldability was evaluated according to the following criteria.
○: Good △: Slightly poor shape at the corner ×: Remarkably different shape from the dimensions or corner
<外観>
 上記フードパックの外観について、1)表面の荒れによる白化、2)金型等の汚れの転写、3)レインドロップ、を欠点とし、下記基準にて評価した。
  ○:欠点なし
  △:蓋の天面以外に欠点が1点あり
  ×:上記以外(蓋の天面に欠点があるか、天面以外に2点以上の欠点がある)
<Appearance>
The appearance of the food pack was evaluated according to the following criteria, with 1) whitening due to surface roughness, 2) transfer of dirt such as molds, and 3) raindrops as defects.
○: No defect △: There is one defect other than the top of the lid ×: Other than the above (There are defects on the top of the lid, or there are two or more defects other than the top)
<トリミング時の耐割れ性(抜き性)>
 上記フードパックを50枚重ね、プレス式の打抜き機で打ち抜いたときのヒンジ部およびフランジ部に割れが発生している枚数より以下の基準で評価した。
  ○:割れの発生が0枚
  △:割れの発生が1~5枚
  ×:割れの発生が6枚以上
<Crack resistance during trimming (removability)>
50 food packs were stacked and evaluated according to the following criteria from the number of cracks in the hinge and flange when punched with a press punching machine.
○: Occurrence of cracks 0: △: Occurrence of cracks 1 to 5 ×: Occurrence of cracks 6 or more
(5)耐熱性
<熱変形率>
 上記成形条件で得られた弁当蓋を110℃に設定した熱風乾燥機に60分間入れた後、容器の変形を目視で観察した。
  ○:変形なし
  △:軽微な変形、外寸変化5%未満
  ×:大変形、外寸変化5%以上
(5) Heat resistance <thermal deformation rate>
The lunch box lid obtained under the above molding conditions was placed in a hot air dryer set at 110 ° C. for 60 minutes, and then the deformation of the container was visually observed.
○: No deformation △: Minor deformation, outside dimension change less than 5% ×: Large deformation, outside dimension change 5% or more
<電子レンジ加熱耐性>
 上記のフードパックの蓋の中央に5mm×5mmの範囲でマヨネーズを9点付着させ、容器本体に水300gを入れ、蓋容器をかぶせて1500Wの電子レンジで90秒間加熱した後、マヨネーズ付着部分の様子を目視で評価した。
  ○:変化なし
  △:白化あり、容器がわずかに変形
  ×:穴あきあり、容器が著しく変形
<Microwave heating resistance>
Nine points of mayonnaise are attached to the center of the lid of the above food pack in a range of 5 mm × 5 mm, put 300 g of water into the container body, cover the lid container and heat for 90 seconds in a 1500 W microwave oven, The state was visually evaluated.
○: No change △: Whitening occurred, container slightly deformed ×: Perforated, container deformed significantly
(6)滑性
 容器天面から切り出したシートの食品接触面と食品非接触面を重ねた状態にて、JIS P8147 紙および板紙-静および動摩擦係数の測定方法に準じた方法にて摩擦角(滑り始める角度)を測定し、以下の基準で評価した。
  ○:15°未満
  △:15°以上、30°未満
  ×:30°以上
(6) Lubricity In a state where the food contact surface and the food non-contact surface of the sheet cut out from the top surface of the container are overlapped, the friction angle (by the method according to JIS P8147 paper and paper-static and dynamic friction coefficient measurement method) The angle at which sliding begins) was measured and evaluated according to the following criteria.
○: Less than 15 ° △: 15 ° or more, less than 30 ° ×: 30 ° or more
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4~表8の結果から、実施例1~58はいずれも、本発明の規定を満足するものであり、製膜性(ドローダウン、厚み均一性、外観、延伸均一性)、透明性(ヘーズ)、シート強度(引裂き強度、耐折性)、成形性(賦型性、外観、トリミング時の耐割れ性(抜き性))、耐熱性(熱変形率、電子レンジ加熱耐性)、滑性(摩擦角)のいずれの性能においても、優れた性能を有するものであった。 From the results of Tables 4 to 8, Examples 1 to 58 all satisfy the provisions of the present invention, and film forming properties (drawdown, thickness uniformity, appearance, stretch uniformity), transparency ( Haze), sheet strength (tear strength, folding resistance), moldability (formability, appearance, crack resistance during trimming (pullability)), heat resistance (thermal deformation rate, resistance to microwave heating), lubricity In any performance of (friction angle), it had excellent performance.
 一方、比較例1は、スチレン-メタクリル酸共重合体(A-2)中のメタクリル酸単量体単位の含有量が少ないため、ビカット軟化温度が低く、熱変形率と電子レンジ加熱耐性に劣るものであった。比較例2は、スチレン-メタクリル酸共重合体(A-8)中のメタクリル酸単量体単位の含有量が多いため、製膜時の厚み均一性と外観および賦型性に劣るものであった。比較例3は、ハイインパクトポリスチレン(B)の含有量が多いものであり、スチレン樹脂組成物中のゴム成分の含有量が多く、製膜時の外観と透明性に劣るものであった。比較例4は、ハイインパクトポリスチレン(B)を含有しないものであり、スチレン樹脂組成物中にゴム成分を含有せず、シート強度(引裂き強度、耐折性)、トリミング時の耐割れ性、滑性に劣るものであった。 On the other hand, Comparative Example 1 has a low Vicat softening temperature due to a low content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-2), and is inferior in thermal deformation rate and resistance to microwave heating. It was a thing. In Comparative Example 2, the content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-8) is large, resulting in poor thickness uniformity, appearance, and moldability during film formation. It was. In Comparative Example 3, the content of high impact polystyrene (B) was large, the content of the rubber component in the styrene resin composition was large, and the appearance and transparency during film formation were poor. Comparative Example 4 does not contain high impact polystyrene (B), does not contain a rubber component in the styrene resin composition, has sheet strength (tear strength, folding resistance), cracking resistance during trimming, sliding It was inferior in nature.
 比較例5は、スチレン-メタクリル酸共重合体(A-25)中のメタクリル酸単量体単位の含有量が比較的少なく、さらに共重合モノマーとしてブタジエンを含むために、ビカット軟化温度が低く、熱変形率と電子レンジ加熱耐性に劣るものであった。比較例6は、スチレン-メタクリル酸共重合体(A-26)中のメタクリル酸単量体単位の含有量が比較的多く、さらに共重合モノマーとして無水マレイン酸を含むために、ビカット軟化温度が高く、賦型性に劣るものであった。比較例7は、横方向の配向緩和応力が高いものであり、引裂き強度、賦型性、トリミング時の耐割れ性に劣るものであった。比較例8は、縦方向と横方向の配向緩和応力がいずれも低いものであり、耐折性とトリミング時の耐割れ性に劣るものであった。比較例9は、縦方向と横方向の配向緩和応力がいずれも高いものであり、賦型性に劣るものであった。比較例10は、横方向の配向緩和応力が低いものであり、引裂き強度とトリミング時の耐割れ性に劣るものであった。 In Comparative Example 5, the content of the methacrylic acid monomer unit in the styrene-methacrylic acid copolymer (A-25) is relatively small, and further, since butadiene is included as the copolymerization monomer, the Vicat softening temperature is low, It was inferior in heat distortion rate and microwave oven heat resistance. Comparative Example 6 has a relatively high content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-26), and further contains maleic anhydride as a copolymerization monomer. It was high and inferior in formability. Comparative Example 7 had a high orientation relaxation stress in the lateral direction, and was inferior in tear strength, moldability, and crack resistance during trimming. In Comparative Example 8, both the longitudinal and lateral orientation relaxation stresses were low, and the folding resistance and the crack resistance during trimming were inferior. In Comparative Example 9, both the longitudinal and lateral orientation relaxation stresses were high, and the moldability was inferior. Comparative Example 10 had a low orientational relaxation stress in the lateral direction, and was inferior in tear strength and crack resistance during trimming.

Claims (11)

  1.  スチレン-メタクリル酸共重合体(A)とハイインパクトポリスチレン(B)とを質量比(A)/(B)=97.0/3.0~99.9/0.1で含有するスチレン系樹脂組成物からなる二軸延伸シートであって、
     前記スチレン-メタクリル酸共重合体(A)のメタクリル酸単量体単位の含有量が3~14質量%であり、
     前記スチレン系樹脂組成物のビカット軟化温度が106~132℃の範囲であり、
     前記二軸延伸シートの縦方向と横方向の配向緩和応力がいずれも0.5~1.2MPaの範囲である
     二軸延伸シート。
    Styrene resin containing styrene-methacrylic acid copolymer (A) and high impact polystyrene (B) in a mass ratio (A) / (B) = 97.0 / 3.0 to 99.9 / 0.1 A biaxially stretched sheet comprising the composition,
    The content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A) is 3 to 14% by mass,
    Vicat softening temperature of the styrenic resin composition is in the range of 106-132 ° C,
    A biaxially stretched sheet, wherein both the longitudinal and lateral orientation relaxation stresses of the biaxially stretched sheet are in the range of 0.5 to 1.2 MPa.
  2.  前記スチレン-メタクリル酸共重合体(A)は、重量平均分子量(Mw)が12万~25万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnが2.0~3.0であり、Z平均分子量(Mz)と重量平均分子量(Mw)との比Mz/Mwが1.5~2.0である請求項1に記載の二軸延伸シート。 The styrene-methacrylic acid copolymer (A) has a weight average molecular weight (Mw) of 120,000 to 250,000, and a ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of 2. The biaxially stretched sheet according to claim 1, wherein the biaxially stretched sheet is 0 to 3.0, and the ratio Mz / Mw of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 1.5 to 2.0.
  3.  前記ハイインパクトポリスチレン(B)に由来するゴム成分の含有量が、前記スチレン系樹脂組成物に対して0.005~0.36質量%である請求項1または請求項2に記載の二軸延伸シート。 The biaxial stretching according to claim 1 or 2, wherein the content of the rubber component derived from the high-impact polystyrene (B) is 0.005 to 0.36 mass% with respect to the styrenic resin composition. Sheet.
  4.  前記スチレン系樹脂組成物中の未反応スチレンモノマーの含有量が1000ppm以下、未反応メタクリル酸モノマーの含有量が150ppm以下である請求項1~3のいずれか1項に記載の二軸延伸シート。 The biaxially stretched sheet according to any one of claims 1 to 3, wherein the content of unreacted styrene monomer in the styrene-based resin composition is 1000 ppm or less and the content of unreacted methacrylic acid monomer is 150 ppm or less.
  5.  前記スチレン系樹脂組成物中の六員環酸無水物の含有量が1.0質量%以下である請求項1~4のいずれか1項に記載の二軸延伸シート。 The biaxially stretched sheet according to any one of claims 1 to 4, wherein the content of the six-membered cyclic acid anhydride in the styrene-based resin composition is 1.0 mass% or less.
  6.  前記スチレン系樹脂組成物は、200℃におけるメルトフローインデックスが0.5~4.5g/10分である請求項1~5のいずれか1項に記載の二軸延伸シート。 The biaxially stretched sheet according to any one of claims 1 to 5, wherein the styrenic resin composition has a melt flow index at 200 ° C of 0.5 to 4.5 g / 10 min.
  7.  前記ハイインパクトポリスチレン(B)に由来するゴム成分が、平均ゴム粒子径1~9μmである請求項1~6のいずれか1項に記載の二軸延伸シート。 The biaxially stretched sheet according to any one of claims 1 to 6, wherein the rubber component derived from the high impact polystyrene (B) has an average rubber particle diameter of 1 to 9 µm.
  8.  少なくとも一方の表面にシリコーンオイル塗膜を有する請求項1~7のいずれか1項に記載の二軸延伸シート。 The biaxially stretched sheet according to any one of claims 1 to 7, which has a silicone oil coating film on at least one surface.
  9.  請求項1~8のいずれか1項に記載の二軸延伸シートからなる成形品。 A molded article comprising the biaxially stretched sheet according to any one of claims 1 to 8.
  10.  電子レンジ加熱用食品包装容器である請求項9に記載の成形品。 The molded article according to claim 9, which is a food packaging container for heating in a microwave oven.
  11.  本体部分と当該本体部分と嵌合可能な蓋材とからなるフードパックであり、嵌合部分の形状が内嵌合である請求項9または請求項10に記載の成形品。 The molded article according to claim 9 or 10, wherein the molded article is a hood pack comprising a main body portion and a lid material that can be fitted to the main body portion, and the shape of the fitting portion is an inner fitting.
PCT/JP2017/001000 2016-01-15 2017-01-13 Biaxially-oriented sheet and molded article thereof WO2017122775A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187013910A KR102638037B1 (en) 2016-01-15 2017-01-13 Biaxially stretched sheets and molded products thereof
JP2017561180A JP6389574B2 (en) 2016-01-15 2017-01-13 Biaxially stretched sheet and molded product thereof
CN201780005854.0A CN108472859B (en) 2016-01-15 2017-01-13 Biaxially stretched sheet and molded article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006072 2016-01-15
JP2016006072 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122775A1 true WO2017122775A1 (en) 2017-07-20

Family

ID=59311221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001000 WO2017122775A1 (en) 2016-01-15 2017-01-13 Biaxially-oriented sheet and molded article thereof

Country Status (5)

Country Link
JP (1) JP6389574B2 (en)
KR (1) KR102638037B1 (en)
CN (1) CN108472859B (en)
TW (1) TWI697508B (en)
WO (1) WO2017122775A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014814A (en) * 2017-07-06 2019-01-31 デンカ株式会社 Oriented sheet and molding thereof
JP2019059816A (en) * 2017-09-25 2019-04-18 デンカ株式会社 Biaxial stretched sheet and molding thereof
JP2020050368A (en) * 2018-09-26 2020-04-02 デンカ株式会社 Lid, packaging container, and method for manufacturing lid
JP2020050447A (en) * 2019-10-16 2020-04-02 デンカ株式会社 Lid, packaging container, and method for manufacturing lid
JP2020100681A (en) * 2018-12-19 2020-07-02 Psジャパン株式会社 Styrenic film, molde article, method for producing styrenic film
WO2021260971A1 (en) * 2020-06-23 2021-12-30 デンカ株式会社 Biaxially-drawn sheet and molded article thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548304B (en) * 2021-07-30 2022-12-16 四川新升包装科技有限责任公司 Antistatic flame-retardant plastic container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279546A (en) * 1993-03-30 1994-10-04 Asahi Chem Ind Co Ltd Stretched styrene resin sheet
JP2002020564A (en) * 2000-07-03 2002-01-23 Asahi Kasei Corp Oriented sheet of styrenic resin composition
JP2005281646A (en) * 2004-03-31 2005-10-13 Asahi Kasei Life & Living Corp Polystyrenic biaxially stretched sheet and method for producing the same
JP2007284601A (en) * 2006-04-18 2007-11-01 Asahi Kasei Chemicals Corp Readily cuttable film
JP2008248156A (en) * 2007-03-30 2008-10-16 Dic Corp Resin composition for biaxially stretched styrenic resin sheet and sheet and molding using the same
JP2009029868A (en) * 2007-07-25 2009-02-12 Denki Kagaku Kogyo Kk Biaxially stretched polystyrene-based resin sheet
JP2010502770A (en) * 2006-07-27 2010-01-28 ダウ グローバル テクノロジーズ インコーポレイティド Shrink label of oriented polystyrene film with small rubber particle and low rubber particle gel content and containing block copolymer
JP2011001074A (en) * 2009-06-17 2011-01-06 Denki Kagaku Kogyo Kk Carrier tape and manufacturing method of the same
WO2012063876A1 (en) * 2010-11-12 2012-05-18 旭化成ケミカルズ株式会社 Push-through pack packaging

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571530A (en) 1978-11-27 1980-05-29 Mitsubishi Monsanto Chem Co 2-way stretched styrene resin sheet
JPS5915133A (en) 1982-07-15 1984-01-26 Caterpillar Mitsubishi Ltd Bucket assembly for earthwork vehicle capable of discharging soil even to sideway
JP2003012734A (en) 2001-06-28 2003-01-15 Denki Kagaku Kogyo Kk Styrenic copolymer and its biaxially oriented sheet and container
JP5191667B2 (en) * 2007-01-29 2013-05-08 旭化成イーマテリアルズ株式会社 Styrene resin anisotropic film
JP5469804B2 (en) * 2007-10-05 2014-04-16 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded article
JP5468303B2 (en) 2009-05-19 2014-04-09 Psジャパン株式会社 Method for producing styrene-methacrylic acid-methyl methacrylate resin
JP5390437B2 (en) * 2010-03-10 2014-01-15 ダイセルパックシステムズ株式会社 Biaxially stretched styrene resin sheet and molded article thereof
JP4990995B2 (en) * 2010-03-26 2012-08-01 サンディック株式会社 Biaxially stretched styrene resin sheet and molded product using the same
JP5897311B2 (en) * 2011-03-16 2016-03-30 Psジャパン株式会社 Heat-resistant styrenic resin composition, extruded sheet and molded product
US9193864B2 (en) * 2012-06-22 2015-11-24 Sabic Global Technologies B.V. Polycarbonate compositions with improved impact resistance
JP6188307B2 (en) * 2012-11-16 2017-08-30 Psジャパン株式会社 Heat-resistant styrenic resin composition, extruded sheet and molded product
CN105246951B (en) * 2013-05-10 2018-01-02 电化株式会社 Synthetic resin system stretched PTFE film
JP6085533B2 (en) * 2013-07-19 2017-02-22 サンディック株式会社 Biaxially stretched styrene resin sheet and molded product thereof
JP6373648B2 (en) * 2014-06-06 2018-08-15 デンカ株式会社 Oil-resistant polystyrene resin sheet and molded container thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279546A (en) * 1993-03-30 1994-10-04 Asahi Chem Ind Co Ltd Stretched styrene resin sheet
JP2002020564A (en) * 2000-07-03 2002-01-23 Asahi Kasei Corp Oriented sheet of styrenic resin composition
JP2005281646A (en) * 2004-03-31 2005-10-13 Asahi Kasei Life & Living Corp Polystyrenic biaxially stretched sheet and method for producing the same
JP2007284601A (en) * 2006-04-18 2007-11-01 Asahi Kasei Chemicals Corp Readily cuttable film
JP2010502770A (en) * 2006-07-27 2010-01-28 ダウ グローバル テクノロジーズ インコーポレイティド Shrink label of oriented polystyrene film with small rubber particle and low rubber particle gel content and containing block copolymer
JP2008248156A (en) * 2007-03-30 2008-10-16 Dic Corp Resin composition for biaxially stretched styrenic resin sheet and sheet and molding using the same
JP2009029868A (en) * 2007-07-25 2009-02-12 Denki Kagaku Kogyo Kk Biaxially stretched polystyrene-based resin sheet
JP2011001074A (en) * 2009-06-17 2011-01-06 Denki Kagaku Kogyo Kk Carrier tape and manufacturing method of the same
WO2012063876A1 (en) * 2010-11-12 2012-05-18 旭化成ケミカルズ株式会社 Push-through pack packaging

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014814A (en) * 2017-07-06 2019-01-31 デンカ株式会社 Oriented sheet and molding thereof
JP7008436B2 (en) 2017-07-06 2022-01-25 デンカ株式会社 Stretched sheet and its molded product
JP2019059816A (en) * 2017-09-25 2019-04-18 デンカ株式会社 Biaxial stretched sheet and molding thereof
JP7002264B2 (en) 2017-09-25 2022-02-04 デンカ株式会社 Biaxially stretched sheet and its molded products
JP2020050368A (en) * 2018-09-26 2020-04-02 デンカ株式会社 Lid, packaging container, and method for manufacturing lid
JP2020100681A (en) * 2018-12-19 2020-07-02 Psジャパン株式会社 Styrenic film, molde article, method for producing styrenic film
JP2020050447A (en) * 2019-10-16 2020-04-02 デンカ株式会社 Lid, packaging container, and method for manufacturing lid
WO2021260971A1 (en) * 2020-06-23 2021-12-30 デンカ株式会社 Biaxially-drawn sheet and molded article thereof

Also Published As

Publication number Publication date
JP6389574B2 (en) 2018-09-12
TW201736415A (en) 2017-10-16
TWI697508B (en) 2020-07-01
KR102638037B1 (en) 2024-02-16
CN108472859A (en) 2018-08-31
CN108472859B (en) 2020-09-25
KR20180102541A (en) 2018-09-17
JPWO2017122775A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6389574B2 (en) Biaxially stretched sheet and molded product thereof
JP6444539B2 (en) Biaxially stretched sheet and molded product thereof
JP6148411B2 (en) Styrene biaxially stretched sheet, biaxially stretched sheet with anti-fogging agent layer, packaging container, and cooking method
JP2018203837A (en) Styrenic resin composition, stretched sheet and molding
JP2018048320A (en) Stretched sheet, packaging container, and methods of manufacturing the same
TWI709487B (en) Biaxially stretched sheet and its molded products
JP7025998B2 (en) Biaxially stretched sheet and its molded products
JP6941487B2 (en) Stretched sheet and its molded product
JP7002264B2 (en) Biaxially stretched sheet and its molded products
JP2018203838A (en) Styrenic resin composition, stretched sheet and molding
JP7153496B2 (en) Biaxially oriented sheet and molded article thereof
JP4582765B2 (en) Polystyrene-based biaxially stretched sheet and method for producing the same
JP7008436B2 (en) Stretched sheet and its molded product
JP2007177120A (en) Vinyl aromatic hydrocarbon based copolymer
JP6978355B2 (en) Biaxially stretched sheet and its molded products
JP2019196415A (en) Biaxially oriented sheet and molded article thereof
JP7470565B2 (en) Styrene-methacrylic acid copolymer resin composition for film, film, and molded article
JP7085933B2 (en) Styrene resin sheet and molded products
JP2022129115A (en) Biaxially stretched polystyrene sheet and package
JP2023138475A (en) Styrenic resin composition and molded body, carrier tape for conveying electronic component each using the same
JP2023061603A (en) Biaxially stretched sheet and package container
JP2010116519A (en) High-gloss polystyrene-based resin film, laminate sheet and laminate sheet-formed article
JP2016158962A (en) Container for heating in microwave oven, using styrene-based biaxial oriented sheet, and cooking method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561180

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738527

Country of ref document: EP

Kind code of ref document: A1